hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
7e48599a37e12aafc83803c568705a85c5b27d191e01dbc31cf5718d8969c715 | from __future__ import print_function, division
from .sympify import sympify, _sympify, SympifyError
from .basic import Basic, Atom
from .singleton import S
from .evalf import EvalfMixin, pure_complex
from .decorators import call_highest_priority, sympify_method_args, sympify_return
from .cache import cacheit
from .compatibility import reduce, as_int, default_sort_key, range, Iterable
from sympy.utilities.misc import func_name
from mpmath.libmp import mpf_log, prec_to_dps
from collections import defaultdict
@sympify_method_args
class Expr(Basic, EvalfMixin):
"""
Base class for algebraic expressions.
Everything that requires arithmetic operations to be defined
should subclass this class, instead of Basic (which should be
used only for argument storage and expression manipulation, i.e.
pattern matching, substitutions, etc).
See Also
========
sympy.core.basic.Basic
"""
__slots__ = []
is_scalar = True # self derivative is 1
@property
def _diff_wrt(self):
"""Return True if one can differentiate with respect to this
object, else False.
Subclasses such as Symbol, Function and Derivative return True
to enable derivatives wrt them. The implementation in Derivative
separates the Symbol and non-Symbol (_diff_wrt=True) variables and
temporarily converts the non-Symbols into Symbols when performing
the differentiation. By default, any object deriving from Expr
will behave like a scalar with self.diff(self) == 1. If this is
not desired then the object must also set `is_scalar = False` or
else define an _eval_derivative routine.
Note, see the docstring of Derivative for how this should work
mathematically. In particular, note that expr.subs(yourclass, Symbol)
should be well-defined on a structural level, or this will lead to
inconsistent results.
Examples
========
>>> from sympy import Expr
>>> e = Expr()
>>> e._diff_wrt
False
>>> class MyScalar(Expr):
... _diff_wrt = True
...
>>> MyScalar().diff(MyScalar())
1
>>> class MySymbol(Expr):
... _diff_wrt = True
... is_scalar = False
...
>>> MySymbol().diff(MySymbol())
Derivative(MySymbol(), MySymbol())
"""
return False
@cacheit
def sort_key(self, order=None):
coeff, expr = self.as_coeff_Mul()
if expr.is_Pow:
expr, exp = expr.args
else:
expr, exp = expr, S.One
if expr.is_Dummy:
args = (expr.sort_key(),)
elif expr.is_Atom:
args = (str(expr),)
else:
if expr.is_Add:
args = expr.as_ordered_terms(order=order)
elif expr.is_Mul:
args = expr.as_ordered_factors(order=order)
else:
args = expr.args
args = tuple(
[ default_sort_key(arg, order=order) for arg in args ])
args = (len(args), tuple(args))
exp = exp.sort_key(order=order)
return expr.class_key(), args, exp, coeff
def __hash__(self):
# hash cannot be cached using cache_it because infinite recurrence
# occurs as hash is needed for setting cache dictionary keys
h = self._mhash
if h is None:
h = hash((type(self).__name__,) + self._hashable_content())
self._mhash = h
return h
def _hashable_content(self):
"""Return a tuple of information about self that can be used to
compute the hash. If a class defines additional attributes,
like ``name`` in Symbol, then this method should be updated
accordingly to return such relevant attributes.
Defining more than _hashable_content is necessary if __eq__ has
been defined by a class. See note about this in Basic.__eq__."""
return self._args
def __eq__(self, other):
try:
other = _sympify(other)
if not isinstance(other, Expr):
return False
except (SympifyError, SyntaxError):
return False
# check for pure number expr
if not (self.is_Number and other.is_Number) and (
type(self) != type(other)):
return False
a, b = self._hashable_content(), other._hashable_content()
if a != b:
return False
# check number *in* an expression
for a, b in zip(a, b):
if not isinstance(a, Expr):
continue
if a.is_Number and type(a) != type(b):
return False
return True
# ***************
# * Arithmetics *
# ***************
# Expr and its sublcasses use _op_priority to determine which object
# passed to a binary special method (__mul__, etc.) will handle the
# operation. In general, the 'call_highest_priority' decorator will choose
# the object with the highest _op_priority to handle the call.
# Custom subclasses that want to define their own binary special methods
# should set an _op_priority value that is higher than the default.
#
# **NOTE**:
# This is a temporary fix, and will eventually be replaced with
# something better and more powerful. See issue 5510.
_op_priority = 10.0
def __pos__(self):
return self
def __neg__(self):
# Mul has its own __neg__ routine, so we just
# create a 2-args Mul with the -1 in the canonical
# slot 0.
c = self.is_commutative
return Mul._from_args((S.NegativeOne, self), c)
def __abs__(self):
from sympy import Abs
return Abs(self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return Add(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return Add(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return Add(self, -other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return Add(other, -self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return Mul(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return Mul(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rpow__')
def _pow(self, other):
return Pow(self, other)
def __pow__(self, other, mod=None):
if mod is None:
return self._pow(other)
try:
_self, other, mod = as_int(self), as_int(other), as_int(mod)
if other >= 0:
return pow(_self, other, mod)
else:
from sympy.core.numbers import mod_inverse
return mod_inverse(pow(_self, -other, mod), mod)
except ValueError:
power = self._pow(other)
try:
return power%mod
except TypeError:
return NotImplemented
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
return Pow(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rdiv__')
def __div__(self, other):
return Mul(self, Pow(other, S.NegativeOne))
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__div__')
def __rdiv__(self, other):
return Mul(other, Pow(self, S.NegativeOne))
__truediv__ = __div__
__rtruediv__ = __rdiv__
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rmod__')
def __mod__(self, other):
return Mod(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__mod__')
def __rmod__(self, other):
return Mod(other, self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rfloordiv__')
def __floordiv__(self, other):
from sympy.functions.elementary.integers import floor
return floor(self / other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__floordiv__')
def __rfloordiv__(self, other):
from sympy.functions.elementary.integers import floor
return floor(other / self)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__rdivmod__')
def __divmod__(self, other):
from sympy.functions.elementary.integers import floor
return floor(self / other), Mod(self, other)
@sympify_return([('other', 'Expr')], NotImplemented)
@call_highest_priority('__divmod__')
def __rdivmod__(self, other):
from sympy.functions.elementary.integers import floor
return floor(other / self), Mod(other, self)
def __int__(self):
# Although we only need to round to the units position, we'll
# get one more digit so the extra testing below can be avoided
# unless the rounded value rounded to an integer, e.g. if an
# expression were equal to 1.9 and we rounded to the unit position
# we would get a 2 and would not know if this rounded up or not
# without doing a test (as done below). But if we keep an extra
# digit we know that 1.9 is not the same as 1 and there is no
# need for further testing: our int value is correct. If the value
# were 1.99, however, this would round to 2.0 and our int value is
# off by one. So...if our round value is the same as the int value
# (regardless of how much extra work we do to calculate extra decimal
# places) we need to test whether we are off by one.
from sympy import Dummy
if not self.is_number:
raise TypeError("can't convert symbols to int")
r = self.round(2)
if not r.is_Number:
raise TypeError("can't convert complex to int")
if r in (S.NaN, S.Infinity, S.NegativeInfinity):
raise TypeError("can't convert %s to int" % r)
i = int(r)
if not i:
return 0
# off-by-one check
if i == r and not (self - i).equals(0):
isign = 1 if i > 0 else -1
x = Dummy()
# in the following (self - i).evalf(2) will not always work while
# (self - r).evalf(2) and the use of subs does; if the test that
# was added when this comment was added passes, it might be safe
# to simply use sign to compute this rather than doing this by hand:
diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1
if diff_sign != isign:
i -= isign
return i
__long__ = __int__
def __float__(self):
# Don't bother testing if it's a number; if it's not this is going
# to fail, and if it is we still need to check that it evalf'ed to
# a number.
result = self.evalf()
if result.is_Number:
return float(result)
if result.is_number and result.as_real_imag()[1]:
raise TypeError("can't convert complex to float")
raise TypeError("can't convert expression to float")
def __complex__(self):
result = self.evalf()
re, im = result.as_real_imag()
return complex(float(re), float(im))
def _cmp(self, other, op, cls):
assert op in ("<", ">", "<=", ">=")
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not isinstance(other, Expr):
return NotImplemented
for me in (self, other):
if me.is_extended_real is False:
raise TypeError("Invalid comparison of non-real %s" % me)
if me is S.NaN:
raise TypeError("Invalid NaN comparison")
n2 = _n2(self, other)
if n2 is not None:
# use float comparison for infinity.
# otherwise get stuck in infinite recursion
if n2 in (S.Infinity, S.NegativeInfinity):
n2 = float(n2)
if op == "<":
return _sympify(n2 < 0)
elif op == ">":
return _sympify(n2 > 0)
elif op == "<=":
return _sympify(n2 <= 0)
else: # >=
return _sympify(n2 >= 0)
if self.is_extended_real and other.is_extended_real:
if op in ("<=", ">") \
and ((self.is_infinite and self.is_extended_negative) \
or (other.is_infinite and other.is_extended_positive)):
return S.true if op == "<=" else S.false
if op in ("<", ">=") \
and ((self.is_infinite and self.is_extended_positive) \
or (other.is_infinite and other.is_extended_negative)):
return S.true if op == ">=" else S.false
diff = self - other
if diff is not S.NaN:
if op == "<":
test = diff.is_extended_negative
elif op == ">":
test = diff.is_extended_positive
elif op == "<=":
test = diff.is_extended_nonpositive
else: # >=
test = diff.is_extended_nonnegative
if test is not None:
return S.true if test == True else S.false
# return unevaluated comparison object
return cls(self, other, evaluate=False)
def __ge__(self, other):
from sympy import GreaterThan
return self._cmp(other, ">=", GreaterThan)
def __le__(self, other):
from sympy import LessThan
return self._cmp(other, "<=", LessThan)
def __gt__(self, other):
from sympy import StrictGreaterThan
return self._cmp(other, ">", StrictGreaterThan)
def __lt__(self, other):
from sympy import StrictLessThan
return self._cmp(other, "<", StrictLessThan)
def __trunc__(self):
if not self.is_number:
raise TypeError("can't truncate symbols and expressions")
else:
return Integer(self)
@staticmethod
def _from_mpmath(x, prec):
from sympy import Float
if hasattr(x, "_mpf_"):
return Float._new(x._mpf_, prec)
elif hasattr(x, "_mpc_"):
re, im = x._mpc_
re = Float._new(re, prec)
im = Float._new(im, prec)*S.ImaginaryUnit
return re + im
else:
raise TypeError("expected mpmath number (mpf or mpc)")
@property
def is_number(self):
"""Returns True if ``self`` has no free symbols and no
undefined functions (AppliedUndef, to be precise). It will be
faster than ``if not self.free_symbols``, however, since
``is_number`` will fail as soon as it hits a free symbol
or undefined function.
Examples
========
>>> from sympy import log, Integral, cos, sin, pi
>>> from sympy.core.function import Function
>>> from sympy.abc import x
>>> f = Function('f')
>>> x.is_number
False
>>> f(1).is_number
False
>>> (2*x).is_number
False
>>> (2 + Integral(2, x)).is_number
False
>>> (2 + Integral(2, (x, 1, 2))).is_number
True
Not all numbers are Numbers in the SymPy sense:
>>> pi.is_number, pi.is_Number
(True, False)
If something is a number it should evaluate to a number with
real and imaginary parts that are Numbers; the result may not
be comparable, however, since the real and/or imaginary part
of the result may not have precision.
>>> cos(1).is_number and cos(1).is_comparable
True
>>> z = cos(1)**2 + sin(1)**2 - 1
>>> z.is_number
True
>>> z.is_comparable
False
See Also
========
sympy.core.basic.Basic.is_comparable
"""
return all(obj.is_number for obj in self.args)
def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1):
"""Return self evaluated, if possible, replacing free symbols with
random complex values, if necessary.
The random complex value for each free symbol is generated
by the random_complex_number routine giving real and imaginary
parts in the range given by the re_min, re_max, im_min, and im_max
values. The returned value is evaluated to a precision of n
(if given) else the maximum of 15 and the precision needed
to get more than 1 digit of precision. If the expression
could not be evaluated to a number, or could not be evaluated
to more than 1 digit of precision, then None is returned.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x, y
>>> x._random() # doctest: +SKIP
0.0392918155679172 + 0.916050214307199*I
>>> x._random(2) # doctest: +SKIP
-0.77 - 0.87*I
>>> (x + y/2)._random(2) # doctest: +SKIP
-0.57 + 0.16*I
>>> sqrt(2)._random(2)
1.4
See Also
========
sympy.utilities.randtest.random_complex_number
"""
free = self.free_symbols
prec = 1
if free:
from sympy.utilities.randtest import random_complex_number
a, c, b, d = re_min, re_max, im_min, im_max
reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True)
for zi in free])))
try:
nmag = abs(self.evalf(2, subs=reps))
except (ValueError, TypeError):
# if an out of range value resulted in evalf problems
# then return None -- XXX is there a way to know how to
# select a good random number for a given expression?
# e.g. when calculating n! negative values for n should not
# be used
return None
else:
reps = {}
nmag = abs(self.evalf(2))
if not hasattr(nmag, '_prec'):
# e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True
return None
if nmag._prec == 1:
# increase the precision up to the default maximum
# precision to see if we can get any significance
from mpmath.libmp.libintmath import giant_steps
from sympy.core.evalf import DEFAULT_MAXPREC as target
# evaluate
for prec in giant_steps(2, target):
nmag = abs(self.evalf(prec, subs=reps))
if nmag._prec != 1:
break
if nmag._prec != 1:
if n is None:
n = max(prec, 15)
return self.evalf(n, subs=reps)
# never got any significance
return None
def is_constant(self, *wrt, **flags):
"""Return True if self is constant, False if not, or None if
the constancy could not be determined conclusively.
If an expression has no free symbols then it is a constant. If
there are free symbols it is possible that the expression is a
constant, perhaps (but not necessarily) zero. To test such
expressions, a few strategies are tried:
1) numerical evaluation at two random points. If two such evaluations
give two different values and the values have a precision greater than
1 then self is not constant. If the evaluations agree or could not be
obtained with any precision, no decision is made. The numerical testing
is done only if ``wrt`` is different than the free symbols.
2) differentiation with respect to variables in 'wrt' (or all free
symbols if omitted) to see if the expression is constant or not. This
will not always lead to an expression that is zero even though an
expression is constant (see added test in test_expr.py). If
all derivatives are zero then self is constant with respect to the
given symbols.
3) finding out zeros of denominator expression with free_symbols.
It won't be constant if there are zeros. It gives more negative
answers for expression that are not constant.
If neither evaluation nor differentiation can prove the expression is
constant, None is returned unless two numerical values happened to be
the same and the flag ``failing_number`` is True -- in that case the
numerical value will be returned.
If flag simplify=False is passed, self will not be simplified;
the default is True since self should be simplified before testing.
Examples
========
>>> from sympy import cos, sin, Sum, S, pi
>>> from sympy.abc import a, n, x, y
>>> x.is_constant()
False
>>> S(2).is_constant()
True
>>> Sum(x, (x, 1, 10)).is_constant()
True
>>> Sum(x, (x, 1, n)).is_constant()
False
>>> Sum(x, (x, 1, n)).is_constant(y)
True
>>> Sum(x, (x, 1, n)).is_constant(n)
False
>>> Sum(x, (x, 1, n)).is_constant(x)
True
>>> eq = a*cos(x)**2 + a*sin(x)**2 - a
>>> eq.is_constant()
True
>>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
True
>>> (0**x).is_constant()
False
>>> x.is_constant()
False
>>> (x**x).is_constant()
False
>>> one = cos(x)**2 + sin(x)**2
>>> one.is_constant()
True
>>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1
True
"""
def check_denominator_zeros(expression):
from sympy.solvers.solvers import denoms
retNone = False
for den in denoms(expression):
z = den.is_zero
if z is True:
return True
if z is None:
retNone = True
if retNone:
return None
return False
simplify = flags.get('simplify', True)
if self.is_number:
return True
free = self.free_symbols
if not free:
return True # assume f(1) is some constant
# if we are only interested in some symbols and they are not in the
# free symbols then this expression is constant wrt those symbols
wrt = set(wrt)
if wrt and not wrt & free:
return True
wrt = wrt or free
# simplify unless this has already been done
expr = self
if simplify:
expr = expr.simplify()
# is_zero should be a quick assumptions check; it can be wrong for
# numbers (see test_is_not_constant test), giving False when it
# shouldn't, but hopefully it will never give True unless it is sure.
if expr.is_zero:
return True
# try numerical evaluation to see if we get two different values
failing_number = None
if wrt == free:
# try 0 (for a) and 1 (for b)
try:
a = expr.subs(list(zip(free, [0]*len(free))),
simultaneous=True)
if a is S.NaN:
# evaluation may succeed when substitution fails
a = expr._random(None, 0, 0, 0, 0)
except ZeroDivisionError:
a = None
if a is not None and a is not S.NaN:
try:
b = expr.subs(list(zip(free, [1]*len(free))),
simultaneous=True)
if b is S.NaN:
# evaluation may succeed when substitution fails
b = expr._random(None, 1, 0, 1, 0)
except ZeroDivisionError:
b = None
if b is not None and b is not S.NaN and b.equals(a) is False:
return False
# try random real
b = expr._random(None, -1, 0, 1, 0)
if b is not None and b is not S.NaN and b.equals(a) is False:
return False
# try random complex
b = expr._random()
if b is not None and b is not S.NaN:
if b.equals(a) is False:
return False
failing_number = a if a.is_number else b
# now we will test each wrt symbol (or all free symbols) to see if the
# expression depends on them or not using differentiation. This is
# not sufficient for all expressions, however, so we don't return
# False if we get a derivative other than 0 with free symbols.
for w in wrt:
deriv = expr.diff(w)
if simplify:
deriv = deriv.simplify()
if deriv != 0:
if not (pure_complex(deriv, or_real=True)):
if flags.get('failing_number', False):
return failing_number
elif deriv.free_symbols:
# dead line provided _random returns None in such cases
return None
return False
cd = check_denominator_zeros(self)
if cd is True:
return False
elif cd is None:
return None
return True
def equals(self, other, failing_expression=False):
"""Return True if self == other, False if it doesn't, or None. If
failing_expression is True then the expression which did not simplify
to a 0 will be returned instead of None.
If ``self`` is a Number (or complex number) that is not zero, then
the result is False.
If ``self`` is a number and has not evaluated to zero, evalf will be
used to test whether the expression evaluates to zero. If it does so
and the result has significance (i.e. the precision is either -1, for
a Rational result, or is greater than 1) then the evalf value will be
used to return True or False.
"""
from sympy.simplify.simplify import nsimplify, simplify
from sympy.solvers.solvers import solve
from sympy.polys.polyerrors import NotAlgebraic
from sympy.polys.numberfields import minimal_polynomial
other = sympify(other)
if self == other:
return True
# they aren't the same so see if we can make the difference 0;
# don't worry about doing simplification steps one at a time
# because if the expression ever goes to 0 then the subsequent
# simplification steps that are done will be very fast.
diff = factor_terms(simplify(self - other), radical=True)
if not diff:
return True
if not diff.has(Add, Mod):
# if there is no expanding to be done after simplifying
# then this can't be a zero
return False
constant = diff.is_constant(simplify=False, failing_number=True)
if constant is False:
return False
if not diff.is_number:
if constant is None:
# e.g. unless the right simplification is done, a symbolic
# zero is possible (see expression of issue 6829: without
# simplification constant will be None).
return
if constant is True:
# this gives a number whether there are free symbols or not
ndiff = diff._random()
# is_comparable will work whether the result is real
# or complex; it could be None, however.
if ndiff and ndiff.is_comparable:
return False
# sometimes we can use a simplified result to give a clue as to
# what the expression should be; if the expression is *not* zero
# then we should have been able to compute that and so now
# we can just consider the cases where the approximation appears
# to be zero -- we try to prove it via minimal_polynomial.
#
# removed
# ns = nsimplify(diff)
# if diff.is_number and (not ns or ns == diff):
#
# The thought was that if it nsimplifies to 0 that's a sure sign
# to try the following to prove it; or if it changed but wasn't
# zero that might be a sign that it's not going to be easy to
# prove. But tests seem to be working without that logic.
#
if diff.is_number:
# try to prove via self-consistency
surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer]
# it seems to work better to try big ones first
surds.sort(key=lambda x: -x.args[0])
for s in surds:
try:
# simplify is False here -- this expression has already
# been identified as being hard to identify as zero;
# we will handle the checking ourselves using nsimplify
# to see if we are in the right ballpark or not and if so
# *then* the simplification will be attempted.
sol = solve(diff, s, simplify=False)
if sol:
if s in sol:
# the self-consistent result is present
return True
if all(si.is_Integer for si in sol):
# perfect powers are removed at instantiation
# so surd s cannot be an integer
return False
if all(i.is_algebraic is False for i in sol):
# a surd is algebraic
return False
if any(si in surds for si in sol):
# it wasn't equal to s but it is in surds
# and different surds are not equal
return False
if any(nsimplify(s - si) == 0 and
simplify(s - si) == 0 for si in sol):
return True
if s.is_real:
if any(nsimplify(si, [s]) == s and simplify(si) == s
for si in sol):
return True
except NotImplementedError:
pass
# try to prove with minimal_polynomial but know when
# *not* to use this or else it can take a long time. e.g. issue 8354
if True: # change True to condition that assures non-hang
try:
mp = minimal_polynomial(diff)
if mp.is_Symbol:
return True
return False
except (NotAlgebraic, NotImplementedError):
pass
# diff has not simplified to zero; constant is either None, True
# or the number with significance (is_comparable) that was randomly
# calculated twice as the same value.
if constant not in (True, None) and constant != 0:
return False
if failing_expression:
return diff
return None
def _eval_is_positive(self):
finite = self.is_finite
if finite is False:
return False
extended_positive = self.is_extended_positive
if finite is True:
return extended_positive
if extended_positive is False:
return False
def _eval_is_negative(self):
finite = self.is_finite
if finite is False:
return False
extended_negative = self.is_extended_negative
if finite is True:
return extended_negative
if extended_negative is False:
return False
def _eval_is_extended_positive_negative(self, positive):
from sympy.polys.numberfields import minimal_polynomial
from sympy.polys.polyerrors import NotAlgebraic
if self.is_number:
if self.is_extended_real is False:
return False
# check to see that we can get a value
try:
n2 = self._eval_evalf(2)
# XXX: This shouldn't be caught here
# Catches ValueError: hypsum() failed to converge to the requested
# 34 bits of accuracy
except ValueError:
return None
if n2 is None:
return None
if getattr(n2, '_prec', 1) == 1: # no significance
return None
if n2 is S.NaN:
return None
r, i = self.evalf(2).as_real_imag()
if not i.is_Number or not r.is_Number:
return False
if r._prec != 1 and i._prec != 1:
return bool(not i and ((r > 0) if positive else (r < 0)))
elif r._prec == 1 and (not i or i._prec == 1) and \
self.is_algebraic and not self.has(Function):
try:
if minimal_polynomial(self).is_Symbol:
return False
except (NotAlgebraic, NotImplementedError):
pass
def _eval_is_extended_positive(self):
return self._eval_is_extended_positive_negative(positive=True)
def _eval_is_extended_negative(self):
return self._eval_is_extended_positive_negative(positive=False)
def _eval_interval(self, x, a, b):
"""
Returns evaluation over an interval. For most functions this is:
self.subs(x, b) - self.subs(x, a),
possibly using limit() if NaN is returned from subs, or if
singularities are found between a and b.
If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x),
respectively.
"""
from sympy.series import limit, Limit
from sympy.solvers.solveset import solveset
from sympy.sets.sets import Interval
from sympy.functions.elementary.exponential import log
from sympy.calculus.util import AccumBounds
if (a is None and b is None):
raise ValueError('Both interval ends cannot be None.')
def _eval_endpoint(left):
c = a if left else b
if c is None:
return 0
else:
C = self.subs(x, c)
if C.has(S.NaN, S.Infinity, S.NegativeInfinity,
S.ComplexInfinity, AccumBounds):
if (a < b) != False:
C = limit(self, x, c, "+" if left else "-")
else:
C = limit(self, x, c, "-" if left else "+")
if isinstance(C, Limit):
raise NotImplementedError("Could not compute limit")
return C
if a == b:
return 0
A = _eval_endpoint(left=True)
if A is S.NaN:
return A
B = _eval_endpoint(left=False)
if (a and b) is None:
return B - A
value = B - A
if a.is_comparable and b.is_comparable:
if a < b:
domain = Interval(a, b)
else:
domain = Interval(b, a)
# check the singularities of self within the interval
# if singularities is a ConditionSet (not iterable), catch the exception and pass
singularities = solveset(self.cancel().as_numer_denom()[1], x,
domain=domain)
for logterm in self.atoms(log):
singularities = singularities | solveset(logterm.args[0], x,
domain=domain)
try:
for s in singularities:
if value is S.NaN:
# no need to keep adding, it will stay NaN
break
if not s.is_comparable:
continue
if (a < s) == (s < b) == True:
value += -limit(self, x, s, "+") + limit(self, x, s, "-")
elif (b < s) == (s < a) == True:
value += limit(self, x, s, "+") - limit(self, x, s, "-")
except TypeError:
pass
return value
def _eval_power(self, other):
# subclass to compute self**other for cases when
# other is not NaN, 0, or 1
return None
def _eval_conjugate(self):
if self.is_extended_real:
return self
elif self.is_imaginary:
return -self
def conjugate(self):
from sympy.functions.elementary.complexes import conjugate as c
return c(self)
def _eval_transpose(self):
from sympy.functions.elementary.complexes import conjugate
if (self.is_complex or self.is_infinite):
return self
elif self.is_hermitian:
return conjugate(self)
elif self.is_antihermitian:
return -conjugate(self)
def transpose(self):
from sympy.functions.elementary.complexes import transpose
return transpose(self)
def _eval_adjoint(self):
from sympy.functions.elementary.complexes import conjugate, transpose
if self.is_hermitian:
return self
elif self.is_antihermitian:
return -self
obj = self._eval_conjugate()
if obj is not None:
return transpose(obj)
obj = self._eval_transpose()
if obj is not None:
return conjugate(obj)
def adjoint(self):
from sympy.functions.elementary.complexes import adjoint
return adjoint(self)
@classmethod
def _parse_order(cls, order):
"""Parse and configure the ordering of terms. """
from sympy.polys.orderings import monomial_key
startswith = getattr(order, "startswith", None)
if startswith is None:
reverse = False
else:
reverse = startswith('rev-')
if reverse:
order = order[4:]
monom_key = monomial_key(order)
def neg(monom):
result = []
for m in monom:
if isinstance(m, tuple):
result.append(neg(m))
else:
result.append(-m)
return tuple(result)
def key(term):
_, ((re, im), monom, ncpart) = term
monom = neg(monom_key(monom))
ncpart = tuple([e.sort_key(order=order) for e in ncpart])
coeff = ((bool(im), im), (re, im))
return monom, ncpart, coeff
return key, reverse
def as_ordered_factors(self, order=None):
"""Return list of ordered factors (if Mul) else [self]."""
return [self]
def as_poly(self, *gens, **args):
"""Converts ``self`` to a polynomial or returns ``None``.
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> print((x**2 + x*y).as_poly())
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + x*y).as_poly(x, y))
Poly(x**2 + x*y, x, y, domain='ZZ')
>>> print((x**2 + sin(y)).as_poly(x, y))
None
"""
from sympy.polys import Poly, PolynomialError
try:
poly = Poly(self, *gens, **args)
if not poly.is_Poly:
return None
else:
return poly
except PolynomialError:
return None
def as_ordered_terms(self, order=None, data=False):
"""
Transform an expression to an ordered list of terms.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x
>>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms()
[sin(x)**2*cos(x), sin(x)**2, 1]
"""
from .numbers import Number, NumberSymbol
if order is None and self.is_Add:
# Spot the special case of Add(Number, Mul(Number, expr)) with the
# first number positive and thhe second number nagative
key = lambda x:not isinstance(x, (Number, NumberSymbol))
add_args = sorted(Add.make_args(self), key=key)
if (len(add_args) == 2
and isinstance(add_args[0], (Number, NumberSymbol))
and isinstance(add_args[1], Mul)):
mul_args = sorted(Mul.make_args(add_args[1]), key=key)
if (len(mul_args) == 2
and isinstance(mul_args[0], Number)
and add_args[0].is_positive
and mul_args[0].is_negative):
return add_args
key, reverse = self._parse_order(order)
terms, gens = self.as_terms()
if not any(term.is_Order for term, _ in terms):
ordered = sorted(terms, key=key, reverse=reverse)
else:
_terms, _order = [], []
for term, repr in terms:
if not term.is_Order:
_terms.append((term, repr))
else:
_order.append((term, repr))
ordered = sorted(_terms, key=key, reverse=True) \
+ sorted(_order, key=key, reverse=True)
if data:
return ordered, gens
else:
return [term for term, _ in ordered]
def as_terms(self):
"""Transform an expression to a list of terms. """
from .add import Add
from .mul import Mul
from .exprtools import decompose_power
gens, terms = set([]), []
for term in Add.make_args(self):
coeff, _term = term.as_coeff_Mul()
coeff = complex(coeff)
cpart, ncpart = {}, []
if _term is not S.One:
for factor in Mul.make_args(_term):
if factor.is_number:
try:
coeff *= complex(factor)
except (TypeError, ValueError):
pass
else:
continue
if factor.is_commutative:
base, exp = decompose_power(factor)
cpart[base] = exp
gens.add(base)
else:
ncpart.append(factor)
coeff = coeff.real, coeff.imag
ncpart = tuple(ncpart)
terms.append((term, (coeff, cpart, ncpart)))
gens = sorted(gens, key=default_sort_key)
k, indices = len(gens), {}
for i, g in enumerate(gens):
indices[g] = i
result = []
for term, (coeff, cpart, ncpart) in terms:
monom = [0]*k
for base, exp in cpart.items():
monom[indices[base]] = exp
result.append((term, (coeff, tuple(monom), ncpart)))
return result, gens
def removeO(self):
"""Removes the additive O(..) symbol if there is one"""
return self
def getO(self):
"""Returns the additive O(..) symbol if there is one, else None."""
return None
def getn(self):
"""
Returns the order of the expression.
The order is determined either from the O(...) term. If there
is no O(...) term, it returns None.
Examples
========
>>> from sympy import O
>>> from sympy.abc import x
>>> (1 + x + O(x**2)).getn()
2
>>> (1 + x).getn()
"""
from sympy import Dummy, Symbol
o = self.getO()
if o is None:
return None
elif o.is_Order:
o = o.expr
if o is S.One:
return S.Zero
if o.is_Symbol:
return S.One
if o.is_Pow:
return o.args[1]
if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n
for oi in o.args:
if oi.is_Symbol:
return S.One
if oi.is_Pow:
syms = oi.atoms(Symbol)
if len(syms) == 1:
x = syms.pop()
oi = oi.subs(x, Dummy('x', positive=True))
if oi.base.is_Symbol and oi.exp.is_Rational:
return abs(oi.exp)
raise NotImplementedError('not sure of order of %s' % o)
def count_ops(self, visual=None):
"""wrapper for count_ops that returns the operation count."""
from .function import count_ops
return count_ops(self, visual)
def args_cnc(self, cset=False, warn=True, split_1=True):
"""Return [commutative factors, non-commutative factors] of self.
self is treated as a Mul and the ordering of the factors is maintained.
If ``cset`` is True the commutative factors will be returned in a set.
If there were repeated factors (as may happen with an unevaluated Mul)
then an error will be raised unless it is explicitly suppressed by
setting ``warn`` to False.
Note: -1 is always separated from a Number unless split_1 is False.
>>> from sympy import symbols, oo
>>> A, B = symbols('A B', commutative=0)
>>> x, y = symbols('x y')
>>> (-2*x*y).args_cnc()
[[-1, 2, x, y], []]
>>> (-2.5*x).args_cnc()
[[-1, 2.5, x], []]
>>> (-2*x*A*B*y).args_cnc()
[[-1, 2, x, y], [A, B]]
>>> (-2*x*A*B*y).args_cnc(split_1=False)
[[-2, x, y], [A, B]]
>>> (-2*x*y).args_cnc(cset=True)
[{-1, 2, x, y}, []]
The arg is always treated as a Mul:
>>> (-2 + x + A).args_cnc()
[[], [x - 2 + A]]
>>> (-oo).args_cnc() # -oo is a singleton
[[-1, oo], []]
"""
if self.is_Mul:
args = list(self.args)
else:
args = [self]
for i, mi in enumerate(args):
if not mi.is_commutative:
c = args[:i]
nc = args[i:]
break
else:
c = args
nc = []
if c and split_1 and (
c[0].is_Number and
c[0].is_extended_negative and
c[0] is not S.NegativeOne):
c[:1] = [S.NegativeOne, -c[0]]
if cset:
clen = len(c)
c = set(c)
if clen and warn and len(c) != clen:
raise ValueError('repeated commutative arguments: %s' %
[ci for ci in c if list(self.args).count(ci) > 1])
return [c, nc]
def coeff(self, x, n=1, right=False):
"""
Returns the coefficient from the term(s) containing ``x**n``. If ``n``
is zero then all terms independent of ``x`` will be returned.
When ``x`` is noncommutative, the coefficient to the left (default) or
right of ``x`` can be returned. The keyword 'right' is ignored when
``x`` is commutative.
See Also
========
as_coefficient: separate the expression into a coefficient and factor
as_coeff_Add: separate the additive constant from an expression
as_coeff_Mul: separate the multiplicative constant from an expression
as_independent: separate x-dependent terms/factors from others
sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used
Examples
========
>>> from sympy import symbols
>>> from sympy.abc import x, y, z
You can select terms that have an explicit negative in front of them:
>>> (-x + 2*y).coeff(-1)
x
>>> (x - 2*y).coeff(-1)
2*y
You can select terms with no Rational coefficient:
>>> (x + 2*y).coeff(1)
x
>>> (3 + 2*x + 4*x**2).coeff(1)
0
You can select terms independent of x by making n=0; in this case
expr.as_independent(x)[0] is returned (and 0 will be returned instead
of None):
>>> (3 + 2*x + 4*x**2).coeff(x, 0)
3
>>> eq = ((x + 1)**3).expand() + 1
>>> eq
x**3 + 3*x**2 + 3*x + 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 2]
>>> eq -= 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 0]
You can select terms that have a numerical term in front of them:
>>> (-x - 2*y).coeff(2)
-y
>>> from sympy import sqrt
>>> (x + sqrt(2)*x).coeff(sqrt(2))
x
The matching is exact:
>>> (3 + 2*x + 4*x**2).coeff(x)
2
>>> (3 + 2*x + 4*x**2).coeff(x**2)
4
>>> (3 + 2*x + 4*x**2).coeff(x**3)
0
>>> (z*(x + y)**2).coeff((x + y)**2)
z
>>> (z*(x + y)**2).coeff(x + y)
0
In addition, no factoring is done, so 1 + z*(1 + y) is not obtained
from the following:
>>> (x + z*(x + x*y)).coeff(x)
1
If such factoring is desired, factor_terms can be used first:
>>> from sympy import factor_terms
>>> factor_terms(x + z*(x + x*y)).coeff(x)
z*(y + 1) + 1
>>> n, m, o = symbols('n m o', commutative=False)
>>> n.coeff(n)
1
>>> (3*n).coeff(n)
3
>>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m
1 + m
>>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m
m
If there is more than one possible coefficient 0 is returned:
>>> (n*m + m*n).coeff(n)
0
If there is only one possible coefficient, it is returned:
>>> (n*m + x*m*n).coeff(m*n)
x
>>> (n*m + x*m*n).coeff(m*n, right=1)
1
"""
x = sympify(x)
if not isinstance(x, Basic):
return S.Zero
n = as_int(n)
if not x:
return S.Zero
if x == self:
if n == 1:
return S.One
return S.Zero
if x is S.One:
co = [a for a in Add.make_args(self)
if a.as_coeff_Mul()[0] is S.One]
if not co:
return S.Zero
return Add(*co)
if n == 0:
if x.is_Add and self.is_Add:
c = self.coeff(x, right=right)
if not c:
return S.Zero
if not right:
return self - Add(*[a*x for a in Add.make_args(c)])
return self - Add(*[x*a for a in Add.make_args(c)])
return self.as_independent(x, as_Add=True)[0]
# continue with the full method, looking for this power of x:
x = x**n
def incommon(l1, l2):
if not l1 or not l2:
return []
n = min(len(l1), len(l2))
for i in range(n):
if l1[i] != l2[i]:
return l1[:i]
return l1[:]
def find(l, sub, first=True):
""" Find where list sub appears in list l. When ``first`` is True
the first occurrence from the left is returned, else the last
occurrence is returned. Return None if sub is not in l.
>> l = range(5)*2
>> find(l, [2, 3])
2
>> find(l, [2, 3], first=0)
7
>> find(l, [2, 4])
None
"""
if not sub or not l or len(sub) > len(l):
return None
n = len(sub)
if not first:
l.reverse()
sub.reverse()
for i in range(0, len(l) - n + 1):
if all(l[i + j] == sub[j] for j in range(n)):
break
else:
i = None
if not first:
l.reverse()
sub.reverse()
if i is not None and not first:
i = len(l) - (i + n)
return i
co = []
args = Add.make_args(self)
self_c = self.is_commutative
x_c = x.is_commutative
if self_c and not x_c:
return S.Zero
one_c = self_c or x_c
xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c))
# find the parts that pass the commutative terms
for a in args:
margs, nc = a.args_cnc(cset=True, warn=bool(not self_c))
if nc is None:
nc = []
if len(xargs) > len(margs):
continue
resid = margs.difference(xargs)
if len(resid) + len(xargs) == len(margs):
if one_c:
co.append(Mul(*(list(resid) + nc)))
else:
co.append((resid, nc))
if one_c:
if co == []:
return S.Zero
elif co:
return Add(*co)
else: # both nc
# now check the non-comm parts
if not co:
return S.Zero
if all(n == co[0][1] for r, n in co):
ii = find(co[0][1], nx, right)
if ii is not None:
if not right:
return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii]))
else:
return Mul(*co[0][1][ii + len(nx):])
beg = reduce(incommon, (n[1] for n in co))
if beg:
ii = find(beg, nx, right)
if ii is not None:
if not right:
gcdc = co[0][0]
for i in range(1, len(co)):
gcdc = gcdc.intersection(co[i][0])
if not gcdc:
break
return Mul(*(list(gcdc) + beg[:ii]))
else:
m = ii + len(nx)
return Add(*[Mul(*(list(r) + n[m:])) for r, n in co])
end = list(reversed(
reduce(incommon, (list(reversed(n[1])) for n in co))))
if end:
ii = find(end, nx, right)
if ii is not None:
if not right:
return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co])
else:
return Mul(*end[ii + len(nx):])
# look for single match
hit = None
for i, (r, n) in enumerate(co):
ii = find(n, nx, right)
if ii is not None:
if not hit:
hit = ii, r, n
else:
break
else:
if hit:
ii, r, n = hit
if not right:
return Mul(*(list(r) + n[:ii]))
else:
return Mul(*n[ii + len(nx):])
return S.Zero
def as_expr(self, *gens):
"""
Convert a polynomial to a SymPy expression.
Examples
========
>>> from sympy import sin
>>> from sympy.abc import x, y
>>> f = (x**2 + x*y).as_poly(x, y)
>>> f.as_expr()
x**2 + x*y
>>> sin(x).as_expr()
sin(x)
"""
return self
def as_coefficient(self, expr):
"""
Extracts symbolic coefficient at the given expression. In
other words, this functions separates 'self' into the product
of 'expr' and 'expr'-free coefficient. If such separation
is not possible it will return None.
Examples
========
>>> from sympy import E, pi, sin, I, Poly
>>> from sympy.abc import x
>>> E.as_coefficient(E)
1
>>> (2*E).as_coefficient(E)
2
>>> (2*sin(E)*E).as_coefficient(E)
Two terms have E in them so a sum is returned. (If one were
desiring the coefficient of the term exactly matching E then
the constant from the returned expression could be selected.
Or, for greater precision, a method of Poly can be used to
indicate the desired term from which the coefficient is
desired.)
>>> (2*E + x*E).as_coefficient(E)
x + 2
>>> _.args[0] # just want the exact match
2
>>> p = Poly(2*E + x*E); p
Poly(x*E + 2*E, x, E, domain='ZZ')
>>> p.coeff_monomial(E)
2
>>> p.nth(0, 1)
2
Since the following cannot be written as a product containing
E as a factor, None is returned. (If the coefficient ``2*x`` is
desired then the ``coeff`` method should be used.)
>>> (2*E*x + x).as_coefficient(E)
>>> (2*E*x + x).coeff(E)
2*x
>>> (E*(x + 1) + x).as_coefficient(E)
>>> (2*pi*I).as_coefficient(pi*I)
2
>>> (2*I).as_coefficient(pi*I)
See Also
========
coeff: return sum of terms have a given factor
as_coeff_Add: separate the additive constant from an expression
as_coeff_Mul: separate the multiplicative constant from an expression
as_independent: separate x-dependent terms/factors from others
sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly
sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used
"""
r = self.extract_multiplicatively(expr)
if r and not r.has(expr):
return r
def as_independent(self, *deps, **hint):
"""
A mostly naive separation of a Mul or Add into arguments that are not
are dependent on deps. To obtain as complete a separation of variables
as possible, use a separation method first, e.g.:
* separatevars() to change Mul, Add and Pow (including exp) into Mul
* .expand(mul=True) to change Add or Mul into Add
* .expand(log=True) to change log expr into an Add
The only non-naive thing that is done here is to respect noncommutative
ordering of variables and to always return (0, 0) for `self` of zero
regardless of hints.
For nonzero `self`, the returned tuple (i, d) has the
following interpretation:
* i will has no variable that appears in deps
* d will either have terms that contain variables that are in deps, or
be equal to 0 (when self is an Add) or 1 (when self is a Mul)
* if self is an Add then self = i + d
* if self is a Mul then self = i*d
* otherwise (self, S.One) or (S.One, self) is returned.
To force the expression to be treated as an Add, use the hint as_Add=True
Examples
========
-- self is an Add
>>> from sympy import sin, cos, exp
>>> from sympy.abc import x, y, z
>>> (x + x*y).as_independent(x)
(0, x*y + x)
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> (2*x*sin(x) + y + x + z).as_independent(x)
(y + z, 2*x*sin(x) + x)
>>> (2*x*sin(x) + y + x + z).as_independent(x, y)
(z, 2*x*sin(x) + x + y)
-- self is a Mul
>>> (x*sin(x)*cos(y)).as_independent(x)
(cos(y), x*sin(x))
non-commutative terms cannot always be separated out when self is a Mul
>>> from sympy import symbols
>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
>>> (n1 + n1*n2).as_independent(n2)
(n1, n1*n2)
>>> (n2*n1 + n1*n2).as_independent(n2)
(0, n1*n2 + n2*n1)
>>> (n1*n2*n3).as_independent(n1)
(1, n1*n2*n3)
>>> (n1*n2*n3).as_independent(n2)
(n1, n2*n3)
>>> ((x-n1)*(x-y)).as_independent(x)
(1, (x - y)*(x - n1))
-- self is anything else:
>>> (sin(x)).as_independent(x)
(1, sin(x))
>>> (sin(x)).as_independent(y)
(sin(x), 1)
>>> exp(x+y).as_independent(x)
(1, exp(x + y))
-- force self to be treated as an Add:
>>> (3*x).as_independent(x, as_Add=True)
(0, 3*x)
-- force self to be treated as a Mul:
>>> (3+x).as_independent(x, as_Add=False)
(1, x + 3)
>>> (-3+x).as_independent(x, as_Add=False)
(1, x - 3)
Note how the below differs from the above in making the
constant on the dep term positive.
>>> (y*(-3+x)).as_independent(x)
(y, x - 3)
-- use .as_independent() for true independence testing instead
of .has(). The former considers only symbols in the free
symbols while the latter considers all symbols
>>> from sympy import Integral
>>> I = Integral(x, (x, 1, 2))
>>> I.has(x)
True
>>> x in I.free_symbols
False
>>> I.as_independent(x) == (I, 1)
True
>>> (I + x).as_independent(x) == (I, x)
True
Note: when trying to get independent terms, a separation method
might need to be used first. In this case, it is important to keep
track of what you send to this routine so you know how to interpret
the returned values
>>> from sympy import separatevars, log
>>> separatevars(exp(x+y)).as_independent(x)
(exp(y), exp(x))
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> separatevars(x + x*y).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).expand(mul=True).as_independent(y)
(x, x*y)
>>> a, b=symbols('a b', positive=True)
>>> (log(a*b).expand(log=True)).as_independent(b)
(log(a), log(b))
See Also
========
.separatevars(), .expand(log=True), sympy.core.add.Add.as_two_terms(),
sympy.core.mul.Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul()
"""
from .symbol import Symbol
from .add import _unevaluated_Add
from .mul import _unevaluated_Mul
from sympy.utilities.iterables import sift
if self.is_zero:
return S.Zero, S.Zero
func = self.func
if hint.get('as_Add', isinstance(self, Add) ):
want = Add
else:
want = Mul
# sift out deps into symbolic and other and ignore
# all symbols but those that are in the free symbols
sym = set()
other = []
for d in deps:
if isinstance(d, Symbol): # Symbol.is_Symbol is True
sym.add(d)
else:
other.append(d)
def has(e):
"""return the standard has() if there are no literal symbols, else
check to see that symbol-deps are in the free symbols."""
has_other = e.has(*other)
if not sym:
return has_other
return has_other or e.has(*(e.free_symbols & sym))
if (want is not func or
func is not Add and func is not Mul):
if has(self):
return (want.identity, self)
else:
return (self, want.identity)
else:
if func is Add:
args = list(self.args)
else:
args, nc = self.args_cnc()
d = sift(args, lambda x: has(x))
depend = d[True]
indep = d[False]
if func is Add: # all terms were treated as commutative
return (Add(*indep), _unevaluated_Add(*depend))
else: # handle noncommutative by stopping at first dependent term
for i, n in enumerate(nc):
if has(n):
depend.extend(nc[i:])
break
indep.append(n)
return Mul(*indep), (
Mul(*depend, evaluate=False) if nc else
_unevaluated_Mul(*depend))
def as_real_imag(self, deep=True, **hints):
"""Performs complex expansion on 'self' and returns a tuple
containing collected both real and imaginary parts. This
method can't be confused with re() and im() functions,
which does not perform complex expansion at evaluation.
However it is possible to expand both re() and im()
functions and get exactly the same results as with
a single call to this function.
>>> from sympy import symbols, I
>>> x, y = symbols('x,y', real=True)
>>> (x + y*I).as_real_imag()
(x, y)
>>> from sympy.abc import z, w
>>> (z + w*I).as_real_imag()
(re(z) - im(w), re(w) + im(z))
"""
from sympy import im, re
if hints.get('ignore') == self:
return None
else:
return (re(self), im(self))
def as_powers_dict(self):
"""Return self as a dictionary of factors with each factor being
treated as a power. The keys are the bases of the factors and the
values, the corresponding exponents. The resulting dictionary should
be used with caution if the expression is a Mul and contains non-
commutative factors since the order that they appeared will be lost in
the dictionary.
See Also
========
as_ordered_factors: An alternative for noncommutative applications,
returning an ordered list of factors.
args_cnc: Similar to as_ordered_factors, but guarantees separation
of commutative and noncommutative factors.
"""
d = defaultdict(int)
d.update(dict([self.as_base_exp()]))
return d
def as_coefficients_dict(self):
"""Return a dictionary mapping terms to their Rational coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. If an expression is
not an Add it is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> _[a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
"""
c, m = self.as_coeff_Mul()
if not c.is_Rational:
c = S.One
m = self
d = defaultdict(int)
d.update({m: c})
return d
def as_base_exp(self):
# a -> b ** e
return self, S.One
def as_coeff_mul(self, *deps, **kwargs):
"""Return the tuple (c, args) where self is written as a Mul, ``m``.
c should be a Rational multiplied by any factors of the Mul that are
independent of deps.
args should be a tuple of all other factors of m; args is empty
if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is a Mul or not but
you want to treat self as a Mul or if you want to process the
individual arguments of the tail of self as a Mul.
- if you know self is a Mul and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the
tail then use self.as_two_terms() which gives the head and tail;
- if you want to split self into an independent and dependent parts
use ``self.as_independent(*deps)``
>>> from sympy import S
>>> from sympy.abc import x, y
>>> (S(3)).as_coeff_mul()
(3, ())
>>> (3*x*y).as_coeff_mul()
(3, (x, y))
>>> (3*x*y).as_coeff_mul(x)
(3*y, (x,))
>>> (3*y).as_coeff_mul(x)
(3*y, ())
"""
if deps:
if not self.has(*deps):
return self, tuple()
return S.One, (self,)
def as_coeff_add(self, *deps):
"""Return the tuple (c, args) where self is written as an Add, ``a``.
c should be a Rational added to any terms of the Add that are
independent of deps.
args should be a tuple of all other terms of ``a``; args is empty
if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is an Add or not but
you want to treat self as an Add or if you want to process the
individual arguments of the tail of self as an Add.
- if you know self is an Add and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the
tail then use self.as_two_terms() which gives the head and tail.
- if you want to split self into an independent and dependent parts
use ``self.as_independent(*deps)``
>>> from sympy import S
>>> from sympy.abc import x, y
>>> (S(3)).as_coeff_add()
(3, ())
>>> (3 + x).as_coeff_add()
(3, (x,))
>>> (3 + x + y).as_coeff_add(x)
(y + 3, (x,))
>>> (3 + y).as_coeff_add(x)
(y + 3, ())
"""
if deps:
if not self.has(*deps):
return self, tuple()
return S.Zero, (self,)
def primitive(self):
"""Return the positive Rational that can be extracted non-recursively
from every term of self (i.e., self is treated like an Add). This is
like the as_coeff_Mul() method but primitive always extracts a positive
Rational (never a negative or a Float).
Examples
========
>>> from sympy.abc import x
>>> (3*(x + 1)**2).primitive()
(3, (x + 1)**2)
>>> a = (6*x + 2); a.primitive()
(2, 3*x + 1)
>>> b = (x/2 + 3); b.primitive()
(1/2, x + 6)
>>> (a*b).primitive() == (1, a*b)
True
"""
if not self:
return S.One, S.Zero
c, r = self.as_coeff_Mul(rational=True)
if c.is_negative:
c, r = -c, -r
return c, r
def as_content_primitive(self, radical=False, clear=True):
"""This method should recursively remove a Rational from all arguments
and return that (content) and the new self (primitive). The content
should always be positive and ``Mul(*foo.as_content_primitive()) == foo``.
The primitive need not be in canonical form and should try to preserve
the underlying structure if possible (i.e. expand_mul should not be
applied to self).
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x, y, z
>>> eq = 2 + 2*x + 2*y*(3 + 3*y)
The as_content_primitive function is recursive and retains structure:
>>> eq.as_content_primitive()
(2, x + 3*y*(y + 1) + 1)
Integer powers will have Rationals extracted from the base:
>>> ((2 + 6*x)**2).as_content_primitive()
(4, (3*x + 1)**2)
>>> ((2 + 6*x)**(2*y)).as_content_primitive()
(1, (2*(3*x + 1))**(2*y))
Terms may end up joining once their as_content_primitives are added:
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(11, x*(y + 1))
>>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(9, x*(y + 1))
>>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive()
(1, 6.0*x*(y + 1) + 3*z*(y + 1))
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive()
(121, x**2*(y + 1)**2)
>>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive()
(1, 4.84*x**2*(y + 1)**2)
Radical content can also be factored out of the primitive:
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
If clear=False (default is True) then content will not be removed
from an Add if it can be distributed to leave one or more
terms with integer coefficients.
>>> (x/2 + y).as_content_primitive()
(1/2, x + 2*y)
>>> (x/2 + y).as_content_primitive(clear=False)
(1, x/2 + y)
"""
return S.One, self
def as_numer_denom(self):
""" expression -> a/b -> a, b
This is just a stub that should be defined by
an object's class methods to get anything else.
See Also
========
normal: return a/b instead of a, b
"""
return self, S.One
def normal(self):
from .mul import _unevaluated_Mul
n, d = self.as_numer_denom()
if d is S.One:
return n
if d.is_Number:
return _unevaluated_Mul(n, 1/d)
else:
return n/d
def extract_multiplicatively(self, c):
"""Return None if it's not possible to make self in the form
c * something in a nice way, i.e. preserving the properties
of arguments of self.
Examples
========
>>> from sympy import symbols, Rational
>>> x, y = symbols('x,y', real=True)
>>> ((x*y)**3).extract_multiplicatively(x**2 * y)
x*y**2
>>> ((x*y)**3).extract_multiplicatively(x**4 * y)
>>> (2*x).extract_multiplicatively(2)
x
>>> (2*x).extract_multiplicatively(3)
>>> (Rational(1, 2)*x).extract_multiplicatively(3)
x/6
"""
from .add import _unevaluated_Add
c = sympify(c)
if self is S.NaN:
return None
if c is S.One:
return self
elif c == self:
return S.One
if c.is_Add:
cc, pc = c.primitive()
if cc is not S.One:
c = Mul(cc, pc, evaluate=False)
if c.is_Mul:
a, b = c.as_two_terms()
x = self.extract_multiplicatively(a)
if x is not None:
return x.extract_multiplicatively(b)
else:
return x
quotient = self / c
if self.is_Number:
if self is S.Infinity:
if c.is_positive:
return S.Infinity
elif self is S.NegativeInfinity:
if c.is_negative:
return S.Infinity
elif c.is_positive:
return S.NegativeInfinity
elif self is S.ComplexInfinity:
if not c.is_zero:
return S.ComplexInfinity
elif self.is_Integer:
if not quotient.is_Integer:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_Rational:
if not quotient.is_Rational:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_Float:
if not quotient.is_Float:
return None
elif self.is_positive and quotient.is_negative:
return None
else:
return quotient
elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit:
if quotient.is_Mul and len(quotient.args) == 2:
if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self:
return quotient
elif quotient.is_Integer and c.is_Number:
return quotient
elif self.is_Add:
cs, ps = self.primitive()
# assert cs >= 1
if c.is_Number and c is not S.NegativeOne:
# assert c != 1 (handled at top)
if cs is not S.One:
if c.is_negative:
xc = -(cs.extract_multiplicatively(-c))
else:
xc = cs.extract_multiplicatively(c)
if xc is not None:
return xc*ps # rely on 2-arg Mul to restore Add
return # |c| != 1 can only be extracted from cs
if c == ps:
return cs
# check args of ps
newargs = []
for arg in ps.args:
newarg = arg.extract_multiplicatively(c)
if newarg is None:
return # all or nothing
newargs.append(newarg)
if cs is not S.One:
args = [cs*t for t in newargs]
# args may be in different order
return _unevaluated_Add(*args)
else:
return Add._from_args(newargs)
elif self.is_Mul:
args = list(self.args)
for i, arg in enumerate(args):
newarg = arg.extract_multiplicatively(c)
if newarg is not None:
args[i] = newarg
return Mul(*args)
elif self.is_Pow:
if c.is_Pow and c.base == self.base:
new_exp = self.exp.extract_additively(c.exp)
if new_exp is not None:
return self.base ** (new_exp)
elif c == self.base:
new_exp = self.exp.extract_additively(1)
if new_exp is not None:
return self.base ** (new_exp)
def extract_additively(self, c):
"""Return self - c if it's possible to subtract c from self and
make all matching coefficients move towards zero, else return None.
Examples
========
>>> from sympy.abc import x, y
>>> e = 2*x + 3
>>> e.extract_additively(x + 1)
x + 2
>>> e.extract_additively(3*x)
>>> e.extract_additively(4)
>>> (y*(x + 1)).extract_additively(x + 1)
>>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1)
(x + 1)*(x + 2*y) + 3
Sometimes auto-expansion will return a less simplified result
than desired; gcd_terms might be used in such cases:
>>> from sympy import gcd_terms
>>> (4*x*(y + 1) + y).extract_additively(x)
4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y
>>> gcd_terms(_)
x*(4*y + 3) + y
See Also
========
extract_multiplicatively
coeff
as_coefficient
"""
c = sympify(c)
if self is S.NaN:
return None
if c.is_zero:
return self
elif c == self:
return S.Zero
elif self == S.Zero:
return None
if self.is_Number:
if not c.is_Number:
return None
co = self
diff = co - c
# XXX should we match types? i.e should 3 - .1 succeed?
if (co > 0 and diff > 0 and diff < co or
co < 0 and diff < 0 and diff > co):
return diff
return None
if c.is_Number:
co, t = self.as_coeff_Add()
xa = co.extract_additively(c)
if xa is None:
return None
return xa + t
# handle the args[0].is_Number case separately
# since we will have trouble looking for the coeff of
# a number.
if c.is_Add and c.args[0].is_Number:
# whole term as a term factor
co = self.coeff(c)
xa0 = (co.extract_additively(1) or 0)*c
if xa0:
diff = self - co*c
return (xa0 + (diff.extract_additively(c) or diff)) or None
# term-wise
h, t = c.as_coeff_Add()
sh, st = self.as_coeff_Add()
xa = sh.extract_additively(h)
if xa is None:
return None
xa2 = st.extract_additively(t)
if xa2 is None:
return None
return xa + xa2
# whole term as a term factor
co = self.coeff(c)
xa0 = (co.extract_additively(1) or 0)*c
if xa0:
diff = self - co*c
return (xa0 + (diff.extract_additively(c) or diff)) or None
# term-wise
coeffs = []
for a in Add.make_args(c):
ac, at = a.as_coeff_Mul()
co = self.coeff(at)
if not co:
return None
coc, cot = co.as_coeff_Add()
xa = coc.extract_additively(ac)
if xa is None:
return None
self -= co*at
coeffs.append((cot + xa)*at)
coeffs.append(self)
return Add(*coeffs)
@property
def expr_free_symbols(self):
"""
Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node.
Examples
========
>>> from sympy.abc import x, y
>>> (x + y).expr_free_symbols
{x, y}
If the expression is contained in a non-expression object, don't return
the free symbols. Compare:
>>> from sympy import Tuple
>>> t = Tuple(x + y)
>>> t.expr_free_symbols
set()
>>> t.free_symbols
{x, y}
"""
return {j for i in self.args for j in i.expr_free_symbols}
def could_extract_minus_sign(self):
"""Return True if self is not in a canonical form with respect
to its sign.
For most expressions, e, there will be a difference in e and -e.
When there is, True will be returned for one and False for the
other; False will be returned if there is no difference.
Examples
========
>>> from sympy.abc import x, y
>>> e = x - y
>>> {i.could_extract_minus_sign() for i in (e, -e)}
{False, True}
"""
negative_self = -self
if self == negative_self:
return False # e.g. zoo*x == -zoo*x
self_has_minus = (self.extract_multiplicatively(-1) is not None)
negative_self_has_minus = (
(negative_self).extract_multiplicatively(-1) is not None)
if self_has_minus != negative_self_has_minus:
return self_has_minus
else:
if self.is_Add:
# We choose the one with less arguments with minus signs
all_args = len(self.args)
negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()])
positive_args = all_args - negative_args
if positive_args > negative_args:
return False
elif positive_args < negative_args:
return True
elif self.is_Mul:
# We choose the one with an odd number of minus signs
num, den = self.as_numer_denom()
args = Mul.make_args(num) + Mul.make_args(den)
arg_signs = [arg.could_extract_minus_sign() for arg in args]
negative_args = list(filter(None, arg_signs))
return len(negative_args) % 2 == 1
# As a last resort, we choose the one with greater value of .sort_key()
return bool(self.sort_key() < negative_self.sort_key())
def extract_branch_factor(self, allow_half=False):
"""
Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way.
Return (z, n).
>>> from sympy import exp_polar, I, pi
>>> from sympy.abc import x, y
>>> exp_polar(I*pi).extract_branch_factor()
(exp_polar(I*pi), 0)
>>> exp_polar(2*I*pi).extract_branch_factor()
(1, 1)
>>> exp_polar(-pi*I).extract_branch_factor()
(exp_polar(I*pi), -1)
>>> exp_polar(3*pi*I + x).extract_branch_factor()
(exp_polar(x + I*pi), 1)
>>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor()
(y*exp_polar(2*pi*x), -1)
>>> exp_polar(-I*pi/2).extract_branch_factor()
(exp_polar(-I*pi/2), 0)
If allow_half is True, also extract exp_polar(I*pi):
>>> exp_polar(I*pi).extract_branch_factor(allow_half=True)
(1, 1/2)
>>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True)
(1, 1)
>>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True)
(1, 3/2)
>>> exp_polar(-I*pi).extract_branch_factor(allow_half=True)
(1, -1/2)
"""
from sympy import exp_polar, pi, I, ceiling, Add
n = S.Zero
res = S.One
args = Mul.make_args(self)
exps = []
for arg in args:
if isinstance(arg, exp_polar):
exps += [arg.exp]
else:
res *= arg
piimult = S.Zero
extras = []
while exps:
exp = exps.pop()
if exp.is_Add:
exps += exp.args
continue
if exp.is_Mul:
coeff = exp.as_coefficient(pi*I)
if coeff is not None:
piimult += coeff
continue
extras += [exp]
if piimult.is_number:
coeff = piimult
tail = ()
else:
coeff, tail = piimult.as_coeff_add(*piimult.free_symbols)
# round down to nearest multiple of 2
branchfact = ceiling(coeff/2 - S.Half)*2
n += branchfact/2
c = coeff - branchfact
if allow_half:
nc = c.extract_additively(1)
if nc is not None:
n += S.Half
c = nc
newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras)
if newexp != 0:
res *= exp_polar(newexp)
return res, n
def _eval_is_polynomial(self, syms):
if self.free_symbols.intersection(syms) == set([]):
return True
return False
def is_polynomial(self, *syms):
r"""
Return True if self is a polynomial in syms and False otherwise.
This checks if self is an exact polynomial in syms. This function
returns False for expressions that are "polynomials" with symbolic
exponents. Thus, you should be able to apply polynomial algorithms to
expressions for which this returns True, and Poly(expr, \*syms) should
work if and only if expr.is_polynomial(\*syms) returns True. The
polynomial does not have to be in expanded form. If no symbols are
given, all free symbols in the expression will be used.
This is not part of the assumptions system. You cannot do
Symbol('z', polynomial=True).
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> ((x**2 + 1)**4).is_polynomial(x)
True
>>> ((x**2 + 1)**4).is_polynomial()
True
>>> (2**x + 1).is_polynomial(x)
False
>>> n = Symbol('n', nonnegative=True, integer=True)
>>> (x**n + 1).is_polynomial(x)
False
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be a polynomial to
become one.
>>> from sympy import sqrt, factor, cancel
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)
>>> a.is_polynomial(y)
False
>>> factor(a)
y + 1
>>> factor(a).is_polynomial(y)
True
>>> b = (y**2 + 2*y + 1)/(y + 1)
>>> b.is_polynomial(y)
False
>>> cancel(b)
y + 1
>>> cancel(b).is_polynomial(y)
True
See also .is_rational_function()
"""
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set([]):
# constant polynomial
return True
else:
return self._eval_is_polynomial(syms)
def _eval_is_rational_function(self, syms):
if self.free_symbols.intersection(syms) == set([]):
return True
return False
def is_rational_function(self, *syms):
"""
Test whether function is a ratio of two polynomials in the given
symbols, syms. When syms is not given, all free symbols will be used.
The rational function does not have to be in expanded or in any kind of
canonical form.
This function returns False for expressions that are "rational
functions" with symbolic exponents. Thus, you should be able to call
.as_numer_denom() and apply polynomial algorithms to the result for
expressions for which this returns True.
This is not part of the assumptions system. You cannot do
Symbol('z', rational_function=True).
Examples
========
>>> from sympy import Symbol, sin
>>> from sympy.abc import x, y
>>> (x/y).is_rational_function()
True
>>> (x**2).is_rational_function()
True
>>> (x/sin(y)).is_rational_function(y)
False
>>> n = Symbol('n', integer=True)
>>> (x**n + 1).is_rational_function(x)
False
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be a rational function
to become one.
>>> from sympy import sqrt, factor
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)/y
>>> a.is_rational_function(y)
False
>>> factor(a)
(y + 1)/y
>>> factor(a).is_rational_function(y)
True
See also is_algebraic_expr().
"""
if self in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return False
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set([]):
# constant rational function
return True
else:
return self._eval_is_rational_function(syms)
def _eval_is_algebraic_expr(self, syms):
if self.free_symbols.intersection(syms) == set([]):
return True
return False
def is_algebraic_expr(self, *syms):
"""
This tests whether a given expression is algebraic or not, in the
given symbols, syms. When syms is not given, all free symbols
will be used. The rational function does not have to be in expanded
or in any kind of canonical form.
This function returns False for expressions that are "algebraic
expressions" with symbolic exponents. This is a simple extension to the
is_rational_function, including rational exponentiation.
Examples
========
>>> from sympy import Symbol, sqrt
>>> x = Symbol('x', real=True)
>>> sqrt(1 + x).is_rational_function()
False
>>> sqrt(1 + x).is_algebraic_expr()
True
This function does not attempt any nontrivial simplifications that may
result in an expression that does not appear to be an algebraic
expression to become one.
>>> from sympy import exp, factor
>>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1)
>>> a.is_algebraic_expr(x)
False
>>> factor(a).is_algebraic_expr()
True
See Also
========
is_rational_function()
References
==========
- https://en.wikipedia.org/wiki/Algebraic_expression
"""
if syms:
syms = set(map(sympify, syms))
else:
syms = self.free_symbols
if syms.intersection(self.free_symbols) == set([]):
# constant algebraic expression
return True
else:
return self._eval_is_algebraic_expr(syms)
###################################################################################
##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ##################
###################################################################################
def series(self, x=None, x0=0, n=6, dir="+", logx=None):
"""
Series expansion of "self" around ``x = x0`` yielding either terms of
the series one by one (the lazy series given when n=None), else
all the terms at once when n != None.
Returns the series expansion of "self" around the point ``x = x0``
with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6).
If ``x=None`` and ``self`` is univariate, the univariate symbol will
be supplied, otherwise an error will be raised.
Parameters
==========
expr : Expression
The expression whose series is to be expanded.
x : Symbol
It is the variable of the expression to be calculated.
x0 : Value
The value around which ``x`` is calculated. Can be any value
from ``-oo`` to ``oo``.
n : Value
The number of terms upto which the series is to be expanded.
dir : String, optional
The series-expansion can be bi-directional. If ``dir="+"``,
then (x->x0+). If ``dir="-", then (x->x0-). For infinite
``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined
from the direction of the infinity (i.e., ``dir="-"`` for
``oo``).
logx : optional
It is used to replace any log(x) in the returned series with a
symbolic value rather than evaluating the actual value.
Examples
========
>>> from sympy import cos, exp, tan, oo, series
>>> from sympy.abc import x, y
>>> cos(x).series()
1 - x**2/2 + x**4/24 + O(x**6)
>>> cos(x).series(n=4)
1 - x**2/2 + O(x**4)
>>> cos(x).series(x, x0=1, n=2)
cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1))
>>> e = cos(x + exp(y))
>>> e.series(y, n=2)
cos(x + 1) - y*sin(x + 1) + O(y**2)
>>> e.series(x, n=2)
cos(exp(y)) - x*sin(exp(y)) + O(x**2)
If ``n=None`` then a generator of the series terms will be returned.
>>> term=cos(x).series(n=None)
>>> [next(term) for i in range(2)]
[1, -x**2/2]
For ``dir=+`` (default) the series is calculated from the right and
for ``dir=-`` the series from the left. For smooth functions this
flag will not alter the results.
>>> abs(x).series(dir="+")
x
>>> abs(x).series(dir="-")
-x
>>> f = tan(x)
>>> f.series(x, 2, 6, "+")
tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) +
(x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 +
5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 +
2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2))
>>> f.series(x, 2, 3, "-")
tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2))
+ O((x - 2)**3, (x, 2))
Returns
=======
Expr : Expression
Series expansion of the expression about x0
Raises
======
TypeError
If "n" and "x0" are infinity objects
PoleError
If "x0" is an infinity object
"""
from sympy import collect, Dummy, Order, Rational, Symbol, ceiling
if x is None:
syms = self.free_symbols
if not syms:
return self
elif len(syms) > 1:
raise ValueError('x must be given for multivariate functions.')
x = syms.pop()
if isinstance(x, Symbol):
dep = x in self.free_symbols
else:
d = Dummy()
dep = d in self.xreplace({x: d}).free_symbols
if not dep:
if n is None:
return (s for s in [self])
else:
return self
if len(dir) != 1 or dir not in '+-':
raise ValueError("Dir must be '+' or '-'")
if x0 in [S.Infinity, S.NegativeInfinity]:
sgn = 1 if x0 is S.Infinity else -1
s = self.subs(x, sgn/x).series(x, n=n, dir='+')
if n is None:
return (si.subs(x, sgn/x) for si in s)
return s.subs(x, sgn/x)
# use rep to shift origin to x0 and change sign (if dir is negative)
# and undo the process with rep2
if x0 or dir == '-':
if dir == '-':
rep = -x + x0
rep2 = -x
rep2b = x0
else:
rep = x + x0
rep2 = x
rep2b = -x0
s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx)
if n is None: # lseries...
return (si.subs(x, rep2 + rep2b) for si in s)
return s.subs(x, rep2 + rep2b)
# from here on it's x0=0 and dir='+' handling
if x.is_positive is x.is_negative is None or x.is_Symbol is not True:
# replace x with an x that has a positive assumption
xpos = Dummy('x', positive=True, finite=True)
rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx)
if n is None:
return (s.subs(xpos, x) for s in rv)
else:
return rv.subs(xpos, x)
if n is not None: # nseries handling
s1 = self._eval_nseries(x, n=n, logx=logx)
o = s1.getO() or S.Zero
if o:
# make sure the requested order is returned
ngot = o.getn()
if ngot > n:
# leave o in its current form (e.g. with x*log(x)) so
# it eats terms properly, then replace it below
if n != 0:
s1 += o.subs(x, x**Rational(n, ngot))
else:
s1 += Order(1, x)
elif ngot < n:
# increase the requested number of terms to get the desired
# number keep increasing (up to 9) until the received order
# is different than the original order and then predict how
# many additional terms are needed
for more in range(1, 9):
s1 = self._eval_nseries(x, n=n + more, logx=logx)
newn = s1.getn()
if newn != ngot:
ndo = n + ceiling((n - ngot)*more/(newn - ngot))
s1 = self._eval_nseries(x, n=ndo, logx=logx)
while s1.getn() < n:
s1 = self._eval_nseries(x, n=ndo, logx=logx)
ndo += 1
break
else:
raise ValueError('Could not calculate %s terms for %s'
% (str(n), self))
s1 += Order(x**n, x)
o = s1.getO()
s1 = s1.removeO()
else:
o = Order(x**n, x)
s1done = s1.doit()
if (s1done + o).removeO() == s1done:
o = S.Zero
try:
return collect(s1, x) + o
except NotImplementedError:
return s1 + o
else: # lseries handling
def yield_lseries(s):
"""Return terms of lseries one at a time."""
for si in s:
if not si.is_Add:
yield si
continue
# yield terms 1 at a time if possible
# by increasing order until all the
# terms have been returned
yielded = 0
o = Order(si, x)*x
ndid = 0
ndo = len(si.args)
while 1:
do = (si - yielded + o).removeO()
o *= x
if not do or do.is_Order:
continue
if do.is_Add:
ndid += len(do.args)
else:
ndid += 1
yield do
if ndid == ndo:
break
yielded += do
return yield_lseries(self.removeO()._eval_lseries(x, logx=logx))
def aseries(self, x=None, n=6, bound=0, hir=False):
"""Asymptotic Series expansion of self.
This is equivalent to ``self.series(x, oo, n)``.
Parameters
==========
self : Expression
The expression whose series is to be expanded.
x : Symbol
It is the variable of the expression to be calculated.
n : Value
The number of terms upto which the series is to be expanded.
hir : Boolean
Set this parameter to be True to produce hierarchical series.
It stops the recursion at an early level and may provide nicer
and more useful results.
bound : Value, Integer
Use the ``bound`` parameter to give limit on rewriting
coefficients in its normalised form.
Examples
========
>>> from sympy import sin, exp
>>> from sympy.abc import x, y
>>> e = sin(1/x + exp(-x)) - sin(1/x)
>>> e.aseries(x)
(1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x)
>>> e.aseries(x, n=3, hir=True)
-exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo))
>>> e = exp(exp(x)/(1 - 1/x))
>>> e.aseries(x)
exp(exp(x)/(1 - 1/x))
>>> e.aseries(x, bound=3)
exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x))
Returns
=======
Expr
Asymptotic series expansion of the expression.
Notes
=====
This algorithm is directly induced from the limit computational algorithm provided by Gruntz.
It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first
to look for the most rapidly varying subexpression w of a given expression f and then expands f
in a series in w. Then same thing is recursively done on the leading coefficient
till we get constant coefficients.
If the most rapidly varying subexpression of a given expression f is f itself,
the algorithm tries to find a normalised representation of the mrv set and rewrites f
using this normalised representation.
If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))``
where ``w`` belongs to the most rapidly varying expression of ``self``.
References
==========
.. [1] A New Algorithm for Computing Asymptotic Series - Dominik Gruntz
.. [2] Gruntz thesis - p90
.. [3] http://en.wikipedia.org/wiki/Asymptotic_expansion
See Also
========
Expr.aseries: See the docstring of this function for complete details of this wrapper.
"""
from sympy import Order, Dummy
from sympy.functions import exp, log
from sympy.series.gruntz import mrv, rewrite
if x.is_positive is x.is_negative is None:
xpos = Dummy('x', positive=True)
return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x)
om, exps = mrv(self, x)
# We move one level up by replacing `x` by `exp(x)`, and then
# computing the asymptotic series for f(exp(x)). Then asymptotic series
# can be obtained by moving one-step back, by replacing x by ln(x).
if x in om:
s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x))
if s.getO():
return s + Order(1/x**n, (x, S.Infinity))
return s
k = Dummy('k', positive=True)
# f is rewritten in terms of omega
func, logw = rewrite(exps, om, x, k)
if self in om:
if bound <= 0:
return self
s = (self.exp).aseries(x, n, bound=bound)
s = s.func(*[t.removeO() for t in s.args])
res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x))
func = exp(self.args[0] - res.args[0]) / k
logw = log(1/res)
s = func.series(k, 0, n)
# Hierarchical series
if hir:
return s.subs(k, exp(logw))
o = s.getO()
terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1]))
s = S.Zero
has_ord = False
# Then we recursively expand these coefficients one by one into
# their asymptotic series in terms of their most rapidly varying subexpressions.
for t in terms:
coeff, expo = t.as_coeff_exponent(k)
if coeff.has(x):
# Recursive step
snew = coeff.aseries(x, n, bound=bound-1)
if has_ord and snew.getO():
break
elif snew.getO():
has_ord = True
s += (snew * k**expo)
else:
s += t
if not o or has_ord:
return s.subs(k, exp(logw))
return (s + o).subs(k, exp(logw))
def taylor_term(self, n, x, *previous_terms):
"""General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can
redefine it to make it faster by using the "previous_terms".
"""
from sympy import Dummy, factorial
x = sympify(x)
_x = Dummy('x')
return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n)
def lseries(self, x=None, x0=0, dir='+', logx=None):
"""
Wrapper for series yielding an iterator of the terms of the series.
Note: an infinite series will yield an infinite iterator. The following,
for exaxmple, will never terminate. It will just keep printing terms
of the sin(x) series::
for term in sin(x).lseries(x):
print term
The advantage of lseries() over nseries() is that many times you are
just interested in the next term in the series (i.e. the first term for
example), but you don't know how many you should ask for in nseries()
using the "n" parameter.
See also nseries().
"""
return self.series(x, x0, n=None, dir=dir, logx=logx)
def _eval_lseries(self, x, logx=None):
# default implementation of lseries is using nseries(), and adaptively
# increasing the "n". As you can see, it is not very efficient, because
# we are calculating the series over and over again. Subclasses should
# override this method and implement much more efficient yielding of
# terms.
n = 0
series = self._eval_nseries(x, n=n, logx=logx)
if not series.is_Order:
if series.is_Add:
yield series.removeO()
else:
yield series
return
while series.is_Order:
n += 1
series = self._eval_nseries(x, n=n, logx=logx)
e = series.removeO()
yield e
while 1:
while 1:
n += 1
series = self._eval_nseries(x, n=n, logx=logx).removeO()
if e != series:
break
yield series - e
e = series
def nseries(self, x=None, x0=0, n=6, dir='+', logx=None):
"""
Wrapper to _eval_nseries if assumptions allow, else to series.
If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is
called. This calculates "n" terms in the innermost expressions and
then builds up the final series just by "cross-multiplying" everything
out.
The optional ``logx`` parameter can be used to replace any log(x) in the
returned series with a symbolic value to avoid evaluating log(x) at 0. A
symbol to use in place of log(x) should be provided.
Advantage -- it's fast, because we don't have to determine how many
terms we need to calculate in advance.
Disadvantage -- you may end up with less terms than you may have
expected, but the O(x**n) term appended will always be correct and
so the result, though perhaps shorter, will also be correct.
If any of those assumptions is not met, this is treated like a
wrapper to series which will try harder to return the correct
number of terms.
See also lseries().
Examples
========
>>> from sympy import sin, log, Symbol
>>> from sympy.abc import x, y
>>> sin(x).nseries(x, 0, 6)
x - x**3/6 + x**5/120 + O(x**6)
>>> log(x+1).nseries(x, 0, 5)
x - x**2/2 + x**3/3 - x**4/4 + O(x**5)
Handling of the ``logx`` parameter --- in the following example the
expansion fails since ``sin`` does not have an asymptotic expansion
at -oo (the limit of log(x) as x approaches 0):
>>> e = sin(log(x))
>>> e.nseries(x, 0, 6)
Traceback (most recent call last):
...
PoleError: ...
...
>>> logx = Symbol('logx')
>>> e.nseries(x, 0, 6, logx=logx)
sin(logx)
In the following example, the expansion works but gives only an Order term
unless the ``logx`` parameter is used:
>>> e = x**y
>>> e.nseries(x, 0, 2)
O(log(x)**2)
>>> e.nseries(x, 0, 2, logx=logx)
exp(logx*y)
"""
if x and not x in self.free_symbols:
return self
if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None):
return self.series(x, x0, n, dir)
else:
return self._eval_nseries(x, n=n, logx=logx)
def _eval_nseries(self, x, n, logx):
"""
Return terms of series for self up to O(x**n) at x=0
from the positive direction.
This is a method that should be overridden in subclasses. Users should
never call this method directly (use .nseries() instead), so you don't
have to write docstrings for _eval_nseries().
"""
from sympy.utilities.misc import filldedent
raise NotImplementedError(filldedent("""
The _eval_nseries method should be added to
%s to give terms up to O(x**n) at x=0
from the positive direction so it is available when
nseries calls it.""" % self.func)
)
def limit(self, x, xlim, dir='+'):
""" Compute limit x->xlim.
"""
from sympy.series.limits import limit
return limit(self, x, xlim, dir)
def compute_leading_term(self, x, logx=None):
"""
as_leading_term is only allowed for results of .series()
This is a wrapper to compute a series first.
"""
from sympy import Dummy, log, Piecewise, piecewise_fold
from sympy.series.gruntz import calculate_series
if self.has(Piecewise):
expr = piecewise_fold(self)
else:
expr = self
if self.removeO() == 0:
return self
if logx is None:
d = Dummy('logx')
s = calculate_series(expr, x, d).subs(d, log(x))
else:
s = calculate_series(expr, x, logx)
return s.as_leading_term(x)
@cacheit
def as_leading_term(self, *symbols):
"""
Returns the leading (nonzero) term of the series expansion of self.
The _eval_as_leading_term routines are used to do this, and they must
always return a non-zero value.
Examples
========
>>> from sympy.abc import x
>>> (1 + x + x**2).as_leading_term(x)
1
>>> (1/x**2 + x + x**2).as_leading_term(x)
x**(-2)
"""
from sympy import powsimp
if len(symbols) > 1:
c = self
for x in symbols:
c = c.as_leading_term(x)
return c
elif not symbols:
return self
x = sympify(symbols[0])
if not x.is_symbol:
raise ValueError('expecting a Symbol but got %s' % x)
if x not in self.free_symbols:
return self
obj = self._eval_as_leading_term(x)
if obj is not None:
return powsimp(obj, deep=True, combine='exp')
raise NotImplementedError('as_leading_term(%s, %s)' % (self, x))
def _eval_as_leading_term(self, x):
return self
def as_coeff_exponent(self, x):
""" ``c*x**e -> c,e`` where x can be any symbolic expression.
"""
from sympy import collect
s = collect(self, x)
c, p = s.as_coeff_mul(x)
if len(p) == 1:
b, e = p[0].as_base_exp()
if b == x:
return c, e
return s, S.Zero
def leadterm(self, x):
"""
Returns the leading term a*x**b as a tuple (a, b).
Examples
========
>>> from sympy.abc import x
>>> (1+x+x**2).leadterm(x)
(1, 0)
>>> (1/x**2+x+x**2).leadterm(x)
(1, -2)
"""
from sympy import Dummy, log
l = self.as_leading_term(x)
d = Dummy('logx')
if l.has(log(x)):
l = l.subs(log(x), d)
c, e = l.as_coeff_exponent(x)
if x in c.free_symbols:
from sympy.utilities.misc import filldedent
raise ValueError(filldedent("""
cannot compute leadterm(%s, %s). The coefficient
should have been free of %s but got %s""" % (self, x, x, c)))
c = c.subs(d, log(x))
return c, e
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return S.One, self
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return S.Zero, self
def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True,
full=False):
"""
Compute formal power power series of self.
See the docstring of the :func:`fps` function in sympy.series.formal for
more information.
"""
from sympy.series.formal import fps
return fps(self, x, x0, dir, hyper, order, rational, full)
def fourier_series(self, limits=None):
"""Compute fourier sine/cosine series of self.
See the docstring of the :func:`fourier_series` in sympy.series.fourier
for more information.
"""
from sympy.series.fourier import fourier_series
return fourier_series(self, limits)
###################################################################################
##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS ####################
###################################################################################
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
###########################################################################
###################### EXPRESSION EXPANSION METHODS #######################
###########################################################################
# Relevant subclasses should override _eval_expand_hint() methods. See
# the docstring of expand() for more info.
def _eval_expand_complex(self, **hints):
real, imag = self.as_real_imag(**hints)
return real + S.ImaginaryUnit*imag
@staticmethod
def _expand_hint(expr, hint, deep=True, **hints):
"""
Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``.
Returns ``(expr, hit)``, where expr is the (possibly) expanded
``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and
``False`` otherwise.
"""
hit = False
# XXX: Hack to support non-Basic args
# |
# V
if deep and getattr(expr, 'args', ()) and not expr.is_Atom:
sargs = []
for arg in expr.args:
arg, arghit = Expr._expand_hint(arg, hint, **hints)
hit |= arghit
sargs.append(arg)
if hit:
expr = expr.func(*sargs)
if hasattr(expr, hint):
newexpr = getattr(expr, hint)(**hints)
if newexpr != expr:
return (newexpr, True)
return (expr, hit)
@cacheit
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""
Expand an expression using hints.
See the docstring of the expand() function in sympy.core.function for
more information.
"""
from sympy.simplify.radsimp import fraction
hints.update(power_base=power_base, power_exp=power_exp, mul=mul,
log=log, multinomial=multinomial, basic=basic)
expr = self
if hints.pop('frac', False):
n, d = [a.expand(deep=deep, modulus=modulus, **hints)
for a in fraction(self)]
return n/d
elif hints.pop('denom', False):
n, d = fraction(self)
return n/d.expand(deep=deep, modulus=modulus, **hints)
elif hints.pop('numer', False):
n, d = fraction(self)
return n.expand(deep=deep, modulus=modulus, **hints)/d
# Although the hints are sorted here, an earlier hint may get applied
# at a given node in the expression tree before another because of how
# the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y +
# x*z) because while applying log at the top level, log and mul are
# applied at the deeper level in the tree so that when the log at the
# upper level gets applied, the mul has already been applied at the
# lower level.
# Additionally, because hints are only applied once, the expression
# may not be expanded all the way. For example, if mul is applied
# before multinomial, x*(x + 1)**2 won't be expanded all the way. For
# now, we just use a special case to make multinomial run before mul,
# so that at least polynomials will be expanded all the way. In the
# future, smarter heuristics should be applied.
# TODO: Smarter heuristics
def _expand_hint_key(hint):
"""Make multinomial come before mul"""
if hint == 'mul':
return 'mulz'
return hint
for hint in sorted(hints.keys(), key=_expand_hint_key):
use_hint = hints[hint]
if use_hint:
hint = '_eval_expand_' + hint
expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints)
while True:
was = expr
if hints.get('multinomial', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_multinomial', deep=deep, **hints)
if hints.get('mul', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_mul', deep=deep, **hints)
if hints.get('log', False):
expr, _ = Expr._expand_hint(
expr, '_eval_expand_log', deep=deep, **hints)
if expr == was:
break
if modulus is not None:
modulus = sympify(modulus)
if not modulus.is_Integer or modulus <= 0:
raise ValueError(
"modulus must be a positive integer, got %s" % modulus)
terms = []
for term in Add.make_args(expr):
coeff, tail = term.as_coeff_Mul(rational=True)
coeff %= modulus
if coeff:
terms.append(coeff*tail)
expr = Add(*terms)
return expr
###########################################################################
################### GLOBAL ACTION VERB WRAPPER METHODS ####################
###########################################################################
def integrate(self, *args, **kwargs):
"""See the integrate function in sympy.integrals"""
from sympy.integrals import integrate
return integrate(self, *args, **kwargs)
def simplify(self, **kwargs):
"""See the simplify function in sympy.simplify"""
from sympy.simplify import simplify
return simplify(self, **kwargs)
def nsimplify(self, constants=[], tolerance=None, full=False):
"""See the nsimplify function in sympy.simplify"""
from sympy.simplify import nsimplify
return nsimplify(self, constants, tolerance, full)
def separate(self, deep=False, force=False):
"""See the separate function in sympy.simplify"""
from sympy.core.function import expand_power_base
return expand_power_base(self, deep=deep, force=force)
def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True):
"""See the collect function in sympy.simplify"""
from sympy.simplify import collect
return collect(self, syms, func, evaluate, exact, distribute_order_term)
def together(self, *args, **kwargs):
"""See the together function in sympy.polys"""
from sympy.polys import together
return together(self, *args, **kwargs)
def apart(self, x=None, **args):
"""See the apart function in sympy.polys"""
from sympy.polys import apart
return apart(self, x, **args)
def ratsimp(self):
"""See the ratsimp function in sympy.simplify"""
from sympy.simplify import ratsimp
return ratsimp(self)
def trigsimp(self, **args):
"""See the trigsimp function in sympy.simplify"""
from sympy.simplify import trigsimp
return trigsimp(self, **args)
def radsimp(self, **kwargs):
"""See the radsimp function in sympy.simplify"""
from sympy.simplify import radsimp
return radsimp(self, **kwargs)
def powsimp(self, *args, **kwargs):
"""See the powsimp function in sympy.simplify"""
from sympy.simplify import powsimp
return powsimp(self, *args, **kwargs)
def combsimp(self):
"""See the combsimp function in sympy.simplify"""
from sympy.simplify import combsimp
return combsimp(self)
def gammasimp(self):
"""See the gammasimp function in sympy.simplify"""
from sympy.simplify import gammasimp
return gammasimp(self)
def factor(self, *gens, **args):
"""See the factor() function in sympy.polys.polytools"""
from sympy.polys import factor
return factor(self, *gens, **args)
def refine(self, assumption=True):
"""See the refine function in sympy.assumptions"""
from sympy.assumptions import refine
return refine(self, assumption)
def cancel(self, *gens, **args):
"""See the cancel function in sympy.polys"""
from sympy.polys import cancel
return cancel(self, *gens, **args)
def invert(self, g, *gens, **args):
"""Return the multiplicative inverse of ``self`` mod ``g``
where ``self`` (and ``g``) may be symbolic expressions).
See Also
========
sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert
"""
from sympy.polys.polytools import invert
from sympy.core.numbers import mod_inverse
if self.is_number and getattr(g, 'is_number', True):
return mod_inverse(self, g)
return invert(self, g, *gens, **args)
def round(self, n=None):
"""Return x rounded to the given decimal place.
If a complex number would results, apply round to the real
and imaginary components of the number.
Examples
========
>>> from sympy import pi, E, I, S, Add, Mul, Number
>>> pi.round()
3
>>> pi.round(2)
3.14
>>> (2*pi + E*I).round()
6 + 3*I
The round method has a chopping effect:
>>> (2*pi + I/10).round()
6
>>> (pi/10 + 2*I).round()
2*I
>>> (pi/10 + E*I).round(2)
0.31 + 2.72*I
Notes
=====
The Python builtin function, round, always returns a
float in Python 2 while the SymPy round method (and
round with a Number argument in Python 3) returns a
Number.
>>> from sympy.core.compatibility import PY3
>>> isinstance(round(S(123), -2), Number if PY3 else float)
True
For a consistent behavior, and Python 3 rounding
rules, import `round` from sympy.core.compatibility.
>>> from sympy.core.compatibility import round
>>> isinstance(round(S(123), -2), Number)
True
"""
from sympy.core.numbers import Float
x = self
if not x.is_number:
raise TypeError("can't round symbolic expression")
if not x.is_Atom:
if not pure_complex(x.n(2), or_real=True):
raise TypeError(
'Expected a number but got %s:' % func_name(x))
elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity):
return x
if not x.is_extended_real:
i, r = x.as_real_imag()
return i.round(n) + S.ImaginaryUnit*r.round(n)
if not x:
return S.Zero if n is None else x
p = as_int(n or 0)
if x.is_Integer:
# XXX return Integer(round(int(x), p)) when Py2 is dropped
if p >= 0:
return x
m = 10**-p
i, r = divmod(abs(x), m)
if i%2 and 2*r == m:
i += 1
elif 2*r > m:
i += 1
if x < 0:
i *= -1
return i*m
digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1
allow = digits_to_decimal + p
precs = [f._prec for f in x.atoms(Float)]
dps = prec_to_dps(max(precs)) if precs else None
if dps is None:
# assume everything is exact so use the Python
# float default or whatever was requested
dps = max(15, allow)
else:
allow = min(allow, dps)
# this will shift all digits to right of decimal
# and give us dps to work with as an int
shift = -digits_to_decimal + dps
extra = 1 # how far we look past known digits
# NOTE
# mpmath will calculate the binary representation to
# an arbitrary number of digits but we must base our
# answer on a finite number of those digits, e.g.
# .575 2589569785738035/2**52 in binary.
# mpmath shows us that the first 18 digits are
# >>> Float(.575).n(18)
# 0.574999999999999956
# The default precision is 15 digits and if we ask
# for 15 we get
# >>> Float(.575).n(15)
# 0.575000000000000
# mpmath handles rounding at the 15th digit. But we
# need to be careful since the user might be asking
# for rounding at the last digit and our semantics
# are to round toward the even final digit when there
# is a tie. So the extra digit will be used to make
# that decision. In this case, the value is the same
# to 15 digits:
# >>> Float(.575).n(16)
# 0.5750000000000000
# Now converting this to the 15 known digits gives
# 575000000000000.0
# which rounds to integer
# 5750000000000000
# And now we can round to the desired digt, e.g. at
# the second from the left and we get
# 5800000000000000
# and rescaling that gives
# 0.58
# as the final result.
# If the value is made slightly less than 0.575 we might
# still obtain the same value:
# >>> Float(.575-1e-16).n(16)*10**15
# 574999999999999.8
# What 15 digits best represents the known digits (which are
# to the left of the decimal? 5750000000000000, the same as
# before. The only way we will round down (in this case) is
# if we declared that we had more than 15 digits of precision.
# For example, if we use 16 digits of precision, the integer
# we deal with is
# >>> Float(.575-1e-16).n(17)*10**16
# 5749999999999998.4
# and this now rounds to 5749999999999998 and (if we round to
# the 2nd digit from the left) we get 5700000000000000.
#
xf = x.n(dps + extra)*Pow(10, shift)
xi = Integer(xf)
# use the last digit to select the value of xi
# nearest to x before rounding at the desired digit
sign = 1 if x > 0 else -1
dif2 = sign*(xf - xi).n(extra)
if dif2 < 0:
raise NotImplementedError(
'not expecting int(x) to round away from 0')
if dif2 > .5:
xi += sign # round away from 0
elif dif2 == .5:
xi += sign if xi%2 else -sign # round toward even
# shift p to the new position
ip = p - shift
# let Python handle the int rounding then rescale
xr = xi.round(ip) # when Py2 is drop make this round(xi.p, ip)
# restore scale
rv = Rational(xr, Pow(10, shift))
# return Float or Integer
if rv.is_Integer:
if n is None: # the single-arg case
return rv
# use str or else it won't be a float
return Float(str(rv), dps) # keep same precision
else:
if not allow and rv > self:
allow += 1
return Float(rv, allow)
__round__ = round
def _eval_derivative_matrix_lines(self, x):
from sympy.matrices.expressions.matexpr import _LeftRightArgs
return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))]
class AtomicExpr(Atom, Expr):
"""
A parent class for object which are both atoms and Exprs.
For example: Symbol, Number, Rational, Integer, ...
But not: Add, Mul, Pow, ...
"""
is_number = False
is_Atom = True
__slots__ = []
def _eval_derivative(self, s):
if self == s:
return S.One
return S.Zero
def _eval_derivative_n_times(self, s, n):
from sympy import Piecewise, Eq
from sympy import Tuple, MatrixExpr
from sympy.matrices.common import MatrixCommon
if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)):
return super(AtomicExpr, self)._eval_derivative_n_times(s, n)
if self == s:
return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True))
else:
return Piecewise((self, Eq(n, 0)), (0, True))
def _eval_is_polynomial(self, syms):
return True
def _eval_is_rational_function(self, syms):
return True
def _eval_is_algebraic_expr(self, syms):
return True
def _eval_nseries(self, x, n, logx):
return self
@property
def expr_free_symbols(self):
return {self}
def _mag(x):
"""Return integer ``i`` such that .1 <= x/10**i < 1
Examples
========
>>> from sympy.core.expr import _mag
>>> from sympy import Float
>>> _mag(Float(.1))
0
>>> _mag(Float(.01))
-1
>>> _mag(Float(1234))
4
"""
from math import log10, ceil, log
from sympy import Float
xpos = abs(x.n())
if not xpos:
return S.Zero
try:
mag_first_dig = int(ceil(log10(xpos)))
except (ValueError, OverflowError):
mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10)))
# check that we aren't off by 1
if (xpos/10**mag_first_dig) >= 1:
assert 1 <= (xpos/10**mag_first_dig) < 10
mag_first_dig += 1
return mag_first_dig
class UnevaluatedExpr(Expr):
"""
Expression that is not evaluated unless released.
Examples
========
>>> from sympy import UnevaluatedExpr
>>> from sympy.abc import a, b, x, y
>>> x*(1/x)
1
>>> x*UnevaluatedExpr(1/x)
x*1/x
"""
def __new__(cls, arg, **kwargs):
arg = _sympify(arg)
obj = Expr.__new__(cls, arg, **kwargs)
return obj
def doit(self, **kwargs):
if kwargs.get("deep", True):
return self.args[0].doit(**kwargs)
else:
return self.args[0]
def _n2(a, b):
"""Return (a - b).evalf(2) if a and b are comparable, else None.
This should only be used when a and b are already sympified.
"""
# /!\ it is very important (see issue 8245) not to
# use a re-evaluated number in the calculation of dif
if a.is_comparable and b.is_comparable:
dif = (a - b).evalf(2)
if dif.is_comparable:
return dif
def unchanged(func, *args):
"""Return True if `func` applied to the `args` is unchanged.
Can be used instead of `assert foo == foo`.
Examples
========
>>> from sympy import Piecewise, cos, pi
>>> from sympy.core.expr import unchanged
>>> from sympy.abc import x
>>> unchanged(cos, 1) # instead of assert cos(1) == cos(1)
True
>>> unchanged(cos, pi)
False
Comparison of args uses the builtin capabilities of the object's
arguments to test for equality so args can be defined loosely. Here,
the ExprCondPair arguments of Piecewise compare as equal to the
tuples that can be used to create the Piecewise:
>>> unchanged(Piecewise, (x, x > 1), (0, True))
True
"""
f = func(*args)
return f.func == func and f.args == args
class ExprBuilder(object):
def __init__(self, op, args=[], validator=None, check=True):
if not hasattr(op, "__call__"):
raise TypeError("op {} needs to be callable".format(op))
self.op = op
self.args = args
self.validator = validator
if (validator is not None) and check:
self.validate()
@staticmethod
def _build_args(args):
return [i.build() if isinstance(i, ExprBuilder) else i for i in args]
def validate(self):
if self.validator is None:
return
args = self._build_args(self.args)
self.validator(*args)
def build(self, check=True):
args = self._build_args(self.args)
if self.validator and check:
self.validator(*args)
return self.op(*args)
def append_argument(self, arg, check=True):
self.args.append(arg)
if self.validator and check:
self.validate(*self.args)
def __getitem__(self, item):
if item == 0:
return self.op
else:
return self.args[item-1]
def __repr__(self):
return str(self.build())
def search_element(self, elem):
for i, arg in enumerate(self.args):
if isinstance(arg, ExprBuilder):
ret = arg.search_index(elem)
if ret is not None:
return (i,) + ret
elif id(arg) == id(elem):
return (i,)
return None
from .mul import Mul
from .add import Add
from .power import Pow
from .function import Derivative, Function
from .mod import Mod
from .exprtools import factor_terms
from .numbers import Integer, Rational
|
9d042030e7c710751cdc5ff79a9baf3c2f4240d5e343f9e800b0c031fec6b3df | from __future__ import print_function, division
from sympy.utilities.exceptions import SymPyDeprecationWarning
from .add import _unevaluated_Add, Add
from .basic import S
from .compatibility import ordered
from .expr import Expr
from .evalf import EvalfMixin
from .sympify import _sympify
from .evaluate import global_evaluate
from sympy.logic.boolalg import Boolean, BooleanAtom
__all__ = (
'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge',
'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan',
'StrictGreaterThan', 'GreaterThan',
)
# Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean
# and Expr.
def _canonical(cond):
# return a condition in which all relationals are canonical
reps = {r: r.canonical for r in cond.atoms(Relational)}
return cond.xreplace(reps)
# XXX: AttributeError was being caught here but it wasn't triggered by any of
# the tests so I've removed it...
class Relational(Boolean, Expr, EvalfMixin):
"""Base class for all relation types.
Subclasses of Relational should generally be instantiated directly, but
Relational can be instantiated with a valid ``rop`` value to dispatch to
the appropriate subclass.
Parameters
==========
rop : str or None
Indicates what subclass to instantiate. Valid values can be found
in the keys of Relational.ValidRelationalOperator.
Examples
========
>>> from sympy import Rel
>>> from sympy.abc import x, y
>>> Rel(y, x + x**2, '==')
Eq(y, x**2 + x)
"""
__slots__ = []
is_Relational = True
# ValidRelationOperator - Defined below, because the necessary classes
# have not yet been defined
def __new__(cls, lhs, rhs, rop=None, **assumptions):
# If called by a subclass, do nothing special and pass on to Expr.
if cls is not Relational:
return Expr.__new__(cls, lhs, rhs, **assumptions)
# If called directly with an operator, look up the subclass
# corresponding to that operator and delegate to it
try:
cls = cls.ValidRelationOperator[rop]
rv = cls(lhs, rhs, **assumptions)
# /// drop when Py2 is no longer supported
# validate that Booleans are not being used in a relational
# other than Eq/Ne;
if isinstance(rv, (Eq, Ne)):
pass
elif isinstance(rv, Relational): # could it be otherwise?
from sympy.core.symbol import Symbol
from sympy.logic.boolalg import Boolean
for a in rv.args:
if isinstance(a, Symbol):
continue
if isinstance(a, Boolean):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
# \\\
return rv
except KeyError:
raise ValueError(
"Invalid relational operator symbol: %r" % rop)
@property
def lhs(self):
"""The left-hand side of the relation."""
return self._args[0]
@property
def rhs(self):
"""The right-hand side of the relation."""
return self._args[1]
@property
def reversed(self):
"""Return the relationship with sides reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversed
Eq(1, x)
>>> x < 1
x < 1
>>> _.reversed
1 > x
"""
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
a, b = self.args
return Relational.__new__(ops.get(self.func, self.func), b, a)
@property
def reversedsign(self):
"""Return the relationship with signs reversed.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversedsign
Eq(-x, -1)
>>> x < 1
x < 1
>>> _.reversedsign
-x > -1
"""
a, b = self.args
if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)):
ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne}
return Relational.__new__(ops.get(self.func, self.func), -a, -b)
else:
return self
@property
def negated(self):
"""Return the negated relationship.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x
>>> Eq(x, 1)
Eq(x, 1)
>>> _.negated
Ne(x, 1)
>>> x < 1
x < 1
>>> _.negated
x >= 1
Notes
=====
This works more or less identical to ``~``/``Not``. The difference is
that ``negated`` returns the relationship even if ``evaluate=False``.
Hence, this is useful in code when checking for e.g. negated relations
to existing ones as it will not be affected by the `evaluate` flag.
"""
ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq}
# If there ever will be new Relational subclasses, the following line
# will work until it is properly sorted out
# return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a,
# b, evaluate=evaluate)))(*self.args, evaluate=False)
return Relational.__new__(ops.get(self.func), *self.args)
def _eval_evalf(self, prec):
return self.func(*[s._evalf(prec) for s in self.args])
@property
def canonical(self):
"""Return a canonical form of the relational by putting a
Number on the rhs else ordering the args. The relation is also changed
so that the left-hand side expression does not start with a ``-``.
No other simplification is attempted.
Examples
========
>>> from sympy.abc import x, y
>>> x < 2
x < 2
>>> _.reversed.canonical
x < 2
>>> (-y < x).canonical
x > -y
>>> (-y > x).canonical
x < -y
"""
args = self.args
r = self
if r.rhs.is_number:
if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs:
r = r.reversed
elif r.lhs.is_number:
r = r.reversed
elif tuple(ordered(args)) != args:
r = r.reversed
LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None)
RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None)
if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom):
return r
# Check if first value has negative sign
if LHS_CEMS and LHS_CEMS():
return r.reversedsign
elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS():
# Right hand side has a minus, but not lhs.
# How does the expression with reversed signs behave?
# This is so that expressions of the type
# Eq(x, -y) and Eq(-x, y)
# have the same canonical representation
expr1, _ = ordered([r.lhs, -r.rhs])
if expr1 != r.lhs:
return r.reversed.reversedsign
return r
def equals(self, other, failing_expression=False):
"""Return True if the sides of the relationship are mathematically
identical and the type of relationship is the same.
If failing_expression is True, return the expression whose truth value
was unknown."""
if isinstance(other, Relational):
if self == other or self.reversed == other:
return True
a, b = self, other
if a.func in (Eq, Ne) or b.func in (Eq, Ne):
if a.func != b.func:
return False
left, right = [i.equals(j,
failing_expression=failing_expression)
for i, j in zip(a.args, b.args)]
if left is True:
return right
if right is True:
return left
lr, rl = [i.equals(j, failing_expression=failing_expression)
for i, j in zip(a.args, b.reversed.args)]
if lr is True:
return rl
if rl is True:
return lr
e = (left, right, lr, rl)
if all(i is False for i in e):
return False
for i in e:
if i not in (True, False):
return i
else:
if b.func != a.func:
b = b.reversed
if a.func != b.func:
return False
left = a.lhs.equals(b.lhs,
failing_expression=failing_expression)
if left is False:
return False
right = a.rhs.equals(b.rhs,
failing_expression=failing_expression)
if right is False:
return False
if left is True:
return right
return left
def _eval_simplify(self, **kwargs):
r = self
r = r.func(*[i.simplify(**kwargs) for i in r.args])
if r.is_Relational:
dif = r.lhs - r.rhs
# replace dif with a valid Number that will
# allow a definitive comparison with 0
v = None
if dif.is_comparable:
v = dif.n(2)
elif dif.equals(0): # XXX this is expensive
v = S.Zero
if v is not None:
r = r.func._eval_relation(v, S.Zero)
r = r.canonical
# If there is only one symbol in the expression,
# try to write it on a simplified form
free = list(filter(lambda x: x.is_real is not False, r.free_symbols))
if len(free) == 1:
try:
from sympy.solvers.solveset import linear_coeffs
x = free.pop()
dif = r.lhs - r.rhs
m, b = linear_coeffs(dif, x)
if m.is_zero is False:
if m.is_negative:
# Dividing with a negative number, so change order of arguments
# canonical will put the symbol back on the lhs later
r = r.func(-b/m, x)
else:
r = r.func(x, -b/m)
else:
r = r.func(b, S.zero)
except ValueError:
# maybe not a linear function, try polynomial
from sympy.polys import Poly, poly, PolynomialError, gcd
try:
p = poly(dif, x)
c = p.all_coeffs()
constant = c[-1]
c[-1] = 0
scale = gcd(c)
c = [ctmp/scale for ctmp in c]
r = r.func(Poly.from_list(c, x).as_expr(), -constant/scale)
except PolynomialError:
pass
elif len(free) >= 2:
try:
from sympy.solvers.solveset import linear_coeffs
from sympy.polys import gcd
free = list(ordered(free))
dif = r.lhs - r.rhs
m = linear_coeffs(dif, *free)
constant = m[-1]
del m[-1]
scale = gcd(m)
m = [mtmp/scale for mtmp in m]
nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free))))
if scale.is_zero is False:
if constant != 0:
# lhs: expression, rhs: constant
newexpr = Add(*[i*j for i, j in nzm])
r = r.func(newexpr, -constant/scale)
else:
# keep first term on lhs
lhsterm = nzm[0][0]*nzm[0][1]
del nzm[0]
newexpr = Add(*[i*j for i, j in nzm])
r = r.func(lhsterm, -newexpr)
else:
r = r.func(constant, S.zero)
except ValueError:
pass
# Did we get a simplified result?
r = r.canonical
measure = kwargs['measure']
if measure(r) < kwargs['ratio']*measure(self):
return r
else:
return self
def _eval_trigsimp(self, **opts):
from sympy.simplify import trigsimp
return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts))
def __nonzero__(self):
raise TypeError("cannot determine truth value of Relational")
__bool__ = __nonzero__
def _eval_as_set(self):
# self is univariate and periodicity(self, x) in (0, None)
from sympy.solvers.inequalities import solve_univariate_inequality
syms = self.free_symbols
assert len(syms) == 1
x = syms.pop()
return solve_univariate_inequality(self, x, relational=False)
@property
def binary_symbols(self):
# override where necessary
return set()
Rel = Relational
class Equality(Relational):
"""An equal relation between two objects.
Represents that two objects are equal. If they can be easily shown
to be definitively equal (or unequal), this will reduce to True (or
False). Otherwise, the relation is maintained as an unevaluated
Equality object. Use the ``simplify`` function on this object for
more nontrivial evaluation of the equality relation.
As usual, the keyword argument ``evaluate=False`` can be used to
prevent any evaluation.
Examples
========
>>> from sympy import Eq, simplify, exp, cos
>>> from sympy.abc import x, y
>>> Eq(y, x + x**2)
Eq(y, x**2 + x)
>>> Eq(2, 5)
False
>>> Eq(2, 5, evaluate=False)
Eq(2, 5)
>>> _.doit()
False
>>> Eq(exp(x), exp(x).rewrite(cos))
Eq(exp(x), sinh(x) + cosh(x))
>>> simplify(_)
True
See Also
========
sympy.logic.boolalg.Equivalent : for representing equality between two
boolean expressions
Notes
=====
This class is not the same as the == operator. The == operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
If either object defines an `_eval_Eq` method, it can be used in place of
the default algorithm. If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)`
returns anything other than None, that return value will be substituted for
the Equality. If None is returned by `_eval_Eq`, an Equality object will
be created as usual.
Since this object is already an expression, it does not respond to
the method `as_expr` if one tries to create `x - y` from Eq(x, y).
This can be done with the `rewrite(Add)` method.
"""
rel_op = '=='
__slots__ = []
is_Equality = True
def __new__(cls, lhs, rhs=None, **options):
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not
from sympy.core.expr import _n2
from sympy.functions.elementary.complexes import arg
from sympy.simplify.simplify import clear_coefficients
from sympy.utilities.iterables import sift
if rhs is None:
SymPyDeprecationWarning(
feature="Eq(expr) with rhs default to 0",
useinstead="Eq(expr, 0)",
issue=16587,
deprecated_since_version="1.5"
).warn()
rhs = 0
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_evaluate[0])
if evaluate:
# If one expression has an _eval_Eq, return its results.
if hasattr(lhs, '_eval_Eq'):
r = lhs._eval_Eq(rhs)
if r is not None:
return r
if hasattr(rhs, '_eval_Eq'):
r = rhs._eval_Eq(lhs)
if r is not None:
return r
# If expressions have the same structure, they must be equal.
if lhs == rhs:
return S.true # e.g. True == True
elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)):
return S.false # True != False
elif not (lhs.is_Symbol or rhs.is_Symbol) and (
isinstance(lhs, Boolean) !=
isinstance(rhs, Boolean)):
return S.false # only Booleans can equal Booleans
if lhs.is_infinite or rhs.is_infinite:
if fuzzy_xor([lhs.is_infinite, rhs.is_infinite]):
return S.false
if fuzzy_xor([lhs.is_extended_real, rhs.is_extended_real]):
return S.false
if fuzzy_and([lhs.is_extended_real, rhs.is_extended_real]):
r = fuzzy_xor([lhs.is_extended_positive, fuzzy_not(rhs.is_extended_positive)])
return S(r)
# Try to split real/imaginary parts and equate them
I = S.ImaginaryUnit
def split_real_imag(expr):
real_imag = lambda t: (
'real' if t.is_extended_real else
'imag' if (I*t).is_extended_real else None)
return sift(Add.make_args(expr), real_imag)
lhs_ri = split_real_imag(lhs)
if not lhs_ri[None]:
rhs_ri = split_real_imag(rhs)
if not rhs_ri[None]:
eq_real = Eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']))
eq_imag = Eq(I*Add(*lhs_ri['imag']), I*Add(*rhs_ri['imag']))
res = fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag]))
if res is not None:
return S(res)
# Compare e.g. zoo with 1+I*oo by comparing args
arglhs = arg(lhs)
argrhs = arg(rhs)
# Guard against Eq(nan, nan) -> False
if not (arglhs == S.NaN and argrhs == S.NaN):
res = fuzzy_bool(Eq(arglhs, argrhs))
if res is not None:
return S(res)
return Relational.__new__(cls, lhs, rhs, **options)
if all(isinstance(i, Expr) for i in (lhs, rhs)):
# see if the difference evaluates
dif = lhs - rhs
z = dif.is_zero
if z is not None:
if z is False and dif.is_commutative: # issue 10728
return S.false
if z:
return S.true
# evaluate numerically if possible
n2 = _n2(lhs, rhs)
if n2 is not None:
return _sympify(n2 == 0)
# see if the ratio evaluates
n, d = dif.as_numer_denom()
rv = None
if n.is_zero:
rv = d.is_nonzero
elif n.is_finite:
if d.is_infinite:
rv = S.true
elif n.is_zero is False:
rv = d.is_infinite
if rv is None:
# if the condition that makes the denominator
# infinite does not make the original expression
# True then False can be returned
l, r = clear_coefficients(d, S.Infinity)
args = [_.subs(l, r) for _ in (lhs, rhs)]
if args != [lhs, rhs]:
rv = fuzzy_bool(Eq(*args))
if rv is True:
rv = None
elif any(a.is_infinite for a in Add.make_args(n)):
# (inf or nan)/x != 0
rv = S.false
if rv is not None:
return _sympify(rv)
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs == rhs)
def _eval_rewrite_as_Add(self, *args, **kwargs):
"""return Eq(L, R) as L - R. To control the evaluation of
the result set pass `evaluate=True` to give L - R;
if `evaluate=None` then terms in L and R will not cancel
but they will be listed in canonical order; otherwise
non-canonical args will be returned.
Examples
========
>>> from sympy import Eq, Add
>>> from sympy.abc import b, x
>>> eq = Eq(x + b, x - b)
>>> eq.rewrite(Add)
2*b
>>> eq.rewrite(Add, evaluate=None).args
(b, b, x, -x)
>>> eq.rewrite(Add, evaluate=False).args
(b, x, b, -x)
"""
L, R = args
evaluate = kwargs.get('evaluate', True)
if evaluate:
# allow cancellation of args
return L - R
args = Add.make_args(L) + Add.make_args(-R)
if evaluate is None:
# no cancellation, but canonical
return _unevaluated_Add(*args)
# no cancellation, not canonical
return Add._from_args(args)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return set([self.lhs])
elif self.rhs.is_Symbol:
return set([self.rhs])
return set()
def _eval_simplify(self, **kwargs):
from sympy.solvers.solveset import linear_coeffs
# standard simplify
e = super(Equality, self)._eval_simplify(**kwargs)
if not isinstance(e, Equality):
return e
free = self.free_symbols
if len(free) == 1:
try:
x = free.pop()
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
if m.is_zero is False:
enew = e.func(x, -b/m)
else:
enew = e.func(m*x, -b)
measure = kwargs['measure']
if measure(enew) <= kwargs['ratio']*measure(e):
e = enew
except ValueError:
pass
return e.canonical
Eq = Equality
class Unequality(Relational):
"""An unequal relation between two objects.
Represents that two objects are not equal. If they can be shown to be
definitively equal, this will reduce to False; if definitively unequal,
this will reduce to True. Otherwise, the relation is maintained as an
Unequality object.
Examples
========
>>> from sympy import Ne
>>> from sympy.abc import x, y
>>> Ne(y, x+x**2)
Ne(y, x**2 + x)
See Also
========
Equality
Notes
=====
This class is not the same as the != operator. The != operator tests
for exact structural equality between two expressions; this class
compares expressions mathematically.
This class is effectively the inverse of Equality. As such, it uses the
same algorithms, including any available `_eval_Eq` methods.
"""
rel_op = '!='
__slots__ = []
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_evaluate[0])
if evaluate:
is_equal = Equality(lhs, rhs)
if isinstance(is_equal, BooleanAtom):
return is_equal.negated
return Relational.__new__(cls, lhs, rhs, **options)
@classmethod
def _eval_relation(cls, lhs, rhs):
return _sympify(lhs != rhs)
@property
def binary_symbols(self):
if S.true in self.args or S.false in self.args:
if self.lhs.is_Symbol:
return set([self.lhs])
elif self.rhs.is_Symbol:
return set([self.rhs])
return set()
def _eval_simplify(self, **kwargs):
# simplify as an equality
eq = Equality(*self.args)._eval_simplify(**kwargs)
if isinstance(eq, Equality):
# send back Ne with the new args
return self.func(*eq.args)
return eq.negated # result of Ne is the negated Eq
Ne = Unequality
class _Inequality(Relational):
"""Internal base class for all *Than types.
Each subclass must implement _eval_relation to provide the method for
comparing two real numbers.
"""
__slots__ = []
def __new__(cls, lhs, rhs, **options):
lhs = _sympify(lhs)
rhs = _sympify(rhs)
evaluate = options.pop('evaluate', global_evaluate[0])
if evaluate:
# First we invoke the appropriate inequality method of `lhs`
# (e.g., `lhs.__lt__`). That method will try to reduce to
# boolean or raise an exception. It may keep calling
# superclasses until it reaches `Expr` (e.g., `Expr.__lt__`).
# In some cases, `Expr` will just invoke us again (if neither it
# nor a subclass was able to reduce to boolean or raise an
# exception). In that case, it must call us with
# `evaluate=False` to prevent infinite recursion.
r = cls._eval_relation(lhs, rhs)
if r is not None:
return r
# Note: not sure r could be None, perhaps we never take this
# path? In principle, could use this to shortcut out if a
# class realizes the inequality cannot be evaluated further.
# make a "non-evaluated" Expr for the inequality
return Relational.__new__(cls, lhs, rhs, **options)
class _Greater(_Inequality):
"""Not intended for general use
_Greater is only used so that GreaterThan and StrictGreaterThan may
subclass it for the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[0]
@property
def lts(self):
return self._args[1]
class _Less(_Inequality):
"""Not intended for general use.
_Less is only used so that LessThan and StrictLessThan may subclass it for
the .gts and .lts properties.
"""
__slots__ = ()
@property
def gts(self):
return self._args[1]
@property
def lts(self):
return self._args[0]
class GreaterThan(_Greater):
"""Class representations of inequalities.
Extended Summary
================
The ``*Than`` classes represent inequal relationships, where the left-hand
side is generally bigger or smaller than the right-hand side. For example,
the GreaterThan class represents an inequal relationship where the
left-hand side is at least as big as the right side, if not bigger. In
mathematical notation:
lhs >= rhs
In total, there are four ``*Than`` classes, to represent the four
inequalities:
+-----------------+--------+
|Class Name | Symbol |
+=================+========+
|GreaterThan | (>=) |
+-----------------+--------+
|LessThan | (<=) |
+-----------------+--------+
|StrictGreaterThan| (>) |
+-----------------+--------+
|StrictLessThan | (<) |
+-----------------+--------+
All classes take two arguments, lhs and rhs.
+----------------------------+-----------------+
|Signature Example | Math equivalent |
+============================+=================+
|GreaterThan(lhs, rhs) | lhs >= rhs |
+----------------------------+-----------------+
|LessThan(lhs, rhs) | lhs <= rhs |
+----------------------------+-----------------+
|StrictGreaterThan(lhs, rhs) | lhs > rhs |
+----------------------------+-----------------+
|StrictLessThan(lhs, rhs) | lhs < rhs |
+----------------------------+-----------------+
In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality
objects also have the .lts and .gts properties, which represent the "less
than side" and "greater than side" of the operator. Use of .lts and .gts
in an algorithm rather than .lhs and .rhs as an assumption of inequality
direction will make more explicit the intent of a certain section of code,
and will make it similarly more robust to client code changes:
>>> from sympy import GreaterThan, StrictGreaterThan
>>> from sympy import LessThan, StrictLessThan
>>> from sympy import And, Ge, Gt, Le, Lt, Rel, S
>>> from sympy.abc import x, y, z
>>> from sympy.core.relational import Relational
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts)
'x >= 1 is the same as 1 <= x'
Examples
========
One generally does not instantiate these classes directly, but uses various
convenience methods:
>>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers
... print(f(x, 2))
x >= 2
x > 2
x <= 2
x < 2
Another option is to use the Python inequality operators (>=, >, <=, <)
directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts,
is that one can write a more "mathematical looking" statement rather than
littering the math with oddball function calls. However there are certain
(minor) caveats of which to be aware (search for 'gotcha', below).
>>> x >= 2
x >= 2
>>> _ == Ge(x, 2)
True
However, it is also perfectly valid to instantiate a ``*Than`` class less
succinctly and less conveniently:
>>> Rel(x, 1, ">")
x > 1
>>> Relational(x, 1, ">")
x > 1
>>> StrictGreaterThan(x, 1)
x > 1
>>> GreaterThan(x, 1)
x >= 1
>>> LessThan(x, 1)
x <= 1
>>> StrictLessThan(x, 1)
x < 1
Notes
=====
There are a couple of "gotchas" to be aware of when using Python's
operators.
The first is that what your write is not always what you get:
>>> 1 < x
x > 1
Due to the order that Python parses a statement, it may
not immediately find two objects comparable. When "1 < x"
is evaluated, Python recognizes that the number 1 is a native
number and that x is *not*. Because a native Python number does
not know how to compare itself with a SymPy object
Python will try the reflective operation, "x > 1" and that is the
form that gets evaluated, hence returned.
If the order of the statement is important (for visual output to
the console, perhaps), one can work around this annoyance in a
couple ways:
(1) "sympify" the literal before comparison
>>> S(1) < x
1 < x
(2) use one of the wrappers or less succinct methods described
above
>>> Lt(1, x)
1 < x
>>> Relational(1, x, "<")
1 < x
The second gotcha involves writing equality tests between relationals
when one or both sides of the test involve a literal relational:
>>> e = x < 1; e
x < 1
>>> e == e # neither side is a literal
True
>>> e == x < 1 # expecting True, too
False
>>> e != x < 1 # expecting False
x < 1
>>> x < 1 != x < 1 # expecting False or the same thing as before
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
The solution for this case is to wrap literal relationals in
parentheses:
>>> e == (x < 1)
True
>>> e != (x < 1)
False
>>> (x < 1) != (x < 1)
False
The third gotcha involves chained inequalities not involving
'==' or '!='. Occasionally, one may be tempted to write:
>>> e = x < y < z
Traceback (most recent call last):
...
TypeError: symbolic boolean expression has no truth value.
Due to an implementation detail or decision of Python [1]_,
there is no way for SymPy to create a chained inequality with
that syntax so one must use And:
>>> e = And(x < y, y < z)
>>> type( e )
And
>>> e
(x < y) & (y < z)
Although this can also be done with the '&' operator, it cannot
be done with the 'and' operarator:
>>> (x < y) & (y < z)
(x < y) & (y < z)
>>> (x < y) and (y < z)
Traceback (most recent call last):
...
TypeError: cannot determine truth value of Relational
.. [1] This implementation detail is that Python provides no reliable
method to determine that a chained inequality is being built.
Chained comparison operators are evaluated pairwise, using "and"
logic (see
http://docs.python.org/2/reference/expressions.html#notin). This
is done in an efficient way, so that each object being compared
is only evaluated once and the comparison can short-circuit. For
example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2
> 3)``. The ``and`` operator coerces each side into a bool,
returning the object itself when it short-circuits. The bool of
the --Than operators will raise TypeError on purpose, because
SymPy cannot determine the mathematical ordering of symbolic
expressions. Thus, if we were to compute ``x > y > z``, with
``x``, ``y``, and ``z`` being Symbols, Python converts the
statement (roughly) into these steps:
(1) x > y > z
(2) (x > y) and (y > z)
(3) (GreaterThanObject) and (y > z)
(4) (GreaterThanObject.__nonzero__()) and (y > z)
(5) TypeError
Because of the "and" added at step 2, the statement gets turned into a
weak ternary statement, and the first object's __nonzero__ method will
raise TypeError. Thus, creating a chained inequality is not possible.
In Python, there is no way to override the ``and`` operator, or to
control how it short circuits, so it is impossible to make something
like ``x > y > z`` work. There was a PEP to change this,
:pep:`335`, but it was officially closed in March, 2012.
"""
__slots__ = ()
rel_op = '>='
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__ge__(rhs))
Ge = GreaterThan
class LessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<='
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__le__(rhs))
Le = LessThan
class StrictGreaterThan(_Greater):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '>'
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__gt__(rhs))
Gt = StrictGreaterThan
class StrictLessThan(_Less):
__doc__ = GreaterThan.__doc__
__slots__ = ()
rel_op = '<'
@classmethod
def _eval_relation(cls, lhs, rhs):
# We don't use the op symbol here: workaround issue #7951
return _sympify(lhs.__lt__(rhs))
Lt = StrictLessThan
# A class-specific (not object-specific) data item used for a minor speedup.
# It is defined here, rather than directly in the class, because the classes
# that it references have not been defined until now (e.g. StrictLessThan).
Relational.ValidRelationOperator = {
None: Equality,
'==': Equality,
'eq': Equality,
'!=': Unequality,
'<>': Unequality,
'ne': Unequality,
'>=': GreaterThan,
'ge': GreaterThan,
'<=': LessThan,
'le': LessThan,
'>': StrictGreaterThan,
'gt': StrictGreaterThan,
'<': StrictLessThan,
'lt': StrictLessThan,
}
|
e6175134840e2b03eff9f290718b3086ccf9bb784d82fd19c915f6f5612ad9ee | from __future__ import absolute_import, print_function, division
import numbers
import decimal
import fractions
import math
import re as regex
from .containers import Tuple
from .sympify import converter, sympify, _sympify, SympifyError, _convert_numpy_types
from .singleton import S, Singleton
from .expr import Expr, AtomicExpr
from .evalf import pure_complex
from .decorators import _sympifyit
from .cache import cacheit, clear_cache
from .logic import fuzzy_not
from sympy.core.compatibility import (
as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY,
SYMPY_INTS, int_info)
from sympy.core.cache import lru_cache
import mpmath
import mpmath.libmp as mlib
from mpmath.libmp import bitcount
from mpmath.libmp.backend import MPZ
from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed
from mpmath.ctx_mp import mpnumeric
from mpmath.libmp.libmpf import (
finf as _mpf_inf, fninf as _mpf_ninf,
fnan as _mpf_nan, fzero, _normalize as mpf_normalize,
prec_to_dps, fone, fnone)
from sympy.utilities.misc import debug, filldedent
from .evaluate import global_evaluate
from sympy.utilities.exceptions import SymPyDeprecationWarning
rnd = mlib.round_nearest
_LOG2 = math.log(2)
def comp(z1, z2, tol=None):
"""Return a bool indicating whether the error between z1 and z2
is <= tol.
Examples
========
If ``tol`` is None then True will be returned if
``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the
decimal precision of each value.
>>> from sympy.core.numbers import comp, pi
>>> pi4 = pi.n(4); pi4
3.142
>>> comp(_, 3.142)
True
>>> comp(pi4, 3.141)
False
>>> comp(pi4, 3.143)
False
A comparison of strings will be made
if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''.
>>> comp(pi4, 3.1415)
True
>>> comp(pi4, 3.1415, '')
False
When ``tol`` is provided and ``z2`` is non-zero and
``|z1| > 1`` the error is normalized by ``|z1|``:
>>> abs(pi4 - 3.14)/pi4
0.000509791731426756
>>> comp(pi4, 3.14, .001) # difference less than 0.1%
True
>>> comp(pi4, 3.14, .0005) # difference less than 0.1%
False
When ``|z1| <= 1`` the absolute error is used:
>>> 1/pi4
0.3183
>>> abs(1/pi4 - 0.3183)/(1/pi4)
3.07371499106316e-5
>>> abs(1/pi4 - 0.3183)
9.78393554684764e-6
>>> comp(1/pi4, 0.3183, 1e-5)
True
To see if the absolute error between ``z1`` and ``z2`` is less
than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)``
or ``comp(z1 - z2, tol=tol)``:
>>> abs(pi4 - 3.14)
0.00160156249999988
>>> comp(pi4 - 3.14, 0, .002)
True
>>> comp(pi4 - 3.14, 0, .001)
False
"""
if type(z2) is str:
if not pure_complex(z1, or_real=True):
raise ValueError('when z2 is a str z1 must be a Number')
return str(z1) == z2
if not z1:
z1, z2 = z2, z1
if not z1:
return True
if not tol:
a, b = z1, z2
if tol == '':
return str(a) == str(b)
if tol is None:
a, b = sympify(a), sympify(b)
if not all(i.is_number for i in (a, b)):
raise ValueError('expecting 2 numbers')
fa = a.atoms(Float)
fb = b.atoms(Float)
if not fa and not fb:
# no floats -- compare exactly
return a == b
# get a to be pure_complex
for do in range(2):
ca = pure_complex(a, or_real=True)
if not ca:
if fa:
a = a.n(prec_to_dps(min([i._prec for i in fa])))
ca = pure_complex(a, or_real=True)
break
else:
fa, fb = fb, fa
a, b = b, a
cb = pure_complex(b)
if not cb and fb:
b = b.n(prec_to_dps(min([i._prec for i in fb])))
cb = pure_complex(b, or_real=True)
if ca and cb and (ca[1] or cb[1]):
return all(comp(i, j) for i, j in zip(ca, cb))
tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec)))
return int(abs(a - b)*tol) <= 5
diff = abs(z1 - z2)
az1 = abs(z1)
if z2 and az1 > 1:
return diff/az1 <= tol
else:
return diff <= tol
def mpf_norm(mpf, prec):
"""Return the mpf tuple normalized appropriately for the indicated
precision after doing a check to see if zero should be returned or
not when the mantissa is 0. ``mpf_normlize`` always assumes that this
is zero, but it may not be since the mantissa for mpf's values "+inf",
"-inf" and "nan" have a mantissa of zero, too.
Note: this is not intended to validate a given mpf tuple, so sending
mpf tuples that were not created by mpmath may produce bad results. This
is only a wrapper to ``mpf_normalize`` which provides the check for non-
zero mpfs that have a 0 for the mantissa.
"""
sign, man, expt, bc = mpf
if not man:
# hack for mpf_normalize which does not do this;
# it assumes that if man is zero the result is 0
# (see issue 6639)
if not bc:
return fzero
else:
# don't change anything; this should already
# be a well formed mpf tuple
return mpf
# Necessary if mpmath is using the gmpy backend
from mpmath.libmp.backend import MPZ
rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd)
return rv
# TODO: we should use the warnings module
_errdict = {"divide": False}
def seterr(divide=False):
"""
Should sympy raise an exception on 0/0 or return a nan?
divide == True .... raise an exception
divide == False ... return nan
"""
if _errdict["divide"] != divide:
clear_cache()
_errdict["divide"] = divide
def _as_integer_ratio(p):
neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_)
p = [1, -1][neg_pow % 2]*man
if expt < 0:
q = 2**-expt
else:
q = 1
p *= 2**expt
return int(p), int(q)
def _decimal_to_Rational_prec(dec):
"""Convert an ordinary decimal instance to a Rational."""
if not dec.is_finite():
raise TypeError("dec must be finite, got %s." % dec)
s, d, e = dec.as_tuple()
prec = len(d)
if e >= 0: # it's an integer
rv = Integer(int(dec))
else:
s = (-1)**s
d = sum([di*10**i for i, di in enumerate(reversed(d))])
rv = Rational(s*d, 10**-e)
return rv, prec
_floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))")
def _literal_float(f):
"""Return True if n starts like a floating point number."""
return bool(_floatpat.match(f))
# (a,b) -> gcd(a,b)
# TODO caching with decorator, but not to degrade performance
@lru_cache(1024)
def igcd(*args):
"""Computes nonnegative integer greatest common divisor.
The algorithm is based on the well known Euclid's algorithm. To
improve speed, igcd() has its own caching mechanism implemented.
Examples
========
>>> from sympy.core.numbers import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
"""
if len(args) < 2:
raise TypeError(
'igcd() takes at least 2 arguments (%s given)' % len(args))
args_temp = [abs(as_int(i)) for i in args]
if 1 in args_temp:
return 1
a = args_temp.pop()
for b in args_temp:
a = igcd2(a, b) if b else a
return a
try:
from math import gcd as igcd2
except ImportError:
def igcd2(a, b):
"""Compute gcd of two Python integers a and b."""
if (a.bit_length() > BIGBITS and
b.bit_length() > BIGBITS):
return igcd_lehmer(a, b)
a, b = abs(a), abs(b)
while b:
a, b = b, a % b
return a
# Use Lehmer's algorithm only for very large numbers.
# The limit could be different on Python 2.7 and 3.x.
# If so, then this could be defined in compatibility.py.
BIGBITS = 5000
def igcd_lehmer(a, b):
"""Computes greatest common divisor of two integers.
Euclid's algorithm for the computation of the greatest
common divisor gcd(a, b) of two (positive) integers
a and b is based on the division identity
a = q*b + r,
where the quotient q and the remainder r are integers
and 0 <= r < b. Then each common divisor of a and b
divides r, and it follows that gcd(a, b) == gcd(b, r).
The algorithm works by constructing the sequence
r0, r1, r2, ..., where r0 = a, r1 = b, and each rn
is the remainder from the division of the two preceding
elements.
In Python, q = a // b and r = a % b are obtained by the
floor division and the remainder operations, respectively.
These are the most expensive arithmetic operations, especially
for large a and b.
Lehmer's algorithm is based on the observation that the quotients
qn = r(n-1) // rn are in general small integers even
when a and b are very large. Hence the quotients can be
usually determined from a relatively small number of most
significant bits.
The efficiency of the algorithm is further enhanced by not
computing each long remainder in Euclid's sequence. The remainders
are linear combinations of a and b with integer coefficients
derived from the quotients. The coefficients can be computed
as far as the quotients can be determined from the chosen
most significant parts of a and b. Only then a new pair of
consecutive remainders is computed and the algorithm starts
anew with this pair.
References
==========
.. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
"""
a, b = abs(as_int(a)), abs(as_int(b))
if a < b:
a, b = b, a
# The algorithm works by using one or two digit division
# whenever possible. The outer loop will replace the
# pair (a, b) with a pair of shorter consecutive elements
# of the Euclidean gcd sequence until a and b
# fit into two Python (long) int digits.
nbits = 2*int_info.bits_per_digit
while a.bit_length() > nbits and b != 0:
# Quotients are mostly small integers that can
# be determined from most significant bits.
n = a.bit_length() - nbits
x, y = int(a >> n), int(b >> n) # most significant bits
# Elements of the Euclidean gcd sequence are linear
# combinations of a and b with integer coefficients.
# Compute the coefficients of consecutive pairs
# a' = A*a + B*b, b' = C*a + D*b
# using small integer arithmetic as far as possible.
A, B, C, D = 1, 0, 0, 1 # initial values
while True:
# The coefficients alternate in sign while looping.
# The inner loop combines two steps to keep track
# of the signs.
# At this point we have
# A > 0, B <= 0, C <= 0, D > 0,
# x' = x + B <= x < x" = x + A,
# y' = y + C <= y < y" = y + D,
# and
# x'*N <= a' < x"*N, y'*N <= b' < y"*N,
# where N = 2**n.
# Now, if y' > 0, and x"//y' and x'//y" agree,
# then their common value is equal to q = a'//b'.
# In addition,
# x'%y" = x' - q*y" < x" - q*y' = x"%y',
# and
# (x'%y")*N < a'%b' < (x"%y')*N.
# On the other hand, we also have x//y == q,
# and therefore
# x'%y" = x + B - q*(y + D) = x%y + B',
# x"%y' = x + A - q*(y + C) = x%y + A',
# where
# B' = B - q*D < 0, A' = A - q*C > 0.
if y + C <= 0:
break
q = (x + A) // (y + C)
# Now x'//y" <= q, and equality holds if
# x' - q*y" = (x - q*y) + (B - q*D) >= 0.
# This is a minor optimization to avoid division.
x_qy, B_qD = x - q*y, B - q*D
if x_qy + B_qD < 0:
break
# Next step in the Euclidean sequence.
x, y = y, x_qy
A, B, C, D = C, D, A - q*C, B_qD
# At this point the signs of the coefficients
# change and their roles are interchanged.
# A <= 0, B > 0, C > 0, D < 0,
# x' = x + A <= x < x" = x + B,
# y' = y + D < y < y" = y + C.
if y + D <= 0:
break
q = (x + B) // (y + D)
x_qy, A_qC = x - q*y, A - q*C
if x_qy + A_qC < 0:
break
x, y = y, x_qy
A, B, C, D = C, D, A_qC, B - q*D
# Now the conditions on top of the loop
# are again satisfied.
# A > 0, B < 0, C < 0, D > 0.
if B == 0:
# This can only happen when y == 0 in the beginning
# and the inner loop does nothing.
# Long division is forced.
a, b = b, a % b
continue
# Compute new long arguments using the coefficients.
a, b = A*a + B*b, C*a + D*b
# Small divisors. Finish with the standard algorithm.
while b:
a, b = b, a % b
return a
def ilcm(*args):
"""Computes integer least common multiple.
Examples
========
>>> from sympy.core.numbers import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
"""
if len(args) < 2:
raise TypeError(
'ilcm() takes at least 2 arguments (%s given)' % len(args))
if 0 in args:
return 0
a = args[0]
for b in args[1:]:
a = a // igcd(a, b) * b # since gcd(a,b) | a
return a
def igcdex(a, b):
"""Returns x, y, g such that g = x*a + y*b = gcd(a, b).
>>> from sympy.core.numbers import igcdex
>>> igcdex(2, 3)
(-1, 1, 1)
>>> igcdex(10, 12)
(-1, 1, 2)
>>> x, y, g = igcdex(100, 2004)
>>> x, y, g
(-20, 1, 4)
>>> x*100 + y*2004
4
"""
if (not a) and (not b):
return (0, 1, 0)
if not a:
return (0, b//abs(b), abs(b))
if not b:
return (a//abs(a), 0, abs(a))
if a < 0:
a, x_sign = -a, -1
else:
x_sign = 1
if b < 0:
b, y_sign = -b, -1
else:
y_sign = 1
x, y, r, s = 1, 0, 0, 1
while b:
(c, q) = (a % b, a // b)
(a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s)
return (x*x_sign, y*y_sign, a)
def mod_inverse(a, m):
"""
Return the number c such that, (a * c) = 1 (mod m)
where c has the same sign as m. If no such value exists,
a ValueError is raised.
Examples
========
>>> from sympy import S
>>> from sympy.core.numbers import mod_inverse
Suppose we wish to find multiplicative inverse x of
3 modulo 11. This is the same as finding x such
that 3 * x = 1 (mod 11). One value of x that satisfies
this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11).
This is the value returned by mod_inverse:
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
When there is a common factor between the numerators of
``a`` and ``m`` the inverse does not exist:
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
>>> mod_inverse(S(2)/7, S(5)/2)
7/2
References
==========
- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
c = None
try:
a, m = as_int(a), as_int(m)
if m != 1 and m != -1:
x, y, g = igcdex(a, m)
if g == 1:
c = x % m
except ValueError:
a, m = sympify(a), sympify(m)
if not (a.is_number and m.is_number):
raise TypeError(filldedent('''
Expected numbers for arguments; symbolic `mod_inverse`
is not implemented
but symbolic expressions can be handled with the
similar function,
sympy.polys.polytools.invert'''))
big = (m > 1)
if not (big is S.true or big is S.false):
raise ValueError('m > 1 did not evaluate; try to simplify %s' % m)
elif big:
c = 1/a
if c is None:
raise ValueError('inverse of %s (mod %s) does not exist' % (a, m))
return c
class Number(AtomicExpr):
"""Represents atomic numbers in SymPy.
Floating point numbers are represented by the Float class.
Rational numbers (of any size) are represented by the Rational class.
Integer numbers (of any size) are represented by the Integer class.
Float and Rational are subclasses of Number; Integer is a subclass
of Rational.
For example, ``2/3`` is represented as ``Rational(2, 3)`` which is
a different object from the floating point number obtained with
Python division ``2/3``. Even for numbers that are exactly
represented in binary, there is a difference between how two forms,
such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy.
The rational form is to be preferred in symbolic computations.
Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or
complex numbers ``3 + 4*I``, are not instances of Number class as
they are not atomic.
See Also
========
Float, Integer, Rational
"""
is_commutative = True
is_number = True
is_Number = True
__slots__ = []
# Used to make max(x._prec, y._prec) return x._prec when only x is a float
_prec = -1
def __new__(cls, *obj):
if len(obj) == 1:
obj = obj[0]
if isinstance(obj, Number):
return obj
if isinstance(obj, SYMPY_INTS):
return Integer(obj)
if isinstance(obj, tuple) and len(obj) == 2:
return Rational(*obj)
if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)):
return Float(obj)
if isinstance(obj, string_types):
_obj = obj.lower() # float('INF') == float('inf')
if _obj == 'nan':
return S.NaN
elif _obj == 'inf':
return S.Infinity
elif _obj == '+inf':
return S.Infinity
elif _obj == '-inf':
return S.NegativeInfinity
val = sympify(obj)
if isinstance(val, Number):
return val
else:
raise ValueError('String "%s" does not denote a Number' % obj)
msg = "expected str|int|long|float|Decimal|Number object but got %r"
raise TypeError(msg % type(obj).__name__)
def invert(self, other, *gens, **args):
from sympy.polys.polytools import invert
if getattr(other, 'is_number', True):
return mod_inverse(self, other)
return invert(self, other, *gens, **args)
def __divmod__(self, other):
from .containers import Tuple
from sympy.functions.elementary.complexes import sign
try:
other = Number(other)
if self.is_infinite or S.NaN in (self, other):
return (S.NaN, S.NaN)
except TypeError:
return NotImplemented
if not other:
raise ZeroDivisionError('modulo by zero')
if self.is_Integer and other.is_Integer:
return Tuple(*divmod(self.p, other.p))
elif isinstance(other, Float):
rat = self/Rational(other)
else:
rat = self/other
if other.is_finite:
w = int(rat) if rat > 0 else int(rat) - 1
r = self - other*w
else:
w = 0 if not self or (sign(self) == sign(other)) else -1
r = other if w else self
return Tuple(w, r)
def __rdivmod__(self, other):
try:
other = Number(other)
except TypeError:
return NotImplemented
return divmod(other, self)
def _as_mpf_val(self, prec):
"""Evaluation of mpf tuple accurate to at least prec bits."""
raise NotImplementedError('%s needs ._as_mpf_val() method' %
(self.__class__.__name__))
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def _as_mpf_op(self, prec):
prec = max(prec, self._prec)
return self._as_mpf_val(prec), prec
def __float__(self):
return mlib.to_float(self._as_mpf_val(53))
def floor(self):
raise NotImplementedError('%s needs .floor() method' %
(self.__class__.__name__))
def ceiling(self):
raise NotImplementedError('%s needs .ceiling() method' %
(self.__class__.__name__))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def _eval_conjugate(self):
return self
def _eval_order(self, *symbols):
from sympy import Order
# Order(5, x, y) -> Order(1,x,y)
return Order(S.One, *symbols)
def _eval_subs(self, old, new):
if old == -self:
return -new
return self # there is no other possibility
def _eval_is_finite(self):
return True
@classmethod
def class_key(cls):
return 1, 0, 'Number'
@cacheit
def sort_key(self, order=None):
return self.class_key(), (0, ()), (), self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.Infinity
elif other is S.NegativeInfinity:
return S.NegativeInfinity
return AtomicExpr.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
return S.Infinity
return AtomicExpr.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.Infinity
else:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.NegativeInfinity
else:
return S.Infinity
elif isinstance(other, Tuple):
return NotImplemented
return AtomicExpr.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NaN:
return S.NaN
elif other is S.Infinity or other is S.NegativeInfinity:
return S.Zero
return AtomicExpr.__div__(self, other)
__truediv__ = __div__
def __eq__(self, other):
raise NotImplementedError('%s needs .__eq__() method' %
(self.__class__.__name__))
def __ne__(self, other):
raise NotImplementedError('%s needs .__ne__() method' %
(self.__class__.__name__))
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
raise NotImplementedError('%s needs .__lt__() method' %
(self.__class__.__name__))
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
raise NotImplementedError('%s needs .__le__() method' %
(self.__class__.__name__))
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
return _sympify(other).__lt__(self)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
return _sympify(other).__le__(self)
def __hash__(self):
return super(Number, self).__hash__()
def is_constant(self, *wrt, **flags):
return True
def as_coeff_mul(self, *deps, **kwargs):
# a -> c*t
if self.is_Rational or not kwargs.pop('rational', True):
return self, tuple()
elif self.is_negative:
return S.NegativeOne, (-self,)
return S.One, (self,)
def as_coeff_add(self, *deps):
# a -> c + t
if self.is_Rational:
return self, tuple()
return S.Zero, (self,)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
if rational and not self.is_Rational:
return S.One, self
return (self, S.One) if self else (S.One, self)
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
if not rational:
return self, S.Zero
return S.Zero, self
def gcd(self, other):
"""Compute GCD of `self` and `other`. """
from sympy.polys import gcd
return gcd(self, other)
def lcm(self, other):
"""Compute LCM of `self` and `other`. """
from sympy.polys import lcm
return lcm(self, other)
def cofactors(self, other):
"""Compute GCD and cofactors of `self` and `other`. """
from sympy.polys import cofactors
return cofactors(self, other)
class Float(Number):
"""Represent a floating-point number of arbitrary precision.
Examples
========
>>> from sympy import Float
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.00000000000000
Creating Floats from strings (and Python ``int`` and ``long``
types) will give a minimum precision of 15 digits, but the
precision will automatically increase to capture all digits
entered.
>>> Float(1)
1.00000000000000
>>> Float(10**20)
100000000000000000000.
>>> Float('1e20')
100000000000000000000.
However, *floating-point* numbers (Python ``float`` types) retain
only 15 digits of precision:
>>> Float(1e20)
1.00000000000000e+20
>>> Float(1.23456789123456789)
1.23456789123457
It may be preferable to enter high-precision decimal numbers
as strings:
Float('1.23456789123456789')
1.23456789123456789
The desired number of digits can also be specified:
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
Float can automatically count significant figures if a null string
is sent for the precision; spaces or underscores are also allowed. (Auto-
counting is only allowed for strings, ints and longs).
>>> Float('123 456 789.123_456', '')
123456789.123456
>>> Float('12e-3', '')
0.012
>>> Float(3, '')
3.
If a number is written in scientific notation, only the digits before the
exponent are considered significant if a decimal appears, otherwise the
"e" signifies only how to move the decimal:
>>> Float('60.e2', '') # 2 digits significant
6.0e+3
>>> Float('60e2', '') # 4 digits significant
6000.
>>> Float('600e-2', '') # 3 digits significant
6.00
Notes
=====
Floats are inexact by their nature unless their value is a binary-exact
value.
>>> approx, exact = Float(.1, 1), Float(.125, 1)
For calculation purposes, evalf needs to be able to change the precision
but this will not increase the accuracy of the inexact value. The
following is the most accurate 5-digit approximation of a value of 0.1
that had only 1 digit of precision:
>>> approx.evalf(5)
0.099609
By contrast, 0.125 is exact in binary (as it is in base 10) and so it
can be passed to Float or evalf to obtain an arbitrary precision with
matching accuracy:
>>> Float(exact, 5)
0.12500
>>> exact.evalf(20)
0.12500000000000000000
Trying to make a high-precision Float from a float is not disallowed,
but one must keep in mind that the *underlying float* (not the apparent
decimal value) is being obtained with high precision. For example, 0.3
does not have a finite binary representation. The closest rational is
the fraction 5404319552844595/2**54. So if you try to obtain a Float of
0.3 to 20 digits of precision you will not see the same thing as 0.3
followed by 19 zeros:
>>> Float(0.3, 20)
0.29999999999999998890
If you want a 20-digit value of the decimal 0.3 (not the floating point
approximation of 0.3) you should send the 0.3 as a string. The underlying
representation is still binary but a higher precision than Python's float
is used:
>>> Float('0.3', 20)
0.30000000000000000000
Although you can increase the precision of an existing Float using Float
it will not increase the accuracy -- the underlying value is not changed:
>>> def show(f): # binary rep of Float
... from sympy import Mul, Pow
... s, m, e, b = f._mpf_
... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
... print('%s at prec=%s' % (v, f._prec))
...
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
The same thing happens when evalf is used on a Float:
>>> show(t.evalf(20))
4915/2**14 at prec=70
>>> show(t.evalf(2))
307/2**10 at prec=10
Finally, Floats can be instantiated with an mpf tuple (n, c, p) to
produce the number (-1)**n*c*2**p:
>>> n, c, p = 1, 5, 0
>>> (-1)**n*c*2**p
-5
>>> Float((1, 5, 0))
-5.00000000000000
An actual mpf tuple also contains the number of bits in c as the last
element of the tuple:
>>> _._mpf_
(1, 5, 0, 3)
This is not needed for instantiation and is not the same thing as the
precision. The mpf tuple and the precision are two separate quantities
that Float tracks.
In SymPy, a Float is a number that can be computed with arbitrary
precision. Although floating point 'inf' and 'nan' are not such
numbers, Float can create these numbers:
>>> Float('-inf')
-oo
>>> _.is_Float
False
"""
__slots__ = ['_mpf_', '_prec']
# A Float represents many real numbers,
# both rational and irrational.
is_rational = None
is_irrational = None
is_number = True
is_real = True
is_extended_real = True
is_Float = True
def __new__(cls, num, dps=None, prec=None, precision=None):
if prec is not None:
SymPyDeprecationWarning(
feature="Using 'prec=XX' to denote decimal precision",
useinstead="'dps=XX' for decimal precision and 'precision=XX' "\
"for binary precision",
issue=12820,
deprecated_since_version="1.1").warn()
dps = prec
del prec # avoid using this deprecated kwarg
if dps is not None and precision is not None:
raise ValueError('Both decimal and binary precision supplied. '
'Supply only one. ')
if isinstance(num, string_types):
# Float accepts spaces as digit separators
num = num.replace(' ', '').lower()
# in Py 3.6
# underscores are allowed. In anticipation of that, we ignore
# legally placed underscores
if '_' in num:
parts = num.split('_')
if not (all(parts) and
all(parts[i][-1].isdigit()
for i in range(0, len(parts), 2)) and
all(parts[i][0].isdigit()
for i in range(1, len(parts), 2))):
# copy Py 3.6 error
raise ValueError("could not convert string to float: '%s'" % num)
num = ''.join(parts)
if num.startswith('.') and len(num) > 1:
num = '0' + num
elif num.startswith('-.') and len(num) > 2:
num = '-0.' + num[2:]
elif num in ('inf', '+inf'):
return S.Infinity
elif num == '-inf':
return S.NegativeInfinity
elif isinstance(num, float) and num == 0:
num = '0'
elif isinstance(num, float) and num == float('inf'):
return S.Infinity
elif isinstance(num, float) and num == float('-inf'):
return S.NegativeInfinity
elif isinstance(num, float) and num == float('nan'):
return S.NaN
elif isinstance(num, (SYMPY_INTS, Integer)):
num = str(num)
elif num is S.Infinity:
return num
elif num is S.NegativeInfinity:
return num
elif num is S.NaN:
return num
elif type(num).__module__ == 'numpy': # support for numpy datatypes
num = _convert_numpy_types(num)
elif isinstance(num, mpmath.mpf):
if precision is None:
if dps is None:
precision = num.context.prec
num = num._mpf_
if dps is None and precision is None:
dps = 15
if isinstance(num, Float):
return num
if isinstance(num, string_types) and _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
dps = max(15, dps)
precision = mlib.libmpf.dps_to_prec(dps)
elif precision == '' and dps is None or precision is None and dps == '':
if not isinstance(num, string_types):
raise ValueError('The null string can only be used when '
'the number to Float is passed as a string or an integer.')
ok = None
if _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
precision = mlib.libmpf.dps_to_prec(dps)
ok = True
if ok is None:
raise ValueError('string-float not recognized: %s' % num)
# decimal precision(dps) is set and maybe binary precision(precision)
# as well.From here on binary precision is used to compute the Float.
# Hence, if supplied use binary precision else translate from decimal
# precision.
if precision is None or precision == '':
precision = mlib.libmpf.dps_to_prec(dps)
precision = int(precision)
if isinstance(num, float):
_mpf_ = mlib.from_float(num, precision, rnd)
elif isinstance(num, string_types):
_mpf_ = mlib.from_str(num, precision, rnd)
elif isinstance(num, decimal.Decimal):
if num.is_finite():
_mpf_ = mlib.from_str(str(num), precision, rnd)
elif num.is_nan():
return S.NaN
elif num.is_infinite():
if num > 0:
return S.Infinity
return S.NegativeInfinity
else:
raise ValueError("unexpected decimal value %s" % str(num))
elif isinstance(num, tuple) and len(num) in (3, 4):
if type(num[1]) is str:
# it's a hexadecimal (coming from a pickled object)
# assume that it is in standard form
num = list(num)
# If we're loading an object pickled in Python 2 into
# Python 3, we may need to strip a tailing 'L' because
# of a shim for int on Python 3, see issue #13470.
if num[1].endswith('L'):
num[1] = num[1][:-1]
num[1] = MPZ(num[1], 16)
_mpf_ = tuple(num)
else:
if len(num) == 4:
# handle normalization hack
return Float._new(num, precision)
else:
if not all((
num[0] in (0, 1),
num[1] >= 0,
all(type(i) in (long, int) for i in num)
)):
raise ValueError('malformed mpf: %s' % (num,))
# don't compute number or else it may
# over/underflow
return Float._new(
(num[0], num[1], num[2], bitcount(num[1])),
precision)
else:
try:
_mpf_ = num._as_mpf_val(precision)
except (NotImplementedError, AttributeError):
_mpf_ = mpmath.mpf(num, prec=precision)._mpf_
return cls._new(_mpf_, precision, zero=False)
@classmethod
def _new(cls, _mpf_, _prec, zero=True):
# special cases
if zero and _mpf_ == fzero:
return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0
elif _mpf_ == _mpf_nan:
return S.NaN
elif _mpf_ == _mpf_inf:
return S.Infinity
elif _mpf_ == _mpf_ninf:
return S.NegativeInfinity
obj = Expr.__new__(cls)
obj._mpf_ = mpf_norm(_mpf_, _prec)
obj._prec = _prec
return obj
# mpz can't be pickled
def __getnewargs__(self):
return (mlib.to_pickable(self._mpf_),)
def __getstate__(self):
return {'_prec': self._prec}
def _hashable_content(self):
return (self._mpf_, self._prec)
def floor(self):
return Integer(int(mlib.to_int(
mlib.mpf_floor(self._mpf_, self._prec))))
def ceiling(self):
return Integer(int(mlib.to_int(
mlib.mpf_ceil(self._mpf_, self._prec))))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
@property
def num(self):
return mpmath.mpf(self._mpf_)
def _as_mpf_val(self, prec):
rv = mpf_norm(self._mpf_, prec)
if rv != self._mpf_ and self._prec == prec:
debug(self._mpf_, rv)
return rv
def _as_mpf_op(self, prec):
return self._mpf_, max(prec, self._prec)
def _eval_is_finite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return False
return True
def _eval_is_infinite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return True
return False
def _eval_is_integer(self):
return self._mpf_ == fzero
def _eval_is_negative(self):
if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_positive(self):
if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf:
return False
return self.num > 0
def _eval_is_extended_negative(self):
if self._mpf_ == _mpf_ninf:
return True
if self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_extended_positive(self):
if self._mpf_ == _mpf_inf:
return True
if self._mpf_ == _mpf_ninf:
return False
return self.num > 0
def _eval_is_zero(self):
return self._mpf_ == fzero
def __nonzero__(self):
return self._mpf_ != fzero
__bool__ = __nonzero__
def __neg__(self):
return Float._new(mlib.mpf_neg(self._mpf_), self._prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec)
return Number.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
return Number.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and other != 0 and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec)
return Number.__div__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if isinstance(other, Rational) and other.q != 1 and global_evaluate[0]:
# calculate mod with Rationals, *then* round the result
return Float(Rational.__mod__(Rational(self), other),
precision=self._prec)
if isinstance(other, Float) and global_evaluate[0]:
r = self/other
if r == int(r):
return Float(0, precision=max(self._prec, other._prec))
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Float) and global_evaluate[0]:
return other.__mod__(self)
if isinstance(other, Number) and global_evaluate[0]:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
"""
expt is symbolic object but not equal to 0, 1
(-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) ->
-> p**r*(sin(Pi*r) + cos(Pi*r)*I)
"""
if self == 0:
if expt.is_positive:
return S.Zero
if expt.is_negative:
return S.Infinity
if isinstance(expt, Number):
if isinstance(expt, Integer):
prec = self._prec
return Float._new(
mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec)
elif isinstance(expt, Rational) and \
expt.p == 1 and expt.q % 2 and self.is_negative:
return Pow(S.NegativeOne, expt, evaluate=False)*(
-self)._eval_power(expt)
expt, prec = expt._as_mpf_op(self._prec)
mpfself = self._mpf_
try:
y = mpf_pow(mpfself, expt, prec, rnd)
return Float._new(y, prec)
except mlib.ComplexResult:
re, im = mlib.mpc_pow(
(mpfself, fzero), (expt, fzero), prec, rnd)
return Float._new(re, prec) + \
Float._new(im, prec)*S.ImaginaryUnit
def __abs__(self):
return Float._new(mlib.mpf_abs(self._mpf_), self._prec)
def __int__(self):
if self._mpf_ == fzero:
return 0
return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down
__long__ = __int__
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not self:
return not other
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Float:
# comparison is exact
# so Float(.1, 3) != Float(.1, 33)
return self._mpf_ == other._mpf_
if other.is_Rational:
return other.__eq__(self)
if other.is_Number:
# numbers should compare at the same precision;
# all _as_mpf_val routines should be sure to abide
# by the request to change the prec if necessary; if
# they don't, the equality test will fail since it compares
# the mpf tuples
ompf = other._as_mpf_val(self._prec)
return bool(mlib.mpf_eq(self._mpf_, ompf))
return False # Float != non-Number
def __ne__(self, other):
return not self == other
def _Frel(self, other, op):
from sympy.core.evalf import evalf
from sympy.core.numbers import prec_to_dps
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Rational:
# test self*other.q <?> other.p without losing precision
'''
>>> f = Float(.1,2)
>>> i = 1234567890
>>> (f*i)._mpf_
(0, 471, 18, 9)
>>> mlib.mpf_mul(f._mpf_, mlib.from_int(i))
(0, 505555550955, -12, 39)
'''
smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q))
ompf = mlib.from_int(other.p)
return _sympify(bool(op(smpf, ompf)))
elif other.is_Float:
return _sympify(bool(
op(self._mpf_, other._mpf_)))
elif other.is_comparable and other not in (
S.Infinity, S.NegativeInfinity):
other = other.evalf(prec_to_dps(self._prec))
if other._prec > 1:
if other.is_Number:
return _sympify(bool(
op(self._mpf_, other._as_mpf_val(self._prec))))
def __gt__(self, other):
if isinstance(other, NumberSymbol):
return other.__lt__(self)
rv = self._Frel(other, mlib.mpf_gt)
if rv is None:
return Expr.__gt__(self, other)
return rv
def __ge__(self, other):
if isinstance(other, NumberSymbol):
return other.__le__(self)
rv = self._Frel(other, mlib.mpf_ge)
if rv is None:
return Expr.__ge__(self, other)
return rv
def __lt__(self, other):
if isinstance(other, NumberSymbol):
return other.__gt__(self)
rv = self._Frel(other, mlib.mpf_lt)
if rv is None:
return Expr.__lt__(self, other)
return rv
def __le__(self, other):
if isinstance(other, NumberSymbol):
return other.__ge__(self)
rv = self._Frel(other, mlib.mpf_le)
if rv is None:
return Expr.__le__(self, other)
return rv
def __hash__(self):
return super(Float, self).__hash__()
def epsilon_eq(self, other, epsilon="1e-15"):
return abs(self - other) < Float(epsilon)
def _sage_(self):
import sage.all as sage
return sage.RealNumber(str(self))
def __format__(self, format_spec):
return format(decimal.Decimal(str(self)), format_spec)
# Add sympify converters
converter[float] = converter[decimal.Decimal] = Float
# this is here to work nicely in Sage
RealNumber = Float
class Rational(Number):
"""Represents rational numbers (p/q) of any size.
Examples
========
>>> from sympy import Rational, nsimplify, S, pi
>>> Rational(1, 2)
1/2
Rational is unprejudiced in accepting input. If a float is passed, the
underlying value of the binary representation will be returned:
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
If the simpler representation of the float is desired then consider
limiting the denominator to the desired value or convert the float to
a string (which is roughly equivalent to limiting the denominator to
10**12):
>>> Rational(str(.2))
1/5
>>> Rational(.2).limit_denominator(10**12)
1/5
An arbitrarily precise Rational is obtained when a string literal is
passed:
>>> Rational("1.23")
123/100
>>> Rational('1e-2')
1/100
>>> Rational(".1")
1/10
>>> Rational('1e-2/3.2')
1/320
The conversion of other types of strings can be handled by
the sympify() function, and conversion of floats to expressions
or simple fractions can be handled with nsimplify:
>>> S('.[3]') # repeating digits in brackets
1/3
>>> S('3**2/10') # general expressions
9/10
>>> nsimplify(.3) # numbers that have a simple form
3/10
But if the input does not reduce to a literal Rational, an error will
be raised:
>>> Rational(pi)
Traceback (most recent call last):
...
TypeError: invalid input: pi
Low-level
---------
Access numerator and denominator as .p and .q:
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.p
3
>>> r.q
4
Note that p and q return integers (not SymPy Integers) so some care
is needed when using them in expressions:
>>> r.p/r.q
0.75
See Also
========
sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify
"""
is_real = True
is_integer = False
is_rational = True
is_number = True
__slots__ = ['p', 'q']
is_Rational = True
@cacheit
def __new__(cls, p, q=None, gcd=None):
if q is None:
if isinstance(p, Rational):
return p
if isinstance(p, SYMPY_INTS):
pass
else:
if isinstance(p, (float, Float)):
return Rational(*_as_integer_ratio(p))
if not isinstance(p, string_types):
try:
p = sympify(p)
except (SympifyError, SyntaxError):
pass # error will raise below
else:
if p.count('/') > 1:
raise TypeError('invalid input: %s' % p)
p = p.replace(' ', '')
pq = p.rsplit('/', 1)
if len(pq) == 2:
p, q = pq
fp = fractions.Fraction(p)
fq = fractions.Fraction(q)
p = fp/fq
try:
p = fractions.Fraction(p)
except ValueError:
pass # error will raise below
else:
return Rational(p.numerator, p.denominator, 1)
if not isinstance(p, Rational):
raise TypeError('invalid input: %s' % p)
q = 1
gcd = 1
else:
p = Rational(p)
q = Rational(q)
if isinstance(q, Rational):
p *= q.q
q = q.p
if isinstance(p, Rational):
q *= p.q
p = p.p
# p and q are now integers
if q == 0:
if p == 0:
if _errdict["divide"]:
raise ValueError("Indeterminate 0/0")
else:
return S.NaN
return S.ComplexInfinity
if q < 0:
q = -q
p = -p
if not gcd:
gcd = igcd(abs(p), q)
if gcd > 1:
p //= gcd
q //= gcd
if q == 1:
return Integer(p)
if p == 1 and q == 2:
return S.Half
obj = Expr.__new__(cls)
obj.p = p
obj.q = q
return obj
def limit_denominator(self, max_denominator=1000000):
"""Closest Rational to self with denominator at most max_denominator.
>>> from sympy import Rational
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
"""
f = fractions.Fraction(self.p, self.q)
return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator))))
def __getnewargs__(self):
return (self.p, self.q)
def _hashable_content(self):
return (self.p, self.q)
def _eval_is_positive(self):
return self.p > 0
def _eval_is_zero(self):
return self.p == 0
def __neg__(self):
return Rational(-self.p, self.q)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p + self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
#TODO: this can probably be optimized more
return Rational(self.p*other.q + self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return other + self
else:
return Number.__add__(self, other)
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p - self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.p*other.q - self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return -other + self
else:
return Number.__sub__(self, other)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.q*other.p - self.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.q*other.p - self.p*other.q, self.q*other.q)
elif isinstance(other, Float):
return -self + other
else:
return Number.__rsub__(self, other)
return Number.__rsub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(self.p*other.p, self.q, igcd(other.p, self.q))
elif isinstance(other, Rational):
return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p))
elif isinstance(other, Float):
return other*self
else:
return Number.__mul__(self, other)
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
if self.p and other.p == S.Zero:
return S.ComplexInfinity
else:
return Rational(self.p, self.q*other.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return self*(1/other)
else:
return Number.__div__(self, other)
return Number.__div__(self, other)
@_sympifyit('other', NotImplemented)
def __rdiv__(self, other):
if global_evaluate[0]:
if isinstance(other, Integer):
return Rational(other.p*self.q, self.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return other*(1/self)
else:
return Number.__rdiv__(self, other)
return Number.__rdiv__(self, other)
__truediv__ = __div__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if global_evaluate[0]:
if isinstance(other, Rational):
n = (self.p*other.q) // (other.p*self.q)
return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q)
if isinstance(other, Float):
# calculate mod with Rationals, *then* round the answer
return Float(self.__mod__(Rational(other)),
precision=other._prec)
return Number.__mod__(self, other)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Rational):
return Rational.__mod__(other, self)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
if isinstance(expt, Number):
if isinstance(expt, Float):
return self._eval_evalf(expt._prec)**expt
if expt.is_extended_negative:
# (3/4)**-2 -> (4/3)**2
ne = -expt
if (ne is S.One):
return Rational(self.q, self.p)
if self.is_negative:
return S.NegativeOne**expt*Rational(self.q, -self.p)**ne
else:
return Rational(self.q, self.p)**ne
if expt is S.Infinity: # -oo already caught by test for negative
if self.p > self.q:
# (3/2)**oo -> oo
return S.Infinity
if self.p < -self.q:
# (-3/2)**oo -> oo + I*oo
return S.Infinity + S.Infinity*S.ImaginaryUnit
return S.Zero
if isinstance(expt, Integer):
# (4/3)**2 -> 4**2 / 3**2
return Rational(self.p**expt.p, self.q**expt.p, 1)
if isinstance(expt, Rational):
if self.p != 1:
# (4/3)**(5/6) -> 4**(5/6)*3**(-5/6)
return Integer(self.p)**expt*Integer(self.q)**(-expt)
# as the above caught negative self.p, now self is positive
return Integer(self.q)**Rational(
expt.p*(expt.q - 1), expt.q) / \
Integer(self.q)**Integer(expt.p)
if self.is_extended_negative and expt.is_even:
return (-self)**expt
return
def _as_mpf_val(self, prec):
return mlib.from_rational(self.p, self.q, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))
def __abs__(self):
return Rational(abs(self.p), self.q)
def __int__(self):
p, q = self.p, self.q
if p < 0:
return -int(-p//q)
return int(p//q)
__long__ = __int__
def floor(self):
return Integer(self.p // self.q)
def ceiling(self):
return -Integer(-self.p // self.q)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __eq__(self, other):
from sympy.core.power import integer_log
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not isinstance(other, Number):
# S(0) == S.false is False
# S(0) == False is True
return False
if not self:
return not other
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Rational:
# a Rational is always in reduced form so will never be 2/4
# so we can just check equivalence of args
return self.p == other.p and self.q == other.q
if other.is_Float:
# all Floats have a denominator that is a power of 2
# so if self doesn't, it can't be equal to other
if self.q & (self.q - 1):
return False
s, m, t = other._mpf_[:3]
if s:
m = -m
if not t:
# other is an odd integer
if not self.is_Integer or self.is_even:
return False
return m == self.p
if t > 0:
# other is an even integer
if not self.is_Integer:
return False
# does m*2**t == self.p
return self.p and not self.p % m and \
integer_log(self.p//m, 2) == (t, True)
# does non-integer s*m/2**-t = p/q?
if self.is_Integer:
return False
return m == self.p and integer_log(self.q, 2) == (-t, True)
return False
def __ne__(self, other):
return not self == other
def _Rrel(self, other, attr):
# if you want self < other, pass self, other, __gt__
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Number:
op = None
s, o = self, other
if other.is_NumberSymbol:
op = getattr(o, attr)
elif other.is_Float:
op = getattr(o, attr)
elif other.is_Rational:
s, o = Integer(s.p*o.q), Integer(s.q*o.p)
op = getattr(o, attr)
if op:
return op(s)
if o.is_number and o.is_extended_real:
return Integer(s.p), s.q*o
def __gt__(self, other):
rv = self._Rrel(other, '__lt__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__gt__(*rv)
def __ge__(self, other):
rv = self._Rrel(other, '__le__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__ge__(*rv)
def __lt__(self, other):
rv = self._Rrel(other, '__gt__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__lt__(*rv)
def __le__(self, other):
rv = self._Rrel(other, '__ge__')
if rv is None:
rv = self, other
elif not type(rv) is tuple:
return rv
return Expr.__le__(*rv)
def __hash__(self):
return super(Rational, self).__hash__()
def factors(self, limit=None, use_trial=True, use_rho=False,
use_pm1=False, verbose=False, visual=False):
"""A wrapper to factorint which return factors of self that are
smaller than limit (or cheap to compute). Special methods of
factoring are disabled by default so that only trial division is used.
"""
from sympy.ntheory import factorrat
return factorrat(self, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
def numerator(self):
return self.p
def denominator(self):
return self.q
@_sympifyit('other', NotImplemented)
def gcd(self, other):
if isinstance(other, Rational):
if other == S.Zero:
return other
return Rational(
Integer(igcd(self.p, other.p)),
Integer(ilcm(self.q, other.q)))
return Number.gcd(self, other)
@_sympifyit('other', NotImplemented)
def lcm(self, other):
if isinstance(other, Rational):
return Rational(
self.p // igcd(self.p, other.p) * other.p,
igcd(self.q, other.q))
return Number.lcm(self, other)
def as_numer_denom(self):
return Integer(self.p), Integer(self.q)
def _sage_(self):
import sage.all as sage
return sage.Integer(self.p)/sage.Integer(self.q)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import S
>>> (S(-3)/2).as_content_primitive()
(3/2, -1)
See docstring of Expr.as_content_primitive for more examples.
"""
if self:
if self.is_positive:
return self, S.One
return -self, S.NegativeOne
return S.One, self
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return self, S.One
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return self, S.Zero
class Integer(Rational):
"""Represents integer numbers of any size.
Examples
========
>>> from sympy import Integer
>>> Integer(3)
3
If a float or a rational is passed to Integer, the fractional part
will be discarded; the effect is of rounding toward zero.
>>> Integer(3.8)
3
>>> Integer(-3.8)
-3
A string is acceptable input if it can be parsed as an integer:
>>> Integer("9" * 20)
99999999999999999999
It is rarely needed to explicitly instantiate an Integer, because
Python integers are automatically converted to Integer when they
are used in SymPy expressions.
"""
q = 1
is_integer = True
is_number = True
is_Integer = True
__slots__ = ['p']
def _as_mpf_val(self, prec):
return mlib.from_int(self.p, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(self._as_mpf_val(prec))
@cacheit
def __new__(cls, i):
if isinstance(i, string_types):
i = i.replace(' ', '')
# whereas we cannot, in general, make a Rational from an
# arbitrary expression, we can make an Integer unambiguously
# (except when a non-integer expression happens to round to
# an integer). So we proceed by taking int() of the input and
# let the int routines determine whether the expression can
# be made into an int or whether an error should be raised.
try:
ival = int(i)
except TypeError:
raise TypeError(
"Argument of Integer should be of numeric type, got %s." % i)
# We only work with well-behaved integer types. This converts, for
# example, numpy.int32 instances.
if ival == 1:
return S.One
if ival == -1:
return S.NegativeOne
if ival == 0:
return S.Zero
obj = Expr.__new__(cls)
obj.p = ival
return obj
def __getnewargs__(self):
return (self.p,)
# Arithmetic operations are here for efficiency
def __int__(self):
return self.p
__long__ = __int__
def floor(self):
return Integer(self.p)
def ceiling(self):
return Integer(self.p)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __neg__(self):
return Integer(-self.p)
def __abs__(self):
if self.p >= 0:
return self
else:
return Integer(-self.p)
def __divmod__(self, other):
from .containers import Tuple
if isinstance(other, Integer) and global_evaluate[0]:
return Tuple(*(divmod(self.p, other.p)))
else:
return Number.__divmod__(self, other)
def __rdivmod__(self, other):
from .containers import Tuple
if isinstance(other, integer_types) and global_evaluate[0]:
return Tuple(*(divmod(other, self.p)))
else:
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
oname = type(other).__name__
sname = type(self).__name__
raise TypeError(msg % (oname, sname))
return Number.__divmod__(other, self)
# TODO make it decorator + bytecodehacks?
def __add__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p + other)
elif isinstance(other, Integer):
return Integer(self.p + other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q + other.p, other.q, 1)
return Rational.__add__(self, other)
else:
return Add(self, other)
def __radd__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other + self.p)
elif isinstance(other, Rational):
return Rational(other.p + self.p*other.q, other.q, 1)
return Rational.__radd__(self, other)
return Rational.__radd__(self, other)
def __sub__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p - other)
elif isinstance(other, Integer):
return Integer(self.p - other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q - other.p, other.q, 1)
return Rational.__sub__(self, other)
return Rational.__sub__(self, other)
def __rsub__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other - self.p)
elif isinstance(other, Rational):
return Rational(other.p - self.p*other.q, other.q, 1)
return Rational.__rsub__(self, other)
return Rational.__rsub__(self, other)
def __mul__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p*other)
elif isinstance(other, Integer):
return Integer(self.p*other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.p, other.q, igcd(self.p, other.q))
return Rational.__mul__(self, other)
return Rational.__mul__(self, other)
def __rmul__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other*self.p)
elif isinstance(other, Rational):
return Rational(other.p*self.p, other.q, igcd(self.p, other.q))
return Rational.__rmul__(self, other)
return Rational.__rmul__(self, other)
def __mod__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(self.p % other)
elif isinstance(other, Integer):
return Integer(self.p % other.p)
return Rational.__mod__(self, other)
return Rational.__mod__(self, other)
def __rmod__(self, other):
if global_evaluate[0]:
if isinstance(other, integer_types):
return Integer(other % self.p)
elif isinstance(other, Integer):
return Integer(other.p % self.p)
return Rational.__rmod__(self, other)
return Rational.__rmod__(self, other)
def __eq__(self, other):
if isinstance(other, integer_types):
return (self.p == other)
elif isinstance(other, Integer):
return (self.p == other.p)
return Rational.__eq__(self, other)
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p > other.p)
return Rational.__gt__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p < other.p)
return Rational.__lt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p >= other.p)
return Rational.__ge__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p <= other.p)
return Rational.__le__(self, other)
def __hash__(self):
return hash(self.p)
def __index__(self):
return self.p
########################################
def _eval_is_odd(self):
return bool(self.p % 2)
def _eval_power(self, expt):
"""
Tries to do some simplifications on self**expt
Returns None if no further simplifications can be done
When exponent is a fraction (so we have for example a square root),
we try to find a simpler representation by factoring the argument
up to factors of 2**15, e.g.
- sqrt(4) becomes 2
- sqrt(-4) becomes 2*I
- (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7)
Further simplification would require a special call to factorint on
the argument which is not done here for sake of speed.
"""
from sympy.ntheory.factor_ import perfect_power
if expt is S.Infinity:
if self.p > S.One:
return S.Infinity
# cases -1, 0, 1 are done in their respective classes
return S.Infinity + S.ImaginaryUnit*S.Infinity
if expt is S.NegativeInfinity:
return Rational(1, self)**S.Infinity
if not isinstance(expt, Number):
# simplify when expt is even
# (-2)**k --> 2**k
if self.is_negative and expt.is_even:
return (-self)**expt
if isinstance(expt, Float):
# Rational knows how to exponentiate by a Float
return super(Integer, self)._eval_power(expt)
if not isinstance(expt, Rational):
return
if expt is S.Half and self.is_negative:
# we extract I for this special case since everyone is doing so
return S.ImaginaryUnit*Pow(-self, expt)
if expt.is_negative:
# invert base and change sign on exponent
ne = -expt
if self.is_negative:
return S.NegativeOne**expt*Rational(1, -self)**ne
else:
return Rational(1, self.p)**ne
# see if base is a perfect root, sqrt(4) --> 2
x, xexact = integer_nthroot(abs(self.p), expt.q)
if xexact:
# if it's a perfect root we've finished
result = Integer(x**abs(expt.p))
if self.is_negative:
result *= S.NegativeOne**expt
return result
# The following is an algorithm where we collect perfect roots
# from the factors of base.
# if it's not an nth root, it still might be a perfect power
b_pos = int(abs(self.p))
p = perfect_power(b_pos)
if p is not False:
dict = {p[0]: p[1]}
else:
dict = Integer(b_pos).factors(limit=2**15)
# now process the dict of factors
out_int = 1 # integer part
out_rad = 1 # extracted radicals
sqr_int = 1
sqr_gcd = 0
sqr_dict = {}
for prime, exponent in dict.items():
exponent *= expt.p
# remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10)
div_e, div_m = divmod(exponent, expt.q)
if div_e > 0:
out_int *= prime**div_e
if div_m > 0:
# see if the reduced exponent shares a gcd with e.q
# (2**2)**(1/10) -> 2**(1/5)
g = igcd(div_m, expt.q)
if g != 1:
out_rad *= Pow(prime, Rational(div_m//g, expt.q//g))
else:
sqr_dict[prime] = div_m
# identify gcd of remaining powers
for p, ex in sqr_dict.items():
if sqr_gcd == 0:
sqr_gcd = ex
else:
sqr_gcd = igcd(sqr_gcd, ex)
if sqr_gcd == 1:
break
for k, v in sqr_dict.items():
sqr_int *= k**(v//sqr_gcd)
if sqr_int == b_pos and out_int == 1 and out_rad == 1:
result = None
else:
result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q))
if self.is_negative:
result *= Pow(S.NegativeOne, expt)
return result
def _eval_is_prime(self):
from sympy.ntheory import isprime
return isprime(self)
def _eval_is_composite(self):
if self > 1:
return fuzzy_not(self.is_prime)
else:
return False
def as_numer_denom(self):
return self, S.One
@_sympifyit('other', NotImplemented)
def __floordiv__(self, other):
if not isinstance(other, Expr):
return NotImplemented
if isinstance(other, Integer):
return Integer(self.p // other)
return Integer(divmod(self, other)[0])
def __rfloordiv__(self, other):
return Integer(Integer(other).p // self.p)
# Add sympify converters
for i_type in integer_types:
converter[i_type] = Integer
class AlgebraicNumber(Expr):
"""Class for representing algebraic numbers in SymPy. """
__slots__ = ['rep', 'root', 'alias', 'minpoly']
is_AlgebraicNumber = True
is_algebraic = True
is_number = True
def __new__(cls, expr, coeffs=None, alias=None, **args):
"""Construct a new algebraic number. """
from sympy import Poly
from sympy.polys.polyclasses import ANP, DMP
from sympy.polys.numberfields import minimal_polynomial
from sympy.core.symbol import Symbol
expr = sympify(expr)
if isinstance(expr, (tuple, Tuple)):
minpoly, root = expr
if not minpoly.is_Poly:
minpoly = Poly(minpoly)
elif expr.is_AlgebraicNumber:
minpoly, root = expr.minpoly, expr.root
else:
minpoly, root = minimal_polynomial(
expr, args.get('gen'), polys=True), expr
dom = minpoly.get_domain()
if coeffs is not None:
if not isinstance(coeffs, ANP):
rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
scoeffs = Tuple(*coeffs)
else:
rep = DMP.from_list(coeffs.to_list(), 0, dom)
scoeffs = Tuple(*coeffs.to_list())
if rep.degree() >= minpoly.degree():
rep = rep.rem(minpoly.rep)
else:
rep = DMP.from_list([1, 0], 0, dom)
scoeffs = Tuple(1, 0)
sargs = (root, scoeffs)
if alias is not None:
if not isinstance(alias, Symbol):
alias = Symbol(alias)
sargs = sargs + (alias,)
obj = Expr.__new__(cls, *sargs)
obj.rep = rep
obj.root = root
obj.alias = alias
obj.minpoly = minpoly
return obj
def __hash__(self):
return super(AlgebraicNumber, self).__hash__()
def _eval_evalf(self, prec):
return self.as_expr()._evalf(prec)
@property
def is_aliased(self):
"""Returns ``True`` if ``alias`` was set. """
return self.alias is not None
def as_poly(self, x=None):
"""Create a Poly instance from ``self``. """
from sympy import Dummy, Poly, PurePoly
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
return PurePoly.new(self.rep, Dummy('x'))
def as_expr(self, x=None):
"""Create a Basic expression from ``self``. """
return self.as_poly(x or self.root).as_expr().expand()
def coeffs(self):
"""Returns all SymPy coefficients of an algebraic number. """
return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]
def native_coeffs(self):
"""Returns all native coefficients of an algebraic number. """
return self.rep.all_coeffs()
def to_algebraic_integer(self):
"""Convert ``self`` to an algebraic integer. """
from sympy import Poly
f = self.minpoly
if f.LC() == 1:
return self
coeff = f.LC()**(f.degree() - 1)
poly = f.compose(Poly(f.gen/f.LC()))
minpoly = poly*coeff
root = f.LC()*self.root
return AlgebraicNumber((minpoly, root), self.coeffs())
def _eval_simplify(self, **kwargs):
from sympy.polys import CRootOf, minpoly
measure, ratio = kwargs['measure'], kwargs['ratio']
for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]:
if minpoly(self.root - r).is_Symbol:
# use the matching root if it's simpler
if measure(r) < ratio*measure(self.root):
return AlgebraicNumber(r)
return self
class RationalConstant(Rational):
"""
Abstract base class for rationals with specific behaviors
Derived classes must define class attributes p and q and should probably all
be singletons.
"""
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class IntegerConstant(Integer):
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
class Zero(with_metaclass(Singleton, IntegerConstant)):
"""The number zero.
Zero is a singleton, and can be accessed by ``S.Zero``
Examples
========
>>> from sympy import S, Integer, zoo
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Zero
"""
p = 0
q = 1
is_positive = False
is_negative = False
is_zero = True
is_number = True
is_comparable = True
__slots__ = []
@staticmethod
def __abs__():
return S.Zero
@staticmethod
def __neg__():
return S.Zero
def _eval_power(self, expt):
if expt.is_positive:
return self
if expt.is_negative:
return S.ComplexInfinity
if expt.is_extended_real is False:
return S.NaN
# infinities are already handled with pos and neg
# tests above; now throw away leading numbers on Mul
# exponent
coeff, terms = expt.as_coeff_Mul()
if coeff.is_negative:
return S.ComplexInfinity**terms
if coeff is not S.One: # there is a Number to discard
return self**terms
def _eval_order(self, *symbols):
# Order(0,x) -> 0
return self
def __nonzero__(self):
return False
__bool__ = __nonzero__
def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted
"""Efficiently extract the coefficient of a summation. """
return S.One, self
class One(with_metaclass(Singleton, IntegerConstant)):
"""The number one.
One is a singleton, and can be accessed by ``S.One``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(1) is S.One
True
References
==========
.. [1] https://en.wikipedia.org/wiki/1_%28number%29
"""
is_number = True
p = 1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.NegativeOne
def _eval_power(self, expt):
return self
def _eval_order(self, *symbols):
return
@staticmethod
def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False,
verbose=False, visual=False):
if visual:
return S.One
else:
return {}
class NegativeOne(with_metaclass(Singleton, IntegerConstant)):
"""The number negative one.
NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(-1) is S.NegativeOne
True
See Also
========
One
References
==========
.. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29
"""
is_number = True
p = -1
q = 1
__slots__ = []
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.One
def _eval_power(self, expt):
if expt.is_odd:
return S.NegativeOne
if expt.is_even:
return S.One
if isinstance(expt, Number):
if isinstance(expt, Float):
return Float(-1.0)**expt
if expt is S.NaN:
return S.NaN
if expt is S.Infinity or expt is S.NegativeInfinity:
return S.NaN
if expt is S.Half:
return S.ImaginaryUnit
if isinstance(expt, Rational):
if expt.q == 2:
return S.ImaginaryUnit**Integer(expt.p)
i, r = divmod(expt.p, expt.q)
if i:
return self**i*self**Rational(r, expt.q)
return
class Half(with_metaclass(Singleton, RationalConstant)):
"""The rational number 1/2.
Half is a singleton, and can be accessed by ``S.Half``.
Examples
========
>>> from sympy import S, Rational
>>> Rational(1, 2) is S.Half
True
References
==========
.. [1] https://en.wikipedia.org/wiki/One_half
"""
is_number = True
p = 1
q = 2
__slots__ = []
@staticmethod
def __abs__():
return S.Half
class Infinity(with_metaclass(Singleton, Number)):
r"""Positive infinite quantity.
In real analysis the symbol `\infty` denotes an unbounded
limit: `x\to\infty` means that `x` grows without bound.
Infinity is often used not only to define a limit but as a value
in the affinely extended real number system. Points labeled `+\infty`
and `-\infty` can be added to the topological space of the real numbers,
producing the two-point compactification of the real numbers. Adding
algebraic properties to this gives us the extended real numbers.
Infinity is a singleton, and can be accessed by ``S.Infinity``,
or can be imported as ``oo``.
Examples
========
>>> from sympy import oo, exp, limit, Symbol
>>> 1 + oo
oo
>>> 42/oo
0
>>> x = Symbol('x')
>>> limit(exp(x), x, oo)
oo
See Also
========
NegativeInfinity, NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Infinity
"""
is_commutative = True
is_number = True
is_complex = False
is_extended_real = True
is_infinite = True
is_comparable = True
is_extended_positive = True
is_prime = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.NegativeInfinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.NegativeInfinity
return Number.__div__(self, other)
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.NegativeInfinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``oo ** nan`` ``nan``
``oo ** -p`` ``0`` ``p`` is number, ``oo``
================ ======= ==============================
See Also
========
Pow
NaN
NegativeInfinity
"""
from sympy.functions import re
if expt.is_extended_positive:
return S.Infinity
if expt.is_extended_negative:
return S.Zero
if expt is S.NaN:
return S.NaN
if expt is S.ComplexInfinity:
return S.NaN
if expt.is_extended_real is False and expt.is_number:
expt_real = re(expt)
if expt_real.is_positive:
return S.ComplexInfinity
if expt_real.is_negative:
return S.Zero
if expt_real.is_zero:
return S.NaN
return self**expt.evalf()
def _as_mpf_val(self, prec):
return mlib.finf
def _sage_(self):
import sage.all as sage
return sage.oo
def __hash__(self):
return super(Infinity, self).__hash__()
def __eq__(self, other):
return other is S.Infinity or other == float('inf')
def __ne__(self, other):
return other is not S.Infinity and other != float('inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
oo = S.Infinity
class NegativeInfinity(with_metaclass(Singleton, Number)):
"""Negative infinite quantity.
NegativeInfinity is a singleton, and can be accessed
by ``S.NegativeInfinity``.
See Also
========
Infinity
"""
is_extended_real = True
is_complex = False
is_commutative = True
is_infinite = True
is_comparable = True
is_extended_negative = True
is_number = True
is_prime = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"-\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('-inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.Infinity or other is S.NaN:
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.NegativeInfinity or other is S.NaN:
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.Infinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __div__(self, other):
if isinstance(other, Number) and global_evaluate[0]:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.Infinity
return Number.__div__(self, other)
__truediv__ = __div__
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.Infinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``(-oo) ** nan`` ``nan``
``(-oo) ** oo`` ``nan``
``(-oo) ** -oo`` ``nan``
``(-oo) ** e`` ``oo`` ``e`` is positive even integer
``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer
================ ======= ==============================
See Also
========
Infinity
Pow
NaN
"""
if expt.is_number:
if expt is S.NaN or \
expt is S.Infinity or \
expt is S.NegativeInfinity:
return S.NaN
if isinstance(expt, Integer) and expt.is_extended_positive:
if expt.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
return S.NegativeOne**expt*S.Infinity**expt
def _as_mpf_val(self, prec):
return mlib.fninf
def _sage_(self):
import sage.all as sage
return -(sage.oo)
def __hash__(self):
return super(NegativeInfinity, self).__hash__()
def __eq__(self, other):
return other is S.NegativeInfinity or other == float('-inf')
def __ne__(self, other):
return other is not S.NegativeInfinity and other != float('-inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
def as_powers_dict(self):
return {S.NegativeOne: 1, S.Infinity: 1}
class NaN(with_metaclass(Singleton, Number)):
"""
Not a Number.
This serves as a place holder for numeric values that are indeterminate.
Most operations on NaN, produce another NaN. Most indeterminate forms,
such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0``
and ``oo**0``, which all produce ``1`` (this is consistent with Python's
float).
NaN is loosely related to floating point nan, which is defined in the
IEEE 754 floating point standard, and corresponds to the Python
``float('nan')``. Differences are noted below.
NaN is mathematically not equal to anything else, even NaN itself. This
explains the initially counter-intuitive results with ``Eq`` and ``==`` in
the examples below.
NaN is not comparable so inequalities raise a TypeError. This is in
contrast with floating point nan where all inequalities are false.
NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported
as ``nan``.
Examples
========
>>> from sympy import nan, S, oo, Eq
>>> nan is S.NaN
True
>>> oo - oo
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality
False
>>> nan == nan # structural equality
True
References
==========
.. [1] https://en.wikipedia.org/wiki/NaN
"""
is_commutative = True
is_extended_real = None
is_real = None
is_rational = None
is_algebraic = None
is_transcendental = None
is_integer = None
is_comparable = False
is_finite = None
is_zero = None
is_prime = None
is_positive = None
is_negative = None
is_number = True
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\text{NaN}"
def __neg__(self):
return self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __div__(self, other):
return self
__truediv__ = __div__
def floor(self):
return self
def ceiling(self):
return self
def _as_mpf_val(self, prec):
return _mpf_nan
def _sage_(self):
import sage.all as sage
return sage.NaN
def __hash__(self):
return super(NaN, self).__hash__()
def __eq__(self, other):
# NaN is structurally equal to another NaN
return other is S.NaN
def __ne__(self, other):
return other is not S.NaN
def _eval_Eq(self, other):
# NaN is not mathematically equal to anything, even NaN
return S.false
# Expr will _sympify and raise TypeError
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
nan = S.NaN
class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)):
r"""Complex infinity.
In complex analysis the symbol `\tilde\infty`, called "complex
infinity", represents a quantity with infinite magnitude, but
undetermined complex phase.
ComplexInfinity is a singleton, and can be accessed by
``S.ComplexInfinity``, or can be imported as ``zoo``.
Examples
========
>>> from sympy import zoo, oo
>>> zoo + 42
zoo
>>> 42/zoo
0
>>> zoo + zoo
nan
>>> zoo*zoo
zoo
See Also
========
Infinity
"""
is_commutative = True
is_infinite = True
is_number = True
is_prime = False
is_complex = False
is_extended_real = False
__slots__ = []
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\tilde{\infty}"
@staticmethod
def __abs__():
return S.Infinity
def floor(self):
return self
def ceiling(self):
return self
@staticmethod
def __neg__():
return S.ComplexInfinity
def _eval_power(self, expt):
if expt is S.ComplexInfinity:
return S.NaN
if isinstance(expt, Number):
if expt.is_zero:
return S.NaN
else:
if expt.is_positive:
return S.ComplexInfinity
else:
return S.Zero
def _sage_(self):
import sage.all as sage
return sage.UnsignedInfinityRing.gen()
zoo = S.ComplexInfinity
class NumberSymbol(AtomicExpr):
is_commutative = True
is_finite = True
is_number = True
__slots__ = []
is_NumberSymbol = True
def __new__(cls):
return AtomicExpr.__new__(cls)
def approximation(self, number_cls):
""" Return an interval with number_cls endpoints
that contains the value of NumberSymbol.
If not implemented, then return None.
"""
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if self is other:
return True
if other.is_Number and self.is_irrational:
return False
return False # NumberSymbol != non-(Number|self)
def __ne__(self, other):
return not self == other
def __le__(self, other):
if self is other:
return S.true
return Expr.__le__(self, other)
def __ge__(self, other):
if self is other:
return S.true
return Expr.__ge__(self, other)
def __int__(self):
# subclass with appropriate return value
raise NotImplementedError
def __long__(self):
return self.__int__()
def __hash__(self):
return super(NumberSymbol, self).__hash__()
class Exp1(with_metaclass(Singleton, NumberSymbol)):
r"""The `e` constant.
The transcendental number `e = 2.718281828\ldots` is the base of the
natural logarithm and of the exponential function, `e = \exp(1)`.
Sometimes called Euler's number or Napier's constant.
Exp1 is a singleton, and can be accessed by ``S.Exp1``,
or can be imported as ``E``.
Examples
========
>>> from sympy import exp, log, E
>>> E is exp(1)
True
>>> log(E)
1
References
==========
.. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
"""
is_real = True
is_positive = True
is_negative = False # XXX Forces is_negative/is_nonnegative
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"e"
@staticmethod
def __abs__():
return S.Exp1
def __int__(self):
return 2
def _as_mpf_val(self, prec):
return mpf_e(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(2), Integer(3))
elif issubclass(number_cls, Rational):
pass
def _eval_power(self, expt):
from sympy import exp
return exp(expt)
def _eval_rewrite_as_sin(self, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I + S.Pi/2) - I*sin(I)
def _eval_rewrite_as_cos(self, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I) + I*cos(I + S.Pi/2)
def _sage_(self):
import sage.all as sage
return sage.e
E = S.Exp1
class Pi(with_metaclass(Singleton, NumberSymbol)):
r"""The `\pi` constant.
The transcendental number `\pi = 3.141592654\ldots` represents the ratio
of a circle's circumference to its diameter, the area of the unit circle,
the half-period of trigonometric functions, and many other things
in mathematics.
Pi is a singleton, and can be accessed by ``S.Pi``, or can
be imported as ``pi``.
Examples
========
>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
>>> S.Pi
pi
>>> pi > 3
True
>>> pi.is_irrational
True
>>> x = Symbol('x')
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -oo, oo))
sqrt(pi)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pi
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = []
def _latex(self, printer):
return r"\pi"
@staticmethod
def __abs__():
return S.Pi
def __int__(self):
return 3
def _as_mpf_val(self, prec):
return mpf_pi(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(3), Integer(4))
elif issubclass(number_cls, Rational):
return (Rational(223, 71), Rational(22, 7))
def _sage_(self):
import sage.all as sage
return sage.pi
pi = S.Pi
class GoldenRatio(with_metaclass(Singleton, NumberSymbol)):
r"""The golden ratio, `\phi`.
`\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities
are in the golden ratio if their ratio is the same as the ratio of
their sum to the larger of the two quantities, i.e. their maximum.
GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``.
Examples
========
>>> from sympy import S
>>> S.GoldenRatio > 1
True
>>> S.GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> S.GoldenRatio.is_irrational
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Golden_ratio
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\phi"
def __int__(self):
return 1
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10)
return mpf_norm(rv, prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt
return S.Half + S.Half*sqrt(5)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
def _sage_(self):
import sage.all as sage
return sage.golden_ratio
_eval_rewrite_as_sqrt = _eval_expand_func
class TribonacciConstant(with_metaclass(Singleton, NumberSymbol)):
r"""The tribonacci constant.
The tribonacci numbers are like the Fibonacci numbers, but instead
of starting with two predetermined terms, the sequence starts with
three predetermined terms and each term afterwards is the sum of the
preceding three terms.
The tribonacci constant is the ratio toward which adjacent tribonacci
numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`,
and also satisfies the equation `x + x^{-3} = 2`.
TribonacciConstant is a singleton, and can be accessed
by ``S.TribonacciConstant``.
Examples
========
>>> from sympy import S
>>> S.TribonacciConstant > 1
True
>>> S.TribonacciConstant.expand(func=True)
1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3
>>> S.TribonacciConstant.is_irrational
True
>>> S.TribonacciConstant.n(20)
1.8392867552141611326
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return r"\text{TribonacciConstant}"
def __int__(self):
return 2
def _eval_evalf(self, prec):
rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4)
return Float(rv, precision=prec)
def _eval_expand_func(self, **hints):
from sympy import sqrt, cbrt
return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
_eval_rewrite_as_sqrt = _eval_expand_func
class EulerGamma(with_metaclass(Singleton, NumberSymbol)):
r"""The Euler-Mascheroni constant.
`\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical
constant recurring in analysis and number theory. It is defined as the
limiting difference between the harmonic series and the
natural logarithm:
.. math:: \gamma = \lim\limits_{n\to\infty}
\left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right)
EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``.
Examples
========
>>> from sympy import S
>>> S.EulerGamma.is_irrational
>>> S.EulerGamma > 0
True
>>> S.EulerGamma > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def _latex(self, printer):
return r"\gamma"
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.libhyper.euler_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (S.Half, Rational(3, 5))
def _sage_(self):
import sage.all as sage
return sage.euler_gamma
class Catalan(with_metaclass(Singleton, NumberSymbol)):
r"""Catalan's constant.
`K = 0.91596559\ldots` is given by the infinite series
.. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}
Catalan is a singleton, and can be accessed by ``S.Catalan``.
Examples
========
>>> from sympy import S
>>> S.Catalan.is_irrational
>>> S.Catalan > 0
True
>>> S.Catalan > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = []
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.catalan_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (Rational(9, 10), S.One)
def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None):
from sympy import Sum, Dummy
if (k_sym is not None) or (symbols is not None):
return self
k = Dummy('k', integer=True, nonnegative=True)
return Sum((-1)**k / (2*k+1)**2, (k, 0, S.Infinity))
def _sage_(self):
import sage.all as sage
return sage.catalan
class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)):
r"""The imaginary unit, `i = \sqrt{-1}`.
I is a singleton, and can be accessed by ``S.I``, or can be
imported as ``I``.
Examples
========
>>> from sympy import I, sqrt
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
References
==========
.. [1] https://en.wikipedia.org/wiki/Imaginary_unit
"""
is_commutative = True
is_imaginary = True
is_finite = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = []
def _latex(self, printer):
return printer._settings['imaginary_unit_latex']
@staticmethod
def __abs__():
return S.One
def _eval_evalf(self, prec):
return self
def _eval_conjugate(self):
return -S.ImaginaryUnit
def _eval_power(self, expt):
"""
b is I = sqrt(-1)
e is symbolic object but not equal to 0, 1
I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
I**0 mod 4 -> 1
I**1 mod 4 -> I
I**2 mod 4 -> -1
I**3 mod 4 -> -I
"""
if isinstance(expt, Number):
if isinstance(expt, Integer):
expt = expt.p % 4
if expt == 0:
return S.One
if expt == 1:
return S.ImaginaryUnit
if expt == 2:
return -S.One
return -S.ImaginaryUnit
return
def as_base_exp(self):
return S.NegativeOne, S.Half
def _sage_(self):
import sage.all as sage
return sage.I
@property
def _mpc_(self):
return (Float(0)._mpf_, Float(1)._mpf_)
I = S.ImaginaryUnit
def sympify_fractions(f):
return Rational(f.numerator, f.denominator, 1)
converter[fractions.Fraction] = sympify_fractions
try:
if HAS_GMPY == 2:
import gmpy2 as gmpy
elif HAS_GMPY == 1:
import gmpy
else:
raise ImportError
def sympify_mpz(x):
return Integer(long(x))
def sympify_mpq(x):
return Rational(long(x.numerator), long(x.denominator))
converter[type(gmpy.mpz(1))] = sympify_mpz
converter[type(gmpy.mpq(1, 2))] = sympify_mpq
except ImportError:
pass
def sympify_mpmath(x):
return Expr._from_mpmath(x, x.context.prec)
converter[mpnumeric] = sympify_mpmath
def sympify_mpq(x):
p, q = x._mpq_
return Rational(p, q, 1)
converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpq
def sympify_complex(a):
real, imag = list(map(sympify, (a.real, a.imag)))
return real + S.ImaginaryUnit*imag
converter[complex] = sympify_complex
from .power import Pow, integer_nthroot
from .mul import Mul
Mul.identity = One()
from .add import Add
Add.identity = Zero()
def _register_classes():
numbers.Number.register(Number)
numbers.Real.register(Float)
numbers.Rational.register(Rational)
numbers.Rational.register(Integer)
_register_classes()
|
e405d292fbc2f85ed19f57235042506aee7ff0e44978cafbbbf5be8cdf64df73 | from __future__ import print_function, division
from sympy.core.assumptions import StdFactKB, _assume_defined
from sympy.core.compatibility import (string_types, range, is_sequence,
ordered)
from .basic import Basic
from .sympify import sympify
from .singleton import S
from .expr import Expr, AtomicExpr
from .cache import cacheit
from .function import FunctionClass
from sympy.core.logic import fuzzy_bool
from sympy.logic.boolalg import Boolean
from sympy.utilities.iterables import cartes, sift
from sympy.core.containers import Tuple
import string
import re as _re
import random
def _filter_assumptions(kwargs):
"""Split the given dict into assumptions and non-assumptions.
Keys are taken as assumptions if they correspond to an
entry in ``_assume_defined``.
"""
assumptions, nonassumptions = map(dict, sift(kwargs.items(),
lambda i: i[0] in _assume_defined,
binary=True))
Symbol._sanitize(assumptions)
return assumptions, nonassumptions
def _symbol(s, matching_symbol=None, **assumptions):
"""Return s if s is a Symbol, else if s is a string, return either
the matching_symbol if the names are the same or else a new symbol
with the same assumptions as the matching symbol (or the
assumptions as provided).
Examples
========
>>> from sympy import Symbol, Dummy
>>> from sympy.core.symbol import _symbol
>>> _symbol('y')
y
>>> _.is_real is None
True
>>> _symbol('y', real=True).is_real
True
>>> x = Symbol('x')
>>> _symbol(x, real=True)
x
>>> _.is_real is None # ignore attribute if s is a Symbol
True
Below, the variable sym has the name 'foo':
>>> sym = Symbol('foo', real=True)
Since 'x' is not the same as sym's name, a new symbol is created:
>>> _symbol('x', sym).name
'x'
It will acquire any assumptions give:
>>> _symbol('x', sym, real=False).is_real
False
Since 'foo' is the same as sym's name, sym is returned
>>> _symbol('foo', sym)
foo
Any assumptions given are ignored:
>>> _symbol('foo', sym, real=False).is_real
True
NB: the symbol here may not be the same as a symbol with the same
name defined elsewhere as a result of different assumptions.
See Also
========
sympy.core.symbol.Symbol
"""
if isinstance(s, string_types):
if matching_symbol and matching_symbol.name == s:
return matching_symbol
return Symbol(s, **assumptions)
elif isinstance(s, Symbol):
return s
else:
raise ValueError('symbol must be string for symbol name or Symbol')
def _uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions):
"""Return a symbol which, when printed, will have a name unique
from any other already in the expressions given. The name is made
unique by prepending underscores (default) but this can be
customized with the keyword 'modify'.
Parameters
==========
xname : a string or a Symbol (when symbol xname <- str(xname))
compare : a single arg function that takes a symbol and returns
a string to be compared with xname (the default is the str
function which indicates how the name will look when it
is printed, e.g. this includes underscores that appear on
Dummy symbols)
modify : a single arg function that changes its string argument
in some way (the default is to prepend underscores)
Examples
========
>>> from sympy.core.symbol import _uniquely_named_symbol as usym, Dummy
>>> from sympy.abc import x
>>> usym('x', x)
_x
"""
default = None
if is_sequence(xname):
xname, default = xname
x = str(xname)
if not exprs:
return _symbol(x, default, **assumptions)
if not is_sequence(exprs):
exprs = [exprs]
syms = set().union(*[e.free_symbols for e in exprs])
if modify is None:
modify = lambda s: '_' + s
while any(x == compare(s) for s in syms):
x = modify(x)
return _symbol(x, default, **assumptions)
class Symbol(AtomicExpr, Boolean):
"""
Assumptions:
commutative = True
You can override the default assumptions in the constructor:
>>> from sympy import symbols
>>> A,B = symbols('A,B', commutative = False)
>>> bool(A*B != B*A)
True
>>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative
True
"""
is_comparable = False
__slots__ = ['name']
is_Symbol = True
is_symbol = True
@property
def _diff_wrt(self):
"""Allow derivatives wrt Symbols.
Examples
========
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> x._diff_wrt
True
"""
return True
@staticmethod
def _sanitize(assumptions, obj=None):
"""Remove None, covert values to bool, check commutativity *in place*.
"""
# be strict about commutativity: cannot be None
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
if is_commutative is None:
whose = '%s ' % obj.__name__ if obj else ''
raise ValueError(
'%scommutativity must be True or False.' % whose)
# sanitize other assumptions so 1 -> True and 0 -> False
for key in list(assumptions.keys()):
from collections import defaultdict
from sympy.utilities.exceptions import SymPyDeprecationWarning
keymap = defaultdict(lambda: None)
keymap.update({'bounded': 'finite', 'unbounded': 'infinite', 'infinitesimal': 'zero'})
if keymap[key]:
SymPyDeprecationWarning(
feature="%s assumption" % key,
useinstead="%s" % keymap[key],
issue=8071,
deprecated_since_version="0.7.6").warn()
assumptions[keymap[key]] = assumptions[key]
assumptions.pop(key)
key = keymap[key]
v = assumptions[key]
if v is None:
assumptions.pop(key)
continue
assumptions[key] = bool(v)
def _merge(self, assumptions):
base = self.assumptions0
for k in set(assumptions) & set(base):
if assumptions[k] != base[k]:
raise ValueError(filldedent('''
non-matching assumptions for %s: existing value
is %s and new value is %s''' % (
k, base[k], assumptions[k])))
base.update(assumptions)
return base
def __new__(cls, name, **assumptions):
"""Symbols are identified by name and assumptions::
>>> from sympy import Symbol
>>> Symbol("x") == Symbol("x")
True
>>> Symbol("x", real=True) == Symbol("x", real=False)
False
"""
cls._sanitize(assumptions, cls)
return Symbol.__xnew_cached_(cls, name, **assumptions)
def __new_stage2__(cls, name, **assumptions):
if not isinstance(name, string_types):
raise TypeError("name should be a string, not %s" % repr(type(name)))
obj = Expr.__new__(cls)
obj.name = name
# TODO: Issue #8873: Forcing the commutative assumption here means
# later code such as ``srepr()`` cannot tell whether the user
# specified ``commutative=True`` or omitted it. To workaround this,
# we keep a copy of the assumptions dict, then create the StdFactKB,
# and finally overwrite its ``._generator`` with the dict copy. This
# is a bit of a hack because we assume StdFactKB merely copies the
# given dict as ``._generator``, but future modification might, e.g.,
# compute a minimal equivalent assumption set.
tmp_asm_copy = assumptions.copy()
# be strict about commutativity
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
assumptions['commutative'] = is_commutative
obj._assumptions = StdFactKB(assumptions)
obj._assumptions._generator = tmp_asm_copy # Issue #8873
return obj
__xnew__ = staticmethod(
__new_stage2__) # never cached (e.g. dummy)
__xnew_cached_ = staticmethod(
cacheit(__new_stage2__)) # symbols are always cached
def __getnewargs__(self):
return (self.name,)
def __getstate__(self):
return {'_assumptions': self._assumptions}
def _hashable_content(self):
# Note: user-specified assumptions not hashed, just derived ones
return (self.name,) + tuple(sorted(self.assumptions0.items()))
def _eval_subs(self, old, new):
from sympy.core.power import Pow
if old.is_Pow:
return Pow(self, S.One, evaluate=False)._eval_subs(old, new)
@property
def assumptions0(self):
return dict((key, value) for key, value
in self._assumptions.items() if value is not None)
@cacheit
def sort_key(self, order=None):
return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One
def as_dummy(self):
return Dummy(self.name)
def as_real_imag(self, deep=True, **hints):
from sympy import im, re
if hints.get('ignore') == self:
return None
else:
return (re(self), im(self))
def _sage_(self):
import sage.all as sage
return sage.var(self.name)
def is_constant(self, *wrt, **flags):
if not wrt:
return False
return not self in wrt
@property
def free_symbols(self):
return {self}
binary_symbols = free_symbols # in this case, not always
def as_set(self):
return S.UniversalSet
class Dummy(Symbol):
"""Dummy symbols are each unique, even if they have the same name:
>>> from sympy import Dummy
>>> Dummy("x") == Dummy("x")
False
If a name is not supplied then a string value of an internal count will be
used. This is useful when a temporary variable is needed and the name
of the variable used in the expression is not important.
>>> Dummy() #doctest: +SKIP
_Dummy_10
"""
# In the rare event that a Dummy object needs to be recreated, both the
# `name` and `dummy_index` should be passed. This is used by `srepr` for
# example:
# >>> d1 = Dummy()
# >>> d2 = eval(srepr(d1))
# >>> d2 == d1
# True
#
# If a new session is started between `srepr` and `eval`, there is a very
# small chance that `d2` will be equal to a previously-created Dummy.
_count = 0
_prng = random.Random()
_base_dummy_index = _prng.randint(10**6, 9*10**6)
__slots__ = ['dummy_index']
is_Dummy = True
def __new__(cls, name=None, dummy_index=None, **assumptions):
if dummy_index is not None:
assert name is not None, "If you specify a dummy_index, you must also provide a name"
if name is None:
name = "Dummy_" + str(Dummy._count)
if dummy_index is None:
dummy_index = Dummy._base_dummy_index + Dummy._count
Dummy._count += 1
cls._sanitize(assumptions, cls)
obj = Symbol.__xnew__(cls, name, **assumptions)
obj.dummy_index = dummy_index
return obj
def __getstate__(self):
return {'_assumptions': self._assumptions, 'dummy_index': self.dummy_index}
@cacheit
def sort_key(self, order=None):
return self.class_key(), (
2, (str(self), self.dummy_index)), S.One.sort_key(), S.One
def _hashable_content(self):
return Symbol._hashable_content(self) + (self.dummy_index,)
class Wild(Symbol):
"""
A Wild symbol matches anything, or anything
without whatever is explicitly excluded.
Parameters
==========
name : str
Name of the Wild instance.
exclude : iterable, optional
Instances in ``exclude`` will not be matched.
properties : iterable of functions, optional
Functions, each taking an expressions as input
and returns a ``bool``. All functions in ``properties``
need to return ``True`` in order for the Wild instance
to match the expression.
Examples
========
>>> from sympy import Wild, WildFunction, cos, pi
>>> from sympy.abc import x, y, z
>>> a = Wild('a')
>>> x.match(a)
{a_: x}
>>> pi.match(a)
{a_: pi}
>>> (3*x**2).match(a*x)
{a_: 3*x}
>>> cos(x).match(a)
{a_: cos(x)}
>>> b = Wild('b', exclude=[x])
>>> (3*x**2).match(b*x)
>>> b.match(a)
{a_: b_}
>>> A = WildFunction('A')
>>> A.match(a)
{a_: A_}
Tips
====
When using Wild, be sure to use the exclude
keyword to make the pattern more precise.
Without the exclude pattern, you may get matches
that are technically correct, but not what you
wanted. For example, using the above without
exclude:
>>> from sympy import symbols
>>> a, b = symbols('a b', cls=Wild)
>>> (2 + 3*y).match(a*x + b*y)
{a_: 2/x, b_: 3}
This is technically correct, because
(2/x)*x + 3*y == 2 + 3*y, but you probably
wanted it to not match at all. The issue is that
you really didn't want a and b to include x and y,
and the exclude parameter lets you specify exactly
this. With the exclude parameter, the pattern will
not match.
>>> a = Wild('a', exclude=[x, y])
>>> b = Wild('b', exclude=[x, y])
>>> (2 + 3*y).match(a*x + b*y)
Exclude also helps remove ambiguity from matches.
>>> E = 2*x**3*y*z
>>> a, b = symbols('a b', cls=Wild)
>>> E.match(a*b)
{a_: 2*y*z, b_: x**3}
>>> a = Wild('a', exclude=[x, y])
>>> E.match(a*b)
{a_: z, b_: 2*x**3*y}
>>> a = Wild('a', exclude=[x, y, z])
>>> E.match(a*b)
{a_: 2, b_: x**3*y*z}
Wild also accepts a ``properties`` parameter:
>>> a = Wild('a', properties=[lambda k: k.is_Integer])
>>> E.match(a*b)
{a_: 2, b_: x**3*y*z}
"""
is_Wild = True
__slots__ = ['exclude', 'properties']
def __new__(cls, name, exclude=(), properties=(), **assumptions):
exclude = tuple([sympify(x) for x in exclude])
properties = tuple(properties)
cls._sanitize(assumptions, cls)
return Wild.__xnew__(cls, name, exclude, properties, **assumptions)
def __getnewargs__(self):
return (self.name, self.exclude, self.properties)
@staticmethod
@cacheit
def __xnew__(cls, name, exclude, properties, **assumptions):
obj = Symbol.__xnew__(cls, name, **assumptions)
obj.exclude = exclude
obj.properties = properties
return obj
def _hashable_content(self):
return super(Wild, self)._hashable_content() + (self.exclude, self.properties)
# TODO add check against another Wild
def matches(self, expr, repl_dict={}, old=False):
if any(expr.has(x) for x in self.exclude):
return None
if any(not f(expr) for f in self.properties):
return None
repl_dict = repl_dict.copy()
repl_dict[self] = expr
return repl_dict
_range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])')
def symbols(names, **args):
r"""
Transform strings into instances of :class:`Symbol` class.
:func:`symbols` function returns a sequence of symbols with names taken
from ``names`` argument, which can be a comma or whitespace delimited
string, or a sequence of strings::
>>> from sympy import symbols, Function
>>> x, y, z = symbols('x,y,z')
>>> a, b, c = symbols('a b c')
The type of output is dependent on the properties of input arguments::
>>> symbols('x')
x
>>> symbols('x,')
(x,)
>>> symbols('x,y')
(x, y)
>>> symbols(('a', 'b', 'c'))
(a, b, c)
>>> symbols(['a', 'b', 'c'])
[a, b, c]
>>> symbols({'a', 'b', 'c'})
{a, b, c}
If an iterable container is needed for a single symbol, set the ``seq``
argument to ``True`` or terminate the symbol name with a comma::
>>> symbols('x', seq=True)
(x,)
To reduce typing, range syntax is supported to create indexed symbols.
Ranges are indicated by a colon and the type of range is determined by
the character to the right of the colon. If the character is a digit
then all contiguous digits to the left are taken as the nonnegative
starting value (or 0 if there is no digit left of the colon) and all
contiguous digits to the right are taken as 1 greater than the ending
value::
>>> symbols('x:10')
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
>>> symbols('x5:10')
(x5, x6, x7, x8, x9)
>>> symbols('x5(:2)')
(x50, x51)
>>> symbols('x5:10,y:5')
(x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)
>>> symbols(('x5:10', 'y:5'))
((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))
If the character to the right of the colon is a letter, then the single
letter to the left (or 'a' if there is none) is taken as the start
and all characters in the lexicographic range *through* the letter to
the right are used as the range::
>>> symbols('x:z')
(x, y, z)
>>> symbols('x:c') # null range
()
>>> symbols('x(:c)')
(xa, xb, xc)
>>> symbols(':c')
(a, b, c)
>>> symbols('a:d, x:z')
(a, b, c, d, x, y, z)
>>> symbols(('a:d', 'x:z'))
((a, b, c, d), (x, y, z))
Multiple ranges are supported; contiguous numerical ranges should be
separated by parentheses to disambiguate the ending number of one
range from the starting number of the next::
>>> symbols('x:2(1:3)')
(x01, x02, x11, x12)
>>> symbols(':3:2') # parsing is from left to right
(00, 01, 10, 11, 20, 21)
Only one pair of parentheses surrounding ranges are removed, so to
include parentheses around ranges, double them. And to include spaces,
commas, or colons, escape them with a backslash::
>>> symbols('x((a:b))')
(x(a), x(b))
>>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))'
(x(0,0), x(0,1))
All newly created symbols have assumptions set according to ``args``::
>>> a = symbols('a', integer=True)
>>> a.is_integer
True
>>> x, y, z = symbols('x,y,z', real=True)
>>> x.is_real and y.is_real and z.is_real
True
Despite its name, :func:`symbols` can create symbol-like objects like
instances of Function or Wild classes. To achieve this, set ``cls``
keyword argument to the desired type::
>>> symbols('f,g,h', cls=Function)
(f, g, h)
>>> type(_[0])
<class 'sympy.core.function.UndefinedFunction'>
"""
result = []
if isinstance(names, string_types):
marker = 0
literals = [r'\,', r'\:', r'\ ']
for i in range(len(literals)):
lit = literals.pop(0)
if lit in names:
while chr(marker) in names:
marker += 1
lit_char = chr(marker)
marker += 1
names = names.replace(lit, lit_char)
literals.append((lit_char, lit[1:]))
def literal(s):
if literals:
for c, l in literals:
s = s.replace(c, l)
return s
names = names.strip()
as_seq = names.endswith(',')
if as_seq:
names = names[:-1].rstrip()
if not names:
raise ValueError('no symbols given')
# split on commas
names = [n.strip() for n in names.split(',')]
if not all(n for n in names):
raise ValueError('missing symbol between commas')
# split on spaces
for i in range(len(names) - 1, -1, -1):
names[i: i + 1] = names[i].split()
cls = args.pop('cls', Symbol)
seq = args.pop('seq', as_seq)
for name in names:
if not name:
raise ValueError('missing symbol')
if ':' not in name:
symbol = cls(literal(name), **args)
result.append(symbol)
continue
split = _range.split(name)
# remove 1 layer of bounding parentheses around ranges
for i in range(len(split) - 1):
if i and ':' in split[i] and split[i] != ':' and \
split[i - 1].endswith('(') and \
split[i + 1].startswith(')'):
split[i - 1] = split[i - 1][:-1]
split[i + 1] = split[i + 1][1:]
for i, s in enumerate(split):
if ':' in s:
if s[-1].endswith(':'):
raise ValueError('missing end range')
a, b = s.split(':')
if b[-1] in string.digits:
a = 0 if not a else int(a)
b = int(b)
split[i] = [str(c) for c in range(a, b)]
else:
a = a or 'a'
split[i] = [string.ascii_letters[c] for c in range(
string.ascii_letters.index(a),
string.ascii_letters.index(b) + 1)] # inclusive
if not split[i]:
break
else:
split[i] = [s]
else:
seq = True
if len(split) == 1:
names = split[0]
else:
names = [''.join(s) for s in cartes(*split)]
if literals:
result.extend([cls(literal(s), **args) for s in names])
else:
result.extend([cls(s, **args) for s in names])
if not seq and len(result) <= 1:
if not result:
return ()
return result[0]
return tuple(result)
else:
for name in names:
result.append(symbols(name, **args))
return type(names)(result)
def var(names, **args):
"""
Create symbols and inject them into the global namespace.
This calls :func:`symbols` with the same arguments and puts the results
into the *global* namespace. It's recommended not to use :func:`var` in
library code, where :func:`symbols` has to be used::
Examples
========
>>> from sympy import var
>>> var('x')
x
>>> x
x
>>> var('a,ab,abc')
(a, ab, abc)
>>> abc
abc
>>> var('x,y', real=True)
(x, y)
>>> x.is_real and y.is_real
True
See :func:`symbols` documentation for more details on what kinds of
arguments can be passed to :func:`var`.
"""
def traverse(symbols, frame):
"""Recursively inject symbols to the global namespace. """
for symbol in symbols:
if isinstance(symbol, Basic):
frame.f_globals[symbol.name] = symbol
elif isinstance(symbol, FunctionClass):
frame.f_globals[symbol.__name__] = symbol
else:
traverse(symbol, frame)
from inspect import currentframe
frame = currentframe().f_back
try:
syms = symbols(names, **args)
if syms is not None:
if isinstance(syms, Basic):
frame.f_globals[syms.name] = syms
elif isinstance(syms, FunctionClass):
frame.f_globals[syms.__name__] = syms
else:
traverse(syms, frame)
finally:
del frame # break cyclic dependencies as stated in inspect docs
return syms
def disambiguate(*iter):
"""
Return a Tuple containing the passed expressions with symbols
that appear the same when printed replaced with numerically
subscripted symbols, and all Dummy symbols replaced with Symbols.
Parameters
==========
iter: list of symbols or expressions.
Examples
========
>>> from sympy.core.symbol import disambiguate
>>> from sympy import Dummy, Symbol, Tuple
>>> from sympy.abc import y
>>> tup = Symbol('_x'), Dummy('x'), Dummy('x')
>>> disambiguate(*tup)
(x_2, x, x_1)
>>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y)
>>> disambiguate(*eqs)
(x_1/y, x/y)
>>> ix = Symbol('x', integer=True)
>>> vx = Symbol('x')
>>> disambiguate(vx + ix)
(x + x_1,)
To make your own mapping of symbols to use, pass only the free symbols
of the expressions and create a dictionary:
>>> free = eqs.free_symbols
>>> mapping = dict(zip(free, disambiguate(*free)))
>>> eqs.xreplace(mapping)
(x_1/y, x/y)
"""
new_iter = Tuple(*iter)
key = lambda x:tuple(sorted(x.assumptions0.items()))
syms = ordered(new_iter.free_symbols, keys=key)
mapping = {}
for s in syms:
mapping.setdefault(str(s).lstrip('_'), []).append(s)
reps = {}
for k in mapping:
# the first or only symbol doesn't get subscripted but make
# sure that it's a Symbol, not a Dummy
mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0)
if mapping[k][0] != mapk0:
reps[mapping[k][0]] = mapk0
# the others get subscripts (and are made into Symbols)
skip = 0
for i in range(1, len(mapping[k])):
while True:
name = "%s_%i" % (k, i + skip)
if name not in mapping:
break
skip += 1
ki = mapping[k][i]
reps[ki] = Symbol(name, **ki.assumptions0)
return new_iter.xreplace(reps)
|
c86e982f112739c9775b0541ed4b6de696c9378def64550487c06b1241c562b2 | """
Reimplementations of constructs introduced in later versions of Python than
we support. Also some functions that are needed SymPy-wide and are located
here for easy import.
"""
from __future__ import print_function, division
import operator
from collections import defaultdict
from sympy.external import import_module
"""
Python 2 and Python 3 compatible imports
String and Unicode compatible changes:
* `unicode()` removed in Python 3, import `unicode` for Python 2/3
compatible function
* `unichr()` removed in Python 3, import `unichr` for Python 2/3 compatible
function
* Use `u()` for escaped unicode sequences (e.g. u'\u2020' -> u('\u2020'))
* Use `u_decode()` to decode utf-8 formatted unicode strings
* `string_types` gives str in Python 3, unicode and str in Python 2,
equivalent to basestring
Integer related changes:
* `long()` removed in Python 3, import `long` for Python 2/3 compatible
function
* `integer_types` gives int in Python 3, int and long in Python 2
Types related changes:
* `class_types` gives type in Python 3, type and ClassType in Python 2
Renamed function attributes:
* Python 2 `.func_code`, Python 3 `.__func__`, access with
`get_function_code()`
* Python 2 `.func_globals`, Python 3 `.__globals__`, access with
`get_function_globals()`
* Python 2 `.func_name`, Python 3 `.__name__`, access with
`get_function_name()`
Moved modules:
* `reduce()`
* `StringIO()`
* `cStringIO()` (same as `StingIO()` in Python 3)
* Python 2 `__builtin__`, access with Python 3 name, `builtins`
Iterator/list changes:
* `xrange` renamed as `range` in Python 3, import `range` for Python 2/3
compatible iterator version of range.
exec:
* Use `exec_()`, with parameters `exec_(code, globs=None, locs=None)`
Metaclasses:
* Use `with_metaclass()`, examples below
* Define class `Foo` with metaclass `Meta`, and no parent:
class Foo(with_metaclass(Meta)):
pass
* Define class `Foo` with metaclass `Meta` and parent class `Bar`:
class Foo(with_metaclass(Meta, Bar)):
pass
"""
import sys
PY3 = sys.version_info[0] > 2
if PY3:
class_types = type,
integer_types = (int,)
string_types = (str,)
long = int
int_info = sys.int_info
# String / unicode compatibility
unicode = str
unichr = chr
def u_decode(x):
return x
Iterator = object
# Moved definitions
get_function_code = operator.attrgetter("__code__")
get_function_globals = operator.attrgetter("__globals__")
get_function_name = operator.attrgetter("__name__")
import builtins
from functools import reduce
from io import StringIO
cStringIO = StringIO
exec_ = getattr(builtins, "exec")
range = range
round = round
from collections.abc import (Mapping, Callable, MutableMapping,
MutableSet, Iterable, Hashable)
from inspect import unwrap
from itertools import accumulate
else:
import codecs
import types
class_types = (type, types.ClassType)
integer_types = (int, long)
string_types = (str, unicode)
long = long
int_info = sys.long_info
# String / unicode compatibility
unicode = unicode
unichr = unichr
def u_decode(x):
return x.decode('utf-8')
class Iterator(object):
def next(self):
return type(self).__next__(self)
# Moved definitions
get_function_code = operator.attrgetter("func_code")
get_function_globals = operator.attrgetter("func_globals")
get_function_name = operator.attrgetter("func_name")
import __builtin__ as builtins
reduce = reduce
from StringIO import StringIO
from cStringIO import StringIO as cStringIO
def exec_(_code_, _globs_=None, _locs_=None):
"""Execute code in a namespace."""
if _globs_ is None:
frame = sys._getframe(1)
_globs_ = frame.f_globals
if _locs_ is None:
_locs_ = frame.f_locals
del frame
elif _locs_ is None:
_locs_ = _globs_
exec("exec _code_ in _globs_, _locs_")
range = xrange
_round = round
def round(x, *args):
try:
return x.__round__(*args)
except (AttributeError, TypeError):
return _round(x, *args)
from collections import (Mapping, Callable, MutableMapping,
MutableSet, Iterable, Hashable)
def unwrap(func, stop=None):
"""Get the object wrapped by *func*.
Follows the chain of :attr:`__wrapped__` attributes returning the last
object in the chain.
*stop* is an optional callback accepting an object in the wrapper chain
as its sole argument that allows the unwrapping to be terminated early if
the callback returns a true value. If the callback never returns a true
value, the last object in the chain is returned as usual. For example,
:func:`signature` uses this to stop unwrapping if any object in the
chain has a ``__signature__`` attribute defined.
:exc:`ValueError` is raised if a cycle is encountered.
"""
if stop is None:
def _is_wrapper(f):
return hasattr(f, '__wrapped__')
else:
def _is_wrapper(f):
return hasattr(f, '__wrapped__') and not stop(f)
f = func # remember the original func for error reporting
memo = {id(f)} # Memoise by id to tolerate non-hashable objects
while _is_wrapper(func):
func = func.__wrapped__
id_func = id(func)
if id_func in memo:
raise ValueError('wrapper loop when unwrapping {!r}'.format(f))
memo.add(id_func)
return func
def accumulate(iterable, func=operator.add):
state = iterable[0]
yield state
for i in iterable[1:]:
state = func(state, i)
yield state
def with_metaclass(meta, *bases):
"""
Create a base class with a metaclass.
For example, if you have the metaclass
>>> class Meta(type):
... pass
Use this as the metaclass by doing
>>> from sympy.core.compatibility import with_metaclass
>>> class MyClass(with_metaclass(Meta, object)):
... pass
This is equivalent to the Python 2::
class MyClass(object):
__metaclass__ = Meta
or Python 3::
class MyClass(object, metaclass=Meta):
pass
That is, the first argument is the metaclass, and the remaining arguments
are the base classes. Note that if the base class is just ``object``, you
may omit it.
>>> MyClass.__mro__
(<class '...MyClass'>, <... 'object'>)
>>> type(MyClass)
<class '...Meta'>
"""
# This requires a bit of explanation: the basic idea is to make a dummy
# metaclass for one level of class instantiation that replaces itself with
# the actual metaclass.
# Code copied from the 'six' library.
class metaclass(meta):
def __new__(cls, name, this_bases, d):
return meta(name, bases, d)
return type.__new__(metaclass, "NewBase", (), {})
# These are in here because telling if something is an iterable just by calling
# hasattr(obj, "__iter__") behaves differently in Python 2 and Python 3. In
# particular, hasattr(str, "__iter__") is False in Python 2 and True in Python 3.
# I think putting them here also makes it easier to use them in the core.
class NotIterable:
"""
Use this as mixin when creating a class which is not supposed to
return true when iterable() is called on its instances because
calling list() on the instance, for example, would result in
an infinite loop.
"""
pass
def iterable(i, exclude=(string_types, dict, NotIterable)):
"""
Return a boolean indicating whether ``i`` is SymPy iterable.
True also indicates that the iterator is finite, e.g. you can
call list(...) on the instance.
When SymPy is working with iterables, it is almost always assuming
that the iterable is not a string or a mapping, so those are excluded
by default. If you want a pure Python definition, make exclude=None. To
exclude multiple items, pass them as a tuple.
You can also set the _iterable attribute to True or False on your class,
which will override the checks here, including the exclude test.
As a rule of thumb, some SymPy functions use this to check if they should
recursively map over an object. If an object is technically iterable in
the Python sense but does not desire this behavior (e.g., because its
iteration is not finite, or because iteration might induce an unwanted
computation), it should disable it by setting the _iterable attribute to False.
See also: is_sequence
Examples
========
>>> from sympy.utilities.iterables import iterable
>>> from sympy import Tuple
>>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1]
>>> for i in things:
... print('%s %s' % (iterable(i), type(i)))
True <... 'list'>
True <... 'tuple'>
True <... 'set'>
True <class 'sympy.core.containers.Tuple'>
True <... 'generator'>
False <... 'dict'>
False <... 'str'>
False <... 'int'>
>>> iterable({}, exclude=None)
True
>>> iterable({}, exclude=str)
True
>>> iterable("no", exclude=str)
False
"""
if hasattr(i, '_iterable'):
return i._iterable
try:
iter(i)
except TypeError:
return False
if exclude:
return not isinstance(i, exclude)
return True
def is_sequence(i, include=None):
"""
Return a boolean indicating whether ``i`` is a sequence in the SymPy
sense. If anything that fails the test below should be included as
being a sequence for your application, set 'include' to that object's
type; multiple types should be passed as a tuple of types.
Note: although generators can generate a sequence, they often need special
handling to make sure their elements are captured before the generator is
exhausted, so these are not included by default in the definition of a
sequence.
See also: iterable
Examples
========
>>> from sympy.utilities.iterables import is_sequence
>>> from types import GeneratorType
>>> is_sequence([])
True
>>> is_sequence(set())
False
>>> is_sequence('abc')
False
>>> is_sequence('abc', include=str)
True
>>> generator = (c for c in 'abc')
>>> is_sequence(generator)
False
>>> is_sequence(generator, include=(str, GeneratorType))
True
"""
return (hasattr(i, '__getitem__') and
iterable(i) or
bool(include) and
isinstance(i, include))
try:
from itertools import zip_longest
except ImportError: # Python 2.7
from itertools import izip_longest as zip_longest
try:
# Python 2.7
from string import maketrans
except ImportError:
maketrans = str.maketrans
def as_int(n, strict=True):
"""
Convert the argument to a builtin integer.
The return value is guaranteed to be equal to the input. ValueError
is raised if the input has a non-integral value. When ``strict`` is
False, non-integer input that compares equal to the integer value
will not raise an error.
Examples
========
>>> from sympy.core.compatibility import as_int
>>> from sympy import sqrt, S
The function is primarily concerned with sanitizing input for
functions that need to work with builtin integers, so anything that
is unambiguously an integer should be returned as an int:
>>> as_int(S(3))
3
Floats, being of limited precision, are not assumed to be exact and
will raise an error unless the ``strict`` flag is False. This
precision issue becomes apparent for large floating point numbers:
>>> big = 1e23
>>> type(big) is float
True
>>> big == int(big)
True
>>> as_int(big)
Traceback (most recent call last):
...
ValueError: ... is not an integer
>>> as_int(big, strict=False)
99999999999999991611392
Input that might be a complex representation of an integer value is
also rejected by default:
>>> one = sqrt(3 + 2*sqrt(2)) - sqrt(2)
>>> int(one) == 1
True
>>> as_int(one)
Traceback (most recent call last):
...
ValueError: ... is not an integer
"""
from sympy.core.numbers import Integer
try:
if strict and not isinstance(n, SYMPY_INTS + (Integer,)):
raise TypeError
result = int(n)
if result != n:
raise TypeError
return result
except TypeError:
raise ValueError('%s is not an integer' % (n,))
def default_sort_key(item, order=None):
"""Return a key that can be used for sorting.
The key has the structure:
(class_key, (len(args), args), exponent.sort_key(), coefficient)
This key is supplied by the sort_key routine of Basic objects when
``item`` is a Basic object or an object (other than a string) that
sympifies to a Basic object. Otherwise, this function produces the
key.
The ``order`` argument is passed along to the sort_key routine and is
used to determine how the terms *within* an expression are ordered.
(See examples below) ``order`` options are: 'lex', 'grlex', 'grevlex',
and reversed values of the same (e.g. 'rev-lex'). The default order
value is None (which translates to 'lex').
Examples
========
>>> from sympy import S, I, default_sort_key, sin, cos, sqrt
>>> from sympy.core.function import UndefinedFunction
>>> from sympy.abc import x
The following are equivalent ways of getting the key for an object:
>>> x.sort_key() == default_sort_key(x)
True
Here are some examples of the key that is produced:
>>> default_sort_key(UndefinedFunction('f'))
((0, 0, 'UndefinedFunction'), (1, ('f',)), ((1, 0, 'Number'),
(0, ()), (), 1), 1)
>>> default_sort_key('1')
((0, 0, 'str'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
>>> default_sort_key(S.One)
((1, 0, 'Number'), (0, ()), (), 1)
>>> default_sort_key(2)
((1, 0, 'Number'), (0, ()), (), 2)
While sort_key is a method only defined for SymPy objects,
default_sort_key will accept anything as an argument so it is
more robust as a sorting key. For the following, using key=
lambda i: i.sort_key() would fail because 2 doesn't have a sort_key
method; that's why default_sort_key is used. Note, that it also
handles sympification of non-string items likes ints:
>>> a = [2, I, -I]
>>> sorted(a, key=default_sort_key)
[2, -I, I]
The returned key can be used anywhere that a key can be specified for
a function, e.g. sort, min, max, etc...:
>>> a.sort(key=default_sort_key); a[0]
2
>>> min(a, key=default_sort_key)
2
Note
----
The key returned is useful for getting items into a canonical order
that will be the same across platforms. It is not directly useful for
sorting lists of expressions:
>>> a, b = x, 1/x
Since ``a`` has only 1 term, its value of sort_key is unaffected by
``order``:
>>> a.sort_key() == a.sort_key('rev-lex')
True
If ``a`` and ``b`` are combined then the key will differ because there
are terms that can be ordered:
>>> eq = a + b
>>> eq.sort_key() == eq.sort_key('rev-lex')
False
>>> eq.as_ordered_terms()
[x, 1/x]
>>> eq.as_ordered_terms('rev-lex')
[1/x, x]
But since the keys for each of these terms are independent of ``order``'s
value, they don't sort differently when they appear separately in a list:
>>> sorted(eq.args, key=default_sort_key)
[1/x, x]
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
[1/x, x]
The order of terms obtained when using these keys is the order that would
be obtained if those terms were *factors* in a product.
Although it is useful for quickly putting expressions in canonical order,
it does not sort expressions based on their complexity defined by the
number of operations, power of variables and others:
>>> sorted([sin(x)*cos(x), sin(x)], key=default_sort_key)
[sin(x)*cos(x), sin(x)]
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
[sqrt(x), x, x**2, x**3]
See Also
========
ordered, sympy.core.expr.as_ordered_factors, sympy.core.expr.as_ordered_terms
"""
from .singleton import S
from .basic import Basic
from .sympify import sympify, SympifyError
from .compatibility import iterable
if isinstance(item, Basic):
return item.sort_key(order=order)
if iterable(item, exclude=string_types):
if isinstance(item, dict):
args = item.items()
unordered = True
elif isinstance(item, set):
args = item
unordered = True
else:
# e.g. tuple, list
args = list(item)
unordered = False
args = [default_sort_key(arg, order=order) for arg in args]
if unordered:
# e.g. dict, set
args = sorted(args)
cls_index, args = 10, (len(args), tuple(args))
else:
if not isinstance(item, string_types):
try:
item = sympify(item)
except SympifyError:
# e.g. lambda x: x
pass
else:
if isinstance(item, Basic):
# e.g int -> Integer
return default_sort_key(item)
# e.g. UndefinedFunction
# e.g. str
cls_index, args = 0, (1, (str(item),))
return (cls_index, 0, item.__class__.__name__
), args, S.One.sort_key(), S.One
def _nodes(e):
"""
A helper for ordered() which returns the node count of ``e`` which
for Basic objects is the number of Basic nodes in the expression tree
but for other objects is 1 (unless the object is an iterable or dict
for which the sum of nodes is returned).
"""
from .basic import Basic
if isinstance(e, Basic):
return e.count(Basic)
elif iterable(e):
return 1 + sum(_nodes(ei) for ei in e)
elif isinstance(e, dict):
return 1 + sum(_nodes(k) + _nodes(v) for k, v in e.items())
else:
return 1
def ordered(seq, keys=None, default=True, warn=False):
"""Return an iterator of the seq where keys are used to break ties in
a conservative fashion: if, after applying a key, there are no ties
then no other keys will be computed.
Two default keys will be applied if 1) keys are not provided or 2) the
given keys don't resolve all ties (but only if ``default`` is True). The
two keys are ``_nodes`` (which places smaller expressions before large) and
``default_sort_key`` which (if the ``sort_key`` for an object is defined
properly) should resolve any ties.
If ``warn`` is True then an error will be raised if there were no
keys remaining to break ties. This can be used if it was expected that
there should be no ties between items that are not identical.
Examples
========
>>> from sympy.utilities.iterables import ordered
>>> from sympy import count_ops
>>> from sympy.abc import x, y
The count_ops is not sufficient to break ties in this list and the first
two items appear in their original order (i.e. the sorting is stable):
>>> list(ordered([y + 2, x + 2, x**2 + y + 3],
... count_ops, default=False, warn=False))
...
[y + 2, x + 2, x**2 + y + 3]
The default_sort_key allows the tie to be broken:
>>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
...
[x + 2, y + 2, x**2 + y + 3]
Here, sequences are sorted by length, then sum:
>>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], [
... lambda x: len(x),
... lambda x: sum(x)]]
...
>>> list(ordered(seq, keys, default=False, warn=False))
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
If ``warn`` is True, an error will be raised if there were not
enough keys to break ties:
>>> list(ordered(seq, keys, default=False, warn=True))
Traceback (most recent call last):
...
ValueError: not enough keys to break ties
Notes
=====
The decorated sort is one of the fastest ways to sort a sequence for
which special item comparison is desired: the sequence is decorated,
sorted on the basis of the decoration (e.g. making all letters lower
case) and then undecorated. If one wants to break ties for items that
have the same decorated value, a second key can be used. But if the
second key is expensive to compute then it is inefficient to decorate
all items with both keys: only those items having identical first key
values need to be decorated. This function applies keys successively
only when needed to break ties. By yielding an iterator, use of the
tie-breaker is delayed as long as possible.
This function is best used in cases when use of the first key is
expected to be a good hashing function; if there are no unique hashes
from application of a key then that key should not have been used. The
exception, however, is that even if there are many collisions, if the
first group is small and one does not need to process all items in the
list then time will not be wasted sorting what one was not interested
in. For example, if one were looking for the minimum in a list and
there were several criteria used to define the sort order, then this
function would be good at returning that quickly if the first group
of candidates is small relative to the number of items being processed.
"""
d = defaultdict(list)
if keys:
if not isinstance(keys, (list, tuple)):
keys = [keys]
keys = list(keys)
f = keys.pop(0)
for a in seq:
d[f(a)].append(a)
else:
if not default:
raise ValueError('if default=False then keys must be provided')
d[None].extend(seq)
for k in sorted(d.keys()):
if len(d[k]) > 1:
if keys:
d[k] = ordered(d[k], keys, default, warn)
elif default:
d[k] = ordered(d[k], (_nodes, default_sort_key,),
default=False, warn=warn)
elif warn:
from sympy.utilities.iterables import uniq
u = list(uniq(d[k]))
if len(u) > 1:
raise ValueError(
'not enough keys to break ties: %s' % u)
for v in d[k]:
yield v
d.pop(k)
# If HAS_GMPY is 0, no supported version of gmpy is available. Otherwise,
# HAS_GMPY contains the major version number of gmpy; i.e. 1 for gmpy, and
# 2 for gmpy2.
# Versions of gmpy prior to 1.03 do not work correctly with int(largempz)
# For example, int(gmpy.mpz(2**256)) would raise OverflowError.
# See issue 4980.
# Minimum version of gmpy changed to 1.13 to allow a single code base to also
# work with gmpy2.
def _getenv(key, default=None):
from os import getenv
return getenv(key, default)
GROUND_TYPES = _getenv('SYMPY_GROUND_TYPES', 'auto').lower()
HAS_GMPY = 0
if GROUND_TYPES != 'python':
# Don't try to import gmpy2 if ground types is set to gmpy1. This is
# primarily intended for testing.
if GROUND_TYPES != 'gmpy1':
gmpy = import_module('gmpy2', min_module_version='2.0.0',
module_version_attr='version', module_version_attr_call_args=())
if gmpy:
HAS_GMPY = 2
else:
GROUND_TYPES = 'gmpy'
if not HAS_GMPY:
gmpy = import_module('gmpy', min_module_version='1.13',
module_version_attr='version', module_version_attr_call_args=())
if gmpy:
HAS_GMPY = 1
if GROUND_TYPES == 'auto':
if HAS_GMPY:
GROUND_TYPES = 'gmpy'
else:
GROUND_TYPES = 'python'
if GROUND_TYPES == 'gmpy' and not HAS_GMPY:
from warnings import warn
warn("gmpy library is not installed, switching to 'python' ground types")
GROUND_TYPES = 'python'
# SYMPY_INTS is a tuple containing the base types for valid integer types.
SYMPY_INTS = integer_types
if GROUND_TYPES == 'gmpy':
SYMPY_INTS += (type(gmpy.mpz(0)),)
# lru_cache compatible with py2.7 copied directly from
# https://code.activestate.com/
# recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
from collections import namedtuple
from functools import update_wrapper
from threading import RLock
_CacheInfo = namedtuple("CacheInfo", ["hits", "misses", "maxsize", "currsize"])
class _HashedSeq(list):
__slots__ = 'hashvalue'
def __init__(self, tup, hash=hash):
self[:] = tup
self.hashvalue = hash(tup)
def __hash__(self):
return self.hashvalue
def _make_key(args, kwds, typed,
kwd_mark = (object(),),
fasttypes = set((int, str, frozenset, type(None))),
sorted=sorted, tuple=tuple, type=type, len=len):
'Make a cache key from optionally typed positional and keyword arguments'
key = args
if kwds:
sorted_items = sorted(kwds.items())
key += kwd_mark
for item in sorted_items:
key += item
if typed:
key += tuple(type(v) for v in args)
if kwds:
key += tuple(type(v) for k, v in sorted_items)
elif len(key) == 1 and type(key[0]) in fasttypes:
return key[0]
return _HashedSeq(key)
def lru_cache(maxsize=100, typed=False):
"""Least-recently-used cache decorator.
If *maxsize* is set to None, the LRU features are disabled and the cache
can grow without bound.
If *typed* is True, arguments of different types will be cached separately.
For example, f(3.0) and f(3) will be treated as distinct calls with
distinct results.
Arguments to the cached function must be hashable.
View the cache statistics named tuple (hits, misses, maxsize, currsize) with
f.cache_info(). Clear the cache and statistics with f.cache_clear().
Access the underlying function with f.__wrapped__.
See: https://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
"""
# Users should only access the lru_cache through its public API:
# cache_info, cache_clear, and f.__wrapped__
# The internals of the lru_cache are encapsulated for thread safety and
# to allow the implementation to change (including a possible C version).
def decorating_function(user_function):
cache = dict()
stats = [0, 0] # make statistics updateable non-locally
HITS, MISSES = 0, 1 # names for the stats fields
make_key = _make_key
cache_get = cache.get # bound method to lookup key or return None
_len = len # localize the global len() function
lock = RLock() # because linkedlist updates aren't threadsafe
root = [] # root of the circular doubly linked list
root[:] = [root, root, None, None] # initialize by pointing to self
nonlocal_root = [root] # make updateable non-locally
PREV, NEXT, KEY, RESULT = 0, 1, 2, 3 # names for the link fields
if maxsize == 0:
def wrapper(*args, **kwds):
# no caching, just do a statistics update after a successful call
result = user_function(*args, **kwds)
stats[MISSES] += 1
return result
elif maxsize is None:
def wrapper(*args, **kwds):
# simple caching without ordering or size limit
key = make_key(args, kwds, typed)
result = cache_get(key, root) # root used here as a unique not-found sentinel
if result is not root:
stats[HITS] += 1
return result
result = user_function(*args, **kwds)
cache[key] = result
stats[MISSES] += 1
return result
else:
def wrapper(*args, **kwds):
# size limited caching that tracks accesses by recency
try:
key = make_key(args, kwds, typed) if kwds or typed else args
except TypeError:
stats[MISSES] += 1
return user_function(*args, **kwds)
with lock:
link = cache_get(key)
if link is not None:
# record recent use of the key by moving it to the front of the list
root, = nonlocal_root
link_prev, link_next, key, result = link
link_prev[NEXT] = link_next
link_next[PREV] = link_prev
last = root[PREV]
last[NEXT] = root[PREV] = link
link[PREV] = last
link[NEXT] = root
stats[HITS] += 1
return result
result = user_function(*args, **kwds)
with lock:
root, = nonlocal_root
if key in cache:
# getting here means that this same key was added to the
# cache while the lock was released. since the link
# update is already done, we need only return the
# computed result and update the count of misses.
pass
elif _len(cache) >= maxsize:
# use the old root to store the new key and result
oldroot = root
oldroot[KEY] = key
oldroot[RESULT] = result
# empty the oldest link and make it the new root
root = nonlocal_root[0] = oldroot[NEXT]
oldkey = root[KEY]
root[KEY] = root[RESULT] = None
# now update the cache dictionary for the new links
del cache[oldkey]
cache[key] = oldroot
else:
# put result in a new link at the front of the list
last = root[PREV]
link = [last, root, key, result]
last[NEXT] = root[PREV] = cache[key] = link
stats[MISSES] += 1
return result
def cache_info():
"""Report cache statistics"""
with lock:
return _CacheInfo(stats[HITS], stats[MISSES], maxsize, len(cache))
def cache_clear():
"""Clear the cache and cache statistics"""
with lock:
cache.clear()
root = nonlocal_root[0]
root[:] = [root, root, None, None]
stats[:] = [0, 0]
wrapper.__wrapped__ = user_function
wrapper.cache_info = cache_info
wrapper.cache_clear = cache_clear
return update_wrapper(wrapper, user_function)
return decorating_function
### End of backported lru_cache
if sys.version_info[:2] >= (3, 3):
# 3.2 has an lru_cache with an incompatible API
from functools import lru_cache
try:
from itertools import filterfalse
except ImportError: # Python 2.7
def filterfalse(pred, itr):
return filter(lambda x: not pred(x), itr)
try:
from time import clock
except ImportError: # Python 3.8+
from time import perf_counter as clock
|
7621261f868248303b87def22a2b7c7e79844f3bf922fcdb4a2916a68a3b497b | """
Adaptive numerical evaluation of SymPy expressions, using mpmath
for mathematical functions.
"""
from __future__ import print_function, division
import math
import mpmath.libmp as libmp
from mpmath import (
make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec)
from mpmath import inf as mpmath_inf
from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf,
fnan, fnone, fone, fzero, mpf_abs, mpf_add,
mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt,
mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin,
mpf_sqrt, normalize, round_nearest, to_int, to_str)
from mpmath.libmp import bitcount as mpmath_bitcount
from mpmath.libmp.backend import MPZ
from mpmath.libmp.libmpc import _infs_nan
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
from mpmath.libmp.gammazeta import mpf_bernoulli
from .compatibility import SYMPY_INTS, range
from .sympify import sympify
from .singleton import S
from sympy.utilities.iterables import is_sequence
LG10 = math.log(10, 2)
rnd = round_nearest
def bitcount(n):
"""Return smallest integer, b, such that |n|/2**b < 1.
"""
return mpmath_bitcount(abs(int(n)))
# Used in a few places as placeholder values to denote exponents and
# precision levels, e.g. of exact numbers. Must be careful to avoid
# passing these to mpmath functions or returning them in final results.
INF = float(mpmath_inf)
MINUS_INF = float(-mpmath_inf)
# ~= 100 digits. Real men set this to INF.
DEFAULT_MAXPREC = 333
class PrecisionExhausted(ArithmeticError):
pass
#----------------------------------------------------------------------------#
# #
# Helper functions for arithmetic and complex parts #
# #
#----------------------------------------------------------------------------#
"""
An mpf value tuple is a tuple of integers (sign, man, exp, bc)
representing a floating-point number: [1, -1][sign]*man*2**exp where
sign is 0 or 1 and bc should correspond to the number of bits used to
represent the mantissa (man) in binary notation, e.g.
>>> from sympy.core.evalf import bitcount
>>> sign, man, exp, bc = 0, 5, 1, 3
>>> n = [1, -1][sign]*man*2**exp
>>> n, bitcount(man)
(10, 3)
A temporary result is a tuple (re, im, re_acc, im_acc) where
re and im are nonzero mpf value tuples representing approximate
numbers, or None to denote exact zeros.
re_acc, im_acc are integers denoting log2(e) where e is the estimated
relative accuracy of the respective complex part, but may be anything
if the corresponding complex part is None.
"""
def fastlog(x):
"""Fast approximation of log2(x) for an mpf value tuple x.
Notes: Calculated as exponent + width of mantissa. This is an
approximation for two reasons: 1) it gives the ceil(log2(abs(x)))
value and 2) it is too high by 1 in the case that x is an exact
power of 2. Although this is easy to remedy by testing to see if
the odd mpf mantissa is 1 (indicating that one was dealing with
an exact power of 2) that would decrease the speed and is not
necessary as this is only being used as an approximation for the
number of bits in x. The correct return value could be written as
"x[2] + (x[3] if x[1] != 1 else 0)".
Since mpf tuples always have an odd mantissa, no check is done
to see if the mantissa is a multiple of 2 (in which case the
result would be too large by 1).
Examples
========
>>> from sympy import log
>>> from sympy.core.evalf import fastlog, bitcount
>>> s, m, e = 0, 5, 1
>>> bc = bitcount(m)
>>> n = [1, -1][s]*m*2**e
>>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc))
(10, 3.3, 4)
"""
if not x or x == fzero:
return MINUS_INF
return x[2] + x[3]
def pure_complex(v, or_real=False):
"""Return a and b if v matches a + I*b where b is not zero and
a and b are Numbers, else None. If `or_real` is True then 0 will
be returned for `b` if `v` is a real number.
>>> from sympy.core.evalf import pure_complex
>>> from sympy import sqrt, I, S
>>> a, b, surd = S(2), S(3), sqrt(2)
>>> pure_complex(a)
>>> pure_complex(a, or_real=True)
(2, 0)
>>> pure_complex(surd)
>>> pure_complex(a + b*I)
(2, 3)
>>> pure_complex(I)
(0, 1)
"""
h, t = v.as_coeff_Add()
if not t:
if or_real:
return h, t
return
c, i = t.as_coeff_Mul()
if i is S.ImaginaryUnit:
return h, c
def scaled_zero(mag, sign=1):
"""Return an mpf representing a power of two with magnitude ``mag``
and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just
remove the sign from within the list that it was initially wrapped
in.
Examples
========
>>> from sympy.core.evalf import scaled_zero
>>> from sympy import Float
>>> z, p = scaled_zero(100)
>>> z, p
(([0], 1, 100, 1), -1)
>>> ok = scaled_zero(z)
>>> ok
(0, 1, 100, 1)
>>> Float(ok)
1.26765060022823e+30
>>> Float(ok, p)
0.e+30
>>> ok, p = scaled_zero(100, -1)
>>> Float(scaled_zero(ok), p)
-0.e+30
"""
if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True):
return (mag[0][0],) + mag[1:]
elif isinstance(mag, SYMPY_INTS):
if sign not in [-1, 1]:
raise ValueError('sign must be +/-1')
rv, p = mpf_shift(fone, mag), -1
s = 0 if sign == 1 else 1
rv = ([s],) + rv[1:]
return rv, p
else:
raise ValueError('scaled zero expects int or scaled_zero tuple.')
def iszero(mpf, scaled=False):
if not scaled:
return not mpf or not mpf[1] and not mpf[-1]
return mpf and type(mpf[0]) is list and mpf[1] == mpf[-1] == 1
def complex_accuracy(result):
"""
Returns relative accuracy of a complex number with given accuracies
for the real and imaginary parts. The relative accuracy is defined
in the complex norm sense as ||z|+|error|| / |z| where error
is equal to (real absolute error) + (imag absolute error)*i.
The full expression for the (logarithmic) error can be approximated
easily by using the max norm to approximate the complex norm.
In the worst case (re and im equal), this is wrong by a factor
sqrt(2), or by log2(sqrt(2)) = 0.5 bit.
"""
re, im, re_acc, im_acc = result
if not im:
if not re:
return INF
return re_acc
if not re:
return im_acc
re_size = fastlog(re)
im_size = fastlog(im)
absolute_error = max(re_size - re_acc, im_size - im_acc)
relative_error = absolute_error - max(re_size, im_size)
return -relative_error
def get_abs(expr, prec, options):
re, im, re_acc, im_acc = evalf(expr, prec + 2, options)
if not re:
re, re_acc, im, im_acc = im, im_acc, re, re_acc
if im:
if expr.is_number:
abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)),
prec + 2, options)
return abs_expr, None, acc, None
else:
if 'subs' in options:
return libmp.mpc_abs((re, im), prec), None, re_acc, None
return abs(expr), None, prec, None
elif re:
return mpf_abs(re), None, re_acc, None
else:
return None, None, None, None
def get_complex_part(expr, no, prec, options):
"""no = 0 for real part, no = 1 for imaginary part"""
workprec = prec
i = 0
while 1:
res = evalf(expr, workprec, options)
value, accuracy = res[no::2]
# XXX is the last one correct? Consider re((1+I)**2).n()
if (not value) or accuracy >= prec or -value[2] > prec:
return value, None, accuracy, None
workprec += max(30, 2**i)
i += 1
def evalf_abs(expr, prec, options):
return get_abs(expr.args[0], prec, options)
def evalf_re(expr, prec, options):
return get_complex_part(expr.args[0], 0, prec, options)
def evalf_im(expr, prec, options):
return get_complex_part(expr.args[0], 1, prec, options)
def finalize_complex(re, im, prec):
if re == fzero and im == fzero:
raise ValueError("got complex zero with unknown accuracy")
elif re == fzero:
return None, im, None, prec
elif im == fzero:
return re, None, prec, None
size_re = fastlog(re)
size_im = fastlog(im)
if size_re > size_im:
re_acc = prec
im_acc = prec + min(-(size_re - size_im), 0)
else:
im_acc = prec
re_acc = prec + min(-(size_im - size_re), 0)
return re, im, re_acc, im_acc
def chop_parts(value, prec):
"""
Chop off tiny real or complex parts.
"""
re, im, re_acc, im_acc = value
# Method 1: chop based on absolute value
if re and re not in _infs_nan and (fastlog(re) < -prec + 4):
re, re_acc = None, None
if im and im not in _infs_nan and (fastlog(im) < -prec + 4):
im, im_acc = None, None
# Method 2: chop if inaccurate and relatively small
if re and im:
delta = fastlog(re) - fastlog(im)
if re_acc < 2 and (delta - re_acc <= -prec + 4):
re, re_acc = None, None
if im_acc < 2 and (delta - im_acc >= prec - 4):
im, im_acc = None, None
return re, im, re_acc, im_acc
def check_target(expr, result, prec):
a = complex_accuracy(result)
if a < prec:
raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n"
"from zero. Try simplifying the input, using chop=True, or providing "
"a higher maxn for evalf" % (expr))
def get_integer_part(expr, no, options, return_ints=False):
"""
With no = 1, computes ceiling(expr)
With no = -1, computes floor(expr)
Note: this function either gives the exact result or signals failure.
"""
from sympy.functions.elementary.complexes import re, im
# The expression is likely less than 2^30 or so
assumed_size = 30
ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options)
# We now know the size, so we can calculate how much extra precision
# (if any) is needed to get within the nearest integer
if ire and iim:
gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc)
elif ire:
gap = fastlog(ire) - ire_acc
elif iim:
gap = fastlog(iim) - iim_acc
else:
# ... or maybe the expression was exactly zero
if return_ints:
return 0, 0
else:
return None, None, None, None
margin = 10
if gap >= -margin:
prec = margin + assumed_size + gap
ire, iim, ire_acc, iim_acc = evalf(
expr, prec, options)
else:
prec = assumed_size
# We can now easily find the nearest integer, but to find floor/ceil, we
# must also calculate whether the difference to the nearest integer is
# positive or negative (which may fail if very close).
def calc_part(re_im, nexpr):
from sympy.core.add import Add
n, c, p, b = nexpr
is_int = (p == 0)
nint = int(to_int(nexpr, rnd))
if is_int:
# make sure that we had enough precision to distinguish
# between nint and the re or im part (re_im) of expr that
# was passed to calc_part
ire, iim, ire_acc, iim_acc = evalf(
re_im - nint, 10, options) # don't need much precision
assert not iim
size = -fastlog(ire) + 2 # -ve b/c ire is less than 1
if size > prec:
ire, iim, ire_acc, iim_acc = evalf(
re_im, size, options)
assert not iim
nexpr = ire
n, c, p, b = nexpr
is_int = (p == 0)
nint = int(to_int(nexpr, rnd))
if not is_int:
# if there are subs and they all contain integer re/im parts
# then we can (hopefully) safely substitute them into the
# expression
s = options.get('subs', False)
if s:
doit = True
from sympy.core.compatibility import as_int
# use strict=False with as_int because we take
# 2.0 == 2
for v in s.values():
try:
as_int(v, strict=False)
except ValueError:
try:
[as_int(i, strict=False) for i in v.as_real_imag()]
continue
except (ValueError, AttributeError):
doit = False
break
if doit:
re_im = re_im.subs(s)
re_im = Add(re_im, -nint, evaluate=False)
x, _, x_acc, _ = evalf(re_im, 10, options)
try:
check_target(re_im, (x, None, x_acc, None), 3)
except PrecisionExhausted:
if not re_im.equals(0):
raise PrecisionExhausted
x = fzero
nint += int(no*(mpf_cmp(x or fzero, fzero) == no))
nint = from_int(nint)
return nint, INF
re_, im_, re_acc, im_acc = None, None, None, None
if ire:
re_, re_acc = calc_part(re(expr, evaluate=False), ire)
if iim:
im_, im_acc = calc_part(im(expr, evaluate=False), iim)
if return_ints:
return int(to_int(re_ or fzero)), int(to_int(im_ or fzero))
return re_, im_, re_acc, im_acc
def evalf_ceiling(expr, prec, options):
return get_integer_part(expr.args[0], 1, options)
def evalf_floor(expr, prec, options):
return get_integer_part(expr.args[0], -1, options)
#----------------------------------------------------------------------------#
# #
# Arithmetic operations #
# #
#----------------------------------------------------------------------------#
def add_terms(terms, prec, target_prec):
"""
Helper for evalf_add. Adds a list of (mpfval, accuracy) terms.
Returns
-------
- None, None if there are no non-zero terms;
- terms[0] if there is only 1 term;
- scaled_zero if the sum of the terms produces a zero by cancellation
e.g. mpfs representing 1 and -1 would produce a scaled zero which need
special handling since they are not actually zero and they are purposely
malformed to ensure that they can't be used in anything but accuracy
calculations;
- a tuple that is scaled to target_prec that corresponds to the
sum of the terms.
The returned mpf tuple will be normalized to target_prec; the input
prec is used to define the working precision.
XXX explain why this is needed and why one can't just loop using mpf_add
"""
terms = [t for t in terms if not iszero(t[0])]
if not terms:
return None, None
elif len(terms) == 1:
return terms[0]
# see if any argument is NaN or oo and thus warrants a special return
special = []
from sympy.core.numbers import Float
for t in terms:
arg = Float._new(t[0], 1)
if arg is S.NaN or arg.is_infinite:
special.append(arg)
if special:
from sympy.core.add import Add
rv = evalf(Add(*special), prec + 4, {})
return rv[0], rv[2]
working_prec = 2*prec
sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF
for x, accuracy in terms:
sign, man, exp, bc = x
if sign:
man = -man
absolute_error = max(absolute_error, bc + exp - accuracy)
delta = exp - sum_exp
if exp >= sum_exp:
# x much larger than existing sum?
# first: quick test
if ((delta > working_prec) and
((not sum_man) or
delta - bitcount(abs(sum_man)) > working_prec)):
sum_man = man
sum_exp = exp
else:
sum_man += (man << delta)
else:
delta = -delta
# x much smaller than existing sum?
if delta - bc > working_prec:
if not sum_man:
sum_man, sum_exp = man, exp
else:
sum_man = (sum_man << delta) + man
sum_exp = exp
if not sum_man:
return scaled_zero(absolute_error)
if sum_man < 0:
sum_sign = 1
sum_man = -sum_man
else:
sum_sign = 0
sum_bc = bitcount(sum_man)
sum_accuracy = sum_exp + sum_bc - absolute_error
r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec,
rnd), sum_accuracy
return r
def evalf_add(v, prec, options):
res = pure_complex(v)
if res:
h, c = res
re, _, re_acc, _ = evalf(h, prec, options)
im, _, im_acc, _ = evalf(c, prec, options)
return re, im, re_acc, im_acc
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
i = 0
target_prec = prec
while 1:
options['maxprec'] = min(oldmaxprec, 2*prec)
terms = [evalf(arg, prec + 10, options) for arg in v.args]
re, re_acc = add_terms(
[a[0::2] for a in terms if a[0]], prec, target_prec)
im, im_acc = add_terms(
[a[1::2] for a in terms if a[1]], prec, target_prec)
acc = complex_accuracy((re, im, re_acc, im_acc))
if acc >= target_prec:
if options.get('verbose'):
print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc)
break
else:
if (prec - target_prec) > options['maxprec']:
break
prec = prec + max(10 + 2**i, target_prec - acc)
i += 1
if options.get('verbose'):
print("ADD: restarting with prec", prec)
options['maxprec'] = oldmaxprec
if iszero(re, scaled=True):
re = scaled_zero(re)
if iszero(im, scaled=True):
im = scaled_zero(im)
return re, im, re_acc, im_acc
def evalf_mul(v, prec, options):
res = pure_complex(v)
if res:
# the only pure complex that is a mul is h*I
_, h = res
im, _, im_acc, _ = evalf(h, prec, options)
return None, im, None, im_acc
args = list(v.args)
# see if any argument is NaN or oo and thus warrants a special return
special = []
from sympy.core.numbers import Float
for arg in args:
arg = evalf(arg, prec, options)
if arg[0] is None:
continue
arg = Float._new(arg[0], 1)
if arg is S.NaN or arg.is_infinite:
special.append(arg)
if special:
from sympy.core.mul import Mul
special = Mul(*special)
return evalf(special, prec + 4, {})
# With guard digits, multiplication in the real case does not destroy
# accuracy. This is also true in the complex case when considering the
# total accuracy; however accuracy for the real or imaginary parts
# separately may be lower.
acc = prec
# XXX: big overestimate
working_prec = prec + len(args) + 5
# Empty product is 1
start = man, exp, bc = MPZ(1), 0, 1
# First, we multiply all pure real or pure imaginary numbers.
# direction tells us that the result should be multiplied by
# I**direction; all other numbers get put into complex_factors
# to be multiplied out after the first phase.
last = len(args)
direction = 0
args.append(S.One)
complex_factors = []
for i, arg in enumerate(args):
if i != last and pure_complex(arg):
args[-1] = (args[-1]*arg).expand()
continue
elif i == last and arg is S.One:
continue
re, im, re_acc, im_acc = evalf(arg, working_prec, options)
if re and im:
complex_factors.append((re, im, re_acc, im_acc))
continue
elif re:
(s, m, e, b), w_acc = re, re_acc
elif im:
(s, m, e, b), w_acc = im, im_acc
direction += 1
else:
return None, None, None, None
direction += 2*s
man *= m
exp += e
bc += b
if bc > 3*working_prec:
man >>= working_prec
exp += working_prec
acc = min(acc, w_acc)
sign = (direction & 2) >> 1
if not complex_factors:
v = normalize(sign, man, exp, bitcount(man), prec, rnd)
# multiply by i
if direction & 1:
return None, v, None, acc
else:
return v, None, acc, None
else:
# initialize with the first term
if (man, exp, bc) != start:
# there was a real part; give it an imaginary part
re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
i0 = 0
else:
# there is no real part to start (other than the starting 1)
wre, wim, wre_acc, wim_acc = complex_factors[0]
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
re = wre
im = wim
i0 = 1
for wre, wim, wre_acc, wim_acc in complex_factors[i0:]:
# acc is the overall accuracy of the product; we aren't
# computing exact accuracies of the product.
acc = min(acc,
complex_accuracy((wre, wim, wre_acc, wim_acc)))
use_prec = working_prec
A = mpf_mul(re, wre, use_prec)
B = mpf_mul(mpf_neg(im), wim, use_prec)
C = mpf_mul(re, wim, use_prec)
D = mpf_mul(im, wre, use_prec)
re = mpf_add(A, B, use_prec)
im = mpf_add(C, D, use_prec)
if options.get('verbose'):
print("MUL: wanted", prec, "accurate bits, got", acc)
# multiply by I
if direction & 1:
re, im = mpf_neg(im), re
return re, im, acc, acc
def evalf_pow(v, prec, options):
target_prec = prec
base, exp = v.args
# We handle x**n separately. This has two purposes: 1) it is much
# faster, because we avoid calling evalf on the exponent, and 2) it
# allows better handling of real/imaginary parts that are exactly zero
if exp.is_Integer:
p = exp.p
# Exact
if not p:
return fone, None, prec, None
# Exponentiation by p magnifies relative error by |p|, so the
# base must be evaluated with increased precision if p is large
prec += int(math.log(abs(p), 2))
re, im, re_acc, im_acc = evalf(base, prec + 5, options)
# Real to integer power
if re and not im:
return mpf_pow_int(re, p, target_prec), None, target_prec, None
# (x*I)**n = I**n * x**n
if im and not re:
z = mpf_pow_int(im, p, target_prec)
case = p % 4
if case == 0:
return z, None, target_prec, None
if case == 1:
return None, z, None, target_prec
if case == 2:
return mpf_neg(z), None, target_prec, None
if case == 3:
return None, mpf_neg(z), None, target_prec
# Zero raised to an integer power
if not re:
return None, None, None, None
# General complex number to arbitrary integer power
re, im = libmp.mpc_pow_int((re, im), p, prec)
# Assumes full accuracy in input
return finalize_complex(re, im, target_prec)
# Pure square root
if exp is S.Half:
xre, xim, _, _ = evalf(base, prec + 5, options)
# General complex square root
if xim:
re, im = libmp.mpc_sqrt((xre or fzero, xim), prec)
return finalize_complex(re, im, prec)
if not xre:
return None, None, None, None
# Square root of a negative real number
if mpf_lt(xre, fzero):
return None, mpf_sqrt(mpf_neg(xre), prec), None, prec
# Positive square root
return mpf_sqrt(xre, prec), None, prec, None
# We first evaluate the exponent to find its magnitude
# This determines the working precision that must be used
prec += 10
yre, yim, _, _ = evalf(exp, prec, options)
# Special cases: x**0
if not (yre or yim):
return fone, None, prec, None
ysize = fastlog(yre)
# Restart if too big
# XXX: prec + ysize might exceed maxprec
if ysize > 5:
prec += ysize
yre, yim, _, _ = evalf(exp, prec, options)
# Pure exponential function; no need to evalf the base
if base is S.Exp1:
if yim:
re, im = libmp.mpc_exp((yre or fzero, yim), prec)
return finalize_complex(re, im, target_prec)
return mpf_exp(yre, target_prec), None, target_prec, None
xre, xim, _, _ = evalf(base, prec + 5, options)
# 0**y
if not (xre or xim):
return None, None, None, None
# (real ** complex) or (complex ** complex)
if yim:
re, im = libmp.mpc_pow(
(xre or fzero, xim or fzero), (yre or fzero, yim),
target_prec)
return finalize_complex(re, im, target_prec)
# complex ** real
if xim:
re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec)
return finalize_complex(re, im, target_prec)
# negative ** real
elif mpf_lt(xre, fzero):
re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec)
return finalize_complex(re, im, target_prec)
# positive ** real
else:
return mpf_pow(xre, yre, target_prec), None, target_prec, None
#----------------------------------------------------------------------------#
# #
# Special functions #
# #
#----------------------------------------------------------------------------#
def evalf_trig(v, prec, options):
"""
This function handles sin and cos of complex arguments.
TODO: should also handle tan of complex arguments.
"""
from sympy import cos, sin
if isinstance(v, cos):
func = mpf_cos
elif isinstance(v, sin):
func = mpf_sin
else:
raise NotImplementedError
arg = v.args[0]
# 20 extra bits is possibly overkill. It does make the need
# to restart very unlikely
xprec = prec + 20
re, im, re_acc, im_acc = evalf(arg, xprec, options)
if im:
if 'subs' in options:
v = v.subs(options['subs'])
return evalf(v._eval_evalf(prec), prec, options)
if not re:
if isinstance(v, cos):
return fone, None, prec, None
elif isinstance(v, sin):
return None, None, None, None
else:
raise NotImplementedError
# For trigonometric functions, we are interested in the
# fixed-point (absolute) accuracy of the argument.
xsize = fastlog(re)
# Magnitude <= 1.0. OK to compute directly, because there is no
# danger of hitting the first root of cos (with sin, magnitude
# <= 2.0 would actually be ok)
if xsize < 1:
return func(re, prec, rnd), None, prec, None
# Very large
if xsize >= 10:
xprec = prec + xsize
re, im, re_acc, im_acc = evalf(arg, xprec, options)
# Need to repeat in case the argument is very close to a
# multiple of pi (or pi/2), hitting close to a root
while 1:
y = func(re, prec, rnd)
ysize = fastlog(y)
gap = -ysize
accuracy = (xprec - xsize) - gap
if accuracy < prec:
if options.get('verbose'):
print("SIN/COS", accuracy, "wanted", prec, "gap", gap)
print(to_str(y, 10))
if xprec > options.get('maxprec', DEFAULT_MAXPREC):
return y, None, accuracy, None
xprec += gap
re, im, re_acc, im_acc = evalf(arg, xprec, options)
continue
else:
return y, None, prec, None
def evalf_log(expr, prec, options):
from sympy import Abs, Add, log
if len(expr.args)>1:
expr = expr.doit()
return evalf(expr, prec, options)
arg = expr.args[0]
workprec = prec + 10
xre, xim, xacc, _ = evalf(arg, workprec, options)
if xim:
# XXX: use get_abs etc instead
re = evalf_log(
log(Abs(arg, evaluate=False), evaluate=False), prec, options)
im = mpf_atan2(xim, xre or fzero, prec)
return re[0], im, re[2], prec
imaginary_term = (mpf_cmp(xre, fzero) < 0)
re = mpf_log(mpf_abs(xre), prec, rnd)
size = fastlog(re)
if prec - size > workprec and re != fzero:
# We actually need to compute 1+x accurately, not x
arg = Add(S.NegativeOne, arg, evaluate=False)
xre, xim, _, _ = evalf_add(arg, prec, options)
prec2 = workprec - fastlog(xre)
# xre is now x - 1 so we add 1 back here to calculate x
re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd)
re_acc = prec
if imaginary_term:
return re, mpf_pi(prec), re_acc, prec
else:
return re, None, re_acc, None
def evalf_atan(v, prec, options):
arg = v.args[0]
xre, xim, reacc, imacc = evalf(arg, prec + 5, options)
if xre is xim is None:
return (None,)*4
if xim:
raise NotImplementedError
return mpf_atan(xre, prec, rnd), None, prec, None
def evalf_subs(prec, subs):
""" Change all Float entries in `subs` to have precision prec. """
newsubs = {}
for a, b in subs.items():
b = S(b)
if b.is_Float:
b = b._eval_evalf(prec)
newsubs[a] = b
return newsubs
def evalf_piecewise(expr, prec, options):
from sympy import Float, Integer
if 'subs' in options:
expr = expr.subs(evalf_subs(prec, options['subs']))
newopts = options.copy()
del newopts['subs']
if hasattr(expr, 'func'):
return evalf(expr, prec, newopts)
if type(expr) == float:
return evalf(Float(expr), prec, newopts)
if type(expr) == int:
return evalf(Integer(expr), prec, newopts)
# We still have undefined symbols
raise NotImplementedError
def evalf_bernoulli(expr, prec, options):
arg = expr.args[0]
if not arg.is_Integer:
raise ValueError("Bernoulli number index must be an integer")
n = int(arg)
b = mpf_bernoulli(n, prec, rnd)
if b == fzero:
return None, None, None, None
return b, None, prec, None
#----------------------------------------------------------------------------#
# #
# High-level operations #
# #
#----------------------------------------------------------------------------#
def as_mpmath(x, prec, options):
from sympy.core.numbers import Infinity, NegativeInfinity, Zero
x = sympify(x)
if isinstance(x, Zero) or x == 0:
return mpf(0)
if isinstance(x, Infinity):
return mpf('inf')
if isinstance(x, NegativeInfinity):
return mpf('-inf')
# XXX
re, im, _, _ = evalf(x, prec, options)
if im:
return mpc(re or fzero, im)
return mpf(re)
def do_integral(expr, prec, options):
func = expr.args[0]
x, xlow, xhigh = expr.args[1]
if xlow == xhigh:
xlow = xhigh = 0
elif x not in func.free_symbols:
# only the difference in limits matters in this case
# so if there is a symbol in common that will cancel
# out when taking the difference, then use that
# difference
if xhigh.free_symbols & xlow.free_symbols:
diff = xhigh - xlow
if diff.is_number:
xlow, xhigh = 0, diff
oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC)
options['maxprec'] = min(oldmaxprec, 2*prec)
with workprec(prec + 5):
xlow = as_mpmath(xlow, prec + 15, options)
xhigh = as_mpmath(xhigh, prec + 15, options)
# Integration is like summation, and we can phone home from
# the integrand function to update accuracy summation style
# Note that this accuracy is inaccurate, since it fails
# to account for the variable quadrature weights,
# but it is better than nothing
from sympy import cos, sin, Wild
have_part = [False, False]
max_real_term = [MINUS_INF]
max_imag_term = [MINUS_INF]
def f(t):
re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}})
have_part[0] = re or have_part[0]
have_part[1] = im or have_part[1]
max_real_term[0] = max(max_real_term[0], fastlog(re))
max_imag_term[0] = max(max_imag_term[0], fastlog(im))
if im:
return mpc(re or fzero, im)
return mpf(re or fzero)
if options.get('quad') == 'osc':
A = Wild('A', exclude=[x])
B = Wild('B', exclude=[x])
D = Wild('D')
m = func.match(cos(A*x + B)*D)
if not m:
m = func.match(sin(A*x + B)*D)
if not m:
raise ValueError("An integrand of the form sin(A*x+B)*f(x) "
"or cos(A*x+B)*f(x) is required for oscillatory quadrature")
period = as_mpmath(2*S.Pi/m[A], prec + 15, options)
result = quadosc(f, [xlow, xhigh], period=period)
# XXX: quadosc does not do error detection yet
quadrature_error = MINUS_INF
else:
result, quadrature_error = quadts(f, [xlow, xhigh], error=1)
quadrature_error = fastlog(quadrature_error._mpf_)
options['maxprec'] = oldmaxprec
if have_part[0]:
re = result.real._mpf_
if re == fzero:
re, re_acc = scaled_zero(
min(-prec, -max_real_term[0], -quadrature_error))
re = scaled_zero(re) # handled ok in evalf_integral
else:
re_acc = -max(max_real_term[0] - fastlog(re) -
prec, quadrature_error)
else:
re, re_acc = None, None
if have_part[1]:
im = result.imag._mpf_
if im == fzero:
im, im_acc = scaled_zero(
min(-prec, -max_imag_term[0], -quadrature_error))
im = scaled_zero(im) # handled ok in evalf_integral
else:
im_acc = -max(max_imag_term[0] - fastlog(im) -
prec, quadrature_error)
else:
im, im_acc = None, None
result = re, im, re_acc, im_acc
return result
def evalf_integral(expr, prec, options):
limits = expr.limits
if len(limits) != 1 or len(limits[0]) != 3:
raise NotImplementedError
workprec = prec
i = 0
maxprec = options.get('maxprec', INF)
while 1:
result = do_integral(expr, workprec, options)
accuracy = complex_accuracy(result)
if accuracy >= prec: # achieved desired precision
break
if workprec >= maxprec: # can't increase accuracy any more
break
if accuracy == -1:
# maybe the answer really is zero and maybe we just haven't increased
# the precision enough. So increase by doubling to not take too long
# to get to maxprec.
workprec *= 2
else:
workprec += max(prec, 2**i)
workprec = min(workprec, maxprec)
i += 1
return result
def check_convergence(numer, denom, n):
"""
Returns (h, g, p) where
-- h is:
> 0 for convergence of rate 1/factorial(n)**h
< 0 for divergence of rate factorial(n)**(-h)
= 0 for geometric or polynomial convergence or divergence
-- abs(g) is:
> 1 for geometric convergence of rate 1/h**n
< 1 for geometric divergence of rate h**n
= 1 for polynomial convergence or divergence
(g < 0 indicates an alternating series)
-- p is:
> 1 for polynomial convergence of rate 1/n**h
<= 1 for polynomial divergence of rate n**(-h)
"""
from sympy import Poly
npol = Poly(numer, n)
dpol = Poly(denom, n)
p = npol.degree()
q = dpol.degree()
rate = q - p
if rate:
return rate, None, None
constant = dpol.LC() / npol.LC()
if abs(constant) != 1:
return rate, constant, None
if npol.degree() == dpol.degree() == 0:
return rate, constant, 0
pc = npol.all_coeffs()[1]
qc = dpol.all_coeffs()[1]
return rate, constant, (qc - pc)/dpol.LC()
def hypsum(expr, n, start, prec):
"""
Sum a rapidly convergent infinite hypergeometric series with
given general term, e.g. e = hypsum(1/factorial(n), n). The
quotient between successive terms must be a quotient of integer
polynomials.
"""
from sympy import Float, hypersimp, lambdify
if prec == float('inf'):
raise NotImplementedError('does not support inf prec')
if start:
expr = expr.subs(n, n + start)
hs = hypersimp(expr, n)
if hs is None:
raise NotImplementedError("a hypergeometric series is required")
num, den = hs.as_numer_denom()
func1 = lambdify(n, num)
func2 = lambdify(n, den)
h, g, p = check_convergence(num, den, n)
if h < 0:
raise ValueError("Sum diverges like (n!)^%i" % (-h))
term = expr.subs(n, 0)
if not term.is_Rational:
raise NotImplementedError("Non rational term functionality is not implemented.")
# Direct summation if geometric or faster
if h > 0 or (h == 0 and abs(g) > 1):
term = (MPZ(term.p) << prec) // term.q
s = term
k = 1
while abs(term) > 5:
term *= MPZ(func1(k - 1))
term //= MPZ(func2(k - 1))
s += term
k += 1
return from_man_exp(s, -prec)
else:
alt = g < 0
if abs(g) < 1:
raise ValueError("Sum diverges like (%i)^n" % abs(1/g))
if p < 1 or (p == 1 and not alt):
raise ValueError("Sum diverges like n^%i" % (-p))
# We have polynomial convergence: use Richardson extrapolation
vold = None
ndig = prec_to_dps(prec)
while True:
# Need to use at least quad precision because a lot of cancellation
# might occur in the extrapolation process; we check the answer to
# make sure that the desired precision has been reached, too.
prec2 = 4*prec
term0 = (MPZ(term.p) << prec2) // term.q
def summand(k, _term=[term0]):
if k:
k = int(k)
_term[0] *= MPZ(func1(k - 1))
_term[0] //= MPZ(func2(k - 1))
return make_mpf(from_man_exp(_term[0], -prec2))
with workprec(prec):
v = nsum(summand, [0, mpmath_inf], method='richardson')
vf = Float(v, ndig)
if vold is not None and vold == vf:
break
prec += prec # double precision each time
vold = vf
return v._mpf_
def evalf_prod(expr, prec, options):
from sympy import Sum
if all((l[1] - l[2]).is_Integer for l in expr.limits):
re, im, re_acc, im_acc = evalf(expr.doit(), prec=prec, options=options)
else:
re, im, re_acc, im_acc = evalf(expr.rewrite(Sum), prec=prec, options=options)
return re, im, re_acc, im_acc
def evalf_sum(expr, prec, options):
from sympy import Float
if 'subs' in options:
expr = expr.subs(options['subs'])
func = expr.function
limits = expr.limits
if len(limits) != 1 or len(limits[0]) != 3:
raise NotImplementedError
if func.is_zero:
return None, None, prec, None
prec2 = prec + 10
try:
n, a, b = limits[0]
if b != S.Infinity or a != int(a):
raise NotImplementedError
# Use fast hypergeometric summation if possible
v = hypsum(func, n, int(a), prec2)
delta = prec - fastlog(v)
if fastlog(v) < -10:
v = hypsum(func, n, int(a), delta)
return v, None, min(prec, delta), None
except NotImplementedError:
# Euler-Maclaurin summation for general series
eps = Float(2.0)**(-prec)
for i in range(1, 5):
m = n = 2**i * prec
s, err = expr.euler_maclaurin(m=m, n=n, eps=eps,
eval_integral=False)
err = err.evalf()
if err <= eps:
break
err = fastlog(evalf(abs(err), 20, options)[0])
re, im, re_acc, im_acc = evalf(s, prec2, options)
if re_acc is None:
re_acc = -err
if im_acc is None:
im_acc = -err
return re, im, re_acc, im_acc
#----------------------------------------------------------------------------#
# #
# Symbolic interface #
# #
#----------------------------------------------------------------------------#
def evalf_symbol(x, prec, options):
val = options['subs'][x]
if isinstance(val, mpf):
if not val:
return None, None, None, None
return val._mpf_, None, prec, None
else:
if not '_cache' in options:
options['_cache'] = {}
cache = options['_cache']
cached, cached_prec = cache.get(x, (None, MINUS_INF))
if cached_prec >= prec:
return cached
v = evalf(sympify(val), prec, options)
cache[x] = (v, prec)
return v
evalf_table = None
def _create_evalf_table():
global evalf_table
from sympy.functions.combinatorial.numbers import bernoulli
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero
from sympy.core.power import Pow
from sympy.core.symbol import Dummy, Symbol
from sympy.functions.elementary.complexes import Abs, im, re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, cos, sin
from sympy.integrals.integrals import Integral
evalf_table = {
Symbol: evalf_symbol,
Dummy: evalf_symbol,
Float: lambda x, prec, options: (x._mpf_, None, prec, None),
Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None),
Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None),
Zero: lambda x, prec, options: (None, None, prec, None),
One: lambda x, prec, options: (fone, None, prec, None),
Half: lambda x, prec, options: (fhalf, None, prec, None),
Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
NaN: lambda x, prec, options: (fnan, None, prec, None),
exp: lambda x, prec, options: evalf_pow(
Pow(S.Exp1, x.args[0], evaluate=False), prec, options),
cos: evalf_trig,
sin: evalf_trig,
Add: evalf_add,
Mul: evalf_mul,
Pow: evalf_pow,
log: evalf_log,
atan: evalf_atan,
Abs: evalf_abs,
re: evalf_re,
im: evalf_im,
floor: evalf_floor,
ceiling: evalf_ceiling,
Integral: evalf_integral,
Sum: evalf_sum,
Product: evalf_prod,
Piecewise: evalf_piecewise,
bernoulli: evalf_bernoulli,
}
def evalf(x, prec, options):
from sympy import re as re_, im as im_
try:
rf = evalf_table[x.func]
r = rf(x, prec, options)
except KeyError:
# Fall back to ordinary evalf if possible
if 'subs' in options:
x = x.subs(evalf_subs(prec, options['subs']))
xe = x._eval_evalf(prec)
if xe is None:
raise NotImplementedError
as_real_imag = getattr(xe, "as_real_imag", None)
if as_real_imag is None:
raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf()
re, im = as_real_imag()
if re.has(re_) or im.has(im_):
raise NotImplementedError
if re == 0:
re = None
reprec = None
elif re.is_number:
re = re._to_mpmath(prec, allow_ints=False)._mpf_
reprec = prec
else:
raise NotImplementedError
if im == 0:
im = None
imprec = None
elif im.is_number:
im = im._to_mpmath(prec, allow_ints=False)._mpf_
imprec = prec
else:
raise NotImplementedError
r = re, im, reprec, imprec
if options.get("verbose"):
print("### input", x)
print("### output", to_str(r[0] or fzero, 50))
print("### raw", r) # r[0], r[2]
print()
chop = options.get('chop', False)
if chop:
if chop is True:
chop_prec = prec
else:
# convert (approximately) from given tolerance;
# the formula here will will make 1e-i rounds to 0 for
# i in the range +/-27 while 2e-i will not be chopped
chop_prec = int(round(-3.321*math.log10(chop) + 2.5))
if chop_prec == 3:
chop_prec -= 1
r = chop_parts(r, chop_prec)
if options.get("strict"):
check_target(x, r, prec)
return r
class EvalfMixin(object):
"""Mixin class adding evalf capabililty."""
__slots__ = []
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""
Evaluate the given formula to an accuracy of n digits.
Optional keyword arguments:
subs=<dict>
Substitute numerical values for symbols, e.g.
subs={x:3, y:1+pi}. The substitutions must be given as a
dictionary.
maxn=<integer>
Allow a maximum temporary working precision of maxn digits
(default=100)
chop=<bool>
Replace tiny real or imaginary parts in subresults
by exact zeros (default=False)
strict=<bool>
Raise PrecisionExhausted if any subresult fails to evaluate
to full accuracy, given the available maxprec
(default=False)
quad=<str>
Choose algorithm for numerical quadrature. By default,
tanh-sinh quadrature is used. For oscillatory
integrals on an infinite interval, try quad='osc'.
verbose=<bool>
Print debug information (default=False)
Notes
=====
When Floats are naively substituted into an expression, precision errors
may adversely affect the result. For example, adding 1e16 (a Float) to 1
will truncate to 1e16; if 1e16 is then subtracted, the result will be 0.
That is exactly what happens in the following:
>>> from sympy.abc import x, y, z
>>> values = {x: 1e16, y: 1, z: 1e16}
>>> (x + y - z).subs(values)
0
Using the subs argument for evalf is the accurate way to evaluate such an
expression:
>>> (x + y - z).evalf(subs=values)
1.00000000000000
"""
from sympy import Float, Number
n = n if n is not None else 15
if subs and is_sequence(subs):
raise TypeError('subs must be given as a dictionary')
# for sake of sage that doesn't like evalf(1)
if n == 1 and isinstance(self, Number):
from sympy.core.expr import _mag
rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose)
m = _mag(rv)
rv = rv.round(1 - m)
return rv
if not evalf_table:
_create_evalf_table()
prec = dps_to_prec(n)
options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop,
'strict': strict, 'verbose': verbose}
if subs is not None:
options['subs'] = subs
if quad is not None:
options['quad'] = quad
try:
result = evalf(self, prec + 4, options)
except NotImplementedError:
# Fall back to the ordinary evalf
v = self._eval_evalf(prec)
if v is None:
return self
elif not v.is_number:
return v
try:
# If the result is numerical, normalize it
result = evalf(v, prec, options)
except NotImplementedError:
# Probably contains symbols or unknown functions
return v
re, im, re_acc, im_acc = result
if re:
p = max(min(prec, re_acc), 1)
re = Float._new(re, p)
else:
re = S.Zero
if im:
p = max(min(prec, im_acc), 1)
im = Float._new(im, p)
return re + im*S.ImaginaryUnit
else:
return re
n = evalf
def _evalf(self, prec):
"""Helper for evalf. Does the same thing but takes binary precision"""
r = self._eval_evalf(prec)
if r is None:
r = self
return r
def _eval_evalf(self, prec):
return
def _to_mpmath(self, prec, allow_ints=True):
# mpmath functions accept ints as input
errmsg = "cannot convert to mpmath number"
if allow_ints and self.is_Integer:
return self.p
if hasattr(self, '_as_mpf_val'):
return make_mpf(self._as_mpf_val(prec))
try:
re, im, _, _ = evalf(self, prec, {})
if im:
if not re:
re = fzero
return make_mpc((re, im))
elif re:
return make_mpf(re)
else:
return make_mpf(fzero)
except NotImplementedError:
v = self._eval_evalf(prec)
if v is None:
raise ValueError(errmsg)
if v.is_Float:
return make_mpf(v._mpf_)
# Number + Number*I is also fine
re, im = v.as_real_imag()
if allow_ints and re.is_Integer:
re = from_int(re.p)
elif re.is_Float:
re = re._mpf_
else:
raise ValueError(errmsg)
if allow_ints and im.is_Integer:
im = from_int(im.p)
elif im.is_Float:
im = im._mpf_
else:
raise ValueError(errmsg)
return make_mpc((re, im))
def N(x, n=15, **options):
r"""
Calls x.evalf(n, \*\*options).
Both .n() and N() are equivalent to .evalf(); use the one that you like better.
See also the docstring of .evalf() for information on the options.
Examples
========
>>> from sympy import Sum, oo, N
>>> from sympy.abc import k
>>> Sum(1/k**k, (k, 1, oo))
Sum(k**(-k), (k, 1, oo))
>>> N(_, 4)
1.291
"""
# by using rational=True, any evaluation of a string
# will be done using exact values for the Floats
return sympify(x, rational=True).evalf(n, **options)
|
d9c48a372dd5074f7fb00133d3462ac52927faaf5d0c29fef11c9553f77fcad4 | """Logic expressions handling
NOTE
----
at present this is mainly needed for facts.py , feel free however to improve
this stuff for general purpose.
"""
from __future__ import print_function, division
from sympy.core.compatibility import range, string_types
def _torf(args):
"""Return True if all args are True, False if they
are all False, else None.
>>> from sympy.core.logic import _torf
>>> _torf((True, True))
True
>>> _torf((False, False))
False
>>> _torf((True, False))
"""
sawT = sawF = False
for a in args:
if a is True:
if sawF:
return
sawT = True
elif a is False:
if sawT:
return
sawF = True
else:
return
return sawT
def _fuzzy_group(args, quick_exit=False):
"""Return True if all args are True, None if there is any None else False
unless ``quick_exit`` is True (then return None as soon as a second False
is seen.
``_fuzzy_group`` is like ``fuzzy_and`` except that it is more
conservative in returning a False, waiting to make sure that all
arguments are True or False and returning None if any arguments are
None. It also has the capability of permiting only a single False and
returning None if more than one is seen. For example, the presence of a
single transcendental amongst rationals would indicate that the group is
no longer rational; but a second transcendental in the group would make the
determination impossible.
Examples
========
>>> from sympy.core.logic import _fuzzy_group
By default, multiple Falses mean the group is broken:
>>> _fuzzy_group([False, False, True])
False
If multiple Falses mean the group status is unknown then set
`quick_exit` to True so None can be returned when the 2nd False is seen:
>>> _fuzzy_group([False, False, True], quick_exit=True)
But if only a single False is seen then the group is known to
be broken:
>>> _fuzzy_group([False, True, True], quick_exit=True)
False
"""
saw_other = False
for a in args:
if a is True:
continue
if a is None:
return
if quick_exit and saw_other:
return
saw_other = True
return not saw_other
def fuzzy_bool(x):
"""Return True, False or None according to x.
Whereas bool(x) returns True or False, fuzzy_bool allows
for the None value and non-false values (which become None), too.
Examples
========
>>> from sympy.core.logic import fuzzy_bool
>>> from sympy.abc import x
>>> fuzzy_bool(x), fuzzy_bool(None)
(None, None)
>>> bool(x), bool(None)
(True, False)
"""
if x is None:
return None
if x in (True, False):
return bool(x)
def fuzzy_and(args):
"""Return True (all True), False (any False) or None.
Examples
========
>>> from sympy.core.logic import fuzzy_and
>>> from sympy import Dummy
If you had a list of objects to test the commutivity of
and you want the fuzzy_and logic applied, passing an
iterator will allow the commutativity to only be computed
as many times as necessary. With this list, False can be
returned after analyzing the first symbol:
>>> syms = [Dummy(commutative=False), Dummy()]
>>> fuzzy_and(s.is_commutative for s in syms)
False
That False would require less work than if a list of pre-computed
items was sent:
>>> fuzzy_and([s.is_commutative for s in syms])
False
"""
rv = True
for ai in args:
ai = fuzzy_bool(ai)
if ai is False:
return False
if rv: # this will stop updating if a None is ever trapped
rv = ai
return rv
def fuzzy_not(v):
"""
Not in fuzzy logic
Return None if `v` is None else `not v`.
Examples
========
>>> from sympy.core.logic import fuzzy_not
>>> fuzzy_not(True)
False
>>> fuzzy_not(None)
>>> fuzzy_not(False)
True
"""
if v is None:
return v
else:
return not v
def fuzzy_or(args):
"""
Or in fuzzy logic. Returns True (any True), False (all False), or None
See the docstrings of fuzzy_and and fuzzy_not for more info. fuzzy_or is
related to the two by the standard De Morgan's law.
>>> from sympy.core.logic import fuzzy_or
>>> fuzzy_or([True, False])
True
>>> fuzzy_or([True, None])
True
>>> fuzzy_or([False, False])
False
>>> print(fuzzy_or([False, None]))
None
"""
rv = False
for ai in args:
ai = fuzzy_bool(ai)
if ai is True:
return True
if rv is False: # this will stop updating if a None is ever trapped
rv = ai
return rv
def fuzzy_xor(args):
"""Return None if any element of args is not True or False, else
True (if there are an odd number of True elements), else False."""
t = f = 0
for a in args:
ai = fuzzy_bool(a)
if ai:
t += 1
elif ai is False:
f += 1
else:
return
return t % 2 == 1
def fuzzy_nand(args):
"""Return False if all args are True, True if they are all False,
else None."""
return fuzzy_not(fuzzy_and(args))
class Logic(object):
"""Logical expression"""
# {} 'op' -> LogicClass
op_2class = {}
def __new__(cls, *args):
obj = object.__new__(cls)
obj.args = args
return obj
def __getnewargs__(self):
return self.args
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(a, b):
if not isinstance(b, type(a)):
return False
else:
return a.args == b.args
def __ne__(a, b):
if not isinstance(b, type(a)):
return True
else:
return a.args != b.args
def __lt__(self, other):
if self.__cmp__(other) == -1:
return True
return False
def __cmp__(self, other):
if type(self) is not type(other):
a = str(type(self))
b = str(type(other))
else:
a = self.args
b = other.args
return (a > b) - (a < b)
def __str__(self):
return '%s(%s)' % (self.__class__.__name__,
', '.join(str(a) for a in self.args))
__repr__ = __str__
@staticmethod
def fromstring(text):
"""Logic from string with space around & and | but none after !.
e.g.
!a & b | c
"""
lexpr = None # current logical expression
schedop = None # scheduled operation
for term in text.split():
# operation symbol
if term in '&|':
if schedop is not None:
raise ValueError(
'double op forbidden: "%s %s"' % (term, schedop))
if lexpr is None:
raise ValueError(
'%s cannot be in the beginning of expression' % term)
schedop = term
continue
if '&' in term or '|' in term:
raise ValueError('& and | must have space around them')
if term[0] == '!':
if len(term) == 1:
raise ValueError('do not include space after "!"')
term = Not(term[1:])
# already scheduled operation, e.g. '&'
if schedop:
lexpr = Logic.op_2class[schedop](lexpr, term)
schedop = None
continue
# this should be atom
if lexpr is not None:
raise ValueError(
'missing op between "%s" and "%s"' % (lexpr, term))
lexpr = term
# let's check that we ended up in correct state
if schedop is not None:
raise ValueError('premature end-of-expression in "%s"' % text)
if lexpr is None:
raise ValueError('"%s" is empty' % text)
# everything looks good now
return lexpr
class AndOr_Base(Logic):
def __new__(cls, *args):
bargs = []
for a in args:
if a == cls.op_x_notx:
return a
elif a == (not cls.op_x_notx):
continue # skip this argument
bargs.append(a)
args = sorted(set(cls.flatten(bargs)), key=hash)
for a in args:
if Not(a) in args:
return cls.op_x_notx
if len(args) == 1:
return args.pop()
elif len(args) == 0:
return not cls.op_x_notx
return Logic.__new__(cls, *args)
@classmethod
def flatten(cls, args):
# quick-n-dirty flattening for And and Or
args_queue = list(args)
res = []
while True:
try:
arg = args_queue.pop(0)
except IndexError:
break
if isinstance(arg, Logic):
if isinstance(arg, cls):
args_queue.extend(arg.args)
continue
res.append(arg)
args = tuple(res)
return args
class And(AndOr_Base):
op_x_notx = False
def _eval_propagate_not(self):
# !(a&b&c ...) == !a | !b | !c ...
return Or(*[Not(a) for a in self.args])
# (a|b|...) & c == (a&c) | (b&c) | ...
def expand(self):
# first locate Or
for i in range(len(self.args)):
arg = self.args[i]
if isinstance(arg, Or):
arest = self.args[:i] + self.args[i + 1:]
orterms = [And(*(arest + (a,))) for a in arg.args]
for j in range(len(orterms)):
if isinstance(orterms[j], Logic):
orterms[j] = orterms[j].expand()
res = Or(*orterms)
return res
return self
class Or(AndOr_Base):
op_x_notx = True
def _eval_propagate_not(self):
# !(a|b|c ...) == !a & !b & !c ...
return And(*[Not(a) for a in self.args])
class Not(Logic):
def __new__(cls, arg):
if isinstance(arg, string_types):
return Logic.__new__(cls, arg)
elif isinstance(arg, bool):
return not arg
elif isinstance(arg, Not):
return arg.args[0]
elif isinstance(arg, Logic):
# XXX this is a hack to expand right from the beginning
arg = arg._eval_propagate_not()
return arg
else:
raise ValueError('Not: unknown argument %r' % (arg,))
@property
def arg(self):
return self.args[0]
Logic.op_2class['&'] = And
Logic.op_2class['|'] = Or
Logic.op_2class['!'] = Not
|
6c57fa6ea9dbb6127cce06f1fb8b6233e4c01b3c4b974b11300d44e73eb89ee4 | from __future__ import print_function, division
from collections import defaultdict
from functools import cmp_to_key
import operator
from .sympify import sympify
from .basic import Basic
from .singleton import S
from .operations import AssocOp
from .cache import cacheit
from .logic import fuzzy_not, _fuzzy_group
from .compatibility import reduce, range
from .expr import Expr
from .evaluate import global_distribute
# internal marker to indicate:
# "there are still non-commutative objects -- don't forget to process them"
class NC_Marker:
is_Order = False
is_Mul = False
is_Number = False
is_Poly = False
is_commutative = False
# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)
def _mulsort(args):
# in-place sorting of args
args.sort(key=_args_sortkey)
def _unevaluated_Mul(*args):
"""Return a well-formed unevaluated Mul: Numbers are collected and
put in slot 0, any arguments that are Muls will be flattened, and args
are sorted. Use this when args have changed but you still want to return
an unevaluated Mul.
Examples
========
>>> from sympy.core.mul import _unevaluated_Mul as uMul
>>> from sympy import S, sqrt, Mul
>>> from sympy.abc import x
>>> a = uMul(*[S(3.0), x, S(2)])
>>> a.args[0]
6.00000000000000
>>> a.args[1]
x
Two unevaluated Muls with the same arguments will
always compare as equal during testing:
>>> m = uMul(sqrt(2), sqrt(3))
>>> m == uMul(sqrt(3), sqrt(2))
True
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
>>> m == uMul(u)
True
>>> m == Mul(*m.args)
False
"""
args = list(args)
newargs = []
ncargs = []
co = S.One
while args:
a = args.pop()
if a.is_Mul:
c, nc = a.args_cnc()
args.extend(c)
if nc:
ncargs.append(Mul._from_args(nc))
elif a.is_Number:
co *= a
else:
newargs.append(a)
_mulsort(newargs)
if co is not S.One:
newargs.insert(0, co)
if ncargs:
newargs.append(Mul._from_args(ncargs))
return Mul._from_args(newargs)
class Mul(Expr, AssocOp):
__slots__ = []
is_Mul = True
def __neg__(self):
c, args = self.as_coeff_mul()
c = -c
if c is not S.One:
if args[0].is_Number:
args = list(args)
if c is S.NegativeOne:
args[0] = -args[0]
else:
args[0] *= c
else:
args = (c,) + args
return self._from_args(args, self.is_commutative)
@classmethod
def flatten(cls, seq):
"""Return commutative, noncommutative and order arguments by
combining related terms.
Notes
=====
* In an expression like ``a*b*c``, python process this through sympy
as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
- Sometimes terms are not combined as one would like:
{c.f. https://github.com/sympy/sympy/issues/4596}
>>> from sympy import Mul, sqrt
>>> from sympy.abc import x, y, z
>>> 2*(x + 1) # this is the 2-arg Mul behavior
2*x + 2
>>> y*(x + 1)*2
2*y*(x + 1)
>>> 2*(x + 1)*y # 2-arg result will be obtained first
y*(2*x + 2)
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
2*y*(x + 1)
>>> 2*((x + 1)*y) # parentheses can control this behavior
2*y*(x + 1)
Powers with compound bases may not find a single base to
combine with unless all arguments are processed at once.
Post-processing may be necessary in such cases.
{c.f. https://github.com/sympy/sympy/issues/5728}
>>> a = sqrt(x*sqrt(y))
>>> a**3
(x*sqrt(y))**(3/2)
>>> Mul(a,a,a)
(x*sqrt(y))**(3/2)
>>> a*a*a
x*sqrt(y)*sqrt(x*sqrt(y))
>>> _.subs(a.base, z).subs(z, a.base)
(x*sqrt(y))**(3/2)
- If more than two terms are being multiplied then all the
previous terms will be re-processed for each new argument.
So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
expression, then ``a*b*c`` (or building up the product
with ``*=``) will process all the arguments of ``a`` and
``b`` twice: once when ``a*b`` is computed and again when
``c`` is multiplied.
Using ``Mul(a, b, c)`` will process all arguments once.
* The results of Mul are cached according to arguments, so flatten
will only be called once for ``Mul(a, b, c)``. If you can
structure a calculation so the arguments are most likely to be
repeats then this can save time in computing the answer. For
example, say you had a Mul, M, that you wished to divide by ``d[i]``
and multiply by ``n[i]`` and you suspect there are many repeats
in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
product, ``M*n[i]`` will be returned without flattening -- the
cached value will be returned. If you divide by the ``d[i]``
first (and those are more unique than the ``n[i]``) then that will
create a new Mul, ``M/d[i]`` the args of which will be traversed
again when it is multiplied by ``n[i]``.
{c.f. https://github.com/sympy/sympy/issues/5706}
This consideration is moot if the cache is turned off.
NB
--
The validity of the above notes depends on the implementation
details of Mul and flatten which may change at any time. Therefore,
you should only consider them when your code is highly performance
sensitive.
Removal of 1 from the sequence is already handled by AssocOp.__new__.
"""
from sympy.calculus.util import AccumBounds
from sympy.matrices.expressions import MatrixExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
seq = [a, b]
assert not a is S.One
if not a.is_zero and a.is_Rational:
r, b = b.as_coeff_Mul()
if b.is_Add:
if r is not S.One: # 2-arg hack
# leave the Mul as a Mul
rv = [cls(a*r, b, evaluate=False)], [], None
elif global_distribute[0] and b.is_commutative:
r, b = b.as_coeff_Add()
bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)]
_addsort(bargs)
ar = a*r
if ar:
bargs.insert(0, ar)
bargs = [Add._from_args(bargs)]
rv = bargs, [], None
if rv:
return rv
# apply associativity, separate commutative part of seq
c_part = [] # out: commutative factors
nc_part = [] # out: non-commutative factors
nc_seq = []
coeff = S.One # standalone term
# e.g. 3 * ...
c_powers = [] # (base,exp) n
# e.g. (x,n) for x
num_exp = [] # (num-base, exp) y
# e.g. (3, y) for ... * 3 * ...
neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
pnum_rat = {} # (num-base, Rat-exp) 1/2
# e.g. (3, 1/2) for ... * 3 * ...
order_symbols = None
# --- PART 1 ---
#
# "collect powers and coeff":
#
# o coeff
# o c_powers
# o num_exp
# o neg1e
# o pnum_rat
#
# NOTE: this is optimized for all-objects-are-commutative case
for o in seq:
# O(x)
if o.is_Order:
o, order_symbols = o.as_expr_variables(order_symbols)
# Mul([...])
if o.is_Mul:
if o.is_commutative:
seq.extend(o.args) # XXX zerocopy?
else:
# NCMul can have commutative parts as well
for q in o.args:
if q.is_commutative:
seq.append(q)
else:
nc_seq.append(q)
# append non-commutative marker, so we don't forget to
# process scheduled non-commutative objects
seq.append(NC_Marker)
continue
# 3
elif o.is_Number:
if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
# we know for sure the result will be nan
return [S.NaN], [], None
elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
coeff *= o
if coeff is S.NaN:
# we know for sure the result will be nan
return [S.NaN], [], None
continue
elif isinstance(o, AccumBounds):
coeff = o.__mul__(coeff)
continue
elif o is S.ComplexInfinity:
if not coeff:
# 0 * zoo = NaN
return [S.NaN], [], None
if coeff is S.ComplexInfinity:
# zoo * zoo = zoo
return [S.ComplexInfinity], [], None
coeff = S.ComplexInfinity
continue
elif o is S.ImaginaryUnit:
neg1e += S.Half
continue
elif o.is_commutative:
# e
# o = b
b, e = o.as_base_exp()
# y
# 3
if o.is_Pow:
if b.is_Number:
# get all the factors with numeric base so they can be
# combined below, but don't combine negatives unless
# the exponent is an integer
if e.is_Rational:
if e.is_Integer:
coeff *= Pow(b, e) # it is an unevaluated power
continue
elif e.is_negative: # also a sign of an unevaluated power
seq.append(Pow(b, e))
continue
elif b.is_negative:
neg1e += e
b = -b
if b is not S.One:
pnum_rat.setdefault(b, []).append(e)
continue
elif b.is_positive or e.is_integer:
num_exp.append((b, e))
continue
c_powers.append((b, e))
# NON-COMMUTATIVE
# TODO: Make non-commutative exponents not combine automatically
else:
if o is not NC_Marker:
nc_seq.append(o)
# process nc_seq (if any)
while nc_seq:
o = nc_seq.pop(0)
if not nc_part:
nc_part.append(o)
continue
# b c b+c
# try to combine last terms: a * a -> a
o1 = nc_part.pop()
b1, e1 = o1.as_base_exp()
b2, e2 = o.as_base_exp()
new_exp = e1 + e2
# Only allow powers to combine if the new exponent is
# not an Add. This allow things like a**2*b**3 == a**5
# if a.is_commutative == False, but prohibits
# a**x*a**y and x**a*x**b from combining (x,y commute).
if b1 == b2 and (not new_exp.is_Add):
o12 = b1 ** new_exp
# now o12 could be a commutative object
if o12.is_commutative:
seq.append(o12)
continue
else:
nc_seq.insert(0, o12)
else:
nc_part.append(o1)
nc_part.append(o)
# We do want a combined exponent if it would not be an Add, such as
# y 2y 3y
# x * x -> x
# We determine if two exponents have the same term by using
# as_coeff_Mul.
#
# Unfortunately, this isn't smart enough to consider combining into
# exponents that might already be adds, so things like:
# z - y y
# x * x will be left alone. This is because checking every possible
# combination can slow things down.
# gather exponents of common bases...
def _gather(c_powers):
common_b = {} # b:e
for b, e in c_powers:
co = e.as_coeff_Mul()
common_b.setdefault(b, {}).setdefault(
co[1], []).append(co[0])
for b, d in common_b.items():
for di, li in d.items():
d[di] = Add(*li)
new_c_powers = []
for b, e in common_b.items():
new_c_powers.extend([(b, c*t) for t, c in e.items()])
return new_c_powers
# in c_powers
c_powers = _gather(c_powers)
# and in num_exp
num_exp = _gather(num_exp)
# --- PART 2 ---
#
# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
# o combine collected powers (2**x * 3**x -> 6**x)
# with numeric base
# ................................
# now we have:
# - coeff:
# - c_powers: (b, e)
# - num_exp: (2, e)
# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
# 0 1
# x -> 1 x -> x
# this should only need to run twice; if it fails because
# it needs to be run more times, perhaps this should be
# changed to a "while True" loop -- the only reason it
# isn't such now is to allow a less-than-perfect result to
# be obtained rather than raising an error or entering an
# infinite loop
for i in range(2):
new_c_powers = []
changed = False
for b, e in c_powers:
if e.is_zero:
# canceling out infinities yields NaN
if (b.is_Add or b.is_Mul) and any(infty in b.args
for infty in (S.ComplexInfinity, S.Infinity,
S.NegativeInfinity)):
return [S.NaN], [], None
continue
if e is S.One:
if b.is_Number:
coeff *= b
continue
p = b
if e is not S.One:
p = Pow(b, e)
# check to make sure that the base doesn't change
# after exponentiation; to allow for unevaluated
# Pow, we only do so if b is not already a Pow
if p.is_Pow and not b.is_Pow:
bi = b
b, e = p.as_base_exp()
if b != bi:
changed = True
c_part.append(p)
new_c_powers.append((b, e))
# there might have been a change, but unless the base
# matches some other base, there is nothing to do
if changed and len(set(
b for b, e in new_c_powers)) != len(new_c_powers):
# start over again
c_part = []
c_powers = _gather(new_c_powers)
else:
break
# x x x
# 2 * 3 -> 6
inv_exp_dict = {} # exp:Mul(num-bases) x x
# e.g. x:6 for ... * 2 * 3 * ...
for b, e in num_exp:
inv_exp_dict.setdefault(e, []).append(b)
for e, b in inv_exp_dict.items():
inv_exp_dict[e] = cls(*b)
c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
# b, e -> e' = sum(e), b
# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
comb_e = {}
for b, e in pnum_rat.items():
comb_e.setdefault(Add(*e), []).append(b)
del pnum_rat
# process them, reducing exponents to values less than 1
# and updating coeff if necessary else adding them to
# num_rat for further processing
num_rat = []
for e, b in comb_e.items():
b = cls(*b)
if e.q == 1:
coeff *= Pow(b, e)
continue
if e.p > e.q:
e_i, ep = divmod(e.p, e.q)
coeff *= Pow(b, e_i)
e = Rational(ep, e.q)
num_rat.append((b, e))
del comb_e
# extract gcd of bases in num_rat
# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
pnew = defaultdict(list)
i = 0 # steps through num_rat which may grow
while i < len(num_rat):
bi, ei = num_rat[i]
grow = []
for j in range(i + 1, len(num_rat)):
bj, ej = num_rat[j]
g = bi.gcd(bj)
if g is not S.One:
# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
# this might have a gcd with something else
e = ei + ej
if e.q == 1:
coeff *= Pow(g, e)
else:
if e.p > e.q:
e_i, ep = divmod(e.p, e.q) # change e in place
coeff *= Pow(g, e_i)
e = Rational(ep, e.q)
grow.append((g, e))
# update the jth item
num_rat[j] = (bj/g, ej)
# update bi that we are checking with
bi = bi/g
if bi is S.One:
break
if bi is not S.One:
obj = Pow(bi, ei)
if obj.is_Number:
coeff *= obj
else:
# changes like sqrt(12) -> 2*sqrt(3)
for obj in Mul.make_args(obj):
if obj.is_Number:
coeff *= obj
else:
assert obj.is_Pow
bi, ei = obj.args
pnew[ei].append(bi)
num_rat.extend(grow)
i += 1
# combine bases of the new powers
for e, b in pnew.items():
pnew[e] = cls(*b)
# handle -1 and I
if neg1e:
# treat I as (-1)**(1/2) and compute -1's total exponent
p, q = neg1e.as_numer_denom()
# if the integer part is odd, extract -1
n, p = divmod(p, q)
if n % 2:
coeff = -coeff
# if it's a multiple of 1/2 extract I
if q == 2:
c_part.append(S.ImaginaryUnit)
elif p:
# see if there is any positive base this power of
# -1 can join
neg1e = Rational(p, q)
for e, b in pnew.items():
if e == neg1e and b.is_positive:
pnew[e] = -b
break
else:
# keep it separate; we've already evaluated it as
# much as possible so evaluate=False
c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
# add all the pnew powers
c_part.extend([Pow(b, e) for e, b in pnew.items()])
# oo, -oo
if (coeff is S.Infinity) or (coeff is S.NegativeInfinity):
def _handle_for_oo(c_part, coeff_sign):
new_c_part = []
for t in c_part:
if t.is_extended_positive:
continue
if t.is_extended_negative:
coeff_sign *= -1
continue
new_c_part.append(t)
return new_c_part, coeff_sign
c_part, coeff_sign = _handle_for_oo(c_part, 1)
nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
coeff *= coeff_sign
# zoo
if coeff is S.ComplexInfinity:
# zoo might be
# infinite_real + bounded_im
# bounded_real + infinite_im
# infinite_real + infinite_im
# and non-zero real or imaginary will not change that status.
c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
# 0
elif coeff.is_zero:
# we know for sure the result will be 0 except the multiplicand
# is infinity or a matrix
if any(isinstance(c, MatrixExpr) for c in nc_part):
return [coeff], nc_part, order_symbols
if any(c.is_finite == False for c in c_part):
return [S.NaN], [], order_symbols
return [coeff], [], order_symbols
# check for straggling Numbers that were produced
_new = []
for i in c_part:
if i.is_Number:
coeff *= i
else:
_new.append(i)
c_part = _new
# order commutative part canonically
_mulsort(c_part)
# current code expects coeff to be always in slot-0
if coeff is not S.One:
c_part.insert(0, coeff)
# we are done
if (global_distribute[0] and not nc_part and len(c_part) == 2 and
c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
# 2*(1+a) -> 2 + 2 * a
coeff = c_part[0]
c_part = [Add(*[coeff*f for f in c_part[1].args])]
return c_part, nc_part, order_symbols
def _eval_power(b, e):
# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
cargs, nc = b.args_cnc(split_1=False)
if e.is_Integer:
return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
Pow(Mul._from_args(nc), e, evaluate=False)
if e.is_Rational and e.q == 2:
from sympy.core.power import integer_nthroot
from sympy.functions.elementary.complexes import sign
if b.is_imaginary:
a = b.as_real_imag()[1]
if a.is_Rational:
n, d = abs(a/2).as_numer_denom()
n, t = integer_nthroot(n, 2)
if t:
d, t = integer_nthroot(d, 2)
if t:
r = sympify(n)/d
return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
p = Pow(b, e, evaluate=False)
if e.is_Rational or e.is_Float:
return p._eval_expand_power_base()
return p
@classmethod
def class_key(cls):
return 3, 0, cls.__name__
def _eval_evalf(self, prec):
c, m = self.as_coeff_Mul()
if c is S.NegativeOne:
if m.is_Mul:
rv = -AssocOp._eval_evalf(m, prec)
else:
mnew = m._eval_evalf(prec)
if mnew is not None:
m = mnew
rv = -m
else:
rv = AssocOp._eval_evalf(self, prec)
if rv.is_number:
return rv.expand()
return rv
@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from sympy.core.numbers import I, Float
im_part, imag_unit = self.as_coeff_Mul()
if not imag_unit == I:
# ValueError may seem more reasonable but since it's a @property,
# we need to use AttributeError to keep from confusing things like
# hasattr.
raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
return (Float(0)._mpf_, Float(im_part)._mpf_)
@cacheit
def as_two_terms(self):
"""Return head and tail of self.
This is the most efficient way to get the head and tail of an
expression.
- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
self.as_coef_mul() which gives the head and a tuple containing
the arguments of the tail when treated as a Mul.
- if you want the coefficient when self is treated as an Add
then use self.as_coeff_add()[0]
>>> from sympy.abc import x, y
>>> (3*x*y).as_two_terms()
(3, x*y)
"""
args = self.args
if len(args) == 1:
return S.One, self
elif len(args) == 2:
return args
else:
return args[0], self._new_rawargs(*args[1:])
@cacheit
def as_coefficients_dict(self):
"""Return a dictionary mapping terms to their coefficient.
Since the dictionary is a defaultdict, inquiries about terms which
were not present will return a coefficient of 0. The dictionary
is considered to have a single term.
Examples
========
>>> from sympy.abc import a, x
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
>>> _[a]
0
"""
d = defaultdict(int)
args = self.args
if len(args) == 1 or not args[0].is_Number:
d[self] = S.One
else:
d[self._new_rawargs(*args[1:])] = args[0]
return d
@cacheit
def as_coeff_mul(self, *deps, **kwargs):
if deps:
from sympy.utilities.iterables import sift
l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
return self._new_rawargs(*l2), tuple(l1)
rational = kwargs.pop('rational', True)
args = self.args
if args[0].is_Number:
if not rational or args[0].is_Rational:
return args[0], args[1:]
elif args[0].is_extended_negative:
return S.NegativeOne, (-args[0],) + args[1:]
return S.One, args
def as_coeff_Mul(self, rational=False):
"""
Efficiently extract the coefficient of a product.
"""
coeff, args = self.args[0], self.args[1:]
if coeff.is_Number:
if not rational or coeff.is_Rational:
if len(args) == 1:
return coeff, args[0]
else:
return coeff, self._new_rawargs(*args)
elif coeff.is_extended_negative:
return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
return S.One, self
def as_real_imag(self, deep=True, **hints):
from sympy import Abs, expand_mul, im, re
other = []
coeffr = []
coeffi = []
addterms = S.One
for a in self.args:
r, i = a.as_real_imag()
if i.is_zero:
coeffr.append(r)
elif r.is_zero:
coeffi.append(i*S.ImaginaryUnit)
elif a.is_commutative:
# search for complex conjugate pairs:
for i, x in enumerate(other):
if x == a.conjugate():
coeffr.append(Abs(x)**2)
del other[i]
break
else:
if a.is_Add:
addterms *= a
else:
other.append(a)
else:
other.append(a)
m = self.func(*other)
if hints.get('ignore') == m:
return
if len(coeffi) % 2:
imco = im(coeffi.pop(0))
# all other pairs make a real factor; they will be
# put into reco below
else:
imco = S.Zero
reco = self.func(*(coeffr + coeffi))
r, i = (reco*re(m), reco*im(m))
if addterms == 1:
if m == 1:
if imco.is_zero:
return (reco, S.Zero)
else:
return (S.Zero, reco*imco)
if imco is S.Zero:
return (r, i)
return (-imco*i, imco*r)
addre, addim = expand_mul(addterms, deep=False).as_real_imag()
if imco is S.Zero:
return (r*addre - i*addim, i*addre + r*addim)
else:
r, i = -imco*i, imco*r
return (r*addre - i*addim, r*addim + i*addre)
@staticmethod
def _expandsums(sums):
"""
Helper function for _eval_expand_mul.
sums must be a list of instances of Basic.
"""
L = len(sums)
if L == 1:
return sums[0].args
terms = []
left = Mul._expandsums(sums[:L//2])
right = Mul._expandsums(sums[L//2:])
terms = [Mul(a, b) for a in left for b in right]
added = Add(*terms)
return Add.make_args(added) # it may have collapsed down to one term
def _eval_expand_mul(self, **hints):
from sympy import fraction
# Handle things like 1/(x*(x + 1)), which are automatically converted
# to 1/x*1/(x + 1)
expr = self
n, d = fraction(expr)
if d.is_Mul:
n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
for i in (n, d)]
expr = n/d
if not expr.is_Mul:
return expr
plain, sums, rewrite = [], [], False
for factor in expr.args:
if factor.is_Add:
sums.append(factor)
rewrite = True
else:
if factor.is_commutative:
plain.append(factor)
else:
sums.append(Basic(factor)) # Wrapper
if not rewrite:
return expr
else:
plain = self.func(*plain)
if sums:
deep = hints.get("deep", False)
terms = self.func._expandsums(sums)
args = []
for term in terms:
t = self.func(plain, term)
if t.is_Mul and any(a.is_Add for a in t.args) and deep:
t = t._eval_expand_mul()
args.append(t)
return Add(*args)
else:
return plain
@cacheit
def _eval_derivative(self, s):
args = list(self.args)
terms = []
for i in range(len(args)):
d = args[i].diff(s)
if d:
# Note: reduce is used in step of Mul as Mul is unable to
# handle subtypes and operation priority:
terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
return Add.fromiter(terms)
@cacheit
def _eval_derivative_n_times(self, s, n):
from sympy import Integer, factorial, prod, Sum, Max
from sympy.ntheory.multinomial import multinomial_coefficients_iterator
from .function import AppliedUndef
from .symbol import Symbol, symbols, Dummy
if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol):
# other types of s may not be well behaved, e.g.
# (cos(x)*sin(y)).diff([[x, y, z]])
return super(Mul, self)._eval_derivative_n_times(s, n)
args = self.args
m = len(args)
if isinstance(n, (int, Integer)):
# https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
terms = []
for kvals, c in multinomial_coefficients_iterator(m, n):
p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)])
terms.append(c * p)
return Add(*terms)
kvals = symbols("k1:%i" % m, cls=Dummy)
klast = n - sum(kvals)
nfact = factorial(n)
e, l = (# better to use the multinomial?
nfact/prod(map(factorial, kvals))/factorial(klast)*\
prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\
args[-1].diff((s, Max(0, klast))),
[(k, 0, n) for k in kvals])
return Sum(e, *l)
def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
arg0 = self.args[0]
rest = Mul(*self.args[1:])
return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
rest)
def _matches_simple(self, expr, repl_dict):
# handle (w*3).matches('x*5') -> {w: x*5/3}
coeff, terms = self.as_coeff_Mul()
terms = Mul.make_args(terms)
if len(terms) == 1:
newexpr = self.__class__._combine_inverse(expr, coeff)
return terms[0].matches(newexpr, repl_dict)
return
def matches(self, expr, repl_dict={}, old=False):
expr = sympify(expr)
if self.is_commutative and expr.is_commutative:
return AssocOp._matches_commutative(self, expr, repl_dict, old)
elif self.is_commutative is not expr.is_commutative:
return None
# Proceed only if both both expressions are non-commutative
c1, nc1 = self.args_cnc()
c2, nc2 = expr.args_cnc()
c1, c2 = [c or [1] for c in [c1, c2]]
# TODO: Should these be self.func?
comm_mul_self = Mul(*c1)
comm_mul_expr = Mul(*c2)
repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
# If the commutative arguments didn't match and aren't equal, then
# then the expression as a whole doesn't match
if repl_dict is None and c1 != c2:
return None
# Now match the non-commutative arguments, expanding powers to
# multiplications
nc1 = Mul._matches_expand_pows(nc1)
nc2 = Mul._matches_expand_pows(nc2)
repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
return repl_dict or None
@staticmethod
def _matches_expand_pows(arg_list):
new_args = []
for arg in arg_list:
if arg.is_Pow and arg.exp > 0:
new_args.extend([arg.base] * arg.exp)
else:
new_args.append(arg)
return new_args
@staticmethod
def _matches_noncomm(nodes, targets, repl_dict={}):
"""Non-commutative multiplication matcher.
`nodes` is a list of symbols within the matcher multiplication
expression, while `targets` is a list of arguments in the
multiplication expression being matched against.
"""
# List of possible future states to be considered
agenda = []
# The current matching state, storing index in nodes and targets
state = (0, 0)
node_ind, target_ind = state
# Mapping between wildcard indices and the index ranges they match
wildcard_dict = {}
repl_dict = repl_dict.copy()
while target_ind < len(targets) and node_ind < len(nodes):
node = nodes[node_ind]
if node.is_Wild:
Mul._matches_add_wildcard(wildcard_dict, state)
states_matches = Mul._matches_new_states(wildcard_dict, state,
nodes, targets)
if states_matches:
new_states, new_matches = states_matches
agenda.extend(new_states)
if new_matches:
for match in new_matches:
repl_dict[match] = new_matches[match]
if not agenda:
return None
else:
state = agenda.pop()
node_ind, target_ind = state
return repl_dict
@staticmethod
def _matches_add_wildcard(dictionary, state):
node_ind, target_ind = state
if node_ind in dictionary:
begin, end = dictionary[node_ind]
dictionary[node_ind] = (begin, target_ind)
else:
dictionary[node_ind] = (target_ind, target_ind)
@staticmethod
def _matches_new_states(dictionary, state, nodes, targets):
node_ind, target_ind = state
node = nodes[node_ind]
target = targets[target_ind]
# Don't advance at all if we've exhausted the targets but not the nodes
if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
return None
if node.is_Wild:
match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
nodes, targets)
if match_attempt:
# If the same node has been matched before, don't return
# anything if the current match is diverging from the previous
# match
other_node_inds = Mul._matches_get_other_nodes(dictionary,
nodes, node_ind)
for ind in other_node_inds:
other_begin, other_end = dictionary[ind]
curr_begin, curr_end = dictionary[node_ind]
other_targets = targets[other_begin:other_end + 1]
current_targets = targets[curr_begin:curr_end + 1]
for curr, other in zip(current_targets, other_targets):
if curr != other:
return None
# A wildcard node can match more than one target, so only the
# target index is advanced
new_state = [(node_ind, target_ind + 1)]
# Only move on to the next node if there is one
if node_ind < len(nodes) - 1:
new_state.append((node_ind + 1, target_ind + 1))
return new_state, match_attempt
else:
# If we're not at a wildcard, then make sure we haven't exhausted
# nodes but not targets, since in this case one node can only match
# one target
if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
return None
match_attempt = node.matches(target)
if match_attempt:
return [(node_ind + 1, target_ind + 1)], match_attempt
elif node == target:
return [(node_ind + 1, target_ind + 1)], None
else:
return None
@staticmethod
def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
"""Determine matches of a wildcard with sub-expression in `target`."""
wildcard = nodes[wildcard_ind]
begin, end = dictionary[wildcard_ind]
terms = targets[begin:end + 1]
# TODO: Should this be self.func?
mul = Mul(*terms) if len(terms) > 1 else terms[0]
return wildcard.matches(mul)
@staticmethod
def _matches_get_other_nodes(dictionary, nodes, node_ind):
"""Find other wildcards that may have already been matched."""
other_node_inds = []
for ind in dictionary:
if nodes[ind] == nodes[node_ind]:
other_node_inds.append(ind)
return other_node_inds
@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs/rhs, but treats arguments like symbols, so things
like oo/oo return 1 (instead of a nan) and ``I`` behaves like
a symbol instead of sqrt(-1).
"""
from .symbol import Dummy
if lhs == rhs:
return S.One
def check(l, r):
if l.is_Float and r.is_comparable:
# if both objects are added to 0 they will share the same "normalization"
# and are more likely to compare the same. Since Add(foo, 0) will not allow
# the 0 to pass, we use __add__ directly.
return l.__add__(0) == r.evalf().__add__(0)
return False
if check(lhs, rhs) or check(rhs, lhs):
return S.One
if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
# gruntz and limit wants a literal I to not combine
# with a power of -1
d = Dummy('I')
_i = {S.ImaginaryUnit: d}
i_ = {d: S.ImaginaryUnit}
a = lhs.xreplace(_i).as_powers_dict()
b = rhs.xreplace(_i).as_powers_dict()
blen = len(b)
for bi in tuple(b.keys()):
if bi in a:
a[bi] -= b.pop(bi)
if not a[bi]:
a.pop(bi)
if len(b) != blen:
lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
return lhs/rhs
def as_powers_dict(self):
d = defaultdict(int)
for term in self.args:
for b, e in term.as_powers_dict().items():
d[b] += e
return d
def as_numer_denom(self):
# don't use _from_args to rebuild the numerators and denominators
# as the order is not guaranteed to be the same once they have
# been separated from each other
numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
return self.func(*numers), self.func(*denoms)
def as_base_exp(self):
e1 = None
bases = []
nc = 0
for m in self.args:
b, e = m.as_base_exp()
if not b.is_commutative:
nc += 1
if e1 is None:
e1 = e
elif e != e1 or nc > 1:
return self, S.One
bases.append(b)
return self.func(*bases), e1
def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)
def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)
def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)
def _eval_is_complex(self):
comp = _fuzzy_group((a.is_complex for a in self.args))
if comp is False:
if any(a.is_infinite for a in self.args):
if any(a.is_zero is not False for a in self.args):
return None
return False
return comp
def _eval_is_finite(self):
if all(a.is_finite for a in self.args):
return True
if any(a.is_infinite for a in self.args):
if all(a.is_zero is False for a in self.args):
return False
def _eval_is_infinite(self):
if any(a.is_infinite for a in self.args):
if any(a.is_zero for a in self.args):
return S.NaN.is_infinite
if any(a.is_zero is None for a in self.args):
return None
return True
def _eval_is_rational(self):
r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
return self.is_zero
def _eval_is_algebraic(self):
r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
return self.is_zero
def _eval_is_zero(self):
zero = infinite = False
for a in self.args:
z = a.is_zero
if z:
if infinite:
return # 0*oo is nan and nan.is_zero is None
zero = True
else:
if not a.is_finite:
if zero:
return # 0*oo is nan and nan.is_zero is None
infinite = True
if zero is False and z is None: # trap None
zero = None
return zero
def _eval_is_integer(self):
is_rational = self.is_rational
if is_rational:
n, d = self.as_numer_denom()
if d is S.One:
return True
elif d == S(2):
return n.is_even
elif is_rational is False:
return False
def _eval_is_polar(self):
has_polar = any(arg.is_polar for arg in self.args)
return has_polar and \
all(arg.is_polar or arg.is_positive for arg in self.args)
def _eval_is_extended_real(self):
return self._eval_real_imag(True)
def _eval_real_imag(self, real):
zero = False
t_not_re_im = None
for t in self.args:
if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
return False
elif t.is_imaginary: # I
real = not real
elif t.is_extended_real: # 2
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_extended_real is False:
# symbolic or literal like `2 + I` or symbolic imaginary
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
else:
return
if t_not_re_im:
if t_not_re_im.is_extended_real is False:
if real: # like 3
return zero # 3*(smthng like 2 + I or i) is not real
if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
if not real: # like I
return zero # I*(smthng like 2 or 2 + I) is not real
elif zero is False:
return real # can't be trumped by 0
elif real:
return real # doesn't matter what zero is
def _eval_is_imaginary(self):
z = self.is_zero
if z:
return False
elif z is False:
return self._eval_real_imag(False)
def _eval_is_hermitian(self):
return self._eval_herm_antiherm(True)
def _eval_herm_antiherm(self, real):
one_nc = zero = one_neither = False
for t in self.args:
if not t.is_commutative:
if one_nc:
return
one_nc = True
if t.is_antihermitian:
real = not real
elif t.is_hermitian:
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_hermitian is False:
if one_neither:
return
one_neither = True
else:
return
if one_neither:
if real:
return zero
elif zero is False or real:
return real
def _eval_is_antihermitian(self):
z = self.is_zero
if z:
return False
elif z is False:
return self._eval_herm_antiherm(False)
def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
return True
return
if a is None:
return
return False
def _eval_is_extended_positive(self):
"""Return True if self is positive, False if not, and None if it
cannot be determined.
This algorithm is non-recursive and works by keeping track of the
sign which changes when a negative or nonpositive is encountered.
Whether a nonpositive or nonnegative is seen is also tracked since
the presence of these makes it impossible to return True, but
possible to return False if the end result is nonpositive. e.g.
pos * neg * nonpositive -> pos or zero -> None is returned
pos * neg * nonnegative -> neg or zero -> False is returned
"""
return self._eval_pos_neg(1)
def _eval_pos_neg(self, sign):
saw_NON = saw_NOT = False
for t in self.args:
if t.is_extended_positive:
continue
elif t.is_extended_negative:
sign = -sign
elif t.is_zero:
if all(a.is_finite for a in self.args):
return False
return
elif t.is_extended_nonpositive:
sign = -sign
saw_NON = True
elif t.is_extended_nonnegative:
saw_NON = True
# FIXME: is_positive/is_negative is False doesn't take account of
# Symbol('x', infinite=True, extended_real=True) which has
# e.g. is_positive is False but has uncertain sign.
elif t.is_positive is False:
sign = -sign
if saw_NOT:
return
saw_NOT = True
elif t.is_negative is False:
if saw_NOT:
return
saw_NOT = True
else:
return
if sign == 1 and saw_NON is False and saw_NOT is False:
return True
if sign < 0:
return False
def _eval_is_extended_negative(self):
return self._eval_pos_neg(-1)
def _eval_is_odd(self):
is_integer = self.is_integer
if is_integer:
r, acc = True, 1
for t in self.args:
if not t.is_integer:
return None
elif t.is_even:
r = False
elif t.is_integer:
if r is False:
pass
elif acc != 1 and (acc + t).is_odd:
r = False
elif t.is_odd is None:
r = None
acc = t
return r
# !integer -> !odd
elif is_integer is False:
return False
def _eval_is_even(self):
is_integer = self.is_integer
if is_integer:
return fuzzy_not(self.is_odd)
elif is_integer is False:
return False
def _eval_is_composite(self):
"""
Here we count the number of arguments that have a minimum value
greater than two.
If there are more than one of such a symbol then the result is composite.
Else, the result cannot be determined.
"""
number_of_args = 0 # count of symbols with minimum value greater than one
for arg in self.args:
if not (arg.is_integer and arg.is_positive):
return None
if (arg-1).is_positive:
number_of_args += 1
if number_of_args > 1:
return True
def _eval_subs(self, old, new):
from sympy.functions.elementary.complexes import sign
from sympy.ntheory.factor_ import multiplicity
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import fraction
if not old.is_Mul:
return None
# try keep replacement literal so -2*x doesn't replace 4*x
if old.args[0].is_Number and old.args[0] < 0:
if self.args[0].is_Number:
if self.args[0] < 0:
return self._subs(-old, -new)
return None
def base_exp(a):
# if I and -1 are in a Mul, they get both end up with
# a -1 base (see issue 6421); all we want here are the
# true Pow or exp separated into base and exponent
from sympy import exp
if a.is_Pow or isinstance(a, exp):
return a.as_base_exp()
return a, S.One
def breakup(eq):
"""break up powers of eq when treated as a Mul:
b**(Rational*e) -> b**e, Rational
commutatives come back as a dictionary {b**e: Rational}
noncommutatives come back as a list [(b**e, Rational)]
"""
(c, nc) = (defaultdict(int), list())
for a in Mul.make_args(eq):
a = powdenest(a)
(b, e) = base_exp(a)
if e is not S.One:
(co, _) = e.as_coeff_mul()
b = Pow(b, e/co)
e = co
if a.is_commutative:
c[b] += e
else:
nc.append([b, e])
return (c, nc)
def rejoin(b, co):
"""
Put rational back with exponent; in general this is not ok, but
since we took it from the exponent for analysis, it's ok to put
it back.
"""
(b, e) = base_exp(b)
return Pow(b, e*co)
def ndiv(a, b):
"""if b divides a in an extractive way (like 1/4 divides 1/2
but not vice versa, and 2/5 does not divide 1/3) then return
the integer number of times it divides, else return 0.
"""
if not b.q % a.q or not a.q % b.q:
return int(a/b)
return 0
# give Muls in the denominator a chance to be changed (see issue 5651)
# rv will be the default return value
rv = None
n, d = fraction(self)
self2 = self
if d is not S.One:
self2 = n._subs(old, new)/d._subs(old, new)
if not self2.is_Mul:
return self2._subs(old, new)
if self2 != self:
rv = self2
# Now continue with regular substitution.
# handle the leading coefficient and use it to decide if anything
# should even be started; we always know where to find the Rational
# so it's a quick test
co_self = self2.args[0]
co_old = old.args[0]
co_xmul = None
if co_old.is_Rational and co_self.is_Rational:
# if coeffs are the same there will be no updating to do
# below after breakup() step; so skip (and keep co_xmul=None)
if co_old != co_self:
co_xmul = co_self.extract_multiplicatively(co_old)
elif co_old.is_Rational:
return rv
# break self and old into factors
(c, nc) = breakup(self2)
(old_c, old_nc) = breakup(old)
# update the coefficients if we had an extraction
# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
# then co_self in c is replaced by (3/5)**2 and co_residual
# is 2*(1/7)**2
if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
mult = S(multiplicity(abs(co_old), co_self))
c.pop(co_self)
if co_old in c:
c[co_old] += mult
else:
c[co_old] = mult
co_residual = co_self/co_old**mult
else:
co_residual = 1
# do quick tests to see if we can't succeed
ok = True
if len(old_nc) > len(nc):
# more non-commutative terms
ok = False
elif len(old_c) > len(c):
# more commutative terms
ok = False
elif set(i[0] for i in old_nc).difference(set(i[0] for i in nc)):
# unmatched non-commutative bases
ok = False
elif set(old_c).difference(set(c)):
# unmatched commutative terms
ok = False
elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
# differences in sign
ok = False
if not ok:
return rv
if not old_c:
cdid = None
else:
rat = []
for (b, old_e) in old_c.items():
c_e = c[b]
rat.append(ndiv(c_e, old_e))
if not rat[-1]:
return rv
cdid = min(rat)
if not old_nc:
ncdid = None
for i in range(len(nc)):
nc[i] = rejoin(*nc[i])
else:
ncdid = 0 # number of nc replacements we did
take = len(old_nc) # how much to look at each time
limit = cdid or S.Infinity # max number that we can take
failed = [] # failed terms will need subs if other terms pass
i = 0
while limit and i + take <= len(nc):
hit = False
# the bases must be equivalent in succession, and
# the powers must be extractively compatible on the
# first and last factor but equal in between.
rat = []
for j in range(take):
if nc[i + j][0] != old_nc[j][0]:
break
elif j == 0:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif j == take - 1:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif nc[i + j][1] != old_nc[j][1]:
break
else:
rat.append(1)
j += 1
else:
ndo = min(rat)
if ndo:
if take == 1:
if cdid:
ndo = min(cdid, ndo)
nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
nc[i][1] - ndo*old_nc[0][1])
else:
ndo = 1
# the left residual
l = rejoin(nc[i][0], nc[i][1] - ndo*
old_nc[0][1])
# eliminate all middle terms
mid = new
# the right residual (which may be the same as the middle if take == 2)
ir = i + take - 1
r = (nc[ir][0], nc[ir][1] - ndo*
old_nc[-1][1])
if r[1]:
if i + take < len(nc):
nc[i:i + take] = [l*mid, r]
else:
r = rejoin(*r)
nc[i:i + take] = [l*mid*r]
else:
# there was nothing left on the right
nc[i:i + take] = [l*mid]
limit -= ndo
ncdid += ndo
hit = True
if not hit:
# do the subs on this failing factor
failed.append(i)
i += 1
else:
if not ncdid:
return rv
# although we didn't fail, certain nc terms may have
# failed so we rebuild them after attempting a partial
# subs on them
failed.extend(range(i, len(nc)))
for i in failed:
nc[i] = rejoin(*nc[i]).subs(old, new)
# rebuild the expression
if cdid is None:
do = ncdid
elif ncdid is None:
do = cdid
else:
do = min(ncdid, cdid)
margs = []
for b in c:
if b in old_c:
# calculate the new exponent
e = c[b] - old_c[b]*do
margs.append(rejoin(b, e))
else:
margs.append(rejoin(b.subs(old, new), c[b]))
if cdid and not ncdid:
# in case we are replacing commutative with non-commutative,
# we want the new term to come at the front just like the
# rest of this routine
margs = [Pow(new, cdid)] + margs
return co_residual*self2.func(*margs)*self2.func(*nc)
def _eval_nseries(self, x, n, logx):
from sympy import Order, powsimp
terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
res = powsimp(self.func(*terms).expand(), combine='exp', deep=True)
if res.has(Order):
res += Order(x**n, x)
return res
def _eval_as_leading_term(self, x):
return self.func(*[t.as_leading_term(x) for t in self.args])
def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])
def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args[::-1]])
def _eval_adjoint(self):
return self.func(*[t.adjoint() for t in self.args[::-1]])
def _sage_(self):
s = 1
for x in self.args:
s *= x._sage_()
return s
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
(6, -sqrt(2)*(1 - sqrt(2)))
See docstring of Expr.as_content_primitive for more examples.
"""
coef = S.One
args = []
for i, a in enumerate(self.args):
c, p = a.as_content_primitive(radical=radical, clear=clear)
coef *= c
if p is not S.One:
args.append(p)
# don't use self._from_args here to reconstruct args
# since there may be identical args now that should be combined
# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
return coef, self.func(*args)
def as_ordered_factors(self, order=None):
"""Transform an expression into an ordered list of factors.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x, y
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
[2, x, y, sin(x), cos(x)]
"""
cpart, ncpart = self.args_cnc()
cpart.sort(key=lambda expr: expr.sort_key(order=order))
return cpart + ncpart
@property
def _sorted_args(self):
return tuple(self.as_ordered_factors())
def prod(a, start=1):
"""Return product of elements of a. Start with int 1 so if only
ints are included then an int result is returned.
Examples
========
>>> from sympy import prod, S
>>> prod(range(3))
0
>>> type(_) is int
True
>>> prod([S(2), 3])
6
>>> _.is_Integer
True
You can start the product at something other than 1:
>>> prod([1, 2], 3)
6
"""
return reduce(operator.mul, a, start)
def _keep_coeff(coeff, factors, clear=True, sign=False):
"""Return ``coeff*factors`` unevaluated if necessary.
If ``clear`` is False, do not keep the coefficient as a factor
if it can be distributed on a single factor such that one or
more terms will still have integer coefficients.
If ``sign`` is True, allow a coefficient of -1 to remain factored out.
Examples
========
>>> from sympy.core.mul import _keep_coeff
>>> from sympy.abc import x, y
>>> from sympy import S
>>> _keep_coeff(S.Half, x + 2)
(x + 2)/2
>>> _keep_coeff(S.Half, x + 2, clear=False)
x/2 + 1
>>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
y*(x + 2)/2
>>> _keep_coeff(S(-1), x + y)
-x - y
>>> _keep_coeff(S(-1), x + y, sign=True)
-(x + y)
"""
if not coeff.is_Number:
if factors.is_Number:
factors, coeff = coeff, factors
else:
return coeff*factors
if coeff is S.One:
return factors
elif coeff is S.NegativeOne and not sign:
return -factors
elif factors.is_Add:
if not clear and coeff.is_Rational and coeff.q != 1:
q = S(coeff.q)
for i in factors.args:
c, t = i.as_coeff_Mul()
r = c/q
if r == int(r):
return coeff*factors
return Mul(coeff, factors, evaluate=False)
elif factors.is_Mul:
margs = list(factors.args)
if margs[0].is_Number:
margs[0] *= coeff
if margs[0] == 1:
margs.pop(0)
else:
margs.insert(0, coeff)
return Mul._from_args(margs)
else:
return coeff*factors
def expand_2arg(e):
from sympy.simplify.simplify import bottom_up
def do(e):
if e.is_Mul:
c, r = e.as_coeff_Mul()
if c.is_Number and r.is_Add:
return _unevaluated_Add(*[c*ri for ri in r.args])
return e
return bottom_up(e, do)
from .numbers import Rational
from .power import Pow
from .add import Add, _addsort, _unevaluated_Add
|
f06d007928953e41285ce842b1c787a0a323cec7fbe0316dd579e06c238f980f | """Tools for setting up printing in interactive sessions. """
from __future__ import print_function, division
import sys
from distutils.version import LooseVersion as V
from io import BytesIO
from sympy import latex as default_latex
from sympy import preview
from sympy.core.compatibility import integer_types
from sympy.utilities.misc import debug
def _init_python_printing(stringify_func, **settings):
"""Setup printing in Python interactive session. """
import sys
from sympy.core.compatibility import builtins
def _displayhook(arg):
"""Python's pretty-printer display hook.
This function was adapted from:
http://www.python.org/dev/peps/pep-0217/
"""
if arg is not None:
builtins._ = None
print(stringify_func(arg, **settings))
builtins._ = arg
sys.displayhook = _displayhook
def _init_ipython_printing(ip, stringify_func, use_latex, euler, forecolor,
backcolor, fontsize, latex_mode, print_builtin,
latex_printer, scale, **settings):
"""Setup printing in IPython interactive session. """
try:
from IPython.lib.latextools import latex_to_png
except ImportError:
pass
# Guess best font color if none was given based on the ip.colors string.
# From the IPython documentation:
# It has four case-insensitive values: 'nocolor', 'neutral', 'linux',
# 'lightbg'. The default is neutral, which should be legible on either
# dark or light terminal backgrounds. linux is optimised for dark
# backgrounds and lightbg for light ones.
if forecolor is None:
color = ip.colors.lower()
if color == 'lightbg':
forecolor = 'Black'
elif color == 'linux':
forecolor = 'White'
else:
# No idea, go with gray.
forecolor = 'Gray'
debug("init_printing: Automatic foreground color:", forecolor)
preamble = "\\documentclass[varwidth,%s]{standalone}\n" \
"\\usepackage{amsmath,amsfonts}%s\\begin{document}"
if euler:
addpackages = '\\usepackage{euler}'
else:
addpackages = ''
if use_latex == "svg":
addpackages = addpackages + "\n\\special{color %s}" % forecolor
preamble = preamble % (fontsize, addpackages)
imagesize = 'tight'
offset = "0cm,0cm"
resolution = round(150*scale)
dvi = r"-T %s -D %d -bg %s -fg %s -O %s" % (
imagesize, resolution, backcolor, forecolor, offset)
dvioptions = dvi.split()
svg_scale = 150/72*scale
dvioptions_svg = ["--no-fonts", "--scale={}".format(svg_scale)]
debug("init_printing: DVIOPTIONS:", dvioptions)
debug("init_printing: DVIOPTIONS_SVG:", dvioptions_svg)
debug("init_printing: PREAMBLE:", preamble)
latex = latex_printer or default_latex
def _print_plain(arg, p, cycle):
"""caller for pretty, for use in IPython 0.11"""
if _can_print_latex(arg):
p.text(stringify_func(arg))
else:
p.text(IPython.lib.pretty.pretty(arg))
def _preview_wrapper(o):
exprbuffer = BytesIO()
try:
preview(o, output='png', viewer='BytesIO',
outputbuffer=exprbuffer, preamble=preamble,
dvioptions=dvioptions)
except Exception as e:
# IPython swallows exceptions
debug("png printing:", "_preview_wrapper exception raised:",
repr(e))
raise
return exprbuffer.getvalue()
def _svg_wrapper(o):
exprbuffer = BytesIO()
try:
preview(o, output='svg', viewer='BytesIO',
outputbuffer=exprbuffer, preamble=preamble,
dvioptions=dvioptions_svg)
except Exception as e:
# IPython swallows exceptions
debug("svg printing:", "_preview_wrapper exception raised:",
repr(e))
raise
return exprbuffer.getvalue().decode('utf-8')
def _matplotlib_wrapper(o):
# mathtext does not understand certain latex flags, so we try to
# replace them with suitable subs
o = o.replace(r'\operatorname', '')
o = o.replace(r'\overline', r'\bar')
# mathtext can't render some LaTeX commands. For example, it can't
# render any LaTeX environments such as array or matrix. So here we
# ensure that if mathtext fails to render, we return None.
try:
try:
return latex_to_png(o, color=forecolor, scale=scale)
except TypeError: # Old IPython version without color and scale
return latex_to_png(o)
except ValueError as e:
debug('matplotlib exception caught:', repr(e))
return None
from sympy import Basic
from sympy.matrices import MatrixBase
from sympy.physics.vector import Vector, Dyadic
from sympy.tensor.array import NDimArray
# These should all have _repr_latex_ and _repr_latex_orig. If you update
# this also update printable_types below.
sympy_latex_types = (Basic, MatrixBase, Vector, Dyadic, NDimArray)
def _can_print_latex(o):
"""Return True if type o can be printed with LaTeX.
If o is a container type, this is True if and only if every element of
o can be printed with LaTeX.
"""
try:
# If you're adding another type, make sure you add it to printable_types
# later in this file as well
builtin_types = (list, tuple, set, frozenset)
if isinstance(o, builtin_types):
# If the object is a custom subclass with a custom str or
# repr, use that instead.
if (type(o).__str__ not in (i.__str__ for i in builtin_types) or
type(o).__repr__ not in (i.__repr__ for i in builtin_types)):
return False
return all(_can_print_latex(i) for i in o)
elif isinstance(o, dict):
return all(_can_print_latex(i) and _can_print_latex(o[i]) for i in o)
elif isinstance(o, bool):
return False
# TODO : Investigate if "elif hasattr(o, '_latex')" is more useful
# to use here, than these explicit imports.
elif isinstance(o, sympy_latex_types):
return True
elif isinstance(o, (float, integer_types)) and print_builtin:
return True
return False
except RuntimeError:
return False
# This is in case maximum recursion depth is reached.
# Since RecursionError is for versions of Python 3.5+
# so this is to guard against RecursionError for older versions.
def _print_latex_png(o):
"""
A function that returns a png rendered by an external latex
distribution, falling back to matplotlib rendering
"""
if _can_print_latex(o):
s = latex(o, mode=latex_mode, **settings)
if latex_mode == 'plain':
s = '$\\displaystyle %s$' % s
try:
return _preview_wrapper(s)
except RuntimeError as e:
debug('preview failed with:', repr(e),
' Falling back to matplotlib backend')
if latex_mode != 'inline':
s = latex(o, mode='inline', **settings)
return _matplotlib_wrapper(s)
def _print_latex_svg(o):
"""
A function that returns a svg rendered by an external latex
distribution, no fallback available.
"""
if _can_print_latex(o):
s = latex(o, mode=latex_mode, **settings)
if latex_mode == 'plain':
s = '$\\displaystyle %s$' % s
try:
return _svg_wrapper(s)
except RuntimeError as e:
debug('preview failed with:', repr(e),
' No fallback available.')
def _print_latex_matplotlib(o):
"""
A function that returns a png rendered by mathtext
"""
if _can_print_latex(o):
s = latex(o, mode='inline', **settings)
return _matplotlib_wrapper(s)
def _print_latex_text(o):
"""
A function to generate the latex representation of sympy expressions.
"""
if _can_print_latex(o):
s = latex(o, mode=latex_mode, **settings)
if latex_mode == 'plain':
return '$\\displaystyle %s$' % s
return s
def _result_display(self, arg):
"""IPython's pretty-printer display hook, for use in IPython 0.10
This function was adapted from:
ipython/IPython/hooks.py:155
"""
if self.rc.pprint:
out = stringify_func(arg)
if '\n' in out:
print
print(out)
else:
print(repr(arg))
import IPython
if V(IPython.__version__) >= '0.11':
from sympy.core.basic import Basic
from sympy.matrices.matrices import MatrixBase
from sympy.physics.vector import Vector, Dyadic
from sympy.tensor.array import NDimArray
printable_types = [Basic, MatrixBase, float, tuple, list, set,
frozenset, dict, Vector, Dyadic, NDimArray] + list(integer_types)
plaintext_formatter = ip.display_formatter.formatters['text/plain']
for cls in printable_types:
plaintext_formatter.for_type(cls, _print_plain)
svg_formatter = ip.display_formatter.formatters['image/svg+xml']
if use_latex in ('svg', ):
debug("init_printing: using svg formatter")
for cls in printable_types:
svg_formatter.for_type(cls, _print_latex_svg)
else:
debug("init_printing: not using any svg formatter")
for cls in printable_types:
# Better way to set this, but currently does not work in IPython
#png_formatter.for_type(cls, None)
if cls in svg_formatter.type_printers:
svg_formatter.type_printers.pop(cls)
png_formatter = ip.display_formatter.formatters['image/png']
if use_latex in (True, 'png'):
debug("init_printing: using png formatter")
for cls in printable_types:
png_formatter.for_type(cls, _print_latex_png)
elif use_latex == 'matplotlib':
debug("init_printing: using matplotlib formatter")
for cls in printable_types:
png_formatter.for_type(cls, _print_latex_matplotlib)
else:
debug("init_printing: not using any png formatter")
for cls in printable_types:
# Better way to set this, but currently does not work in IPython
#png_formatter.for_type(cls, None)
if cls in png_formatter.type_printers:
png_formatter.type_printers.pop(cls)
latex_formatter = ip.display_formatter.formatters['text/latex']
if use_latex in (True, 'mathjax'):
debug("init_printing: using mathjax formatter")
for cls in printable_types:
latex_formatter.for_type(cls, _print_latex_text)
for typ in sympy_latex_types:
typ._repr_latex_ = typ._repr_latex_orig
else:
debug("init_printing: not using text/latex formatter")
for cls in printable_types:
# Better way to set this, but currently does not work in IPython
#latex_formatter.for_type(cls, None)
if cls in latex_formatter.type_printers:
latex_formatter.type_printers.pop(cls)
for typ in sympy_latex_types:
typ._repr_latex_ = None
else:
ip.set_hook('result_display', _result_display)
def _is_ipython(shell):
"""Is a shell instance an IPython shell?"""
# shortcut, so we don't import IPython if we don't have to
if 'IPython' not in sys.modules:
return False
try:
from IPython.core.interactiveshell import InteractiveShell
except ImportError:
# IPython < 0.11
try:
from IPython.iplib import InteractiveShell
except ImportError:
# Reaching this points means IPython has changed in a backward-incompatible way
# that we don't know about. Warn?
return False
return isinstance(shell, InteractiveShell)
# Used by the doctester to override the default for no_global
NO_GLOBAL = False
def init_printing(pretty_print=True, order=None, use_unicode=None,
use_latex=None, wrap_line=None, num_columns=None,
no_global=False, ip=None, euler=False, forecolor=None,
backcolor='Transparent', fontsize='10pt',
latex_mode='plain', print_builtin=True,
str_printer=None, pretty_printer=None,
latex_printer=None, scale=1.0, **settings):
r"""
Initializes pretty-printer depending on the environment.
Parameters
==========
pretty_print : boolean, default=True
If True, use pretty_print to stringify or the provided pretty
printer; if False, use sstrrepr to stringify or the provided string
printer.
order : string or None, default='lex'
There are a few different settings for this parameter:
lex (default), which is lexographic order;
grlex, which is graded lexographic order;
grevlex, which is reversed graded lexographic order;
old, which is used for compatibility reasons and for long expressions;
None, which sets it to lex.
use_unicode : boolean or None, default=None
If True, use unicode characters;
if False, do not use unicode characters;
if None, make a guess based on the environment.
use_latex : string, boolean, or None, default=None
If True, use default LaTeX rendering in GUI interfaces (png and
mathjax);
if False, do not use LaTeX rendering;
if None, make a guess based on the environment;
if 'png', enable latex rendering with an external latex compiler,
falling back to matplotlib if external compilation fails;
if 'matplotlib', enable LaTeX rendering with matplotlib;
if 'mathjax', enable LaTeX text generation, for example MathJax
rendering in IPython notebook or text rendering in LaTeX documents;
if 'svg', enable LaTeX rendering with an external latex compiler,
no fallback
wrap_line : boolean
If True, lines will wrap at the end; if False, they will not wrap
but continue as one line. This is only relevant if ``pretty_print`` is
True.
num_columns : int or None, default=None
If int, number of columns before wrapping is set to num_columns; if
None, number of columns before wrapping is set to terminal width.
This is only relevant if ``pretty_print`` is True.
no_global : boolean, default=False
If True, the settings become system wide;
if False, use just for this console/session.
ip : An interactive console
This can either be an instance of IPython,
or a class that derives from code.InteractiveConsole.
euler : boolean, optional, default=False
Loads the euler package in the LaTeX preamble for handwritten style
fonts (http://www.ctan.org/pkg/euler).
forecolor : string or None, optional, default=None
DVI setting for foreground color. None means that either 'Black',
'White', or 'Gray' will be selected based on a guess of the IPython
terminal color setting. See notes.
backcolor : string, optional, default='Transparent'
DVI setting for background color. See notes.
fontsize : string, optional, default='10pt'
A font size to pass to the LaTeX documentclass function in the
preamble. Note that the options are limited by the documentclass.
Consider using scale instead.
latex_mode : string, optional, default='plain'
The mode used in the LaTeX printer. Can be one of:
{'inline'|'plain'|'equation'|'equation*'}.
print_builtin : boolean, optional, default=True
If ``True`` then floats and integers will be printed. If ``False`` the
printer will only print SymPy types.
str_printer : function, optional, default=None
A custom string printer function. This should mimic
sympy.printing.sstrrepr().
pretty_printer : function, optional, default=None
A custom pretty printer. This should mimic sympy.printing.pretty().
latex_printer : function, optional, default=None
A custom LaTeX printer. This should mimic sympy.printing.latex().
scale : float, optional, default=1.0
Scale the LaTeX output when using the ``png`` or ``svg`` backends.
Useful for high dpi screens.
settings :
Any additional settings for the ``latex`` and ``pretty`` commands can
be used to fine-tune the output.
Examples
========
>>> from sympy.interactive import init_printing
>>> from sympy import Symbol, sqrt
>>> from sympy.abc import x, y
>>> sqrt(5)
sqrt(5)
>>> init_printing(pretty_print=True) # doctest: +SKIP
>>> sqrt(5) # doctest: +SKIP
___
\/ 5
>>> theta = Symbol('theta') # doctest: +SKIP
>>> init_printing(use_unicode=True) # doctest: +SKIP
>>> theta # doctest: +SKIP
\u03b8
>>> init_printing(use_unicode=False) # doctest: +SKIP
>>> theta # doctest: +SKIP
theta
>>> init_printing(order='lex') # doctest: +SKIP
>>> str(y + x + y**2 + x**2) # doctest: +SKIP
x**2 + x + y**2 + y
>>> init_printing(order='grlex') # doctest: +SKIP
>>> str(y + x + y**2 + x**2) # doctest: +SKIP
x**2 + x + y**2 + y
>>> init_printing(order='grevlex') # doctest: +SKIP
>>> str(y * x**2 + x * y**2) # doctest: +SKIP
x**2*y + x*y**2
>>> init_printing(order='old') # doctest: +SKIP
>>> str(x**2 + y**2 + x + y) # doctest: +SKIP
x**2 + x + y**2 + y
>>> init_printing(num_columns=10) # doctest: +SKIP
>>> x**2 + x + y**2 + y # doctest: +SKIP
x + y +
x**2 + y**2
Notes
=====
The foreground and background colors can be selected when using 'png' or
'svg' LaTeX rendering. Note that before the ``init_printing`` command is
executed, the LaTeX rendering is handled by the IPython console and not SymPy.
The colors can be selected among the 68 standard colors known to ``dvips``,
for a list see [1]_. In addition, the background color can be
set to 'Transparent' (which is the default value).
When using the 'Auto' foreground color, the guess is based on the
``colors`` variable in the IPython console, see [2]_. Hence, if
that variable is set correctly in your IPython console, there is a high
chance that the output will be readable, although manual settings may be
needed.
References
==========
.. [1] https://en.wikibooks.org/wiki/LaTeX/Colors#The_68_standard_colors_known_to_dvips
.. [2] https://ipython.readthedocs.io/en/stable/config/details.html#terminal-colors
See Also
========
sympy.printing.latex
sympy.printing.pretty
"""
import sys
from sympy.printing.printer import Printer
if pretty_print:
if pretty_printer is not None:
stringify_func = pretty_printer
else:
from sympy.printing import pretty as stringify_func
else:
if str_printer is not None:
stringify_func = str_printer
else:
from sympy.printing import sstrrepr as stringify_func
# Even if ip is not passed, double check that not in IPython shell
in_ipython = False
if ip is None:
try:
ip = get_ipython()
except NameError:
pass
else:
in_ipython = (ip is not None)
if ip and not in_ipython:
in_ipython = _is_ipython(ip)
if in_ipython and pretty_print:
try:
import IPython
# IPython 1.0 deprecates the frontend module, so we import directly
# from the terminal module to prevent a deprecation message from being
# shown.
if V(IPython.__version__) >= '1.0':
from IPython.terminal.interactiveshell import TerminalInteractiveShell
else:
from IPython.frontend.terminal.interactiveshell import TerminalInteractiveShell
from code import InteractiveConsole
except ImportError:
pass
else:
# This will be True if we are in the qtconsole or notebook
if not isinstance(ip, (InteractiveConsole, TerminalInteractiveShell)) \
and 'ipython-console' not in ''.join(sys.argv):
if use_unicode is None:
debug("init_printing: Setting use_unicode to True")
use_unicode = True
if use_latex is None:
debug("init_printing: Setting use_latex to True")
use_latex = True
if not NO_GLOBAL and not no_global:
Printer.set_global_settings(order=order, use_unicode=use_unicode,
wrap_line=wrap_line, num_columns=num_columns)
else:
_stringify_func = stringify_func
if pretty_print:
stringify_func = lambda expr, **settings: \
_stringify_func(expr, order=order,
use_unicode=use_unicode,
wrap_line=wrap_line,
num_columns=num_columns,
**settings)
else:
stringify_func = \
lambda expr, **settings: _stringify_func(
expr, order=order, **settings)
if in_ipython:
mode_in_settings = settings.pop("mode", None)
if mode_in_settings:
debug("init_printing: Mode is not able to be set due to internals"
"of IPython printing")
_init_ipython_printing(ip, stringify_func, use_latex, euler,
forecolor, backcolor, fontsize, latex_mode,
print_builtin, latex_printer, scale,
**settings)
else:
_init_python_printing(stringify_func, **settings)
|
929c3821064ab13a7ab7af45867eb29f61b07d8a1cf7cebc2454bfd4a66f73dd | """Tools for setting up interactive sessions. """
from __future__ import print_function, division
from distutils.version import LooseVersion as V
from sympy.external import import_module
from sympy.interactive.printing import init_printing
preexec_source = """\
from __future__ import division
from sympy import *
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
init_printing()
"""
verbose_message = """\
These commands were executed:
%(source)s
Documentation can be found at https://docs.sympy.org/%(version)s
"""
no_ipython = """\
Couldn't locate IPython. Having IPython installed is greatly recommended.
See http://ipython.scipy.org for more details. If you use Debian/Ubuntu,
just install the 'ipython' package and start isympy again.
"""
def _make_message(ipython=True, quiet=False, source=None):
"""Create a banner for an interactive session. """
from sympy import __version__ as sympy_version
from sympy.polys.domains import GROUND_TYPES
from sympy.utilities.misc import ARCH
from sympy import SYMPY_DEBUG
import sys
import os
if quiet:
return ""
python_version = "%d.%d.%d" % sys.version_info[:3]
if ipython:
shell_name = "IPython"
else:
shell_name = "Python"
info = ['ground types: %s' % GROUND_TYPES]
cache = os.getenv('SYMPY_USE_CACHE')
if cache is not None and cache.lower() == 'no':
info.append('cache: off')
if SYMPY_DEBUG:
info.append('debugging: on')
args = shell_name, sympy_version, python_version, ARCH, ', '.join(info)
message = "%s console for SymPy %s (Python %s-%s) (%s)\n" % args
if source is None:
source = preexec_source
_source = ""
for line in source.split('\n')[:-1]:
if not line:
_source += '\n'
else:
_source += '>>> ' + line + '\n'
doc_version = sympy_version
if 'dev' in doc_version:
doc_version = "dev"
else:
doc_version = "%s/" % doc_version
message += '\n' + verbose_message % {'source': _source,
'version': doc_version}
return message
def int_to_Integer(s):
"""
Wrap integer literals with Integer.
This is based on the decistmt example from
http://docs.python.org/library/tokenize.html.
Only integer literals are converted. Float literals are left alone.
Examples
========
>>> from __future__ import division
>>> from sympy.interactive.session import int_to_Integer
>>> from sympy import Integer
>>> s = '1.2 + 1/2 - 0x12 + a1'
>>> int_to_Integer(s)
'1.2 +Integer (1 )/Integer (2 )-Integer (0x12 )+a1 '
>>> s = 'print (1/2)'
>>> int_to_Integer(s)
'print (Integer (1 )/Integer (2 ))'
>>> exec(s)
0.5
>>> exec(int_to_Integer(s))
1/2
"""
from tokenize import generate_tokens, untokenize, NUMBER, NAME, OP
from sympy.core.compatibility import StringIO
def _is_int(num):
"""
Returns true if string value num (with token NUMBER) represents an integer.
"""
# XXX: Is there something in the standard library that will do this?
if '.' in num or 'j' in num.lower() or 'e' in num.lower():
return False
return True
result = []
g = generate_tokens(StringIO(s).readline) # tokenize the string
for toknum, tokval, _, _, _ in g:
if toknum == NUMBER and _is_int(tokval): # replace NUMBER tokens
result.extend([
(NAME, 'Integer'),
(OP, '('),
(NUMBER, tokval),
(OP, ')')
])
else:
result.append((toknum, tokval))
return untokenize(result)
def enable_automatic_int_sympification(shell):
"""
Allow IPython to automatically convert integer literals to Integer.
"""
import ast
old_run_cell = shell.run_cell
def my_run_cell(cell, *args, **kwargs):
try:
# Check the cell for syntax errors. This way, the syntax error
# will show the original input, not the transformed input. The
# downside here is that IPython magic like %timeit will not work
# with transformed input (but on the other hand, IPython magic
# that doesn't expect transformed input will continue to work).
ast.parse(cell)
except SyntaxError:
pass
else:
cell = int_to_Integer(cell)
old_run_cell(cell, *args, **kwargs)
shell.run_cell = my_run_cell
def enable_automatic_symbols(shell):
"""Allow IPython to automatically create symbols (``isympy -a``). """
# XXX: This should perhaps use tokenize, like int_to_Integer() above.
# This would avoid re-executing the code, which can lead to subtle
# issues. For example:
#
# In [1]: a = 1
#
# In [2]: for i in range(10):
# ...: a += 1
# ...:
#
# In [3]: a
# Out[3]: 11
#
# In [4]: a = 1
#
# In [5]: for i in range(10):
# ...: a += 1
# ...: print b
# ...:
# b
# b
# b
# b
# b
# b
# b
# b
# b
# b
#
# In [6]: a
# Out[6]: 12
#
# Note how the for loop is executed again because `b` was not defined, but `a`
# was already incremented once, so the result is that it is incremented
# multiple times.
import re
re_nameerror = re.compile(
"name '(?P<symbol>[A-Za-z_][A-Za-z0-9_]*)' is not defined")
def _handler(self, etype, value, tb, tb_offset=None):
"""Handle :exc:`NameError` exception and allow injection of missing symbols. """
if etype is NameError and tb.tb_next and not tb.tb_next.tb_next:
match = re_nameerror.match(str(value))
if match is not None:
# XXX: Make sure Symbol is in scope. Otherwise you'll get infinite recursion.
self.run_cell("%(symbol)s = Symbol('%(symbol)s')" %
{'symbol': match.group("symbol")}, store_history=False)
try:
code = self.user_ns['In'][-1]
except (KeyError, IndexError):
pass
else:
self.run_cell(code, store_history=False)
return None
finally:
self.run_cell("del %s" % match.group("symbol"),
store_history=False)
stb = self.InteractiveTB.structured_traceback(
etype, value, tb, tb_offset=tb_offset)
self._showtraceback(etype, value, stb)
shell.set_custom_exc((NameError,), _handler)
def init_ipython_session(shell=None, argv=[], auto_symbols=False, auto_int_to_Integer=False):
"""Construct new IPython session. """
import IPython
if V(IPython.__version__) >= '0.11':
if not shell:
# use an app to parse the command line, and init config
# IPython 1.0 deprecates the frontend module, so we import directly
# from the terminal module to prevent a deprecation message from being
# shown.
if V(IPython.__version__) >= '1.0':
from IPython.terminal import ipapp
else:
from IPython.frontend.terminal import ipapp
app = ipapp.TerminalIPythonApp()
# don't draw IPython banner during initialization:
app.display_banner = False
app.initialize(argv)
shell = app.shell
if auto_symbols:
enable_automatic_symbols(shell)
if auto_int_to_Integer:
enable_automatic_int_sympification(shell)
return shell
else:
from IPython.Shell import make_IPython
return make_IPython(argv)
def init_python_session():
"""Construct new Python session. """
from code import InteractiveConsole
class SymPyConsole(InteractiveConsole):
"""An interactive console with readline support. """
def __init__(self):
InteractiveConsole.__init__(self)
try:
import readline
except ImportError:
pass
else:
import os
import atexit
readline.parse_and_bind('tab: complete')
if hasattr(readline, 'read_history_file'):
history = os.path.expanduser('~/.sympy-history')
try:
readline.read_history_file(history)
except IOError:
pass
atexit.register(readline.write_history_file, history)
return SymPyConsole()
def init_session(ipython=None, pretty_print=True, order=None,
use_unicode=None, use_latex=None, quiet=False, auto_symbols=False,
auto_int_to_Integer=False, str_printer=None, pretty_printer=None,
latex_printer=None, argv=[]):
"""
Initialize an embedded IPython or Python session. The IPython session is
initiated with the --pylab option, without the numpy imports, so that
matplotlib plotting can be interactive.
Parameters
==========
pretty_print: boolean
If True, use pretty_print to stringify;
if False, use sstrrepr to stringify.
order: string or None
There are a few different settings for this parameter:
lex (default), which is lexographic order;
grlex, which is graded lexographic order;
grevlex, which is reversed graded lexographic order;
old, which is used for compatibility reasons and for long expressions;
None, which sets it to lex.
use_unicode: boolean or None
If True, use unicode characters;
if False, do not use unicode characters.
use_latex: boolean or None
If True, use latex rendering if IPython GUI's;
if False, do not use latex rendering.
quiet: boolean
If True, init_session will not print messages regarding its status;
if False, init_session will print messages regarding its status.
auto_symbols: boolean
If True, IPython will automatically create symbols for you.
If False, it will not.
The default is False.
auto_int_to_Integer: boolean
If True, IPython will automatically wrap int literals with Integer, so
that things like 1/2 give Rational(1, 2).
If False, it will not.
The default is False.
ipython: boolean or None
If True, printing will initialize for an IPython console;
if False, printing will initialize for a normal console;
The default is None, which automatically determines whether we are in
an ipython instance or not.
str_printer: function, optional, default=None
A custom string printer function. This should mimic
sympy.printing.sstrrepr().
pretty_printer: function, optional, default=None
A custom pretty printer. This should mimic sympy.printing.pretty().
latex_printer: function, optional, default=None
A custom LaTeX printer. This should mimic sympy.printing.latex()
This should mimic sympy.printing.latex().
argv: list of arguments for IPython
See sympy.bin.isympy for options that can be used to initialize IPython.
See Also
========
sympy.interactive.printing.init_printing: for examples and the rest of the parameters.
Examples
========
>>> from sympy import init_session, Symbol, sin, sqrt
>>> sin(x) #doctest: +SKIP
NameError: name 'x' is not defined
>>> init_session() #doctest: +SKIP
>>> sin(x) #doctest: +SKIP
sin(x)
>>> sqrt(5) #doctest: +SKIP
___
\\/ 5
>>> init_session(pretty_print=False) #doctest: +SKIP
>>> sqrt(5) #doctest: +SKIP
sqrt(5)
>>> y + x + y**2 + x**2 #doctest: +SKIP
x**2 + x + y**2 + y
>>> init_session(order='grlex') #doctest: +SKIP
>>> y + x + y**2 + x**2 #doctest: +SKIP
x**2 + y**2 + x + y
>>> init_session(order='grevlex') #doctest: +SKIP
>>> y * x**2 + x * y**2 #doctest: +SKIP
x**2*y + x*y**2
>>> init_session(order='old') #doctest: +SKIP
>>> x**2 + y**2 + x + y #doctest: +SKIP
x + y + x**2 + y**2
>>> theta = Symbol('theta') #doctest: +SKIP
>>> theta #doctest: +SKIP
theta
>>> init_session(use_unicode=True) #doctest: +SKIP
>>> theta # doctest: +SKIP
\u03b8
"""
import sys
in_ipython = False
if ipython is not False:
try:
import IPython
except ImportError:
if ipython is True:
raise RuntimeError("IPython is not available on this system")
ip = None
else:
try:
from IPython import get_ipython
ip = get_ipython()
except ImportError:
ip = None
in_ipython = bool(ip)
if ipython is None:
ipython = in_ipython
if ipython is False:
ip = init_python_session()
mainloop = ip.interact
else:
ip = init_ipython_session(ip, argv=argv, auto_symbols=auto_symbols,
auto_int_to_Integer=auto_int_to_Integer)
if V(IPython.__version__) >= '0.11':
# runsource is gone, use run_cell instead, which doesn't
# take a symbol arg. The second arg is `store_history`,
# and False means don't add the line to IPython's history.
ip.runsource = lambda src, symbol='exec': ip.run_cell(src, False)
#Enable interactive plotting using pylab.
try:
ip.enable_pylab(import_all=False)
except Exception:
# Causes an import error if matplotlib is not installed.
# Causes other errors (depending on the backend) if there
# is no display, or if there is some problem in the
# backend, so we have a bare "except Exception" here
pass
if not in_ipython:
mainloop = ip.mainloop
if auto_symbols and (not ipython or V(IPython.__version__) < '0.11'):
raise RuntimeError("automatic construction of symbols is possible only in IPython 0.11 or above")
if auto_int_to_Integer and (not ipython or V(IPython.__version__) < '0.11'):
raise RuntimeError("automatic int to Integer transformation is possible only in IPython 0.11 or above")
_preexec_source = preexec_source
ip.runsource(_preexec_source, symbol='exec')
init_printing(pretty_print=pretty_print, order=order,
use_unicode=use_unicode, use_latex=use_latex, ip=ip,
str_printer=str_printer, pretty_printer=pretty_printer,
latex_printer=latex_printer)
message = _make_message(ipython, quiet, _preexec_source)
if not in_ipython:
print(message)
mainloop()
sys.exit('Exiting ...')
else:
print(message)
import atexit
atexit.register(lambda: print("Exiting ...\n"))
|
bfb7d3f54b84057f37560c302c433c48d37cd41634280f88d3ac374319b7d68a | """Power series evaluation and manipulation using sparse Polynomials
Implementing a new function
---------------------------
There are a few things to be kept in mind when adding a new function here::
- The implementation should work on all possible input domains/rings.
Special cases include the ``EX`` ring and a constant term in the series
to be expanded. There can be two types of constant terms in the series:
+ A constant value or symbol.
+ A term of a multivariate series not involving the generator, with
respect to which the series is to expanded.
Strictly speaking, a generator of a ring should not be considered a
constant. However, for series expansion both the cases need similar
treatment (as the user doesn't care about inner details), i.e, use an
addition formula to separate the constant part and the variable part (see
rs_sin for reference).
- All the algorithms used here are primarily designed to work for Taylor
series (number of iterations in the algo equals the required order).
Hence, it becomes tricky to get the series of the right order if a
Puiseux series is input. Use rs_puiseux? in your function if your
algorithm is not designed to handle fractional powers.
Extending rs_series
-------------------
To make a function work with rs_series you need to do two things::
- Many sure it works with a constant term (as explained above).
- If the series contains constant terms, you might need to extend its ring.
You do so by adding the new terms to the rings as generators.
``PolyRing.compose`` and ``PolyRing.add_gens`` are two functions that do
so and need to be called every time you expand a series containing a
constant term.
Look at rs_sin and rs_series for further reference.
"""
from sympy.polys.domains import QQ, EX
from sympy.polys.rings import PolyElement, ring, sring
from sympy.polys.polyerrors import DomainError
from sympy.polys.monomials import (monomial_min, monomial_mul, monomial_div,
monomial_ldiv)
from mpmath.libmp.libintmath import ifac
from sympy.core import PoleError, Function, Expr
from sympy.core.numbers import Rational, igcd
from sympy.core.compatibility import as_int, range, string_types
from sympy.functions import sin, cos, tan, atan, exp, atanh, tanh, log, ceiling
from mpmath.libmp.libintmath import giant_steps
import math
def _invert_monoms(p1):
"""
Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import _invert_monoms
>>> R, x = ring('x', ZZ)
>>> p = x**2 + 2*x + 3
>>> _invert_monoms(p)
3*x**2 + 2*x + 1
See Also
========
sympy.polys.densebasic.dup_reverse
"""
terms = list(p1.items())
terms.sort()
deg = p1.degree()
R = p1.ring
p = R.zero
cv = p1.listcoeffs()
mv = p1.listmonoms()
for i in range(len(mv)):
p[(deg - mv[i][0],)] = cv[i]
return p
def _giant_steps(target):
"""Return a list of precision steps for the Newton's method"""
res = giant_steps(2, target)
if res[0] != 2:
res = [2] + res
return res
def rs_trunc(p1, x, prec):
"""
Truncate the series in the ``x`` variable with precision ``prec``,
that is, modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_trunc
>>> R, x = ring('x', QQ)
>>> p = x**10 + x**5 + x + 1
>>> rs_trunc(p, x, 12)
x**10 + x**5 + x + 1
>>> rs_trunc(p, x, 10)
x**5 + x + 1
"""
R = p1.ring
p = R.zero
i = R.gens.index(x)
for exp1 in p1:
if exp1[i] >= prec:
continue
p[exp1] = p1[exp1]
return p
def rs_is_puiseux(p, x):
"""
Test if ``p`` is Puiseux series in ``x``.
Raise an exception if it has a negative power in ``x``.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_is_puiseux
>>> R, x = ring('x', QQ)
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
>>> rs_is_puiseux(p, x)
True
"""
index = p.ring.gens.index(x)
for k in p:
if k[index] != int(k[index]):
return True
if k[index] < 0:
raise ValueError('The series is not regular in %s' % x)
return False
def rs_puiseux(f, p, x, prec):
"""
Return the puiseux series for `f(p, x, prec)`.
To be used when function ``f`` is implemented only for regular series.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_puiseux, rs_exp
>>> R, x = ring('x', QQ)
>>> p = x**QQ(2,5) + x**QQ(2,3) + x
>>> rs_puiseux(rs_exp,p, x, 1)
1/2*x**(4/5) + x**(2/3) + x**(2/5) + 1
"""
index = p.ring.gens.index(x)
n = 1
for k in p:
power = k[index]
if isinstance(power, Rational):
num, den = power.as_numer_denom()
n = int(n*den // igcd(n, den))
elif power != int(power):
den = power.denominator
n = int(n*den // igcd(n, den))
if n != 1:
p1 = pow_xin(p, index, n)
r = f(p1, x, prec*n)
n1 = QQ(1, n)
if isinstance(r, tuple):
r = tuple([pow_xin(rx, index, n1) for rx in r])
else:
r = pow_xin(r, index, n1)
else:
r = f(p, x, prec)
return r
def rs_puiseux2(f, p, q, x, prec):
"""
Return the puiseux series for `f(p, q, x, prec)`.
To be used when function ``f`` is implemented only for regular series.
"""
index = p.ring.gens.index(x)
n = 1
for k in p:
power = k[index]
if isinstance(power, Rational):
num, den = power.as_numer_denom()
n = n*den // igcd(n, den)
elif power != int(power):
den = power.denominator
n = n*den // igcd(n, den)
if n != 1:
p1 = pow_xin(p, index, n)
r = f(p1, q, x, prec*n)
n1 = QQ(1, n)
r = pow_xin(r, index, n1)
else:
r = f(p, q, x, prec)
return r
def rs_mul(p1, p2, x, prec):
"""
Return the product of the given two series, modulo ``O(x**prec)``.
``x`` is the series variable or its position in the generators.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_mul
>>> R, x = ring('x', QQ)
>>> p1 = x**2 + 2*x + 1
>>> p2 = x + 1
>>> rs_mul(p1, p2, x, 3)
3*x**2 + 3*x + 1
"""
R = p1.ring
p = R.zero
if R.__class__ != p2.ring.__class__ or R != p2.ring:
raise ValueError('p1 and p2 must have the same ring')
iv = R.gens.index(x)
if not isinstance(p2, PolyElement):
raise ValueError('p1 and p2 must have the same ring')
if R == p2.ring:
get = p.get
items2 = list(p2.items())
items2.sort(key=lambda e: e[0][iv])
if R.ngens == 1:
for exp1, v1 in p1.items():
for exp2, v2 in items2:
exp = exp1[0] + exp2[0]
if exp < prec:
exp = (exp, )
p[exp] = get(exp, 0) + v1*v2
else:
break
else:
monomial_mul = R.monomial_mul
for exp1, v1 in p1.items():
for exp2, v2 in items2:
if exp1[iv] + exp2[iv] < prec:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, 0) + v1*v2
else:
break
p.strip_zero()
return p
def rs_square(p1, x, prec):
"""
Square the series modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_square
>>> R, x = ring('x', QQ)
>>> p = x**2 + 2*x + 1
>>> rs_square(p, x, 3)
6*x**2 + 4*x + 1
"""
R = p1.ring
p = R.zero
iv = R.gens.index(x)
get = p.get
items = list(p1.items())
items.sort(key=lambda e: e[0][iv])
monomial_mul = R.monomial_mul
for i in range(len(items)):
exp1, v1 = items[i]
for j in range(i):
exp2, v2 = items[j]
if exp1[iv] + exp2[iv] < prec:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, 0) + v1*v2
else:
break
p = p.imul_num(2)
get = p.get
for expv, v in p1.items():
if 2*expv[iv] < prec:
e2 = monomial_mul(expv, expv)
p[e2] = get(e2, 0) + v**2
p.strip_zero()
return p
def rs_pow(p1, n, x, prec):
"""
Return ``p1**n`` modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_pow
>>> R, x = ring('x', QQ)
>>> p = x + 1
>>> rs_pow(p, 4, x, 3)
6*x**2 + 4*x + 1
"""
R = p1.ring
if isinstance(n, Rational):
np = int(n.p)
nq = int(n.q)
if nq != 1:
res = rs_nth_root(p1, nq, x, prec)
if np != 1:
res = rs_pow(res, np, x, prec)
else:
res = rs_pow(p1, np, x, prec)
return res
n = as_int(n)
if n == 0:
if p1:
return R(1)
else:
raise ValueError('0**0 is undefined')
if n < 0:
p1 = rs_pow(p1, -n, x, prec)
return rs_series_inversion(p1, x, prec)
if n == 1:
return rs_trunc(p1, x, prec)
if n == 2:
return rs_square(p1, x, prec)
if n == 3:
p2 = rs_square(p1, x, prec)
return rs_mul(p1, p2, x, prec)
p = R(1)
while 1:
if n & 1:
p = rs_mul(p1, p, x, prec)
n -= 1
if not n:
break
p1 = rs_square(p1, x, prec)
n = n // 2
return p
def rs_subs(p, rules, x, prec):
"""
Substitution with truncation according to the mapping in ``rules``.
Return a series with precision ``prec`` in the generator ``x``
Note that substitutions are not done one after the other
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_subs
>>> R, x, y = ring('x, y', QQ)
>>> p = x**2 + y**2
>>> rs_subs(p, {x: x+ y, y: x+ 2*y}, x, 3)
2*x**2 + 6*x*y + 5*y**2
>>> (x + y)**2 + (x + 2*y)**2
2*x**2 + 6*x*y + 5*y**2
which differs from
>>> rs_subs(rs_subs(p, {x: x+ y}, x, 3), {y: x+ 2*y}, x, 3)
5*x**2 + 12*x*y + 8*y**2
Parameters
----------
p : :class:`~.PolyElement` Input series.
rules : ``dict`` with substitution mappings.
x : :class:`~.PolyElement` in which the series truncation is to be done.
prec : :class:`~.Integer` order of the series after truncation.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_subs
>>> R, x, y = ring('x, y', QQ)
>>> rs_subs(x**2+y**2, {y: (x+y)**2}, x, 3)
6*x**2*y**2 + x**2 + 4*x*y**3 + y**4
"""
R = p.ring
ngens = R.ngens
d = R(0)
for i in range(ngens):
d[(i, 1)] = R.gens[i]
for var in rules:
d[(R.index(var), 1)] = rules[var]
p1 = R(0)
p_keys = sorted(p.keys())
for expv in p_keys:
p2 = R(1)
for i in range(ngens):
power = expv[i]
if power == 0:
continue
if (i, power) not in d:
q, r = divmod(power, 2)
if r == 0 and (i, q) in d:
d[(i, power)] = rs_square(d[(i, q)], x, prec)
elif (i, power - 1) in d:
d[(i, power)] = rs_mul(d[(i, power - 1)], d[(i, 1)],
x, prec)
else:
d[(i, power)] = rs_pow(d[(i, 1)], power, x, prec)
p2 = rs_mul(p2, d[(i, power)], x, prec)
p1 += p2*p[expv]
return p1
def _has_constant_term(p, x):
"""
Check if ``p`` has a constant term in ``x``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import _has_constant_term
>>> R, x = ring('x', QQ)
>>> p = x**2 + x + 1
>>> _has_constant_term(p, x)
True
"""
R = p.ring
iv = R.gens.index(x)
zm = R.zero_monom
a = [0]*R.ngens
a[iv] = 1
miv = tuple(a)
for expv in p:
if monomial_min(expv, miv) == zm:
return True
return False
def _get_constant_term(p, x):
"""Return constant term in p with respect to x
Note that it is not simply `p[R.zero_monom]` as there might be multiple
generators in the ring R. We want the `x`-free term which can contain other
generators.
"""
R = p.ring
i = R.gens.index(x)
zm = R.zero_monom
a = [0]*R.ngens
a[i] = 1
miv = tuple(a)
c = 0
for expv in p:
if monomial_min(expv, miv) == zm:
c += R({expv: p[expv]})
return c
def _check_series_var(p, x, name):
index = p.ring.gens.index(x)
m = min(p, key=lambda k: k[index])[index]
if m < 0:
raise PoleError("Asymptotic expansion of %s around [oo] not "
"implemented." % name)
return index, m
def _series_inversion1(p, x, prec):
"""
Univariate series inversion ``1/p`` modulo ``O(x**prec)``.
The Newton method is used.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import _series_inversion1
>>> R, x = ring('x', QQ)
>>> p = x + 1
>>> _series_inversion1(p, x, 4)
-x**3 + x**2 - x + 1
"""
if rs_is_puiseux(p, x):
return rs_puiseux(_series_inversion1, p, x, prec)
R = p.ring
zm = R.zero_monom
c = p[zm]
# giant_steps does not seem to work with PythonRational numbers with 1 as
# denominator. This makes sure such a number is converted to integer.
if prec == int(prec):
prec = int(prec)
if zm not in p:
raise ValueError("No constant term in series")
if _has_constant_term(p - c, x):
raise ValueError("p cannot contain a constant term depending on "
"parameters")
one = R(1)
if R.domain is EX:
one = 1
if c != one:
# TODO add check that it is a unit
p1 = R(1)/c
else:
p1 = R(1)
for precx in _giant_steps(prec):
t = 1 - rs_mul(p1, p, x, precx)
p1 = p1 + rs_mul(p1, t, x, precx)
return p1
def rs_series_inversion(p, x, prec):
"""
Multivariate series inversion ``1/p`` modulo ``O(x**prec)``.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_inversion
>>> R, x, y = ring('x, y', QQ)
>>> rs_series_inversion(1 + x*y**2, x, 4)
-x**3*y**6 + x**2*y**4 - x*y**2 + 1
>>> rs_series_inversion(1 + x*y**2, y, 4)
-x*y**2 + 1
>>> rs_series_inversion(x + x**2, x, 4)
x**3 - x**2 + x - 1 + x**(-1)
"""
R = p.ring
if p == R.zero:
raise ZeroDivisionError
zm = R.zero_monom
index = R.gens.index(x)
m = min(p, key=lambda k: k[index])[index]
if m:
p = mul_xin(p, index, -m)
prec = prec + m
if zm not in p:
raise NotImplementedError("No constant term in series")
if _has_constant_term(p - p[zm], x):
raise NotImplementedError("p - p[0] must not have a constant term in "
"the series variables")
r = _series_inversion1(p, x, prec)
if m != 0:
r = mul_xin(r, index, -m)
return r
def _coefficient_t(p, t):
r"""Coefficient of `x_i**j` in p, where ``t`` = (i, j)"""
i, j = t
R = p.ring
expv1 = [0]*R.ngens
expv1[i] = j
expv1 = tuple(expv1)
p1 = R(0)
for expv in p:
if expv[i] == j:
p1[monomial_div(expv, expv1)] = p[expv]
return p1
def rs_series_reversion(p, x, n, y):
r"""
Reversion of a series.
``p`` is a series with ``O(x**n)`` of the form $p = ax + f(x)$
where $a$ is a number different from 0.
$f(x) = \sum_{k=2}^{n-1} a_kx_k$
Parameters
==========
a_k : Can depend polynomially on other variables, not indicated.
x : Variable with name x.
y : Variable with name y.
Returns
=======
Solve $p = y$, that is, given $ax + f(x) - y = 0$,
find the solution $x = r(y)$ up to $O(y^n)$.
Algorithm
=========
If $r_i$ is the solution at order $i$, then:
$ar_i + f(r_i) - y = O\left(y^{i + 1}\right)$
and if $r_{i + 1}$ is the solution at order $i + 1$, then:
$ar_{i + 1} + f(r_{i + 1}) - y = O\left(y^{i + 2}\right)$
We have, $r_{i + 1} = r_i + e$, such that,
$ae + f(r_i) = O\left(y^{i + 2}\right)$
or $e = -f(r_i)/a$
So we use the recursion relation:
$r_{i + 1} = r_i - f(r_i)/a$
with the boundary condition: $r_1 = y$
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_reversion, rs_trunc
>>> R, x, y, a, b = ring('x, y, a, b', QQ)
>>> p = x - x**2 - 2*b*x**2 + 2*a*b*x**2
>>> p1 = rs_series_reversion(p, x, 3, y); p1
-2*y**2*a*b + 2*y**2*b + y**2 + y
>>> rs_trunc(p.compose(x, p1), y, 3)
y
"""
if rs_is_puiseux(p, x):
raise NotImplementedError
R = p.ring
nx = R.gens.index(x)
y = R(y)
ny = R.gens.index(y)
if _has_constant_term(p, x):
raise ValueError("p must not contain a constant term in the series "
"variable")
a = _coefficient_t(p, (nx, 1))
zm = R.zero_monom
assert zm in a and len(a) == 1
a = a[zm]
r = y/a
for i in range(2, n):
sp = rs_subs(p, {x: r}, y, i + 1)
sp = _coefficient_t(sp, (ny, i))*y**i
r -= sp/a
return r
def rs_series_from_list(p, c, x, prec, concur=1):
"""
Return a series `sum c[n]*p**n` modulo `O(x**prec)`.
It reduces the number of multiplications by summing concurrently.
`ax = [1, p, p**2, .., p**(J - 1)]`
`s = sum(c[i]*ax[i]` for i in `range(r, (r + 1)*J))*p**((K - 1)*J)`
with `K >= (n + 1)/J`
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_series_from_list, rs_trunc
>>> R, x = ring('x', QQ)
>>> p = x**2 + x + 1
>>> c = [1, 2, 3]
>>> rs_series_from_list(p, c, x, 4)
6*x**3 + 11*x**2 + 8*x + 6
>>> rs_trunc(1 + 2*p + 3*p**2, x, 4)
6*x**3 + 11*x**2 + 8*x + 6
>>> pc = R.from_list(list(reversed(c)))
>>> rs_trunc(pc.compose(x, p), x, 4)
6*x**3 + 11*x**2 + 8*x + 6
"""
# TODO: Add this when it is documented in Sphinx
"""
See Also
========
sympy.polys.rings.PolyRing.compose
"""
R = p.ring
n = len(c)
if not concur:
q = R(1)
s = c[0]*q
for i in range(1, n):
q = rs_mul(q, p, x, prec)
s += c[i]*q
return s
J = int(math.sqrt(n) + 1)
K, r = divmod(n, J)
if r:
K += 1
ax = [R(1)]
q = R(1)
if len(p) < 20:
for i in range(1, J):
q = rs_mul(q, p, x, prec)
ax.append(q)
else:
for i in range(1, J):
if i % 2 == 0:
q = rs_square(ax[i//2], x, prec)
else:
q = rs_mul(q, p, x, prec)
ax.append(q)
# optimize using rs_square
pj = rs_mul(ax[-1], p, x, prec)
b = R(1)
s = R(0)
for k in range(K - 1):
r = J*k
s1 = c[r]
for j in range(1, J):
s1 += c[r + j]*ax[j]
s1 = rs_mul(s1, b, x, prec)
s += s1
b = rs_mul(b, pj, x, prec)
if not b:
break
k = K - 1
r = J*k
if r < n:
s1 = c[r]*R(1)
for j in range(1, J):
if r + j >= n:
break
s1 += c[r + j]*ax[j]
s1 = rs_mul(s1, b, x, prec)
s += s1
return s
def rs_diff(p, x):
"""
Return partial derivative of ``p`` with respect to ``x``.
Parameters
==========
x : :class:`~.PolyElement` with respect to which ``p`` is differentiated.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_diff
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x**2*y**3
>>> rs_diff(p, x)
2*x*y**3 + 1
"""
R = p.ring
n = R.gens.index(x)
p1 = R.zero
mn = [0]*R.ngens
mn[n] = 1
mn = tuple(mn)
for expv in p:
if expv[n]:
e = monomial_ldiv(expv, mn)
p1[e] = R.domain_new(p[expv]*expv[n])
return p1
def rs_integrate(p, x):
"""
Integrate ``p`` with respect to ``x``.
Parameters
==========
x : :class:`~.PolyElement` with respect to which ``p`` is integrated.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_integrate
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x**2*y**3
>>> rs_integrate(p, x)
1/3*x**3*y**3 + 1/2*x**2
"""
R = p.ring
p1 = R.zero
n = R.gens.index(x)
mn = [0]*R.ngens
mn[n] = 1
mn = tuple(mn)
for expv in p:
e = monomial_mul(expv, mn)
p1[e] = R.domain_new(p[expv]/(expv[n] + 1))
return p1
def rs_fun(p, f, *args):
r"""
Function of a multivariate series computed by substitution.
The case with f method name is used to compute `rs\_tan` and `rs\_nth\_root`
of a multivariate series:
`rs\_fun(p, tan, iv, prec)`
tan series is first computed for a dummy variable _x,
i.e, `rs\_tan(\_x, iv, prec)`. Then we substitute _x with p to get the
desired series
Parameters
==========
p : :class:`~.PolyElement` The multivariate series to be expanded.
f : `ring\_series` function to be applied on `p`.
args[-2] : :class:`~.PolyElement` with respect to which, the series is to be expanded.
args[-1] : Required order of the expanded series.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_fun, _tan1
>>> R, x, y = ring('x, y', QQ)
>>> p = x + x*y + x**2*y + x**3*y**2
>>> rs_fun(p, _tan1, x, 4)
1/3*x**3*y**3 + 2*x**3*y**2 + x**3*y + 1/3*x**3 + x**2*y + x*y + x
"""
_R = p.ring
R1, _x = ring('_x', _R.domain)
h = int(args[-1])
args1 = args[:-2] + (_x, h)
zm = _R.zero_monom
# separate the constant term of the series
# compute the univariate series f(_x, .., 'x', sum(nv))
if zm in p:
x1 = _x + p[zm]
p1 = p - p[zm]
else:
x1 = _x
p1 = p
if isinstance(f, string_types):
q = getattr(x1, f)(*args1)
else:
q = f(x1, *args1)
a = sorted(q.items())
c = [0]*h
for x in a:
c[x[0][0]] = x[1]
p1 = rs_series_from_list(p1, c, args[-2], args[-1])
return p1
def mul_xin(p, i, n):
r"""
Return `p*x_i**n`.
`x\_i` is the ith variable in ``p``.
"""
R = p.ring
q = R(0)
for k, v in p.items():
k1 = list(k)
k1[i] += n
q[tuple(k1)] = v
return q
def pow_xin(p, i, n):
"""
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import pow_xin
>>> R, x, y = ring('x, y', QQ)
>>> p = x**QQ(2,5) + x + x**QQ(2,3)
>>> index = p.ring.gens.index(x)
>>> pow_xin(p, index, 15)
x**15 + x**10 + x**6
"""
R = p.ring
q = R(0)
for k, v in p.items():
k1 = list(k)
k1[i] *= n
q[tuple(k1)] = v
return q
def _nth_root1(p, n, x, prec):
"""
Univariate series expansion of the nth root of ``p``.
The Newton method is used.
"""
if rs_is_puiseux(p, x):
return rs_puiseux2(_nth_root1, p, n, x, prec)
R = p.ring
zm = R.zero_monom
if zm not in p:
raise NotImplementedError('No constant term in series')
n = as_int(n)
assert p[zm] == 1
p1 = R(1)
if p == 1:
return p
if n == 0:
return R(1)
if n == 1:
return p
if n < 0:
n = -n
sign = 1
else:
sign = 0
for precx in _giant_steps(prec):
tmp = rs_pow(p1, n + 1, x, precx)
tmp = rs_mul(tmp, p, x, precx)
p1 += p1/n - tmp/n
if sign:
return p1
else:
return _series_inversion1(p1, x, prec)
def rs_nth_root(p, n, x, prec):
"""
Multivariate series expansion of the nth root of ``p``.
Parameters
==========
p : Expr
The polynomial to computer the root of.
n : integer
The order of the root to be computed.
x : :class:`~.PolyElement`
prec : integer
Order of the expanded series.
Notes
=====
The result of this function is dependent on the ring over which the
polynomial has been defined. If the answer involves a root of a constant,
make sure that the polynomial is over a real field. It can not yet handle
roots of symbols.
Examples
========
>>> from sympy.polys.domains import QQ, RR
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_nth_root
>>> R, x, y = ring('x, y', QQ)
>>> rs_nth_root(1 + x + x*y, -3, x, 3)
2/9*x**2*y**2 + 4/9*x**2*y + 2/9*x**2 - 1/3*x*y - 1/3*x + 1
>>> R, x, y = ring('x, y', RR)
>>> rs_nth_root(3 + x + x*y, 3, x, 2)
0.160249952256379*x*y + 0.160249952256379*x + 1.44224957030741
"""
if n == 0:
if p == 0:
raise ValueError('0**0 expression')
else:
return p.ring(1)
if n == 1:
return rs_trunc(p, x, prec)
R = p.ring
index = R.gens.index(x)
m = min(p, key=lambda k: k[index])[index]
p = mul_xin(p, index, -m)
prec -= m
if _has_constant_term(p - 1, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = c_expr**QQ(1, n)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(c_expr**(QQ(1, n)))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try: # RealElement doesn't support
const = R(c**Rational(1, n)) # exponentiation with mpq object
except ValueError: # as exponent
raise DomainError("The given series can't be expanded in "
"this domain.")
res = rs_nth_root(p/c, n, x, prec)*const
else:
res = _nth_root1(p, n, x, prec)
if m:
m = QQ(m, n)
res = mul_xin(res, index, m)
return res
def rs_log(p, x, prec):
"""
The Logarithm of ``p`` modulo ``O(x**prec)``.
Notes
=====
Truncation of ``integral dx p**-1*d p/dx`` is used.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_log
>>> R, x = ring('x', QQ)
>>> rs_log(1 + x, x, 8)
1/7*x**7 - 1/6*x**6 + 1/5*x**5 - 1/4*x**4 + 1/3*x**3 - 1/2*x**2 + x
>>> rs_log(x**QQ(3, 2) + 1, x, 5)
1/3*x**(9/2) - 1/2*x**3 + x**(3/2)
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_log, p, x, prec)
R = p.ring
if p == 1:
return R.zero
c = _get_constant_term(p, x)
if c:
const = 0
if c == 1:
pass
else:
c_expr = c.as_expr()
if R.domain is EX:
const = log(c_expr)
elif isinstance(c, PolyElement):
try:
const = R(log(c_expr))
except ValueError:
R = R.add_gens([log(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
const = R(log(c_expr))
else:
try:
const = R(log(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
dlog = p.diff(x)
dlog = rs_mul(dlog, _series_inversion1(p, x, prec), x, prec - 1)
return rs_integrate(dlog, x) + const
else:
raise NotImplementedError
def rs_LambertW(p, x, prec):
"""
Calculate the series expansion of the principal branch of the Lambert W
function.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_LambertW
>>> R, x, y = ring('x, y', QQ)
>>> rs_LambertW(x + x*y, x, 3)
-x**2*y**2 - 2*x**2*y - x**2 + x*y + x
See Also
========
LambertW
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_LambertW, p, x, prec)
R = p.ring
p1 = R(0)
if _has_constant_term(p, x):
raise NotImplementedError("Polynomial must not have constant term in "
"the series variables")
if x in R.gens:
for precx in _giant_steps(prec):
e = rs_exp(p1, x, precx)
p2 = rs_mul(e, p1, x, precx) - p
p3 = rs_mul(e, p1 + 1, x, precx)
p3 = rs_series_inversion(p3, x, precx)
tmp = rs_mul(p2, p3, x, precx)
p1 -= tmp
return p1
else:
raise NotImplementedError
def _exp1(p, x, prec):
r"""Helper function for `rs\_exp`. """
R = p.ring
p1 = R(1)
for precx in _giant_steps(prec):
pt = p - rs_log(p1, x, precx)
tmp = rs_mul(pt, p1, x, precx)
p1 += tmp
return p1
def rs_exp(p, x, prec):
"""
Exponentiation of a series modulo ``O(x**prec)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_exp
>>> R, x = ring('x', QQ)
>>> rs_exp(x**2, x, 7)
1/6*x**6 + 1/2*x**4 + x**2 + 1
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_exp, p, x, prec)
R = p.ring
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
const = exp(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(exp(c_expr))
except ValueError:
R = R.add_gens([exp(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
const = R(exp(c_expr))
else:
try:
const = R(exp(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy functions to evaluate the values of the cos/sin
# of the constant term.
return const*rs_exp(p1, x, prec)
if len(p) > 20:
return _exp1(p, x, prec)
one = R(1)
n = 1
c = []
for k in range(prec):
c.append(one/n)
k += 1
n *= k
r = rs_series_from_list(p, c, x, prec)
return r
def _atan(p, iv, prec):
"""
Expansion using formula.
Faster on very small and univariate series.
"""
R = p.ring
mo = R(-1)
c = [-mo]
p2 = rs_square(p, iv, prec)
for k in range(1, prec):
c.append(mo**k/(2*k + 1))
s = rs_series_from_list(p2, c, iv, prec)
s = rs_mul(s, p, iv, prec)
return s
def rs_atan(p, x, prec):
"""
The arctangent of a series
Return the series expansion of the atan of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_atan
>>> R, x, y = ring('x, y', QQ)
>>> rs_atan(x + x*y, x, 4)
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
See Also
========
atan
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_atan, p, x, prec)
R = p.ring
const = 0
if _has_constant_term(p, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = atan(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(atan(c_expr))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try:
const = R(atan(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
# Instead of using a closed form formula, we differentiate atan(p) to get
# `1/(1+p**2) * dp`, whose series expansion is much easier to calculate.
# Finally we integrate to get back atan
dp = p.diff(x)
p1 = rs_square(p, x, prec) + R(1)
p1 = rs_series_inversion(p1, x, prec - 1)
p1 = rs_mul(dp, p1, x, prec - 1)
return rs_integrate(p1, x) + const
def rs_asin(p, x, prec):
"""
Arcsine of a series
Return the series expansion of the asin of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_asin
>>> R, x, y = ring('x, y', QQ)
>>> rs_asin(x, x, 8)
5/112*x**7 + 3/40*x**5 + 1/6*x**3 + x
See Also
========
asin
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_asin, p, x, prec)
if _has_constant_term(p, x):
raise NotImplementedError("Polynomial must not have constant term in "
"series variables")
R = p.ring
if x in R.gens:
# get a good value
if len(p) > 20:
dp = rs_diff(p, x)
p1 = 1 - rs_square(p, x, prec - 1)
p1 = rs_nth_root(p1, -2, x, prec - 1)
p1 = rs_mul(dp, p1, x, prec - 1)
return rs_integrate(p1, x)
one = R(1)
c = [0, one, 0]
for k in range(3, prec, 2):
c.append((k - 2)**2*c[-2]/(k*(k - 1)))
c.append(0)
return rs_series_from_list(p, c, x, prec)
else:
raise NotImplementedError
def _tan1(p, x, prec):
r"""
Helper function of :func:`rs_tan`.
Return the series expansion of tan of a univariate series using Newton's
method. It takes advantage of the fact that series expansion of atan is
easier than that of tan.
Consider `f(x) = y - \arctan(x)`
Let r be a root of f(x) found using Newton's method.
Then `f(r) = 0`
Or `y = \arctan(x)` where `x = \tan(y)` as required.
"""
R = p.ring
p1 = R(0)
for precx in _giant_steps(prec):
tmp = p - rs_atan(p1, x, precx)
tmp = rs_mul(tmp, 1 + rs_square(p1, x, precx), x, precx)
p1 += tmp
return p1
def rs_tan(p, x, prec):
"""
Tangent of a series.
Return the series expansion of the tan of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_tan
>>> R, x, y = ring('x, y', QQ)
>>> rs_tan(x + x*y, x, 4)
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
See Also
========
_tan1, tan
"""
if rs_is_puiseux(p, x):
r = rs_puiseux(rs_tan, p, x, prec)
return r
R = p.ring
const = 0
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
const = tan(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(tan(c_expr))
except ValueError:
R = R.add_gens([tan(c_expr, )])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
const = R(tan(c_expr))
else:
try:
const = R(tan(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy functions to evaluate the values of the cos/sin
# of the constant term.
t2 = rs_tan(p1, x, prec)
t = rs_series_inversion(1 - const*t2, x, prec)
return rs_mul(const + t2, t, x, prec)
if R.ngens == 1:
return _tan1(p, x, prec)
else:
return rs_fun(p, rs_tan, x, prec)
def rs_cot(p, x, prec):
"""
Cotangent of a series
Return the series expansion of the cot of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cot
>>> R, x, y = ring('x, y', QQ)
>>> rs_cot(x, x, 6)
-2/945*x**5 - 1/45*x**3 - 1/3*x + x**(-1)
See Also
========
cot
"""
# It can not handle series like `p = x + x*y` where the coefficient of the
# linear term in the series variable is symbolic.
if rs_is_puiseux(p, x):
r = rs_puiseux(rs_cot, p, x, prec)
return r
i, m = _check_series_var(p, x, 'cot')
prec1 = prec + 2*m
c, s = rs_cos_sin(p, x, prec1)
s = mul_xin(s, i, -m)
s = rs_series_inversion(s, x, prec1)
res = rs_mul(c, s, x, prec1)
res = mul_xin(res, i, -m)
res = rs_trunc(res, x, prec)
return res
def rs_sin(p, x, prec):
"""
Sine of a series
Return the series expansion of the sin of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_sin
>>> R, x, y = ring('x, y', QQ)
>>> rs_sin(x + x*y, x, 4)
-1/6*x**3*y**3 - 1/2*x**3*y**2 - 1/2*x**3*y - 1/6*x**3 + x*y + x
>>> rs_sin(x**QQ(3, 2) + x*y**QQ(7, 5), x, 4)
-1/2*x**(7/2)*y**(14/5) - 1/6*x**3*y**(21/5) + x**(3/2) + x*y**(7/5)
See Also
========
sin
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_sin, p, x, prec)
R = x.ring
if not p:
return R(0)
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
t1, t2 = sin(c_expr), cos(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
except ValueError:
R = R.add_gens([sin(c_expr), cos(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
else:
try:
t1, t2 = R(sin(c)), R(cos(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy cos, sin functions to evaluate the values of the
# cos/sin of the constant term.
return rs_sin(p1, x, prec)*t2 + rs_cos(p1, x, prec)*t1
# Series is calculated in terms of tan as its evaluation is fast.
if len(p) > 20 and R.ngens == 1:
t = rs_tan(p/2, x, prec)
t2 = rs_square(t, x, prec)
p1 = rs_series_inversion(1 + t2, x, prec)
return rs_mul(p1, 2*t, x, prec)
one = R(1)
n = 1
c = [0]
for k in range(2, prec + 2, 2):
c.append(one/n)
c.append(0)
n *= -k*(k + 1)
return rs_series_from_list(p, c, x, prec)
def rs_cos(p, x, prec):
"""
Cosine of a series
Return the series expansion of the cos of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cos
>>> R, x, y = ring('x, y', QQ)
>>> rs_cos(x + x*y, x, 4)
-1/2*x**2*y**2 - x**2*y - 1/2*x**2 + 1
>>> rs_cos(x + x*y, x, 4)/x**QQ(7, 5)
-1/2*x**(3/5)*y**2 - x**(3/5)*y - 1/2*x**(3/5) + x**(-7/5)
See Also
========
cos
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_cos, p, x, prec)
R = p.ring
c = _get_constant_term(p, x)
if c:
if R.domain is EX:
c_expr = c.as_expr()
_, _ = sin(c_expr), cos(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
_, _ = R(sin(c_expr)), R(cos(c_expr))
except ValueError:
R = R.add_gens([sin(c_expr), cos(c_expr)])
p = p.set_ring(R)
x = x.set_ring(R)
c = c.set_ring(R)
else:
try:
_, _ = R(sin(c)), R(cos(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
# Makes use of sympy cos, sin functions to evaluate the values of the
# cos/sin of the constant term.
p_cos = rs_cos(p1, x, prec)
p_sin = rs_sin(p1, x, prec)
R = R.compose(p_cos.ring).compose(p_sin.ring)
p_cos.set_ring(R)
p_sin.set_ring(R)
t1, t2 = R(sin(c_expr)), R(cos(c_expr))
return p_cos*t2 - p_sin*t1
# Series is calculated in terms of tan as its evaluation is fast.
if len(p) > 20 and R.ngens == 1:
t = rs_tan(p/2, x, prec)
t2 = rs_square(t, x, prec)
p1 = rs_series_inversion(1+t2, x, prec)
return rs_mul(p1, 1 - t2, x, prec)
one = R(1)
n = 1
c = []
for k in range(2, prec + 2, 2):
c.append(one/n)
c.append(0)
n *= -k*(k - 1)
return rs_series_from_list(p, c, x, prec)
def rs_cos_sin(p, x, prec):
r"""
Return the tuple ``(rs_cos(p, x, prec)`, `rs_sin(p, x, prec))``.
Is faster than calling rs_cos and rs_sin separately
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_cos_sin, p, x, prec)
t = rs_tan(p/2, x, prec)
t2 = rs_square(t, x, prec)
p1 = rs_series_inversion(1 + t2, x, prec)
return (rs_mul(p1, 1 - t2, x, prec), rs_mul(p1, 2*t, x, prec))
def _atanh(p, x, prec):
"""
Expansion using formula
Faster for very small and univariate series
"""
R = p.ring
one = R(1)
c = [one]
p2 = rs_square(p, x, prec)
for k in range(1, prec):
c.append(one/(2*k + 1))
s = rs_series_from_list(p2, c, x, prec)
s = rs_mul(s, p, x, prec)
return s
def rs_atanh(p, x, prec):
"""
Hyperbolic arctangent of a series
Return the series expansion of the atanh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_atanh
>>> R, x, y = ring('x, y', QQ)
>>> rs_atanh(x + x*y, x, 4)
1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x
See Also
========
atanh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_atanh, p, x, prec)
R = p.ring
const = 0
if _has_constant_term(p, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = atanh(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(atanh(c_expr))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try:
const = R(atanh(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
# Instead of using a closed form formula, we differentiate atanh(p) to get
# `1/(1-p**2) * dp`, whose series expansion is much easier to calculate.
# Finally we integrate to get back atanh
dp = rs_diff(p, x)
p1 = - rs_square(p, x, prec) + 1
p1 = rs_series_inversion(p1, x, prec - 1)
p1 = rs_mul(dp, p1, x, prec - 1)
return rs_integrate(p1, x) + const
def rs_sinh(p, x, prec):
"""
Hyperbolic sine of a series
Return the series expansion of the sinh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_sinh
>>> R, x, y = ring('x, y', QQ)
>>> rs_sinh(x + x*y, x, 4)
1/6*x**3*y**3 + 1/2*x**3*y**2 + 1/2*x**3*y + 1/6*x**3 + x*y + x
See Also
========
sinh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_sinh, p, x, prec)
t = rs_exp(p, x, prec)
t1 = rs_series_inversion(t, x, prec)
return (t - t1)/2
def rs_cosh(p, x, prec):
"""
Hyperbolic cosine of a series
Return the series expansion of the cosh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_cosh
>>> R, x, y = ring('x, y', QQ)
>>> rs_cosh(x + x*y, x, 4)
1/2*x**2*y**2 + x**2*y + 1/2*x**2 + 1
See Also
========
cosh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_cosh, p, x, prec)
t = rs_exp(p, x, prec)
t1 = rs_series_inversion(t, x, prec)
return (t + t1)/2
def _tanh(p, x, prec):
r"""
Helper function of :func:`rs_tanh`
Return the series expansion of tanh of a univariate series using Newton's
method. It takes advantage of the fact that series expansion of atanh is
easier than that of tanh.
See Also
========
_tanh
"""
R = p.ring
p1 = R(0)
for precx in _giant_steps(prec):
tmp = p - rs_atanh(p1, x, precx)
tmp = rs_mul(tmp, 1 - rs_square(p1, x, prec), x, precx)
p1 += tmp
return p1
def rs_tanh(p, x, prec):
"""
Hyperbolic tangent of a series
Return the series expansion of the tanh of ``p``, about 0.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_tanh
>>> R, x, y = ring('x, y', QQ)
>>> rs_tanh(x + x*y, x, 4)
-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x
See Also
========
tanh
"""
if rs_is_puiseux(p, x):
return rs_puiseux(rs_tanh, p, x, prec)
R = p.ring
const = 0
if _has_constant_term(p, x):
zm = R.zero_monom
c = p[zm]
if R.domain is EX:
c_expr = c.as_expr()
const = tanh(c_expr)
elif isinstance(c, PolyElement):
try:
c_expr = c.as_expr()
const = R(tanh(c_expr))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
else:
try:
const = R(tanh(c))
except ValueError:
raise DomainError("The given series can't be expanded in "
"this domain.")
p1 = p - c
t1 = rs_tanh(p1, x, prec)
t = rs_series_inversion(1 + const*t1, x, prec)
return rs_mul(const + t1, t, x, prec)
if R.ngens == 1:
return _tanh(p, x, prec)
else:
return rs_fun(p, _tanh, x, prec)
def rs_newton(p, x, prec):
"""
Compute the truncated Newton sum of the polynomial ``p``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_newton
>>> R, x = ring('x', QQ)
>>> p = x**2 - 2
>>> rs_newton(p, x, 5)
8*x**4 + 4*x**2 + 2
"""
deg = p.degree()
p1 = _invert_monoms(p)
p2 = rs_series_inversion(p1, x, prec)
p3 = rs_mul(p1.diff(x), p2, x, prec)
res = deg - p3*x
return res
def rs_hadamard_exp(p1, inverse=False):
"""
Return ``sum f_i/i!*x**i`` from ``sum f_i*x**i``,
where ``x`` is the first variable.
If ``invers=True`` return ``sum f_i*i!*x**i``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_hadamard_exp
>>> R, x = ring('x', QQ)
>>> p = 1 + x + x**2 + x**3
>>> rs_hadamard_exp(p)
1/6*x**3 + 1/2*x**2 + x + 1
"""
R = p1.ring
if R.domain != QQ:
raise NotImplementedError
p = R.zero
if not inverse:
for exp1, v1 in p1.items():
p[exp1] = v1/int(ifac(exp1[0]))
else:
for exp1, v1 in p1.items():
p[exp1] = v1*int(ifac(exp1[0]))
return p
def rs_compose_add(p1, p2):
"""
compute the composed sum ``prod(p2(x - beta) for beta root of p1)``
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> from sympy.polys.ring_series import rs_compose_add
>>> R, x = ring('x', QQ)
>>> f = x**2 - 2
>>> g = x**2 - 3
>>> rs_compose_add(f, g)
x**4 - 10*x**2 + 1
References
==========
.. [1] A. Bostan, P. Flajolet, B. Salvy and E. Schost
"Fast Computation with Two Algebraic Numbers",
(2002) Research Report 4579, Institut
National de Recherche en Informatique et en Automatique
"""
R = p1.ring
x = R.gens[0]
prec = p1.degree() * p2.degree() + 1
np1 = rs_newton(p1, x, prec)
np1e = rs_hadamard_exp(np1)
np2 = rs_newton(p2, x, prec)
np2e = rs_hadamard_exp(np2)
np3e = rs_mul(np1e, np2e, x, prec)
np3 = rs_hadamard_exp(np3e, True)
np3a = (np3[(0,)] - np3)/x
q = rs_integrate(np3a, x)
q = rs_exp(q, x, prec)
q = _invert_monoms(q)
q = q.primitive()[1]
dp = p1.degree() * p2.degree() - q.degree()
# `dp` is the multiplicity of the zeroes of the resultant;
# these zeroes are missed in this computation so they are put here.
# if p1 and p2 are monic irreducible polynomials,
# there are zeroes in the resultant
# if and only if p1 = p2 ; in fact in that case p1 and p2 have a
# root in common, so gcd(p1, p2) != 1; being p1 and p2 irreducible
# this means p1 = p2
if dp:
q = q*x**dp
return q
_convert_func = {
'sin': 'rs_sin',
'cos': 'rs_cos',
'exp': 'rs_exp',
'tan': 'rs_tan',
'log': 'rs_log'
}
def rs_min_pow(expr, series_rs, a):
"""Find the minimum power of `a` in the series expansion of expr"""
series = 0
n = 2
while series == 0:
series = _rs_series(expr, series_rs, a, n)
n *= 2
R = series.ring
a = R(a)
i = R.gens.index(a)
return min(series, key=lambda t: t[i])[i]
def _rs_series(expr, series_rs, a, prec):
# TODO Use _parallel_dict_from_expr instead of sring as sring is
# inefficient. For details, read the todo in sring.
args = expr.args
R = series_rs.ring
# expr does not contain any function to be expanded
if not any(arg.has(Function) for arg in args) and not expr.is_Function:
return series_rs
if not expr.has(a):
return series_rs
elif expr.is_Function:
arg = args[0]
if len(args) > 1:
raise NotImplementedError
R1, series = sring(arg, domain=QQ, expand=False, series=True)
series_inner = _rs_series(arg, series, a, prec)
# Why do we need to compose these three rings?
#
# We want to use a simple domain (like ``QQ`` or ``RR``) but they don't
# support symbolic coefficients. We need a ring that for example lets
# us have `sin(1)` and `cos(1)` as coefficients if we are expanding
# `sin(x + 1)`. The ``EX`` domain allows all symbolic coefficients, but
# that makes it very complex and hence slow.
#
# To solve this problem, we add only those symbolic elements as
# generators to our ring, that we need. Here, series_inner might
# involve terms like `sin(4)`, `exp(a)`, etc, which are not there in
# R1 or R. Hence, we compose these three rings to create one that has
# the generators of all three.
R = R.compose(R1).compose(series_inner.ring)
series_inner = series_inner.set_ring(R)
series = eval(_convert_func[str(expr.func)])(series_inner,
R(a), prec)
return series
elif expr.is_Mul:
n = len(args)
for arg in args: # XXX Looks redundant
if not arg.is_Number:
R1, _ = sring(arg, expand=False, series=True)
R = R.compose(R1)
min_pows = list(map(rs_min_pow, args, [R(arg) for arg in args],
[a]*len(args)))
sum_pows = sum(min_pows)
series = R(1)
for i in range(n):
_series = _rs_series(args[i], R(args[i]), a, prec - sum_pows +
min_pows[i])
R = R.compose(_series.ring)
_series = _series.set_ring(R)
series = series.set_ring(R)
series *= _series
series = rs_trunc(series, R(a), prec)
return series
elif expr.is_Add:
n = len(args)
series = R(0)
for i in range(n):
_series = _rs_series(args[i], R(args[i]), a, prec)
R = R.compose(_series.ring)
_series = _series.set_ring(R)
series = series.set_ring(R)
series += _series
return series
elif expr.is_Pow:
R1, _ = sring(expr.base, domain=QQ, expand=False, series=True)
R = R.compose(R1)
series_inner = _rs_series(expr.base, R(expr.base), a, prec)
return rs_pow(series_inner, expr.exp, series_inner.ring(a), prec)
# The `is_constant` method is buggy hence we check it at the end.
# See issue #9786 for details.
elif isinstance(expr, Expr) and expr.is_constant():
return sring(expr, domain=QQ, expand=False, series=True)[1]
else:
raise NotImplementedError
def rs_series(expr, a, prec):
"""Return the series expansion of an expression about 0.
Parameters
==========
expr : :class:`Expr`
a : :class:`Symbol` with respect to which expr is to be expanded
prec : order of the series expansion
Currently supports multivariate Taylor series expansion. This is much
faster that Sympy's series method as it uses sparse polynomial operations.
It automatically creates the simplest ring required to represent the series
expansion through repeated calls to sring.
Examples
========
>>> from sympy.polys.ring_series import rs_series
>>> from sympy.functions import sin, cos, exp, tan
>>> from sympy.core import symbols
>>> from sympy.polys.domains import QQ
>>> a, b, c = symbols('a, b, c')
>>> rs_series(sin(a) + exp(a), a, 5)
1/24*a**4 + 1/2*a**2 + 2*a + 1
>>> series = rs_series(tan(a + b)*cos(a + c), a, 2)
>>> series.as_expr()
-a*sin(c)*tan(b) + a*cos(c)*tan(b)**2 + a*cos(c) + cos(c)*tan(b)
>>> series = rs_series(exp(a**QQ(1,3) + a**QQ(2, 5)), a, 1)
>>> series.as_expr()
a**(11/15) + a**(4/5)/2 + a**(2/5) + a**(2/3)/2 + a**(1/3) + 1
"""
R, series = sring(expr, domain=QQ, expand=False, series=True)
if a not in R.symbols:
R = R.add_gens([a, ])
series = series.set_ring(R)
series = _rs_series(expr, series, a, prec)
R = series.ring
gen = R(a)
prec_got = series.degree(gen) + 1
if prec_got >= prec:
return rs_trunc(series, gen, prec)
else:
# increase the requested number of terms to get the desired
# number keep increasing (up to 9) until the received order
# is different than the original order and then predict how
# many additional terms are needed
for more in range(1, 9):
p1 = _rs_series(expr, series, a, prec=prec + more)
gen = gen.set_ring(p1.ring)
new_prec = p1.degree(gen) + 1
if new_prec != prec_got:
prec_do = ceiling(prec + (prec - prec_got)*more/(new_prec -
prec_got))
p1 = _rs_series(expr, series, a, prec=prec_do)
while p1.degree(gen) + 1 < prec:
p1 = _rs_series(expr, series, a, prec=prec_do)
gen = gen.set_ring(p1.ring)
prec_do *= 2
break
else:
break
else:
raise ValueError('Could not calculate %s terms for %s'
% (str(prec), expr))
return rs_trunc(p1, gen, prec)
|
806e4d3d6bfaf6bb688802b07b6951c2164c9da48b7475cf50573745dd95ab9d | """
Solving solvable quintics - An implementation of DS Dummit's paper
Paper :
http://www.ams.org/journals/mcom/1991-57-195/S0025-5718-1991-1079014-X/S0025-5718-1991-1079014-X.pdf
Mathematica notebook:
http://www.emba.uvm.edu/~ddummit/quintics/quintics.nb
"""
from __future__ import print_function, division
from sympy.core import Symbol
from sympy.core.evalf import N
from sympy.core.numbers import I, Rational
from sympy.functions import sqrt
from sympy.polys.polytools import Poly
from sympy.utilities import public
x = Symbol('x')
@public
class PolyQuintic(object):
"""Special functions for solvable quintics"""
def __init__(self, poly):
_, _, self.p, self.q, self.r, self.s = poly.all_coeffs()
self.zeta1 = Rational(-1, 4) + (sqrt(5)/4) + I*sqrt((sqrt(5)/8) + Rational(5, 8))
self.zeta2 = (-sqrt(5)/4) - Rational(1, 4) + I*sqrt((-sqrt(5)/8) + Rational(5, 8))
self.zeta3 = (-sqrt(5)/4) - Rational(1, 4) - I*sqrt((-sqrt(5)/8) + Rational(5, 8))
self.zeta4 = Rational(-1, 4) + (sqrt(5)/4) - I*sqrt((sqrt(5)/8) + Rational(5, 8))
@property
def f20(self):
p, q, r, s = self.p, self.q, self.r, self.s
f20 = q**8 - 13*p*q**6*r + p**5*q**2*r**2 + 65*p**2*q**4*r**2 - 4*p**6*r**3 - 128*p**3*q**2*r**3 + 17*q**4*r**3 + 48*p**4*r**4 - 16*p*q**2*r**4 - 192*p**2*r**5 + 256*r**6 - 4*p**5*q**3*s - 12*p**2*q**5*s + 18*p**6*q*r*s + 12*p**3*q**3*r*s - 124*q**5*r*s + 196*p**4*q*r**2*s + 590*p*q**3*r**2*s - 160*p**2*q*r**3*s - 1600*q*r**4*s - 27*p**7*s**2 - 150*p**4*q**2*s**2 - 125*p*q**4*s**2 - 99*p**5*r*s**2 - 725*p**2*q**2*r*s**2 + 1200*p**3*r**2*s**2 + 3250*q**2*r**2*s**2 - 2000*p*r**3*s**2 - 1250*p*q*r*s**3 + 3125*p**2*s**4 - 9375*r*s**4-(2*p*q**6 - 19*p**2*q**4*r + 51*p**3*q**2*r**2 - 3*q**4*r**2 - 32*p**4*r**3 - 76*p*q**2*r**3 + 256*p**2*r**4 - 512*r**5 + 31*p**3*q**3*s + 58*q**5*s - 117*p**4*q*r*s - 105*p*q**3*r*s - 260*p**2*q*r**2*s + 2400*q*r**3*s + 108*p**5*s**2 + 325*p**2*q**2*s**2 - 525*p**3*r*s**2 - 2750*q**2*r*s**2 + 500*p*r**2*s**2 - 625*p*q*s**3 + 3125*s**4)*x+(p**2*q**4 - 6*p**3*q**2*r - 8*q**4*r + 9*p**4*r**2 + 76*p*q**2*r**2 - 136*p**2*r**3 + 400*r**4 - 50*p*q**3*s + 90*p**2*q*r*s - 1400*q*r**2*s + 625*q**2*s**2 + 500*p*r*s**2)*x**2-(2*q**4 - 21*p*q**2*r + 40*p**2*r**2 - 160*r**3 + 15*p**2*q*s + 400*q*r*s - 125*p*s**2)*x**3+(2*p*q**2 - 6*p**2*r + 40*r**2 - 50*q*s)*x**4 + 8*r*x**5 + x**6
return Poly(f20, x)
@property
def b(self):
p, q, r, s = self.p, self.q, self.r, self.s
b = ( [], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0],)
b[1][5] = 100*p**7*q**7 + 2175*p**4*q**9 + 10500*p*q**11 - 1100*p**8*q**5*r - 27975*p**5*q**7*r - 152950*p**2*q**9*r + 4125*p**9*q**3*r**2 + 128875*p**6*q**5*r**2 + 830525*p**3*q**7*r**2 - 59450*q**9*r**2 - 5400*p**10*q*r**3 - 243800*p**7*q**3*r**3 - 2082650*p**4*q**5*r**3 + 333925*p*q**7*r**3 + 139200*p**8*q*r**4 + 2406000*p**5*q**3*r**4 + 122600*p**2*q**5*r**4 - 1254400*p**6*q*r**5 - 3776000*p**3*q**3*r**5 - 1832000*q**5*r**5 + 4736000*p**4*q*r**6 + 6720000*p*q**3*r**6 - 6400000*p**2*q*r**7 + 900*p**9*q**4*s + 37400*p**6*q**6*s + 281625*p**3*q**8*s + 435000*q**10*s - 6750*p**10*q**2*r*s - 322300*p**7*q**4*r*s - 2718575*p**4*q**6*r*s - 4214250*p*q**8*r*s + 16200*p**11*r**2*s + 859275*p**8*q**2*r**2*s + 8925475*p**5*q**4*r**2*s + 14427875*p**2*q**6*r**2*s - 453600*p**9*r**3*s - 10038400*p**6*q**2*r**3*s - 17397500*p**3*q**4*r**3*s + 11333125*q**6*r**3*s + 4451200*p**7*r**4*s + 15850000*p**4*q**2*r**4*s - 34000000*p*q**4*r**4*s - 17984000*p**5*r**5*s + 10000000*p**2*q**2*r**5*s + 25600000*p**3*r**6*s + 8000000*q**2*r**6*s - 6075*p**11*q*s**2 + 83250*p**8*q**3*s**2 + 1282500*p**5*q**5*s**2 + 2862500*p**2*q**7*s**2 - 724275*p**9*q*r*s**2 - 9807250*p**6*q**3*r*s**2 - 28374375*p**3*q**5*r*s**2 - 22212500*q**7*r*s**2 + 8982000*p**7*q*r**2*s**2 + 39600000*p**4*q**3*r**2*s**2 + 61746875*p*q**5*r**2*s**2 + 1010000*p**5*q*r**3*s**2 + 1000000*p**2*q**3*r**3*s**2 - 78000000*p**3*q*r**4*s**2 - 30000000*q**3*r**4*s**2 - 80000000*p*q*r**5*s**2 + 759375*p**10*s**3 + 9787500*p**7*q**2*s**3 + 39062500*p**4*q**4*s**3 + 52343750*p*q**6*s**3 - 12301875*p**8*r*s**3 - 98175000*p**5*q**2*r*s**3 - 225078125*p**2*q**4*r*s**3 + 54900000*p**6*r**2*s**3 + 310000000*p**3*q**2*r**2*s**3 + 7890625*q**4*r**2*s**3 - 51250000*p**4*r**3*s**3 + 420000000*p*q**2*r**3*s**3 - 110000000*p**2*r**4*s**3 + 200000000*r**5*s**3 - 2109375*p**6*q*s**4 + 21093750*p**3*q**3*s**4 + 89843750*q**5*s**4 - 182343750*p**4*q*r*s**4 - 733203125*p*q**3*r*s**4 + 196875000*p**2*q*r**2*s**4 - 1125000000*q*r**3*s**4 + 158203125*p**5*s**5 + 566406250*p**2*q**2*s**5 - 101562500*p**3*r*s**5 + 1669921875*q**2*r*s**5 - 1250000000*p*r**2*s**5 + 1220703125*p*q*s**6 - 6103515625*s**7
b[1][4] = -1000*p**5*q**7 - 7250*p**2*q**9 + 10800*p**6*q**5*r + 96900*p**3*q**7*r + 52500*q**9*r - 37400*p**7*q**3*r**2 - 470850*p**4*q**5*r**2 - 640600*p*q**7*r**2 + 39600*p**8*q*r**3 + 983600*p**5*q**3*r**3 + 2848100*p**2*q**5*r**3 - 814400*p**6*q*r**4 - 6076000*p**3*q**3*r**4 - 2308000*q**5*r**4 + 5024000*p**4*q*r**5 + 9680000*p*q**3*r**5 - 9600000*p**2*q*r**6 - 13800*p**7*q**4*s - 94650*p**4*q**6*s + 26500*p*q**8*s + 86400*p**8*q**2*r*s + 816500*p**5*q**4*r*s + 257500*p**2*q**6*r*s - 91800*p**9*r**2*s - 1853700*p**6*q**2*r**2*s - 630000*p**3*q**4*r**2*s + 8971250*q**6*r**2*s + 2071200*p**7*r**3*s + 7240000*p**4*q**2*r**3*s - 29375000*p*q**4*r**3*s - 14416000*p**5*r**4*s + 5200000*p**2*q**2*r**4*s + 30400000*p**3*r**5*s + 12000000*q**2*r**5*s - 64800*p**9*q*s**2 - 567000*p**6*q**3*s**2 - 1655000*p**3*q**5*s**2 - 6987500*q**7*s**2 - 337500*p**7*q*r*s**2 - 8462500*p**4*q**3*r*s**2 + 5812500*p*q**5*r*s**2 + 24930000*p**5*q*r**2*s**2 + 69125000*p**2*q**3*r**2*s**2 - 103500000*p**3*q*r**3*s**2 - 30000000*q**3*r**3*s**2 - 90000000*p*q*r**4*s**2 + 708750*p**8*s**3 + 5400000*p**5*q**2*s**3 - 8906250*p**2*q**4*s**3 - 18562500*p**6*r*s**3 + 625000*p**3*q**2*r*s**3 - 29687500*q**4*r*s**3 + 75000000*p**4*r**2*s**3 + 416250000*p*q**2*r**2*s**3 - 60000000*p**2*r**3*s**3 + 300000000*r**4*s**3 - 71718750*p**4*q*s**4 - 189062500*p*q**3*s**4 - 210937500*p**2*q*r*s**4 - 1187500000*q*r**2*s**4 + 187500000*p**3*s**5 + 800781250*q**2*s**5 + 390625000*p*r*s**5
b[1][3] = 500*p**6*q**5 + 6350*p**3*q**7 + 19800*q**9 - 3750*p**7*q**3*r - 65100*p**4*q**5*r - 264950*p*q**7*r + 6750*p**8*q*r**2 + 209050*p**5*q**3*r**2 + 1217250*p**2*q**5*r**2 - 219000*p**6*q*r**3 - 2510000*p**3*q**3*r**3 - 1098500*q**5*r**3 + 2068000*p**4*q*r**4 + 5060000*p*q**3*r**4 - 5200000*p**2*q*r**5 + 6750*p**8*q**2*s + 96350*p**5*q**4*s + 346000*p**2*q**6*s - 20250*p**9*r*s - 459900*p**6*q**2*r*s - 1828750*p**3*q**4*r*s + 2930000*q**6*r*s + 594000*p**7*r**2*s + 4301250*p**4*q**2*r**2*s - 10906250*p*q**4*r**2*s - 5252000*p**5*r**3*s + 1450000*p**2*q**2*r**3*s + 12800000*p**3*r**4*s + 6500000*q**2*r**4*s - 74250*p**7*q*s**2 - 1418750*p**4*q**3*s**2 - 5956250*p*q**5*s**2 + 4297500*p**5*q*r*s**2 + 29906250*p**2*q**3*r*s**2 - 31500000*p**3*q*r**2*s**2 - 12500000*q**3*r**2*s**2 - 35000000*p*q*r**3*s**2 - 1350000*p**6*s**3 - 6093750*p**3*q**2*s**3 - 17500000*q**4*s**3 + 7031250*p**4*r*s**3 + 127812500*p*q**2*r*s**3 - 18750000*p**2*r**2*s**3 + 162500000*r**3*s**3 - 107812500*p**2*q*s**4 - 460937500*q*r*s**4 + 214843750*p*s**5
b[1][2] = -1950*p**4*q**5 - 14100*p*q**7 + 14350*p**5*q**3*r + 125600*p**2*q**5*r - 27900*p**6*q*r**2 - 402250*p**3*q**3*r**2 - 288250*q**5*r**2 + 436000*p**4*q*r**3 + 1345000*p*q**3*r**3 - 1400000*p**2*q*r**4 - 9450*p**6*q**2*s + 1250*p**3*q**4*s + 465000*q**6*s + 49950*p**7*r*s + 302500*p**4*q**2*r*s - 1718750*p*q**4*r*s - 834000*p**5*r**2*s - 437500*p**2*q**2*r**2*s + 3100000*p**3*r**3*s + 1750000*q**2*r**3*s + 292500*p**5*q*s**2 + 1937500*p**2*q**3*s**2 - 3343750*p**3*q*r*s**2 - 1875000*q**3*r*s**2 - 8125000*p*q*r**2*s**2 + 1406250*p**4*s**3 + 12343750*p*q**2*s**3 - 5312500*p**2*r*s**3 + 43750000*r**2*s**3 - 74218750*q*s**4
b[1][1] = 300*p**5*q**3 + 2150*p**2*q**5 - 1350*p**6*q*r - 21500*p**3*q**3*r - 61500*q**5*r + 42000*p**4*q*r**2 + 290000*p*q**3*r**2 - 300000*p**2*q*r**3 + 4050*p**7*s + 45000*p**4*q**2*s + 125000*p*q**4*s - 108000*p**5*r*s - 643750*p**2*q**2*r*s + 700000*p**3*r**2*s + 375000*q**2*r**2*s + 93750*p**3*q*s**2 + 312500*q**3*s**2 - 1875000*p*q*r*s**2 + 1406250*p**2*s**3 + 9375000*r*s**3
b[1][0] = -1250*p**3*q**3 - 9000*q**5 + 4500*p**4*q*r + 46250*p*q**3*r - 50000*p**2*q*r**2 - 6750*p**5*s - 43750*p**2*q**2*s + 75000*p**3*r*s + 62500*q**2*r*s - 156250*p*q*s**2 + 1562500*s**3
b[2][5] = 200*p**6*q**11 - 250*p**3*q**13 - 10800*q**15 - 3900*p**7*q**9*r - 3325*p**4*q**11*r + 181800*p*q**13*r + 26950*p**8*q**7*r**2 + 69625*p**5*q**9*r**2 - 1214450*p**2*q**11*r**2 - 78725*p**9*q**5*r**3 - 368675*p**6*q**7*r**3 + 4166325*p**3*q**9*r**3 + 1131100*q**11*r**3 + 73400*p**10*q**3*r**4 + 661950*p**7*q**5*r**4 - 9151950*p**4*q**7*r**4 - 16633075*p*q**9*r**4 + 36000*p**11*q*r**5 + 135600*p**8*q**3*r**5 + 17321400*p**5*q**5*r**5 + 85338300*p**2*q**7*r**5 - 832000*p**9*q*r**6 - 21379200*p**6*q**3*r**6 - 176044000*p**3*q**5*r**6 - 1410000*q**7*r**6 + 6528000*p**7*q*r**7 + 129664000*p**4*q**3*r**7 + 47344000*p*q**5*r**7 - 21504000*p**5*q*r**8 - 115200000*p**2*q**3*r**8 + 25600000*p**3*q*r**9 + 64000000*q**3*r**9 + 15700*p**8*q**8*s + 120525*p**5*q**10*s + 113250*p**2*q**12*s - 196900*p**9*q**6*r*s - 1776925*p**6*q**8*r*s - 3062475*p**3*q**10*r*s - 4153500*q**12*r*s + 857925*p**10*q**4*r**2*s + 10562775*p**7*q**6*r**2*s + 34866250*p**4*q**8*r**2*s + 73486750*p*q**10*r**2*s - 1333800*p**11*q**2*r**3*s - 29212625*p**8*q**4*r**3*s - 168729675*p**5*q**6*r**3*s - 427230750*p**2*q**8*r**3*s + 108000*p**12*r**4*s + 30384200*p**9*q**2*r**4*s + 324535100*p**6*q**4*r**4*s + 952666750*p**3*q**6*r**4*s - 38076875*q**8*r**4*s - 4296000*p**10*r**5*s - 213606400*p**7*q**2*r**5*s - 842060000*p**4*q**4*r**5*s - 95285000*p*q**6*r**5*s + 61184000*p**8*r**6*s + 567520000*p**5*q**2*r**6*s + 547000000*p**2*q**4*r**6*s - 390912000*p**6*r**7*s - 812800000*p**3*q**2*r**7*s - 924000000*q**4*r**7*s + 1152000000*p**4*r**8*s + 800000000*p*q**2*r**8*s - 1280000000*p**2*r**9*s + 141750*p**10*q**5*s**2 - 31500*p**7*q**7*s**2 - 11325000*p**4*q**9*s**2 - 31687500*p*q**11*s**2 - 1293975*p**11*q**3*r*s**2 - 4803800*p**8*q**5*r*s**2 + 71398250*p**5*q**7*r*s**2 + 227625000*p**2*q**9*r*s**2 + 3256200*p**12*q*r**2*s**2 + 43870125*p**9*q**3*r**2*s**2 + 64581500*p**6*q**5*r**2*s**2 + 56090625*p**3*q**7*r**2*s**2 + 260218750*q**9*r**2*s**2 - 74610000*p**10*q*r**3*s**2 - 662186500*p**7*q**3*r**3*s**2 - 1987747500*p**4*q**5*r**3*s**2 - 811928125*p*q**7*r**3*s**2 + 471286000*p**8*q*r**4*s**2 + 2106040000*p**5*q**3*r**4*s**2 + 792687500*p**2*q**5*r**4*s**2 - 135120000*p**6*q*r**5*s**2 + 2479000000*p**3*q**3*r**5*s**2 + 5242250000*q**5*r**5*s**2 - 6400000000*p**4*q*r**6*s**2 - 8620000000*p*q**3*r**6*s**2 + 13280000000*p**2*q*r**7*s**2 + 1600000000*q*r**8*s**2 + 273375*p**12*q**2*s**3 - 13612500*p**9*q**4*s**3 - 177250000*p**6*q**6*s**3 - 511015625*p**3*q**8*s**3 - 320937500*q**10*s**3 - 2770200*p**13*r*s**3 + 12595500*p**10*q**2*r*s**3 + 543950000*p**7*q**4*r*s**3 + 1612281250*p**4*q**6*r*s**3 + 968125000*p*q**8*r*s**3 + 77031000*p**11*r**2*s**3 + 373218750*p**8*q**2*r**2*s**3 + 1839765625*p**5*q**4*r**2*s**3 + 1818515625*p**2*q**6*r**2*s**3 - 776745000*p**9*r**3*s**3 - 6861075000*p**6*q**2*r**3*s**3 - 20014531250*p**3*q**4*r**3*s**3 - 13747812500*q**6*r**3*s**3 + 3768000000*p**7*r**4*s**3 + 35365000000*p**4*q**2*r**4*s**3 + 34441875000*p*q**4*r**4*s**3 - 9628000000*p**5*r**5*s**3 - 63230000000*p**2*q**2*r**5*s**3 + 13600000000*p**3*r**6*s**3 - 15000000000*q**2*r**6*s**3 - 10400000000*p*r**7*s**3 - 45562500*p**11*q*s**4 - 525937500*p**8*q**3*s**4 - 1364218750*p**5*q**5*s**4 - 1382812500*p**2*q**7*s**4 + 572062500*p**9*q*r*s**4 + 2473515625*p**6*q**3*r*s**4 + 13192187500*p**3*q**5*r*s**4 + 12703125000*q**7*r*s**4 - 451406250*p**7*q*r**2*s**4 - 18153906250*p**4*q**3*r**2*s**4 - 36908203125*p*q**5*r**2*s**4 - 9069375000*p**5*q*r**3*s**4 + 79957812500*p**2*q**3*r**3*s**4 + 5512500000*p**3*q*r**4*s**4 + 50656250000*q**3*r**4*s**4 + 74750000000*p*q*r**5*s**4 + 56953125*p**10*s**5 + 1381640625*p**7*q**2*s**5 - 781250000*p**4*q**4*s**5 + 878906250*p*q**6*s**5 - 2655703125*p**8*r*s**5 - 3223046875*p**5*q**2*r*s**5 - 35117187500*p**2*q**4*r*s**5 + 26573437500*p**6*r**2*s**5 + 14785156250*p**3*q**2*r**2*s**5 - 52050781250*q**4*r**2*s**5 - 103062500000*p**4*r**3*s**5 - 281796875000*p*q**2*r**3*s**5 + 146875000000*p**2*r**4*s**5 - 37500000000*r**5*s**5 - 8789062500*p**6*q*s**6 - 3906250000*p**3*q**3*s**6 + 1464843750*q**5*s**6 + 102929687500*p**4*q*r*s**6 + 297119140625*p*q**3*r*s**6 - 217773437500*p**2*q*r**2*s**6 + 167968750000*q*r**3*s**6 + 10986328125*p**5*s**7 + 98876953125*p**2*q**2*s**7 - 188964843750*p**3*r*s**7 - 278320312500*q**2*r*s**7 + 517578125000*p*r**2*s**7 - 610351562500*p*q*s**8 + 762939453125*s**9
b[2][4] = -200*p**7*q**9 + 1850*p**4*q**11 + 21600*p*q**13 + 3200*p**8*q**7*r - 19200*p**5*q**9*r - 316350*p**2*q**11*r - 19050*p**9*q**5*r**2 + 37400*p**6*q**7*r**2 + 1759250*p**3*q**9*r**2 + 440100*q**11*r**2 + 48750*p**10*q**3*r**3 + 190200*p**7*q**5*r**3 - 4604200*p**4*q**7*r**3 - 6072800*p*q**9*r**3 - 43200*p**11*q*r**4 - 834500*p**8*q**3*r**4 + 4916000*p**5*q**5*r**4 + 27926850*p**2*q**7*r**4 + 969600*p**9*q*r**5 + 2467200*p**6*q**3*r**5 - 45393200*p**3*q**5*r**5 - 5399500*q**7*r**5 - 7283200*p**7*q*r**6 + 10536000*p**4*q**3*r**6 + 41656000*p*q**5*r**6 + 22784000*p**5*q*r**7 - 35200000*p**2*q**3*r**7 - 25600000*p**3*q*r**8 + 96000000*q**3*r**8 - 3000*p**9*q**6*s + 40400*p**6*q**8*s + 136550*p**3*q**10*s - 1647000*q**12*s + 40500*p**10*q**4*r*s - 173600*p**7*q**6*r*s - 126500*p**4*q**8*r*s + 23969250*p*q**10*r*s - 153900*p**11*q**2*r**2*s - 486150*p**8*q**4*r**2*s - 4115800*p**5*q**6*r**2*s - 112653250*p**2*q**8*r**2*s + 129600*p**12*r**3*s + 2683350*p**9*q**2*r**3*s + 10906650*p**6*q**4*r**3*s + 187289500*p**3*q**6*r**3*s + 44098750*q**8*r**3*s - 4384800*p**10*r**4*s - 35660800*p**7*q**2*r**4*s - 175420000*p**4*q**4*r**4*s - 426538750*p*q**6*r**4*s + 60857600*p**8*r**5*s + 349436000*p**5*q**2*r**5*s + 900600000*p**2*q**4*r**5*s - 429568000*p**6*r**6*s - 1511200000*p**3*q**2*r**6*s - 1286000000*q**4*r**6*s + 1472000000*p**4*r**7*s + 1440000000*p*q**2*r**7*s - 1920000000*p**2*r**8*s - 36450*p**11*q**3*s**2 - 188100*p**8*q**5*s**2 - 5504750*p**5*q**7*s**2 - 37968750*p**2*q**9*s**2 + 255150*p**12*q*r*s**2 + 2754000*p**9*q**3*r*s**2 + 49196500*p**6*q**5*r*s**2 + 323587500*p**3*q**7*r*s**2 - 83250000*q**9*r*s**2 - 465750*p**10*q*r**2*s**2 - 31881500*p**7*q**3*r**2*s**2 - 415585000*p**4*q**5*r**2*s**2 + 1054775000*p*q**7*r**2*s**2 - 96823500*p**8*q*r**3*s**2 - 701490000*p**5*q**3*r**3*s**2 - 2953531250*p**2*q**5*r**3*s**2 + 1454560000*p**6*q*r**4*s**2 + 7670500000*p**3*q**3*r**4*s**2 + 5661062500*q**5*r**4*s**2 - 7785000000*p**4*q*r**5*s**2 - 9450000000*p*q**3*r**5*s**2 + 14000000000*p**2*q*r**6*s**2 + 2400000000*q*r**7*s**2 - 437400*p**13*s**3 - 10145250*p**10*q**2*s**3 - 121912500*p**7*q**4*s**3 - 576531250*p**4*q**6*s**3 - 528593750*p*q**8*s**3 + 12939750*p**11*r*s**3 + 313368750*p**8*q**2*r*s**3 + 2171812500*p**5*q**4*r*s**3 + 2381718750*p**2*q**6*r*s**3 - 124638750*p**9*r**2*s**3 - 3001575000*p**6*q**2*r**2*s**3 - 12259375000*p**3*q**4*r**2*s**3 - 9985312500*q**6*r**2*s**3 + 384000000*p**7*r**3*s**3 + 13997500000*p**4*q**2*r**3*s**3 + 20749531250*p*q**4*r**3*s**3 - 553500000*p**5*r**4*s**3 - 41835000000*p**2*q**2*r**4*s**3 + 5420000000*p**3*r**5*s**3 - 16300000000*q**2*r**5*s**3 - 17600000000*p*r**6*s**3 - 7593750*p**9*q*s**4 + 289218750*p**6*q**3*s**4 + 3591406250*p**3*q**5*s**4 + 5992187500*q**7*s**4 + 658125000*p**7*q*r*s**4 - 269531250*p**4*q**3*r*s**4 - 15882812500*p*q**5*r*s**4 - 4785000000*p**5*q*r**2*s**4 + 54375781250*p**2*q**3*r**2*s**4 - 5668750000*p**3*q*r**3*s**4 + 35867187500*q**3*r**3*s**4 + 113875000000*p*q*r**4*s**4 - 544218750*p**8*s**5 - 5407031250*p**5*q**2*s**5 - 14277343750*p**2*q**4*s**5 + 5421093750*p**6*r*s**5 - 24941406250*p**3*q**2*r*s**5 - 25488281250*q**4*r*s**5 - 11500000000*p**4*r**2*s**5 - 231894531250*p*q**2*r**2*s**5 - 6250000000*p**2*r**3*s**5 - 43750000000*r**4*s**5 + 35449218750*p**4*q*s**6 + 137695312500*p*q**3*s**6 + 34667968750*p**2*q*r*s**6 + 202148437500*q*r**2*s**6 - 33691406250*p**3*s**7 - 214843750000*q**2*s**7 - 31738281250*p*r*s**7
b[2][3] = -800*p**5*q**9 - 5400*p**2*q**11 + 5800*p**6*q**7*r + 48750*p**3*q**9*r + 16200*q**11*r - 3000*p**7*q**5*r**2 - 108350*p**4*q**7*r**2 - 263250*p*q**9*r**2 - 60700*p**8*q**3*r**3 - 386250*p**5*q**5*r**3 + 253100*p**2*q**7*r**3 + 127800*p**9*q*r**4 + 2326700*p**6*q**3*r**4 + 6565550*p**3*q**5*r**4 - 705750*q**7*r**4 - 2903200*p**7*q*r**5 - 21218000*p**4*q**3*r**5 + 1057000*p*q**5*r**5 + 20368000*p**5*q*r**6 + 33000000*p**2*q**3*r**6 - 43200000*p**3*q*r**7 + 52000000*q**3*r**7 + 6200*p**7*q**6*s + 188250*p**4*q**8*s + 931500*p*q**10*s - 73800*p**8*q**4*r*s - 1466850*p**5*q**6*r*s - 6894000*p**2*q**8*r*s + 315900*p**9*q**2*r**2*s + 4547000*p**6*q**4*r**2*s + 20362500*p**3*q**6*r**2*s + 15018750*q**8*r**2*s - 653400*p**10*r**3*s - 13897550*p**7*q**2*r**3*s - 76757500*p**4*q**4*r**3*s - 124207500*p*q**6*r**3*s + 18567600*p**8*r**4*s + 175911000*p**5*q**2*r**4*s + 253787500*p**2*q**4*r**4*s - 183816000*p**6*r**5*s - 706900000*p**3*q**2*r**5*s - 665750000*q**4*r**5*s + 740000000*p**4*r**6*s + 890000000*p*q**2*r**6*s - 1040000000*p**2*r**7*s - 763000*p**6*q**5*s**2 - 12375000*p**3*q**7*s**2 - 40500000*q**9*s**2 + 364500*p**10*q*r*s**2 + 15537000*p**7*q**3*r*s**2 + 154392500*p**4*q**5*r*s**2 + 372206250*p*q**7*r*s**2 - 25481250*p**8*q*r**2*s**2 - 386300000*p**5*q**3*r**2*s**2 - 996343750*p**2*q**5*r**2*s**2 + 459872500*p**6*q*r**3*s**2 + 2943937500*p**3*q**3*r**3*s**2 + 2437781250*q**5*r**3*s**2 - 2883750000*p**4*q*r**4*s**2 - 4343750000*p*q**3*r**4*s**2 + 5495000000*p**2*q*r**5*s**2 + 1300000000*q*r**6*s**2 - 364500*p**11*s**3 - 13668750*p**8*q**2*s**3 - 113406250*p**5*q**4*s**3 - 159062500*p**2*q**6*s**3 + 13972500*p**9*r*s**3 + 61537500*p**6*q**2*r*s**3 - 1622656250*p**3*q**4*r*s**3 - 2720625000*q**6*r*s**3 - 201656250*p**7*r**2*s**3 + 1949687500*p**4*q**2*r**2*s**3 + 4979687500*p*q**4*r**2*s**3 + 497125000*p**5*r**3*s**3 - 11150625000*p**2*q**2*r**3*s**3 + 2982500000*p**3*r**4*s**3 - 6612500000*q**2*r**4*s**3 - 10450000000*p*r**5*s**3 + 126562500*p**7*q*s**4 + 1443750000*p**4*q**3*s**4 + 281250000*p*q**5*s**4 - 1648125000*p**5*q*r*s**4 + 11271093750*p**2*q**3*r*s**4 - 4785156250*p**3*q*r**2*s**4 + 8808593750*q**3*r**2*s**4 + 52390625000*p*q*r**3*s**4 - 611718750*p**6*s**5 - 13027343750*p**3*q**2*s**5 - 1464843750*q**4*s**5 + 6492187500*p**4*r*s**5 - 65351562500*p*q**2*r*s**5 - 13476562500*p**2*r**2*s**5 - 24218750000*r**3*s**5 + 41992187500*p**2*q*s**6 + 69824218750*q*r*s**6 - 34179687500*p*s**7
b[2][2] = -1000*p**6*q**7 - 5150*p**3*q**9 + 10800*q**11 + 11000*p**7*q**5*r + 66450*p**4*q**7*r - 127800*p*q**9*r - 41250*p**8*q**3*r**2 - 368400*p**5*q**5*r**2 + 204200*p**2*q**7*r**2 + 54000*p**9*q*r**3 + 1040950*p**6*q**3*r**3 + 2096500*p**3*q**5*r**3 + 200000*q**7*r**3 - 1140000*p**7*q*r**4 - 7691000*p**4*q**3*r**4 - 2281000*p*q**5*r**4 + 7296000*p**5*q*r**5 + 13300000*p**2*q**3*r**5 - 14400000*p**3*q*r**6 + 14000000*q**3*r**6 - 9000*p**8*q**4*s + 52100*p**5*q**6*s + 710250*p**2*q**8*s + 67500*p**9*q**2*r*s - 256100*p**6*q**4*r*s - 5753000*p**3*q**6*r*s + 292500*q**8*r*s - 162000*p**10*r**2*s - 1432350*p**7*q**2*r**2*s + 5410000*p**4*q**4*r**2*s - 7408750*p*q**6*r**2*s + 4401000*p**8*r**3*s + 24185000*p**5*q**2*r**3*s + 20781250*p**2*q**4*r**3*s - 43012000*p**6*r**4*s - 146300000*p**3*q**2*r**4*s - 165875000*q**4*r**4*s + 182000000*p**4*r**5*s + 250000000*p*q**2*r**5*s - 280000000*p**2*r**6*s + 60750*p**10*q*s**2 + 2414250*p**7*q**3*s**2 + 15770000*p**4*q**5*s**2 + 15825000*p*q**7*s**2 - 6021000*p**8*q*r*s**2 - 62252500*p**5*q**3*r*s**2 - 74718750*p**2*q**5*r*s**2 + 90888750*p**6*q*r**2*s**2 + 471312500*p**3*q**3*r**2*s**2 + 525875000*q**5*r**2*s**2 - 539375000*p**4*q*r**3*s**2 - 1030000000*p*q**3*r**3*s**2 + 1142500000*p**2*q*r**4*s**2 + 350000000*q*r**5*s**2 - 303750*p**9*s**3 - 35943750*p**6*q**2*s**3 - 331875000*p**3*q**4*s**3 - 505937500*q**6*s**3 + 8437500*p**7*r*s**3 + 530781250*p**4*q**2*r*s**3 + 1150312500*p*q**4*r*s**3 - 154500000*p**5*r**2*s**3 - 2059062500*p**2*q**2*r**2*s**3 + 1150000000*p**3*r**3*s**3 - 1343750000*q**2*r**3*s**3 - 2900000000*p*r**4*s**3 + 30937500*p**5*q*s**4 + 1166406250*p**2*q**3*s**4 - 1496875000*p**3*q*r*s**4 + 1296875000*q**3*r*s**4 + 10640625000*p*q*r**2*s**4 - 281250000*p**4*s**5 - 9746093750*p*q**2*s**5 + 1269531250*p**2*r*s**5 - 7421875000*r**2*s**5 + 15625000000*q*s**6
b[2][1] = -1600*p**4*q**7 - 10800*p*q**9 + 9800*p**5*q**5*r + 80550*p**2*q**7*r - 4600*p**6*q**3*r**2 - 112700*p**3*q**5*r**2 + 40500*q**7*r**2 - 34200*p**7*q*r**3 - 279500*p**4*q**3*r**3 - 665750*p*q**5*r**3 + 632000*p**5*q*r**4 + 3200000*p**2*q**3*r**4 - 2800000*p**3*q*r**5 + 3000000*q**3*r**5 - 18600*p**6*q**4*s - 51750*p**3*q**6*s + 405000*q**8*s + 21600*p**7*q**2*r*s - 122500*p**4*q**4*r*s - 2891250*p*q**6*r*s + 156600*p**8*r**2*s + 1569750*p**5*q**2*r**2*s + 6943750*p**2*q**4*r**2*s - 3774000*p**6*r**3*s - 27100000*p**3*q**2*r**3*s - 30187500*q**4*r**3*s + 28000000*p**4*r**4*s + 52500000*p*q**2*r**4*s - 60000000*p**2*r**5*s - 81000*p**8*q*s**2 - 240000*p**5*q**3*s**2 + 937500*p**2*q**5*s**2 + 3273750*p**6*q*r*s**2 + 30406250*p**3*q**3*r*s**2 + 55687500*q**5*r*s**2 - 42187500*p**4*q*r**2*s**2 - 112812500*p*q**3*r**2*s**2 + 152500000*p**2*q*r**3*s**2 + 75000000*q*r**4*s**2 - 4218750*p**4*q**2*s**3 + 15156250*p*q**4*s**3 + 5906250*p**5*r*s**3 - 206562500*p**2*q**2*r*s**3 + 107500000*p**3*r**2*s**3 - 159375000*q**2*r**2*s**3 - 612500000*p*r**3*s**3 + 135937500*p**3*q*s**4 + 46875000*q**3*s**4 + 1175781250*p*q*r*s**4 - 292968750*p**2*s**5 - 1367187500*r*s**5
b[2][0] = -800*p**5*q**5 - 5400*p**2*q**7 + 6000*p**6*q**3*r + 51700*p**3*q**5*r + 27000*q**7*r - 10800*p**7*q*r**2 - 163250*p**4*q**3*r**2 - 285750*p*q**5*r**2 + 192000*p**5*q*r**3 + 1000000*p**2*q**3*r**3 - 800000*p**3*q*r**4 + 500000*q**3*r**4 - 10800*p**7*q**2*s - 57500*p**4*q**4*s + 67500*p*q**6*s + 32400*p**8*r*s + 279000*p**5*q**2*r*s - 131250*p**2*q**4*r*s - 729000*p**6*r**2*s - 4100000*p**3*q**2*r**2*s - 5343750*q**4*r**2*s + 5000000*p**4*r**3*s + 10000000*p*q**2*r**3*s - 10000000*p**2*r**4*s + 641250*p**6*q*s**2 + 5812500*p**3*q**3*s**2 + 10125000*q**5*s**2 - 7031250*p**4*q*r*s**2 - 20625000*p*q**3*r*s**2 + 17500000*p**2*q*r**2*s**2 + 12500000*q*r**3*s**2 - 843750*p**5*s**3 - 19375000*p**2*q**2*s**3 + 30000000*p**3*r*s**3 - 20312500*q**2*r*s**3 - 112500000*p*r**2*s**3 + 183593750*p*q*s**4 - 292968750*s**5
b[3][5] = 500*p**11*q**6 + 9875*p**8*q**8 + 42625*p**5*q**10 - 35000*p**2*q**12 - 4500*p**12*q**4*r - 108375*p**9*q**6*r - 516750*p**6*q**8*r + 1110500*p**3*q**10*r + 2730000*q**12*r + 10125*p**13*q**2*r**2 + 358250*p**10*q**4*r**2 + 1908625*p**7*q**6*r**2 - 11744250*p**4*q**8*r**2 - 43383250*p*q**10*r**2 - 313875*p**11*q**2*r**3 - 2074875*p**8*q**4*r**3 + 52094750*p**5*q**6*r**3 + 264567500*p**2*q**8*r**3 + 796125*p**9*q**2*r**4 - 92486250*p**6*q**4*r**4 - 757957500*p**3*q**6*r**4 - 29354375*q**8*r**4 + 60970000*p**7*q**2*r**5 + 1112462500*p**4*q**4*r**5 + 571094375*p*q**6*r**5 - 685290000*p**5*q**2*r**6 - 2037800000*p**2*q**4*r**6 + 2279600000*p**3*q**2*r**7 + 849000000*q**4*r**7 - 1480000000*p*q**2*r**8 + 13500*p**13*q**3*s + 363000*p**10*q**5*s + 2861250*p**7*q**7*s + 8493750*p**4*q**9*s + 17031250*p*q**11*s - 60750*p**14*q*r*s - 2319750*p**11*q**3*r*s - 22674250*p**8*q**5*r*s - 74368750*p**5*q**7*r*s - 170578125*p**2*q**9*r*s + 2760750*p**12*q*r**2*s + 46719000*p**9*q**3*r**2*s + 163356375*p**6*q**5*r**2*s + 360295625*p**3*q**7*r**2*s - 195990625*q**9*r**2*s - 37341750*p**10*q*r**3*s - 194739375*p**7*q**3*r**3*s - 105463125*p**4*q**5*r**3*s - 415825000*p*q**7*r**3*s + 90180000*p**8*q*r**4*s - 990552500*p**5*q**3*r**4*s + 3519212500*p**2*q**5*r**4*s + 1112220000*p**6*q*r**5*s - 4508750000*p**3*q**3*r**5*s - 8159500000*q**5*r**5*s - 4356000000*p**4*q*r**6*s + 14615000000*p*q**3*r**6*s - 2160000000*p**2*q*r**7*s + 91125*p**15*s**2 + 3290625*p**12*q**2*s**2 + 35100000*p**9*q**4*s**2 + 175406250*p**6*q**6*s**2 + 629062500*p**3*q**8*s**2 + 910937500*q**10*s**2 - 5710500*p**13*r*s**2 - 100423125*p**10*q**2*r*s**2 - 604743750*p**7*q**4*r*s**2 - 2954843750*p**4*q**6*r*s**2 - 4587578125*p*q**8*r*s**2 + 116194500*p**11*r**2*s**2 + 1280716250*p**8*q**2*r**2*s**2 + 7401190625*p**5*q**4*r**2*s**2 + 11619937500*p**2*q**6*r**2*s**2 - 952173125*p**9*r**3*s**2 - 6519712500*p**6*q**2*r**3*s**2 - 10238593750*p**3*q**4*r**3*s**2 + 29984609375*q**6*r**3*s**2 + 2558300000*p**7*r**4*s**2 + 16225000000*p**4*q**2*r**4*s**2 - 64994140625*p*q**4*r**4*s**2 + 4202250000*p**5*r**5*s**2 + 46925000000*p**2*q**2*r**5*s**2 - 28950000000*p**3*r**6*s**2 - 1000000000*q**2*r**6*s**2 + 37000000000*p*r**7*s**2 - 48093750*p**11*q*s**3 - 673359375*p**8*q**3*s**3 - 2170312500*p**5*q**5*s**3 - 2466796875*p**2*q**7*s**3 + 647578125*p**9*q*r*s**3 + 597031250*p**6*q**3*r*s**3 - 7542578125*p**3*q**5*r*s**3 - 41125000000*q**7*r*s**3 - 2175828125*p**7*q*r**2*s**3 - 7101562500*p**4*q**3*r**2*s**3 + 100596875000*p*q**5*r**2*s**3 - 8984687500*p**5*q*r**3*s**3 - 120070312500*p**2*q**3*r**3*s**3 + 57343750000*p**3*q*r**4*s**3 + 9500000000*q**3*r**4*s**3 - 342875000000*p*q*r**5*s**3 + 400781250*p**10*s**4 + 8531250000*p**7*q**2*s**4 + 34033203125*p**4*q**4*s**4 + 42724609375*p*q**6*s**4 - 6289453125*p**8*r*s**4 - 24037109375*p**5*q**2*r*s**4 - 62626953125*p**2*q**4*r*s**4 + 17299218750*p**6*r**2*s**4 + 108357421875*p**3*q**2*r**2*s**4 - 55380859375*q**4*r**2*s**4 + 105648437500*p**4*r**3*s**4 + 1204228515625*p*q**2*r**3*s**4 - 365000000000*p**2*r**4*s**4 + 184375000000*r**5*s**4 - 32080078125*p**6*q*s**5 - 98144531250*p**3*q**3*s**5 + 93994140625*q**5*s**5 - 178955078125*p**4*q*r*s**5 - 1299804687500*p*q**3*r*s**5 + 332421875000*p**2*q*r**2*s**5 - 1195312500000*q*r**3*s**5 + 72021484375*p**5*s**6 + 323486328125*p**2*q**2*s**6 + 682373046875*p**3*r*s**6 + 2447509765625*q**2*r*s**6 - 3011474609375*p*r**2*s**6 + 3051757812500*p*q*s**7 - 7629394531250*s**8
b[3][4] = 1500*p**9*q**6 + 69625*p**6*q**8 + 590375*p**3*q**10 + 1035000*q**12 - 13500*p**10*q**4*r - 760625*p**7*q**6*r - 7904500*p**4*q**8*r - 18169250*p*q**10*r + 30375*p**11*q**2*r**2 + 2628625*p**8*q**4*r**2 + 37879000*p**5*q**6*r**2 + 121367500*p**2*q**8*r**2 - 2699250*p**9*q**2*r**3 - 76776875*p**6*q**4*r**3 - 403583125*p**3*q**6*r**3 - 78865625*q**8*r**3 + 60907500*p**7*q**2*r**4 + 735291250*p**4*q**4*r**4 + 781142500*p*q**6*r**4 - 558270000*p**5*q**2*r**5 - 2150725000*p**2*q**4*r**5 + 2015400000*p**3*q**2*r**6 + 1181000000*q**4*r**6 - 2220000000*p*q**2*r**7 + 40500*p**11*q**3*s + 1376500*p**8*q**5*s + 9953125*p**5*q**7*s + 9765625*p**2*q**9*s - 182250*p**12*q*r*s - 8859000*p**9*q**3*r*s - 82854500*p**6*q**5*r*s - 71511250*p**3*q**7*r*s + 273631250*q**9*r*s + 10233000*p**10*q*r**2*s + 179627500*p**7*q**3*r**2*s + 25164375*p**4*q**5*r**2*s - 2927290625*p*q**7*r**2*s - 171305000*p**8*q*r**3*s - 544768750*p**5*q**3*r**3*s + 7583437500*p**2*q**5*r**3*s + 1139860000*p**6*q*r**4*s - 6489375000*p**3*q**3*r**4*s - 9625375000*q**5*r**4*s - 1838000000*p**4*q*r**5*s + 19835000000*p*q**3*r**5*s - 3240000000*p**2*q*r**6*s + 273375*p**13*s**2 + 9753750*p**10*q**2*s**2 + 82575000*p**7*q**4*s**2 + 202265625*p**4*q**6*s**2 + 556093750*p*q**8*s**2 - 11552625*p**11*r*s**2 - 115813125*p**8*q**2*r*s**2 + 630590625*p**5*q**4*r*s**2 + 1347015625*p**2*q**6*r*s**2 + 157578750*p**9*r**2*s**2 - 689206250*p**6*q**2*r**2*s**2 - 4299609375*p**3*q**4*r**2*s**2 + 23896171875*q**6*r**2*s**2 - 1022437500*p**7*r**3*s**2 + 6648125000*p**4*q**2*r**3*s**2 - 52895312500*p*q**4*r**3*s**2 + 4401750000*p**5*r**4*s**2 + 26500000000*p**2*q**2*r**4*s**2 - 22125000000*p**3*r**5*s**2 - 1500000000*q**2*r**5*s**2 + 55500000000*p*r**6*s**2 - 137109375*p**9*q*s**3 - 1955937500*p**6*q**3*s**3 - 6790234375*p**3*q**5*s**3 - 16996093750*q**7*s**3 + 2146218750*p**7*q*r*s**3 + 6570312500*p**4*q**3*r*s**3 + 39918750000*p*q**5*r*s**3 - 7673281250*p**5*q*r**2*s**3 - 52000000000*p**2*q**3*r**2*s**3 + 50796875000*p**3*q*r**3*s**3 + 18750000000*q**3*r**3*s**3 - 399875000000*p*q*r**4*s**3 + 780468750*p**8*s**4 + 14455078125*p**5*q**2*s**4 + 10048828125*p**2*q**4*s**4 - 15113671875*p**6*r*s**4 + 39298828125*p**3*q**2*r*s**4 - 52138671875*q**4*r*s**4 + 45964843750*p**4*r**2*s**4 + 914414062500*p*q**2*r**2*s**4 + 1953125000*p**2*r**3*s**4 + 334375000000*r**4*s**4 - 149169921875*p**4*q*s**5 - 459716796875*p*q**3*s**5 - 325585937500*p**2*q*r*s**5 - 1462890625000*q*r**2*s**5 + 296630859375*p**3*s**6 + 1324462890625*q**2*s**6 + 307617187500*p*r*s**6
b[3][3] = -20750*p**7*q**6 - 290125*p**4*q**8 - 993000*p*q**10 + 146125*p**8*q**4*r + 2721500*p**5*q**6*r + 11833750*p**2*q**8*r - 237375*p**9*q**2*r**2 - 8167500*p**6*q**4*r**2 - 54605625*p**3*q**6*r**2 - 23802500*q**8*r**2 + 8927500*p**7*q**2*r**3 + 131184375*p**4*q**4*r**3 + 254695000*p*q**6*r**3 - 121561250*p**5*q**2*r**4 - 728003125*p**2*q**4*r**4 + 702550000*p**3*q**2*r**5 + 597312500*q**4*r**5 - 1202500000*p*q**2*r**6 - 194625*p**9*q**3*s - 1568875*p**6*q**5*s + 9685625*p**3*q**7*s + 74662500*q**9*s + 327375*p**10*q*r*s + 1280000*p**7*q**3*r*s - 123703750*p**4*q**5*r*s - 850121875*p*q**7*r*s - 7436250*p**8*q*r**2*s + 164820000*p**5*q**3*r**2*s + 2336659375*p**2*q**5*r**2*s + 32202500*p**6*q*r**3*s - 2429765625*p**3*q**3*r**3*s - 4318609375*q**5*r**3*s + 148000000*p**4*q*r**4*s + 9902812500*p*q**3*r**4*s - 1755000000*p**2*q*r**5*s + 1154250*p**11*s**2 + 36821250*p**8*q**2*s**2 + 372825000*p**5*q**4*s**2 + 1170921875*p**2*q**6*s**2 - 38913750*p**9*r*s**2 - 797071875*p**6*q**2*r*s**2 - 2848984375*p**3*q**4*r*s**2 + 7651406250*q**6*r*s**2 + 415068750*p**7*r**2*s**2 + 3151328125*p**4*q**2*r**2*s**2 - 17696875000*p*q**4*r**2*s**2 - 725968750*p**5*r**3*s**2 + 5295312500*p**2*q**2*r**3*s**2 - 8581250000*p**3*r**4*s**2 - 812500000*q**2*r**4*s**2 + 30062500000*p*r**5*s**2 - 110109375*p**7*q*s**3 - 1976562500*p**4*q**3*s**3 - 6329296875*p*q**5*s**3 + 2256328125*p**5*q*r*s**3 + 8554687500*p**2*q**3*r*s**3 + 12947265625*p**3*q*r**2*s**3 + 7984375000*q**3*r**2*s**3 - 167039062500*p*q*r**3*s**3 + 1181250000*p**6*s**4 + 17873046875*p**3*q**2*s**4 - 20449218750*q**4*s**4 - 16265625000*p**4*r*s**4 + 260869140625*p*q**2*r*s**4 + 21025390625*p**2*r**2*s**4 + 207617187500*r**3*s**4 - 207177734375*p**2*q*s**5 - 615478515625*q*r*s**5 + 301513671875*p*s**6
b[3][2] = 53125*p**5*q**6 + 425000*p**2*q**8 - 394375*p**6*q**4*r - 4301875*p**3*q**6*r - 3225000*q**8*r + 851250*p**7*q**2*r**2 + 16910625*p**4*q**4*r**2 + 44210000*p*q**6*r**2 - 20474375*p**5*q**2*r**3 - 147190625*p**2*q**4*r**3 + 163975000*p**3*q**2*r**4 + 156812500*q**4*r**4 - 323750000*p*q**2*r**5 - 99375*p**7*q**3*s - 6395000*p**4*q**5*s - 49243750*p*q**7*s - 1164375*p**8*q*r*s + 4465625*p**5*q**3*r*s + 205546875*p**2*q**5*r*s + 12163750*p**6*q*r**2*s - 315546875*p**3*q**3*r**2*s - 946453125*q**5*r**2*s - 23500000*p**4*q*r**3*s + 2313437500*p*q**3*r**3*s - 472500000*p**2*q*r**4*s + 1316250*p**9*s**2 + 22715625*p**6*q**2*s**2 + 206953125*p**3*q**4*s**2 + 1220000000*q**6*s**2 - 20953125*p**7*r*s**2 - 277656250*p**4*q**2*r*s**2 - 3317187500*p*q**4*r*s**2 + 293734375*p**5*r**2*s**2 + 1351562500*p**2*q**2*r**2*s**2 - 2278125000*p**3*r**3*s**2 - 218750000*q**2*r**3*s**2 + 8093750000*p*r**4*s**2 - 9609375*p**5*q*s**3 + 240234375*p**2*q**3*s**3 + 2310546875*p**3*q*r*s**3 + 1171875000*q**3*r*s**3 - 33460937500*p*q*r**2*s**3 + 2185546875*p**4*s**4 + 32578125000*p*q**2*s**4 - 8544921875*p**2*r*s**4 + 58398437500*r**2*s**4 - 114013671875*q*s**5
b[3][1] = -16250*p**6*q**4 - 191875*p**3*q**6 - 495000*q**8 + 73125*p**7*q**2*r + 1437500*p**4*q**4*r + 5866250*p*q**6*r - 2043125*p**5*q**2*r**2 - 17218750*p**2*q**4*r**2 + 19106250*p**3*q**2*r**3 + 34015625*q**4*r**3 - 69375000*p*q**2*r**4 - 219375*p**8*q*s - 2846250*p**5*q**3*s - 8021875*p**2*q**5*s + 3420000*p**6*q*r*s - 1640625*p**3*q**3*r*s - 152468750*q**5*r*s + 3062500*p**4*q*r**2*s + 381171875*p*q**3*r**2*s - 101250000*p**2*q*r**3*s + 2784375*p**7*s**2 + 43515625*p**4*q**2*s**2 + 115625000*p*q**4*s**2 - 48140625*p**5*r*s**2 - 307421875*p**2*q**2*r*s**2 - 25781250*p**3*r**2*s**2 - 46875000*q**2*r**2*s**2 + 1734375000*p*r**3*s**2 - 128906250*p**3*q*s**3 + 339843750*q**3*s**3 - 4583984375*p*q*r*s**3 + 2236328125*p**2*s**4 + 12255859375*r*s**4
b[3][0] = 31875*p**4*q**4 + 255000*p*q**6 - 82500*p**5*q**2*r - 1106250*p**2*q**4*r + 1653125*p**3*q**2*r**2 + 5187500*q**4*r**2 - 11562500*p*q**2*r**3 - 118125*p**6*q*s - 3593750*p**3*q**3*s - 23812500*q**5*s + 4656250*p**4*q*r*s + 67109375*p*q**3*r*s - 16875000*p**2*q*r**2*s - 984375*p**5*s**2 - 19531250*p**2*q**2*s**2 - 37890625*p**3*r*s**2 - 7812500*q**2*r*s**2 + 289062500*p*r**2*s**2 - 529296875*p*q*s**3 + 2343750000*s**4
b[4][5] = 600*p**10*q**10 + 13850*p**7*q**12 + 106150*p**4*q**14 + 270000*p*q**16 - 9300*p**11*q**8*r - 234075*p**8*q**10*r - 1942825*p**5*q**12*r - 5319900*p**2*q**14*r + 52050*p**12*q**6*r**2 + 1481025*p**9*q**8*r**2 + 13594450*p**6*q**10*r**2 + 40062750*p**3*q**12*r**2 - 3569400*q**14*r**2 - 122175*p**13*q**4*r**3 - 4260350*p**10*q**6*r**3 - 45052375*p**7*q**8*r**3 - 142634900*p**4*q**10*r**3 + 54186350*p*q**12*r**3 + 97200*p**14*q**2*r**4 + 5284225*p**11*q**4*r**4 + 70389525*p**8*q**6*r**4 + 232732850*p**5*q**8*r**4 - 318849400*p**2*q**10*r**4 - 2046000*p**12*q**2*r**5 - 43874125*p**9*q**4*r**5 - 107411850*p**6*q**6*r**5 + 948310700*p**3*q**8*r**5 - 34763575*q**10*r**5 + 5915600*p**10*q**2*r**6 - 115887800*p**7*q**4*r**6 - 1649542400*p**4*q**6*r**6 + 224468875*p*q**8*r**6 + 120252800*p**8*q**2*r**7 + 1779902000*p**5*q**4*r**7 - 288250000*p**2*q**6*r**7 - 915200000*p**6*q**2*r**8 - 1164000000*p**3*q**4*r**8 - 444200000*q**6*r**8 + 2502400000*p**4*q**2*r**9 + 1984000000*p*q**4*r**9 - 2880000000*p**2*q**2*r**10 + 20700*p**12*q**7*s + 551475*p**9*q**9*s + 5194875*p**6*q**11*s + 18985000*p**3*q**13*s + 16875000*q**15*s - 218700*p**13*q**5*r*s - 6606475*p**10*q**7*r*s - 69770850*p**7*q**9*r*s - 285325500*p**4*q**11*r*s - 292005000*p*q**13*r*s + 694575*p**14*q**3*r**2*s + 26187750*p**11*q**5*r**2*s + 328992825*p**8*q**7*r**2*s + 1573292400*p**5*q**9*r**2*s + 1930043875*p**2*q**11*r**2*s - 583200*p**15*q*r**3*s - 37263225*p**12*q**3*r**3*s - 638579425*p**9*q**5*r**3*s - 3920212225*p**6*q**7*r**3*s - 6327336875*p**3*q**9*r**3*s + 440969375*q**11*r**3*s + 13446000*p**13*q*r**4*s + 462330325*p**10*q**3*r**4*s + 4509088275*p**7*q**5*r**4*s + 11709795625*p**4*q**7*r**4*s - 3579565625*p*q**9*r**4*s - 85033600*p**11*q*r**5*s - 2136801600*p**8*q**3*r**5*s - 12221575800*p**5*q**5*r**5*s + 9431044375*p**2*q**7*r**5*s + 10643200*p**9*q*r**6*s + 4565594000*p**6*q**3*r**6*s - 1778590000*p**3*q**5*r**6*s + 4842175000*q**7*r**6*s + 712320000*p**7*q*r**7*s - 16182000000*p**4*q**3*r**7*s - 21918000000*p*q**5*r**7*s - 742400000*p**5*q*r**8*s + 31040000000*p**2*q**3*r**8*s + 1280000000*p**3*q*r**9*s + 4800000000*q**3*r**9*s + 230850*p**14*q**4*s**2 + 7373250*p**11*q**6*s**2 + 85045625*p**8*q**8*s**2 + 399140625*p**5*q**10*s**2 + 565031250*p**2*q**12*s**2 - 1257525*p**15*q**2*r*s**2 - 52728975*p**12*q**4*r*s**2 - 743466375*p**9*q**6*r*s**2 - 4144915000*p**6*q**8*r*s**2 - 7102690625*p**3*q**10*r*s**2 - 1389937500*q**12*r*s**2 + 874800*p**16*r**2*s**2 + 89851275*p**13*q**2*r**2*s**2 + 1897236775*p**10*q**4*r**2*s**2 + 14144163000*p**7*q**6*r**2*s**2 + 31942921875*p**4*q**8*r**2*s**2 + 13305118750*p*q**10*r**2*s**2 - 23004000*p**14*r**3*s**2 - 1450715475*p**11*q**2*r**3*s**2 - 19427105000*p**8*q**4*r**3*s**2 - 70634028750*p**5*q**6*r**3*s**2 - 47854218750*p**2*q**8*r**3*s**2 + 204710400*p**12*r**4*s**2 + 10875135000*p**9*q**2*r**4*s**2 + 83618806250*p**6*q**4*r**4*s**2 + 62744500000*p**3*q**6*r**4*s**2 - 19806718750*q**8*r**4*s**2 - 757094800*p**10*r**5*s**2 - 37718030000*p**7*q**2*r**5*s**2 - 22479500000*p**4*q**4*r**5*s**2 + 91556093750*p*q**6*r**5*s**2 + 2306320000*p**8*r**6*s**2 + 55539600000*p**5*q**2*r**6*s**2 - 112851250000*p**2*q**4*r**6*s**2 - 10720000000*p**6*r**7*s**2 - 64720000000*p**3*q**2*r**7*s**2 - 59925000000*q**4*r**7*s**2 + 28000000000*p**4*r**8*s**2 + 28000000000*p*q**2*r**8*s**2 - 24000000000*p**2*r**9*s**2 + 820125*p**16*q*s**3 + 36804375*p**13*q**3*s**3 + 552225000*p**10*q**5*s**3 + 3357593750*p**7*q**7*s**3 + 7146562500*p**4*q**9*s**3 + 3851562500*p*q**11*s**3 - 92400750*p**14*q*r*s**3 - 2350175625*p**11*q**3*r*s**3 - 19470640625*p**8*q**5*r*s**3 - 52820593750*p**5*q**7*r*s**3 - 45447734375*p**2*q**9*r*s**3 + 1824363000*p**12*q*r**2*s**3 + 31435234375*p**9*q**3*r**2*s**3 + 141717537500*p**6*q**5*r**2*s**3 + 228370781250*p**3*q**7*r**2*s**3 + 34610078125*q**9*r**2*s**3 - 17591825625*p**10*q*r**3*s**3 - 188927187500*p**7*q**3*r**3*s**3 - 502088984375*p**4*q**5*r**3*s**3 - 187849296875*p*q**7*r**3*s**3 + 75577750000*p**8*q*r**4*s**3 + 342800000000*p**5*q**3*r**4*s**3 + 295384296875*p**2*q**5*r**4*s**3 - 107681250000*p**6*q*r**5*s**3 + 53330000000*p**3*q**3*r**5*s**3 + 271586875000*q**5*r**5*s**3 - 26410000000*p**4*q*r**6*s**3 - 188200000000*p*q**3*r**6*s**3 + 92000000000*p**2*q*r**7*s**3 + 120000000000*q*r**8*s**3 + 47840625*p**15*s**4 + 1150453125*p**12*q**2*s**4 + 9229453125*p**9*q**4*s**4 + 24954687500*p**6*q**6*s**4 + 22978515625*p**3*q**8*s**4 + 1367187500*q**10*s**4 - 1193737500*p**13*r*s**4 - 20817843750*p**10*q**2*r*s**4 - 98640000000*p**7*q**4*r*s**4 - 225767187500*p**4*q**6*r*s**4 - 74707031250*p*q**8*r*s**4 + 13431318750*p**11*r**2*s**4 + 188709843750*p**8*q**2*r**2*s**4 + 875157656250*p**5*q**4*r**2*s**4 + 593812890625*p**2*q**6*r**2*s**4 - 69869296875*p**9*r**3*s**4 - 854811093750*p**6*q**2*r**3*s**4 - 1730658203125*p**3*q**4*r**3*s**4 - 570867187500*q**6*r**3*s**4 + 162075625000*p**7*r**4*s**4 + 1536375000000*p**4*q**2*r**4*s**4 + 765156250000*p*q**4*r**4*s**4 - 165988750000*p**5*r**5*s**4 - 728968750000*p**2*q**2*r**5*s**4 + 121500000000*p**3*r**6*s**4 - 1039375000000*q**2*r**6*s**4 - 100000000000*p*r**7*s**4 - 379687500*p**11*q*s**5 - 11607421875*p**8*q**3*s**5 - 20830078125*p**5*q**5*s**5 - 33691406250*p**2*q**7*s**5 - 41491406250*p**9*q*r*s**5 - 419054687500*p**6*q**3*r*s**5 - 129511718750*p**3*q**5*r*s**5 + 311767578125*q**7*r*s**5 + 620116015625*p**7*q*r**2*s**5 + 1154687500000*p**4*q**3*r**2*s**5 + 36455078125*p*q**5*r**2*s**5 - 2265953125000*p**5*q*r**3*s**5 - 1509521484375*p**2*q**3*r**3*s**5 + 2530468750000*p**3*q*r**4*s**5 + 3259765625000*q**3*r**4*s**5 + 93750000000*p*q*r**5*s**5 + 23730468750*p**10*s**6 + 243603515625*p**7*q**2*s**6 + 341552734375*p**4*q**4*s**6 - 12207031250*p*q**6*s**6 - 357099609375*p**8*r*s**6 - 298193359375*p**5*q**2*r*s**6 + 406738281250*p**2*q**4*r*s**6 + 1615683593750*p**6*r**2*s**6 + 558593750000*p**3*q**2*r**2*s**6 - 2811035156250*q**4*r**2*s**6 - 2960937500000*p**4*r**3*s**6 - 3802246093750*p*q**2*r**3*s**6 + 2347656250000*p**2*r**4*s**6 - 671875000000*r**5*s**6 - 651855468750*p**6*q*s**7 - 1458740234375*p**3*q**3*s**7 - 152587890625*q**5*s**7 + 1628417968750*p**4*q*r*s**7 + 3948974609375*p*q**3*r*s**7 - 916748046875*p**2*q*r**2*s**7 + 1611328125000*q*r**3*s**7 + 640869140625*p**5*s**8 + 1068115234375*p**2*q**2*s**8 - 2044677734375*p**3*r*s**8 - 3204345703125*q**2*r*s**8 + 1739501953125*p*r**2*s**8
b[4][4] = -600*p**11*q**8 - 14050*p**8*q**10 - 109100*p**5*q**12 - 280800*p**2*q**14 + 7200*p**12*q**6*r + 188700*p**9*q**8*r + 1621725*p**6*q**10*r + 4577075*p**3*q**12*r + 5400*q**14*r - 28350*p**13*q**4*r**2 - 910600*p**10*q**6*r**2 - 9237975*p**7*q**8*r**2 - 30718900*p**4*q**10*r**2 - 5575950*p*q**12*r**2 + 36450*p**14*q**2*r**3 + 1848125*p**11*q**4*r**3 + 25137775*p**8*q**6*r**3 + 109591450*p**5*q**8*r**3 + 70627650*p**2*q**10*r**3 - 1317150*p**12*q**2*r**4 - 32857100*p**9*q**4*r**4 - 219125575*p**6*q**6*r**4 - 327565875*p**3*q**8*r**4 - 13011875*q**10*r**4 + 16484150*p**10*q**2*r**5 + 222242250*p**7*q**4*r**5 + 642173750*p**4*q**6*r**5 + 101263750*p*q**8*r**5 - 79345000*p**8*q**2*r**6 - 433180000*p**5*q**4*r**6 - 93731250*p**2*q**6*r**6 - 74300000*p**6*q**2*r**7 - 1057900000*p**3*q**4*r**7 - 591175000*q**6*r**7 + 1891600000*p**4*q**2*r**8 + 2796000000*p*q**4*r**8 - 4320000000*p**2*q**2*r**9 - 16200*p**13*q**5*s - 359500*p**10*q**7*s - 2603825*p**7*q**9*s - 4590375*p**4*q**11*s + 12352500*p*q**13*s + 121500*p**14*q**3*r*s + 3227400*p**11*q**5*r*s + 27301725*p**8*q**7*r*s + 59480975*p**5*q**9*r*s - 137308875*p**2*q**11*r*s - 218700*p**15*q*r**2*s - 8903925*p**12*q**3*r**2*s - 100918225*p**9*q**5*r**2*s - 325291300*p**6*q**7*r**2*s + 365705000*p**3*q**9*r**2*s + 94342500*q**11*r**2*s + 7632900*p**13*q*r**3*s + 162995400*p**10*q**3*r**3*s + 974558975*p**7*q**5*r**3*s + 930991250*p**4*q**7*r**3*s - 495368750*p*q**9*r**3*s - 97344900*p**11*q*r**4*s - 1406739250*p**8*q**3*r**4*s - 5572526250*p**5*q**5*r**4*s - 1903987500*p**2*q**7*r**4*s + 678550000*p**9*q*r**5*s + 8176215000*p**6*q**3*r**5*s + 18082050000*p**3*q**5*r**5*s + 5435843750*q**7*r**5*s - 2979800000*p**7*q*r**6*s - 29163500000*p**4*q**3*r**6*s - 27417500000*p*q**5*r**6*s + 6282400000*p**5*q*r**7*s + 48690000000*p**2*q**3*r**7*s - 2880000000*p**3*q*r**8*s + 7200000000*q**3*r**8*s - 109350*p**15*q**2*s**2 - 2405700*p**12*q**4*s**2 - 16125250*p**9*q**6*s**2 - 4930000*p**6*q**8*s**2 + 201150000*p**3*q**10*s**2 - 243000000*q**12*s**2 + 328050*p**16*r*s**2 + 10552275*p**13*q**2*r*s**2 + 88019100*p**10*q**4*r*s**2 - 4208625*p**7*q**6*r*s**2 - 1920390625*p**4*q**8*r*s**2 + 1759537500*p*q**10*r*s**2 - 11955600*p**14*r**2*s**2 - 196375050*p**11*q**2*r**2*s**2 - 555196250*p**8*q**4*r**2*s**2 + 4213270000*p**5*q**6*r**2*s**2 - 157468750*p**2*q**8*r**2*s**2 + 162656100*p**12*r**3*s**2 + 1880870000*p**9*q**2*r**3*s**2 + 753684375*p**6*q**4*r**3*s**2 - 25423062500*p**3*q**6*r**3*s**2 - 14142031250*q**8*r**3*s**2 - 1251948750*p**10*r**4*s**2 - 12524475000*p**7*q**2*r**4*s**2 + 18067656250*p**4*q**4*r**4*s**2 + 60531875000*p*q**6*r**4*s**2 + 6827725000*p**8*r**5*s**2 + 57157000000*p**5*q**2*r**5*s**2 - 75844531250*p**2*q**4*r**5*s**2 - 24452500000*p**6*r**6*s**2 - 144950000000*p**3*q**2*r**6*s**2 - 82109375000*q**4*r**6*s**2 + 46950000000*p**4*r**7*s**2 + 60000000000*p*q**2*r**7*s**2 - 36000000000*p**2*r**8*s**2 + 1549125*p**14*q*s**3 + 51873750*p**11*q**3*s**3 + 599781250*p**8*q**5*s**3 + 2421156250*p**5*q**7*s**3 - 1693515625*p**2*q**9*s**3 - 104884875*p**12*q*r*s**3 - 1937437500*p**9*q**3*r*s**3 - 11461053125*p**6*q**5*r*s**3 + 10299375000*p**3*q**7*r*s**3 + 10551250000*q**9*r*s**3 + 1336263750*p**10*q*r**2*s**3 + 23737250000*p**7*q**3*r**2*s**3 + 57136718750*p**4*q**5*r**2*s**3 - 8288906250*p*q**7*r**2*s**3 - 10907218750*p**8*q*r**3*s**3 - 160615000000*p**5*q**3*r**3*s**3 - 111134687500*p**2*q**5*r**3*s**3 + 46743125000*p**6*q*r**4*s**3 + 570509375000*p**3*q**3*r**4*s**3 + 274839843750*q**5*r**4*s**3 - 73312500000*p**4*q*r**5*s**3 - 145437500000*p*q**3*r**5*s**3 + 8750000000*p**2*q*r**6*s**3 + 180000000000*q*r**7*s**3 + 15946875*p**13*s**4 + 1265625*p**10*q**2*s**4 - 3282343750*p**7*q**4*s**4 - 38241406250*p**4*q**6*s**4 - 40136718750*p*q**8*s**4 - 113146875*p**11*r*s**4 - 2302734375*p**8*q**2*r*s**4 + 68450156250*p**5*q**4*r*s**4 + 177376562500*p**2*q**6*r*s**4 + 3164062500*p**9*r**2*s**4 + 14392890625*p**6*q**2*r**2*s**4 - 543781250000*p**3*q**4*r**2*s**4 - 319769531250*q**6*r**2*s**4 - 21048281250*p**7*r**3*s**4 - 240687500000*p**4*q**2*r**3*s**4 - 228164062500*p*q**4*r**3*s**4 + 23062500000*p**5*r**4*s**4 + 300410156250*p**2*q**2*r**4*s**4 + 93437500000*p**3*r**5*s**4 - 1141015625000*q**2*r**5*s**4 - 187500000000*p*r**6*s**4 + 1761328125*p**9*q*s**5 - 3177734375*p**6*q**3*s**5 + 60019531250*p**3*q**5*s**5 + 108398437500*q**7*s**5 + 24106640625*p**7*q*r*s**5 + 429589843750*p**4*q**3*r*s**5 + 410371093750*p*q**5*r*s**5 - 23582031250*p**5*q*r**2*s**5 + 202441406250*p**2*q**3*r**2*s**5 - 383203125000*p**3*q*r**3*s**5 + 2232910156250*q**3*r**3*s**5 + 1500000000000*p*q*r**4*s**5 - 13710937500*p**8*s**6 - 202832031250*p**5*q**2*s**6 - 531738281250*p**2*q**4*s**6 + 73330078125*p**6*r*s**6 - 3906250000*p**3*q**2*r*s**6 - 1275878906250*q**4*r*s**6 - 121093750000*p**4*r**2*s**6 - 3308593750000*p*q**2*r**2*s**6 + 18066406250*p**2*r**3*s**6 - 244140625000*r**4*s**6 + 327148437500*p**4*q*s**7 + 1672363281250*p*q**3*s**7 + 446777343750*p**2*q*r*s**7 + 1232910156250*q*r**2*s**7 - 274658203125*p**3*s**8 - 1068115234375*q**2*s**8 - 61035156250*p*r*s**8
b[4][3] = 200*p**9*q**8 + 7550*p**6*q**10 + 78650*p**3*q**12 + 248400*q**14 - 4800*p**10*q**6*r - 164300*p**7*q**8*r - 1709575*p**4*q**10*r - 5566500*p*q**12*r + 31050*p**11*q**4*r**2 + 1116175*p**8*q**6*r**2 + 12674650*p**5*q**8*r**2 + 45333850*p**2*q**10*r**2 - 60750*p**12*q**2*r**3 - 2872725*p**9*q**4*r**3 - 40403050*p**6*q**6*r**3 - 173564375*p**3*q**8*r**3 - 11242250*q**10*r**3 + 2174100*p**10*q**2*r**4 + 54010000*p**7*q**4*r**4 + 331074875*p**4*q**6*r**4 + 114173750*p*q**8*r**4 - 24858500*p**8*q**2*r**5 - 300875000*p**5*q**4*r**5 - 319430625*p**2*q**6*r**5 + 69810000*p**6*q**2*r**6 - 23900000*p**3*q**4*r**6 - 294662500*q**6*r**6 + 524200000*p**4*q**2*r**7 + 1432000000*p*q**4*r**7 - 2340000000*p**2*q**2*r**8 + 5400*p**11*q**5*s + 310400*p**8*q**7*s + 3591725*p**5*q**9*s + 11556750*p**2*q**11*s - 105300*p**12*q**3*r*s - 4234650*p**9*q**5*r*s - 49928875*p**6*q**7*r*s - 174078125*p**3*q**9*r*s + 18000000*q**11*r*s + 364500*p**13*q*r**2*s + 15763050*p**10*q**3*r**2*s + 220187400*p**7*q**5*r**2*s + 929609375*p**4*q**7*r**2*s - 43653125*p*q**9*r**2*s - 13427100*p**11*q*r**3*s - 346066250*p**8*q**3*r**3*s - 2287673375*p**5*q**5*r**3*s - 1403903125*p**2*q**7*r**3*s + 184586000*p**9*q*r**4*s + 2983460000*p**6*q**3*r**4*s + 8725818750*p**3*q**5*r**4*s + 2527734375*q**7*r**4*s - 1284480000*p**7*q*r**5*s - 13138250000*p**4*q**3*r**5*s - 14001625000*p*q**5*r**5*s + 4224800000*p**5*q*r**6*s + 27460000000*p**2*q**3*r**6*s - 3760000000*p**3*q*r**7*s + 3900000000*q**3*r**7*s + 36450*p**13*q**2*s**2 + 2765475*p**10*q**4*s**2 + 34027625*p**7*q**6*s**2 + 97375000*p**4*q**8*s**2 - 88275000*p*q**10*s**2 - 546750*p**14*r*s**2 - 21961125*p**11*q**2*r*s**2 - 273059375*p**8*q**4*r*s**2 - 761562500*p**5*q**6*r*s**2 + 1869656250*p**2*q**8*r*s**2 + 20545650*p**12*r**2*s**2 + 473934375*p**9*q**2*r**2*s**2 + 1758053125*p**6*q**4*r**2*s**2 - 8743359375*p**3*q**6*r**2*s**2 - 4154375000*q**8*r**2*s**2 - 296559000*p**10*r**3*s**2 - 4065056250*p**7*q**2*r**3*s**2 - 186328125*p**4*q**4*r**3*s**2 + 19419453125*p*q**6*r**3*s**2 + 2326262500*p**8*r**4*s**2 + 21189375000*p**5*q**2*r**4*s**2 - 26301953125*p**2*q**4*r**4*s**2 - 10513250000*p**6*r**5*s**2 - 69937500000*p**3*q**2*r**5*s**2 - 42257812500*q**4*r**5*s**2 + 23375000000*p**4*r**6*s**2 + 40750000000*p*q**2*r**6*s**2 - 19500000000*p**2*r**7*s**2 + 4009500*p**12*q*s**3 + 36140625*p**9*q**3*s**3 - 335459375*p**6*q**5*s**3 - 2695312500*p**3*q**7*s**3 - 1486250000*q**9*s**3 + 102515625*p**10*q*r*s**3 + 4006812500*p**7*q**3*r*s**3 + 27589609375*p**4*q**5*r*s**3 + 20195312500*p*q**7*r*s**3 - 2792812500*p**8*q*r**2*s**3 - 44115156250*p**5*q**3*r**2*s**3 - 72609453125*p**2*q**5*r**2*s**3 + 18752500000*p**6*q*r**3*s**3 + 218140625000*p**3*q**3*r**3*s**3 + 109940234375*q**5*r**3*s**3 - 21893750000*p**4*q*r**4*s**3 - 65187500000*p*q**3*r**4*s**3 - 31000000000*p**2*q*r**5*s**3 + 97500000000*q*r**6*s**3 - 86568750*p**11*s**4 - 1955390625*p**8*q**2*s**4 - 8960781250*p**5*q**4*s**4 - 1357812500*p**2*q**6*s**4 + 1657968750*p**9*r*s**4 + 10467187500*p**6*q**2*r*s**4 - 55292968750*p**3*q**4*r*s**4 - 60683593750*q**6*r*s**4 - 11473593750*p**7*r**2*s**4 - 123281250000*p**4*q**2*r**2*s**4 - 164912109375*p*q**4*r**2*s**4 + 13150000000*p**5*r**3*s**4 + 190751953125*p**2*q**2*r**3*s**4 + 61875000000*p**3*r**4*s**4 - 467773437500*q**2*r**4*s**4 - 118750000000*p*r**5*s**4 + 7583203125*p**7*q*s**5 + 54638671875*p**4*q**3*s**5 + 39423828125*p*q**5*s**5 + 32392578125*p**5*q*r*s**5 + 278515625000*p**2*q**3*r*s**5 - 298339843750*p**3*q*r**2*s**5 + 560791015625*q**3*r**2*s**5 + 720703125000*p*q*r**3*s**5 - 19687500000*p**6*s**6 - 159667968750*p**3*q**2*s**6 - 72265625000*q**4*s**6 + 116699218750*p**4*r*s**6 - 924072265625*p*q**2*r*s**6 - 156005859375*p**2*r**2*s**6 - 112304687500*r**3*s**6 + 349121093750*p**2*q*s**7 + 396728515625*q*r*s**7 - 213623046875*p*s**8
b[4][2] = -600*p**10*q**6 - 18450*p**7*q**8 - 174000*p**4*q**10 - 518400*p*q**12 + 5400*p**11*q**4*r + 197550*p**8*q**6*r + 2147775*p**5*q**8*r + 7219800*p**2*q**10*r - 12150*p**12*q**2*r**2 - 662200*p**9*q**4*r**2 - 9274775*p**6*q**6*r**2 - 38330625*p**3*q**8*r**2 - 5508000*q**10*r**2 + 656550*p**10*q**2*r**3 + 16233750*p**7*q**4*r**3 + 97335875*p**4*q**6*r**3 + 58271250*p*q**8*r**3 - 9845500*p**8*q**2*r**4 - 119464375*p**5*q**4*r**4 - 194431875*p**2*q**6*r**4 + 49465000*p**6*q**2*r**5 + 166000000*p**3*q**4*r**5 - 80793750*q**6*r**5 + 54400000*p**4*q**2*r**6 + 377750000*p*q**4*r**6 - 630000000*p**2*q**2*r**7 - 16200*p**12*q**3*s - 459300*p**9*q**5*s - 4207225*p**6*q**7*s - 10827500*p**3*q**9*s + 13635000*q**11*s + 72900*p**13*q*r*s + 2877300*p**10*q**3*r*s + 33239700*p**7*q**5*r*s + 107080625*p**4*q**7*r*s - 114975000*p*q**9*r*s - 3601800*p**11*q*r**2*s - 75214375*p**8*q**3*r**2*s - 387073250*p**5*q**5*r**2*s + 55540625*p**2*q**7*r**2*s + 53793000*p**9*q*r**3*s + 687176875*p**6*q**3*r**3*s + 1670018750*p**3*q**5*r**3*s + 665234375*q**7*r**3*s - 391570000*p**7*q*r**4*s - 3420125000*p**4*q**3*r**4*s - 3609625000*p*q**5*r**4*s + 1365600000*p**5*q*r**5*s + 7236250000*p**2*q**3*r**5*s - 1220000000*p**3*q*r**6*s + 1050000000*q**3*r**6*s - 109350*p**14*s**2 - 3065850*p**11*q**2*s**2 - 26908125*p**8*q**4*s**2 - 44606875*p**5*q**6*s**2 + 269812500*p**2*q**8*s**2 + 5200200*p**12*r*s**2 + 81826875*p**9*q**2*r*s**2 + 155378125*p**6*q**4*r*s**2 - 1936203125*p**3*q**6*r*s**2 - 998437500*q**8*r*s**2 - 77145750*p**10*r**2*s**2 - 745528125*p**7*q**2*r**2*s**2 + 683437500*p**4*q**4*r**2*s**2 + 4083359375*p*q**6*r**2*s**2 + 593287500*p**8*r**3*s**2 + 4799375000*p**5*q**2*r**3*s**2 - 4167578125*p**2*q**4*r**3*s**2 - 2731125000*p**6*r**4*s**2 - 18668750000*p**3*q**2*r**4*s**2 - 10480468750*q**4*r**4*s**2 + 6200000000*p**4*r**5*s**2 + 11750000000*p*q**2*r**5*s**2 - 5250000000*p**2*r**6*s**2 + 26527500*p**10*q*s**3 + 526031250*p**7*q**3*s**3 + 3160703125*p**4*q**5*s**3 + 2650312500*p*q**7*s**3 - 448031250*p**8*q*r*s**3 - 6682968750*p**5*q**3*r*s**3 - 11642812500*p**2*q**5*r*s**3 + 2553203125*p**6*q*r**2*s**3 + 37234375000*p**3*q**3*r**2*s**3 + 21871484375*q**5*r**2*s**3 + 2803125000*p**4*q*r**3*s**3 - 10796875000*p*q**3*r**3*s**3 - 16656250000*p**2*q*r**4*s**3 + 26250000000*q*r**5*s**3 - 75937500*p**9*s**4 - 704062500*p**6*q**2*s**4 - 8363281250*p**3*q**4*s**4 - 10398437500*q**6*s**4 + 197578125*p**7*r*s**4 - 16441406250*p**4*q**2*r*s**4 - 24277343750*p*q**4*r*s**4 - 5716015625*p**5*r**2*s**4 + 31728515625*p**2*q**2*r**2*s**4 + 27031250000*p**3*r**3*s**4 - 92285156250*q**2*r**3*s**4 - 33593750000*p*r**4*s**4 + 10394531250*p**5*q*s**5 + 38037109375*p**2*q**3*s**5 - 48144531250*p**3*q*r*s**5 + 74462890625*q**3*r*s**5 + 121093750000*p*q*r**2*s**5 - 2197265625*p**4*s**6 - 92529296875*p*q**2*s**6 + 15380859375*p**2*r*s**6 - 31738281250*r**2*s**6 + 54931640625*q*s**7
b[4][1] = 200*p**8*q**6 + 2950*p**5*q**8 + 10800*p**2*q**10 - 1800*p**9*q**4*r - 49650*p**6*q**6*r - 403375*p**3*q**8*r - 999000*q**10*r + 4050*p**10*q**2*r**2 + 236625*p**7*q**4*r**2 + 3109500*p**4*q**6*r**2 + 11463750*p*q**8*r**2 - 331500*p**8*q**2*r**3 - 7818125*p**5*q**4*r**3 - 41411250*p**2*q**6*r**3 + 4782500*p**6*q**2*r**4 + 47475000*p**3*q**4*r**4 - 16728125*q**6*r**4 - 8700000*p**4*q**2*r**5 + 81750000*p*q**4*r**5 - 135000000*p**2*q**2*r**6 + 5400*p**10*q**3*s + 144200*p**7*q**5*s + 939375*p**4*q**7*s + 1012500*p*q**9*s - 24300*p**11*q*r*s - 1169250*p**8*q**3*r*s - 14027250*p**5*q**5*r*s - 44446875*p**2*q**7*r*s + 2011500*p**9*q*r**2*s + 49330625*p**6*q**3*r**2*s + 272009375*p**3*q**5*r**2*s + 104062500*q**7*r**2*s - 34660000*p**7*q*r**3*s - 455062500*p**4*q**3*r**3*s - 625906250*p*q**5*r**3*s + 210200000*p**5*q*r**4*s + 1298750000*p**2*q**3*r**4*s - 240000000*p**3*q*r**5*s + 225000000*q**3*r**5*s + 36450*p**12*s**2 + 1231875*p**9*q**2*s**2 + 10712500*p**6*q**4*s**2 + 21718750*p**3*q**6*s**2 + 16875000*q**8*s**2 - 2814750*p**10*r*s**2 - 67612500*p**7*q**2*r*s**2 - 345156250*p**4*q**4*r*s**2 - 283125000*p*q**6*r*s**2 + 51300000*p**8*r**2*s**2 + 734531250*p**5*q**2*r**2*s**2 + 1267187500*p**2*q**4*r**2*s**2 - 384312500*p**6*r**3*s**2 - 3912500000*p**3*q**2*r**3*s**2 - 1822265625*q**4*r**3*s**2 + 1112500000*p**4*r**4*s**2 + 2437500000*p*q**2*r**4*s**2 - 1125000000*p**2*r**5*s**2 - 72578125*p**5*q**3*s**3 - 189296875*p**2*q**5*s**3 + 127265625*p**6*q*r*s**3 + 1415625000*p**3*q**3*r*s**3 + 1229687500*q**5*r*s**3 + 1448437500*p**4*q*r**2*s**3 + 2218750000*p*q**3*r**2*s**3 - 4031250000*p**2*q*r**3*s**3 + 5625000000*q*r**4*s**3 - 132890625*p**7*s**4 - 529296875*p**4*q**2*s**4 - 175781250*p*q**4*s**4 - 401953125*p**5*r*s**4 - 4482421875*p**2*q**2*r*s**4 + 4140625000*p**3*r**2*s**4 - 10498046875*q**2*r**2*s**4 - 7031250000*p*r**3*s**4 + 1220703125*p**3*q*s**5 + 1953125000*q**3*s**5 + 14160156250*p*q*r*s**5 - 1708984375*p**2*s**6 - 3662109375*r*s**6
b[4][0] = -4600*p**6*q**6 - 67850*p**3*q**8 - 248400*q**10 + 38900*p**7*q**4*r + 679575*p**4*q**6*r + 2866500*p*q**8*r - 81900*p**8*q**2*r**2 - 2009750*p**5*q**4*r**2 - 10783750*p**2*q**6*r**2 + 1478750*p**6*q**2*r**3 + 14165625*p**3*q**4*r**3 - 2743750*q**6*r**3 - 5450000*p**4*q**2*r**4 + 12687500*p*q**4*r**4 - 22500000*p**2*q**2*r**5 - 101700*p**8*q**3*s - 1700975*p**5*q**5*s - 7061250*p**2*q**7*s + 423900*p**9*q*r*s + 9292375*p**6*q**3*r*s + 50438750*p**3*q**5*r*s + 20475000*q**7*r*s - 7852500*p**7*q*r**2*s - 87765625*p**4*q**3*r**2*s - 121609375*p*q**5*r**2*s + 47700000*p**5*q*r**3*s + 264687500*p**2*q**3*r**3*s - 65000000*p**3*q*r**4*s + 37500000*q**3*r**4*s - 534600*p**10*s**2 - 10344375*p**7*q**2*s**2 - 54859375*p**4*q**4*s**2 - 40312500*p*q**6*s**2 + 10158750*p**8*r*s**2 + 117778125*p**5*q**2*r*s**2 + 192421875*p**2*q**4*r*s**2 - 70593750*p**6*r**2*s**2 - 685312500*p**3*q**2*r**2*s**2 - 334375000*q**4*r**2*s**2 + 193750000*p**4*r**3*s**2 + 500000000*p*q**2*r**3*s**2 - 187500000*p**2*r**4*s**2 + 8437500*p**6*q*s**3 + 159218750*p**3*q**3*s**3 + 220625000*q**5*s**3 + 353828125*p**4*q*r*s**3 + 412500000*p*q**3*r*s**3 - 1023437500*p**2*q*r**2*s**3 + 937500000*q*r**3*s**3 - 206015625*p**5*s**4 - 701171875*p**2*q**2*s**4 + 998046875*p**3*r*s**4 - 1308593750*q**2*r*s**4 - 1367187500*p*r**2*s**4 + 1708984375*p*q*s**5 - 976562500*s**6
return b
@property
def o(self):
p, q, r, s = self.p, self.q, self.r, self.s
o = [0]*6
o[5] = -1600*p**10*q**10 - 23600*p**7*q**12 - 86400*p**4*q**14 + 24800*p**11*q**8*r + 419200*p**8*q**10*r + 1850450*p**5*q**12*r + 896400*p**2*q**14*r - 138800*p**12*q**6*r**2 - 2921900*p**9*q**8*r**2 - 17295200*p**6*q**10*r**2 - 27127750*p**3*q**12*r**2 - 26076600*q**14*r**2 + 325800*p**13*q**4*r**3 + 9993850*p**10*q**6*r**3 + 88010500*p**7*q**8*r**3 + 274047650*p**4*q**10*r**3 + 410171400*p*q**12*r**3 - 259200*p**14*q**2*r**4 - 17147100*p**11*q**4*r**4 - 254289150*p**8*q**6*r**4 - 1318548225*p**5*q**8*r**4 - 2633598475*p**2*q**10*r**4 + 12636000*p**12*q**2*r**5 + 388911000*p**9*q**4*r**5 + 3269704725*p**6*q**6*r**5 + 8791192300*p**3*q**8*r**5 + 93560575*q**10*r**5 - 228361600*p**10*q**2*r**6 - 3951199200*p**7*q**4*r**6 - 16276981100*p**4*q**6*r**6 - 1597227000*p*q**8*r**6 + 1947899200*p**8*q**2*r**7 + 17037648000*p**5*q**4*r**7 + 8919740000*p**2*q**6*r**7 - 7672160000*p**6*q**2*r**8 - 15496000000*p**3*q**4*r**8 + 4224000000*q**6*r**8 + 9968000000*p**4*q**2*r**9 - 8640000000*p*q**4*r**9 + 4800000000*p**2*q**2*r**10 - 55200*p**12*q**7*s - 685600*p**9*q**9*s + 1028250*p**6*q**11*s + 37650000*p**3*q**13*s + 111375000*q**15*s + 583200*p**13*q**5*r*s + 9075600*p**10*q**7*r*s - 883150*p**7*q**9*r*s - 506830750*p**4*q**11*r*s - 1793137500*p*q**13*r*s - 1852200*p**14*q**3*r**2*s - 41435250*p**11*q**5*r**2*s - 80566700*p**8*q**7*r**2*s + 2485673600*p**5*q**9*r**2*s + 11442286125*p**2*q**11*r**2*s + 1555200*p**15*q*r**3*s + 80846100*p**12*q**3*r**3*s + 564906800*p**9*q**5*r**3*s - 4493012400*p**6*q**7*r**3*s - 35492391250*p**3*q**9*r**3*s - 789931875*q**11*r**3*s - 71766000*p**13*q*r**4*s - 1551149200*p**10*q**3*r**4*s - 1773437900*p**7*q**5*r**4*s + 51957593125*p**4*q**7*r**4*s + 14964765625*p*q**9*r**4*s + 1231569600*p**11*q*r**5*s + 12042977600*p**8*q**3*r**5*s - 27151011200*p**5*q**5*r**5*s - 88080610000*p**2*q**7*r**5*s - 9912995200*p**9*q*r**6*s - 29448104000*p**6*q**3*r**6*s + 144954840000*p**3*q**5*r**6*s - 44601300000*q**7*r**6*s + 35453760000*p**7*q*r**7*s - 63264000000*p**4*q**3*r**7*s + 60544000000*p*q**5*r**7*s - 30048000000*p**5*q*r**8*s + 37040000000*p**2*q**3*r**8*s - 60800000000*p**3*q*r**9*s - 48000000000*q**3*r**9*s - 615600*p**14*q**4*s**2 - 10524500*p**11*q**6*s**2 - 33831250*p**8*q**8*s**2 + 222806250*p**5*q**10*s**2 + 1099687500*p**2*q**12*s**2 + 3353400*p**15*q**2*r*s**2 + 74269350*p**12*q**4*r*s**2 + 276445750*p**9*q**6*r*s**2 - 2618600000*p**6*q**8*r*s**2 - 14473243750*p**3*q**10*r*s**2 + 1383750000*q**12*r*s**2 - 2332800*p**16*r**2*s**2 - 132750900*p**13*q**2*r**2*s**2 - 900775150*p**10*q**4*r**2*s**2 + 8249244500*p**7*q**6*r**2*s**2 + 59525796875*p**4*q**8*r**2*s**2 - 40292868750*p*q**10*r**2*s**2 + 128304000*p**14*r**3*s**2 + 3160232100*p**11*q**2*r**3*s**2 + 8329580000*p**8*q**4*r**3*s**2 - 45558458750*p**5*q**6*r**3*s**2 + 297252890625*p**2*q**8*r**3*s**2 - 2769854400*p**12*r**4*s**2 - 37065970000*p**9*q**2*r**4*s**2 - 90812546875*p**6*q**4*r**4*s**2 - 627902000000*p**3*q**6*r**4*s**2 + 181347421875*q**8*r**4*s**2 + 30946932800*p**10*r**5*s**2 + 249954680000*p**7*q**2*r**5*s**2 + 802954812500*p**4*q**4*r**5*s**2 - 80900000000*p*q**6*r**5*s**2 - 192137320000*p**8*r**6*s**2 - 932641600000*p**5*q**2*r**6*s**2 - 943242500000*p**2*q**4*r**6*s**2 + 658412000000*p**6*r**7*s**2 + 1930720000000*p**3*q**2*r**7*s**2 + 593800000000*q**4*r**7*s**2 - 1162800000000*p**4*r**8*s**2 - 280000000000*p*q**2*r**8*s**2 + 840000000000*p**2*r**9*s**2 - 2187000*p**16*q*s**3 - 47418750*p**13*q**3*s**3 - 180618750*p**10*q**5*s**3 + 2231250000*p**7*q**7*s**3 + 17857734375*p**4*q**9*s**3 + 29882812500*p*q**11*s**3 + 24664500*p**14*q*r*s**3 - 853368750*p**11*q**3*r*s**3 - 25939693750*p**8*q**5*r*s**3 - 177541562500*p**5*q**7*r*s**3 - 297978828125*p**2*q**9*r*s**3 - 153468000*p**12*q*r**2*s**3 + 30188125000*p**9*q**3*r**2*s**3 + 344049821875*p**6*q**5*r**2*s**3 + 534026875000*p**3*q**7*r**2*s**3 - 340726484375*q**9*r**2*s**3 - 9056190000*p**10*q*r**3*s**3 - 322314687500*p**7*q**3*r**3*s**3 - 769632109375*p**4*q**5*r**3*s**3 - 83276875000*p*q**7*r**3*s**3 + 164061000000*p**8*q*r**4*s**3 + 1381358750000*p**5*q**3*r**4*s**3 + 3088020000000*p**2*q**5*r**4*s**3 - 1267655000000*p**6*q*r**5*s**3 - 7642630000000*p**3*q**3*r**5*s**3 - 2759877500000*q**5*r**5*s**3 + 4597760000000*p**4*q*r**6*s**3 + 1846200000000*p*q**3*r**6*s**3 - 7006000000000*p**2*q*r**7*s**3 - 1200000000000*q*r**8*s**3 + 18225000*p**15*s**4 + 1328906250*p**12*q**2*s**4 + 24729140625*p**9*q**4*s**4 + 169467187500*p**6*q**6*s**4 + 413281250000*p**3*q**8*s**4 + 223828125000*q**10*s**4 + 710775000*p**13*r*s**4 - 18611015625*p**10*q**2*r*s**4 - 314344375000*p**7*q**4*r*s**4 - 828439843750*p**4*q**6*r*s**4 + 460937500000*p*q**8*r*s**4 - 25674975000*p**11*r**2*s**4 - 52223515625*p**8*q**2*r**2*s**4 - 387160000000*p**5*q**4*r**2*s**4 - 4733680078125*p**2*q**6*r**2*s**4 + 343911875000*p**9*r**3*s**4 + 3328658359375*p**6*q**2*r**3*s**4 + 16532406250000*p**3*q**4*r**3*s**4 + 5980613281250*q**6*r**3*s**4 - 2295497500000*p**7*r**4*s**4 - 14809820312500*p**4*q**2*r**4*s**4 - 6491406250000*p*q**4*r**4*s**4 + 7768470000000*p**5*r**5*s**4 + 34192562500000*p**2*q**2*r**5*s**4 - 11859000000000*p**3*r**6*s**4 + 10530000000000*q**2*r**6*s**4 + 6000000000000*p*r**7*s**4 + 11453906250*p**11*q*s**5 + 149765625000*p**8*q**3*s**5 + 545537109375*p**5*q**5*s**5 + 527343750000*p**2*q**7*s**5 - 371313281250*p**9*q*r*s**5 - 3461455078125*p**6*q**3*r*s**5 - 7920878906250*p**3*q**5*r*s**5 - 4747314453125*q**7*r*s**5 + 2417815625000*p**7*q*r**2*s**5 + 5465576171875*p**4*q**3*r**2*s**5 + 5937128906250*p*q**5*r**2*s**5 - 10661156250000*p**5*q*r**3*s**5 - 63574218750000*p**2*q**3*r**3*s**5 + 24059375000000*p**3*q*r**4*s**5 - 33023437500000*q**3*r**4*s**5 - 43125000000000*p*q*r**5*s**5 + 94394531250*p**10*s**6 + 1097167968750*p**7*q**2*s**6 + 2829833984375*p**4*q**4*s**6 - 1525878906250*p*q**6*s**6 + 2724609375*p**8*r*s**6 + 13998535156250*p**5*q**2*r*s**6 + 57094482421875*p**2*q**4*r*s**6 - 8512509765625*p**6*r**2*s**6 - 37941406250000*p**3*q**2*r**2*s**6 + 33191894531250*q**4*r**2*s**6 + 50534179687500*p**4*r**3*s**6 + 156656250000000*p*q**2*r**3*s**6 - 85023437500000*p**2*r**4*s**6 + 10125000000000*r**5*s**6 - 2717285156250*p**6*q*s**7 - 11352539062500*p**3*q**3*s**7 - 2593994140625*q**5*s**7 - 47154541015625*p**4*q*r*s**7 - 160644531250000*p*q**3*r*s**7 + 142500000000000*p**2*q*r**2*s**7 - 26757812500000*q*r**3*s**7 - 4364013671875*p**5*s**8 - 94604492187500*p**2*q**2*s**8 + 114379882812500*p**3*r*s**8 + 51116943359375*q**2*r*s**8 - 346435546875000*p*r**2*s**8 + 476837158203125*p*q*s**9 - 476837158203125*s**10
o[4] = 1600*p**11*q**8 + 20800*p**8*q**10 + 45100*p**5*q**12 - 151200*p**2*q**14 - 19200*p**12*q**6*r - 293200*p**9*q**8*r - 794600*p**6*q**10*r + 2634675*p**3*q**12*r + 2640600*q**14*r + 75600*p**13*q**4*r**2 + 1529100*p**10*q**6*r**2 + 6233350*p**7*q**8*r**2 - 12013350*p**4*q**10*r**2 - 29069550*p*q**12*r**2 - 97200*p**14*q**2*r**3 - 3562500*p**11*q**4*r**3 - 26984900*p**8*q**6*r**3 - 15900325*p**5*q**8*r**3 + 76267100*p**2*q**10*r**3 + 3272400*p**12*q**2*r**4 + 59486850*p**9*q**4*r**4 + 221270075*p**6*q**6*r**4 + 74065250*p**3*q**8*r**4 - 300564375*q**10*r**4 - 45569400*p**10*q**2*r**5 - 438666000*p**7*q**4*r**5 - 444821250*p**4*q**6*r**5 + 2448256250*p*q**8*r**5 + 290640000*p**8*q**2*r**6 + 855850000*p**5*q**4*r**6 - 5741875000*p**2*q**6*r**6 - 644000000*p**6*q**2*r**7 + 5574000000*p**3*q**4*r**7 + 4643000000*q**6*r**7 - 1696000000*p**4*q**2*r**8 - 12660000000*p*q**4*r**8 + 7200000000*p**2*q**2*r**9 + 43200*p**13*q**5*s + 572000*p**10*q**7*s - 59800*p**7*q**9*s - 24174625*p**4*q**11*s - 74587500*p*q**13*s - 324000*p**14*q**3*r*s - 5531400*p**11*q**5*r*s - 3712100*p**8*q**7*r*s + 293009275*p**5*q**9*r*s + 1115548875*p**2*q**11*r*s + 583200*p**15*q*r**2*s + 18343800*p**12*q**3*r**2*s + 77911100*p**9*q**5*r**2*s - 957488825*p**6*q**7*r**2*s - 5449661250*p**3*q**9*r**2*s + 960120000*q**11*r**2*s - 23684400*p**13*q*r**3*s - 373761900*p**10*q**3*r**3*s - 27944975*p**7*q**5*r**3*s + 10375740625*p**4*q**7*r**3*s - 4649093750*p*q**9*r**3*s + 395816400*p**11*q*r**4*s + 2910968000*p**8*q**3*r**4*s - 9126162500*p**5*q**5*r**4*s - 11696118750*p**2*q**7*r**4*s - 3028640000*p**9*q*r**5*s - 3251550000*p**6*q**3*r**5*s + 47914250000*p**3*q**5*r**5*s - 30255625000*q**7*r**5*s + 9304000000*p**7*q*r**6*s - 42970000000*p**4*q**3*r**6*s + 31475000000*p*q**5*r**6*s + 2176000000*p**5*q*r**7*s + 62100000000*p**2*q**3*r**7*s - 43200000000*p**3*q*r**8*s - 72000000000*q**3*r**8*s + 291600*p**15*q**2*s**2 + 2702700*p**12*q**4*s**2 - 38692250*p**9*q**6*s**2 - 538903125*p**6*q**8*s**2 - 1613112500*p**3*q**10*s**2 + 320625000*q**12*s**2 - 874800*p**16*r*s**2 - 14166900*p**13*q**2*r*s**2 + 193284900*p**10*q**4*r*s**2 + 3688520500*p**7*q**6*r*s**2 + 11613390625*p**4*q**8*r*s**2 - 15609881250*p*q**10*r*s**2 + 44031600*p**14*r**2*s**2 + 482345550*p**11*q**2*r**2*s**2 - 2020881875*p**8*q**4*r**2*s**2 - 7407026250*p**5*q**6*r**2*s**2 + 136175750000*p**2*q**8*r**2*s**2 - 1000884600*p**12*r**3*s**2 - 8888950000*p**9*q**2*r**3*s**2 - 30101703125*p**6*q**4*r**3*s**2 - 319761000000*p**3*q**6*r**3*s**2 + 51519218750*q**8*r**3*s**2 + 12622395000*p**10*r**4*s**2 + 97032450000*p**7*q**2*r**4*s**2 + 469929218750*p**4*q**4*r**4*s**2 + 291342187500*p*q**6*r**4*s**2 - 96382000000*p**8*r**5*s**2 - 598070000000*p**5*q**2*r**5*s**2 - 1165021875000*p**2*q**4*r**5*s**2 + 446500000000*p**6*r**6*s**2 + 1651500000000*p**3*q**2*r**6*s**2 + 789375000000*q**4*r**6*s**2 - 1152000000000*p**4*r**7*s**2 - 600000000000*p*q**2*r**7*s**2 + 1260000000000*p**2*r**8*s**2 - 24786000*p**14*q*s**3 - 660487500*p**11*q**3*s**3 - 5886356250*p**8*q**5*s**3 - 18137187500*p**5*q**7*s**3 - 5120546875*p**2*q**9*s**3 + 827658000*p**12*q*r*s**3 + 13343062500*p**9*q**3*r*s**3 + 39782068750*p**6*q**5*r*s**3 - 111288437500*p**3*q**7*r*s**3 - 15438750000*q**9*r*s**3 - 14540782500*p**10*q*r**2*s**3 - 135889750000*p**7*q**3*r**2*s**3 - 176892578125*p**4*q**5*r**2*s**3 - 934462656250*p*q**7*r**2*s**3 + 171669250000*p**8*q*r**3*s**3 + 1164538125000*p**5*q**3*r**3*s**3 + 3192346406250*p**2*q**5*r**3*s**3 - 1295476250000*p**6*q*r**4*s**3 - 6540712500000*p**3*q**3*r**4*s**3 - 2957828125000*q**5*r**4*s**3 + 5366750000000*p**4*q*r**5*s**3 + 3165000000000*p*q**3*r**5*s**3 - 8862500000000*p**2*q*r**6*s**3 - 1800000000000*q*r**7*s**3 + 236925000*p**13*s**4 + 8895234375*p**10*q**2*s**4 + 106180781250*p**7*q**4*s**4 + 474221875000*p**4*q**6*s**4 + 616210937500*p*q**8*s**4 - 6995868750*p**11*r*s**4 - 184190625000*p**8*q**2*r*s**4 - 1299254453125*p**5*q**4*r*s**4 - 2475458593750*p**2*q**6*r*s**4 + 63049218750*p**9*r**2*s**4 + 1646791484375*p**6*q**2*r**2*s**4 + 9086886718750*p**3*q**4*r**2*s**4 + 4673421875000*q**6*r**2*s**4 - 215665000000*p**7*r**3*s**4 - 7864589843750*p**4*q**2*r**3*s**4 - 5987890625000*p*q**4*r**3*s**4 + 594843750000*p**5*r**4*s**4 + 27791171875000*p**2*q**2*r**4*s**4 - 3881250000000*p**3*r**5*s**4 + 12203125000000*q**2*r**5*s**4 + 10312500000000*p*r**6*s**4 - 34720312500*p**9*q*s**5 - 545126953125*p**6*q**3*s**5 - 2176425781250*p**3*q**5*s**5 - 2792968750000*q**7*s**5 - 1395703125*p**7*q*r*s**5 - 1957568359375*p**4*q**3*r*s**5 + 5122636718750*p*q**5*r*s**5 + 858210937500*p**5*q*r**2*s**5 - 42050097656250*p**2*q**3*r**2*s**5 + 7088281250000*p**3*q*r**3*s**5 - 25974609375000*q**3*r**3*s**5 - 69296875000000*p*q*r**4*s**5 + 384697265625*p**8*s**6 + 6403320312500*p**5*q**2*s**6 + 16742675781250*p**2*q**4*s**6 - 3467080078125*p**6*r*s**6 + 11009765625000*p**3*q**2*r*s**6 + 16451660156250*q**4*r*s**6 + 6979003906250*p**4*r**2*s**6 + 145403320312500*p*q**2*r**2*s**6 + 4076171875000*p**2*r**3*s**6 + 22265625000000*r**4*s**6 - 21915283203125*p**4*q*s**7 - 86608886718750*p*q**3*s**7 - 22785644531250*p**2*q*r*s**7 - 103466796875000*q*r**2*s**7 + 18798828125000*p**3*s**8 + 106048583984375*q**2*s**8 + 17761230468750*p*r*s**8
o[3] = 2800*p**9*q**8 + 55700*p**6*q**10 + 363600*p**3*q**12 + 777600*q**14 - 27200*p**10*q**6*r - 700200*p**7*q**8*r - 5726550*p**4*q**10*r - 15066000*p*q**12*r + 74700*p**11*q**4*r**2 + 2859575*p**8*q**6*r**2 + 31175725*p**5*q**8*r**2 + 103147650*p**2*q**10*r**2 - 40500*p**12*q**2*r**3 - 4274400*p**9*q**4*r**3 - 76065825*p**6*q**6*r**3 - 365623750*p**3*q**8*r**3 - 132264000*q**10*r**3 + 2192400*p**10*q**2*r**4 + 92562500*p**7*q**4*r**4 + 799193875*p**4*q**6*r**4 + 1188193125*p*q**8*r**4 - 41231500*p**8*q**2*r**5 - 914210000*p**5*q**4*r**5 - 3318853125*p**2*q**6*r**5 + 398850000*p**6*q**2*r**6 + 3944000000*p**3*q**4*r**6 + 2211312500*q**6*r**6 - 1817000000*p**4*q**2*r**7 - 6720000000*p*q**4*r**7 + 3900000000*p**2*q**2*r**8 + 75600*p**11*q**5*s + 1823100*p**8*q**7*s + 14534150*p**5*q**9*s + 38265750*p**2*q**11*s - 394200*p**12*q**3*r*s - 11453850*p**9*q**5*r*s - 101213000*p**6*q**7*r*s - 223565625*p**3*q**9*r*s + 415125000*q**11*r*s + 243000*p**13*q*r**2*s + 13654575*p**10*q**3*r**2*s + 163811725*p**7*q**5*r**2*s + 173461250*p**4*q**7*r**2*s - 3008671875*p*q**9*r**2*s - 2016900*p**11*q*r**3*s - 86576250*p**8*q**3*r**3*s - 324146625*p**5*q**5*r**3*s + 3378506250*p**2*q**7*r**3*s - 89211000*p**9*q*r**4*s - 55207500*p**6*q**3*r**4*s + 1493950000*p**3*q**5*r**4*s - 12573609375*q**7*r**4*s + 1140100000*p**7*q*r**5*s + 42500000*p**4*q**3*r**5*s + 21511250000*p*q**5*r**5*s - 4058000000*p**5*q*r**6*s + 6725000000*p**2*q**3*r**6*s - 1400000000*p**3*q*r**7*s - 39000000000*q**3*r**7*s + 510300*p**13*q**2*s**2 + 4814775*p**10*q**4*s**2 - 70265125*p**7*q**6*s**2 - 1016484375*p**4*q**8*s**2 - 3221100000*p*q**10*s**2 - 364500*p**14*r*s**2 + 30314250*p**11*q**2*r*s**2 + 1106765625*p**8*q**4*r*s**2 + 10984203125*p**5*q**6*r*s**2 + 33905812500*p**2*q**8*r*s**2 - 37980900*p**12*r**2*s**2 - 2142905625*p**9*q**2*r**2*s**2 - 26896125000*p**6*q**4*r**2*s**2 - 95551328125*p**3*q**6*r**2*s**2 + 11320312500*q**8*r**2*s**2 + 1743781500*p**10*r**3*s**2 + 35432262500*p**7*q**2*r**3*s**2 + 177855859375*p**4*q**4*r**3*s**2 + 121260546875*p*q**6*r**3*s**2 - 25943162500*p**8*r**4*s**2 - 249165500000*p**5*q**2*r**4*s**2 - 461739453125*p**2*q**4*r**4*s**2 + 177823750000*p**6*r**5*s**2 + 726225000000*p**3*q**2*r**5*s**2 + 404195312500*q**4*r**5*s**2 - 565875000000*p**4*r**6*s**2 - 407500000000*p*q**2*r**6*s**2 + 682500000000*p**2*r**7*s**2 - 59140125*p**12*q*s**3 - 1290515625*p**9*q**3*s**3 - 8785071875*p**6*q**5*s**3 - 15588281250*p**3*q**7*s**3 + 17505000000*q**9*s**3 + 896062500*p**10*q*r*s**3 + 2589750000*p**7*q**3*r*s**3 - 82700156250*p**4*q**5*r*s**3 - 347683593750*p*q**7*r*s**3 + 17022656250*p**8*q*r**2*s**3 + 320923593750*p**5*q**3*r**2*s**3 + 1042116875000*p**2*q**5*r**2*s**3 - 353262812500*p**6*q*r**3*s**3 - 2212664062500*p**3*q**3*r**3*s**3 - 1252408984375*q**5*r**3*s**3 + 1967362500000*p**4*q*r**4*s**3 + 1583343750000*p*q**3*r**4*s**3 - 3560625000000*p**2*q*r**5*s**3 - 975000000000*q*r**6*s**3 + 462459375*p**11*s**4 + 14210859375*p**8*q**2*s**4 + 99521718750*p**5*q**4*s**4 + 114955468750*p**2*q**6*s**4 - 17720859375*p**9*r*s**4 - 100320703125*p**6*q**2*r*s**4 + 1021943359375*p**3*q**4*r*s**4 + 1193203125000*q**6*r*s**4 + 171371250000*p**7*r**2*s**4 - 1113390625000*p**4*q**2*r**2*s**4 - 1211474609375*p*q**4*r**2*s**4 - 274056250000*p**5*r**3*s**4 + 8285166015625*p**2*q**2*r**3*s**4 - 2079375000000*p**3*r**4*s**4 + 5137304687500*q**2*r**4*s**4 + 6187500000000*p*r**5*s**4 - 135675000000*p**7*q*s**5 - 1275244140625*p**4*q**3*s**5 - 28388671875*p*q**5*s**5 + 1015166015625*p**5*q*r*s**5 - 10584423828125*p**2*q**3*r*s**5 + 3559570312500*p**3*q*r**2*s**5 - 6929931640625*q**3*r**2*s**5 - 32304687500000*p*q*r**3*s**5 + 430576171875*p**6*s**6 + 9397949218750*p**3*q**2*s**6 + 575195312500*q**4*s**6 - 4086425781250*p**4*r*s**6 + 42183837890625*p*q**2*r*s**6 + 8156494140625*p**2*r**2*s**6 + 12612304687500*r**3*s**6 - 25513916015625*p**2*q*s**7 - 37017822265625*q*r*s**7 + 18981933593750*p*s**8
o[2] = 1600*p**10*q**6 + 9200*p**7*q**8 - 126000*p**4*q**10 - 777600*p*q**12 - 14400*p**11*q**4*r - 119300*p**8*q**6*r + 1203225*p**5*q**8*r + 9412200*p**2*q**10*r + 32400*p**12*q**2*r**2 + 417950*p**9*q**4*r**2 - 4543725*p**6*q**6*r**2 - 49008125*p**3*q**8*r**2 - 24192000*q**10*r**2 - 292050*p**10*q**2*r**3 + 8760000*p**7*q**4*r**3 + 137506625*p**4*q**6*r**3 + 225438750*p*q**8*r**3 - 4213250*p**8*q**2*r**4 - 173595625*p**5*q**4*r**4 - 653003125*p**2*q**6*r**4 + 82575000*p**6*q**2*r**5 + 838125000*p**3*q**4*r**5 + 578562500*q**6*r**5 - 421500000*p**4*q**2*r**6 - 1796250000*p*q**4*r**6 + 1050000000*p**2*q**2*r**7 + 43200*p**12*q**3*s + 807300*p**9*q**5*s + 5328225*p**6*q**7*s + 16946250*p**3*q**9*s + 29565000*q**11*s - 194400*p**13*q*r*s - 5505300*p**10*q**3*r*s - 49886700*p**7*q**5*r*s - 178821875*p**4*q**7*r*s - 222750000*p*q**9*r*s + 6814800*p**11*q*r**2*s + 120525625*p**8*q**3*r**2*s + 526694500*p**5*q**5*r**2*s + 84065625*p**2*q**7*r**2*s - 123670500*p**9*q*r**3*s - 1106731875*p**6*q**3*r**3*s - 669556250*p**3*q**5*r**3*s - 2869265625*q**7*r**3*s + 1004350000*p**7*q*r**4*s + 3384375000*p**4*q**3*r**4*s + 5665625000*p*q**5*r**4*s - 3411000000*p**5*q*r**5*s - 418750000*p**2*q**3*r**5*s + 1700000000*p**3*q*r**6*s - 10500000000*q**3*r**6*s + 291600*p**14*s**2 + 9829350*p**11*q**2*s**2 + 114151875*p**8*q**4*s**2 + 522169375*p**5*q**6*s**2 + 716906250*p**2*q**8*s**2 - 18625950*p**12*r*s**2 - 387703125*p**9*q**2*r*s**2 - 2056109375*p**6*q**4*r*s**2 - 760203125*p**3*q**6*r*s**2 + 3071250000*q**8*r*s**2 + 512419500*p**10*r**2*s**2 + 5859053125*p**7*q**2*r**2*s**2 + 12154062500*p**4*q**4*r**2*s**2 + 15931640625*p*q**6*r**2*s**2 - 6598393750*p**8*r**3*s**2 - 43549625000*p**5*q**2*r**3*s**2 - 82011328125*p**2*q**4*r**3*s**2 + 43538125000*p**6*r**4*s**2 + 160831250000*p**3*q**2*r**4*s**2 + 99070312500*q**4*r**4*s**2 - 141812500000*p**4*r**5*s**2 - 117500000000*p*q**2*r**5*s**2 + 183750000000*p**2*r**6*s**2 - 154608750*p**10*q*s**3 - 3309468750*p**7*q**3*s**3 - 20834140625*p**4*q**5*s**3 - 34731562500*p*q**7*s**3 + 5970375000*p**8*q*r*s**3 + 68533281250*p**5*q**3*r*s**3 + 142698281250*p**2*q**5*r*s**3 - 74509140625*p**6*q*r**2*s**3 - 389148437500*p**3*q**3*r**2*s**3 - 270937890625*q**5*r**2*s**3 + 366696875000*p**4*q*r**3*s**3 + 400031250000*p*q**3*r**3*s**3 - 735156250000*p**2*q*r**4*s**3 - 262500000000*q*r**5*s**3 + 371250000*p**9*s**4 + 21315000000*p**6*q**2*s**4 + 179515625000*p**3*q**4*s**4 + 238406250000*q**6*s**4 - 9071015625*p**7*r*s**4 - 268945312500*p**4*q**2*r*s**4 - 379785156250*p*q**4*r*s**4 + 140262890625*p**5*r**2*s**4 + 1486259765625*p**2*q**2*r**2*s**4 - 806484375000*p**3*r**3*s**4 + 1066210937500*q**2*r**3*s**4 + 1722656250000*p*r**4*s**4 - 125648437500*p**5*q*s**5 - 1236279296875*p**2*q**3*s**5 + 1267871093750*p**3*q*r*s**5 - 1044677734375*q**3*r*s**5 - 6630859375000*p*q*r**2*s**5 + 160888671875*p**4*s**6 + 6352294921875*p*q**2*s**6 - 708740234375*p**2*r*s**6 + 3901367187500*r**2*s**6 - 8050537109375*q*s**7
o[1] = 2800*p**8*q**6 + 41300*p**5*q**8 + 151200*p**2*q**10 - 25200*p**9*q**4*r - 542600*p**6*q**6*r - 3397875*p**3*q**8*r - 5751000*q**10*r + 56700*p**10*q**2*r**2 + 1972125*p**7*q**4*r**2 + 18624250*p**4*q**6*r**2 + 50253750*p*q**8*r**2 - 1701000*p**8*q**2*r**3 - 32630625*p**5*q**4*r**3 - 139868750*p**2*q**6*r**3 + 18162500*p**6*q**2*r**4 + 177125000*p**3*q**4*r**4 + 121734375*q**6*r**4 - 100500000*p**4*q**2*r**5 - 386250000*p*q**4*r**5 + 225000000*p**2*q**2*r**6 + 75600*p**10*q**3*s + 1708800*p**7*q**5*s + 12836875*p**4*q**7*s + 32062500*p*q**9*s - 340200*p**11*q*r*s - 10185750*p**8*q**3*r*s - 97502750*p**5*q**5*r*s - 301640625*p**2*q**7*r*s + 7168500*p**9*q*r**2*s + 135960625*p**6*q**3*r**2*s + 587471875*p**3*q**5*r**2*s - 384750000*q**7*r**2*s - 29325000*p**7*q*r**3*s - 320625000*p**4*q**3*r**3*s + 523437500*p*q**5*r**3*s - 42000000*p**5*q*r**4*s + 343750000*p**2*q**3*r**4*s + 150000000*p**3*q*r**5*s - 2250000000*q**3*r**5*s + 510300*p**12*s**2 + 12808125*p**9*q**2*s**2 + 107062500*p**6*q**4*s**2 + 270312500*p**3*q**6*s**2 - 168750000*q**8*s**2 - 2551500*p**10*r*s**2 - 5062500*p**7*q**2*r*s**2 + 712343750*p**4*q**4*r*s**2 + 4788281250*p*q**6*r*s**2 - 256837500*p**8*r**2*s**2 - 3574812500*p**5*q**2*r**2*s**2 - 14967968750*p**2*q**4*r**2*s**2 + 4040937500*p**6*r**3*s**2 + 26400000000*p**3*q**2*r**3*s**2 + 17083984375*q**4*r**3*s**2 - 21812500000*p**4*r**4*s**2 - 24375000000*p*q**2*r**4*s**2 + 39375000000*p**2*r**5*s**2 - 127265625*p**5*q**3*s**3 - 680234375*p**2*q**5*s**3 - 2048203125*p**6*q*r*s**3 - 18794531250*p**3*q**3*r*s**3 - 25050000000*q**5*r*s**3 + 26621875000*p**4*q*r**2*s**3 + 37007812500*p*q**3*r**2*s**3 - 105468750000*p**2*q*r**3*s**3 - 56250000000*q*r**4*s**3 + 1124296875*p**7*s**4 + 9251953125*p**4*q**2*s**4 - 8007812500*p*q**4*s**4 - 4004296875*p**5*r*s**4 + 179931640625*p**2*q**2*r*s**4 - 75703125000*p**3*r**2*s**4 + 133447265625*q**2*r**2*s**4 + 363281250000*p*r**3*s**4 - 91552734375*p**3*q*s**5 - 19531250000*q**3*s**5 - 751953125000*p*q*r*s**5 + 157958984375*p**2*s**6 + 748291015625*r*s**6
o[0] = -14400*p**6*q**6 - 212400*p**3*q**8 - 777600*q**10 + 92100*p**7*q**4*r + 1689675*p**4*q**6*r + 7371000*p*q**8*r - 122850*p**8*q**2*r**2 - 3735250*p**5*q**4*r**2 - 22432500*p**2*q**6*r**2 + 2298750*p**6*q**2*r**3 + 29390625*p**3*q**4*r**3 + 18000000*q**6*r**3 - 17750000*p**4*q**2*r**4 - 62812500*p*q**4*r**4 + 37500000*p**2*q**2*r**5 - 51300*p**8*q**3*s - 768025*p**5*q**5*s - 2801250*p**2*q**7*s - 275400*p**9*q*r*s - 5479875*p**6*q**3*r*s - 35538750*p**3*q**5*r*s - 68850000*q**7*r*s + 12757500*p**7*q*r**2*s + 133640625*p**4*q**3*r**2*s + 222609375*p*q**5*r**2*s - 108500000*p**5*q*r**3*s - 290312500*p**2*q**3*r**3*s + 275000000*p**3*q*r**4*s - 375000000*q**3*r**4*s + 1931850*p**10*s**2 + 40213125*p**7*q**2*s**2 + 253921875*p**4*q**4*s**2 + 464062500*p*q**6*s**2 - 71077500*p**8*r*s**2 - 818746875*p**5*q**2*r*s**2 - 1882265625*p**2*q**4*r*s**2 + 826031250*p**6*r**2*s**2 + 4369687500*p**3*q**2*r**2*s**2 + 3107812500*q**4*r**2*s**2 - 3943750000*p**4*r**3*s**2 - 5000000000*p*q**2*r**3*s**2 + 6562500000*p**2*r**4*s**2 - 295312500*p**6*q*s**3 - 2938906250*p**3*q**3*s**3 - 4848750000*q**5*s**3 + 3791484375*p**4*q*r*s**3 + 7556250000*p*q**3*r*s**3 - 11960937500*p**2*q*r**2*s**3 - 9375000000*q*r**3*s**3 + 1668515625*p**5*s**4 + 20447265625*p**2*q**2*s**4 - 21955078125*p**3*r*s**4 + 18984375000*q**2*r*s**4 + 67382812500*p*r**2*s**4 - 120849609375*p*q*s**5 + 157226562500*s**6
return o
@property
def a(self):
p, q, r, s = self.p, self.q, self.r, self.s
a = [0]*6
a[5] = -100*p**7*q**7 - 2175*p**4*q**9 - 10500*p*q**11 + 1100*p**8*q**5*r + 27975*p**5*q**7*r + 152950*p**2*q**9*r - 4125*p**9*q**3*r**2 - 128875*p**6*q**5*r**2 - 830525*p**3*q**7*r**2 + 59450*q**9*r**2 + 5400*p**10*q*r**3 + 243800*p**7*q**3*r**3 + 2082650*p**4*q**5*r**3 - 333925*p*q**7*r**3 - 139200*p**8*q*r**4 - 2406000*p**5*q**3*r**4 - 122600*p**2*q**5*r**4 + 1254400*p**6*q*r**5 + 3776000*p**3*q**3*r**5 + 1832000*q**5*r**5 - 4736000*p**4*q*r**6 - 6720000*p*q**3*r**6 + 6400000*p**2*q*r**7 - 900*p**9*q**4*s - 37400*p**6*q**6*s - 281625*p**3*q**8*s - 435000*q**10*s + 6750*p**10*q**2*r*s + 322300*p**7*q**4*r*s + 2718575*p**4*q**6*r*s + 4214250*p*q**8*r*s - 16200*p**11*r**2*s - 859275*p**8*q**2*r**2*s - 8925475*p**5*q**4*r**2*s - 14427875*p**2*q**6*r**2*s + 453600*p**9*r**3*s + 10038400*p**6*q**2*r**3*s + 17397500*p**3*q**4*r**3*s - 11333125*q**6*r**3*s - 4451200*p**7*r**4*s - 15850000*p**4*q**2*r**4*s + 34000000*p*q**4*r**4*s + 17984000*p**5*r**5*s - 10000000*p**2*q**2*r**5*s - 25600000*p**3*r**6*s - 8000000*q**2*r**6*s + 6075*p**11*q*s**2 - 83250*p**8*q**3*s**2 - 1282500*p**5*q**5*s**2 - 2862500*p**2*q**7*s**2 + 724275*p**9*q*r*s**2 + 9807250*p**6*q**3*r*s**2 + 28374375*p**3*q**5*r*s**2 + 22212500*q**7*r*s**2 - 8982000*p**7*q*r**2*s**2 - 39600000*p**4*q**3*r**2*s**2 - 61746875*p*q**5*r**2*s**2 - 1010000*p**5*q*r**3*s**2 - 1000000*p**2*q**3*r**3*s**2 + 78000000*p**3*q*r**4*s**2 + 30000000*q**3*r**4*s**2 + 80000000*p*q*r**5*s**2 - 759375*p**10*s**3 - 9787500*p**7*q**2*s**3 - 39062500*p**4*q**4*s**3 - 52343750*p*q**6*s**3 + 12301875*p**8*r*s**3 + 98175000*p**5*q**2*r*s**3 + 225078125*p**2*q**4*r*s**3 - 54900000*p**6*r**2*s**3 - 310000000*p**3*q**2*r**2*s**3 - 7890625*q**4*r**2*s**3 + 51250000*p**4*r**3*s**3 - 420000000*p*q**2*r**3*s**3 + 110000000*p**2*r**4*s**3 - 200000000*r**5*s**3 + 2109375*p**6*q*s**4 - 21093750*p**3*q**3*s**4 - 89843750*q**5*s**4 + 182343750*p**4*q*r*s**4 + 733203125*p*q**3*r*s**4 - 196875000*p**2*q*r**2*s**4 + 1125000000*q*r**3*s**4 - 158203125*p**5*s**5 - 566406250*p**2*q**2*s**5 + 101562500*p**3*r*s**5 - 1669921875*q**2*r*s**5 + 1250000000*p*r**2*s**5 - 1220703125*p*q*s**6 + 6103515625*s**7
a[4] = 1000*p**5*q**7 + 7250*p**2*q**9 - 10800*p**6*q**5*r - 96900*p**3*q**7*r - 52500*q**9*r + 37400*p**7*q**3*r**2 + 470850*p**4*q**5*r**2 + 640600*p*q**7*r**2 - 39600*p**8*q*r**3 - 983600*p**5*q**3*r**3 - 2848100*p**2*q**5*r**3 + 814400*p**6*q*r**4 + 6076000*p**3*q**3*r**4 + 2308000*q**5*r**4 - 5024000*p**4*q*r**5 - 9680000*p*q**3*r**5 + 9600000*p**2*q*r**6 + 13800*p**7*q**4*s + 94650*p**4*q**6*s - 26500*p*q**8*s - 86400*p**8*q**2*r*s - 816500*p**5*q**4*r*s - 257500*p**2*q**6*r*s + 91800*p**9*r**2*s + 1853700*p**6*q**2*r**2*s + 630000*p**3*q**4*r**2*s - 8971250*q**6*r**2*s - 2071200*p**7*r**3*s - 7240000*p**4*q**2*r**3*s + 29375000*p*q**4*r**3*s + 14416000*p**5*r**4*s - 5200000*p**2*q**2*r**4*s - 30400000*p**3*r**5*s - 12000000*q**2*r**5*s + 64800*p**9*q*s**2 + 567000*p**6*q**3*s**2 + 1655000*p**3*q**5*s**2 + 6987500*q**7*s**2 + 337500*p**7*q*r*s**2 + 8462500*p**4*q**3*r*s**2 - 5812500*p*q**5*r*s**2 - 24930000*p**5*q*r**2*s**2 - 69125000*p**2*q**3*r**2*s**2 + 103500000*p**3*q*r**3*s**2 + 30000000*q**3*r**3*s**2 + 90000000*p*q*r**4*s**2 - 708750*p**8*s**3 - 5400000*p**5*q**2*s**3 + 8906250*p**2*q**4*s**3 + 18562500*p**6*r*s**3 - 625000*p**3*q**2*r*s**3 + 29687500*q**4*r*s**3 - 75000000*p**4*r**2*s**3 - 416250000*p*q**2*r**2*s**3 + 60000000*p**2*r**3*s**3 - 300000000*r**4*s**3 + 71718750*p**4*q*s**4 + 189062500*p*q**3*s**4 + 210937500*p**2*q*r*s**4 + 1187500000*q*r**2*s**4 - 187500000*p**3*s**5 - 800781250*q**2*s**5 - 390625000*p*r*s**5
a[3] = -500*p**6*q**5 - 6350*p**3*q**7 - 19800*q**9 + 3750*p**7*q**3*r + 65100*p**4*q**5*r + 264950*p*q**7*r - 6750*p**8*q*r**2 - 209050*p**5*q**3*r**2 - 1217250*p**2*q**5*r**2 + 219000*p**6*q*r**3 + 2510000*p**3*q**3*r**3 + 1098500*q**5*r**3 - 2068000*p**4*q*r**4 - 5060000*p*q**3*r**4 + 5200000*p**2*q*r**5 - 6750*p**8*q**2*s - 96350*p**5*q**4*s - 346000*p**2*q**6*s + 20250*p**9*r*s + 459900*p**6*q**2*r*s + 1828750*p**3*q**4*r*s - 2930000*q**6*r*s - 594000*p**7*r**2*s - 4301250*p**4*q**2*r**2*s + 10906250*p*q**4*r**2*s + 5252000*p**5*r**3*s - 1450000*p**2*q**2*r**3*s - 12800000*p**3*r**4*s - 6500000*q**2*r**4*s + 74250*p**7*q*s**2 + 1418750*p**4*q**3*s**2 + 5956250*p*q**5*s**2 - 4297500*p**5*q*r*s**2 - 29906250*p**2*q**3*r*s**2 + 31500000*p**3*q*r**2*s**2 + 12500000*q**3*r**2*s**2 + 35000000*p*q*r**3*s**2 + 1350000*p**6*s**3 + 6093750*p**3*q**2*s**3 + 17500000*q**4*s**3 - 7031250*p**4*r*s**3 - 127812500*p*q**2*r*s**3 + 18750000*p**2*r**2*s**3 - 162500000*r**3*s**3 + 107812500*p**2*q*s**4 + 460937500*q*r*s**4 - 214843750*p*s**5
a[2] = 1950*p**4*q**5 + 14100*p*q**7 - 14350*p**5*q**3*r - 125600*p**2*q**5*r + 27900*p**6*q*r**2 + 402250*p**3*q**3*r**2 + 288250*q**5*r**2 - 436000*p**4*q*r**3 - 1345000*p*q**3*r**3 + 1400000*p**2*q*r**4 + 9450*p**6*q**2*s - 1250*p**3*q**4*s - 465000*q**6*s - 49950*p**7*r*s - 302500*p**4*q**2*r*s + 1718750*p*q**4*r*s + 834000*p**5*r**2*s + 437500*p**2*q**2*r**2*s - 3100000*p**3*r**3*s - 1750000*q**2*r**3*s - 292500*p**5*q*s**2 - 1937500*p**2*q**3*s**2 + 3343750*p**3*q*r*s**2 + 1875000*q**3*r*s**2 + 8125000*p*q*r**2*s**2 - 1406250*p**4*s**3 - 12343750*p*q**2*s**3 + 5312500*p**2*r*s**3 - 43750000*r**2*s**3 + 74218750*q*s**4
a[1] = -300*p**5*q**3 - 2150*p**2*q**5 + 1350*p**6*q*r + 21500*p**3*q**3*r + 61500*q**5*r - 42000*p**4*q*r**2 - 290000*p*q**3*r**2 + 300000*p**2*q*r**3 - 4050*p**7*s - 45000*p**4*q**2*s - 125000*p*q**4*s + 108000*p**5*r*s + 643750*p**2*q**2*r*s - 700000*p**3*r**2*s - 375000*q**2*r**2*s - 93750*p**3*q*s**2 - 312500*q**3*s**2 + 1875000*p*q*r*s**2 - 1406250*p**2*s**3 - 9375000*r*s**3
a[0] = 1250*p**3*q**3 + 9000*q**5 - 4500*p**4*q*r - 46250*p*q**3*r + 50000*p**2*q*r**2 + 6750*p**5*s + 43750*p**2*q**2*s - 75000*p**3*r*s - 62500*q**2*r*s + 156250*p*q*s**2 - 1562500*s**3
return a
@property
def c(self):
p, q, r, s = self.p, self.q, self.r, self.s
c = [0]*6
c[5] = -40*p**5*q**11 - 270*p**2*q**13 + 700*p**6*q**9*r + 5165*p**3*q**11*r + 540*q**13*r - 4230*p**7*q**7*r**2 - 31845*p**4*q**9*r**2 + 20880*p*q**11*r**2 + 9645*p**8*q**5*r**3 + 57615*p**5*q**7*r**3 - 358255*p**2*q**9*r**3 - 1880*p**9*q**3*r**4 + 114020*p**6*q**5*r**4 + 2012190*p**3*q**7*r**4 - 26855*q**9*r**4 - 14400*p**10*q*r**5 - 470400*p**7*q**3*r**5 - 5088640*p**4*q**5*r**5 + 920*p*q**7*r**5 + 332800*p**8*q*r**6 + 5797120*p**5*q**3*r**6 + 1608000*p**2*q**5*r**6 - 2611200*p**6*q*r**7 - 7424000*p**3*q**3*r**7 - 2323200*q**5*r**7 + 8601600*p**4*q*r**8 + 9472000*p*q**3*r**8 - 10240000*p**2*q*r**9 - 3060*p**7*q**8*s - 39085*p**4*q**10*s - 132300*p*q**12*s + 36580*p**8*q**6*r*s + 520185*p**5*q**8*r*s + 1969860*p**2*q**10*r*s - 144045*p**9*q**4*r**2*s - 2438425*p**6*q**6*r**2*s - 10809475*p**3*q**8*r**2*s + 518850*q**10*r**2*s + 182520*p**10*q**2*r**3*s + 4533930*p**7*q**4*r**3*s + 26196770*p**4*q**6*r**3*s - 4542325*p*q**8*r**3*s + 21600*p**11*r**4*s - 2208080*p**8*q**2*r**4*s - 24787960*p**5*q**4*r**4*s + 10813900*p**2*q**6*r**4*s - 499200*p**9*r**5*s + 3827840*p**6*q**2*r**5*s + 9596000*p**3*q**4*r**5*s + 22662000*q**6*r**5*s + 3916800*p**7*r**6*s - 29952000*p**4*q**2*r**6*s - 90800000*p*q**4*r**6*s - 12902400*p**5*r**7*s + 87040000*p**2*q**2*r**7*s + 15360000*p**3*r**8*s + 12800000*q**2*r**8*s - 38070*p**9*q**5*s**2 - 566700*p**6*q**7*s**2 - 2574375*p**3*q**9*s**2 - 1822500*q**11*s**2 + 292815*p**10*q**3*r*s**2 + 5170280*p**7*q**5*r*s**2 + 27918125*p**4*q**7*r*s**2 + 21997500*p*q**9*r*s**2 - 573480*p**11*q*r**2*s**2 - 14566350*p**8*q**3*r**2*s**2 - 104851575*p**5*q**5*r**2*s**2 - 96448750*p**2*q**7*r**2*s**2 + 11001240*p**9*q*r**3*s**2 + 147798600*p**6*q**3*r**3*s**2 + 158632750*p**3*q**5*r**3*s**2 - 78222500*q**7*r**3*s**2 - 62819200*p**7*q*r**4*s**2 - 136160000*p**4*q**3*r**4*s**2 + 317555000*p*q**5*r**4*s**2 + 160224000*p**5*q*r**5*s**2 - 267600000*p**2*q**3*r**5*s**2 - 153600000*p**3*q*r**6*s**2 - 120000000*q**3*r**6*s**2 - 32000000*p*q*r**7*s**2 - 127575*p**11*q**2*s**3 - 2148750*p**8*q**4*s**3 - 13652500*p**5*q**6*s**3 - 19531250*p**2*q**8*s**3 + 495720*p**12*r*s**3 + 11856375*p**9*q**2*r*s**3 + 107807500*p**6*q**4*r*s**3 + 222334375*p**3*q**6*r*s**3 + 105062500*q**8*r*s**3 - 11566800*p**10*r**2*s**3 - 216787500*p**7*q**2*r**2*s**3 - 633437500*p**4*q**4*r**2*s**3 - 504484375*p*q**6*r**2*s**3 + 90918000*p**8*r**3*s**3 + 567080000*p**5*q**2*r**3*s**3 + 692937500*p**2*q**4*r**3*s**3 - 326640000*p**6*r**4*s**3 - 339000000*p**3*q**2*r**4*s**3 + 369250000*q**4*r**4*s**3 + 560000000*p**4*r**5*s**3 + 508000000*p*q**2*r**5*s**3 - 480000000*p**2*r**6*s**3 + 320000000*r**7*s**3 - 455625*p**10*q*s**4 - 27562500*p**7*q**3*s**4 - 120593750*p**4*q**5*s**4 - 60312500*p*q**7*s**4 + 110615625*p**8*q*r*s**4 + 662984375*p**5*q**3*r*s**4 + 528515625*p**2*q**5*r*s**4 - 541687500*p**6*q*r**2*s**4 - 1262343750*p**3*q**3*r**2*s**4 - 466406250*q**5*r**2*s**4 + 633000000*p**4*q*r**3*s**4 - 1264375000*p*q**3*r**3*s**4 + 1085000000*p**2*q*r**4*s**4 - 2700000000*q*r**5*s**4 - 68343750*p**9*s**5 - 478828125*p**6*q**2*s**5 - 355468750*p**3*q**4*s**5 - 11718750*q**6*s**5 + 718031250*p**7*r*s**5 + 1658593750*p**4*q**2*r*s**5 + 2212890625*p*q**4*r*s**5 - 2855625000*p**5*r**2*s**5 - 4273437500*p**2*q**2*r**2*s**5 + 4537500000*p**3*r**3*s**5 + 8031250000*q**2*r**3*s**5 - 1750000000*p*r**4*s**5 + 1353515625*p**5*q*s**6 + 1562500000*p**2*q**3*s**6 - 3964843750*p**3*q*r*s**6 - 7226562500*q**3*r*s**6 + 1953125000*p*q*r**2*s**6 - 1757812500*p**4*s**7 - 3173828125*p*q**2*s**7 + 6445312500*p**2*r*s**7 - 3906250000*r**2*s**7 + 6103515625*q*s**8
c[4] = 40*p**6*q**9 + 110*p**3*q**11 - 1080*q**13 - 560*p**7*q**7*r - 1780*p**4*q**9*r + 17370*p*q**11*r + 2850*p**8*q**5*r**2 + 10520*p**5*q**7*r**2 - 115910*p**2*q**9*r**2 - 6090*p**9*q**3*r**3 - 25330*p**6*q**5*r**3 + 448740*p**3*q**7*r**3 + 128230*q**9*r**3 + 4320*p**10*q*r**4 + 16960*p**7*q**3*r**4 - 1143600*p**4*q**5*r**4 - 1410310*p*q**7*r**4 + 3840*p**8*q*r**5 + 1744480*p**5*q**3*r**5 + 5619520*p**2*q**5*r**5 - 1198080*p**6*q*r**6 - 10579200*p**3*q**3*r**6 - 2940800*q**5*r**6 + 8294400*p**4*q*r**7 + 13568000*p*q**3*r**7 - 15360000*p**2*q*r**8 + 840*p**8*q**6*s + 7580*p**5*q**8*s + 24420*p**2*q**10*s - 8100*p**9*q**4*r*s - 94100*p**6*q**6*r*s - 473000*p**3*q**8*r*s - 473400*q**10*r*s + 22680*p**10*q**2*r**2*s + 374370*p**7*q**4*r**2*s + 2888020*p**4*q**6*r**2*s + 5561050*p*q**8*r**2*s - 12960*p**11*r**3*s - 485820*p**8*q**2*r**3*s - 6723440*p**5*q**4*r**3*s - 23561400*p**2*q**6*r**3*s + 190080*p**9*r**4*s + 5894880*p**6*q**2*r**4*s + 50882000*p**3*q**4*r**4*s + 22411500*q**6*r**4*s - 258560*p**7*r**5*s - 46248000*p**4*q**2*r**5*s - 103800000*p*q**4*r**5*s - 3737600*p**5*r**6*s + 119680000*p**2*q**2*r**6*s + 10240000*p**3*r**7*s + 19200000*q**2*r**7*s + 7290*p**10*q**3*s**2 + 117360*p**7*q**5*s**2 + 691250*p**4*q**7*s**2 - 198750*p*q**9*s**2 - 36450*p**11*q*r*s**2 - 854550*p**8*q**3*r*s**2 - 7340700*p**5*q**5*r*s**2 - 2028750*p**2*q**7*r*s**2 + 995490*p**9*q*r**2*s**2 + 18896600*p**6*q**3*r**2*s**2 + 5026500*p**3*q**5*r**2*s**2 - 52272500*q**7*r**2*s**2 - 16636800*p**7*q*r**3*s**2 - 43200000*p**4*q**3*r**3*s**2 + 223426250*p*q**5*r**3*s**2 + 112068000*p**5*q*r**4*s**2 - 177000000*p**2*q**3*r**4*s**2 - 244000000*p**3*q*r**5*s**2 - 156000000*q**3*r**5*s**2 + 43740*p**12*s**3 + 1032750*p**9*q**2*s**3 + 8602500*p**6*q**4*s**3 + 15606250*p**3*q**6*s**3 + 39625000*q**8*s**3 - 1603800*p**10*r*s**3 - 26932500*p**7*q**2*r*s**3 - 19562500*p**4*q**4*r*s**3 - 152000000*p*q**6*r*s**3 + 25555500*p**8*r**2*s**3 + 16230000*p**5*q**2*r**2*s**3 + 42187500*p**2*q**4*r**2*s**3 - 165660000*p**6*r**3*s**3 + 373500000*p**3*q**2*r**3*s**3 + 332937500*q**4*r**3*s**3 + 465000000*p**4*r**4*s**3 + 586000000*p*q**2*r**4*s**3 - 592000000*p**2*r**5*s**3 + 480000000*r**6*s**3 - 1518750*p**8*q*s**4 - 62531250*p**5*q**3*s**4 + 7656250*p**2*q**5*s**4 + 184781250*p**6*q*r*s**4 - 15781250*p**3*q**3*r*s**4 - 135156250*q**5*r*s**4 - 1148250000*p**4*q*r**2*s**4 - 2121406250*p*q**3*r**2*s**4 + 1990000000*p**2*q*r**3*s**4 - 3150000000*q*r**4*s**4 - 2531250*p**7*s**5 + 660937500*p**4*q**2*s**5 + 1339843750*p*q**4*s**5 - 33750000*p**5*r*s**5 - 679687500*p**2*q**2*r*s**5 + 6250000*p**3*r**2*s**5 + 6195312500*q**2*r**2*s**5 + 1125000000*p*r**3*s**5 - 996093750*p**3*q*s**6 - 3125000000*q**3*s**6 - 3222656250*p*q*r*s**6 + 1171875000*p**2*s**7 + 976562500*r*s**7
c[3] = 80*p**4*q**9 + 540*p*q**11 - 600*p**5*q**7*r - 4770*p**2*q**9*r + 1230*p**6*q**5*r**2 + 20900*p**3*q**7*r**2 + 47250*q**9*r**2 - 710*p**7*q**3*r**3 - 84950*p**4*q**5*r**3 - 526310*p*q**7*r**3 + 720*p**8*q*r**4 + 216280*p**5*q**3*r**4 + 2068020*p**2*q**5*r**4 - 198080*p**6*q*r**5 - 3703200*p**3*q**3*r**5 - 1423600*q**5*r**5 + 2860800*p**4*q*r**6 + 7056000*p*q**3*r**6 - 8320000*p**2*q*r**7 - 2720*p**6*q**6*s - 46350*p**3*q**8*s - 178200*q**10*s + 25740*p**7*q**4*r*s + 489490*p**4*q**6*r*s + 2152350*p*q**8*r*s - 61560*p**8*q**2*r**2*s - 1568150*p**5*q**4*r**2*s - 9060500*p**2*q**6*r**2*s + 24840*p**9*r**3*s + 1692380*p**6*q**2*r**3*s + 18098250*p**3*q**4*r**3*s + 9387750*q**6*r**3*s - 382560*p**7*r**4*s - 16818000*p**4*q**2*r**4*s - 49325000*p*q**4*r**4*s + 1212800*p**5*r**5*s + 64840000*p**2*q**2*r**5*s - 320000*p**3*r**6*s + 10400000*q**2*r**6*s - 36450*p**8*q**3*s**2 - 588350*p**5*q**5*s**2 - 2156250*p**2*q**7*s**2 + 123930*p**9*q*r*s**2 + 2879700*p**6*q**3*r*s**2 + 12548000*p**3*q**5*r*s**2 - 14445000*q**7*r*s**2 - 3233250*p**7*q*r**2*s**2 - 28485000*p**4*q**3*r**2*s**2 + 72231250*p*q**5*r**2*s**2 + 32093000*p**5*q*r**3*s**2 - 61275000*p**2*q**3*r**3*s**2 - 107500000*p**3*q*r**4*s**2 - 78500000*q**3*r**4*s**2 + 22000000*p*q*r**5*s**2 - 72900*p**10*s**3 - 1215000*p**7*q**2*s**3 - 2937500*p**4*q**4*s**3 + 9156250*p*q**6*s**3 + 2612250*p**8*r*s**3 + 16560000*p**5*q**2*r*s**3 - 75468750*p**2*q**4*r*s**3 - 32737500*p**6*r**2*s**3 + 169062500*p**3*q**2*r**2*s**3 + 121718750*q**4*r**2*s**3 + 160250000*p**4*r**3*s**3 + 219750000*p*q**2*r**3*s**3 - 317000000*p**2*r**4*s**3 + 260000000*r**5*s**3 + 2531250*p**6*q*s**4 + 22500000*p**3*q**3*s**4 + 39843750*q**5*s**4 - 266343750*p**4*q*r*s**4 - 776406250*p*q**3*r*s**4 + 789062500*p**2*q*r**2*s**4 - 1368750000*q*r**3*s**4 + 67500000*p**5*s**5 + 441406250*p**2*q**2*s**5 - 311718750*p**3*r*s**5 + 1785156250*q**2*r*s**5 + 546875000*p*r**2*s**5 - 1269531250*p*q*s**6 + 488281250*s**7
c[2] = 120*p**5*q**7 + 810*p**2*q**9 - 1280*p**6*q**5*r - 9160*p**3*q**7*r + 3780*q**9*r + 4530*p**7*q**3*r**2 + 36640*p**4*q**5*r**2 - 45270*p*q**7*r**2 - 5400*p**8*q*r**3 - 60920*p**5*q**3*r**3 + 200050*p**2*q**5*r**3 + 31200*p**6*q*r**4 - 476000*p**3*q**3*r**4 - 378200*q**5*r**4 + 521600*p**4*q*r**5 + 1872000*p*q**3*r**5 - 2240000*p**2*q*r**6 + 1440*p**7*q**4*s + 15310*p**4*q**6*s + 59400*p*q**8*s - 9180*p**8*q**2*r*s - 115240*p**5*q**4*r*s - 589650*p**2*q**6*r*s + 16200*p**9*r**2*s + 316710*p**6*q**2*r**2*s + 2547750*p**3*q**4*r**2*s + 2178000*q**6*r**2*s - 259200*p**7*r**3*s - 4123000*p**4*q**2*r**3*s - 11700000*p*q**4*r**3*s + 937600*p**5*r**4*s + 16340000*p**2*q**2*r**4*s - 640000*p**3*r**5*s + 2800000*q**2*r**5*s - 2430*p**9*q*s**2 - 54450*p**6*q**3*s**2 - 285500*p**3*q**5*s**2 - 2767500*q**7*s**2 + 43200*p**7*q*r*s**2 - 916250*p**4*q**3*r*s**2 + 14482500*p*q**5*r*s**2 + 4806000*p**5*q*r**2*s**2 - 13212500*p**2*q**3*r**2*s**2 - 25400000*p**3*q*r**3*s**2 - 18750000*q**3*r**3*s**2 + 8000000*p*q*r**4*s**2 + 121500*p**8*s**3 + 2058750*p**5*q**2*s**3 - 6656250*p**2*q**4*s**3 - 6716250*p**6*r*s**3 + 24125000*p**3*q**2*r*s**3 + 23875000*q**4*r*s**3 + 43125000*p**4*r**2*s**3 + 45750000*p*q**2*r**2*s**3 - 87500000*p**2*r**3*s**3 + 70000000*r**4*s**3 - 44437500*p**4*q*s**4 - 107968750*p*q**3*s**4 + 159531250*p**2*q*r*s**4 - 284375000*q*r**2*s**4 + 7031250*p**3*s**5 + 265625000*q**2*s**5 + 31250000*p*r*s**5
c[1] = 160*p**3*q**7 + 1080*q**9 - 1080*p**4*q**5*r - 8730*p*q**7*r + 1510*p**5*q**3*r**2 + 20420*p**2*q**5*r**2 + 720*p**6*q*r**3 - 23200*p**3*q**3*r**3 - 79900*q**5*r**3 + 35200*p**4*q*r**4 + 404000*p*q**3*r**4 - 480000*p**2*q*r**5 + 960*p**5*q**4*s + 2850*p**2*q**6*s + 540*p**6*q**2*r*s + 63500*p**3*q**4*r*s + 319500*q**6*r*s - 7560*p**7*r**2*s - 253500*p**4*q**2*r**2*s - 1806250*p*q**4*r**2*s + 91200*p**5*r**3*s + 2600000*p**2*q**2*r**3*s - 80000*p**3*r**4*s + 600000*q**2*r**4*s - 4050*p**7*q*s**2 - 120000*p**4*q**3*s**2 - 273750*p*q**5*s**2 + 425250*p**5*q*r*s**2 + 2325000*p**2*q**3*r*s**2 - 5400000*p**3*q*r**2*s**2 - 2875000*q**3*r**2*s**2 + 1500000*p*q*r**3*s**2 - 303750*p**6*s**3 - 843750*p**3*q**2*s**3 - 812500*q**4*s**3 + 5062500*p**4*r*s**3 + 13312500*p*q**2*r*s**3 - 14500000*p**2*r**2*s**3 + 15000000*r**3*s**3 - 3750000*p**2*q*s**4 - 35937500*q*r*s**4 + 11718750*p*s**5
c[0] = 80*p**4*q**5 + 540*p*q**7 - 600*p**5*q**3*r - 4770*p**2*q**5*r + 1080*p**6*q*r**2 + 11200*p**3*q**3*r**2 - 12150*q**5*r**2 - 4800*p**4*q*r**3 + 64000*p*q**3*r**3 - 80000*p**2*q*r**4 + 1080*p**6*q**2*s + 13250*p**3*q**4*s + 54000*q**6*s - 3240*p**7*r*s - 56250*p**4*q**2*r*s - 337500*p*q**4*r*s + 43200*p**5*r**2*s + 560000*p**2*q**2*r**2*s - 80000*p**3*r**3*s + 100000*q**2*r**3*s + 6750*p**5*q*s**2 + 225000*p**2*q**3*s**2 - 900000*p**3*q*r*s**2 - 562500*q**3*r*s**2 + 500000*p*q*r**2*s**2 + 843750*p**4*s**3 + 1937500*p*q**2*s**3 - 3000000*p**2*r*s**3 + 2500000*r**2*s**3 - 5468750*q*s**4
return c
@property
def F(self):
p, q, r, s = self.p, self.q, self.r, self.s
F = 4*p**6*q**6 + 59*p**3*q**8 + 216*q**10 - 36*p**7*q**4*r - 623*p**4*q**6*r - 2610*p*q**8*r + 81*p**8*q**2*r**2 + 2015*p**5*q**4*r**2 + 10825*p**2*q**6*r**2 - 1800*p**6*q**2*r**3 - 17500*p**3*q**4*r**3 + 625*q**6*r**3 + 10000*p**4*q**2*r**4 + 108*p**8*q**3*s + 1584*p**5*q**5*s + 5700*p**2*q**7*s - 486*p**9*q*r*s - 9720*p**6*q**3*r*s - 45050*p**3*q**5*r*s - 9000*q**7*r*s + 10800*p**7*q*r**2*s + 92500*p**4*q**3*r**2*s + 32500*p*q**5*r**2*s - 60000*p**5*q*r**3*s - 50000*p**2*q**3*r**3*s + 729*p**10*s**2 + 12150*p**7*q**2*s**2 + 60000*p**4*q**4*s**2 + 93750*p*q**6*s**2 - 18225*p**8*r*s**2 - 175500*p**5*q**2*r*s**2 - 478125*p**2*q**4*r*s**2 + 135000*p**6*r**2*s**2 + 850000*p**3*q**2*r**2*s**2 + 15625*q**4*r**2*s**2 - 250000*p**4*r**3*s**2 + 225000*p**3*q**3*s**3 + 175000*q**5*s**3 - 1012500*p**4*q*r*s**3 - 1187500*p*q**3*r*s**3 + 1250000*p**2*q*r**2*s**3 + 928125*p**5*s**4 + 1875000*p**2*q**2*s**4 - 2812500*p**3*r*s**4 - 390625*q**2*r*s**4 - 9765625*s**6
return F
def l0(self, theta):
F = self.F
a = self.a
l0 = Poly(a, x).eval(theta)/F
return l0
def T(self, theta, d):
F = self.F
T = [0]*5
b = self.b
# Note that the order of sublists of the b's has been reversed compared to the paper
T[1] = -Poly(b[1], x).eval(theta)/(2*F)
T[2] = Poly(b[2], x).eval(theta)/(2*d*F)
T[3] = Poly(b[3], x).eval(theta)/(2*F)
T[4] = Poly(b[4], x).eval(theta)/(2*d*F)
return T
def order(self, theta, d):
F = self.F
o = self.o
order = Poly(o, x).eval(theta)/(d*F)
return N(order)
def uv(self, theta, d):
c = self.c
u = self.q*Rational(-25, 2)
v = Poly(c, x).eval(theta)/(2*d*self.F)
return N(u), N(v)
@property
def zeta(self):
return [self.zeta1, self.zeta2, self.zeta3, self.zeta4]
|
d0c91fde55f6edc86aece1ebc8074836a428175a8a6e6167cc60636c67beba41 | """Implementation of RootOf class and related tools. """
from __future__ import print_function, division
from sympy.core import (S, Expr, Integer, Float, I, oo, Add, Lambda,
symbols, sympify, Rational, Dummy)
from sympy.core.cache import cacheit
from sympy.core.compatibility import range, ordered
from sympy.polys.domains import QQ
from sympy.polys.polyerrors import (
MultivariatePolynomialError,
GeneratorsNeeded,
PolynomialError,
DomainError)
from sympy.polys.polyfuncs import symmetrize, viete
from sympy.polys.polyroots import (
roots_linear, roots_quadratic, roots_binomial,
preprocess_roots, roots)
from sympy.polys.polytools import Poly, PurePoly, factor
from sympy.polys.rationaltools import together
from sympy.polys.rootisolation import (
dup_isolate_complex_roots_sqf,
dup_isolate_real_roots_sqf)
from sympy.utilities import lambdify, public, sift
from mpmath import mpf, mpc, findroot, workprec
from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps
__all__ = ['CRootOf']
class _pure_key_dict(object):
"""A minimal dictionary that makes sure that the key is a
univariate PurePoly instance.
Examples
========
Only the following actions are guaranteed:
>>> from sympy.polys.rootoftools import _pure_key_dict
>>> from sympy import S, PurePoly
>>> from sympy.abc import x, y
1) creation
>>> P = _pure_key_dict()
2) assignment for a PurePoly or univariate polynomial
>>> P[x] = 1
>>> P[PurePoly(x - y, x)] = 2
3) retrieval based on PurePoly key comparison (use this
instead of the get method)
>>> P[y]
1
4) KeyError when trying to retrieve a nonexisting key
>>> P[y + 1]
Traceback (most recent call last):
...
KeyError: PurePoly(y + 1, y, domain='ZZ')
5) ability to query with ``in``
>>> x + 1 in P
False
NOTE: this is a *not* a dictionary. It is a very basic object
for internal use that makes sure to always address its cache
via PurePoly instances. It does not, for example, implement
``get`` or ``setdefault``.
"""
def __init__(self):
self._dict = {}
def __getitem__(self, k):
if not isinstance(k, PurePoly):
if not (isinstance(k, Expr) and len(k.free_symbols) == 1):
raise KeyError
k = PurePoly(k, expand=False)
return self._dict[k]
def __setitem__(self, k, v):
if not isinstance(k, PurePoly):
if not (isinstance(k, Expr) and len(k.free_symbols) == 1):
raise ValueError('expecting univariate expression')
k = PurePoly(k, expand=False)
self._dict[k] = v
def __contains__(self, k):
try:
self[k]
return True
except KeyError:
return False
_reals_cache = _pure_key_dict()
_complexes_cache = _pure_key_dict()
def _pure_factors(poly):
_, factors = poly.factor_list()
return [(PurePoly(f, expand=False), m) for f, m in factors]
def _imag_count_of_factor(f):
"""Return the number of imaginary roots for irreducible
univariate polynomial ``f``.
"""
terms = [(i, j) for (i,), j in f.terms()]
if any(i % 2 for i, j in terms):
return 0
# update signs
even = [(i, I**i*j) for i, j in terms]
even = Poly.from_dict(dict(even), Dummy('x'))
return int(even.count_roots(-oo, oo))
@public
def rootof(f, x, index=None, radicals=True, expand=True):
"""An indexed root of a univariate polynomial.
Returns either a :obj:`ComplexRootOf` object or an explicit
expression involving radicals.
Parameters
==========
f : Expr
Univariate polynomial.
x : Symbol, optional
Generator for ``f``.
index : int or Integer
radicals : bool
Return a radical expression if possible.
expand : bool
Expand ``f``.
"""
return CRootOf(f, x, index=index, radicals=radicals, expand=expand)
@public
class RootOf(Expr):
"""Represents a root of a univariate polynomial.
Base class for roots of different kinds of polynomials.
Only complex roots are currently supported.
"""
__slots__ = ['poly']
def __new__(cls, f, x, index=None, radicals=True, expand=True):
"""Construct a new ``CRootOf`` object for ``k``-th root of ``f``."""
return rootof(f, x, index=index, radicals=radicals, expand=expand)
@public
class ComplexRootOf(RootOf):
"""Represents an indexed complex root of a polynomial.
Roots of a univariate polynomial separated into disjoint
real or complex intervals and indexed in a fixed order.
Currently only rational coefficients are allowed.
Can be imported as ``CRootOf``. To avoid confusion, the
generator must be a Symbol.
Examples
========
>>> from sympy import CRootOf, rootof
>>> from sympy.abc import x
CRootOf is a way to reference a particular root of a
polynomial. If there is a rational root, it will be returned:
>>> CRootOf.clear_cache() # for doctest reproducibility
>>> CRootOf(x**2 - 4, 0)
-2
Whether roots involving radicals are returned or not
depends on whether the ``radicals`` flag is true (which is
set to True with rootof):
>>> CRootOf(x**2 - 3, 0)
CRootOf(x**2 - 3, 0)
>>> CRootOf(x**2 - 3, 0, radicals=True)
-sqrt(3)
>>> rootof(x**2 - 3, 0)
-sqrt(3)
The following cannot be expressed in terms of radicals:
>>> r = rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0); r
CRootOf(4*x**5 + 16*x**3 + 12*x**2 + 7, 0)
The root bounds can be seen, however, and they are used by the
evaluation methods to get numerical approximations for the root.
>>> interval = r._get_interval(); interval
(-1, 0)
>>> r.evalf(2)
-0.98
The evalf method refines the width of the root bounds until it
guarantees that any decimal approximation within those bounds
will satisfy the desired precision. It then stores the refined
interval so subsequent requests at or below the requested
precision will not have to recompute the root bounds and will
return very quickly.
Before evaluation above, the interval was
>>> interval
(-1, 0)
After evaluation it is now
>>> r._get_interval() # doctest: +SKIP
(-165/169, -206/211)
To reset all intervals for a given polynomial, the :meth:`_reset` method
can be called from any CRootOf instance of the polynomial:
>>> r._reset()
>>> r._get_interval()
(-1, 0)
The :meth:`eval_approx` method will also find the root to a given
precision but the interval is not modified unless the search
for the root fails to converge within the root bounds. And
the secant method is used to find the root. (The ``evalf``
method uses bisection and will always update the interval.)
>>> r.eval_approx(2)
-0.98
The interval needed to be slightly updated to find that root:
>>> r._get_interval()
(-1, -1/2)
The ``evalf_rational`` will compute a rational approximation
of the root to the desired accuracy or precision.
>>> r.eval_rational(n=2)
-69629/71318
>>> t = CRootOf(x**3 + 10*x + 1, 1)
>>> t.eval_rational(1e-1)
15/256 - 805*I/256
>>> t.eval_rational(1e-1, 1e-4)
3275/65536 - 414645*I/131072
>>> t.eval_rational(1e-4, 1e-4)
6545/131072 - 414645*I/131072
>>> t.eval_rational(n=2)
104755/2097152 - 6634255*I/2097152
Notes
=====
Although a PurePoly can be constructed from a non-symbol generator
RootOf instances of non-symbols are disallowed to avoid confusion
over what root is being represented.
>>> from sympy import exp, PurePoly
>>> PurePoly(x) == PurePoly(exp(x))
True
>>> CRootOf(x - 1, 0)
1
>>> CRootOf(exp(x) - 1, 0) # would correspond to x == 0
Traceback (most recent call last):
...
sympy.polys.polyerrors.PolynomialError: generator must be a Symbol
See Also
========
eval_approx
eval_rational
"""
__slots__ = ['index']
is_complex = True
is_number = True
is_finite = True
def __new__(cls, f, x, index=None, radicals=False, expand=True):
""" Construct an indexed complex root of a polynomial.
See ``rootof`` for the parameters.
The default value of ``radicals`` is ``False`` to satisfy
``eval(srepr(expr) == expr``.
"""
x = sympify(x)
if index is None and x.is_Integer:
x, index = None, x
else:
index = sympify(index)
if index is not None and index.is_Integer:
index = int(index)
else:
raise ValueError("expected an integer root index, got %s" % index)
poly = PurePoly(f, x, greedy=False, expand=expand)
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
if not poly.gen.is_Symbol:
# PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of
# x for each are not the same: issue 8617
raise PolynomialError("generator must be a Symbol")
degree = poly.degree()
if degree <= 0:
raise PolynomialError("can't construct CRootOf object for %s" % f)
if index < -degree or index >= degree:
raise IndexError("root index out of [%d, %d] range, got %d" %
(-degree, degree - 1, index))
elif index < 0:
index += degree
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError("CRootOf is not supported over %s" % dom)
root = cls._indexed_root(poly, index)
return coeff * cls._postprocess_root(root, radicals)
@classmethod
def _new(cls, poly, index):
"""Construct new ``CRootOf`` object from raw data. """
obj = Expr.__new__(cls)
obj.poly = PurePoly(poly)
obj.index = index
try:
_reals_cache[obj.poly] = _reals_cache[poly]
_complexes_cache[obj.poly] = _complexes_cache[poly]
except KeyError:
pass
return obj
def _hashable_content(self):
return (self.poly, self.index)
@property
def expr(self):
return self.poly.as_expr()
@property
def args(self):
return (self.expr, Integer(self.index))
@property
def free_symbols(self):
# CRootOf currently only works with univariate expressions
# whose poly attribute should be a PurePoly with no free
# symbols
return set()
def _eval_is_real(self):
"""Return ``True`` if the root is real. """
return self.index < len(_reals_cache[self.poly])
def _eval_is_imaginary(self):
"""Return ``True`` if the root is imaginary. """
if self.index >= len(_reals_cache[self.poly]):
ivl = self._get_interval()
return ivl.ax*ivl.bx <= 0 # all others are on one side or the other
return False # XXX is this necessary?
@classmethod
def real_roots(cls, poly, radicals=True):
"""Get real roots of a polynomial. """
return cls._get_roots("_real_roots", poly, radicals)
@classmethod
def all_roots(cls, poly, radicals=True):
"""Get real and complex roots of a polynomial. """
return cls._get_roots("_all_roots", poly, radicals)
@classmethod
def _get_reals_sqf(cls, currentfactor, use_cache=True):
"""Get real root isolating intervals for a square-free factor."""
if use_cache and currentfactor in _reals_cache:
real_part = _reals_cache[currentfactor]
else:
_reals_cache[currentfactor] = real_part = \
dup_isolate_real_roots_sqf(
currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True)
return real_part
@classmethod
def _get_complexes_sqf(cls, currentfactor, use_cache=True):
"""Get complex root isolating intervals for a square-free factor."""
if use_cache and currentfactor in _complexes_cache:
complex_part = _complexes_cache[currentfactor]
else:
_complexes_cache[currentfactor] = complex_part = \
dup_isolate_complex_roots_sqf(
currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True)
return complex_part
@classmethod
def _get_reals(cls, factors, use_cache=True):
"""Compute real root isolating intervals for a list of factors. """
reals = []
for currentfactor, k in factors:
try:
if not use_cache:
raise KeyError
r = _reals_cache[currentfactor]
reals.extend([(i, currentfactor, k) for i in r])
except KeyError:
real_part = cls._get_reals_sqf(currentfactor, use_cache)
new = [(root, currentfactor, k) for root in real_part]
reals.extend(new)
reals = cls._reals_sorted(reals)
return reals
@classmethod
def _get_complexes(cls, factors, use_cache=True):
"""Compute complex root isolating intervals for a list of factors. """
complexes = []
for currentfactor, k in ordered(factors):
try:
if not use_cache:
raise KeyError
c = _complexes_cache[currentfactor]
complexes.extend([(i, currentfactor, k) for i in c])
except KeyError:
complex_part = cls._get_complexes_sqf(currentfactor, use_cache)
new = [(root, currentfactor, k) for root in complex_part]
complexes.extend(new)
complexes = cls._complexes_sorted(complexes)
return complexes
@classmethod
def _reals_sorted(cls, reals):
"""Make real isolating intervals disjoint and sort roots. """
cache = {}
for i, (u, f, k) in enumerate(reals):
for j, (v, g, m) in enumerate(reals[i + 1:]):
u, v = u.refine_disjoint(v)
reals[i + j + 1] = (v, g, m)
reals[i] = (u, f, k)
reals = sorted(reals, key=lambda r: r[0].a)
for root, currentfactor, _ in reals:
if currentfactor in cache:
cache[currentfactor].append(root)
else:
cache[currentfactor] = [root]
for currentfactor, root in cache.items():
_reals_cache[currentfactor] = root
return reals
@classmethod
def _refine_imaginary(cls, complexes):
sifted = sift(complexes, lambda c: c[1])
complexes = []
for f in ordered(sifted):
nimag = _imag_count_of_factor(f)
if nimag == 0:
# refine until xbounds are neg or pos
for u, f, k in sifted[f]:
while u.ax*u.bx <= 0:
u = u._inner_refine()
complexes.append((u, f, k))
else:
# refine until all but nimag xbounds are neg or pos
potential_imag = list(range(len(sifted[f])))
while True:
assert len(potential_imag) > 1
for i in list(potential_imag):
u, f, k = sifted[f][i]
if u.ax*u.bx > 0:
potential_imag.remove(i)
elif u.ax != u.bx:
u = u._inner_refine()
sifted[f][i] = u, f, k
if len(potential_imag) == nimag:
break
complexes.extend(sifted[f])
return complexes
@classmethod
def _refine_complexes(cls, complexes):
"""return complexes such that no bounding rectangles of non-conjugate
roots would intersect. In addition, assure that neither ay nor by is
0 to guarantee that non-real roots are distinct from real roots in
terms of the y-bounds.
"""
# get the intervals pairwise-disjoint.
# If rectangles were drawn around the coordinates of the bounding
# rectangles, no rectangles would intersect after this procedure.
for i, (u, f, k) in enumerate(complexes):
for j, (v, g, m) in enumerate(complexes[i + 1:]):
u, v = u.refine_disjoint(v)
complexes[i + j + 1] = (v, g, m)
complexes[i] = (u, f, k)
# refine until the x-bounds are unambiguously positive or negative
# for non-imaginary roots
complexes = cls._refine_imaginary(complexes)
# make sure that all y bounds are off the real axis
# and on the same side of the axis
for i, (u, f, k) in enumerate(complexes):
while u.ay*u.by <= 0:
u = u.refine()
complexes[i] = u, f, k
return complexes
@classmethod
def _complexes_sorted(cls, complexes):
"""Make complex isolating intervals disjoint and sort roots. """
complexes = cls._refine_complexes(complexes)
# XXX don't sort until you are sure that it is compatible
# with the indexing method but assert that the desired state
# is not broken
C, F = 0, 1 # location of ComplexInterval and factor
fs = set([i[F] for i in complexes])
for i in range(1, len(complexes)):
if complexes[i][F] != complexes[i - 1][F]:
# if this fails the factors of a root were not
# contiguous because a discontinuity should only
# happen once
fs.remove(complexes[i - 1][F])
for i in range(len(complexes)):
# negative im part (conj=True) comes before
# positive im part (conj=False)
assert complexes[i][C].conj is (i % 2 == 0)
# update cache
cache = {}
# -- collate
for root, currentfactor, _ in complexes:
cache.setdefault(currentfactor, []).append(root)
# -- store
for currentfactor, root in cache.items():
_complexes_cache[currentfactor] = root
return complexes
@classmethod
def _reals_index(cls, reals, index):
"""
Map initial real root index to an index in a factor where
the root belongs.
"""
i = 0
for j, (_, currentfactor, k) in enumerate(reals):
if index < i + k:
poly, index = currentfactor, 0
for _, currentfactor, _ in reals[:j]:
if currentfactor == poly:
index += 1
return poly, index
else:
i += k
@classmethod
def _complexes_index(cls, complexes, index):
"""
Map initial complex root index to an index in a factor where
the root belongs.
"""
i = 0
for j, (_, currentfactor, k) in enumerate(complexes):
if index < i + k:
poly, index = currentfactor, 0
for _, currentfactor, _ in complexes[:j]:
if currentfactor == poly:
index += 1
index += len(_reals_cache[poly])
return poly, index
else:
i += k
@classmethod
def _count_roots(cls, roots):
"""Count the number of real or complex roots with multiplicities."""
return sum([k for _, _, k in roots])
@classmethod
def _indexed_root(cls, poly, index):
"""Get a root of a composite polynomial by index. """
factors = _pure_factors(poly)
reals = cls._get_reals(factors)
reals_count = cls._count_roots(reals)
if index < reals_count:
return cls._reals_index(reals, index)
else:
complexes = cls._get_complexes(factors)
return cls._complexes_index(complexes, index - reals_count)
@classmethod
def _real_roots(cls, poly):
"""Get real roots of a composite polynomial. """
factors = _pure_factors(poly)
reals = cls._get_reals(factors)
reals_count = cls._count_roots(reals)
roots = []
for index in range(0, reals_count):
roots.append(cls._reals_index(reals, index))
return roots
def _reset(self):
"""
Reset all intervals
"""
self._all_roots(self.poly, use_cache=False)
@classmethod
def _all_roots(cls, poly, use_cache=True):
"""Get real and complex roots of a composite polynomial. """
factors = _pure_factors(poly)
reals = cls._get_reals(factors, use_cache=use_cache)
reals_count = cls._count_roots(reals)
roots = []
for index in range(0, reals_count):
roots.append(cls._reals_index(reals, index))
complexes = cls._get_complexes(factors, use_cache=use_cache)
complexes_count = cls._count_roots(complexes)
for index in range(0, complexes_count):
roots.append(cls._complexes_index(complexes, index))
return roots
@classmethod
@cacheit
def _roots_trivial(cls, poly, radicals):
"""Compute roots in linear, quadratic and binomial cases. """
if poly.degree() == 1:
return roots_linear(poly)
if not radicals:
return None
if poly.degree() == 2:
return roots_quadratic(poly)
elif poly.length() == 2 and poly.TC():
return roots_binomial(poly)
else:
return None
@classmethod
def _preprocess_roots(cls, poly):
"""Take heroic measures to make ``poly`` compatible with ``CRootOf``."""
dom = poly.get_domain()
if not dom.is_Exact:
poly = poly.to_exact()
coeff, poly = preprocess_roots(poly)
dom = poly.get_domain()
if not dom.is_ZZ:
raise NotImplementedError(
"sorted roots not supported over %s" % dom)
return coeff, poly
@classmethod
def _postprocess_root(cls, root, radicals):
"""Return the root if it is trivial or a ``CRootOf`` object. """
poly, index = root
roots = cls._roots_trivial(poly, radicals)
if roots is not None:
return roots[index]
else:
return cls._new(poly, index)
@classmethod
def _get_roots(cls, method, poly, radicals):
"""Return postprocessed roots of specified kind. """
if not poly.is_univariate:
raise PolynomialError("only univariate polynomials are allowed")
coeff, poly = cls._preprocess_roots(poly)
roots = []
for root in getattr(cls, method)(poly):
roots.append(coeff*cls._postprocess_root(root, radicals))
return roots
@classmethod
def clear_cache(cls):
"""Reset cache for reals and complexes.
The intervals used to approximate a root instance are updated
as needed. When a request is made to see the intervals, the
most current values are shown. `clear_cache` will reset all
CRootOf instances back to their original state.
See Also
========
_reset
"""
global _reals_cache, _complexes_cache
_reals_cache = _pure_key_dict()
_complexes_cache = _pure_key_dict()
def _get_interval(self):
"""Internal function for retrieving isolation interval from cache. """
if self.is_real:
return _reals_cache[self.poly][self.index]
else:
reals_count = len(_reals_cache[self.poly])
return _complexes_cache[self.poly][self.index - reals_count]
def _set_interval(self, interval):
"""Internal function for updating isolation interval in cache. """
if self.is_real:
_reals_cache[self.poly][self.index] = interval
else:
reals_count = len(_reals_cache[self.poly])
_complexes_cache[self.poly][self.index - reals_count] = interval
def _eval_subs(self, old, new):
# don't allow subs to change anything
return self
def _eval_conjugate(self):
if self.is_real:
return self
expr, i = self.args
return self.func(expr, i + (1 if self._get_interval().conj else -1))
def eval_approx(self, n):
"""Evaluate this complex root to the given precision.
This uses secant method and root bounds are used to both
generate an initial guess and to check that the root
returned is valid. If ever the method converges outside the
root bounds, the bounds will be made smaller and updated.
"""
prec = dps_to_prec(n)
with workprec(prec):
g = self.poly.gen
if not g.is_Symbol:
d = Dummy('x')
if self.is_imaginary:
d *= I
func = lambdify(d, self.expr.subs(g, d))
else:
expr = self.expr
if self.is_imaginary:
expr = self.expr.subs(g, I*g)
func = lambdify(g, expr)
interval = self._get_interval()
while True:
if self.is_real:
a = mpf(str(interval.a))
b = mpf(str(interval.b))
if a == b:
root = a
break
x0 = mpf(str(interval.center))
x1 = x0 + mpf(str(interval.dx))/4
elif self.is_imaginary:
a = mpf(str(interval.ay))
b = mpf(str(interval.by))
if a == b:
root = mpc(mpf('0'), a)
break
x0 = mpf(str(interval.center[1]))
x1 = x0 + mpf(str(interval.dy))/4
else:
ax = mpf(str(interval.ax))
bx = mpf(str(interval.bx))
ay = mpf(str(interval.ay))
by = mpf(str(interval.by))
if ax == bx and ay == by:
root = mpc(ax, ay)
break
x0 = mpc(*map(str, interval.center))
x1 = x0 + mpc(*map(str, (interval.dx, interval.dy)))/4
try:
# without a tolerance, this will return when (to within
# the given precision) x_i == x_{i-1}
root = findroot(func, (x0, x1))
# If the (real or complex) root is not in the 'interval',
# then keep refining the interval. This happens if findroot
# accidentally finds a different root outside of this
# interval because our initial estimate 'x0' was not close
# enough. It is also possible that the secant method will
# get trapped by a max/min in the interval; the root
# verification by findroot will raise a ValueError in this
# case and the interval will then be tightened -- and
# eventually the root will be found.
#
# It is also possible that findroot will not have any
# successful iterations to process (in which case it
# will fail to initialize a variable that is tested
# after the iterations and raise an UnboundLocalError).
if self.is_real or self.is_imaginary:
if not bool(root.imag) == self.is_real and (
a <= root <= b):
if self.is_imaginary:
root = mpc(mpf('0'), root.real)
break
elif (ax <= root.real <= bx and ay <= root.imag <= by):
break
except (UnboundLocalError, ValueError):
pass
interval = interval.refine()
# update the interval so we at least (for this precision or
# less) don't have much work to do to recompute the root
self._set_interval(interval)
return (Float._new(root.real._mpf_, prec) +
I*Float._new(root.imag._mpf_, prec))
def _eval_evalf(self, prec, **kwargs):
"""Evaluate this complex root to the given precision."""
# all kwargs are ignored
return self.eval_rational(n=prec_to_dps(prec))._evalf(prec)
def eval_rational(self, dx=None, dy=None, n=15):
"""
Return a Rational approximation of ``self`` that has real
and imaginary component approximations that are within ``dx``
and ``dy`` of the true values, respectively. Alternatively,
``n`` digits of precision can be specified.
The interval is refined with bisection and is sure to
converge. The root bounds are updated when the refinement
is complete so recalculation at the same or lesser precision
will not have to repeat the refinement and should be much
faster.
The following example first obtains Rational approximation to
1e-8 accuracy for all roots of the 4-th order Legendre
polynomial. Since the roots are all less than 1, this will
ensure the decimal representation of the approximation will be
correct (including rounding) to 6 digits:
>>> from sympy import S, legendre_poly, Symbol
>>> x = Symbol("x")
>>> p = legendre_poly(4, x, polys=True)
>>> r = p.real_roots()[-1]
>>> r.eval_rational(10**-8).n(6)
0.861136
It is not necessary to a two-step calculation, however: the
decimal representation can be computed directly:
>>> r.evalf(17)
0.86113631159405258
"""
dy = dy or dx
if dx:
rtol = None
dx = dx if isinstance(dx, Rational) else Rational(str(dx))
dy = dy if isinstance(dy, Rational) else Rational(str(dy))
else:
# 5 binary (or 2 decimal) digits are needed to ensure that
# a given digit is correctly rounded
# prec_to_dps(dps_to_prec(n) + 5) - n <= 2 (tested for
# n in range(1000000)
rtol = S(10)**-(n + 2) # +2 for guard digits
interval = self._get_interval()
while True:
if self.is_real:
if rtol:
dx = abs(interval.center*rtol)
interval = interval.refine_size(dx=dx)
c = interval.center
real = Rational(c)
imag = S.Zero
if not rtol or interval.dx < abs(c*rtol):
break
elif self.is_imaginary:
if rtol:
dy = abs(interval.center[1]*rtol)
dx = 1
interval = interval.refine_size(dx=dx, dy=dy)
c = interval.center[1]
imag = Rational(c)
real = S.Zero
if not rtol or interval.dy < abs(c*rtol):
break
else:
if rtol:
dx = abs(interval.center[0]*rtol)
dy = abs(interval.center[1]*rtol)
interval = interval.refine_size(dx, dy)
c = interval.center
real, imag = map(Rational, c)
if not rtol or (
interval.dx < abs(c[0]*rtol) and
interval.dy < abs(c[1]*rtol)):
break
# update the interval so we at least (for this precision or
# less) don't have much work to do to recompute the root
self._set_interval(interval)
return real + I*imag
def _eval_Eq(self, other):
# CRootOf represents a Root, so if other is that root, it should set
# the expression to zero *and* it should be in the interval of the
# CRootOf instance. It must also be a number that agrees with the
# is_real value of the CRootOf instance.
if type(self) == type(other):
return sympify(self == other)
if not other.is_number:
return None
if not other.is_finite:
return S.false
z = self.expr.subs(self.expr.free_symbols.pop(), other).is_zero
if z is False: # all roots will make z True but we don't know
# whether this is the right root if z is True
return S.false
o = other.is_real, other.is_imaginary
s = self.is_real, self.is_imaginary
assert None not in s # this is part of initial refinement
if o != s and None not in o:
return S.false
re, im = other.as_real_imag()
if self.is_real:
if im:
return S.false
i = self._get_interval()
a, b = [Rational(str(_)) for _ in (i.a, i.b)]
return sympify(a <= other and other <= b)
i = self._get_interval()
r1, r2, i1, i2 = [Rational(str(j)) for j in (
i.ax, i.bx, i.ay, i.by)]
return sympify((
r1 <= re and re <= r2) and (
i1 <= im and im <= i2))
CRootOf = ComplexRootOf
@public
class RootSum(Expr):
"""Represents a sum of all roots of a univariate polynomial. """
__slots__ = ['poly', 'fun', 'auto']
def __new__(cls, expr, func=None, x=None, auto=True, quadratic=False):
"""Construct a new ``RootSum`` instance of roots of a polynomial."""
coeff, poly = cls._transform(expr, x)
if not poly.is_univariate:
raise MultivariatePolynomialError(
"only univariate polynomials are allowed")
if func is None:
func = Lambda(poly.gen, poly.gen)
else:
is_func = getattr(func, 'is_Function', False)
if is_func and 1 in func.nargs:
if not isinstance(func, Lambda):
func = Lambda(poly.gen, func(poly.gen))
else:
raise ValueError(
"expected a univariate function, got %s" % func)
var, expr = func.variables[0], func.expr
if coeff is not S.One:
expr = expr.subs(var, coeff*var)
deg = poly.degree()
if not expr.has(var):
return deg*expr
if expr.is_Add:
add_const, expr = expr.as_independent(var)
else:
add_const = S.Zero
if expr.is_Mul:
mul_const, expr = expr.as_independent(var)
else:
mul_const = S.One
func = Lambda(var, expr)
rational = cls._is_func_rational(poly, func)
factors, terms = _pure_factors(poly), []
for poly, k in factors:
if poly.is_linear:
term = func(roots_linear(poly)[0])
elif quadratic and poly.is_quadratic:
term = sum(map(func, roots_quadratic(poly)))
else:
if not rational or not auto:
term = cls._new(poly, func, auto)
else:
term = cls._rational_case(poly, func)
terms.append(k*term)
return mul_const*Add(*terms) + deg*add_const
@classmethod
def _new(cls, poly, func, auto=True):
"""Construct new raw ``RootSum`` instance. """
obj = Expr.__new__(cls)
obj.poly = poly
obj.fun = func
obj.auto = auto
return obj
@classmethod
def new(cls, poly, func, auto=True):
"""Construct new ``RootSum`` instance. """
if not func.expr.has(*func.variables):
return func.expr
rational = cls._is_func_rational(poly, func)
if not rational or not auto:
return cls._new(poly, func, auto)
else:
return cls._rational_case(poly, func)
@classmethod
def _transform(cls, expr, x):
"""Transform an expression to a polynomial. """
poly = PurePoly(expr, x, greedy=False)
return preprocess_roots(poly)
@classmethod
def _is_func_rational(cls, poly, func):
"""Check if a lambda is a rational function. """
var, expr = func.variables[0], func.expr
return expr.is_rational_function(var)
@classmethod
def _rational_case(cls, poly, func):
"""Handle the rational function case. """
roots = symbols('r:%d' % poly.degree())
var, expr = func.variables[0], func.expr
f = sum(expr.subs(var, r) for r in roots)
p, q = together(f).as_numer_denom()
domain = QQ[roots]
p = p.expand()
q = q.expand()
try:
p = Poly(p, domain=domain, expand=False)
except GeneratorsNeeded:
p, p_coeff = None, (p,)
else:
p_monom, p_coeff = zip(*p.terms())
try:
q = Poly(q, domain=domain, expand=False)
except GeneratorsNeeded:
q, q_coeff = None, (q,)
else:
q_monom, q_coeff = zip(*q.terms())
coeffs, mapping = symmetrize(p_coeff + q_coeff, formal=True)
formulas, values = viete(poly, roots), []
for (sym, _), (_, val) in zip(mapping, formulas):
values.append((sym, val))
for i, (coeff, _) in enumerate(coeffs):
coeffs[i] = coeff.subs(values)
n = len(p_coeff)
p_coeff = coeffs[:n]
q_coeff = coeffs[n:]
if p is not None:
p = Poly(dict(zip(p_monom, p_coeff)), *p.gens).as_expr()
else:
(p,) = p_coeff
if q is not None:
q = Poly(dict(zip(q_monom, q_coeff)), *q.gens).as_expr()
else:
(q,) = q_coeff
return factor(p/q)
def _hashable_content(self):
return (self.poly, self.fun)
@property
def expr(self):
return self.poly.as_expr()
@property
def args(self):
return (self.expr, self.fun, self.poly.gen)
@property
def free_symbols(self):
return self.poly.free_symbols | self.fun.free_symbols
@property
def is_commutative(self):
return True
def doit(self, **hints):
if not hints.get('roots', True):
return self
_roots = roots(self.poly, multiple=True)
if len(_roots) < self.poly.degree():
return self
else:
return Add(*[self.fun(r) for r in _roots])
def _eval_evalf(self, prec):
try:
_roots = self.poly.nroots(n=prec_to_dps(prec))
except (DomainError, PolynomialError):
return self
else:
return Add(*[self.fun(r) for r in _roots])
def _eval_derivative(self, x):
var, expr = self.fun.args
func = Lambda(var, expr.diff(x))
return self.new(self.poly, func, self.auto)
|
77ab611762b13f4d066044509fb509970aec97417445241cb3f515eb9013cdb6 | """User-friendly public interface to polynomial functions. """
from __future__ import print_function, division
from sympy.core import (
S, Basic, Expr, I, Integer, Add, Mul, Dummy, Tuple
)
from sympy.core.basic import preorder_traversal
from sympy.core.compatibility import iterable, range, ordered
from sympy.core.decorators import _sympifyit
from sympy.core.function import Derivative
from sympy.core.mul import _keep_coeff
from sympy.core.relational import Relational
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.logic.boolalg import BooleanAtom
from sympy.polys import polyoptions as options
from sympy.polys.constructor import construct_domain
from sympy.polys.domains import FF, QQ, ZZ
from sympy.polys.fglmtools import matrix_fglm
from sympy.polys.groebnertools import groebner as _groebner
from sympy.polys.monomials import Monomial
from sympy.polys.orderings import monomial_key
from sympy.polys.polyclasses import DMP
from sympy.polys.polyerrors import (
OperationNotSupported, DomainError,
CoercionFailed, UnificationFailed,
GeneratorsNeeded, PolynomialError,
MultivariatePolynomialError,
ExactQuotientFailed,
PolificationFailed,
ComputationFailed,
GeneratorsError,
)
from sympy.polys.polyutils import (
basic_from_dict,
_sort_gens,
_unify_gens,
_dict_reorder,
_dict_from_expr,
_parallel_dict_from_expr,
)
from sympy.polys.rationaltools import together
from sympy.polys.rootisolation import dup_isolate_real_roots_list
from sympy.utilities import group, sift, public, filldedent
# Required to avoid errors
import sympy.polys
import mpmath
from mpmath.libmp.libhyper import NoConvergence
@public
class Poly(Expr):
"""
Generic class for representing and operating on polynomial expressions.
Subclasses Expr class.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
Create a univariate polynomial:
>>> Poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
Create a univariate polynomial with specific domain:
>>> from sympy import sqrt
>>> Poly(x**2 + 2*x + sqrt(3), domain='R')
Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR')
Create a multivariate polynomial:
>>> Poly(y*x**2 + x*y + 1)
Poly(x**2*y + x*y + 1, x, y, domain='ZZ')
Create a univariate polynomial, where y is a constant:
>>> Poly(y*x**2 + x*y + 1,x)
Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]')
You can evaluate the above polynomial as a function of y:
>>> Poly(y*x**2 + x*y + 1,x).eval(2)
6*y + 1
See Also
========
sympy.core.expr.Expr
"""
__slots__ = ['rep', 'gens']
is_commutative = True
is_Poly = True
_op_priority = 10.001
def __new__(cls, rep, *gens, **args):
"""Create a new polynomial instance out of something useful. """
opt = options.build_options(gens, args)
if 'order' in opt:
raise NotImplementedError("'order' keyword is not implemented yet")
if iterable(rep, exclude=str):
if isinstance(rep, dict):
return cls._from_dict(rep, opt)
else:
return cls._from_list(list(rep), opt)
else:
rep = sympify(rep)
if rep.is_Poly:
return cls._from_poly(rep, opt)
else:
return cls._from_expr(rep, opt)
@classmethod
def new(cls, rep, *gens):
"""Construct :class:`Poly` instance from raw representation. """
if not isinstance(rep, DMP):
raise PolynomialError(
"invalid polynomial representation: %s" % rep)
elif rep.lev != len(gens) - 1:
raise PolynomialError("invalid arguments: %s, %s" % (rep, gens))
obj = Basic.__new__(cls)
obj.rep = rep
obj.gens = gens
return obj
@classmethod
def from_dict(cls, rep, *gens, **args):
"""Construct a polynomial from a ``dict``. """
opt = options.build_options(gens, args)
return cls._from_dict(rep, opt)
@classmethod
def from_list(cls, rep, *gens, **args):
"""Construct a polynomial from a ``list``. """
opt = options.build_options(gens, args)
return cls._from_list(rep, opt)
@classmethod
def from_poly(cls, rep, *gens, **args):
"""Construct a polynomial from a polynomial. """
opt = options.build_options(gens, args)
return cls._from_poly(rep, opt)
@classmethod
def from_expr(cls, rep, *gens, **args):
"""Construct a polynomial from an expression. """
opt = options.build_options(gens, args)
return cls._from_expr(rep, opt)
@classmethod
def _from_dict(cls, rep, opt):
"""Construct a polynomial from a ``dict``. """
gens = opt.gens
if not gens:
raise GeneratorsNeeded(
"can't initialize from 'dict' without generators")
level = len(gens) - 1
domain = opt.domain
if domain is None:
domain, rep = construct_domain(rep, opt=opt)
else:
for monom, coeff in rep.items():
rep[monom] = domain.convert(coeff)
return cls.new(DMP.from_dict(rep, level, domain), *gens)
@classmethod
def _from_list(cls, rep, opt):
"""Construct a polynomial from a ``list``. """
gens = opt.gens
if not gens:
raise GeneratorsNeeded(
"can't initialize from 'list' without generators")
elif len(gens) != 1:
raise MultivariatePolynomialError(
"'list' representation not supported")
level = len(gens) - 1
domain = opt.domain
if domain is None:
domain, rep = construct_domain(rep, opt=opt)
else:
rep = list(map(domain.convert, rep))
return cls.new(DMP.from_list(rep, level, domain), *gens)
@classmethod
def _from_poly(cls, rep, opt):
"""Construct a polynomial from a polynomial. """
if cls != rep.__class__:
rep = cls.new(rep.rep, *rep.gens)
gens = opt.gens
field = opt.field
domain = opt.domain
if gens and rep.gens != gens:
if set(rep.gens) != set(gens):
return cls._from_expr(rep.as_expr(), opt)
else:
rep = rep.reorder(*gens)
if 'domain' in opt and domain:
rep = rep.set_domain(domain)
elif field is True:
rep = rep.to_field()
return rep
@classmethod
def _from_expr(cls, rep, opt):
"""Construct a polynomial from an expression. """
rep, opt = _dict_from_expr(rep, opt)
return cls._from_dict(rep, opt)
def _hashable_content(self):
"""Allow SymPy to hash Poly instances. """
return (self.rep, self.gens)
def __hash__(self):
return super(Poly, self).__hash__()
@property
def free_symbols(self):
"""
Free symbols of a polynomial expression.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x**2 + 1).free_symbols
{x}
>>> Poly(x**2 + y).free_symbols
{x, y}
>>> Poly(x**2 + y, x).free_symbols
{x, y}
>>> Poly(x**2 + y, x, z).free_symbols
{x, y}
"""
symbols = set()
gens = self.gens
for i in range(len(gens)):
for monom in self.monoms():
if monom[i]:
symbols |= gens[i].free_symbols
break
return symbols | self.free_symbols_in_domain
@property
def free_symbols_in_domain(self):
"""
Free symbols of the domain of ``self``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 1).free_symbols_in_domain
set()
>>> Poly(x**2 + y).free_symbols_in_domain
set()
>>> Poly(x**2 + y, x).free_symbols_in_domain
{y}
"""
domain, symbols = self.rep.dom, set()
if domain.is_Composite:
for gen in domain.symbols:
symbols |= gen.free_symbols
elif domain.is_EX:
for coeff in self.coeffs():
symbols |= coeff.free_symbols
return symbols
@property
def args(self):
"""
Don't mess up with the core.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).args
(x**2 + 1,)
"""
return (self.as_expr(),)
@property
def gen(self):
"""
Return the principal generator.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).gen
x
"""
return self.gens[0]
@property
def domain(self):
"""Get the ground domain of ``self``. """
return self.get_domain()
@property
def zero(self):
"""Return zero polynomial with ``self``'s properties. """
return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens)
@property
def one(self):
"""Return one polynomial with ``self``'s properties. """
return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens)
@property
def unit(self):
"""Return unit polynomial with ``self``'s properties. """
return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens)
def unify(f, g):
"""
Make ``f`` and ``g`` belong to the same domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f, g = Poly(x/2 + 1), Poly(2*x + 1)
>>> f
Poly(1/2*x + 1, x, domain='QQ')
>>> g
Poly(2*x + 1, x, domain='ZZ')
>>> F, G = f.unify(g)
>>> F
Poly(1/2*x + 1, x, domain='QQ')
>>> G
Poly(2*x + 1, x, domain='QQ')
"""
_, per, F, G = f._unify(g)
return per(F), per(G)
def _unify(f, g):
g = sympify(g)
if not g.is_Poly:
try:
return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
except CoercionFailed:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if isinstance(f.rep, DMP) and isinstance(g.rep, DMP):
gens = _unify_gens(f.gens, g.gens)
dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1
if f.gens != gens:
f_monoms, f_coeffs = _dict_reorder(
f.rep.to_dict(), f.gens, gens)
if f.rep.dom != dom:
f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs]
F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev)
else:
F = f.rep.convert(dom)
if g.gens != gens:
g_monoms, g_coeffs = _dict_reorder(
g.rep.to_dict(), g.gens, gens)
if g.rep.dom != dom:
g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs]
G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev)
else:
G = g.rep.convert(dom)
else:
raise UnificationFailed("can't unify %s with %s" % (f, g))
cls = f.__class__
def per(rep, dom=dom, gens=gens, remove=None):
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return dom.to_sympy(rep)
return cls.new(rep, *gens)
return dom, per, F, G
def per(f, rep, gens=None, remove=None):
"""
Create a Poly out of the given representation.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x, y
>>> from sympy.polys.polyclasses import DMP
>>> a = Poly(x**2 + 1)
>>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y])
Poly(y + 1, y, domain='ZZ')
"""
if gens is None:
gens = f.gens
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return f.rep.dom.to_sympy(rep)
return f.__class__.new(rep, *gens)
def set_domain(f, domain):
"""Set the ground domain of ``f``. """
opt = options.build_options(f.gens, {'domain': domain})
return f.per(f.rep.convert(opt.domain))
def get_domain(f):
"""Get the ground domain of ``f``. """
return f.rep.dom
def set_modulus(f, modulus):
"""
Set the modulus of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2)
Poly(x**2 + 1, x, modulus=2)
"""
modulus = options.Modulus.preprocess(modulus)
return f.set_domain(FF(modulus))
def get_modulus(f):
"""
Get the modulus of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, modulus=2).get_modulus()
2
"""
domain = f.get_domain()
if domain.is_FiniteField:
return Integer(domain.characteristic())
else:
raise PolynomialError("not a polynomial over a Galois field")
def _eval_subs(f, old, new):
"""Internal implementation of :func:`subs`. """
if old in f.gens:
if new.is_number:
return f.eval(old, new)
else:
try:
return f.replace(old, new)
except PolynomialError:
pass
return f.as_expr().subs(old, new)
def exclude(f):
"""
Remove unnecessary generators from ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import a, b, c, d, x
>>> Poly(a + x, a, b, c, d, x).exclude()
Poly(a + x, a, x, domain='ZZ')
"""
J, new = f.rep.exclude()
gens = []
for j in range(len(f.gens)):
if j not in J:
gens.append(f.gens[j])
return f.per(new, gens=gens)
def replace(f, x, y=None, *_ignore):
# XXX this does not match Basic's signature
"""
Replace ``x`` with ``y`` in generators list.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 1, x).replace(x, y)
Poly(y**2 + 1, y, domain='ZZ')
"""
if y is None:
if f.is_univariate:
x, y = f.gen, x
else:
raise PolynomialError(
"syntax supported only in univariate case")
if x == y or x not in f.gens:
return f
if x in f.gens and y not in f.gens:
dom = f.get_domain()
if not dom.is_Composite or y not in dom.symbols:
gens = list(f.gens)
gens[gens.index(x)] = y
return f.per(f.rep, gens=gens)
raise PolynomialError("can't replace %s with %s in %s" % (x, y, f))
def reorder(f, *gens, **args):
"""
Efficiently apply new order of generators.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x*y**2, x, y).reorder(y, x)
Poly(y**2*x + x**2, y, x, domain='ZZ')
"""
opt = options.Options((), args)
if not gens:
gens = _sort_gens(f.gens, opt=opt)
elif set(f.gens) != set(gens):
raise PolynomialError(
"generators list can differ only up to order of elements")
rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens))))
return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens)
def ltrim(f, gen):
"""
Remove dummy generators from ``f`` that are to the left of
specified ``gen`` in the generators as ordered. When ``gen``
is an integer, it refers to the generator located at that
position within the tuple of generators of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(y**2 + y*z**2, x, y, z).ltrim(y)
Poly(y**2 + y*z**2, y, z, domain='ZZ')
>>> Poly(z, x, y, z).ltrim(-1)
Poly(z, z, domain='ZZ')
"""
rep = f.as_dict(native=True)
j = f._gen_to_level(gen)
terms = {}
for monom, coeff in rep.items():
if any(monom[:j]):
# some generator is used in the portion to be trimmed
raise PolynomialError("can't left trim %s" % f)
terms[monom[j:]] = coeff
gens = f.gens[j:]
return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens)
def has_only_gens(f, *gens):
"""
Return ``True`` if ``Poly(f, *gens)`` retains ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x*y + 1, x, y, z).has_only_gens(x, y)
True
>>> Poly(x*y + z, x, y, z).has_only_gens(x, y)
False
"""
indices = set()
for gen in gens:
try:
index = f.gens.index(gen)
except ValueError:
raise GeneratorsError(
"%s doesn't have %s as generator" % (f, gen))
else:
indices.add(index)
for monom in f.monoms():
for i, elt in enumerate(monom):
if i not in indices and elt:
return False
return True
def to_ring(f):
"""
Make the ground domain a ring.
Examples
========
>>> from sympy import Poly, QQ
>>> from sympy.abc import x
>>> Poly(x**2 + 1, domain=QQ).to_ring()
Poly(x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'to_ring'):
result = f.rep.to_ring()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_ring')
return f.per(result)
def to_field(f):
"""
Make the ground domain a field.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x, domain=ZZ).to_field()
Poly(x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'to_field'):
result = f.rep.to_field()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_field')
return f.per(result)
def to_exact(f):
"""
Make the ground domain exact.
Examples
========
>>> from sympy import Poly, RR
>>> from sympy.abc import x
>>> Poly(x**2 + 1.0, x, domain=RR).to_exact()
Poly(x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'to_exact'):
result = f.rep.to_exact()
else: # pragma: no cover
raise OperationNotSupported(f, 'to_exact')
return f.per(result)
def retract(f, field=None):
"""
Recalculate the ground domain of a polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x, domain='QQ[y]')
>>> f
Poly(x**2 + 1, x, domain='QQ[y]')
>>> f.retract()
Poly(x**2 + 1, x, domain='ZZ')
>>> f.retract(field=True)
Poly(x**2 + 1, x, domain='QQ')
"""
dom, rep = construct_domain(f.as_dict(zero=True),
field=field, composite=f.domain.is_Composite or None)
return f.from_dict(rep, f.gens, domain=dom)
def slice(f, x, m, n=None):
"""Take a continuous subsequence of terms of ``f``. """
if n is None:
j, m, n = 0, x, m
else:
j = f._gen_to_level(x)
m, n = int(m), int(n)
if hasattr(f.rep, 'slice'):
result = f.rep.slice(m, n, j)
else: # pragma: no cover
raise OperationNotSupported(f, 'slice')
return f.per(result)
def coeffs(f, order=None):
"""
Returns all non-zero coefficients from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x + 3, x).coeffs()
[1, 2, 3]
See Also
========
all_coeffs
coeff_monomial
nth
"""
return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)]
def monoms(f, order=None):
"""
Returns all non-zero monomials from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms()
[(2, 0), (1, 2), (1, 1), (0, 1)]
See Also
========
all_monoms
"""
return f.rep.monoms(order=order)
def terms(f, order=None):
"""
Returns all non-zero terms from ``f`` in lex order.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms()
[((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]
See Also
========
all_terms
"""
return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)]
def all_coeffs(f):
"""
Returns all coefficients from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_coeffs()
[1, 0, 2, -1]
"""
return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()]
def all_monoms(f):
"""
Returns all monomials from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_monoms()
[(3,), (2,), (1,), (0,)]
See Also
========
all_terms
"""
return f.rep.all_monoms()
def all_terms(f):
"""
Returns all terms from a univariate polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x - 1, x).all_terms()
[((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)]
"""
return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()]
def termwise(f, func, *gens, **args):
"""
Apply a function to all terms of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> def func(k, coeff):
... k = k[0]
... return coeff//10**(2-k)
>>> Poly(x**2 + 20*x + 400).termwise(func)
Poly(x**2 + 2*x + 4, x, domain='ZZ')
"""
terms = {}
for monom, coeff in f.terms():
result = func(monom, coeff)
if isinstance(result, tuple):
monom, coeff = result
else:
coeff = result
if coeff:
if monom not in terms:
terms[monom] = coeff
else:
raise PolynomialError(
"%s monomial was generated twice" % monom)
return f.from_dict(terms, *(gens or f.gens), **args)
def length(f):
"""
Returns the number of non-zero terms in ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 2*x - 1).length()
3
"""
return len(f.as_dict())
def as_dict(f, native=False, zero=False):
"""
Switch to a ``dict`` representation.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict()
{(0, 1): -1, (1, 2): 2, (2, 0): 1}
"""
if native:
return f.rep.to_dict(zero=zero)
else:
return f.rep.to_sympy_dict(zero=zero)
def as_list(f, native=False):
"""Switch to a ``list`` representation. """
if native:
return f.rep.to_list()
else:
return f.rep.to_sympy_list()
def as_expr(f, *gens):
"""
Convert a Poly instance to an Expr instance.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2 + 2*x*y**2 - y, x, y)
>>> f.as_expr()
x**2 + 2*x*y**2 - y
>>> f.as_expr({x: 5})
10*y**2 - y + 25
>>> f.as_expr(5, 6)
379
"""
if not gens:
gens = f.gens
elif len(gens) == 1 and isinstance(gens[0], dict):
mapping = gens[0]
gens = list(f.gens)
for gen, value in mapping.items():
try:
index = gens.index(gen)
except ValueError:
raise GeneratorsError(
"%s doesn't have %s as generator" % (f, gen))
else:
gens[index] = value
return basic_from_dict(f.rep.to_sympy_dict(), *gens)
def lift(f):
"""
Convert algebraic coefficients to rationals.
Examples
========
>>> from sympy import Poly, I
>>> from sympy.abc import x
>>> Poly(x**2 + I*x + 1, x, extension=I).lift()
Poly(x**4 + 3*x**2 + 1, x, domain='QQ')
"""
if hasattr(f.rep, 'lift'):
result = f.rep.lift()
else: # pragma: no cover
raise OperationNotSupported(f, 'lift')
return f.per(result)
def deflate(f):
"""
Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate()
((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))
"""
if hasattr(f.rep, 'deflate'):
J, result = f.rep.deflate()
else: # pragma: no cover
raise OperationNotSupported(f, 'deflate')
return J, f.per(result)
def inject(f, front=False):
"""
Inject ground domain generators into ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x)
>>> f.inject()
Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ')
>>> f.inject(front=True)
Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')
"""
dom = f.rep.dom
if dom.is_Numerical:
return f
elif not dom.is_Poly:
raise DomainError("can't inject generators over %s" % dom)
if hasattr(f.rep, 'inject'):
result = f.rep.inject(front=front)
else: # pragma: no cover
raise OperationNotSupported(f, 'inject')
if front:
gens = dom.symbols + f.gens
else:
gens = f.gens + dom.symbols
return f.new(result, *gens)
def eject(f, *gens):
"""
Eject selected generators into the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)
>>> f.eject(x)
Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
>>> f.eject(y)
Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
"""
dom = f.rep.dom
if not dom.is_Numerical:
raise DomainError("can't eject generators over %s" % dom)
k = len(gens)
if f.gens[:k] == gens:
_gens, front = f.gens[k:], True
elif f.gens[-k:] == gens:
_gens, front = f.gens[:-k], False
else:
raise NotImplementedError(
"can only eject front or back generators")
dom = dom.inject(*gens)
if hasattr(f.rep, 'eject'):
result = f.rep.eject(dom, front=front)
else: # pragma: no cover
raise OperationNotSupported(f, 'eject')
return f.new(result, *_gens)
def terms_gcd(f):
"""
Remove GCD of terms from the polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd()
((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))
"""
if hasattr(f.rep, 'terms_gcd'):
J, result = f.rep.terms_gcd()
else: # pragma: no cover
raise OperationNotSupported(f, 'terms_gcd')
return J, f.per(result)
def add_ground(f, coeff):
"""
Add an element of the ground domain to ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).add_ground(2)
Poly(x + 3, x, domain='ZZ')
"""
if hasattr(f.rep, 'add_ground'):
result = f.rep.add_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'add_ground')
return f.per(result)
def sub_ground(f, coeff):
"""
Subtract an element of the ground domain from ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).sub_ground(2)
Poly(x - 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'sub_ground'):
result = f.rep.sub_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'sub_ground')
return f.per(result)
def mul_ground(f, coeff):
"""
Multiply ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 1).mul_ground(2)
Poly(2*x + 2, x, domain='ZZ')
"""
if hasattr(f.rep, 'mul_ground'):
result = f.rep.mul_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'mul_ground')
return f.per(result)
def quo_ground(f, coeff):
"""
Quotient of ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x + 4).quo_ground(2)
Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).quo_ground(2)
Poly(x + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'quo_ground'):
result = f.rep.quo_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'quo_ground')
return f.per(result)
def exquo_ground(f, coeff):
"""
Exact quotient of ``f`` by a an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x + 4).exquo_ground(2)
Poly(x + 2, x, domain='ZZ')
>>> Poly(2*x + 3).exquo_ground(2)
Traceback (most recent call last):
...
ExactQuotientFailed: 2 does not divide 3 in ZZ
"""
if hasattr(f.rep, 'exquo_ground'):
result = f.rep.exquo_ground(coeff)
else: # pragma: no cover
raise OperationNotSupported(f, 'exquo_ground')
return f.per(result)
def abs(f):
"""
Make all coefficients in ``f`` positive.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).abs()
Poly(x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'abs'):
result = f.rep.abs()
else: # pragma: no cover
raise OperationNotSupported(f, 'abs')
return f.per(result)
def neg(f):
"""
Negate all coefficients in ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).neg()
Poly(-x**2 + 1, x, domain='ZZ')
>>> -Poly(x**2 - 1, x)
Poly(-x**2 + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'neg'):
result = f.rep.neg()
else: # pragma: no cover
raise OperationNotSupported(f, 'neg')
return f.per(result)
def add(f, g):
"""
Add two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).add(Poly(x - 2, x))
Poly(x**2 + x - 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x) + Poly(x - 2, x)
Poly(x**2 + x - 1, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.add_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'add'):
result = F.add(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'add')
return per(result)
def sub(f, g):
"""
Subtract two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).sub(Poly(x - 2, x))
Poly(x**2 - x + 3, x, domain='ZZ')
>>> Poly(x**2 + 1, x) - Poly(x - 2, x)
Poly(x**2 - x + 3, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.sub_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'sub'):
result = F.sub(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'sub')
return per(result)
def mul(f, g):
"""
Multiply two polynomials ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).mul(Poly(x - 2, x))
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x)*Poly(x - 2, x)
Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')
"""
g = sympify(g)
if not g.is_Poly:
return f.mul_ground(g)
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'mul'):
result = F.mul(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'mul')
return per(result)
def sqr(f):
"""
Square a polynomial ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x - 2, x).sqr()
Poly(x**2 - 4*x + 4, x, domain='ZZ')
>>> Poly(x - 2, x)**2
Poly(x**2 - 4*x + 4, x, domain='ZZ')
"""
if hasattr(f.rep, 'sqr'):
result = f.rep.sqr()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqr')
return f.per(result)
def pow(f, n):
"""
Raise ``f`` to a non-negative power ``n``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x - 2, x).pow(3)
Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
>>> Poly(x - 2, x)**3
Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')
"""
n = int(n)
if hasattr(f.rep, 'pow'):
result = f.rep.pow(n)
else: # pragma: no cover
raise OperationNotSupported(f, 'pow')
return f.per(result)
def pdiv(f, g):
"""
Polynomial pseudo-division of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x))
(Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ'))
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pdiv'):
q, r = F.pdiv(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'pdiv')
return per(q), per(r)
def prem(f, g):
"""
Polynomial pseudo-remainder of ``f`` by ``g``.
Caveat: The function prem(f, g, x) can be safely used to compute
in Z[x] _only_ subresultant polynomial remainder sequences (prs's).
To safely compute Euclidean and Sturmian prs's in Z[x]
employ anyone of the corresponding functions found in
the module sympy.polys.subresultants_qq_zz. The functions
in the module with suffix _pg compute prs's in Z[x] employing
rem(f, g, x), whereas the functions with suffix _amv
compute prs's in Z[x] employing rem_z(f, g, x).
The function rem_z(f, g, x) differs from prem(f, g, x) in that
to compute the remainder polynomials in Z[x] it premultiplies
the divident times the absolute value of the leading coefficient
of the divisor raised to the power degree(f, x) - degree(g, x) + 1.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x))
Poly(20, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'prem'):
result = F.prem(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'prem')
return per(result)
def pquo(f, g):
"""
Polynomial pseudo-quotient of ``f`` by ``g``.
See the Caveat note in the function prem(f, g).
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x))
Poly(2*x + 4, x, domain='ZZ')
>>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pquo'):
result = F.pquo(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'pquo')
return per(result)
def pexquo(f, g):
"""
Polynomial exact pseudo-quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x))
Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'pexquo'):
try:
result = F.pexquo(G)
except ExactQuotientFailed as exc:
raise exc.new(f.as_expr(), g.as_expr())
else: # pragma: no cover
raise OperationNotSupported(f, 'pexquo')
return per(result)
def div(f, g, auto=True):
"""
Polynomial division with remainder of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x))
(Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))
>>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False)
(Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ'))
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'div'):
q, r = F.div(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'div')
if retract:
try:
Q, R = q.to_ring(), r.to_ring()
except CoercionFailed:
pass
else:
q, r = Q, R
return per(q), per(r)
def rem(f, g, auto=True):
"""
Computes the polynomial remainder of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x))
Poly(5, x, domain='ZZ')
>>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False)
Poly(x**2 + 1, x, domain='ZZ')
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'rem'):
r = F.rem(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'rem')
if retract:
try:
r = r.to_ring()
except CoercionFailed:
pass
return per(r)
def quo(f, g, auto=True):
"""
Computes polynomial quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x))
Poly(1/2*x + 1, x, domain='QQ')
>>> Poly(x**2 - 1, x).quo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'quo'):
q = F.quo(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'quo')
if retract:
try:
q = q.to_ring()
except CoercionFailed:
pass
return per(q)
def exquo(f, g, auto=True):
"""
Computes polynomial exact quotient of ``f`` by ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x))
Poly(x + 1, x, domain='ZZ')
>>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x))
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
dom, per, F, G = f._unify(g)
retract = False
if auto and dom.is_Ring and not dom.is_Field:
F, G = F.to_field(), G.to_field()
retract = True
if hasattr(f.rep, 'exquo'):
try:
q = F.exquo(G)
except ExactQuotientFailed as exc:
raise exc.new(f.as_expr(), g.as_expr())
else: # pragma: no cover
raise OperationNotSupported(f, 'exquo')
if retract:
try:
q = q.to_ring()
except CoercionFailed:
pass
return per(q)
def _gen_to_level(f, gen):
"""Returns level associated with the given generator. """
if isinstance(gen, int):
length = len(f.gens)
if -length <= gen < length:
if gen < 0:
return length + gen
else:
return gen
else:
raise PolynomialError("-%s <= gen < %s expected, got %s" %
(length, length, gen))
else:
try:
return f.gens.index(sympify(gen))
except ValueError:
raise PolynomialError(
"a valid generator expected, got %s" % gen)
def degree(f, gen=0):
"""
Returns degree of ``f`` in ``x_j``.
The degree of 0 is negative infinity.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree()
2
>>> Poly(x**2 + y*x + y, x, y).degree(y)
1
>>> Poly(0, x).degree()
-oo
"""
j = f._gen_to_level(gen)
if hasattr(f.rep, 'degree'):
return f.rep.degree(j)
else: # pragma: no cover
raise OperationNotSupported(f, 'degree')
def degree_list(f):
"""
Returns a list of degrees of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).degree_list()
(2, 1)
"""
if hasattr(f.rep, 'degree_list'):
return f.rep.degree_list()
else: # pragma: no cover
raise OperationNotSupported(f, 'degree_list')
def total_degree(f):
"""
Returns the total degree of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + y*x + 1, x, y).total_degree()
2
>>> Poly(x + y**5, x, y).total_degree()
5
"""
if hasattr(f.rep, 'total_degree'):
return f.rep.total_degree()
else: # pragma: no cover
raise OperationNotSupported(f, 'total_degree')
def homogenize(f, s):
"""
Returns the homogeneous polynomial of ``f``.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. If you only
want to check if a polynomial is homogeneous, then use
:func:`Poly.is_homogeneous`. If you want not only to check if a
polynomial is homogeneous but also compute its homogeneous order,
then use :func:`Poly.homogeneous_order`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3)
>>> f.homogenize(z)
Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ')
"""
if not isinstance(s, Symbol):
raise TypeError("``Symbol`` expected, got %s" % type(s))
if s in f.gens:
i = f.gens.index(s)
gens = f.gens
else:
i = len(f.gens)
gens = f.gens + (s,)
if hasattr(f.rep, 'homogenize'):
return f.per(f.rep.homogenize(i), gens=gens)
raise OperationNotSupported(f, 'homogeneous_order')
def homogeneous_order(f):
"""
Returns the homogeneous order of ``f``.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. This degree is
the homogeneous order of ``f``. If you only want to check if a
polynomial is homogeneous, then use :func:`Poly.is_homogeneous`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4)
>>> f.homogeneous_order()
5
"""
if hasattr(f.rep, 'homogeneous_order'):
return f.rep.homogeneous_order()
else: # pragma: no cover
raise OperationNotSupported(f, 'homogeneous_order')
def LC(f, order=None):
"""
Returns the leading coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC()
4
"""
if order is not None:
return f.coeffs(order)[0]
if hasattr(f.rep, 'LC'):
result = f.rep.LC()
else: # pragma: no cover
raise OperationNotSupported(f, 'LC')
return f.rep.dom.to_sympy(result)
def TC(f):
"""
Returns the trailing coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).TC()
0
"""
if hasattr(f.rep, 'TC'):
result = f.rep.TC()
else: # pragma: no cover
raise OperationNotSupported(f, 'TC')
return f.rep.dom.to_sympy(result)
def EC(f, order=None):
"""
Returns the last non-zero coefficient of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 + 2*x**2 + 3*x, x).EC()
3
"""
if hasattr(f.rep, 'coeffs'):
return f.coeffs(order)[-1]
else: # pragma: no cover
raise OperationNotSupported(f, 'EC')
def coeff_monomial(f, monom):
"""
Returns the coefficient of ``monom`` in ``f`` if there, else None.
Examples
========
>>> from sympy import Poly, exp
>>> from sympy.abc import x, y
>>> p = Poly(24*x*y*exp(8) + 23*x, x, y)
>>> p.coeff_monomial(x)
23
>>> p.coeff_monomial(y)
0
>>> p.coeff_monomial(x*y)
24*exp(8)
Note that ``Expr.coeff()`` behaves differently, collecting terms
if possible; the Poly must be converted to an Expr to use that
method, however:
>>> p.as_expr().coeff(x)
24*y*exp(8) + 23
>>> p.as_expr().coeff(y)
24*x*exp(8)
>>> p.as_expr().coeff(x*y)
24*exp(8)
See Also
========
nth: more efficient query using exponents of the monomial's generators
"""
return f.nth(*Monomial(monom, f.gens).exponents)
def nth(f, *N):
"""
Returns the ``n``-th coefficient of ``f`` where ``N`` are the
exponents of the generators in the term of interest.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x, y
>>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2)
2
>>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2)
2
>>> Poly(4*sqrt(x)*y)
Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ')
>>> _.nth(1, 1)
4
See Also
========
coeff_monomial
"""
if hasattr(f.rep, 'nth'):
if len(N) != len(f.gens):
raise ValueError('exponent of each generator must be specified')
result = f.rep.nth(*list(map(int, N)))
else: # pragma: no cover
raise OperationNotSupported(f, 'nth')
return f.rep.dom.to_sympy(result)
def coeff(f, x, n=1, right=False):
# the semantics of coeff_monomial and Expr.coeff are different;
# if someone is working with a Poly, they should be aware of the
# differences and chose the method best suited for the query.
# Alternatively, a pure-polys method could be written here but
# at this time the ``right`` keyword would be ignored because Poly
# doesn't work with non-commutatives.
raise NotImplementedError(
'Either convert to Expr with `as_expr` method '
'to use Expr\'s coeff method or else use the '
'`coeff_monomial` method of Polys.')
def LM(f, order=None):
"""
Returns the leading monomial of ``f``.
The Leading monomial signifies the monomial having
the highest power of the principal generator in the
expression f.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM()
x**2*y**0
"""
return Monomial(f.monoms(order)[0], f.gens)
def EM(f, order=None):
"""
Returns the last non-zero monomial of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM()
x**0*y**1
"""
return Monomial(f.monoms(order)[-1], f.gens)
def LT(f, order=None):
"""
Returns the leading term of ``f``.
The Leading term signifies the term having
the highest power of the principal generator in the
expression f along with its coefficient.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT()
(x**2*y**0, 4)
"""
monom, coeff = f.terms(order)[0]
return Monomial(monom, f.gens), coeff
def ET(f, order=None):
"""
Returns the last non-zero term of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET()
(x**0*y**1, 3)
"""
monom, coeff = f.terms(order)[-1]
return Monomial(monom, f.gens), coeff
def max_norm(f):
"""
Returns maximum norm of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).max_norm()
3
"""
if hasattr(f.rep, 'max_norm'):
result = f.rep.max_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'max_norm')
return f.rep.dom.to_sympy(result)
def l1_norm(f):
"""
Returns l1 norm of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(-x**2 + 2*x - 3, x).l1_norm()
6
"""
if hasattr(f.rep, 'l1_norm'):
result = f.rep.l1_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'l1_norm')
return f.rep.dom.to_sympy(result)
def clear_denoms(self, convert=False):
"""
Clear denominators, but keep the ground domain.
Examples
========
>>> from sympy import Poly, S, QQ
>>> from sympy.abc import x
>>> f = Poly(x/2 + S(1)/3, x, domain=QQ)
>>> f.clear_denoms()
(6, Poly(3*x + 2, x, domain='QQ'))
>>> f.clear_denoms(convert=True)
(6, Poly(3*x + 2, x, domain='ZZ'))
"""
f = self
if not f.rep.dom.is_Field:
return S.One, f
dom = f.get_domain()
if dom.has_assoc_Ring:
dom = f.rep.dom.get_ring()
if hasattr(f.rep, 'clear_denoms'):
coeff, result = f.rep.clear_denoms()
else: # pragma: no cover
raise OperationNotSupported(f, 'clear_denoms')
coeff, f = dom.to_sympy(coeff), f.per(result)
if not convert or not dom.has_assoc_Ring:
return coeff, f
else:
return coeff, f.to_ring()
def rat_clear_denoms(self, g):
"""
Clear denominators in a rational function ``f/g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = Poly(x**2/y + 1, x)
>>> g = Poly(x**3 + y, x)
>>> p, q = f.rat_clear_denoms(g)
>>> p
Poly(x**2 + y, x, domain='ZZ[y]')
>>> q
Poly(y*x**3 + y**2, x, domain='ZZ[y]')
"""
f = self
dom, per, f, g = f._unify(g)
f = per(f)
g = per(g)
if not (dom.is_Field and dom.has_assoc_Ring):
return f, g
a, f = f.clear_denoms(convert=True)
b, g = g.clear_denoms(convert=True)
f = f.mul_ground(b)
g = g.mul_ground(a)
return f, g
def integrate(self, *specs, **args):
"""
Computes indefinite integral of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).integrate()
Poly(1/3*x**3 + x**2 + x, x, domain='QQ')
>>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0))
Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')
"""
f = self
if args.get('auto', True) and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'integrate'):
if not specs:
return f.per(f.rep.integrate(m=1))
rep = f.rep
for spec in specs:
if type(spec) is tuple:
gen, m = spec
else:
gen, m = spec, 1
rep = rep.integrate(int(m), f._gen_to_level(gen))
return f.per(rep)
else: # pragma: no cover
raise OperationNotSupported(f, 'integrate')
def diff(f, *specs, **kwargs):
"""
Computes partial derivative of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + 2*x + 1, x).diff()
Poly(2*x + 2, x, domain='ZZ')
>>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1))
Poly(2*x*y, x, y, domain='ZZ')
"""
if not kwargs.get('evaluate', True):
return Derivative(f, *specs, **kwargs)
if hasattr(f.rep, 'diff'):
if not specs:
return f.per(f.rep.diff(m=1))
rep = f.rep
for spec in specs:
if type(spec) is tuple:
gen, m = spec
else:
gen, m = spec, 1
rep = rep.diff(int(m), f._gen_to_level(gen))
return f.per(rep)
else: # pragma: no cover
raise OperationNotSupported(f, 'diff')
_eval_derivative = diff
def eval(self, x, a=None, auto=True):
"""
Evaluate ``f`` at ``a`` in the given variable.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> Poly(x**2 + 2*x + 3, x).eval(2)
11
>>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2)
Poly(5*y + 8, y, domain='ZZ')
>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)
>>> f.eval({x: 2})
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f.eval({x: 2, y: 5})
Poly(2*z + 31, z, domain='ZZ')
>>> f.eval({x: 2, y: 5, z: 7})
45
>>> f.eval((2, 5))
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
"""
f = self
if a is None:
if isinstance(x, dict):
mapping = x
for gen, value in mapping.items():
f = f.eval(gen, value)
return f
elif isinstance(x, (tuple, list)):
values = x
if len(values) > len(f.gens):
raise ValueError("too many values provided")
for gen, value in zip(f.gens, values):
f = f.eval(gen, value)
return f
else:
j, a = 0, x
else:
j = f._gen_to_level(x)
if not hasattr(f.rep, 'eval'): # pragma: no cover
raise OperationNotSupported(f, 'eval')
try:
result = f.rep.eval(a, j)
except CoercionFailed:
if not auto:
raise DomainError("can't evaluate at %s in %s" % (a, f.rep.dom))
else:
a_domain, [a] = construct_domain([a])
new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens)
f = f.set_domain(new_domain)
a = new_domain.convert(a, a_domain)
result = f.rep.eval(a, j)
return f.per(result, remove=j)
def __call__(f, *values):
"""
Evaluate ``f`` at the give values.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y, z
>>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)
>>> f(2)
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5, 7)
45
"""
return f.eval(values)
def half_gcdex(f, g, auto=True):
"""
Half extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).half_gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'half_gcdex'):
s, h = F.half_gcdex(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'half_gcdex')
return per(s), per(h)
def gcdex(f, g, auto=True):
"""
Extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4
>>> Poly(f).gcdex(Poly(g))
(Poly(-1/5*x + 3/5, x, domain='QQ'),
Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'),
Poly(x + 1, x, domain='QQ'))
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'gcdex'):
s, t, h = F.gcdex(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'gcdex')
return per(s), per(t), per(h)
def invert(f, g, auto=True):
"""
Invert ``f`` modulo ``g`` when possible.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x))
Poly(-4/3, x, domain='QQ')
>>> Poly(x**2 - 1, x).invert(Poly(x - 1, x))
Traceback (most recent call last):
...
NotInvertible: zero divisor
"""
dom, per, F, G = f._unify(g)
if auto and dom.is_Ring:
F, G = F.to_field(), G.to_field()
if hasattr(f.rep, 'invert'):
result = F.invert(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'invert')
return per(result)
def revert(f, n):
"""
Compute ``f**(-1)`` mod ``x**n``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(1, x).revert(2)
Poly(1, x, domain='ZZ')
>>> Poly(1 + x, x).revert(1)
Poly(1, x, domain='ZZ')
>>> Poly(x**2 - 1, x).revert(1)
Traceback (most recent call last):
...
NotReversible: only unity is reversible in a ring
>>> Poly(1/x, x).revert(1)
Traceback (most recent call last):
...
PolynomialError: 1/x contains an element of the generators set
"""
if hasattr(f.rep, 'revert'):
result = f.rep.revert(int(n))
else: # pragma: no cover
raise OperationNotSupported(f, 'revert')
return f.per(result)
def subresultants(f, g):
"""
Computes the subresultant PRS of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x))
[Poly(x**2 + 1, x, domain='ZZ'),
Poly(x**2 - 1, x, domain='ZZ'),
Poly(-2, x, domain='ZZ')]
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'subresultants'):
result = F.subresultants(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'subresultants')
return list(map(per, result))
def resultant(f, g, includePRS=False):
"""
Computes the resultant of ``f`` and ``g`` via PRS.
If includePRS=True, it includes the subresultant PRS in the result.
Because the PRS is used to calculate the resultant, this is more
efficient than calling :func:`subresultants` separately.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 + 1, x)
>>> f.resultant(Poly(x**2 - 1, x))
4
>>> f.resultant(Poly(x**2 - 1, x), includePRS=True)
(4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'),
Poly(-2, x, domain='ZZ')])
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'resultant'):
if includePRS:
result, R = F.resultant(G, includePRS=includePRS)
else:
result = F.resultant(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'resultant')
if includePRS:
return (per(result, remove=0), list(map(per, R)))
return per(result, remove=0)
def discriminant(f):
"""
Computes the discriminant of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + 2*x + 3, x).discriminant()
-8
"""
if hasattr(f.rep, 'discriminant'):
result = f.rep.discriminant()
else: # pragma: no cover
raise OperationNotSupported(f, 'discriminant')
return f.per(result, remove=0)
def dispersionset(f, g=None):
r"""Compute the *dispersion set* of two polynomials.
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:
.. math::
\operatorname{J}(f, g)
& := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
& = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}
For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.
Examples
========
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
>>> dispersion(fp)
6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
We can even perform the computations for polynomials
having symbolic coefficients:
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
See Also
========
dispersion
References
==========
1. [ManWright94]_
2. [Koepf98]_
3. [Abramov71]_
4. [Man93]_
"""
from sympy.polys.dispersion import dispersionset
return dispersionset(f, g)
def dispersion(f, g=None):
r"""Compute the *dispersion* of polynomials.
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:
.. math::
\operatorname{dis}(f, g)
& := \max\{ J(f,g) \cup \{0\} \} \\
& = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}
and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
Examples
========
>>> from sympy import poly
>>> from sympy.polys.dispersion import dispersion, dispersionset
>>> from sympy.abc import x
Dispersion set and dispersion of a simple polynomial:
>>> fp = poly((x - 3)*(x + 3), x)
>>> sorted(dispersionset(fp))
[0, 6]
>>> dispersion(fp)
6
Note that the definition of the dispersion is not symmetric:
>>> fp = poly(x**4 - 3*x**2 + 1, x)
>>> gp = fp.shift(-3)
>>> sorted(dispersionset(fp, gp))
[2, 3, 4]
>>> dispersion(fp, gp)
4
>>> sorted(dispersionset(gp, fp))
[]
>>> dispersion(gp, fp)
-oo
Computing the dispersion also works over field extensions:
>>> from sympy import sqrt
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
>>> sorted(dispersionset(fp, gp))
[2]
>>> sorted(dispersionset(gp, fp))
[1, 4]
We can even perform the computations for polynomials
having symbolic coefficients:
>>> from sympy.abc import a
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
>>> sorted(dispersionset(fp))
[0, 1]
See Also
========
dispersionset
References
==========
1. [ManWright94]_
2. [Koepf98]_
3. [Abramov71]_
4. [Man93]_
"""
from sympy.polys.dispersion import dispersion
return dispersion(f, g)
def cofactors(f, g):
"""
Returns the GCD of ``f`` and ``g`` and their cofactors.
Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x))
(Poly(x - 1, x, domain='ZZ'),
Poly(x + 1, x, domain='ZZ'),
Poly(x - 2, x, domain='ZZ'))
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'cofactors'):
h, cff, cfg = F.cofactors(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'cofactors')
return per(h), per(cff), per(cfg)
def gcd(f, g):
"""
Returns the polynomial GCD of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x))
Poly(x - 1, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'gcd'):
result = F.gcd(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'gcd')
return per(result)
def lcm(f, g):
"""
Returns polynomial LCM of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x))
Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'lcm'):
result = F.lcm(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'lcm')
return per(result)
def trunc(f, p):
"""
Reduce ``f`` modulo a constant ``p``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3)
Poly(-x**3 - x + 1, x, domain='ZZ')
"""
p = f.rep.dom.convert(p)
if hasattr(f.rep, 'trunc'):
result = f.rep.trunc(p)
else: # pragma: no cover
raise OperationNotSupported(f, 'trunc')
return f.per(result)
def monic(self, auto=True):
"""
Divides all coefficients by ``LC(f)``.
Examples
========
>>> from sympy import Poly, ZZ
>>> from sympy.abc import x
>>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic()
Poly(x**2 + 2*x + 3, x, domain='QQ')
>>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic()
Poly(x**2 + 4/3*x + 2/3, x, domain='QQ')
"""
f = self
if auto and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'monic'):
result = f.rep.monic()
else: # pragma: no cover
raise OperationNotSupported(f, 'monic')
return f.per(result)
def content(f):
"""
Returns the GCD of polynomial coefficients.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(6*x**2 + 8*x + 12, x).content()
2
"""
if hasattr(f.rep, 'content'):
result = f.rep.content()
else: # pragma: no cover
raise OperationNotSupported(f, 'content')
return f.rep.dom.to_sympy(result)
def primitive(f):
"""
Returns the content and a primitive form of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 + 8*x + 12, x).primitive()
(2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))
"""
if hasattr(f.rep, 'primitive'):
cont, result = f.rep.primitive()
else: # pragma: no cover
raise OperationNotSupported(f, 'primitive')
return f.rep.dom.to_sympy(cont), f.per(result)
def compose(f, g):
"""
Computes the functional composition of ``f`` and ``g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + x, x).compose(Poly(x - 1, x))
Poly(x**2 - x, x, domain='ZZ')
"""
_, per, F, G = f._unify(g)
if hasattr(f.rep, 'compose'):
result = F.compose(G)
else: # pragma: no cover
raise OperationNotSupported(f, 'compose')
return per(result)
def decompose(f):
"""
Computes a functional decomposition of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose()
[Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')]
"""
if hasattr(f.rep, 'decompose'):
result = f.rep.decompose()
else: # pragma: no cover
raise OperationNotSupported(f, 'decompose')
return list(map(f.per, result))
def shift(f, a):
"""
Efficiently compute Taylor shift ``f(x + a)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).shift(2)
Poly(x**2 + 2*x + 1, x, domain='ZZ')
"""
if hasattr(f.rep, 'shift'):
result = f.rep.shift(a)
else: # pragma: no cover
raise OperationNotSupported(f, 'shift')
return f.per(result)
def transform(f, p, q):
"""
Efficiently evaluate the functional transformation ``q**n * f(p/q)``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x))
Poly(4, x, domain='ZZ')
"""
P, Q = p.unify(q)
F, P = f.unify(P)
F, Q = F.unify(Q)
if hasattr(F.rep, 'transform'):
result = F.rep.transform(P.rep, Q.rep)
else: # pragma: no cover
raise OperationNotSupported(F, 'transform')
return F.per(result)
def sturm(self, auto=True):
"""
Computes the Sturm sequence of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 - 2*x**2 + x - 3, x).sturm()
[Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'),
Poly(3*x**2 - 4*x + 1, x, domain='QQ'),
Poly(2/9*x + 25/9, x, domain='QQ'),
Poly(-2079/4, x, domain='QQ')]
"""
f = self
if auto and f.rep.dom.is_Ring:
f = f.to_field()
if hasattr(f.rep, 'sturm'):
result = f.rep.sturm()
else: # pragma: no cover
raise OperationNotSupported(f, 'sturm')
return list(map(f.per, result))
def gff_list(f):
"""
Computes greatest factorial factorization of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**5 + 2*x**4 - x**3 - 2*x**2
>>> Poly(f).gff_list()
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
"""
if hasattr(f.rep, 'gff_list'):
result = f.rep.gff_list()
else: # pragma: no cover
raise OperationNotSupported(f, 'gff_list')
return [(f.per(g), k) for g, k in result]
def norm(f):
"""
Computes the product, ``Norm(f)``, of the conjugates of
a polynomial ``f`` defined over a number field ``K``.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x
>>> a, b = sqrt(2), sqrt(3)
A polynomial over a quadratic extension.
Two conjugates x - a and x + a.
>>> f = Poly(x - a, x, extension=a)
>>> f.norm()
Poly(x**2 - 2, x, domain='QQ')
A polynomial over a quartic extension.
Four conjugates x - a, x - a, x + a and x + a.
>>> f = Poly(x - a, x, extension=(a, b))
>>> f.norm()
Poly(x**4 - 4*x**2 + 4, x, domain='QQ')
"""
if hasattr(f.rep, 'norm'):
r = f.rep.norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'norm')
return f.per(r)
def sqf_norm(f):
"""
Computes square-free norm of ``f``.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
where ``a`` is the algebraic extension of the ground domain.
Examples
========
>>> from sympy import Poly, sqrt
>>> from sympy.abc import x
>>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm()
>>> s
1
>>> f
Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>')
>>> r
Poly(x**4 - 4*x**2 + 16, x, domain='QQ')
"""
if hasattr(f.rep, 'sqf_norm'):
s, g, r = f.rep.sqf_norm()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_norm')
return s, f.per(g), f.per(r)
def sqf_part(f):
"""
Computes square-free part of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**3 - 3*x - 2, x).sqf_part()
Poly(x**2 - x - 2, x, domain='ZZ')
"""
if hasattr(f.rep, 'sqf_part'):
result = f.rep.sqf_part()
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_part')
return f.per(result)
def sqf_list(f, all=False):
"""
Returns a list of square-free factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
>>> Poly(f).sqf_list()
(2, [(Poly(x + 1, x, domain='ZZ'), 2),
(Poly(x + 2, x, domain='ZZ'), 3)])
>>> Poly(f).sqf_list(all=True)
(2, [(Poly(1, x, domain='ZZ'), 1),
(Poly(x + 1, x, domain='ZZ'), 2),
(Poly(x + 2, x, domain='ZZ'), 3)])
"""
if hasattr(f.rep, 'sqf_list'):
coeff, factors = f.rep.sqf_list(all)
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_list')
return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]
def sqf_list_include(f, all=False):
"""
Returns a list of square-free factors of ``f``.
Examples
========
>>> from sympy import Poly, expand
>>> from sympy.abc import x
>>> f = expand(2*(x + 1)**3*x**4)
>>> f
2*x**7 + 6*x**6 + 6*x**5 + 2*x**4
>>> Poly(f).sqf_list_include()
[(Poly(2, x, domain='ZZ'), 1),
(Poly(x + 1, x, domain='ZZ'), 3),
(Poly(x, x, domain='ZZ'), 4)]
>>> Poly(f).sqf_list_include(all=True)
[(Poly(2, x, domain='ZZ'), 1),
(Poly(1, x, domain='ZZ'), 2),
(Poly(x + 1, x, domain='ZZ'), 3),
(Poly(x, x, domain='ZZ'), 4)]
"""
if hasattr(f.rep, 'sqf_list_include'):
factors = f.rep.sqf_list_include(all)
else: # pragma: no cover
raise OperationNotSupported(f, 'sqf_list_include')
return [(f.per(g), k) for g, k in factors]
def factor_list(f):
"""
Returns a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list()
(2, [(Poly(x + y, x, y, domain='ZZ'), 1),
(Poly(x**2 + 1, x, y, domain='ZZ'), 2)])
"""
if hasattr(f.rep, 'factor_list'):
try:
coeff, factors = f.rep.factor_list()
except DomainError:
return S.One, [(f, 1)]
else: # pragma: no cover
raise OperationNotSupported(f, 'factor_list')
return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]
def factor_list_include(f):
"""
Returns a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y
>>> Poly(f).factor_list_include()
[(Poly(2*x + 2*y, x, y, domain='ZZ'), 1),
(Poly(x**2 + 1, x, y, domain='ZZ'), 2)]
"""
if hasattr(f.rep, 'factor_list_include'):
try:
factors = f.rep.factor_list_include()
except DomainError:
return [(f, 1)]
else: # pragma: no cover
raise OperationNotSupported(f, 'factor_list_include')
return [(f.per(g), k) for g, k in factors]
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
"""
Compute isolating intervals for roots of ``f``.
For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.
References
==========
.. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root
Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
.. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the
Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear
Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3, x).intervals()
[((-2, -1), 1), ((1, 2), 1)]
>>> Poly(x**2 - 3, x).intervals(eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
"""
if eps is not None:
eps = QQ.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if inf is not None:
inf = QQ.convert(inf)
if sup is not None:
sup = QQ.convert(sup)
if hasattr(f.rep, 'intervals'):
result = f.rep.intervals(
all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
else: # pragma: no cover
raise OperationNotSupported(f, 'intervals')
if sqf:
def _real(interval):
s, t = interval
return (QQ.to_sympy(s), QQ.to_sympy(t))
if not all:
return list(map(_real, result))
def _complex(rectangle):
(u, v), (s, t) = rectangle
return (QQ.to_sympy(u) + I*QQ.to_sympy(v),
QQ.to_sympy(s) + I*QQ.to_sympy(t))
real_part, complex_part = result
return list(map(_real, real_part)), list(map(_complex, complex_part))
else:
def _real(interval):
(s, t), k = interval
return ((QQ.to_sympy(s), QQ.to_sympy(t)), k)
if not all:
return list(map(_real, result))
def _complex(rectangle):
((u, v), (s, t)), k = rectangle
return ((QQ.to_sympy(u) + I*QQ.to_sympy(v),
QQ.to_sympy(s) + I*QQ.to_sympy(t)), k)
real_part, complex_part = result
return list(map(_real, real_part)), list(map(_complex, complex_part))
def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
"""
Refine an isolating interval of a root to the given precision.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2)
(19/11, 26/15)
"""
if check_sqf and not f.is_sqf:
raise PolynomialError("only square-free polynomials supported")
s, t = QQ.convert(s), QQ.convert(t)
if eps is not None:
eps = QQ.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if steps is not None:
steps = int(steps)
elif eps is None:
steps = 1
if hasattr(f.rep, 'refine_root'):
S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast)
else: # pragma: no cover
raise OperationNotSupported(f, 'refine_root')
return QQ.to_sympy(S), QQ.to_sympy(T)
def count_roots(f, inf=None, sup=None):
"""
Return the number of roots of ``f`` in ``[inf, sup]`` interval.
Examples
========
>>> from sympy import Poly, I
>>> from sympy.abc import x
>>> Poly(x**4 - 4, x).count_roots(-3, 3)
2
>>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I)
1
"""
inf_real, sup_real = True, True
if inf is not None:
inf = sympify(inf)
if inf is S.NegativeInfinity:
inf = None
else:
re, im = inf.as_real_imag()
if not im:
inf = QQ.convert(inf)
else:
inf, inf_real = list(map(QQ.convert, (re, im))), False
if sup is not None:
sup = sympify(sup)
if sup is S.Infinity:
sup = None
else:
re, im = sup.as_real_imag()
if not im:
sup = QQ.convert(sup)
else:
sup, sup_real = list(map(QQ.convert, (re, im))), False
if inf_real and sup_real:
if hasattr(f.rep, 'count_real_roots'):
count = f.rep.count_real_roots(inf=inf, sup=sup)
else: # pragma: no cover
raise OperationNotSupported(f, 'count_real_roots')
else:
if inf_real and inf is not None:
inf = (inf, QQ.zero)
if sup_real and sup is not None:
sup = (sup, QQ.zero)
if hasattr(f.rep, 'count_complex_roots'):
count = f.rep.count_complex_roots(inf=inf, sup=sup)
else: # pragma: no cover
raise OperationNotSupported(f, 'count_complex_roots')
return Integer(count)
def root(f, index, radicals=True):
"""
Get an indexed root of a polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4)
>>> f.root(0)
-1/2
>>> f.root(1)
2
>>> f.root(2)
2
>>> f.root(3)
Traceback (most recent call last):
...
IndexError: root index out of [-3, 2] range, got 3
>>> Poly(x**5 + x + 1).root(0)
CRootOf(x**3 - x**2 + 1, 0)
"""
return sympy.polys.rootoftools.rootof(f, index, radicals=radicals)
def real_roots(f, multiple=True, radicals=True):
"""
Return a list of real roots with multiplicities.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots()
[-1/2, 2, 2]
>>> Poly(x**3 + x + 1).real_roots()
[CRootOf(x**3 + x + 1, 0)]
"""
reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals)
if multiple:
return reals
else:
return group(reals, multiple=False)
def all_roots(f, multiple=True, radicals=True):
"""
Return a list of real and complex roots with multiplicities.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots()
[-1/2, 2, 2]
>>> Poly(x**3 + x + 1).all_roots()
[CRootOf(x**3 + x + 1, 0),
CRootOf(x**3 + x + 1, 1),
CRootOf(x**3 + x + 1, 2)]
"""
roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals)
if multiple:
return roots
else:
return group(roots, multiple=False)
def nroots(f, n=15, maxsteps=50, cleanup=True):
"""
Compute numerical approximations of roots of ``f``.
Parameters
==========
n ... the number of digits to calculate
maxsteps ... the maximum number of iterations to do
If the accuracy `n` cannot be reached in `maxsteps`, it will raise an
exception. You need to rerun with higher maxsteps.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 3).nroots(n=15)
[-1.73205080756888, 1.73205080756888]
>>> Poly(x**2 - 3).nroots(n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
"""
from sympy.functions.elementary.complexes import sign
if f.is_multivariate:
raise MultivariatePolynomialError(
"can't compute numerical roots of %s" % f)
if f.degree() <= 0:
return []
# For integer and rational coefficients, convert them to integers only
# (for accuracy). Otherwise just try to convert the coefficients to
# mpmath.mpc and raise an exception if the conversion fails.
if f.rep.dom is ZZ:
coeffs = [int(coeff) for coeff in f.all_coeffs()]
elif f.rep.dom is QQ:
denoms = [coeff.q for coeff in f.all_coeffs()]
from sympy.core.numbers import ilcm
fac = ilcm(*denoms)
coeffs = [int(coeff*fac) for coeff in f.all_coeffs()]
else:
coeffs = [coeff.evalf(n=n).as_real_imag()
for coeff in f.all_coeffs()]
try:
coeffs = [mpmath.mpc(*coeff) for coeff in coeffs]
except TypeError:
raise DomainError("Numerical domain expected, got %s" % \
f.rep.dom)
dps = mpmath.mp.dps
mpmath.mp.dps = n
try:
# We need to add extra precision to guard against losing accuracy.
# 10 times the degree of the polynomial seems to work well.
roots = mpmath.polyroots(coeffs, maxsteps=maxsteps,
cleanup=cleanup, error=False, extraprec=f.degree()*10)
# Mpmath puts real roots first, then complex ones (as does all_roots)
# so we make sure this convention holds here, too.
roots = list(map(sympify,
sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag)))))
except NoConvergence:
raise NoConvergence(
'convergence to root failed; try n < %s or maxsteps > %s' % (
n, maxsteps))
finally:
mpmath.mp.dps = dps
return roots
def ground_roots(f):
"""
Compute roots of ``f`` by factorization in the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots()
{0: 2, 1: 2}
"""
if f.is_multivariate:
raise MultivariatePolynomialError(
"can't compute ground roots of %s" % f)
roots = {}
for factor, k in f.factor_list()[1]:
if factor.is_linear:
a, b = factor.all_coeffs()
roots[-b/a] = k
return roots
def nth_power_roots_poly(f, n):
"""
Construct a polynomial with n-th powers of roots of ``f``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = Poly(x**4 - x**2 + 1)
>>> f.nth_power_roots_poly(2)
Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(3)
Poly(x**4 + 2*x**2 + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(4)
Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ')
>>> f.nth_power_roots_poly(12)
Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ')
"""
if f.is_multivariate:
raise MultivariatePolynomialError(
"must be a univariate polynomial")
N = sympify(n)
if N.is_Integer and N >= 1:
n = int(N)
else:
raise ValueError("'n' must an integer and n >= 1, got %s" % n)
x = f.gen
t = Dummy('t')
r = f.resultant(f.__class__.from_expr(x**n - t, x, t))
return r.replace(t, x)
def cancel(f, g, include=False):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x))
(1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
>>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True)
(Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
"""
dom, per, F, G = f._unify(g)
if hasattr(F, 'cancel'):
result = F.cancel(G, include=include)
else: # pragma: no cover
raise OperationNotSupported(f, 'cancel')
if not include:
if dom.has_assoc_Ring:
dom = dom.get_ring()
cp, cq, p, q = result
cp = dom.to_sympy(cp)
cq = dom.to_sympy(cq)
return cp/cq, per(p), per(q)
else:
return tuple(map(per, result))
@property
def is_zero(f):
"""
Returns ``True`` if ``f`` is a zero polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(0, x).is_zero
True
>>> Poly(1, x).is_zero
False
"""
return f.rep.is_zero
@property
def is_one(f):
"""
Returns ``True`` if ``f`` is a unit polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(0, x).is_one
False
>>> Poly(1, x).is_one
True
"""
return f.rep.is_one
@property
def is_sqf(f):
"""
Returns ``True`` if ``f`` is a square-free polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 - 2*x + 1, x).is_sqf
False
>>> Poly(x**2 - 1, x).is_sqf
True
"""
return f.rep.is_sqf
@property
def is_monic(f):
"""
Returns ``True`` if the leading coefficient of ``f`` is one.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x + 2, x).is_monic
True
>>> Poly(2*x + 2, x).is_monic
False
"""
return f.rep.is_monic
@property
def is_primitive(f):
"""
Returns ``True`` if GCD of the coefficients of ``f`` is one.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(2*x**2 + 6*x + 12, x).is_primitive
False
>>> Poly(x**2 + 3*x + 6, x).is_primitive
True
"""
return f.rep.is_primitive
@property
def is_ground(f):
"""
Returns ``True`` if ``f`` is an element of the ground domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x, x).is_ground
False
>>> Poly(2, x).is_ground
True
>>> Poly(y, x).is_ground
True
"""
return f.rep.is_ground
@property
def is_linear(f):
"""
Returns ``True`` if ``f`` is linear in all its variables.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x + y + 2, x, y).is_linear
True
>>> Poly(x*y + 2, x, y).is_linear
False
"""
return f.rep.is_linear
@property
def is_quadratic(f):
"""
Returns ``True`` if ``f`` is quadratic in all its variables.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x*y + 2, x, y).is_quadratic
True
>>> Poly(x*y**2 + 2, x, y).is_quadratic
False
"""
return f.rep.is_quadratic
@property
def is_monomial(f):
"""
Returns ``True`` if ``f`` is zero or has only one term.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(3*x**2, x).is_monomial
True
>>> Poly(3*x**2 + 1, x).is_monomial
False
"""
return f.rep.is_monomial
@property
def is_homogeneous(f):
"""
Returns ``True`` if ``f`` is a homogeneous polynomial.
A homogeneous polynomial is a polynomial whose all monomials with
non-zero coefficients have the same total degree. If you want not
only to check if a polynomial is homogeneous but also compute its
homogeneous order, then use :func:`Poly.homogeneous_order`.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x*y, x, y).is_homogeneous
True
>>> Poly(x**3 + x*y, x, y).is_homogeneous
False
"""
return f.rep.is_homogeneous
@property
def is_irreducible(f):
"""
Returns ``True`` if ``f`` has no factors over its domain.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible
True
>>> Poly(x**2 + 1, x, modulus=2).is_irreducible
False
"""
return f.rep.is_irreducible
@property
def is_univariate(f):
"""
Returns ``True`` if ``f`` is a univariate polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_univariate
True
>>> Poly(x*y**2 + x*y + 1, x, y).is_univariate
False
>>> Poly(x*y**2 + x*y + 1, x).is_univariate
True
>>> Poly(x**2 + x + 1, x, y).is_univariate
False
"""
return len(f.gens) == 1
@property
def is_multivariate(f):
"""
Returns ``True`` if ``f`` is a multivariate polynomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x, y
>>> Poly(x**2 + x + 1, x).is_multivariate
False
>>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate
True
>>> Poly(x*y**2 + x*y + 1, x).is_multivariate
False
>>> Poly(x**2 + x + 1, x, y).is_multivariate
True
"""
return len(f.gens) != 1
@property
def is_cyclotomic(f):
"""
Returns ``True`` if ``f`` is a cyclotomic polnomial.
Examples
========
>>> from sympy import Poly
>>> from sympy.abc import x
>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
>>> Poly(f).is_cyclotomic
False
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
>>> Poly(g).is_cyclotomic
True
"""
return f.rep.is_cyclotomic
def __abs__(f):
return f.abs()
def __neg__(f):
return f.neg()
@_sympifyit('g', NotImplemented)
def __add__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return f.as_expr() + g
return f.add(g)
@_sympifyit('g', NotImplemented)
def __radd__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return g + f.as_expr()
return g.add(f)
@_sympifyit('g', NotImplemented)
def __sub__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return f.as_expr() - g
return f.sub(g)
@_sympifyit('g', NotImplemented)
def __rsub__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return g - f.as_expr()
return g.sub(f)
@_sympifyit('g', NotImplemented)
def __mul__(f, g):
if not isinstance(g, Expr):
return NotImplemented
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return f.as_expr()*g
return f.mul(g)
@_sympifyit('g', NotImplemented)
def __rmul__(f, g):
if not g.is_Poly:
try:
g = f.__class__(g, *f.gens)
except PolynomialError:
return g*f.as_expr()
return g.mul(f)
@_sympifyit('n', NotImplemented)
def __pow__(f, n):
if n.is_Integer and n >= 0:
return f.pow(n)
else:
return f.as_expr()**n
@_sympifyit('g', NotImplemented)
def __divmod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return f.div(g)
@_sympifyit('g', NotImplemented)
def __rdivmod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return g.div(f)
@_sympifyit('g', NotImplemented)
def __mod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return f.rem(g)
@_sympifyit('g', NotImplemented)
def __rmod__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return g.rem(f)
@_sympifyit('g', NotImplemented)
def __floordiv__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return f.quo(g)
@_sympifyit('g', NotImplemented)
def __rfloordiv__(f, g):
if not g.is_Poly:
g = f.__class__(g, *f.gens)
return g.quo(f)
@_sympifyit('g', NotImplemented)
def __div__(f, g):
return f.as_expr()/g.as_expr()
@_sympifyit('g', NotImplemented)
def __rdiv__(f, g):
return g.as_expr()/f.as_expr()
__truediv__ = __div__
__rtruediv__ = __rdiv__
@_sympifyit('other', NotImplemented)
def __eq__(self, other):
f, g = self, other
if not g.is_Poly:
try:
g = f.__class__(g, f.gens, domain=f.get_domain())
except (PolynomialError, DomainError, CoercionFailed):
return False
if f.gens != g.gens:
return False
if f.rep.dom != g.rep.dom:
try:
dom = f.rep.dom.unify(g.rep.dom, f.gens)
except UnificationFailed:
return False
f = f.set_domain(dom)
g = g.set_domain(dom)
return f.rep == g.rep
@_sympifyit('g', NotImplemented)
def __ne__(f, g):
return not f == g
def __nonzero__(f):
return not f.is_zero
__bool__ = __nonzero__
def eq(f, g, strict=False):
if not strict:
return f == g
else:
return f._strict_eq(sympify(g))
def ne(f, g, strict=False):
return not f.eq(g, strict=strict)
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True)
@public
class PurePoly(Poly):
"""Class for representing pure polynomials. """
def _hashable_content(self):
"""Allow SymPy to hash Poly instances. """
return (self.rep,)
def __hash__(self):
return super(PurePoly, self).__hash__()
@property
def free_symbols(self):
"""
Free symbols of a polynomial.
Examples
========
>>> from sympy import PurePoly
>>> from sympy.abc import x, y
>>> PurePoly(x**2 + 1).free_symbols
set()
>>> PurePoly(x**2 + y).free_symbols
set()
>>> PurePoly(x**2 + y, x).free_symbols
{y}
"""
return self.free_symbols_in_domain
@_sympifyit('other', NotImplemented)
def __eq__(self, other):
f, g = self, other
if not g.is_Poly:
try:
g = f.__class__(g, f.gens, domain=f.get_domain())
except (PolynomialError, DomainError, CoercionFailed):
return False
if len(f.gens) != len(g.gens):
return False
if f.rep.dom != g.rep.dom:
try:
dom = f.rep.dom.unify(g.rep.dom, f.gens)
except UnificationFailed:
return False
f = f.set_domain(dom)
g = g.set_domain(dom)
return f.rep == g.rep
def _strict_eq(f, g):
return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True)
def _unify(f, g):
g = sympify(g)
if not g.is_Poly:
try:
return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
except CoercionFailed:
raise UnificationFailed("can't unify %s with %s" % (f, g))
if len(f.gens) != len(g.gens):
raise UnificationFailed("can't unify %s with %s" % (f, g))
if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)):
raise UnificationFailed("can't unify %s with %s" % (f, g))
cls = f.__class__
gens = f.gens
dom = f.rep.dom.unify(g.rep.dom, gens)
F = f.rep.convert(dom)
G = g.rep.convert(dom)
def per(rep, dom=dom, gens=gens, remove=None):
if remove is not None:
gens = gens[:remove] + gens[remove + 1:]
if not gens:
return dom.to_sympy(rep)
return cls.new(rep, *gens)
return dom, per, F, G
@public
def poly_from_expr(expr, *gens, **args):
"""Construct a polynomial from an expression. """
opt = options.build_options(gens, args)
return _poly_from_expr(expr, opt)
def _poly_from_expr(expr, opt):
"""Construct a polynomial from an expression. """
orig, expr = expr, sympify(expr)
if not isinstance(expr, Basic):
raise PolificationFailed(opt, orig, expr)
elif expr.is_Poly:
poly = expr.__class__._from_poly(expr, opt)
opt.gens = poly.gens
opt.domain = poly.domain
if opt.polys is None:
opt.polys = True
return poly, opt
elif opt.expand:
expr = expr.expand()
rep, opt = _dict_from_expr(expr, opt)
if not opt.gens:
raise PolificationFailed(opt, orig, expr)
monoms, coeffs = list(zip(*list(rep.items())))
domain = opt.domain
if domain is None:
opt.domain, coeffs = construct_domain(coeffs, opt=opt)
else:
coeffs = list(map(domain.from_sympy, coeffs))
rep = dict(list(zip(monoms, coeffs)))
poly = Poly._from_dict(rep, opt)
if opt.polys is None:
opt.polys = False
return poly, opt
@public
def parallel_poly_from_expr(exprs, *gens, **args):
"""Construct polynomials from expressions. """
opt = options.build_options(gens, args)
return _parallel_poly_from_expr(exprs, opt)
def _parallel_poly_from_expr(exprs, opt):
"""Construct polynomials from expressions. """
from sympy.functions.elementary.piecewise import Piecewise
if len(exprs) == 2:
f, g = exprs
if isinstance(f, Poly) and isinstance(g, Poly):
f = f.__class__._from_poly(f, opt)
g = g.__class__._from_poly(g, opt)
f, g = f.unify(g)
opt.gens = f.gens
opt.domain = f.domain
if opt.polys is None:
opt.polys = True
return [f, g], opt
origs, exprs = list(exprs), []
_exprs, _polys = [], []
failed = False
for i, expr in enumerate(origs):
expr = sympify(expr)
if isinstance(expr, Basic):
if expr.is_Poly:
_polys.append(i)
else:
_exprs.append(i)
if opt.expand:
expr = expr.expand()
else:
failed = True
exprs.append(expr)
if failed:
raise PolificationFailed(opt, origs, exprs, True)
if _polys:
# XXX: this is a temporary solution
for i in _polys:
exprs[i] = exprs[i].as_expr()
reps, opt = _parallel_dict_from_expr(exprs, opt)
if not opt.gens:
raise PolificationFailed(opt, origs, exprs, True)
for k in opt.gens:
if isinstance(k, Piecewise):
raise PolynomialError("Piecewise generators do not make sense")
coeffs_list, lengths = [], []
all_monoms = []
all_coeffs = []
for rep in reps:
monoms, coeffs = list(zip(*list(rep.items())))
coeffs_list.extend(coeffs)
all_monoms.append(monoms)
lengths.append(len(coeffs))
domain = opt.domain
if domain is None:
opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt)
else:
coeffs_list = list(map(domain.from_sympy, coeffs_list))
for k in lengths:
all_coeffs.append(coeffs_list[:k])
coeffs_list = coeffs_list[k:]
polys = []
for monoms, coeffs in zip(all_monoms, all_coeffs):
rep = dict(list(zip(monoms, coeffs)))
poly = Poly._from_dict(rep, opt)
polys.append(poly)
if opt.polys is None:
opt.polys = bool(_polys)
return polys, opt
def _update_args(args, key, value):
"""Add a new ``(key, value)`` pair to arguments ``dict``. """
args = dict(args)
if key not in args:
args[key] = value
return args
@public
def degree(f, gen=0):
"""
Return the degree of ``f`` in the given variable.
The degree of 0 is negative infinity.
Examples
========
>>> from sympy import degree
>>> from sympy.abc import x, y
>>> degree(x**2 + y*x + 1, gen=x)
2
>>> degree(x**2 + y*x + 1, gen=y)
1
>>> degree(0, x)
-oo
See also
========
sympy.polys.polytools.Poly.total_degree
degree_list
"""
f = sympify(f, strict=True)
gen_is_Num = sympify(gen, strict=True).is_Number
if f.is_Poly:
p = f
isNum = p.as_expr().is_Number
else:
isNum = f.is_Number
if not isNum:
if gen_is_Num:
p, _ = poly_from_expr(f)
else:
p, _ = poly_from_expr(f, gen)
if isNum:
return S.Zero if f else S.NegativeInfinity
if not gen_is_Num:
if f.is_Poly and gen not in p.gens:
# try recast without explicit gens
p, _ = poly_from_expr(f.as_expr())
if gen not in p.gens:
return S.Zero
elif not f.is_Poly and len(f.free_symbols) > 1:
raise TypeError(filldedent('''
A symbolic generator of interest is required for a multivariate
expression like func = %s, e.g. degree(func, gen = %s) instead of
degree(func, gen = %s).
''' % (f, next(ordered(f.free_symbols)), gen)))
return Integer(p.degree(gen))
@public
def total_degree(f, *gens):
"""
Return the total_degree of ``f`` in the given variables.
Examples
========
>>> from sympy import total_degree, Poly
>>> from sympy.abc import x, y, z
>>> total_degree(1)
0
>>> total_degree(x + x*y)
2
>>> total_degree(x + x*y, x)
1
If the expression is a Poly and no variables are given
then the generators of the Poly will be used:
>>> p = Poly(x + x*y, y)
>>> total_degree(p)
1
To deal with the underlying expression of the Poly, convert
it to an Expr:
>>> total_degree(p.as_expr())
2
This is done automatically if any variables are given:
>>> total_degree(p, x)
1
See also
========
degree
"""
p = sympify(f)
if p.is_Poly:
p = p.as_expr()
if p.is_Number:
rv = 0
else:
if f.is_Poly:
gens = gens or f.gens
rv = Poly(p, gens).total_degree()
return Integer(rv)
@public
def degree_list(f, *gens, **args):
"""
Return a list of degrees of ``f`` in all variables.
Examples
========
>>> from sympy import degree_list
>>> from sympy.abc import x, y
>>> degree_list(x**2 + y*x + 1)
(2, 1)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('degree_list', 1, exc)
degrees = F.degree_list()
return tuple(map(Integer, degrees))
@public
def LC(f, *gens, **args):
"""
Return the leading coefficient of ``f``.
Examples
========
>>> from sympy import LC
>>> from sympy.abc import x, y
>>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
4
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LC', 1, exc)
return F.LC(order=opt.order)
@public
def LM(f, *gens, **args):
"""
Return the leading monomial of ``f``.
Examples
========
>>> from sympy import LM
>>> from sympy.abc import x, y
>>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
x**2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LM', 1, exc)
monom = F.LM(order=opt.order)
return monom.as_expr()
@public
def LT(f, *gens, **args):
"""
Return the leading term of ``f``.
Examples
========
>>> from sympy import LT
>>> from sympy.abc import x, y
>>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
4*x**2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('LT', 1, exc)
monom, coeff = F.LT(order=opt.order)
return coeff*monom.as_expr()
@public
def pdiv(f, g, *gens, **args):
"""
Compute polynomial pseudo-division of ``f`` and ``g``.
Examples
========
>>> from sympy import pdiv
>>> from sympy.abc import x
>>> pdiv(x**2 + 1, 2*x - 4)
(2*x + 4, 20)
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pdiv', 2, exc)
q, r = F.pdiv(G)
if not opt.polys:
return q.as_expr(), r.as_expr()
else:
return q, r
@public
def prem(f, g, *gens, **args):
"""
Compute polynomial pseudo-remainder of ``f`` and ``g``.
Examples
========
>>> from sympy import prem
>>> from sympy.abc import x
>>> prem(x**2 + 1, 2*x - 4)
20
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('prem', 2, exc)
r = F.prem(G)
if not opt.polys:
return r.as_expr()
else:
return r
@public
def pquo(f, g, *gens, **args):
"""
Compute polynomial pseudo-quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import pquo
>>> from sympy.abc import x
>>> pquo(x**2 + 1, 2*x - 4)
2*x + 4
>>> pquo(x**2 - 1, 2*x - 1)
2*x + 1
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pquo', 2, exc)
try:
q = F.pquo(G)
except ExactQuotientFailed:
raise ExactQuotientFailed(f, g)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def pexquo(f, g, *gens, **args):
"""
Compute polynomial exact pseudo-quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import pexquo
>>> from sympy.abc import x
>>> pexquo(x**2 - 1, 2*x - 2)
2*x + 2
>>> pexquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('pexquo', 2, exc)
q = F.pexquo(G)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def div(f, g, *gens, **args):
"""
Compute polynomial division of ``f`` and ``g``.
Examples
========
>>> from sympy import div, ZZ, QQ
>>> from sympy.abc import x
>>> div(x**2 + 1, 2*x - 4, domain=ZZ)
(0, x**2 + 1)
>>> div(x**2 + 1, 2*x - 4, domain=QQ)
(x/2 + 1, 5)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('div', 2, exc)
q, r = F.div(G, auto=opt.auto)
if not opt.polys:
return q.as_expr(), r.as_expr()
else:
return q, r
@public
def rem(f, g, *gens, **args):
"""
Compute polynomial remainder of ``f`` and ``g``.
Examples
========
>>> from sympy import rem, ZZ, QQ
>>> from sympy.abc import x
>>> rem(x**2 + 1, 2*x - 4, domain=ZZ)
x**2 + 1
>>> rem(x**2 + 1, 2*x - 4, domain=QQ)
5
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('rem', 2, exc)
r = F.rem(G, auto=opt.auto)
if not opt.polys:
return r.as_expr()
else:
return r
@public
def quo(f, g, *gens, **args):
"""
Compute polynomial quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import quo
>>> from sympy.abc import x
>>> quo(x**2 + 1, 2*x - 4)
x/2 + 1
>>> quo(x**2 - 1, x - 1)
x + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('quo', 2, exc)
q = F.quo(G, auto=opt.auto)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def exquo(f, g, *gens, **args):
"""
Compute polynomial exact quotient of ``f`` and ``g``.
Examples
========
>>> from sympy import exquo
>>> from sympy.abc import x
>>> exquo(x**2 - 1, x - 1)
x + 1
>>> exquo(x**2 + 1, 2*x - 4)
Traceback (most recent call last):
...
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('exquo', 2, exc)
q = F.exquo(G, auto=opt.auto)
if not opt.polys:
return q.as_expr()
else:
return q
@public
def half_gcdex(f, g, *gens, **args):
"""
Half extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.
Examples
========
>>> from sympy import half_gcdex
>>> from sympy.abc import x
>>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x + 1)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
s, h = domain.half_gcdex(a, b)
except NotImplementedError:
raise ComputationFailed('half_gcdex', 2, exc)
else:
return domain.to_sympy(s), domain.to_sympy(h)
s, h = F.half_gcdex(G, auto=opt.auto)
if not opt.polys:
return s.as_expr(), h.as_expr()
else:
return s, h
@public
def gcdex(f, g, *gens, **args):
"""
Extended Euclidean algorithm of ``f`` and ``g``.
Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
Examples
========
>>> from sympy import gcdex
>>> from sympy.abc import x
>>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1)
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
s, t, h = domain.gcdex(a, b)
except NotImplementedError:
raise ComputationFailed('gcdex', 2, exc)
else:
return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h)
s, t, h = F.gcdex(G, auto=opt.auto)
if not opt.polys:
return s.as_expr(), t.as_expr(), h.as_expr()
else:
return s, t, h
@public
def invert(f, g, *gens, **args):
"""
Invert ``f`` modulo ``g`` when possible.
Examples
========
>>> from sympy import invert, S
>>> from sympy.core.numbers import mod_inverse
>>> from sympy.abc import x
>>> invert(x**2 - 1, 2*x - 1)
-4/3
>>> invert(x**2 - 1, x - 1)
Traceback (most recent call last):
...
NotInvertible: zero divisor
For more efficient inversion of Rationals,
use the :obj:`~.mod_inverse` function:
>>> mod_inverse(3, 5)
2
>>> (S(2)/5).invert(S(7)/3)
5/2
See Also
========
sympy.core.numbers.mod_inverse
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.invert(a, b))
except NotImplementedError:
raise ComputationFailed('invert', 2, exc)
h = F.invert(G, auto=opt.auto)
if not opt.polys:
return h.as_expr()
else:
return h
@public
def subresultants(f, g, *gens, **args):
"""
Compute subresultant PRS of ``f`` and ``g``.
Examples
========
>>> from sympy import subresultants
>>> from sympy.abc import x
>>> subresultants(x**2 + 1, x**2 - 1)
[x**2 + 1, x**2 - 1, -2]
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('subresultants', 2, exc)
result = F.subresultants(G)
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def resultant(f, g, *gens, **args):
"""
Compute resultant of ``f`` and ``g``.
Examples
========
>>> from sympy import resultant
>>> from sympy.abc import x
>>> resultant(x**2 + 1, x**2 - 1)
4
"""
includePRS = args.pop('includePRS', False)
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('resultant', 2, exc)
if includePRS:
result, R = F.resultant(G, includePRS=includePRS)
else:
result = F.resultant(G)
if not opt.polys:
if includePRS:
return result.as_expr(), [r.as_expr() for r in R]
return result.as_expr()
else:
if includePRS:
return result, R
return result
@public
def discriminant(f, *gens, **args):
"""
Compute discriminant of ``f``.
Examples
========
>>> from sympy import discriminant
>>> from sympy.abc import x
>>> discriminant(x**2 + 2*x + 3)
-8
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('discriminant', 1, exc)
result = F.discriminant()
if not opt.polys:
return result.as_expr()
else:
return result
@public
def cofactors(f, g, *gens, **args):
"""
Compute GCD and cofactors of ``f`` and ``g``.
Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
of ``f`` and ``g``.
Examples
========
>>> from sympy import cofactors
>>> from sympy.abc import x
>>> cofactors(x**2 - 1, x**2 - 3*x + 2)
(x - 1, x + 1, x - 2)
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
h, cff, cfg = domain.cofactors(a, b)
except NotImplementedError:
raise ComputationFailed('cofactors', 2, exc)
else:
return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg)
h, cff, cfg = F.cofactors(G)
if not opt.polys:
return h.as_expr(), cff.as_expr(), cfg.as_expr()
else:
return h, cff, cfg
@public
def gcd_list(seq, *gens, **args):
"""
Compute GCD of a list of polynomials.
Examples
========
>>> from sympy import gcd_list
>>> from sympy.abc import x
>>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x - 1
"""
seq = sympify(seq)
def try_non_polynomial_gcd(seq):
if not gens and not args:
domain, numbers = construct_domain(seq)
if not numbers:
return domain.zero
elif domain.is_Numerical:
result, numbers = numbers[0], numbers[1:]
for number in numbers:
result = domain.gcd(result, number)
if domain.is_one(result):
break
return domain.to_sympy(result)
return None
result = try_non_polynomial_gcd(seq)
if result is not None:
return result
options.allowed_flags(args, ['polys'])
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
# gcd for domain Q[irrational] (purely algebraic irrational)
if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
a = seq[-1]
lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
if all(frc.is_rational for frc in lst):
lc = 1
for frc in lst:
lc = lcm(lc, frc.as_numer_denom()[0])
return a/lc
except PolificationFailed as exc:
result = try_non_polynomial_gcd(exc.exprs)
if result is not None:
return result
else:
raise ComputationFailed('gcd_list', len(seq), exc)
if not polys:
if not opt.polys:
return S.Zero
else:
return Poly(0, opt=opt)
result, polys = polys[0], polys[1:]
for poly in polys:
result = result.gcd(poly)
if result.is_one:
break
if not opt.polys:
return result.as_expr()
else:
return result
@public
def gcd(f, g=None, *gens, **args):
"""
Compute GCD of ``f`` and ``g``.
Examples
========
>>> from sympy import gcd
>>> from sympy.abc import x
>>> gcd(x**2 - 1, x**2 - 3*x + 2)
x - 1
"""
if hasattr(f, '__iter__'):
if g is not None:
gens = (g,) + gens
return gcd_list(f, *gens, **args)
elif g is None:
raise TypeError("gcd() takes 2 arguments or a sequence of arguments")
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
# gcd for domain Q[irrational] (purely algebraic irrational)
a, b = map(sympify, (f, g))
if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
frc = (a/b).ratsimp()
if frc.is_rational:
return a/frc.as_numer_denom()[0]
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.gcd(a, b))
except NotImplementedError:
raise ComputationFailed('gcd', 2, exc)
result = F.gcd(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def lcm_list(seq, *gens, **args):
"""
Compute LCM of a list of polynomials.
Examples
========
>>> from sympy import lcm_list
>>> from sympy.abc import x
>>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
x**5 - x**4 - 2*x**3 - x**2 + x + 2
"""
seq = sympify(seq)
def try_non_polynomial_lcm(seq):
if not gens and not args:
domain, numbers = construct_domain(seq)
if not numbers:
return domain.one
elif domain.is_Numerical:
result, numbers = numbers[0], numbers[1:]
for number in numbers:
result = domain.lcm(result, number)
return domain.to_sympy(result)
return None
result = try_non_polynomial_lcm(seq)
if result is not None:
return result
options.allowed_flags(args, ['polys'])
try:
polys, opt = parallel_poly_from_expr(seq, *gens, **args)
# lcm for domain Q[irrational] (purely algebraic irrational)
if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
a = seq[-1]
lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
if all(frc.is_rational for frc in lst):
lc = 1
for frc in lst:
lc = lcm(lc, frc.as_numer_denom()[1])
return a*lc
except PolificationFailed as exc:
result = try_non_polynomial_lcm(exc.exprs)
if result is not None:
return result
else:
raise ComputationFailed('lcm_list', len(seq), exc)
if not polys:
if not opt.polys:
return S.One
else:
return Poly(1, opt=opt)
result, polys = polys[0], polys[1:]
for poly in polys:
result = result.lcm(poly)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def lcm(f, g=None, *gens, **args):
"""
Compute LCM of ``f`` and ``g``.
Examples
========
>>> from sympy import lcm
>>> from sympy.abc import x
>>> lcm(x**2 - 1, x**2 - 3*x + 2)
x**3 - 2*x**2 - x + 2
"""
if hasattr(f, '__iter__'):
if g is not None:
gens = (g,) + gens
return lcm_list(f, *gens, **args)
elif g is None:
raise TypeError("lcm() takes 2 arguments or a sequence of arguments")
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
# lcm for domain Q[irrational] (purely algebraic irrational)
a, b = map(sympify, (f, g))
if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
frc = (a/b).ratsimp()
if frc.is_rational:
return a*frc.as_numer_denom()[1]
except PolificationFailed as exc:
domain, (a, b) = construct_domain(exc.exprs)
try:
return domain.to_sympy(domain.lcm(a, b))
except NotImplementedError:
raise ComputationFailed('lcm', 2, exc)
result = F.lcm(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def terms_gcd(f, *gens, **args):
"""
Remove GCD of terms from ``f``.
If the ``deep`` flag is True, then the arguments of ``f`` will have
terms_gcd applied to them.
If a fraction is factored out of ``f`` and ``f`` is an Add, then
an unevaluated Mul will be returned so that automatic simplification
does not redistribute it. The hint ``clear``, when set to False, can be
used to prevent such factoring when all coefficients are not fractions.
Examples
========
>>> from sympy import terms_gcd, cos
>>> from sympy.abc import x, y
>>> terms_gcd(x**6*y**2 + x**3*y, x, y)
x**3*y*(x**3*y + 1)
The default action of polys routines is to expand the expression
given to them. terms_gcd follows this behavior:
>>> terms_gcd((3+3*x)*(x+x*y))
3*x*(x*y + x + y + 1)
If this is not desired then the hint ``expand`` can be set to False.
In this case the expression will be treated as though it were comprised
of one or more terms:
>>> terms_gcd((3+3*x)*(x+x*y), expand=False)
(3*x + 3)*(x*y + x)
In order to traverse factors of a Mul or the arguments of other
functions, the ``deep`` hint can be used:
>>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True)
3*x*(x + 1)*(y + 1)
>>> terms_gcd(cos(x + x*y), deep=True)
cos(x*(y + 1))
Rationals are factored out by default:
>>> terms_gcd(x + y/2)
(2*x + y)/2
Only the y-term had a coefficient that was a fraction; if one
does not want to factor out the 1/2 in cases like this, the
flag ``clear`` can be set to False:
>>> terms_gcd(x + y/2, clear=False)
x + y/2
>>> terms_gcd(x*y/2 + y**2, clear=False)
y*(x/2 + y)
The ``clear`` flag is ignored if all coefficients are fractions:
>>> terms_gcd(x/3 + y/2, clear=False)
(2*x + 3*y)/6
See Also
========
sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms
"""
from sympy.core.relational import Equality
orig = sympify(f)
if not isinstance(f, Expr) or f.is_Atom:
return orig
if args.get('deep', False):
new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args])
args.pop('deep')
args['expand'] = False
return terms_gcd(new, *gens, **args)
if isinstance(f, Equality):
return f
clear = args.pop('clear', True)
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
return exc.expr
J, f = F.terms_gcd()
if opt.domain.is_Ring:
if opt.domain.is_Field:
denom, f = f.clear_denoms(convert=True)
coeff, f = f.primitive()
if opt.domain.is_Field:
coeff /= denom
else:
coeff = S.One
term = Mul(*[x**j for x, j in zip(f.gens, J)])
if coeff == 1:
coeff = S.One
if term == 1:
return orig
if clear:
return _keep_coeff(coeff, term*f.as_expr())
# base the clearing on the form of the original expression, not
# the (perhaps) Mul that we have now
coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul()
return _keep_coeff(coeff, term*f, clear=False)
@public
def trunc(f, p, *gens, **args):
"""
Reduce ``f`` modulo a constant ``p``.
Examples
========
>>> from sympy import trunc
>>> from sympy.abc import x
>>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
-x**3 - x + 1
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('trunc', 1, exc)
result = F.trunc(sympify(p))
if not opt.polys:
return result.as_expr()
else:
return result
@public
def monic(f, *gens, **args):
"""
Divide all coefficients of ``f`` by ``LC(f)``.
Examples
========
>>> from sympy import monic
>>> from sympy.abc import x
>>> monic(3*x**2 + 4*x + 2)
x**2 + 4*x/3 + 2/3
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('monic', 1, exc)
result = F.monic(auto=opt.auto)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def content(f, *gens, **args):
"""
Compute GCD of coefficients of ``f``.
Examples
========
>>> from sympy import content
>>> from sympy.abc import x
>>> content(6*x**2 + 8*x + 12)
2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('content', 1, exc)
return F.content()
@public
def primitive(f, *gens, **args):
"""
Compute content and the primitive form of ``f``.
Examples
========
>>> from sympy.polys.polytools import primitive
>>> from sympy.abc import x
>>> primitive(6*x**2 + 8*x + 12)
(2, 3*x**2 + 4*x + 6)
>>> eq = (2 + 2*x)*x + 2
Expansion is performed by default:
>>> primitive(eq)
(2, x**2 + x + 1)
Set ``expand`` to False to shut this off. Note that the
extraction will not be recursive; use the as_content_primitive method
for recursive, non-destructive Rational extraction.
>>> primitive(eq, expand=False)
(1, x*(2*x + 2) + 2)
>>> eq.as_content_primitive()
(2, x*(x + 1) + 1)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('primitive', 1, exc)
cont, result = F.primitive()
if not opt.polys:
return cont, result.as_expr()
else:
return cont, result
@public
def compose(f, g, *gens, **args):
"""
Compute functional composition ``f(g)``.
Examples
========
>>> from sympy import compose
>>> from sympy.abc import x
>>> compose(x**2 + x, x - 1)
x**2 - x
"""
options.allowed_flags(args, ['polys'])
try:
(F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('compose', 2, exc)
result = F.compose(G)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def decompose(f, *gens, **args):
"""
Compute functional decomposition of ``f``.
Examples
========
>>> from sympy import decompose
>>> from sympy.abc import x
>>> decompose(x**4 + 2*x**3 - x - 1)
[x**2 - x - 1, x**2 + x]
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('decompose', 1, exc)
result = F.decompose()
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def sturm(f, *gens, **args):
"""
Compute Sturm sequence of ``f``.
Examples
========
>>> from sympy import sturm
>>> from sympy.abc import x
>>> sturm(x**3 - 2*x**2 + x - 3)
[x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4]
"""
options.allowed_flags(args, ['auto', 'polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sturm', 1, exc)
result = F.sturm(auto=opt.auto)
if not opt.polys:
return [r.as_expr() for r in result]
else:
return result
@public
def gff_list(f, *gens, **args):
"""
Compute a list of greatest factorial factors of ``f``.
Note that the input to ff() and rf() should be Poly instances to use the
definitions here.
Examples
========
>>> from sympy import gff_list, ff, Poly
>>> from sympy.abc import x
>>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x)
>>> gff_list(f)
[(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]
>>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)).expand() == f
True
>>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \
1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x)
>>> gff_list(f)
[(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)]
>>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f
True
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('gff_list', 1, exc)
factors = F.gff_list()
if not opt.polys:
return [(g.as_expr(), k) for g, k in factors]
else:
return factors
@public
def gff(f, *gens, **args):
"""Compute greatest factorial factorization of ``f``. """
raise NotImplementedError('symbolic falling factorial')
@public
def sqf_norm(f, *gens, **args):
"""
Compute square-free norm of ``f``.
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
where ``a`` is the algebraic extension of the ground domain.
Examples
========
>>> from sympy import sqf_norm, sqrt
>>> from sympy.abc import x
>>> sqf_norm(x**2 + 1, extension=[sqrt(3)])
(1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sqf_norm', 1, exc)
s, g, r = F.sqf_norm()
if not opt.polys:
return Integer(s), g.as_expr(), r.as_expr()
else:
return Integer(s), g, r
@public
def sqf_part(f, *gens, **args):
"""
Compute square-free part of ``f``.
Examples
========
>>> from sympy import sqf_part
>>> from sympy.abc import x
>>> sqf_part(x**3 - 3*x - 2)
x**2 - x - 2
"""
options.allowed_flags(args, ['polys'])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('sqf_part', 1, exc)
result = F.sqf_part()
if not opt.polys:
return result.as_expr()
else:
return result
def _sorted_factors(factors, method):
"""Sort a list of ``(expr, exp)`` pairs. """
if method == 'sqf':
def key(obj):
poly, exp = obj
rep = poly.rep.rep
return (exp, len(rep), len(poly.gens), rep)
else:
def key(obj):
poly, exp = obj
rep = poly.rep.rep
return (len(rep), len(poly.gens), exp, rep)
return sorted(factors, key=key)
def _factors_product(factors):
"""Multiply a list of ``(expr, exp)`` pairs. """
return Mul(*[f.as_expr()**k for f, k in factors])
def _symbolic_factor_list(expr, opt, method):
"""Helper function for :func:`_symbolic_factor`. """
coeff, factors = S.One, []
args = [i._eval_factor() if hasattr(i, '_eval_factor') else i
for i in Mul.make_args(expr)]
for arg in args:
if arg.is_Number:
coeff *= arg
continue
if arg.is_Mul:
args.extend(arg.args)
continue
if arg.is_Pow:
base, exp = arg.args
if base.is_Number and exp.is_Number:
coeff *= arg
continue
if base.is_Number:
factors.append((base, exp))
continue
else:
base, exp = arg, S.One
try:
poly, _ = _poly_from_expr(base, opt)
except PolificationFailed as exc:
factors.append((exc.expr, exp))
else:
func = getattr(poly, method + '_list')
_coeff, _factors = func()
if _coeff is not S.One:
if exp.is_Integer:
coeff *= _coeff**exp
elif _coeff.is_positive:
factors.append((_coeff, exp))
else:
_factors.append((_coeff, S.One))
if exp is S.One:
factors.extend(_factors)
elif exp.is_integer:
factors.extend([(f, k*exp) for f, k in _factors])
else:
other = []
for f, k in _factors:
if f.as_expr().is_positive:
factors.append((f, k*exp))
else:
other.append((f, k))
factors.append((_factors_product(other), exp))
return coeff, factors
def _symbolic_factor(expr, opt, method):
"""Helper function for :func:`_factor`. """
if isinstance(expr, Expr) and not expr.is_Relational:
if hasattr(expr,'_eval_factor'):
return expr._eval_factor()
coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method)
return _keep_coeff(coeff, _factors_product(factors))
elif hasattr(expr, 'args'):
return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args])
elif hasattr(expr, '__iter__'):
return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr])
else:
return expr
def _generic_factor_list(expr, gens, args, method):
"""Helper function for :func:`sqf_list` and :func:`factor_list`. """
options.allowed_flags(args, ['frac', 'polys'])
opt = options.build_options(gens, args)
expr = sympify(expr)
if isinstance(expr, Expr) and not expr.is_Relational:
numer, denom = together(expr).as_numer_denom()
cp, fp = _symbolic_factor_list(numer, opt, method)
cq, fq = _symbolic_factor_list(denom, opt, method)
if fq and not opt.frac:
raise PolynomialError("a polynomial expected, got %s" % expr)
_opt = opt.clone(dict(expand=True))
for factors in (fp, fq):
for i, (f, k) in enumerate(factors):
if not f.is_Poly:
f, _ = _poly_from_expr(f, _opt)
factors[i] = (f, k)
fp = _sorted_factors(fp, method)
fq = _sorted_factors(fq, method)
if not opt.polys:
fp = [(f.as_expr(), k) for f, k in fp]
fq = [(f.as_expr(), k) for f, k in fq]
coeff = cp/cq
if not opt.frac:
return coeff, fp
else:
return coeff, fp, fq
else:
raise PolynomialError("a polynomial expected, got %s" % expr)
def _generic_factor(expr, gens, args, method):
"""Helper function for :func:`sqf` and :func:`factor`. """
fraction = args.pop('fraction', True)
options.allowed_flags(args, [])
opt = options.build_options(gens, args)
opt['fraction'] = fraction
return _symbolic_factor(sympify(expr), opt, method)
def to_rational_coeffs(f):
"""
try to transform a polynomial to have rational coefficients
try to find a transformation ``x = alpha*y``
``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with
rational coefficients, ``lc`` the leading coefficient.
If this fails, try ``x = y + beta``
``f(x) = g(y)``
Returns ``None`` if ``g`` not found;
``(lc, alpha, None, g)`` in case of rescaling
``(None, None, beta, g)`` in case of translation
Notes
=====
Currently it transforms only polynomials without roots larger than 2.
Examples
========
>>> from sympy import sqrt, Poly, simplify
>>> from sympy.polys.polytools import to_rational_coeffs
>>> from sympy.abc import x
>>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX')
>>> lc, r, _, g = to_rational_coeffs(p)
>>> lc, r
(7 + 5*sqrt(2), 2 - 2*sqrt(2))
>>> g
Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ')
>>> r1 = simplify(1/r)
>>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p
True
"""
from sympy.simplify.simplify import simplify
def _try_rescale(f, f1=None):
"""
try rescaling ``x -> alpha*x`` to convert f to a polynomial
with rational coefficients.
Returns ``alpha, f``; if the rescaling is successful,
``alpha`` is the rescaling factor, and ``f`` is the rescaled
polynomial; else ``alpha`` is ``None``.
"""
from sympy.core.add import Add
if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
return None, f
n = f.degree()
lc = f.LC()
f1 = f1 or f1.monic()
coeffs = f1.all_coeffs()[1:]
coeffs = [simplify(coeffx) for coeffx in coeffs]
if coeffs[-2]:
rescale1_x = simplify(coeffs[-2]/coeffs[-1])
coeffs1 = []
for i in range(len(coeffs)):
coeffx = simplify(coeffs[i]*rescale1_x**(i + 1))
if not coeffx.is_rational:
break
coeffs1.append(coeffx)
else:
rescale_x = simplify(1/rescale1_x)
x = f.gens[0]
v = [x**n]
for i in range(1, n + 1):
v.append(coeffs1[i - 1]*x**(n - i))
f = Add(*v)
f = Poly(f)
return lc, rescale_x, f
return None
def _try_translate(f, f1=None):
"""
try translating ``x -> x + alpha`` to convert f to a polynomial
with rational coefficients.
Returns ``alpha, f``; if the translating is successful,
``alpha`` is the translating factor, and ``f`` is the shifted
polynomial; else ``alpha`` is ``None``.
"""
from sympy.core.add import Add
if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
return None, f
n = f.degree()
f1 = f1 or f1.monic()
coeffs = f1.all_coeffs()[1:]
c = simplify(coeffs[0])
if c and not c.is_rational:
func = Add
if c.is_Add:
args = c.args
func = c.func
else:
args = [c]
c1, c2 = sift(args, lambda z: z.is_rational, binary=True)
alpha = -func(*c2)/n
f2 = f1.shift(alpha)
return alpha, f2
return None
def _has_square_roots(p):
"""
Return True if ``f`` is a sum with square roots but no other root
"""
from sympy.core.exprtools import Factors
coeffs = p.coeffs()
has_sq = False
for y in coeffs:
for x in Add.make_args(y):
f = Factors(x).factors
r = [wx.q for b, wx in f.items() if
b.is_number and wx.is_Rational and wx.q >= 2]
if not r:
continue
if min(r) == 2:
has_sq = True
if max(r) > 2:
return False
return has_sq
if f.get_domain().is_EX and _has_square_roots(f):
f1 = f.monic()
r = _try_rescale(f, f1)
if r:
return r[0], r[1], None, r[2]
else:
r = _try_translate(f, f1)
if r:
return None, None, r[0], r[1]
return None
def _torational_factor_list(p, x):
"""
helper function to factor polynomial using to_rational_coeffs
Examples
========
>>> from sympy.polys.polytools import _torational_factor_list
>>> from sympy.abc import x
>>> from sympy import sqrt, expand, Mul
>>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
>>> factors = _torational_factor_list(p, x); factors
(-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)])
>>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
True
>>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)}))
>>> factors = _torational_factor_list(p, x); factors
(1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)])
>>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
True
"""
from sympy.simplify.simplify import simplify
p1 = Poly(p, x, domain='EX')
n = p1.degree()
res = to_rational_coeffs(p1)
if not res:
return None
lc, r, t, g = res
factors = factor_list(g.as_expr())
if lc:
c = simplify(factors[0]*lc*r**n)
r1 = simplify(1/r)
a = []
for z in factors[1:][0]:
a.append((simplify(z[0].subs({x: x*r1})), z[1]))
else:
c = factors[0]
a = []
for z in factors[1:][0]:
a.append((z[0].subs({x: x - t}), z[1]))
return (c, a)
@public
def sqf_list(f, *gens, **args):
"""
Compute a list of square-free factors of ``f``.
Examples
========
>>> from sympy import sqf_list
>>> from sympy.abc import x
>>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
(2, [(x + 1, 2), (x + 2, 3)])
"""
return _generic_factor_list(f, gens, args, method='sqf')
@public
def sqf(f, *gens, **args):
"""
Compute square-free factorization of ``f``.
Examples
========
>>> from sympy import sqf
>>> from sympy.abc import x
>>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
2*(x + 1)**2*(x + 2)**3
"""
return _generic_factor(f, gens, args, method='sqf')
@public
def factor_list(f, *gens, **args):
"""
Compute a list of irreducible factors of ``f``.
Examples
========
>>> from sympy import factor_list
>>> from sympy.abc import x, y
>>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
(2, [(x + y, 1), (x**2 + 1, 2)])
"""
return _generic_factor_list(f, gens, args, method='factor')
@public
def factor(f, *gens, **args):
"""
Compute the factorization of expression, ``f``, into irreducibles. (To
factor an integer into primes, use ``factorint``.)
There two modes implemented: symbolic and formal. If ``f`` is not an
instance of :class:`Poly` and generators are not specified, then the
former mode is used. Otherwise, the formal mode is used.
In symbolic mode, :func:`factor` will traverse the expression tree and
factor its components without any prior expansion, unless an instance
of :class:`~.Add` is encountered (in this case formal factorization is
used). This way :func:`factor` can handle large or symbolic exponents.
By default, the factorization is computed over the rationals. To factor
over other domain, e.g. an algebraic or finite field, use appropriate
options: ``extension``, ``modulus`` or ``domain``.
Examples
========
>>> from sympy import factor, sqrt, exp
>>> from sympy.abc import x, y
>>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
2*(x + y)*(x**2 + 1)**2
>>> factor(x**2 + 1)
x**2 + 1
>>> factor(x**2 + 1, modulus=2)
(x + 1)**2
>>> factor(x**2 + 1, gaussian=True)
(x - I)*(x + I)
>>> factor(x**2 - 2, extension=sqrt(2))
(x - sqrt(2))*(x + sqrt(2))
>>> factor((x**2 - 1)/(x**2 + 4*x + 4))
(x - 1)*(x + 1)/(x + 2)**2
>>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1))
(x + 2)**20000000*(x**2 + 1)
By default, factor deals with an expression as a whole:
>>> eq = 2**(x**2 + 2*x + 1)
>>> factor(eq)
2**(x**2 + 2*x + 1)
If the ``deep`` flag is True then subexpressions will
be factored:
>>> factor(eq, deep=True)
2**((x + 1)**2)
If the ``fraction`` flag is False then rational expressions
won't be combined. By default it is True.
>>> factor(5*x + 3*exp(2 - 7*x), deep=True)
(5*x*exp(7*x) + 3*exp(2))*exp(-7*x)
>>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False)
5*x + 3*exp(2)*exp(-7*x)
See Also
========
sympy.ntheory.factor_.factorint
"""
f = sympify(f)
if args.pop('deep', False):
from sympy.simplify.simplify import bottom_up
def _try_factor(expr):
"""
Factor, but avoid changing the expression when unable to.
"""
fac = factor(expr, *gens, **args)
if fac.is_Mul or fac.is_Pow:
return fac
return expr
f = bottom_up(f, _try_factor)
# clean up any subexpressions that may have been expanded
# while factoring out a larger expression
partials = {}
muladd = f.atoms(Mul, Add)
for p in muladd:
fac = factor(p, *gens, **args)
if (fac.is_Mul or fac.is_Pow) and fac != p:
partials[p] = fac
return f.xreplace(partials)
try:
return _generic_factor(f, gens, args, method='factor')
except PolynomialError as msg:
if not f.is_commutative:
from sympy.core.exprtools import factor_nc
return factor_nc(f)
else:
raise PolynomialError(msg)
@public
def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False):
"""
Compute isolating intervals for roots of ``f``.
Examples
========
>>> from sympy import intervals
>>> from sympy.abc import x
>>> intervals(x**2 - 3)
[((-2, -1), 1), ((1, 2), 1)]
>>> intervals(x**2 - 3, eps=1e-2)
[((-26/15, -19/11), 1), ((19/11, 26/15), 1)]
"""
if not hasattr(F, '__iter__'):
try:
F = Poly(F)
except GeneratorsNeeded:
return []
return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
else:
polys, opt = parallel_poly_from_expr(F, domain='QQ')
if len(opt.gens) > 1:
raise MultivariatePolynomialError
for i, poly in enumerate(polys):
polys[i] = poly.rep.rep
if eps is not None:
eps = opt.domain.convert(eps)
if eps <= 0:
raise ValueError("'eps' must be a positive rational")
if inf is not None:
inf = opt.domain.convert(inf)
if sup is not None:
sup = opt.domain.convert(sup)
intervals = dup_isolate_real_roots_list(polys, opt.domain,
eps=eps, inf=inf, sup=sup, strict=strict, fast=fast)
result = []
for (s, t), indices in intervals:
s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t)
result.append(((s, t), indices))
return result
@public
def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
"""
Refine an isolating interval of a root to the given precision.
Examples
========
>>> from sympy import refine_root
>>> from sympy.abc import x
>>> refine_root(x**2 - 3, 1, 2, eps=1e-2)
(19/11, 26/15)
"""
try:
F = Poly(f)
except GeneratorsNeeded:
raise PolynomialError(
"can't refine a root of %s, not a polynomial" % f)
return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf)
@public
def count_roots(f, inf=None, sup=None):
"""
Return the number of roots of ``f`` in ``[inf, sup]`` interval.
If one of ``inf`` or ``sup`` is complex, it will return the number of roots
in the complex rectangle with corners at ``inf`` and ``sup``.
Examples
========
>>> from sympy import count_roots, I
>>> from sympy.abc import x
>>> count_roots(x**4 - 4, -3, 3)
2
>>> count_roots(x**4 - 4, 0, 1 + 3*I)
1
"""
try:
F = Poly(f, greedy=False)
except GeneratorsNeeded:
raise PolynomialError("can't count roots of %s, not a polynomial" % f)
return F.count_roots(inf=inf, sup=sup)
@public
def real_roots(f, multiple=True):
"""
Return a list of real roots with multiplicities of ``f``.
Examples
========
>>> from sympy import real_roots
>>> from sympy.abc import x
>>> real_roots(2*x**3 - 7*x**2 + 4*x + 4)
[-1/2, 2, 2]
"""
try:
F = Poly(f, greedy=False)
except GeneratorsNeeded:
raise PolynomialError(
"can't compute real roots of %s, not a polynomial" % f)
return F.real_roots(multiple=multiple)
@public
def nroots(f, n=15, maxsteps=50, cleanup=True):
"""
Compute numerical approximations of roots of ``f``.
Examples
========
>>> from sympy import nroots
>>> from sympy.abc import x
>>> nroots(x**2 - 3, n=15)
[-1.73205080756888, 1.73205080756888]
>>> nroots(x**2 - 3, n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
"""
try:
F = Poly(f, greedy=False)
except GeneratorsNeeded:
raise PolynomialError(
"can't compute numerical roots of %s, not a polynomial" % f)
return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup)
@public
def ground_roots(f, *gens, **args):
"""
Compute roots of ``f`` by factorization in the ground domain.
Examples
========
>>> from sympy import ground_roots
>>> from sympy.abc import x
>>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2)
{0: 2, 1: 2}
"""
options.allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('ground_roots', 1, exc)
return F.ground_roots()
@public
def nth_power_roots_poly(f, n, *gens, **args):
"""
Construct a polynomial with n-th powers of roots of ``f``.
Examples
========
>>> from sympy import nth_power_roots_poly, factor, roots
>>> from sympy.abc import x
>>> f = x**4 - x**2 + 1
>>> g = factor(nth_power_roots_poly(f, 2))
>>> g
(x**2 - x + 1)**2
>>> R_f = [ (r**2).expand() for r in roots(f) ]
>>> R_g = roots(g).keys()
>>> set(R_f) == set(R_g)
True
"""
options.allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('nth_power_roots_poly', 1, exc)
result = F.nth_power_roots_poly(n)
if not opt.polys:
return result.as_expr()
else:
return result
@public
def cancel(f, *gens, **args):
"""
Cancel common factors in a rational function ``f``.
Examples
========
>>> from sympy import cancel, sqrt, Symbol
>>> from sympy.abc import x
>>> A = Symbol('A', commutative=False)
>>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1))
(2*x + 2)/(x - 1)
>>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A))
sqrt(6)/2
"""
from sympy.core.exprtools import factor_terms
from sympy.functions.elementary.piecewise import Piecewise
options.allowed_flags(args, ['polys'])
f = sympify(f)
if not isinstance(f, (tuple, Tuple)):
if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr):
return f
f = factor_terms(f, radical=True)
p, q = f.as_numer_denom()
elif len(f) == 2:
p, q = f
elif isinstance(f, Tuple):
return factor_terms(f)
else:
raise ValueError('unexpected argument: %s' % f)
try:
(F, G), opt = parallel_poly_from_expr((p, q), *gens, **args)
except PolificationFailed:
if not isinstance(f, (tuple, Tuple)):
return f
else:
return S.One, p, q
except PolynomialError as msg:
if f.is_commutative and not f.has(Piecewise):
raise PolynomialError(msg)
# Handling of noncommutative and/or piecewise expressions
if f.is_Add or f.is_Mul:
c, nc = sift(f.args, lambda x:
x.is_commutative is True and not x.has(Piecewise),
binary=True)
nc = [cancel(i) for i in nc]
return f.func(cancel(f.func(*c)), *nc)
else:
reps = []
pot = preorder_traversal(f)
next(pot)
for e in pot:
# XXX: This should really skip anything that's not Expr.
if isinstance(e, (tuple, Tuple, BooleanAtom)):
continue
try:
reps.append((e, cancel(e)))
pot.skip() # this was handled successfully
except NotImplementedError:
pass
return f.xreplace(dict(reps))
c, P, Q = F.cancel(G)
if not isinstance(f, (tuple, Tuple)):
return c*(P.as_expr()/Q.as_expr())
else:
if not opt.polys:
return c, P.as_expr(), Q.as_expr()
else:
return c, P, Q
@public
def reduced(f, G, *gens, **args):
"""
Reduces a polynomial ``f`` modulo a set of polynomials ``G``.
Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r``
is a completely reduced polynomial with respect to ``G``.
Examples
========
>>> from sympy import reduced
>>> from sympy.abc import x, y
>>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y])
([2*x, 1], x**2 + y**2 + y)
"""
options.allowed_flags(args, ['polys', 'auto'])
try:
polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('reduced', 0, exc)
domain = opt.domain
retract = False
if opt.auto and domain.is_Ring and not domain.is_Field:
opt = opt.clone(dict(domain=domain.get_field()))
retract = True
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, opt.order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
Q, r = polys[0].div(polys[1:])
Q = [Poly._from_dict(dict(q), opt) for q in Q]
r = Poly._from_dict(dict(r), opt)
if retract:
try:
_Q, _r = [q.to_ring() for q in Q], r.to_ring()
except CoercionFailed:
pass
else:
Q, r = _Q, _r
if not opt.polys:
return [q.as_expr() for q in Q], r.as_expr()
else:
return Q, r
@public
def groebner(F, *gens, **args):
"""
Computes the reduced Groebner basis for a set of polynomials.
Use the ``order`` argument to set the monomial ordering that will be
used to compute the basis. Allowed orders are ``lex``, ``grlex`` and
``grevlex``. If no order is specified, it defaults to ``lex``.
For more information on Groebner bases, see the references and the docstring
of :func:`~.solve_poly_system`.
Examples
========
Example taken from [1].
>>> from sympy import groebner
>>> from sympy.abc import x, y
>>> F = [x*y - 2*y, 2*y**2 - x**2]
>>> groebner(F, x, y, order='lex')
GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y,
domain='ZZ', order='lex')
>>> groebner(F, x, y, order='grlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
domain='ZZ', order='grlex')
>>> groebner(F, x, y, order='grevlex')
GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
domain='ZZ', order='grevlex')
By default, an improved implementation of the Buchberger algorithm is
used. Optionally, an implementation of the F5B algorithm can be used. The
algorithm can be set using the ``method`` flag or with the
:func:`sympy.polys.polyconfig.setup` function.
>>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)]
>>> groebner(F, x, y, method='buchberger')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
>>> groebner(F, x, y, method='f5b')
GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
References
==========
1. [Buchberger01]_
2. [Cox97]_
"""
return GroebnerBasis(F, *gens, **args)
@public
def is_zero_dimensional(F, *gens, **args):
"""
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the
leading monomial of any element of ``F`` is bounded.
References
==========
David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
Algorithms, 3rd edition, p. 230
"""
return GroebnerBasis(F, *gens, **args).is_zero_dimensional
@public
class GroebnerBasis(Basic):
"""Represents a reduced Groebner basis. """
def __new__(cls, F, *gens, **args):
"""Compute a reduced Groebner basis for a system of polynomials. """
options.allowed_flags(args, ['polys', 'method'])
try:
polys, opt = parallel_poly_from_expr(F, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('groebner', len(F), exc)
from sympy.polys.rings import PolyRing
ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly]
G = _groebner(polys, ring, method=opt.method)
G = [Poly._from_dict(g, opt) for g in G]
return cls._new(G, opt)
@classmethod
def _new(cls, basis, options):
obj = Basic.__new__(cls)
obj._basis = tuple(basis)
obj._options = options
return obj
@property
def args(self):
return (Tuple(*self._basis), Tuple(*self._options.gens))
@property
def exprs(self):
return [poly.as_expr() for poly in self._basis]
@property
def polys(self):
return list(self._basis)
@property
def gens(self):
return self._options.gens
@property
def domain(self):
return self._options.domain
@property
def order(self):
return self._options.order
def __len__(self):
return len(self._basis)
def __iter__(self):
if self._options.polys:
return iter(self.polys)
else:
return iter(self.exprs)
def __getitem__(self, item):
if self._options.polys:
basis = self.polys
else:
basis = self.exprs
return basis[item]
def __hash__(self):
return hash((self._basis, tuple(self._options.items())))
def __eq__(self, other):
if isinstance(other, self.__class__):
return self._basis == other._basis and self._options == other._options
elif iterable(other):
return self.polys == list(other) or self.exprs == list(other)
else:
return False
def __ne__(self, other):
return not self == other
@property
def is_zero_dimensional(self):
"""
Checks if the ideal generated by a Groebner basis is zero-dimensional.
The algorithm checks if the set of monomials not divisible by the
leading monomial of any element of ``F`` is bounded.
References
==========
David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
Algorithms, 3rd edition, p. 230
"""
def single_var(monomial):
return sum(map(bool, monomial)) == 1
exponents = Monomial([0]*len(self.gens))
order = self._options.order
for poly in self.polys:
monomial = poly.LM(order=order)
if single_var(monomial):
exponents *= monomial
# If any element of the exponents vector is zero, then there's
# a variable for which there's no degree bound and the ideal
# generated by this Groebner basis isn't zero-dimensional.
return all(exponents)
def fglm(self, order):
"""
Convert a Groebner basis from one ordering to another.
The FGLM algorithm converts reduced Groebner bases of zero-dimensional
ideals from one ordering to another. This method is often used when it
is infeasible to compute a Groebner basis with respect to a particular
ordering directly.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import groebner
>>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
>>> G = groebner(F, x, y, order='grlex')
>>> list(G.fglm('lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
>>> list(groebner(F, x, y, order='lex'))
[2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
References
==========
.. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
Computation of Zero-dimensional Groebner Bases by Change of
Ordering
"""
opt = self._options
src_order = opt.order
dst_order = monomial_key(order)
if src_order == dst_order:
return self
if not self.is_zero_dimensional:
raise NotImplementedError("can't convert Groebner bases of ideals with positive dimension")
polys = list(self._basis)
domain = opt.domain
opt = opt.clone(dict(
domain=domain.get_field(),
order=dst_order,
))
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, src_order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
G = matrix_fglm(polys, _ring, dst_order)
G = [Poly._from_dict(dict(g), opt) for g in G]
if not domain.is_Field:
G = [g.clear_denoms(convert=True)[1] for g in G]
opt.domain = domain
return self._new(G, opt)
def reduce(self, expr, auto=True):
"""
Reduces a polynomial modulo a Groebner basis.
Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r``
is a completely reduced polynomial with respect to ``G``.
Examples
========
>>> from sympy import groebner, expand
>>> from sympy.abc import x, y
>>> f = 2*x**4 - x**2 + y**3 + y**2
>>> G = groebner([x**3 - x, y**3 - y])
>>> G.reduce(f)
([2*x, 1], x**2 + y**2 + y)
>>> Q, r = _
>>> expand(sum(q*g for q, g in zip(Q, G)) + r)
2*x**4 - x**2 + y**3 + y**2
>>> _ == f
True
"""
poly = Poly._from_expr(expr, self._options)
polys = [poly] + list(self._basis)
opt = self._options
domain = opt.domain
retract = False
if auto and domain.is_Ring and not domain.is_Field:
opt = opt.clone(dict(domain=domain.get_field()))
retract = True
from sympy.polys.rings import xring
_ring, _ = xring(opt.gens, opt.domain, opt.order)
for i, poly in enumerate(polys):
poly = poly.set_domain(opt.domain).rep.to_dict()
polys[i] = _ring.from_dict(poly)
Q, r = polys[0].div(polys[1:])
Q = [Poly._from_dict(dict(q), opt) for q in Q]
r = Poly._from_dict(dict(r), opt)
if retract:
try:
_Q, _r = [q.to_ring() for q in Q], r.to_ring()
except CoercionFailed:
pass
else:
Q, r = _Q, _r
if not opt.polys:
return [q.as_expr() for q in Q], r.as_expr()
else:
return Q, r
def contains(self, poly):
"""
Check if ``poly`` belongs the ideal generated by ``self``.
Examples
========
>>> from sympy import groebner
>>> from sympy.abc import x, y
>>> f = 2*x**3 + y**3 + 3*y
>>> G = groebner([x**2 + y**2 - 1, x*y - 2])
>>> G.contains(f)
True
>>> G.contains(f + 1)
False
"""
return self.reduce(poly)[1] == 0
@public
def poly(expr, *gens, **args):
"""
Efficiently transform an expression into a polynomial.
Examples
========
>>> from sympy import poly
>>> from sympy.abc import x
>>> poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
"""
options.allowed_flags(args, [])
def _poly(expr, opt):
terms, poly_terms = [], []
for term in Add.make_args(expr):
factors, poly_factors = [], []
for factor in Mul.make_args(term):
if factor.is_Add:
poly_factors.append(_poly(factor, opt))
elif factor.is_Pow and factor.base.is_Add and \
factor.exp.is_Integer and factor.exp >= 0:
poly_factors.append(
_poly(factor.base, opt).pow(factor.exp))
else:
factors.append(factor)
if not poly_factors:
terms.append(term)
else:
product = poly_factors[0]
for factor in poly_factors[1:]:
product = product.mul(factor)
if factors:
factor = Mul(*factors)
if factor.is_Number:
product = product.mul(factor)
else:
product = product.mul(Poly._from_expr(factor, opt))
poly_terms.append(product)
if not poly_terms:
result = Poly._from_expr(expr, opt)
else:
result = poly_terms[0]
for term in poly_terms[1:]:
result = result.add(term)
if terms:
term = Add(*terms)
if term.is_Number:
result = result.add(term)
else:
result = result.add(Poly._from_expr(term, opt))
return result.reorder(*opt.get('gens', ()), **args)
expr = sympify(expr)
if expr.is_Poly:
return Poly(expr, *gens, **args)
if 'expand' not in args:
args['expand'] = False
opt = options.build_options(gens, args)
return _poly(expr, opt)
|
3faab6be1e84e23c36d6ac40ac8f863f379d87f9dd78d3d970567a0601b23e50 | """Functions for generating interesting polynomials, e.g. for benchmarking. """
from __future__ import print_function, division
from sympy.core import Add, Mul, Symbol, sympify, Dummy, symbols
from sympy.core.compatibility import range, string_types
from sympy.core.containers import Tuple
from sympy.core.singleton import S
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import nextprime
from sympy.polys.densearith import (
dmp_add_term, dmp_neg, dmp_mul, dmp_sqr
)
from sympy.polys.densebasic import (
dmp_zero, dmp_one, dmp_ground,
dup_from_raw_dict, dmp_raise, dup_random
)
from sympy.polys.domains import ZZ
from sympy.polys.factortools import dup_zz_cyclotomic_poly
from sympy.polys.polyclasses import DMP
from sympy.polys.polytools import Poly, PurePoly
from sympy.polys.polyutils import _analyze_gens
from sympy.utilities import subsets, public, filldedent
@public
def swinnerton_dyer_poly(n, x=None, polys=False):
"""Generates n-th Swinnerton-Dyer polynomial in `x`.
Parameters
----------
n : int
`n` decides the order of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
from .numberfields import minimal_polynomial
if n <= 0:
raise ValueError(
"can't generate Swinnerton-Dyer polynomial of order %s" % n)
if x is not None:
sympify(x)
else:
x = Dummy('x')
if n > 3:
p = 2
a = [sqrt(2)]
for i in range(2, n + 1):
p = nextprime(p)
a.append(sqrt(p))
return minimal_polynomial(Add(*a), x, polys=polys)
if n == 1:
ex = x**2 - 2
elif n == 2:
ex = x**4 - 10*x**2 + 1
elif n == 3:
ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
return PurePoly(ex, x) if polys else ex
@public
def cyclotomic_poly(n, x=None, polys=False):
"""Generates cyclotomic polynomial of order `n` in `x`.
Parameters
----------
n : int
`n` decides the order of polynomial
x : optional
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
if n <= 0:
raise ValueError(
"can't generate cyclotomic polynomial of order %s" % n)
poly = DMP(dup_zz_cyclotomic_poly(int(n), ZZ), ZZ)
if x is not None:
poly = Poly.new(poly, x)
else:
poly = PurePoly.new(poly, Dummy('x'))
return poly if polys else poly.as_expr()
@public
def symmetric_poly(n, *gens, **args):
"""Generates symmetric polynomial of order `n`.
Returns a Poly object when ``polys=True``, otherwise
(default) returns an expression.
"""
# TODO: use an explicit keyword argument when Python 2 support is dropped
gens = _analyze_gens(gens)
if n < 0 or n > len(gens) or not gens:
raise ValueError("can't generate symmetric polynomial of order %s for %s" % (n, gens))
elif not n:
poly = S.One
else:
poly = Add(*[Mul(*s) for s in subsets(gens, int(n))])
if not args.get('polys', False):
return poly
else:
return Poly(poly, *gens)
@public
def random_poly(x, n, inf, sup, domain=ZZ, polys=False):
"""Generates a polynomial of degree ``n`` with coefficients in
``[inf, sup]``.
Parameters
----------
x
`x` is the independent term of polynomial
n : int
`n` decides the order of polynomial
inf
Lower limit of range in which coefficients lie
sup
Upper limit of range in which coefficients lie
domain : optional
Decides what ring the coefficients are supposed
to belong. Default is set to Integers.
polys : bool, optional
``polys=True`` returns an expression, otherwise
(default) returns an expression.
"""
poly = Poly(dup_random(n, inf, sup, domain), x, domain=domain)
return poly if polys else poly.as_expr()
@public
def interpolating_poly(n, x, X='x', Y='y'):
"""Construct Lagrange interpolating polynomial for ``n``
data points. If a sequence of values are given for ``X`` and ``Y``
then the first ``n`` values will be used.
"""
ok = getattr(x, 'free_symbols', None)
if isinstance(X, string_types):
X = symbols("%s:%s" % (X, n))
elif ok and ok & Tuple(*X).free_symbols:
ok = False
if isinstance(Y, string_types):
Y = symbols("%s:%s" % (Y, n))
elif ok and ok & Tuple(*Y).free_symbols:
ok = False
if not ok:
raise ValueError(filldedent('''
Expecting symbol for x that does not appear in X or Y.
Use `interpolate(list(zip(X, Y)), x)` instead.'''))
coeffs = []
numert = Mul(*[x - X[i] for i in range(n)])
for i in range(n):
numer = numert/(x - X[i])
denom = Mul(*[(X[i] - X[j]) for j in range(n) if i != j])
coeffs.append(numer/denom)
return Add(*[coeff*y for coeff, y in zip(coeffs, Y)])
def fateman_poly_F_1(n):
"""Fateman's GCD benchmark: trivial GCD """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0, y_1 = Y[0], Y[1]
u = y_0 + Add(*[y for y in Y[1:]])
v = y_0**2 + Add(*[y**2 for y in Y[1:]])
F = ((u + 1)*(u + 2)).as_poly(*Y)
G = ((v + 1)*(-3*y_1*y_0**2 + y_1**2 - 1)).as_poly(*Y)
H = Poly(1, *Y)
return F, G, H
def dmp_fateman_poly_F_1(n, K):
"""Fateman's GCD benchmark: trivial GCD """
u = [K(1), K(0)]
for i in range(n):
u = [dmp_one(i, K), u]
v = [K(1), K(0), K(0)]
for i in range(0, n):
v = [dmp_one(i, K), dmp_zero(i), v]
m = n - 1
U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K)
V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K)
f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]]
W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K)
Y = dmp_raise(f, m, 1, K)
F = dmp_mul(U, V, n, K)
G = dmp_mul(W, Y, n, K)
H = dmp_one(n, K)
return F, G, H
def fateman_poly_F_2(n):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0 = Y[0]
u = Add(*[y for y in Y[1:]])
H = Poly((y_0 + u + 1)**2, *Y)
F = Poly((y_0 - u - 2)**2, *Y)
G = Poly((y_0 + u + 2)**2, *Y)
return H*F, H*G, H
def dmp_fateman_poly_F_2(n, K):
"""Fateman's GCD benchmark: linearly dense quartic inputs """
u = [K(1), K(0)]
for i in range(n - 1):
u = [dmp_one(i, K), u]
m = n - 1
v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K)
f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K)
g = dmp_sqr([dmp_one(m, K), v], n, K)
v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K)
h = dmp_sqr([dmp_one(m, K), v], n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
def fateman_poly_F_3(n):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
Y = [Symbol('y_' + str(i)) for i in range(n + 1)]
y_0 = Y[0]
u = Add(*[y**(n + 1) for y in Y[1:]])
H = Poly((y_0**(n + 1) + u + 1)**2, *Y)
F = Poly((y_0**(n + 1) - u - 2)**2, *Y)
G = Poly((y_0**(n + 1) + u + 2)**2, *Y)
return H*F, H*G, H
def dmp_fateman_poly_F_3(n, K):
"""Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """
u = dup_from_raw_dict({n + 1: K.one}, K)
for i in range(0, n - 1):
u = dmp_add_term([u], dmp_one(i, K), n + 1, i + 1, K)
v = dmp_add_term(u, dmp_ground(K(2), n - 2), 0, n, K)
f = dmp_sqr(
dmp_add_term([dmp_neg(v, n - 1, K)], dmp_one(n - 1, K), n + 1, n, K), n, K)
g = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
v = dmp_add_term(u, dmp_one(n - 2, K), 0, n - 1, K)
h = dmp_sqr(dmp_add_term([v], dmp_one(n - 1, K), n + 1, n, K), n, K)
return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
# A few useful polynomials from Wang's paper ('78).
from sympy.polys.rings import ring
def _f_0():
R, x, y, z = ring("x,y,z", ZZ)
return x**2*y*z**2 + 2*x**2*y*z + 3*x**2*y + 2*x**2 + 3*x + 4*y**2*z**2 + 5*y**2*z + 6*y**2 + y*z**2 + 2*y*z + y + 1
def _f_1():
R, x, y, z = ring("x,y,z", ZZ)
return x**3*y*z + x**2*y**2*z**2 + x**2*y**2 + 20*x**2*y*z + 30*x**2*y + x**2*z**2 + 10*x**2*z + x*y**3*z + 30*x*y**2*z + 20*x*y**2 + x*y*z**3 + 10*x*y*z**2 + x*y*z + 610*x*y + 20*x*z**2 + 230*x*z + 300*x + y**2*z**2 + 10*y**2*z + 30*y*z**2 + 320*y*z + 200*y + 600*z + 6000
def _f_2():
R, x, y, z = ring("x,y,z", ZZ)
return x**5*y**3 + x**5*y**2*z + x**5*y*z**2 + x**5*z**3 + x**3*y**2 + x**3*y*z + 90*x**3*y + 90*x**3*z + x**2*y**2*z - 11*x**2*y**2 + x**2*z**3 - 11*x**2*z**2 + y*z - 11*y + 90*z - 990
def _f_3():
R, x, y, z = ring("x,y,z", ZZ)
return x**5*y**2 + x**4*z**4 + x**4 + x**3*y**3*z + x**3*z + x**2*y**4 + x**2*y**3*z**3 + x**2*y*z**5 + x**2*y*z + x*y**2*z**4 + x*y**2 + x*y*z**7 + x*y*z**3 + x*y*z**2 + y**2*z + y*z**4
def _f_4():
R, x, y, z = ring("x,y,z", ZZ)
return -x**9*y**8*z - x**8*y**5*z**3 - x**7*y**12*z**2 - 5*x**7*y**8 - x**6*y**9*z**4 + x**6*y**7*z**3 + 3*x**6*y**7*z - 5*x**6*y**5*z**2 - x**6*y**4*z**3 + x**5*y**4*z**5 + 3*x**5*y**4*z**3 - x**5*y*z**5 + x**4*y**11*z**4 + 3*x**4*y**11*z**2 - x**4*y**8*z**4 + 5*x**4*y**7*z**2 + 15*x**4*y**7 - 5*x**4*y**4*z**2 + x**3*y**8*z**6 + 3*x**3*y**8*z**4 - x**3*y**5*z**6 + 5*x**3*y**4*z**4 + 15*x**3*y**4*z**2 + x**3*y**3*z**5 + 3*x**3*y**3*z**3 - 5*x**3*y*z**4 + x**2*z**7 + 3*x**2*z**5 + x*y**7*z**6 + 3*x*y**7*z**4 + 5*x*y**3*z**4 + 15*x*y**3*z**2 + y**4*z**8 + 3*y**4*z**6 + 5*z**6 + 15*z**4
def _f_5():
R, x, y, z = ring("x,y,z", ZZ)
return -x**3 - 3*x**2*y + 3*x**2*z - 3*x*y**2 + 6*x*y*z - 3*x*z**2 - y**3 + 3*y**2*z - 3*y*z**2 + z**3
def _f_6():
R, x, y, z, t = ring("x,y,z,t", ZZ)
return 2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 - 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t - 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 + y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 - 2*z*t**3
def _w_1():
R, x, y, z = ring("x,y,z", ZZ)
return 4*x**6*y**4*z**2 + 4*x**6*y**3*z**3 - 4*x**6*y**2*z**4 - 4*x**6*y*z**5 + x**5*y**4*z**3 + 12*x**5*y**3*z - x**5*y**2*z**5 + 12*x**5*y**2*z**2 - 12*x**5*y*z**3 - 12*x**5*z**4 + 8*x**4*y**4 + 6*x**4*y**3*z**2 + 8*x**4*y**3*z - 4*x**4*y**2*z**4 + 4*x**4*y**2*z**3 - 8*x**4*y**2*z**2 - 4*x**4*y*z**5 - 2*x**4*y*z**4 - 8*x**4*y*z**3 + 2*x**3*y**4*z + x**3*y**3*z**3 - x**3*y**2*z**5 - 2*x**3*y**2*z**3 + 9*x**3*y**2*z - 12*x**3*y*z**3 + 12*x**3*y*z**2 - 12*x**3*z**4 + 3*x**3*z**3 + 6*x**2*y**3 - 6*x**2*y**2*z**2 + 8*x**2*y**2*z - 2*x**2*y*z**4 - 8*x**2*y*z**3 + 2*x**2*y*z**2 + 2*x*y**3*z - 2*x*y**2*z**3 - 3*x*y*z + 3*x*z**3 - 2*y**2 + 2*y*z**2
def _w_2():
R, x, y = ring("x,y", ZZ)
return 24*x**8*y**3 + 48*x**8*y**2 + 24*x**7*y**5 - 72*x**7*y**2 + 25*x**6*y**4 + 2*x**6*y**3 + 4*x**6*y + 8*x**6 + x**5*y**6 + x**5*y**3 - 12*x**5 + x**4*y**5 - x**4*y**4 - 2*x**4*y**3 + 292*x**4*y**2 - x**3*y**6 + 3*x**3*y**3 - x**2*y**5 + 12*x**2*y**3 + 48*x**2 - 12*y**3
def f_polys():
return _f_0(), _f_1(), _f_2(), _f_3(), _f_4(), _f_5(), _f_6()
def w_polys():
return _w_1(), _w_2()
|
09c9572a2e54a20e03d65bc37049367607790d1db5ba87675bc88383c68986fb | """Algorithms for computing symbolic roots of polynomials. """
from __future__ import print_function, division
import math
from sympy.core import S, I, pi
from sympy.core.compatibility import ordered, range, reduce
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.logic import fuzzy_not
from sympy.core.mul import expand_2arg, Mul
from sympy.core.numbers import Rational, igcd, comp
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy, Symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions import exp, sqrt, im, cos, acos, Piecewise
from sympy.functions.elementary.miscellaneous import root
from sympy.ntheory import divisors, isprime, nextprime
from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded,
DomainError)
from sympy.polys.polyquinticconst import PolyQuintic
from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant
from sympy.polys.rationaltools import together
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.simplify import simplify, powsimp
from sympy.utilities import public
def roots_linear(f):
"""Returns a list of roots of a linear polynomial."""
r = -f.nth(0)/f.nth(1)
dom = f.get_domain()
if not dom.is_Numerical:
if dom.is_Composite:
r = factor(r)
else:
r = simplify(r)
return [r]
def roots_quadratic(f):
"""Returns a list of roots of a quadratic polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
a, b, c = f.all_coeffs()
dom = f.get_domain()
def _sqrt(d):
# remove squares from square root since both will be represented
# in the results; a similar thing is happening in roots() but
# must be duplicated here because not all quadratics are binomials
co = []
other = []
for di in Mul.make_args(d):
if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0:
co.append(Pow(di.base, di.exp//2))
else:
other.append(di)
if co:
d = Mul(*other)
co = Mul(*co)
return co*sqrt(d)
return sqrt(d)
def _simplify(expr):
if dom.is_Composite:
return factor(expr)
else:
return simplify(expr)
if c is S.Zero:
r0, r1 = S.Zero, -b/a
if not dom.is_Numerical:
r1 = _simplify(r1)
elif r1.is_negative:
r0, r1 = r1, r0
elif b is S.Zero:
r = -c/a
if not dom.is_Numerical:
r = _simplify(r)
R = _sqrt(r)
r0 = -R
r1 = R
else:
d = b**2 - 4*a*c
A = 2*a
B = -b/A
if not dom.is_Numerical:
d = _simplify(d)
B = _simplify(B)
D = factor_terms(_sqrt(d)/A)
r0 = B - D
r1 = B + D
if a.is_negative:
r0, r1 = r1, r0
elif not dom.is_Numerical:
r0, r1 = [expand_2arg(i) for i in (r0, r1)]
return [r0, r1]
def roots_cubic(f, trig=False):
"""Returns a list of roots of a cubic polynomial.
References
==========
[1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
(accessed November 17, 2014).
"""
if trig:
a, b, c, d = f.all_coeffs()
p = (3*a*c - b**2)/3/a**2
q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
if (D > 0) == True:
rv = []
for k in range(3):
rv.append(2*sqrt(-p/3)*cos(acos(q/p*sqrt(-3/p)*Rational(3, 2))/3 - k*pi*Rational(2, 3)))
return [i - b/3/a for i in rv]
_, a, b, c = f.monic().all_coeffs()
if c is S.Zero:
x1, x2 = roots([1, a, b], multiple=True)
return [x1, S.Zero, x2]
p = b - a**2/3
q = c - a*b/3 + 2*a**3/27
pon3 = p/3
aon3 = a/3
u1 = None
if p is S.Zero:
if q is S.Zero:
return [-aon3]*3
if q.is_real:
if q.is_positive:
u1 = -root(q, 3)
elif q.is_negative:
u1 = root(-q, 3)
elif q is S.Zero:
y1, y2 = roots([1, 0, p], multiple=True)
return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
elif q.is_real and q.is_negative:
u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)
coeff = I*sqrt(3)/2
if u1 is None:
u1 = S.One
u2 = Rational(-1, 2) + coeff
u3 = Rational(-1, 2) - coeff
a, b, c, d = S(1), a, b, c
D0 = b**2 - 3*a*c
D1 = 2*b**3 - 9*a*b*c + 27*a**2*d
C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3)
return [-(b + uk*C + D0/C/uk)/3/a for uk in [u1, u2, u3]]
u2 = u1*(Rational(-1, 2) + coeff)
u3 = u1*(Rational(-1, 2) - coeff)
if p is S.Zero:
return [u1 - aon3, u2 - aon3, u3 - aon3]
soln = [
-u1 + pon3/u1 - aon3,
-u2 + pon3/u2 - aon3,
-u3 + pon3/u3 - aon3
]
return soln
def _roots_quartic_euler(p, q, r, a):
"""
Descartes-Euler solution of the quartic equation
Parameters
==========
p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r``
a: shift of the roots
Notes
=====
This is a helper function for ``roots_quartic``.
Look for solutions of the form ::
``x1 = sqrt(R) - sqrt(A + B*sqrt(R))``
``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))``
``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))``
``x4 = sqrt(R) + sqrt(A + B*sqrt(R))``
To satisfy the quartic equation one must have
``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R``
so that ``R`` must satisfy the Descartes-Euler resolvent equation
``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0``
If the resolvent does not have a rational solution, return None;
in that case it is likely that the Ferrari method gives a simpler
solution.
Examples
========
>>> from sympy import S
>>> from sympy.polys.polyroots import _roots_quartic_euler
>>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125
>>> _roots_quartic_euler(p, q, r, S(0))[0]
-sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5
"""
# solve the resolvent equation
x = Dummy('x')
eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2
xsols = list(roots(Poly(eq, x), cubics=False).keys())
xsols = [sol for sol in xsols if sol.is_rational and sol.is_nonzero]
if not xsols:
return None
R = max(xsols)
c1 = sqrt(R)
B = -q*c1/(4*R)
A = -R - p/2
c2 = sqrt(A + B)
c3 = sqrt(A - B)
return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a]
def roots_quartic(f):
r"""
Returns a list of roots of a quartic polynomial.
There are many references for solving quartic expressions available [1-5].
This reviewer has found that many of them require one to select from among
2 or more possible sets of solutions and that some solutions work when one
is searching for real roots but don't work when searching for complex roots
(though this is not always stated clearly). The following routine has been
tested and found to be correct for 0, 2 or 4 complex roots.
The quasisymmetric case solution [6] looks for quartics that have the form
`x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.
Although no general solution that is always applicable for all
coefficients is known to this reviewer, certain conditions are tested
to determine the simplest 4 expressions that can be returned:
1) `f = c + a*(a**2/8 - b/2) == 0`
2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
a) `p == 0`
b) `p != 0`
Examples
========
>>> from sympy import Poly, symbols, I
>>> from sympy.polys.polyroots import roots_quartic
>>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))
>>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
>>> sorted(str(tmp.evalf(n=2)) for tmp in r)
['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']
References
==========
1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
5. http://www.albmath.org/files/Math_5713.pdf
6. http://www.statemaster.com/encyclopedia/Quartic-equation
7. eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
"""
_, a, b, c, d = f.monic().all_coeffs()
if not d:
return [S.Zero] + roots([1, a, b, c], multiple=True)
elif (c/a)**2 == d:
x, m = f.gen, c/a
g = Poly(x**2 + a*x + b - 2*m, x)
z1, z2 = roots_quadratic(g)
h1 = Poly(x**2 - z1*x + m, x)
h2 = Poly(x**2 - z2*x + m, x)
r1 = roots_quadratic(h1)
r2 = roots_quadratic(h2)
return r1 + r2
else:
a2 = a**2
e = b - 3*a2/8
f = _mexpand(c + a*(a2/8 - b/2))
g = _mexpand(d - a*(a*(3*a2/256 - b/16) + c/4))
aon4 = a/4
if f is S.Zero:
y1, y2 = [sqrt(tmp) for tmp in
roots([1, e, g], multiple=True)]
return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
if g is S.Zero:
y = [S.Zero] + roots([1, 0, e, f], multiple=True)
return [tmp - aon4 for tmp in y]
else:
# Descartes-Euler method, see [7]
sols = _roots_quartic_euler(e, f, g, aon4)
if sols:
return sols
# Ferrari method, see [1, 2]
a2 = a**2
e = b - 3*a2/8
f = c + a*(a2/8 - b/2)
g = d - a*(a*(3*a2/256 - b/16) + c/4)
p = -e**2/12 - g
q = -e**3/108 + e*g/3 - f**2/8
TH = Rational(1, 3)
def _ans(y):
w = sqrt(e + 2*y)
arg1 = 3*e + 2*y
arg2 = 2*f/w
ans = []
for s in [-1, 1]:
root = sqrt(-(arg1 + s*arg2))
for t in [-1, 1]:
ans.append((s*w - t*root)/2 - aon4)
return ans
# p == 0 case
y1 = e*Rational(-5, 6) - q**TH
if p.is_zero:
return _ans(y1)
# if p != 0 then u below is not 0
root = sqrt(q**2/4 + p**3/27)
r = -q/2 + root # or -q/2 - root
u = r**TH # primary root of solve(x**3 - r, x)
y2 = e*Rational(-5, 6) + u - p/u/3
if fuzzy_not(p.is_zero):
return _ans(y2)
# sort it out once they know the values of the coefficients
return [Piecewise((a1, Eq(p, 0)), (a2, True))
for a1, a2 in zip(_ans(y1), _ans(y2))]
def roots_binomial(f):
"""Returns a list of roots of a binomial polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
n = f.degree()
a, b = f.nth(n), f.nth(0)
base = -cancel(b/a)
alpha = root(base, n)
if alpha.is_number:
alpha = alpha.expand(complex=True)
# define some parameters that will allow us to order the roots.
# If the domain is ZZ this is guaranteed to return roots sorted
# with reals before non-real roots and non-real sorted according
# to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I
neg = base.is_negative
even = n % 2 == 0
if neg:
if even == True and (base + 1).is_positive:
big = True
else:
big = False
# get the indices in the right order so the computed
# roots will be sorted when the domain is ZZ
ks = []
imax = n//2
if even:
ks.append(imax)
imax -= 1
if not neg:
ks.append(0)
for i in range(imax, 0, -1):
if neg:
ks.extend([i, -i])
else:
ks.extend([-i, i])
if neg:
ks.append(0)
if big:
for i in range(0, len(ks), 2):
pair = ks[i: i + 2]
pair = list(reversed(pair))
# compute the roots
roots, d = [], 2*I*pi/n
for k in ks:
zeta = exp(k*d).expand(complex=True)
roots.append((alpha*zeta).expand(power_base=False))
return roots
def _inv_totient_estimate(m):
"""
Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.
Examples
========
>>> from sympy.polys.polyroots import _inv_totient_estimate
>>> _inv_totient_estimate(192)
(192, 840)
>>> _inv_totient_estimate(400)
(400, 1750)
"""
primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]
a, b = 1, 1
for p in primes:
a *= p
b *= p - 1
L = m
U = int(math.ceil(m*(float(a)/b)))
P = p = 2
primes = []
while P <= U:
p = nextprime(p)
primes.append(p)
P *= p
P //= p
b = 1
for p in primes[:-1]:
b *= p - 1
U = int(math.ceil(m*(float(P)/b)))
return L, U
def roots_cyclotomic(f, factor=False):
"""Compute roots of cyclotomic polynomials. """
L, U = _inv_totient_estimate(f.degree())
for n in range(L, U + 1):
g = cyclotomic_poly(n, f.gen, polys=True)
if f == g:
break
else: # pragma: no cover
raise RuntimeError("failed to find index of a cyclotomic polynomial")
roots = []
if not factor:
# get the indices in the right order so the computed
# roots will be sorted
h = n//2
ks = [i for i in range(1, n + 1) if igcd(i, n) == 1]
ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1))
d = 2*I*pi/n
for k in reversed(ks):
roots.append(exp(k*d).expand(complex=True))
else:
g = Poly(f, extension=root(-1, n))
for h, _ in ordered(g.factor_list()[1]):
roots.append(-h.TC())
return roots
def roots_quintic(f):
"""
Calculate exact roots of a solvable quintic
"""
result = []
coeff_5, coeff_4, p, q, r, s = f.all_coeffs()
# Eqn must be of the form x^5 + px^3 + qx^2 + rx + s
if coeff_4:
return result
if coeff_5 != 1:
l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5]
if not all(coeff.is_Rational for coeff in l):
return result
f = Poly(f/coeff_5)
quintic = PolyQuintic(f)
# Eqn standardized. Algo for solving starts here
if not f.is_irreducible:
return result
f20 = quintic.f20
# Check if f20 has linear factors over domain Z
if f20.is_irreducible:
return result
# Now, we know that f is solvable
for _factor in f20.factor_list()[1]:
if _factor[0].is_linear:
theta = _factor[0].root(0)
break
d = discriminant(f)
delta = sqrt(d)
# zeta = a fifth root of unity
zeta1, zeta2, zeta3, zeta4 = quintic.zeta
T = quintic.T(theta, d)
tol = S(1e-10)
alpha = T[1] + T[2]*delta
alpha_bar = T[1] - T[2]*delta
beta = T[3] + T[4]*delta
beta_bar = T[3] - T[4]*delta
disc = alpha**2 - 4*beta
disc_bar = alpha_bar**2 - 4*beta_bar
l0 = quintic.l0(theta)
l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2))
l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2))
l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2))
l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2))
order = quintic.order(theta, d)
test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) )
# Comparing floats
if not comp(test, 0, tol):
l2, l3 = l3, l2
# Now we have correct order of l's
R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4
R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4
R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4
R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4
Res = [None, [None]*5, [None]*5, [None]*5, [None]*5]
Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5]
sol = Symbol('sol')
# Simplifying improves performance a lot for exact expressions
R1 = _quintic_simplify(R1)
R2 = _quintic_simplify(R2)
R3 = _quintic_simplify(R3)
R4 = _quintic_simplify(R4)
# Solve imported here. Causing problems if imported as 'solve'
# and hence the changed name
from sympy.solvers.solvers import solve as _solve
a, b = symbols('a b', cls=Dummy)
_sol = _solve( sol**5 - a - I*b, sol)
for i in range(5):
_sol[i] = factor(_sol[i])
R1 = R1.as_real_imag()
R2 = R2.as_real_imag()
R3 = R3.as_real_imag()
R4 = R4.as_real_imag()
for i, currentroot in enumerate(_sol):
Res[1][i] = _quintic_simplify(currentroot.subs({ a: R1[0], b: R1[1] }))
Res[2][i] = _quintic_simplify(currentroot.subs({ a: R2[0], b: R2[1] }))
Res[3][i] = _quintic_simplify(currentroot.subs({ a: R3[0], b: R3[1] }))
Res[4][i] = _quintic_simplify(currentroot.subs({ a: R4[0], b: R4[1] }))
for i in range(1, 5):
for j in range(5):
Res_n[i][j] = Res[i][j].n()
Res[i][j] = _quintic_simplify(Res[i][j])
r1 = Res[1][0]
r1_n = Res_n[1][0]
for i in range(5):
if comp(im(r1_n*Res_n[4][i]), 0, tol):
r4 = Res[4][i]
break
# Now we have various Res values. Each will be a list of five
# values. We have to pick one r value from those five for each Res
u, v = quintic.uv(theta, d)
testplus = (u + v*delta*sqrt(5)).n()
testminus = (u - v*delta*sqrt(5)).n()
# Evaluated numbers suffixed with _n
# We will use evaluated numbers for calculation. Much faster.
r4_n = r4.n()
r2 = r3 = None
for i in range(5):
r2temp_n = Res_n[2][i]
for j in range(5):
# Again storing away the exact number and using
# evaluated numbers in computations
r3temp_n = Res_n[3][j]
if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and
comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)):
r2 = Res[2][i]
r3 = Res[3][j]
break
if r2:
break
# Now, we have r's so we can get roots
x1 = (r1 + r2 + r3 + r4)/5
x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5
x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5
x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5
x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5
result = [x1, x2, x3, x4, x5]
# Now check if solutions are distinct
saw = set()
for r in result:
r = r.n(2)
if r in saw:
# Roots were identical. Abort, return []
# and fall back to usual solve
return []
saw.add(r)
return result
def _quintic_simplify(expr):
expr = powsimp(expr)
expr = cancel(expr)
return together(expr)
def _integer_basis(poly):
"""Compute coefficient basis for a polynomial over integers.
Returns the integer ``div`` such that substituting ``x = div*y``
``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller
than those of ``p``.
For example ``x**5 + 512*x + 1024 = 0``
with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0``
Returns the integer ``div`` or ``None`` if there is no possible scaling.
Examples
========
>>> from sympy.polys import Poly
>>> from sympy.abc import x
>>> from sympy.polys.polyroots import _integer_basis
>>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ')
>>> _integer_basis(p)
4
"""
monoms, coeffs = list(zip(*poly.terms()))
monoms, = list(zip(*monoms))
coeffs = list(map(abs, coeffs))
if coeffs[0] < coeffs[-1]:
coeffs = list(reversed(coeffs))
n = monoms[0]
monoms = [n - i for i in reversed(monoms)]
else:
return None
monoms = monoms[:-1]
coeffs = coeffs[:-1]
divs = reversed(divisors(gcd_list(coeffs))[1:])
try:
div = next(divs)
except StopIteration:
return None
while True:
for monom, coeff in zip(monoms, coeffs):
if coeff % div**monom != 0:
try:
div = next(divs)
except StopIteration:
return None
else:
break
else:
return div
def preprocess_roots(poly):
"""Try to get rid of symbolic coefficients from ``poly``. """
coeff = S.One
poly_func = poly.func
try:
_, poly = poly.clear_denoms(convert=True)
except DomainError:
return coeff, poly
poly = poly.primitive()[1]
poly = poly.retract()
# TODO: This is fragile. Figure out how to make this independent of construct_domain().
if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()):
poly = poly.inject()
strips = list(zip(*poly.monoms()))
gens = list(poly.gens[1:])
base, strips = strips[0], strips[1:]
for gen, strip in zip(list(gens), strips):
reverse = False
if strip[0] < strip[-1]:
strip = reversed(strip)
reverse = True
ratio = None
for a, b in zip(base, strip):
if not a and not b:
continue
elif not a or not b:
break
elif b % a != 0:
break
else:
_ratio = b // a
if ratio is None:
ratio = _ratio
elif ratio != _ratio:
break
else:
if reverse:
ratio = -ratio
poly = poly.eval(gen, 1)
coeff *= gen**(-ratio)
gens.remove(gen)
if gens:
poly = poly.eject(*gens)
if poly.is_univariate and poly.get_domain().is_ZZ:
basis = _integer_basis(poly)
if basis is not None:
n = poly.degree()
def func(k, coeff):
return coeff//basis**(n - k[0])
poly = poly.termwise(func)
coeff *= basis
if not isinstance(poly, poly_func):
poly = poly_func(poly)
return coeff, poly
@public
def roots(f, *gens, **flags):
"""
Computes symbolic roots of a univariate polynomial.
Given a univariate polynomial f with symbolic coefficients (or
a list of the polynomial's coefficients), returns a dictionary
with its roots and their multiplicities.
Only roots expressible via radicals will be returned. To get
a complete set of roots use RootOf class or numerical methods
instead. By default cubic and quartic formulas are used in
the algorithm. To disable them because of unreadable output
set ``cubics=False`` or ``quartics=False`` respectively. If cubic
roots are real but are expressed in terms of complex numbers
(casus irreducibilis [1]) the ``trig`` flag can be set to True to
have the solutions returned in terms of cosine and inverse cosine
functions.
To get roots from a specific domain set the ``filter`` flag with
one of the following specifiers: Z, Q, R, I, C. By default all
roots are returned (this is equivalent to setting ``filter='C'``).
By default a dictionary is returned giving a compact result in
case of multiple roots. However to get a list containing all
those roots set the ``multiple`` flag to True; the list will
have identical roots appearing next to each other in the result.
(For a given Poly, the all_roots method will give the roots in
sorted numerical order.)
Examples
========
>>> from sympy import Poly, roots
>>> from sympy.abc import x, y
>>> roots(x**2 - 1, x)
{-1: 1, 1: 1}
>>> p = Poly(x**2-1, x)
>>> roots(p)
{-1: 1, 1: 1}
>>> p = Poly(x**2-y, x, y)
>>> roots(Poly(p, x))
{-sqrt(y): 1, sqrt(y): 1}
>>> roots(x**2 - y, x)
{-sqrt(y): 1, sqrt(y): 1}
>>> roots([1, 0, -1])
{-1: 1, 1: 1}
References
==========
.. [1] https://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
"""
from sympy.polys.polytools import to_rational_coeffs
flags = dict(flags)
auto = flags.pop('auto', True)
cubics = flags.pop('cubics', True)
trig = flags.pop('trig', False)
quartics = flags.pop('quartics', True)
quintics = flags.pop('quintics', False)
multiple = flags.pop('multiple', False)
filter = flags.pop('filter', None)
predicate = flags.pop('predicate', None)
if isinstance(f, list):
if gens:
raise ValueError('redundant generators given')
x = Dummy('x')
poly, i = {}, len(f) - 1
for coeff in f:
poly[i], i = sympify(coeff), i - 1
f = Poly(poly, x, field=True)
else:
try:
f = Poly(f, *gens, **flags)
if f.length == 2 and f.degree() != 1:
# check for foo**n factors in the constant
n = f.degree()
npow_bases = []
others = []
expr = f.as_expr()
con = expr.as_independent(*gens)[0]
for p in Mul.make_args(con):
if p.is_Pow and not p.exp % n:
npow_bases.append(p.base**(p.exp/n))
else:
others.append(p)
if npow_bases:
b = Mul(*npow_bases)
B = Dummy()
d = roots(Poly(expr - con + B**n*Mul(*others), *gens,
**flags), *gens, **flags)
rv = {}
for k, v in d.items():
rv[k.subs(B, b)] = v
return rv
except GeneratorsNeeded:
if multiple:
return []
else:
return {}
if f.is_multivariate:
raise PolynomialError('multivariate polynomials are not supported')
def _update_dict(result, currentroot, k):
if currentroot in result:
result[currentroot] += k
else:
result[currentroot] = k
def _try_decompose(f):
"""Find roots using functional decomposition. """
factors, roots = f.decompose(), []
for currentroot in _try_heuristics(factors[0]):
roots.append(currentroot)
for currentfactor in factors[1:]:
previous, roots = list(roots), []
for currentroot in previous:
g = currentfactor - Poly(currentroot, f.gen)
for currentroot in _try_heuristics(g):
roots.append(currentroot)
return roots
def _try_heuristics(f):
"""Find roots using formulas and some tricks. """
if f.is_ground:
return []
if f.is_monomial:
return [S.Zero]*f.degree()
if f.length() == 2:
if f.degree() == 1:
return list(map(cancel, roots_linear(f)))
else:
return roots_binomial(f)
result = []
for i in [-1, 1]:
if not f.eval(i):
f = f.quo(Poly(f.gen - i, f.gen))
result.append(i)
break
n = f.degree()
if n == 1:
result += list(map(cancel, roots_linear(f)))
elif n == 2:
result += list(map(cancel, roots_quadratic(f)))
elif f.is_cyclotomic:
result += roots_cyclotomic(f)
elif n == 3 and cubics:
result += roots_cubic(f, trig=trig)
elif n == 4 and quartics:
result += roots_quartic(f)
elif n == 5 and quintics:
result += roots_quintic(f)
return result
(k,), f = f.terms_gcd()
if not k:
zeros = {}
else:
zeros = {S.Zero: k}
coeff, f = preprocess_roots(f)
if auto and f.get_domain().is_Ring:
f = f.to_field()
rescale_x = None
translate_x = None
result = {}
if not f.is_ground:
dom = f.get_domain()
if not dom.is_Exact and dom.is_Numerical:
for r in f.nroots():
_update_dict(result, r, 1)
elif f.degree() == 1:
result[roots_linear(f)[0]] = 1
elif f.length() == 2:
roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
for r in roots_fun(f):
_update_dict(result, r, 1)
else:
_, factors = Poly(f.as_expr()).factor_list()
if len(factors) == 1 and f.degree() == 2:
for r in roots_quadratic(f):
_update_dict(result, r, 1)
else:
if len(factors) == 1 and factors[0][1] == 1:
if f.get_domain().is_EX:
res = to_rational_coeffs(f)
if res:
if res[0] is None:
translate_x, f = res[2:]
else:
rescale_x, f = res[1], res[-1]
result = roots(f)
if not result:
for currentroot in _try_decompose(f):
_update_dict(result, currentroot, 1)
else:
for r in _try_heuristics(f):
_update_dict(result, r, 1)
else:
for currentroot in _try_decompose(f):
_update_dict(result, currentroot, 1)
else:
for currentfactor, k in factors:
for r in _try_heuristics(Poly(currentfactor, f.gen, field=True)):
_update_dict(result, r, k)
if coeff is not S.One:
_result, result, = result, {}
for currentroot, k in _result.items():
result[coeff*currentroot] = k
if filter not in [None, 'C']:
handlers = {
'Z': lambda r: r.is_Integer,
'Q': lambda r: r.is_Rational,
'R': lambda r: all(a.is_real for a in r.as_numer_denom()),
'I': lambda r: r.is_imaginary,
}
try:
query = handlers[filter]
except KeyError:
raise ValueError("Invalid filter: %s" % filter)
for zero in dict(result).keys():
if not query(zero):
del result[zero]
if predicate is not None:
for zero in dict(result).keys():
if not predicate(zero):
del result[zero]
if rescale_x:
result1 = {}
for k, v in result.items():
result1[k*rescale_x] = v
result = result1
if translate_x:
result1 = {}
for k, v in result.items():
result1[k + translate_x] = v
result = result1
# adding zero roots after non-trivial roots have been translated
result.update(zeros)
if not multiple:
return result
else:
zeros = []
for zero in ordered(result):
zeros.extend([zero]*result[zero])
return zeros
def root_factors(f, *gens, **args):
"""
Returns all factors of a univariate polynomial.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.polys.polyroots import root_factors
>>> root_factors(x**2 - y, x)
[x - sqrt(y), x + sqrt(y)]
"""
args = dict(args)
filter = args.pop('filter', None)
F = Poly(f, *gens, **args)
if not F.is_Poly:
return [f]
if F.is_multivariate:
raise ValueError('multivariate polynomials are not supported')
x = F.gens[0]
zeros = roots(F, filter=filter)
if not zeros:
factors = [F]
else:
factors, N = [], 0
for r, n in ordered(zeros.items()):
factors, N = factors + [Poly(x - r, x)]*n, N + n
if N < F.degree():
G = reduce(lambda p, q: p*q, factors)
factors.append(F.quo(G))
if not isinstance(f, Poly):
factors = [ f.as_expr() for f in factors ]
return factors
|
72c88beafc8884b4226356722d82edf303e9730d87005107ad7415c27540b49c | """Polynomial manipulation algorithms and algebraic objects. """
__all__ = [
'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree',
'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo',
'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert',
'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list',
'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content',
'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff',
'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor',
'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots',
'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner',
'is_zero_dimensional', 'GroebnerBasis', 'poly',
'symmetrize', 'horner', 'interpolate', 'rational_interpolate', 'viete',
'together',
'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed',
'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed',
'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed',
'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible',
'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed',
'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed',
'UnivariatePolynomialError', 'MultivariatePolynomialError',
'PolificationFailed', 'OptionError', 'FlagError',
'minpoly', 'minimal_polynomial', 'primitive_element', 'field_isomorphism',
'to_number_field', 'isolate',
'itermonomials', 'Monomial',
'lex', 'grlex', 'grevlex', 'ilex', 'igrlex', 'igrevlex',
'CRootOf', 'rootof', 'RootOf', 'ComplexRootOf', 'RootSum',
'roots',
'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField',
'ComplexField', 'PythonFiniteField', 'GMPYFiniteField',
'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational',
'GMPYRationalField', 'AlgebraicField', 'PolynomialRing', 'FractionField',
'ExpressionDomain', 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy',
'QQ_python', 'QQ_gmpy', 'GF', 'FF', 'ZZ', 'QQ', 'RR', 'CC', 'EX',
'construct_domain',
'swinnerton_dyer_poly', 'cyclotomic_poly', 'symmetric_poly',
'random_poly', 'interpolating_poly',
'jacobi_poly', 'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly',
'legendre_poly', 'laguerre_poly',
'apart', 'apart_list', 'assemble_partfrac_list',
'Options',
'ring', 'xring', 'vring', 'sring',
'field', 'xfield', 'vfield', 'sfield'
]
from .polytools import (Poly, PurePoly, poly_from_expr,
parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM,
LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex,
invert, subresultants, resultant, discriminant, cofactors, gcd_list,
gcd, lcm_list, lcm, terms_gcd, trunc, monic, content, primitive,
compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part,
sqf_list, sqf, factor_list, factor, intervals, refine_root,
count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly,
cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly)
from .polyfuncs import (symmetrize, horner, interpolate,
rational_interpolate, viete)
from .rationaltools import together
from .polyerrors import (BasePolynomialError, ExactQuotientFailed,
PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed,
HomomorphismFailed, IsomorphismFailed, ExtraneousFactors,
EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible,
NotReversible, NotAlgebraic, DomainError, PolynomialError,
UnificationFailed, GeneratorsError, GeneratorsNeeded,
ComputationFailed, UnivariatePolynomialError,
MultivariatePolynomialError, PolificationFailed, OptionError,
FlagError)
from .numberfields import (minpoly, minimal_polynomial, primitive_element,
field_isomorphism, to_number_field, isolate)
from .monomials import itermonomials, Monomial
from .orderings import lex, grlex, grevlex, ilex, igrlex, igrevlex
from .rootoftools import CRootOf, rootof, RootOf, ComplexRootOf, RootSum
from .polyroots import roots
from .domains import (Domain, FiniteField, IntegerRing, RationalField,
RealField, ComplexField, PythonFiniteField, GMPYFiniteField,
PythonIntegerRing, GMPYIntegerRing, PythonRational, GMPYRationalField,
AlgebraicField, PolynomialRing, FractionField, ExpressionDomain,
FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python, QQ_gmpy, GF, FF,
ZZ, QQ, RR, CC, EX)
from .constructor import construct_domain
from .specialpolys import (swinnerton_dyer_poly, cyclotomic_poly,
symmetric_poly, random_poly, interpolating_poly)
from .orthopolys import (jacobi_poly, chebyshevt_poly, chebyshevu_poly,
hermite_poly, legendre_poly, laguerre_poly)
from .partfrac import apart, apart_list, assemble_partfrac_list
from .polyoptions import Options
from .rings import ring, xring, vring, sring
from .fields import field, xfield, vfield, sfield
|
a6704e13eb25bcd9c72a0bde7b894d40008ea048912e030fc5d9f0b4e41c615e | """Dense univariate polynomials with coefficients in Galois fields. """
from __future__ import print_function, division
from random import uniform
from math import ceil as _ceil, sqrt as _sqrt
from sympy.core.compatibility import SYMPY_INTS, range
from sympy.core.mul import prod
from sympy.ntheory import factorint
from sympy.polys.polyconfig import query
from sympy.polys.polyerrors import ExactQuotientFailed
from sympy.polys.polyutils import _sort_factors
def gf_crt(U, M, K=None):
"""
Chinese Remainder Theorem.
Given a set of integer residues ``u_0,...,u_n`` and a set of
co-prime integer moduli ``m_0,...,m_n``, returns an integer
``u``, such that ``u = u_i mod m_i`` for ``i = ``0,...,n``.
Examples
========
Consider a set of residues ``U = [49, 76, 65]``
and a set of moduli ``M = [99, 97, 95]``. Then we have::
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_crt
>>> from sympy.ntheory.modular import solve_congruence
>>> gf_crt([49, 76, 65], [99, 97, 95], ZZ)
639985
This is the correct result because::
>>> [639985 % m for m in [99, 97, 95]]
[49, 76, 65]
Note: this is a low-level routine with no error checking.
See Also
========
sympy.ntheory.modular.crt : a higher level crt routine
sympy.ntheory.modular.solve_congruence
"""
p = prod(M, start=K.one)
v = K.zero
for u, m in zip(U, M):
e = p // m
s, _, _ = K.gcdex(e, m)
v += e*(u*s % m)
return v % p
def gf_crt1(M, K):
"""
First part of the Chinese Remainder Theorem.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_crt1
>>> gf_crt1([99, 97, 95], ZZ)
(912285, [9215, 9405, 9603], [62, 24, 12])
"""
E, S = [], []
p = prod(M, start=K.one)
for m in M:
E.append(p // m)
S.append(K.gcdex(E[-1], m)[0] % m)
return p, E, S
def gf_crt2(U, M, p, E, S, K):
"""
Second part of the Chinese Remainder Theorem.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_crt2
>>> U = [49, 76, 65]
>>> M = [99, 97, 95]
>>> p = 912285
>>> E = [9215, 9405, 9603]
>>> S = [62, 24, 12]
>>> gf_crt2(U, M, p, E, S, ZZ)
639985
"""
v = K.zero
for u, m, e, s in zip(U, M, E, S):
v += e*(u*s % m)
return v % p
def gf_int(a, p):
"""
Coerce ``a mod p`` to an integer in the range ``[-p/2, p/2]``.
Examples
========
>>> from sympy.polys.galoistools import gf_int
>>> gf_int(2, 7)
2
>>> gf_int(5, 7)
-2
"""
if a <= p // 2:
return a
else:
return a - p
def gf_degree(f):
"""
Return the leading degree of ``f``.
Examples
========
>>> from sympy.polys.galoistools import gf_degree
>>> gf_degree([1, 1, 2, 0])
3
>>> gf_degree([])
-1
"""
return len(f) - 1
def gf_LC(f, K):
"""
Return the leading coefficient of ``f``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_LC
>>> gf_LC([3, 0, 1], ZZ)
3
"""
if not f:
return K.zero
else:
return f[0]
def gf_TC(f, K):
"""
Return the trailing coefficient of ``f``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_TC
>>> gf_TC([3, 0, 1], ZZ)
1
"""
if not f:
return K.zero
else:
return f[-1]
def gf_strip(f):
"""
Remove leading zeros from ``f``.
Examples
========
>>> from sympy.polys.galoistools import gf_strip
>>> gf_strip([0, 0, 0, 3, 0, 1])
[3, 0, 1]
"""
if not f or f[0]:
return f
k = 0
for coeff in f:
if coeff:
break
else:
k += 1
return f[k:]
def gf_trunc(f, p):
"""
Reduce all coefficients modulo ``p``.
Examples
========
>>> from sympy.polys.galoistools import gf_trunc
>>> gf_trunc([7, -2, 3], 5)
[2, 3, 3]
"""
return gf_strip([ a % p for a in f ])
def gf_normal(f, p, K):
"""
Normalize all coefficients in ``K``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_normal
>>> gf_normal([5, 10, 21, -3], 5, ZZ)
[1, 2]
"""
return gf_trunc(list(map(K, f)), p)
def gf_from_dict(f, p, K):
"""
Create a ``GF(p)[x]`` polynomial from a dict.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_from_dict
>>> gf_from_dict({10: ZZ(4), 4: ZZ(33), 0: ZZ(-1)}, 5, ZZ)
[4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4]
"""
n, h = max(f.keys()), []
if isinstance(n, SYMPY_INTS):
for k in range(n, -1, -1):
h.append(f.get(k, K.zero) % p)
else:
(n,) = n
for k in range(n, -1, -1):
h.append(f.get((k,), K.zero) % p)
return gf_trunc(h, p)
def gf_to_dict(f, p, symmetric=True):
"""
Convert a ``GF(p)[x]`` polynomial to a dict.
Examples
========
>>> from sympy.polys.galoistools import gf_to_dict
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5)
{0: -1, 4: -2, 10: -1}
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5, symmetric=False)
{0: 4, 4: 3, 10: 4}
"""
n, result = gf_degree(f), {}
for k in range(0, n + 1):
if symmetric:
a = gf_int(f[n - k], p)
else:
a = f[n - k]
if a:
result[k] = a
return result
def gf_from_int_poly(f, p):
"""
Create a ``GF(p)[x]`` polynomial from ``Z[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_from_int_poly
>>> gf_from_int_poly([7, -2, 3], 5)
[2, 3, 3]
"""
return gf_trunc(f, p)
def gf_to_int_poly(f, p, symmetric=True):
"""
Convert a ``GF(p)[x]`` polynomial to ``Z[x]``.
Examples
========
>>> from sympy.polys.galoistools import gf_to_int_poly
>>> gf_to_int_poly([2, 3, 3], 5)
[2, -2, -2]
>>> gf_to_int_poly([2, 3, 3], 5, symmetric=False)
[2, 3, 3]
"""
if symmetric:
return [ gf_int(c, p) for c in f ]
else:
return f
def gf_neg(f, p, K):
"""
Negate a polynomial in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_neg
>>> gf_neg([3, 2, 1, 0], 5, ZZ)
[2, 3, 4, 0]
"""
return [ -coeff % p for coeff in f ]
def gf_add_ground(f, a, p, K):
"""
Compute ``f + a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_add_ground
>>> gf_add_ground([3, 2, 4], 2, 5, ZZ)
[3, 2, 1]
"""
if not f:
a = a % p
else:
a = (f[-1] + a) % p
if len(f) > 1:
return f[:-1] + [a]
if not a:
return []
else:
return [a]
def gf_sub_ground(f, a, p, K):
"""
Compute ``f - a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub_ground
>>> gf_sub_ground([3, 2, 4], 2, 5, ZZ)
[3, 2, 2]
"""
if not f:
a = -a % p
else:
a = (f[-1] - a) % p
if len(f) > 1:
return f[:-1] + [a]
if not a:
return []
else:
return [a]
def gf_mul_ground(f, a, p, K):
"""
Compute ``f * a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_mul_ground
>>> gf_mul_ground([3, 2, 4], 2, 5, ZZ)
[1, 4, 3]
"""
if not a:
return []
else:
return [ (a*b) % p for b in f ]
def gf_quo_ground(f, a, p, K):
"""
Compute ``f/a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_quo_ground
>>> gf_quo_ground(ZZ.map([3, 2, 4]), ZZ(2), 5, ZZ)
[4, 1, 2]
"""
return gf_mul_ground(f, K.invert(a, p), p, K)
def gf_add(f, g, p, K):
"""
Add polynomials in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_add
>>> gf_add([3, 2, 4], [2, 2, 2], 5, ZZ)
[4, 1]
"""
if not f:
return g
if not g:
return f
df = gf_degree(f)
dg = gf_degree(g)
if df == dg:
return gf_strip([ (a + b) % p for a, b in zip(f, g) ])
else:
k = abs(df - dg)
if df > dg:
h, f = f[:k], f[k:]
else:
h, g = g[:k], g[k:]
return h + [ (a + b) % p for a, b in zip(f, g) ]
def gf_sub(f, g, p, K):
"""
Subtract polynomials in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub
>>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ)
[1, 0, 2]
"""
if not g:
return f
if not f:
return gf_neg(g, p, K)
df = gf_degree(f)
dg = gf_degree(g)
if df == dg:
return gf_strip([ (a - b) % p for a, b in zip(f, g) ])
else:
k = abs(df - dg)
if df > dg:
h, f = f[:k], f[k:]
else:
h, g = gf_neg(g[:k], p, K), g[k:]
return h + [ (a - b) % p for a, b in zip(f, g) ]
def gf_mul(f, g, p, K):
"""
Multiply polynomials in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_mul
>>> gf_mul([3, 2, 4], [2, 2, 2], 5, ZZ)
[1, 0, 3, 2, 3]
"""
df = gf_degree(f)
dg = gf_degree(g)
dh = df + dg
h = [0]*(dh + 1)
for i in range(0, dh + 1):
coeff = K.zero
for j in range(max(0, i - dg), min(i, df) + 1):
coeff += f[j]*g[i - j]
h[i] = coeff % p
return gf_strip(h)
def gf_sqr(f, p, K):
"""
Square polynomials in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sqr
>>> gf_sqr([3, 2, 4], 5, ZZ)
[4, 2, 3, 1, 1]
"""
df = gf_degree(f)
dh = 2*df
h = [0]*(dh + 1)
for i in range(0, dh + 1):
coeff = K.zero
jmin = max(0, i - df)
jmax = min(i, df)
n = jmax - jmin + 1
jmax = jmin + n // 2 - 1
for j in range(jmin, jmax + 1):
coeff += f[j]*f[i - j]
coeff += coeff
if n & 1:
elem = f[jmax + 1]
coeff += elem**2
h[i] = coeff % p
return gf_strip(h)
def gf_add_mul(f, g, h, p, K):
"""
Returns ``f + g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_add_mul
>>> gf_add_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
[2, 3, 2, 2]
"""
return gf_add(f, gf_mul(g, h, p, K), p, K)
def gf_sub_mul(f, g, h, p, K):
"""
Compute ``f - g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sub_mul
>>> gf_sub_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
[3, 3, 2, 1]
"""
return gf_sub(f, gf_mul(g, h, p, K), p, K)
def gf_expand(F, p, K):
"""
Expand results of :func:`~.factor` in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_expand
>>> gf_expand([([3, 2, 4], 1), ([2, 2], 2), ([3, 1], 3)], 5, ZZ)
[4, 3, 0, 3, 0, 1, 4, 1]
"""
if type(F) is tuple:
lc, F = F
else:
lc = K.one
g = [lc]
for f, k in F:
f = gf_pow(f, k, p, K)
g = gf_mul(g, f, p, K)
return g
def gf_div(f, g, p, K):
"""
Division with remainder in ``GF(p)[x]``.
Given univariate polynomials ``f`` and ``g`` with coefficients in a
finite field with ``p`` elements, returns polynomials ``q`` and ``r``
(quotient and remainder) such that ``f = q*g + r``.
Consider polynomials ``x**3 + x + 1`` and ``x**2 + x`` in GF(2)::
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_div, gf_add_mul
>>> gf_div(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
([1, 1], [1])
As result we obtained quotient ``x + 1`` and remainder ``1``, thus::
>>> gf_add_mul(ZZ.map([1]), ZZ.map([1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
[1, 0, 1, 1]
References
==========
.. [1] [Monagan93]_
.. [2] [Gathen99]_
"""
df = gf_degree(f)
dg = gf_degree(g)
if not g:
raise ZeroDivisionError("polynomial division")
elif df < dg:
return [], f
inv = K.invert(g[0], p)
h, dq, dr = list(f), df - dg, dg - 1
for i in range(0, df + 1):
coeff = h[i]
for j in range(max(0, dg - i), min(df - i, dr) + 1):
coeff -= h[i + j - dg] * g[dg - j]
if i <= dq:
coeff *= inv
h[i] = coeff % p
return h[:dq + 1], gf_strip(h[dq + 1:])
def gf_rem(f, g, p, K):
"""
Compute polynomial remainder in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_rem
>>> gf_rem(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
[1]
"""
return gf_div(f, g, p, K)[1]
def gf_quo(f, g, p, K):
"""
Compute exact quotient in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_quo
>>> gf_quo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
[1, 1]
>>> gf_quo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
[3, 2, 4]
"""
df = gf_degree(f)
dg = gf_degree(g)
if not g:
raise ZeroDivisionError("polynomial division")
elif df < dg:
return []
inv = K.invert(g[0], p)
h, dq, dr = f[:], df - dg, dg - 1
for i in range(0, dq + 1):
coeff = h[i]
for j in range(max(0, dg - i), min(df - i, dr) + 1):
coeff -= h[i + j - dg] * g[dg - j]
h[i] = (coeff * inv) % p
return h[:dq + 1]
def gf_exquo(f, g, p, K):
"""
Compute polynomial quotient in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_exquo
>>> gf_exquo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
[3, 2, 4]
>>> gf_exquo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
Traceback (most recent call last):
...
ExactQuotientFailed: [1, 1, 0] does not divide [1, 0, 1, 1]
"""
q, r = gf_div(f, g, p, K)
if not r:
return q
else:
raise ExactQuotientFailed(f, g)
def gf_lshift(f, n, K):
"""
Efficiently multiply ``f`` by ``x**n``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_lshift
>>> gf_lshift([3, 2, 4], 4, ZZ)
[3, 2, 4, 0, 0, 0, 0]
"""
if not f:
return f
else:
return f + [K.zero]*n
def gf_rshift(f, n, K):
"""
Efficiently divide ``f`` by ``x**n``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_rshift
>>> gf_rshift([1, 2, 3, 4, 0], 3, ZZ)
([1, 2], [3, 4, 0])
"""
if not n:
return f, []
else:
return f[:-n], f[-n:]
def gf_pow(f, n, p, K):
"""
Compute ``f**n`` in ``GF(p)[x]`` using repeated squaring.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_pow
>>> gf_pow([3, 2, 4], 3, 5, ZZ)
[2, 4, 4, 2, 2, 1, 4]
"""
if not n:
return [K.one]
elif n == 1:
return f
elif n == 2:
return gf_sqr(f, p, K)
h = [K.one]
while True:
if n & 1:
h = gf_mul(h, f, p, K)
n -= 1
n >>= 1
if not n:
break
f = gf_sqr(f, p, K)
return h
def gf_frobenius_monomial_base(g, p, K):
"""
return the list of ``x**(i*p) mod g in Z_p`` for ``i = 0, .., n - 1``
where ``n = gf_degree(g)``
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base
>>> g = ZZ.map([1, 0, 2, 1])
>>> gf_frobenius_monomial_base(g, 5, ZZ)
[[1], [4, 4, 2], [1, 2]]
"""
n = gf_degree(g)
if n == 0:
return []
b = [0]*n
b[0] = [1]
if p < n:
for i in range(1, n):
mon = gf_lshift(b[i - 1], p, K)
b[i] = gf_rem(mon, g, p, K)
elif n > 1:
b[1] = gf_pow_mod([K.one, K.zero], p, g, p, K)
for i in range(2, n):
b[i] = gf_mul(b[i - 1], b[1], p, K)
b[i] = gf_rem(b[i], g, p, K)
return b
def gf_frobenius_map(f, g, b, p, K):
"""
compute gf_pow_mod(f, p, g, p, K) using the Frobenius map
Parameters
==========
f, g : polynomials in ``GF(p)[x]``
b : frobenius monomial base
p : prime number
K : domain
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base, gf_frobenius_map
>>> f = ZZ.map([2, 1 , 0, 1])
>>> g = ZZ.map([1, 0, 2, 1])
>>> p = 5
>>> b = gf_frobenius_monomial_base(g, p, ZZ)
>>> r = gf_frobenius_map(f, g, b, p, ZZ)
>>> gf_frobenius_map(f, g, b, p, ZZ)
[4, 0, 3]
"""
m = gf_degree(g)
if gf_degree(f) >= m:
f = gf_rem(f, g, p, K)
if not f:
return []
n = gf_degree(f)
sf = [f[-1]]
for i in range(1, n + 1):
v = gf_mul_ground(b[i], f[n - i], p, K)
sf = gf_add(sf, v, p, K)
return sf
def _gf_pow_pnm1d2(f, n, g, b, p, K):
"""
utility function for ``gf_edf_zassenhaus``
Compute ``f**((p**n - 1) // 2)`` in ``GF(p)[x]/(g)``
``f**((p**n - 1) // 2) = (f*f**p*...*f**(p**n - 1))**((p - 1) // 2)``
"""
f = gf_rem(f, g, p, K)
h = f
r = f
for i in range(1, n):
h = gf_frobenius_map(h, g, b, p, K)
r = gf_mul(r, h, p, K)
r = gf_rem(r, g, p, K)
res = gf_pow_mod(r, (p - 1)//2, g, p, K)
return res
def gf_pow_mod(f, n, g, p, K):
"""
Compute ``f**n`` in ``GF(p)[x]/(g)`` using repeated squaring.
Given polynomials ``f`` and ``g`` in ``GF(p)[x]`` and a non-negative
integer ``n``, efficiently computes ``f**n (mod g)`` i.e. the remainder
of ``f**n`` from division by ``g``, using the repeated squaring algorithm.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_pow_mod
>>> gf_pow_mod(ZZ.map([3, 2, 4]), 3, ZZ.map([1, 1]), 5, ZZ)
[]
References
==========
.. [1] [Gathen99]_
"""
if not n:
return [K.one]
elif n == 1:
return gf_rem(f, g, p, K)
elif n == 2:
return gf_rem(gf_sqr(f, p, K), g, p, K)
h = [K.one]
while True:
if n & 1:
h = gf_mul(h, f, p, K)
h = gf_rem(h, g, p, K)
n -= 1
n >>= 1
if not n:
break
f = gf_sqr(f, p, K)
f = gf_rem(f, g, p, K)
return h
def gf_gcd(f, g, p, K):
"""
Euclidean Algorithm in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_gcd
>>> gf_gcd(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
[1, 3]
"""
while g:
f, g = g, gf_rem(f, g, p, K)
return gf_monic(f, p, K)[1]
def gf_lcm(f, g, p, K):
"""
Compute polynomial LCM in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_lcm
>>> gf_lcm(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
[1, 2, 0, 4]
"""
if not f or not g:
return []
h = gf_quo(gf_mul(f, g, p, K),
gf_gcd(f, g, p, K), p, K)
return gf_monic(h, p, K)[1]
def gf_cofactors(f, g, p, K):
"""
Compute polynomial GCD and cofactors in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_cofactors
>>> gf_cofactors(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
([1, 3], [3, 3], [2, 1])
"""
if not f and not g:
return ([], [], [])
h = gf_gcd(f, g, p, K)
return (h, gf_quo(f, h, p, K),
gf_quo(g, h, p, K))
def gf_gcdex(f, g, p, K):
"""
Extended Euclidean Algorithm in ``GF(p)[x]``.
Given polynomials ``f`` and ``g`` in ``GF(p)[x]``, computes polynomials
``s``, ``t`` and ``h``, such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
The typical application of EEA is solving polynomial diophantine equations.
Consider polynomials ``f = (x + 7) (x + 1)``, ``g = (x + 7) (x**2 + 1)``
in ``GF(11)[x]``. Application of Extended Euclidean Algorithm gives::
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_gcdex, gf_mul, gf_add
>>> s, t, g = gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ)
>>> s, t, g
([5, 6], [6], [1, 7])
As result we obtained polynomials ``s = 5*x + 6`` and ``t = 6``, and
additionally ``gcd(f, g) = x + 7``. This is correct because::
>>> S = gf_mul(s, ZZ.map([1, 8, 7]), 11, ZZ)
>>> T = gf_mul(t, ZZ.map([1, 7, 1, 7]), 11, ZZ)
>>> gf_add(S, T, 11, ZZ) == [1, 7]
True
References
==========
.. [1] [Gathen99]_
"""
if not (f or g):
return [K.one], [], []
p0, r0 = gf_monic(f, p, K)
p1, r1 = gf_monic(g, p, K)
if not f:
return [], [K.invert(p1, p)], r1
if not g:
return [K.invert(p0, p)], [], r0
s0, s1 = [K.invert(p0, p)], []
t0, t1 = [], [K.invert(p1, p)]
while True:
Q, R = gf_div(r0, r1, p, K)
if not R:
break
(lc, r1), r0 = gf_monic(R, p, K), r1
inv = K.invert(lc, p)
s = gf_sub_mul(s0, s1, Q, p, K)
t = gf_sub_mul(t0, t1, Q, p, K)
s1, s0 = gf_mul_ground(s, inv, p, K), s1
t1, t0 = gf_mul_ground(t, inv, p, K), t1
return s1, t1, r1
def gf_monic(f, p, K):
"""
Compute LC and a monic polynomial in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_monic
>>> gf_monic(ZZ.map([3, 2, 4]), 5, ZZ)
(3, [1, 4, 3])
"""
if not f:
return K.zero, []
else:
lc = f[0]
if K.is_one(lc):
return lc, list(f)
else:
return lc, gf_quo_ground(f, lc, p, K)
def gf_diff(f, p, K):
"""
Differentiate polynomial in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_diff
>>> gf_diff([3, 2, 4], 5, ZZ)
[1, 2]
"""
df = gf_degree(f)
h, n = [K.zero]*df, df
for coeff in f[:-1]:
coeff *= K(n)
coeff %= p
if coeff:
h[df - n] = coeff
n -= 1
return gf_strip(h)
def gf_eval(f, a, p, K):
"""
Evaluate ``f(a)`` in ``GF(p)`` using Horner scheme.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_eval
>>> gf_eval([3, 2, 4], 2, 5, ZZ)
0
"""
result = K.zero
for c in f:
result *= a
result += c
result %= p
return result
def gf_multi_eval(f, A, p, K):
"""
Evaluate ``f(a)`` for ``a`` in ``[a_1, ..., a_n]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_multi_eval
>>> gf_multi_eval([3, 2, 4], [0, 1, 2, 3, 4], 5, ZZ)
[4, 4, 0, 2, 0]
"""
return [ gf_eval(f, a, p, K) for a in A ]
def gf_compose(f, g, p, K):
"""
Compute polynomial composition ``f(g)`` in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_compose
>>> gf_compose([3, 2, 4], [2, 2, 2], 5, ZZ)
[2, 4, 0, 3, 0]
"""
if len(g) <= 1:
return gf_strip([gf_eval(f, gf_LC(g, K), p, K)])
if not f:
return []
h = [f[0]]
for c in f[1:]:
h = gf_mul(h, g, p, K)
h = gf_add_ground(h, c, p, K)
return h
def gf_compose_mod(g, h, f, p, K):
"""
Compute polynomial composition ``g(h)`` in ``GF(p)[x]/(f)``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_compose_mod
>>> gf_compose_mod(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 2]), ZZ.map([4, 3]), 5, ZZ)
[4]
"""
if not g:
return []
comp = [g[0]]
for a in g[1:]:
comp = gf_mul(comp, h, p, K)
comp = gf_add_ground(comp, a, p, K)
comp = gf_rem(comp, f, p, K)
return comp
def gf_trace_map(a, b, c, n, f, p, K):
"""
Compute polynomial trace map in ``GF(p)[x]/(f)``.
Given a polynomial ``f`` in ``GF(p)[x]``, polynomials ``a``, ``b``,
``c`` in the quotient ring ``GF(p)[x]/(f)`` such that ``b = c**t
(mod f)`` for some positive power ``t`` of ``p``, and a positive
integer ``n``, returns a mapping::
a -> a**t**n, a + a**t + a**t**2 + ... + a**t**n (mod f)
In factorization context, ``b = x**p mod f`` and ``c = x mod f``.
This way we can efficiently compute trace polynomials in equal
degree factorization routine, much faster than with other methods,
like iterated Frobenius algorithm, for large degrees.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_trace_map
>>> gf_trace_map([1, 2], [4, 4], [1, 1], 4, [3, 2, 4], 5, ZZ)
([1, 3], [1, 3])
References
==========
.. [1] [Gathen92]_
"""
u = gf_compose_mod(a, b, f, p, K)
v = b
if n & 1:
U = gf_add(a, u, p, K)
V = b
else:
U = a
V = c
n >>= 1
while n:
u = gf_add(u, gf_compose_mod(u, v, f, p, K), p, K)
v = gf_compose_mod(v, v, f, p, K)
if n & 1:
U = gf_add(U, gf_compose_mod(u, V, f, p, K), p, K)
V = gf_compose_mod(v, V, f, p, K)
n >>= 1
return gf_compose_mod(a, V, f, p, K), U
def _gf_trace_map(f, n, g, b, p, K):
"""
utility for ``gf_edf_shoup``
"""
f = gf_rem(f, g, p, K)
h = f
r = f
for i in range(1, n):
h = gf_frobenius_map(h, g, b, p, K)
r = gf_add(r, h, p, K)
r = gf_rem(r, g, p, K)
return r
def gf_random(n, p, K):
"""
Generate a random polynomial in ``GF(p)[x]`` of degree ``n``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_random
>>> gf_random(10, 5, ZZ) #doctest: +SKIP
[1, 2, 3, 2, 1, 1, 1, 2, 0, 4, 2]
"""
return [K.one] + [ K(int(uniform(0, p))) for i in range(0, n) ]
def gf_irreducible(n, p, K):
"""
Generate random irreducible polynomial of degree ``n`` in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_irreducible
>>> gf_irreducible(10, 5, ZZ) #doctest: +SKIP
[1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]
"""
while True:
f = gf_random(n, p, K)
if gf_irreducible_p(f, p, K):
return f
def gf_irred_p_ben_or(f, p, K):
"""
Ben-Or's polynomial irreducibility test over finite fields.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_irred_p_ben_or
>>> gf_irred_p_ben_or(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
True
>>> gf_irred_p_ben_or(ZZ.map([3, 2, 4]), 5, ZZ)
False
"""
n = gf_degree(f)
if n <= 1:
return True
_, f = gf_monic(f, p, K)
if n < 5:
H = h = gf_pow_mod([K.one, K.zero], p, f, p, K)
for i in range(0, n//2):
g = gf_sub(h, [K.one, K.zero], p, K)
if gf_gcd(f, g, p, K) == [K.one]:
h = gf_compose_mod(h, H, f, p, K)
else:
return False
else:
b = gf_frobenius_monomial_base(f, p, K)
H = h = gf_frobenius_map([K.one, K.zero], f, b, p, K)
for i in range(0, n//2):
g = gf_sub(h, [K.one, K.zero], p, K)
if gf_gcd(f, g, p, K) == [K.one]:
h = gf_frobenius_map(h, f, b, p, K)
else:
return False
return True
def gf_irred_p_rabin(f, p, K):
"""
Rabin's polynomial irreducibility test over finite fields.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_irred_p_rabin
>>> gf_irred_p_rabin(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
True
>>> gf_irred_p_rabin(ZZ.map([3, 2, 4]), 5, ZZ)
False
"""
n = gf_degree(f)
if n <= 1:
return True
_, f = gf_monic(f, p, K)
x = [K.one, K.zero]
indices = { n//d for d in factorint(n) }
b = gf_frobenius_monomial_base(f, p, K)
h = b[1]
for i in range(1, n):
if i in indices:
g = gf_sub(h, x, p, K)
if gf_gcd(f, g, p, K) != [K.one]:
return False
h = gf_frobenius_map(h, f, b, p, K)
return h == x
_irred_methods = {
'ben-or': gf_irred_p_ben_or,
'rabin': gf_irred_p_rabin,
}
def gf_irreducible_p(f, p, K):
"""
Test irreducibility of a polynomial ``f`` in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_irreducible_p
>>> gf_irreducible_p(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
True
>>> gf_irreducible_p(ZZ.map([3, 2, 4]), 5, ZZ)
False
"""
method = query('GF_IRRED_METHOD')
if method is not None:
irred = _irred_methods[method](f, p, K)
else:
irred = gf_irred_p_rabin(f, p, K)
return irred
def gf_sqf_p(f, p, K):
"""
Return ``True`` if ``f`` is square-free in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sqf_p
>>> gf_sqf_p(ZZ.map([3, 2, 4]), 5, ZZ)
True
>>> gf_sqf_p(ZZ.map([2, 4, 4, 2, 2, 1, 4]), 5, ZZ)
False
"""
_, f = gf_monic(f, p, K)
if not f:
return True
else:
return gf_gcd(f, gf_diff(f, p, K), p, K) == [K.one]
def gf_sqf_part(f, p, K):
"""
Return square-free part of a ``GF(p)[x]`` polynomial.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_sqf_part
>>> gf_sqf_part(ZZ.map([1, 1, 3, 0, 1, 0, 2, 2, 1]), 5, ZZ)
[1, 4, 3]
"""
_, sqf = gf_sqf_list(f, p, K)
g = [K.one]
for f, _ in sqf:
g = gf_mul(g, f, p, K)
return g
def gf_sqf_list(f, p, K, all=False):
"""
Return the square-free decomposition of a ``GF(p)[x]`` polynomial.
Given a polynomial ``f`` in ``GF(p)[x]``, returns the leading coefficient
of ``f`` and a square-free decomposition ``f_1**e_1 f_2**e_2 ... f_k**e_k``
such that all ``f_i`` are monic polynomials and ``(f_i, f_j)`` for ``i != j``
are co-prime and ``e_1 ... e_k`` are given in increasing order. All trivial
terms (i.e. ``f_i = 1``) aren't included in the output.
Consider polynomial ``f = x**11 + 1`` over ``GF(11)[x]``::
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import (
... gf_from_dict, gf_diff, gf_sqf_list, gf_pow,
... )
... # doctest: +NORMALIZE_WHITESPACE
>>> f = gf_from_dict({11: ZZ(1), 0: ZZ(1)}, 11, ZZ)
Note that ``f'(x) = 0``::
>>> gf_diff(f, 11, ZZ)
[]
This phenomenon doesn't happen in characteristic zero. However we can
still compute square-free decomposition of ``f`` using ``gf_sqf()``::
>>> gf_sqf_list(f, 11, ZZ)
(1, [([1, 1], 11)])
We obtained factorization ``f = (x + 1)**11``. This is correct because::
>>> gf_pow([1, 1], 11, 11, ZZ) == f
True
References
==========
.. [1] [Geddes92]_
"""
n, sqf, factors, r = 1, False, [], int(p)
lc, f = gf_monic(f, p, K)
if gf_degree(f) < 1:
return lc, []
while True:
F = gf_diff(f, p, K)
if F != []:
g = gf_gcd(f, F, p, K)
h = gf_quo(f, g, p, K)
i = 1
while h != [K.one]:
G = gf_gcd(g, h, p, K)
H = gf_quo(h, G, p, K)
if gf_degree(H) > 0:
factors.append((H, i*n))
g, h, i = gf_quo(g, G, p, K), G, i + 1
if g == [K.one]:
sqf = True
else:
f = g
if not sqf:
d = gf_degree(f) // r
for i in range(0, d + 1):
f[i] = f[i*r]
f, n = f[:d + 1], n*r
else:
break
if all:
raise ValueError("'all=True' is not supported yet")
return lc, factors
def gf_Qmatrix(f, p, K):
"""
Calculate Berlekamp's ``Q`` matrix.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_Qmatrix
>>> gf_Qmatrix([3, 2, 4], 5, ZZ)
[[1, 0],
[3, 4]]
>>> gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ)
[[1, 0, 0, 0],
[0, 4, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 4]]
"""
n, r = gf_degree(f), int(p)
q = [K.one] + [K.zero]*(n - 1)
Q = [list(q)] + [[]]*(n - 1)
for i in range(1, (n - 1)*r + 1):
qq, c = [(-q[-1]*f[-1]) % p], q[-1]
for j in range(1, n):
qq.append((q[j - 1] - c*f[-j - 1]) % p)
if not (i % r):
Q[i//r] = list(qq)
q = qq
return Q
def gf_Qbasis(Q, p, K):
"""
Compute a basis of the kernel of ``Q``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_Qmatrix, gf_Qbasis
>>> gf_Qbasis(gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ), 5, ZZ)
[[1, 0, 0, 0], [0, 0, 1, 0]]
>>> gf_Qbasis(gf_Qmatrix([3, 2, 4], 5, ZZ), 5, ZZ)
[[1, 0]]
"""
Q, n = [ list(q) for q in Q ], len(Q)
for k in range(0, n):
Q[k][k] = (Q[k][k] - K.one) % p
for k in range(0, n):
for i in range(k, n):
if Q[k][i]:
break
else:
continue
inv = K.invert(Q[k][i], p)
for j in range(0, n):
Q[j][i] = (Q[j][i]*inv) % p
for j in range(0, n):
t = Q[j][k]
Q[j][k] = Q[j][i]
Q[j][i] = t
for i in range(0, n):
if i != k:
q = Q[k][i]
for j in range(0, n):
Q[j][i] = (Q[j][i] - Q[j][k]*q) % p
for i in range(0, n):
for j in range(0, n):
if i == j:
Q[i][j] = (K.one - Q[i][j]) % p
else:
Q[i][j] = (-Q[i][j]) % p
basis = []
for q in Q:
if any(q):
basis.append(q)
return basis
def gf_berlekamp(f, p, K):
"""
Factor a square-free ``f`` in ``GF(p)[x]`` for small ``p``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_berlekamp
>>> gf_berlekamp([1, 0, 0, 0, 1], 5, ZZ)
[[1, 0, 2], [1, 0, 3]]
"""
Q = gf_Qmatrix(f, p, K)
V = gf_Qbasis(Q, p, K)
for i, v in enumerate(V):
V[i] = gf_strip(list(reversed(v)))
factors = [f]
for k in range(1, len(V)):
for f in list(factors):
s = K.zero
while s < p:
g = gf_sub_ground(V[k], s, p, K)
h = gf_gcd(f, g, p, K)
if h != [K.one] and h != f:
factors.remove(f)
f = gf_quo(f, h, p, K)
factors.extend([f, h])
if len(factors) == len(V):
return _sort_factors(factors, multiple=False)
s += K.one
return _sort_factors(factors, multiple=False)
def gf_ddf_zassenhaus(f, p, K):
"""
Cantor-Zassenhaus: Deterministic Distinct Degree Factorization
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes
partial distinct degree factorization ``f_1 ... f_d`` of ``f`` where
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0``
is an argument to the equal degree factorization routine.
Consider the polynomial ``x**15 - 1`` in ``GF(11)[x]``::
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_from_dict
>>> f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ)
Distinct degree factorization gives::
>>> from sympy.polys.galoistools import gf_ddf_zassenhaus
>>> gf_ddf_zassenhaus(f, 11, ZZ)
[([1, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)]
which means ``x**15 - 1 = (x**5 - 1) (x**10 + x**5 + 1)``. To obtain
factorization into irreducibles, use equal degree factorization
procedure (EDF) with each of the factors.
References
==========
.. [1] [Gathen99]_
.. [2] [Geddes92]_
"""
i, g, factors = 1, [K.one, K.zero], []
b = gf_frobenius_monomial_base(f, p, K)
while 2*i <= gf_degree(f):
g = gf_frobenius_map(g, f, b, p, K)
h = gf_gcd(f, gf_sub(g, [K.one, K.zero], p, K), p, K)
if h != [K.one]:
factors.append((h, i))
f = gf_quo(f, h, p, K)
g = gf_rem(g, f, p, K)
b = gf_frobenius_monomial_base(f, p, K)
i += 1
if f != [K.one]:
return factors + [(f, gf_degree(f))]
else:
return factors
def gf_edf_zassenhaus(f, n, p, K):
"""
Cantor-Zassenhaus: Probabilistic Equal Degree Factorization
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and
an integer ``n``, such that ``n`` divides ``deg(f)``, returns all
irreducible factors ``f_1,...,f_d`` of ``f``, each of degree ``n``.
EDF procedure gives complete factorization over Galois fields.
Consider the square-free polynomial ``f = x**3 + x**2 + x + 1`` in
``GF(5)[x]``. Let's compute its irreducible factors of degree one::
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_edf_zassenhaus
>>> gf_edf_zassenhaus([1,1,1,1], 1, 5, ZZ)
[[1, 1], [1, 2], [1, 3]]
References
==========
.. [1] [Gathen99]_
.. [2] [Geddes92]_
"""
factors = [f]
if gf_degree(f) <= n:
return factors
N = gf_degree(f) // n
if p != 2:
b = gf_frobenius_monomial_base(f, p, K)
while len(factors) < N:
r = gf_random(2*n - 1, p, K)
if p == 2:
h = r
for i in range(0, 2**(n*N - 1)):
r = gf_pow_mod(r, 2, f, p, K)
h = gf_add(h, r, p, K)
g = gf_gcd(f, h, p, K)
else:
h = _gf_pow_pnm1d2(r, n, f, b, p, K)
g = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K)
if g != [K.one] and g != f:
factors = gf_edf_zassenhaus(g, n, p, K) \
+ gf_edf_zassenhaus(gf_quo(f, g, p, K), n, p, K)
return _sort_factors(factors, multiple=False)
def gf_ddf_shoup(f, p, K):
"""
Kaltofen-Shoup: Deterministic Distinct Degree Factorization
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes
partial distinct degree factorization ``f_1,...,f_d`` of ``f`` where
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0``
is an argument to the equal degree factorization routine.
This algorithm is an improved version of Zassenhaus algorithm for
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``).
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_ddf_shoup, gf_from_dict
>>> f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ)
>>> gf_ddf_shoup(f, 3, ZZ)
[([1, 1, 0], 1), ([1, 1, 0, 1, 2], 2)]
References
==========
.. [1] [Kaltofen98]_
.. [2] [Shoup95]_
.. [3] [Gathen92]_
"""
n = gf_degree(f)
k = int(_ceil(_sqrt(n//2)))
b = gf_frobenius_monomial_base(f, p, K)
h = gf_frobenius_map([K.one, K.zero], f, b, p, K)
# U[i] = x**(p**i)
U = [[K.one, K.zero], h] + [K.zero]*(k - 1)
for i in range(2, k + 1):
U[i] = gf_frobenius_map(U[i-1], f, b, p, K)
h, U = U[k], U[:k]
# V[i] = x**(p**(k*(i+1)))
V = [h] + [K.zero]*(k - 1)
for i in range(1, k):
V[i] = gf_compose_mod(V[i - 1], h, f, p, K)
factors = []
for i, v in enumerate(V):
h, j = [K.one], k - 1
for u in U:
g = gf_sub(v, u, p, K)
h = gf_mul(h, g, p, K)
h = gf_rem(h, f, p, K)
g = gf_gcd(f, h, p, K)
f = gf_quo(f, g, p, K)
for u in reversed(U):
h = gf_sub(v, u, p, K)
F = gf_gcd(g, h, p, K)
if F != [K.one]:
factors.append((F, k*(i + 1) - j))
g, j = gf_quo(g, F, p, K), j - 1
if f != [K.one]:
factors.append((f, gf_degree(f)))
return factors
def gf_edf_shoup(f, n, p, K):
"""
Gathen-Shoup: Probabilistic Equal Degree Factorization
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and integer
``n`` such that ``n`` divides ``deg(f)``, returns all irreducible factors
``f_1,...,f_d`` of ``f``, each of degree ``n``. This is a complete
factorization over Galois fields.
This algorithm is an improved version of Zassenhaus algorithm for
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``).
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_edf_shoup
>>> gf_edf_shoup(ZZ.map([1, 2837, 2277]), 1, 2917, ZZ)
[[1, 852], [1, 1985]]
References
==========
.. [1] [Shoup91]_
.. [2] [Gathen92]_
"""
N, q = gf_degree(f), int(p)
if not N:
return []
if N <= n:
return [f]
factors, x = [f], [K.one, K.zero]
r = gf_random(N - 1, p, K)
if p == 2:
h = gf_pow_mod(x, q, f, p, K)
H = gf_trace_map(r, h, x, n - 1, f, p, K)[1]
h1 = gf_gcd(f, H, p, K)
h2 = gf_quo(f, h1, p, K)
factors = gf_edf_shoup(h1, n, p, K) \
+ gf_edf_shoup(h2, n, p, K)
else:
b = gf_frobenius_monomial_base(f, p, K)
H = _gf_trace_map(r, n, f, b, p, K)
h = gf_pow_mod(H, (q - 1)//2, f, p, K)
h1 = gf_gcd(f, h, p, K)
h2 = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K)
h3 = gf_quo(f, gf_mul(h1, h2, p, K), p, K)
factors = gf_edf_shoup(h1, n, p, K) \
+ gf_edf_shoup(h2, n, p, K) \
+ gf_edf_shoup(h3, n, p, K)
return _sort_factors(factors, multiple=False)
def gf_zassenhaus(f, p, K):
"""
Factor a square-free ``f`` in ``GF(p)[x]`` for medium ``p``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_zassenhaus
>>> gf_zassenhaus(ZZ.map([1, 4, 3]), 5, ZZ)
[[1, 1], [1, 3]]
"""
factors = []
for factor, n in gf_ddf_zassenhaus(f, p, K):
factors += gf_edf_zassenhaus(factor, n, p, K)
return _sort_factors(factors, multiple=False)
def gf_shoup(f, p, K):
"""
Factor a square-free ``f`` in ``GF(p)[x]`` for large ``p``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_shoup
>>> gf_shoup(ZZ.map([1, 4, 3]), 5, ZZ)
[[1, 1], [1, 3]]
"""
factors = []
for factor, n in gf_ddf_shoup(f, p, K):
factors += gf_edf_shoup(factor, n, p, K)
return _sort_factors(factors, multiple=False)
_factor_methods = {
'berlekamp': gf_berlekamp, # ``p`` : small
'zassenhaus': gf_zassenhaus, # ``p`` : medium
'shoup': gf_shoup, # ``p`` : large
}
def gf_factor_sqf(f, p, K, method=None):
"""
Factor a square-free polynomial ``f`` in ``GF(p)[x]``.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_factor_sqf
>>> gf_factor_sqf(ZZ.map([3, 2, 4]), 5, ZZ)
(3, [[1, 1], [1, 3]])
"""
lc, f = gf_monic(f, p, K)
if gf_degree(f) < 1:
return lc, []
method = method or query('GF_FACTOR_METHOD')
if method is not None:
factors = _factor_methods[method](f, p, K)
else:
factors = gf_zassenhaus(f, p, K)
return lc, factors
def gf_factor(f, p, K):
"""
Factor (non square-free) polynomials in ``GF(p)[x]``.
Given a possibly non square-free polynomial ``f`` in ``GF(p)[x]``,
returns its complete factorization into irreducibles::
f_1(x)**e_1 f_2(x)**e_2 ... f_d(x)**e_d
where each ``f_i`` is a monic polynomial and ``gcd(f_i, f_j) == 1``,
for ``i != j``. The result is given as a tuple consisting of the
leading coefficient of ``f`` and a list of factors of ``f`` with
their multiplicities.
The algorithm proceeds by first computing square-free decomposition
of ``f`` and then iteratively factoring each of square-free factors.
Consider a non square-free polynomial ``f = (7*x + 1) (x + 2)**2`` in
``GF(11)[x]``. We obtain its factorization into irreducibles as follows::
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.galoistools import gf_factor
>>> gf_factor(ZZ.map([5, 2, 7, 2]), 11, ZZ)
(5, [([1, 2], 1), ([1, 8], 2)])
We arrived with factorization ``f = 5 (x + 2) (x + 8)**2``. We didn't
recover the exact form of the input polynomial because we requested to
get monic factors of ``f`` and its leading coefficient separately.
Square-free factors of ``f`` can be factored into irreducibles over
``GF(p)`` using three very different methods:
Berlekamp
efficient for very small values of ``p`` (usually ``p < 25``)
Cantor-Zassenhaus
efficient on average input and with "typical" ``p``
Shoup-Kaltofen-Gathen
efficient with very large inputs and modulus
If you want to use a specific factorization method, instead of the default
one, set ``GF_FACTOR_METHOD`` with one of ``berlekamp``, ``zassenhaus`` or
``shoup`` values.
References
==========
.. [1] [Gathen99]_
"""
lc, f = gf_monic(f, p, K)
if gf_degree(f) < 1:
return lc, []
factors = []
for g, n in gf_sqf_list(f, p, K)[1]:
for h in gf_factor_sqf(g, p, K)[1]:
factors.append((h, n))
return lc, _sort_factors(factors)
def gf_value(f, a):
"""
Value of polynomial 'f' at 'a' in field R.
Examples
========
>>> from sympy.polys.galoistools import gf_value
>>> gf_value([1, 7, 2, 4], 11)
2204
"""
result = 0
for c in f:
result *= a
result += c
return result
def linear_congruence(a, b, m):
"""
Returns the values of x satisfying a*x congruent b mod(m)
Here m is positive integer and a, b are natural numbers.
This function returns only those values of x which are distinct mod(m).
Examples
========
>>> from sympy.polys.galoistools import linear_congruence
>>> linear_congruence(3, 12, 15)
[4, 9, 14]
There are 3 solutions distinct mod(15) since gcd(a, m) = gcd(3, 15) = 3.
References
==========
.. [1] https://en.wikipedia.org/wiki/Linear_congruence_theorem
"""
from sympy.polys.polytools import gcdex
if a % m == 0:
if b % m == 0:
return list(range(m))
else:
return []
r, _, g = gcdex(a, m)
if b % g != 0:
return []
return [(r * b // g + t * m // g) % m for t in range(g)]
def _raise_mod_power(x, s, p, f):
"""
Used in gf_csolve to generate solutions of f(x) cong 0 mod(p**(s + 1))
from the solutions of f(x) cong 0 mod(p**s).
Examples
========
>>> from sympy.polys.galoistools import _raise_mod_power
>>> from sympy.polys.galoistools import csolve_prime
These is the solutions of f(x) = x**2 + x + 7 cong 0 mod(3)
>>> f = [1, 1, 7]
>>> csolve_prime(f, 3)
[1]
>>> [ i for i in range(3) if not (i**2 + i + 7) % 3]
[1]
The solutions of f(x) cong 0 mod(9) are constructed from the
values returned from _raise_mod_power:
>>> x, s, p = 1, 1, 3
>>> V = _raise_mod_power(x, s, p, f)
>>> [x + v * p**s for v in V]
[1, 4, 7]
And these are confirmed with the following:
>>> [ i for i in range(3**2) if not (i**2 + i + 7) % 3**2]
[1, 4, 7]
"""
from sympy.polys.domains import ZZ
f_f = gf_diff(f, p, ZZ)
alpha = gf_value(f_f, x)
beta = - gf_value(f, x) // p**s
return linear_congruence(alpha, beta, p)
def csolve_prime(f, p, e=1):
"""
Solutions of f(x) congruent 0 mod(p**e).
Examples
========
>>> from sympy.polys.galoistools import csolve_prime
>>> csolve_prime([1, 1, 7], 3, 1)
[1]
>>> csolve_prime([1, 1, 7], 3, 2)
[1, 4, 7]
Solutions [7, 4, 1] (mod 3**2) are generated by ``_raise_mod_power()``
from solution [1] (mod 3).
"""
from sympy.polys.domains import ZZ
X1 = [i for i in range(p) if gf_eval(f, i, p, ZZ) == 0]
if e == 1:
return X1
X = []
S = list(zip(X1, [1]*len(X1)))
while S:
x, s = S.pop()
if s == e:
X.append(x)
else:
s1 = s + 1
ps = p**s
S.extend([(x + v*ps, s1) for v in _raise_mod_power(x, s, p, f)])
return sorted(X)
def gf_csolve(f, n):
"""
To solve f(x) congruent 0 mod(n).
n is divided into canonical factors and f(x) cong 0 mod(p**e) will be
solved for each factor. Applying the Chinese Remainder Theorem to the
results returns the final answers.
Examples
========
Solve [1, 1, 7] congruent 0 mod(189):
>>> from sympy.polys.galoistools import gf_csolve
>>> gf_csolve([1, 1, 7], 189)
[13, 49, 76, 112, 139, 175]
References
==========
.. [1] 'An introduction to the Theory of Numbers' 5th Edition by Ivan Niven,
Zuckerman and Montgomery.
"""
from sympy.polys.domains import ZZ
P = factorint(n)
X = [csolve_prime(f, p, e) for p, e in P.items()]
pools = list(map(tuple, X))
perms = [[]]
for pool in pools:
perms = [x + [y] for x in perms for y in pool]
dist_factors = [pow(p, e) for p, e in P.items()]
return sorted([gf_crt(per, dist_factors, ZZ) for per in perms])
|
cd98a111d0b0e62afb6f2c7e4a292bc0431505dc1fbabcd256977f3828346570 | """
This module contains functions for the computation
of Euclidean, (generalized) Sturmian, (modified) subresultant
polynomial remainder sequences (prs's) of two polynomials;
included are also three functions for the computation of the
resultant of two polynomials.
Except for the function res_z(), which computes the resultant
of two polynomials, the pseudo-remainder function prem()
of sympy is _not_ used by any of the functions in the module.
Instead of prem() we use the function
rem_z().
Included is also the function quo_z().
An explanation of why we avoid prem() can be found in the
references stated in the docstring of rem_z().
1. Theoretical background:
==========================
Consider the polynomials f, g in Z[x] of degrees deg(f) = n and
deg(g) = m with n >= m.
Definition 1:
=============
The sign sequence of a polynomial remainder sequence (prs) is the
sequence of signs of the leading coefficients of its polynomials.
Sign sequences can be computed with the function:
sign_seq(poly_seq, x)
Definition 2:
=============
A polynomial remainder sequence (prs) is called complete if the
degree difference between any two consecutive polynomials is 1;
otherwise, it called incomplete.
It is understood that f, g belong to the sequences mentioned in
the two definitions above.
1A. Euclidean and subresultant prs's:
=====================================
The subresultant prs of f, g is a sequence of polynomials in Z[x]
analogous to the Euclidean prs, the sequence obtained by applying
on f, g Euclid's algorithm for polynomial greatest common divisors
(gcd) in Q[x].
The subresultant prs differs from the Euclidean prs in that the
coefficients of each polynomial in the former sequence are determinants
--- also referred to as subresultants --- of appropriately selected
sub-matrices of sylvester1(f, g, x), Sylvester's matrix of 1840 of
dimensions (n + m) * (n + m).
Recall that the determinant of sylvester1(f, g, x) itself is
called the resultant of f, g and serves as a criterion of whether
the two polynomials have common roots or not.
In sympy the resultant is computed with the function
resultant(f, g, x). This function does _not_ evaluate the
determinant of sylvester(f, g, x, 1); instead, it returns
the last member of the subresultant prs of f, g, multiplied
(if needed) by an appropriate power of -1; see the caveat below.
In this module we use three functions to compute the
resultant of f, g:
a) res(f, g, x) computes the resultant by evaluating
the determinant of sylvester(f, g, x, 1);
b) res_q(f, g, x) computes the resultant recursively, by
performing polynomial divisions in Q[x] with the function rem();
c) res_z(f, g, x) computes the resultant recursively, by
performing polynomial divisions in Z[x] with the function prem().
Caveat: If Df = degree(f, x) and Dg = degree(g, x), then:
resultant(f, g, x) = (-1)**(Df*Dg) * resultant(g, f, x).
For complete prs's the sign sequence of the Euclidean prs of f, g
is identical to the sign sequence of the subresultant prs of f, g
and the coefficients of one sequence are easily computed from the
coefficients of the other.
For incomplete prs's the polynomials in the subresultant prs, generally
differ in sign from those of the Euclidean prs, and --- unlike the
case of complete prs's --- it is not at all obvious how to compute
the coefficients of one sequence from the coefficients of the other.
1B. Sturmian and modified subresultant prs's:
=============================================
For the same polynomials f, g in Z[x] mentioned above, their ``modified''
subresultant prs is a sequence of polynomials similar to the Sturmian
prs, the sequence obtained by applying in Q[x] Sturm's algorithm on f, g.
The two sequences differ in that the coefficients of each polynomial
in the modified subresultant prs are the determinants --- also referred
to as modified subresultants --- of appropriately selected sub-matrices
of sylvester2(f, g, x), Sylvester's matrix of 1853 of dimensions 2n x 2n.
The determinant of sylvester2 itself is called the modified resultant
of f, g and it also can serve as a criterion of whether the two
polynomials have common roots or not.
For complete prs's the sign sequence of the Sturmian prs of f, g is
identical to the sign sequence of the modified subresultant prs of
f, g and the coefficients of one sequence are easily computed from
the coefficients of the other.
For incomplete prs's the polynomials in the modified subresultant prs,
generally differ in sign from those of the Sturmian prs, and --- unlike
the case of complete prs's --- it is not at all obvious how to compute
the coefficients of one sequence from the coefficients of the other.
As Sylvester pointed out, the coefficients of the polynomial remainders
obtained as (modified) subresultants are the smallest possible without
introducing rationals and without computing (integer) greatest common
divisors.
1C. On terminology:
===================
Whence the terminology? Well generalized Sturmian prs's are
``modifications'' of Euclidean prs's; the hint came from the title
of the Pell-Gordon paper of 1917.
In the literature one also encounters the name ``non signed'' and
``signed'' prs for Euclidean and Sturmian prs respectively.
Likewise ``non signed'' and ``signed'' subresultant prs for
subresultant and modified subresultant prs respectively.
2. Functions in the module:
===========================
No function utilizes sympy's function prem().
2A. Matrices:
=============
The functions sylvester(f, g, x, method=1) and
sylvester(f, g, x, method=2) compute either Sylvester matrix.
They can be used to compute (modified) subresultant prs's by
direct determinant evaluation.
The function bezout(f, g, x, method='prs') provides a matrix of
smaller dimensions than either Sylvester matrix. It is the function
of choice for computing (modified) subresultant prs's by direct
determinant evaluation.
sylvester(f, g, x, method=1)
sylvester(f, g, x, method=2)
bezout(f, g, x, method='prs')
The following identity holds:
bezout(f, g, x, method='prs') =
backward_eye(deg(f))*bezout(f, g, x, method='bz')*backward_eye(deg(f))
2B. Subresultant and modified subresultant prs's by
===================================================
determinant evaluations:
=======================
We use the Sylvester matrices of 1840 and 1853 to
compute, respectively, subresultant and modified
subresultant polynomial remainder sequences. However,
for large matrices this approach takes a lot of time.
Instead of utilizing the Sylvester matrices, we can
employ the Bezout matrix which is of smaller dimensions.
subresultants_sylv(f, g, x)
modified_subresultants_sylv(f, g, x)
subresultants_bezout(f, g, x)
modified_subresultants_bezout(f, g, x)
2C. Subresultant prs's by ONE determinant evaluation:
=====================================================
All three functions in this section evaluate one determinant
per remainder polynomial; this is the determinant of an
appropriately selected sub-matrix of sylvester1(f, g, x),
Sylvester's matrix of 1840.
To compute the remainder polynomials the function
subresultants_rem(f, g, x) employs rem(f, g, x).
By contrast, the other two functions implement Van Vleck's ideas
of 1900 and compute the remainder polynomials by trinagularizing
sylvester2(f, g, x), Sylvester's matrix of 1853.
subresultants_rem(f, g, x)
subresultants_vv(f, g, x)
subresultants_vv_2(f, g, x).
2E. Euclidean, Sturmian prs's in Q[x]:
======================================
euclid_q(f, g, x)
sturm_q(f, g, x)
2F. Euclidean, Sturmian and (modified) subresultant prs's P-G:
==============================================================
All functions in this section are based on the Pell-Gordon (P-G)
theorem of 1917.
Computations are done in Q[x], employing the function rem(f, g, x)
for the computation of the remainder polynomials.
euclid_pg(f, g, x)
sturm pg(f, g, x)
subresultants_pg(f, g, x)
modified_subresultants_pg(f, g, x)
2G. Euclidean, Sturmian and (modified) subresultant prs's A-M-V:
================================================================
All functions in this section are based on the Akritas-Malaschonok-
Vigklas (A-M-V) theorem of 2015.
Computations are done in Z[x], employing the function rem_z(f, g, x)
for the computation of the remainder polynomials.
euclid_amv(f, g, x)
sturm_amv(f, g, x)
subresultants_amv(f, g, x)
modified_subresultants_amv(f, g, x)
2Ga. Exception:
===============
subresultants_amv_q(f, g, x)
This function employs rem(f, g, x) for the computation of
the remainder polynomials, despite the fact that it implements
the A-M-V Theorem.
It is included in our module in order to show that theorems P-G
and A-M-V can be implemented utilizing either the function
rem(f, g, x) or the function rem_z(f, g, x).
For clearly historical reasons --- since the Collins-Brown-Traub
coefficients-reduction factor beta_i was not available in 1917 ---
we have implemented the Pell-Gordon theorem with the function
rem(f, g, x) and the A-M-V Theorem with the function rem_z(f, g, x).
2H. Resultants:
===============
res(f, g, x)
res_q(f, g, x)
res_z(f, g, x)
"""
from __future__ import print_function, division
from sympy import (Abs, degree, expand, eye, floor, LC, Matrix, nan, Poly, pprint)
from sympy import (QQ, pquo, quo, prem, rem, S, sign, simplify, summation, var, zeros)
from sympy.polys.polyerrors import PolynomialError
def sylvester(f, g, x, method = 1):
'''
The input polynomials f, g are in Z[x] or in Q[x]. Let m = degree(f, x),
n = degree(g, x) and mx = max( m , n ).
a. If method = 1 (default), computes sylvester1, Sylvester's matrix of 1840
of dimension (m + n) x (m + n). The determinants of properly chosen
submatrices of this matrix (a.k.a. subresultants) can be
used to compute the coefficients of the Euclidean PRS of f, g.
b. If method = 2, computes sylvester2, Sylvester's matrix of 1853
of dimension (2*mx) x (2*mx). The determinants of properly chosen
submatrices of this matrix (a.k.a. ``modified'' subresultants) can be
used to compute the coefficients of the Sturmian PRS of f, g.
Applications of these Matrices can be found in the references below.
Especially, for applications of sylvester2, see the first reference!!
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences. Serdica Journal of Computing,
Vol. 7, No 4, 101-134, 2013.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29-46, 2014.
'''
# obtain degrees of polys
m, n = degree( Poly(f, x), x), degree( Poly(g, x), x)
# Special cases:
# A:: case m = n < 0 (i.e. both polys are 0)
if m == n and n < 0:
return Matrix([])
# B:: case m = n = 0 (i.e. both polys are constants)
if m == n and n == 0:
return Matrix([])
# C:: m == 0 and n < 0 or m < 0 and n == 0
# (i.e. one poly is constant and the other is 0)
if m == 0 and n < 0:
return Matrix([])
elif m < 0 and n == 0:
return Matrix([])
# D:: m >= 1 and n < 0 or m < 0 and n >=1
# (i.e. one poly is of degree >=1 and the other is 0)
if m >= 1 and n < 0:
return Matrix([0])
elif m < 0 and n >= 1:
return Matrix([0])
fp = Poly(f, x).all_coeffs()
gp = Poly(g, x).all_coeffs()
# Sylvester's matrix of 1840 (default; a.k.a. sylvester1)
if method <= 1:
M = zeros(m + n)
k = 0
for i in range(n):
j = k
for coeff in fp:
M[i, j] = coeff
j = j + 1
k = k + 1
k = 0
for i in range(n, m + n):
j = k
for coeff in gp:
M[i, j] = coeff
j = j + 1
k = k + 1
return M
# Sylvester's matrix of 1853 (a.k.a sylvester2)
if method >= 2:
if len(fp) < len(gp):
h = []
for i in range(len(gp) - len(fp)):
h.append(0)
fp[ : 0] = h
else:
h = []
for i in range(len(fp) - len(gp)):
h.append(0)
gp[ : 0] = h
mx = max(m, n)
dim = 2*mx
M = zeros( dim )
k = 0
for i in range( mx ):
j = k
for coeff in fp:
M[2*i, j] = coeff
j = j + 1
j = k
for coeff in gp:
M[2*i + 1, j] = coeff
j = j + 1
k = k + 1
return M
def process_matrix_output(poly_seq, x):
"""
poly_seq is a polynomial remainder sequence computed either by
(modified_)subresultants_bezout or by (modified_)subresultants_sylv.
This function removes from poly_seq all zero polynomials as well
as all those whose degree is equal to the degree of a preceding
polynomial in poly_seq, as we scan it from left to right.
"""
L = poly_seq[:] # get a copy of the input sequence
d = degree(L[1], x)
i = 2
while i < len(L):
d_i = degree(L[i], x)
if d_i < 0: # zero poly
L.remove(L[i])
i = i - 1
if d == d_i: # poly degree equals degree of previous poly
L.remove(L[i])
i = i - 1
if d_i >= 0:
d = d_i
i = i + 1
return L
def subresultants_sylv(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x]. It is assumed
that deg(f) >= deg(g).
Computes the subresultant polynomial remainder sequence (prs)
of f, g by evaluating determinants of appropriately selected
submatrices of sylvester(f, g, x, 1). The dimensions of the
latter are (deg(f) + deg(g)) x (deg(f) + deg(g)).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of sylvester(f, g, x, 1).
If the subresultant prs is complete, then the output coincides
with the Euclidean sequence of the polynomials f, g.
References:
===========
1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233-266, 2004.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # subresultant list
# form matrix sylvester(f, g, x, 1)
S = sylvester(f, g, x, 1)
# pick appropriate submatrices of S
# and form subresultant polys
j = m - 1
while j > 0:
Sp = S[:, :] # copy of S
# delete last j rows of coeffs of g
for ind in range(m + n - j, m + n):
Sp.row_del(m + n - j)
# delete last j rows of coeffs of f
for ind in range(m - j, m):
Sp.row_del(m - j)
# evaluate determinants and form coefficients list
coeff_L, k, l = [], Sp.rows, 0
while l <= j:
coeff_L.append(Sp[ : , 0 : k].det())
Sp.col_swap(k - 1, k + l)
l += 1
# form poly and append to SP_L
SR_L.append(Poly(coeff_L, x).as_expr())
j -= 1
# j = 0
SR_L.append(S.det())
return process_matrix_output(SR_L, x)
def modified_subresultants_sylv(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x]. It is assumed
that deg(f) >= deg(g).
Computes the modified subresultant polynomial remainder sequence (prs)
of f, g by evaluating determinants of appropriately selected
submatrices of sylvester(f, g, x, 2). The dimensions of the
latter are (2*deg(f)) x (2*deg(f)).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of sylvester(f, g, x, 2).
If the modified subresultant prs is complete, then the output coincides
with the Sturmian sequence of the polynomials f, g.
References:
===========
1. A. G. Akritas,G.I. Malaschonok and P.S. Vigklas:
Sturm Sequences and Modified Subresultant Polynomial Remainder
Sequences. Serdica Journal of Computing, Vol. 8, No 1, 29--46, 2014.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # modified subresultant list
# form matrix sylvester(f, g, x, 2)
S = sylvester(f, g, x, 2)
# pick appropriate submatrices of S
# and form modified subresultant polys
j = m - 1
while j > 0:
# delete last 2*j rows of pairs of coeffs of f, g
Sp = S[0:2*n - 2*j, :] # copy of first 2*n - 2*j rows of S
# evaluate determinants and form coefficients list
coeff_L, k, l = [], Sp.rows, 0
while l <= j:
coeff_L.append(Sp[ : , 0 : k].det())
Sp.col_swap(k - 1, k + l)
l += 1
# form poly and append to SP_L
SR_L.append(Poly(coeff_L, x).as_expr())
j -= 1
# j = 0
SR_L.append(S.det())
return process_matrix_output(SR_L, x)
def res(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x].
The output is the resultant of f, g computed by evaluating
the determinant of the matrix sylvester(f, g, x, 1).
References:
===========
1. J. S. Cohen: Computer Algebra and Symbolic Computation
- Mathematical Methods. A. K. Peters, 2003.
"""
if f == 0 or g == 0:
raise PolynomialError("The resultant of %s and %s is not defined" % (f, g))
else:
return sylvester(f, g, x, 1).det()
def res_q(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x].
The output is the resultant of f, g computed recursively
by polynomial divisions in Q[x], using the function rem.
See Cohen's book p. 281.
References:
===========
1. J. S. Cohen: Computer Algebra and Symbolic Computation
- Mathematical Methods. A. K. Peters, 2003.
"""
m = degree(f, x)
n = degree(g, x)
if m < n:
return (-1)**(m*n) * res_q(g, f, x)
elif n == 0: # g is a constant
return g**m
else:
r = rem(f, g, x)
if r == 0:
return 0
else:
s = degree(r, x)
l = LC(g, x)
return (-1)**(m*n) * l**(m-s)*res_q(g, r, x)
def res_z(f, g, x):
"""
The input polynomials f, g are in Z[x] or in Q[x].
The output is the resultant of f, g computed recursively
by polynomial divisions in Z[x], using the function prem().
See Cohen's book p. 283.
References:
===========
1. J. S. Cohen: Computer Algebra and Symbolic Computation
- Mathematical Methods. A. K. Peters, 2003.
"""
m = degree(f, x)
n = degree(g, x)
if m < n:
return (-1)**(m*n) * res_z(g, f, x)
elif n == 0: # g is a constant
return g**m
else:
r = prem(f, g, x)
if r == 0:
return 0
else:
delta = m - n + 1
w = (-1)**(m*n) * res_z(g, r, x)
s = degree(r, x)
l = LC(g, x)
k = delta * n - m + s
return quo(w, l**k, x)
def sign_seq(poly_seq, x):
"""
Given a sequence of polynomials poly_seq, it returns
the sequence of signs of the leading coefficients of
the polynomials in poly_seq.
"""
return [sign(LC(poly_seq[i], x)) for i in range(len(poly_seq))]
def bezout(p, q, x, method='bz'):
"""
The input polynomials p, q are in Z[x] or in Q[x]. Let
mx = max( degree(p, x) , degree(q, x) ).
The default option bezout(p, q, x, method='bz') returns Bezout's
symmetric matrix of p and q, of dimensions (mx) x (mx). The
determinant of this matrix is equal to the determinant of sylvester2,
Sylvester's matrix of 1853, whose dimensions are (2*mx) x (2*mx);
however the subresultants of these two matrices may differ.
The other option, bezout(p, q, x, 'prs'), is of interest to us
in this module because it returns a matrix equivalent to sylvester2.
In this case all subresultants of the two matrices are identical.
Both the subresultant polynomial remainder sequence (prs) and
the modified subresultant prs of p and q can be computed by
evaluating determinants of appropriately selected submatrices of
bezout(p, q, x, 'prs') --- one determinant per coefficient of the
remainder polynomials.
The matrices bezout(p, q, x, 'bz') and bezout(p, q, x, 'prs')
are related by the formula
bezout(p, q, x, 'prs') =
backward_eye(deg(p)) * bezout(p, q, x, 'bz') * backward_eye(deg(p)),
where backward_eye() is the backward identity function.
References
==========
1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233-266, 2004.
"""
# obtain degrees of polys
m, n = degree( Poly(p, x), x), degree( Poly(q, x), x)
# Special cases:
# A:: case m = n < 0 (i.e. both polys are 0)
if m == n and n < 0:
return Matrix([])
# B:: case m = n = 0 (i.e. both polys are constants)
if m == n and n == 0:
return Matrix([])
# C:: m == 0 and n < 0 or m < 0 and n == 0
# (i.e. one poly is constant and the other is 0)
if m == 0 and n < 0:
return Matrix([])
elif m < 0 and n == 0:
return Matrix([])
# D:: m >= 1 and n < 0 or m < 0 and n >=1
# (i.e. one poly is of degree >=1 and the other is 0)
if m >= 1 and n < 0:
return Matrix([0])
elif m < 0 and n >= 1:
return Matrix([0])
y = var('y')
# expr is 0 when x = y
expr = p * q.subs({x:y}) - p.subs({x:y}) * q
# hence expr is exactly divisible by x - y
poly = Poly( quo(expr, x-y), x, y)
# form Bezout matrix and store them in B as indicated to get
# the LC coefficient of each poly either in the first position
# of each row (method='prs') or in the last (method='bz').
mx = max(m, n)
B = zeros(mx)
for i in range(mx):
for j in range(mx):
if method == 'prs':
B[mx - 1 - i, mx - 1 - j] = poly.nth(i, j)
else:
B[i, j] = poly.nth(i, j)
return B
def backward_eye(n):
'''
Returns the backward identity matrix of dimensions n x n.
Needed to "turn" the Bezout matrices
so that the leading coefficients are first.
See docstring of the function bezout(p, q, x, method='bz').
'''
M = eye(n) # identity matrix of order n
for i in range(int(M.rows / 2)):
M.row_swap(0 + i, M.rows - 1 - i)
return M
def subresultants_bezout(p, q, x):
"""
The input polynomials p, q are in Z[x] or in Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant polynomial remainder sequence
of p, q by evaluating determinants of appropriately selected
submatrices of bezout(p, q, x, 'prs'). The dimensions of the
latter are deg(p) x deg(p).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of bezout(p, q, x, 'prs').
bezout(p, q, x, 'prs) is used instead of sylvester(p, q, x, 1),
Sylvester's matrix of 1840, because the dimensions of the latter
are (deg(p) + deg(q)) x (deg(p) + deg(q)).
If the subresultant prs is complete, then the output coincides
with the Euclidean sequence of the polynomials p, q.
References
==========
1. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233-266, 2004.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
f, g = p, q
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # subresultant list
F = LC(f, x)**(degF - degG)
# form the bezout matrix
B = bezout(f, g, x, 'prs')
# pick appropriate submatrices of B
# and form subresultant polys
if degF > degG:
j = 2
if degF == degG:
j = 1
while j <= degF:
M = B[0:j, :]
k, coeff_L = j - 1, []
while k <= degF - 1:
coeff_L.append(M[: ,0 : j].det())
if k < degF - 1:
M.col_swap(j - 1, k + 1)
k = k + 1
# apply Theorem 2.1 in the paper by Toca & Vega 2004
# to get correct signs
SR_L.append((int((-1)**(j*(j-1)/2)) * Poly(coeff_L, x) / F).as_expr())
j = j + 1
return process_matrix_output(SR_L, x)
def modified_subresultants_bezout(p, q, x):
"""
The input polynomials p, q are in Z[x] or in Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the modified subresultant polynomial remainder sequence
of p, q by evaluating determinants of appropriately selected
submatrices of bezout(p, q, x, 'prs'). The dimensions of the
latter are deg(p) x deg(p).
Each coefficient is computed by evaluating the determinant of the
corresponding submatrix of bezout(p, q, x, 'prs').
bezout(p, q, x, 'prs') is used instead of sylvester(p, q, x, 2),
Sylvester's matrix of 1853, because the dimensions of the latter
are 2*deg(p) x 2*deg(p).
If the modified subresultant prs is complete, and LC( p ) > 0, the output
coincides with the (generalized) Sturm's sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29-46, 2014.
2. G.M.Diaz-Toca,L.Gonzalez-Vega: Various New Expressions for Subresultants
and Their Applications. Appl. Algebra in Engin., Communic. and Comp.,
Vol. 15, 233-266, 2004.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
f, g = p, q
n = degF = degree(f, x)
m = degG = degree(g, x)
# make sure proper degrees
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, degF, degG, f, g = m, n, degG, degF, g, f
if n > 0 and m == 0:
return [f, g]
SR_L = [f, g] # subresultant list
# form the bezout matrix
B = bezout(f, g, x, 'prs')
# pick appropriate submatrices of B
# and form subresultant polys
if degF > degG:
j = 2
if degF == degG:
j = 1
while j <= degF:
M = B[0:j, :]
k, coeff_L = j - 1, []
while k <= degF - 1:
coeff_L.append(M[: ,0 : j].det())
if k < degF - 1:
M.col_swap(j - 1, k + 1)
k = k + 1
## Theorem 2.1 in the paper by Toca & Vega 2004 is _not needed_
## in this case since
## the bezout matrix is equivalent to sylvester2
SR_L.append(( Poly(coeff_L, x)).as_expr())
j = j + 1
return process_matrix_output(SR_L, x)
def sturm_pg(p, q, x, method=0):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the (generalized) Sturm sequence of p and q in Z[x] or Q[x].
If q = diff(p, x, 1) it is the usual Sturm sequence.
A. If method == 0, default, the remainder coefficients of the sequence
are (in absolute value) ``modified'' subresultants, which for non-monic
polynomials are greater than the coefficients of the corresponding
subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))).
B. If method == 1, the remainder coefficients of the sequence are (in
absolute value) subresultants, which for non-monic polynomials are
smaller than the coefficients of the corresponding ``modified''
subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))).
If the Sturm sequence is complete, method=0 and LC( p ) > 0, the coefficients
of the polynomials in the sequence are ``modified'' subresultants.
That is, they are determinants of appropriately selected submatrices of
sylvester2, Sylvester's matrix of 1853. In this case the Sturm sequence
coincides with the ``modified'' subresultant prs, of the polynomials
p, q.
If the Sturm sequence is incomplete and method=0 then the signs of the
coefficients of the polynomials in the sequence may differ from the signs
of the coefficients of the corresponding polynomials in the ``modified''
subresultant prs; however, the absolute values are the same.
To compute the coefficients, no determinant evaluation takes place. Instead,
polynomial divisions in Q[x] are performed, using the function rem(p, q, x);
the coefficients of the remainders computed this way become (``modified'')
subresultants with the help of the Pell-Gordon Theorem of 1917.
See also the function euclid_pg(p, q, x).
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188-193.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29-46, 2014.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# make sure LC(p) > 0
flag = 0
if LC(p,x) < 0:
flag = 1
p = -p
q = -q
# initialize
lcf = LC(p, x)**(d0 - d1) # lcf * subr = modified subr
a0, a1 = p, q # the input polys
sturm_seq = [a0, a1] # the output list
del0 = d0 - d1 # degree difference
rho1 = LC(a1, x) # leading coeff of a1
exp_deg = d1 - 1 # expected degree of a2
a2 = - rem(a0, a1, domain=QQ) # first remainder
rho2 = LC(a2,x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# mul_fac is the factor by which a2 is multiplied to
# get integer coefficients
mul_fac_old = rho1**(del0 + del1 - deg_diff_new)
# append accordingly
if method == 0:
sturm_seq.append( simplify(lcf * a2 * Abs(mul_fac_old)))
else:
sturm_seq.append( simplify( a2 * Abs(mul_fac_old)))
# main loop
deg_diff_old = deg_diff_new
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
del0 = del1 # update degree difference
exp_deg = d1 - 1 # new expected degree
a2 = - rem(a0, a1, domain=QQ) # new remainder
rho3 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# take into consideration the power
# rho1**deg_diff_old that was "left out"
expo_old = deg_diff_old # rho1 raised to this power
expo_new = del0 + del1 - deg_diff_new # rho2 raised to this power
# update variables and append
mul_fac_new = rho2**(expo_new) * rho1**(expo_old) * mul_fac_old
deg_diff_old, mul_fac_old = deg_diff_new, mul_fac_new
rho1, rho2 = rho2, rho3
if method == 0:
sturm_seq.append( simplify(lcf * a2 * Abs(mul_fac_old)))
else:
sturm_seq.append( simplify( a2 * Abs(mul_fac_old)))
if flag: # change the sign of the sequence
sturm_seq = [-i for i in sturm_seq]
# gcd is of degree > 0 ?
m = len(sturm_seq)
if sturm_seq[m - 1] == nan or sturm_seq[m - 1] == 0:
sturm_seq.pop(m - 1)
return sturm_seq
def sturm_q(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the (generalized) Sturm sequence of p and q in Q[x].
Polynomial divisions in Q[x] are performed, using the function rem(p, q, x).
The coefficients of the polynomials in the Sturm sequence can be uniquely
determined from the corresponding coefficients of the polynomials found
either in:
(a) the ``modified'' subresultant prs, (references 1, 2)
or in
(b) the subresultant prs (reference 3).
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188-193.
2 Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29-46, 2014.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# make sure LC(p) > 0
flag = 0
if LC(p,x) < 0:
flag = 1
p = -p
q = -q
# initialize
a0, a1 = p, q # the input polys
sturm_seq = [a0, a1] # the output list
a2 = -rem(a0, a1, domain=QQ) # first remainder
d2 = degree(a2, x) # degree of a2
sturm_seq.append( a2 )
# main loop
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
a2 = -rem(a0, a1, domain=QQ) # new remainder
d2 = degree(a2, x) # actual degree of a2
sturm_seq.append( a2 )
if flag: # change the sign of the sequence
sturm_seq = [-i for i in sturm_seq]
# gcd is of degree > 0 ?
m = len(sturm_seq)
if sturm_seq[m - 1] == nan or sturm_seq[m - 1] == 0:
sturm_seq.pop(m - 1)
return sturm_seq
def sturm_amv(p, q, x, method=0):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the (generalized) Sturm sequence of p and q in Z[x] or Q[x].
If q = diff(p, x, 1) it is the usual Sturm sequence.
A. If method == 0, default, the remainder coefficients of the
sequence are (in absolute value) ``modified'' subresultants, which
for non-monic polynomials are greater than the coefficients of the
corresponding subresultants by the factor Abs(LC(p)**( deg(p)- deg(q))).
B. If method == 1, the remainder coefficients of the sequence are (in
absolute value) subresultants, which for non-monic polynomials are
smaller than the coefficients of the corresponding ``modified''
subresultants by the factor Abs( LC(p)**( deg(p)- deg(q)) ).
If the Sturm sequence is complete, method=0 and LC( p ) > 0, then the
coefficients of the polynomials in the sequence are ``modified'' subresultants.
That is, they are determinants of appropriately selected submatrices of
sylvester2, Sylvester's matrix of 1853. In this case the Sturm sequence
coincides with the ``modified'' subresultant prs, of the polynomials
p, q.
If the Sturm sequence is incomplete and method=0 then the signs of the
coefficients of the polynomials in the sequence may differ from the signs
of the coefficients of the corresponding polynomials in the ``modified''
subresultant prs; however, the absolute values are the same.
To compute the coefficients, no determinant evaluation takes place.
Instead, we first compute the euclidean sequence of p and q using
euclid_amv(p, q, x) and then: (a) change the signs of the remainders in the
Euclidean sequence according to the pattern "-, -, +, +, -, -, +, +,..."
(see Lemma 1 in the 1st reference or Theorem 3 in the 2nd reference)
and (b) if method=0, assuming deg(p) > deg(q), we multiply the remainder
coefficients of the Euclidean sequence times the factor
Abs( LC(p)**( deg(p)- deg(q)) ) to make them modified subresultants.
See also the function sturm_pg(p, q, x).
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica
Journal of Computing 9(2) (2015), 123-138.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
Remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), No.3-4, 197-217.
"""
# compute the euclidean sequence
prs = euclid_amv(p, q, x)
# defensive
if prs == [] or len(prs) == 2:
return prs
# the coefficients in prs are subresultants and hence are smaller
# than the corresponding subresultants by the factor
# Abs( LC(prs[0])**( deg(prs[0]) - deg(prs[1])) ); Theorem 2, 2nd reference.
lcf = Abs( LC(prs[0])**( degree(prs[0], x) - degree(prs[1], x) ) )
# the signs of the first two polys in the sequence stay the same
sturm_seq = [prs[0], prs[1]]
# change the signs according to "-, -, +, +, -, -, +, +,..."
# and multiply times lcf if needed
flag = 0
m = len(prs)
i = 2
while i <= m-1:
if flag == 0:
sturm_seq.append( - prs[i] )
i = i + 1
if i == m:
break
sturm_seq.append( - prs[i] )
i = i + 1
flag = 1
elif flag == 1:
sturm_seq.append( prs[i] )
i = i + 1
if i == m:
break
sturm_seq.append( prs[i] )
i = i + 1
flag = 0
# subresultants or modified subresultants?
if method == 0 and lcf > 1:
aux_seq = [sturm_seq[0], sturm_seq[1]]
for i in range(2, m):
aux_seq.append(simplify(sturm_seq[i] * lcf ))
sturm_seq = aux_seq
return sturm_seq
def euclid_pg(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the Euclidean sequence of p and q in Z[x] or Q[x].
If the Euclidean sequence is complete the coefficients of the polynomials
in the sequence are subresultants. That is, they are determinants of
appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840.
In this case the Euclidean sequence coincides with the subresultant prs
of the polynomials p, q.
If the Euclidean sequence is incomplete the signs of the coefficients of the
polynomials in the sequence may differ from the signs of the coefficients of
the corresponding polynomials in the subresultant prs; however, the absolute
values are the same.
To compute the Euclidean sequence, no determinant evaluation takes place.
We first compute the (generalized) Sturm sequence of p and q using
sturm_pg(p, q, x, 1), in which case the coefficients are (in absolute value)
equal to subresultants. Then we change the signs of the remainders in the
Sturm sequence according to the pattern "-, -, +, +, -, -, +, +,..." ;
see Lemma 1 in the 1st reference or Theorem 3 in the 2nd reference as well as
the function sturm_pg(p, q, x).
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.'' Serdica
Journal of Computing 9(2) (2015), 123-138.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
Remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), No.3-4, 197-217.
"""
# compute the sturmian sequence using the Pell-Gordon (or AMV) theorem
# with the coefficients in the prs being (in absolute value) subresultants
prs = sturm_pg(p, q, x, 1) ## any other method would do
# defensive
if prs == [] or len(prs) == 2:
return prs
# the signs of the first two polys in the sequence stay the same
euclid_seq = [prs[0], prs[1]]
# change the signs according to "-, -, +, +, -, -, +, +,..."
flag = 0
m = len(prs)
i = 2
while i <= m-1:
if flag == 0:
euclid_seq.append(- prs[i] )
i = i + 1
if i == m:
break
euclid_seq.append(- prs[i] )
i = i + 1
flag = 1
elif flag == 1:
euclid_seq.append(prs[i] )
i = i + 1
if i == m:
break
euclid_seq.append(prs[i] )
i = i + 1
flag = 0
return euclid_seq
def euclid_q(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the Euclidean sequence of p and q in Q[x].
Polynomial divisions in Q[x] are performed, using the function rem(p, q, x).
The coefficients of the polynomials in the Euclidean sequence can be uniquely
determined from the corresponding coefficients of the polynomials found
either in:
(a) the ``modified'' subresultant polynomial remainder sequence,
(references 1, 2)
or in
(b) the subresultant polynomial remainder sequence (references 3).
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188-193.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29-46, 2014.
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# make sure LC(p) > 0
flag = 0
if LC(p,x) < 0:
flag = 1
p = -p
q = -q
# initialize
a0, a1 = p, q # the input polys
euclid_seq = [a0, a1] # the output list
a2 = rem(a0, a1, domain=QQ) # first remainder
d2 = degree(a2, x) # degree of a2
euclid_seq.append( a2 )
# main loop
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
a2 = rem(a0, a1, domain=QQ) # new remainder
d2 = degree(a2, x) # actual degree of a2
euclid_seq.append( a2 )
if flag: # change the sign of the sequence
euclid_seq = [-i for i in euclid_seq]
# gcd is of degree > 0 ?
m = len(euclid_seq)
if euclid_seq[m - 1] == nan or euclid_seq[m - 1] == 0:
euclid_seq.pop(m - 1)
return euclid_seq
def euclid_amv(f, g, x):
"""
f, g are polynomials in Z[x] or Q[x]. It is assumed
that degree(f, x) >= degree(g, x).
Computes the Euclidean sequence of p and q in Z[x] or Q[x].
If the Euclidean sequence is complete the coefficients of the polynomials
in the sequence are subresultants. That is, they are determinants of
appropriately selected submatrices of sylvester1, Sylvester's matrix of 1840.
In this case the Euclidean sequence coincides with the subresultant prs,
of the polynomials p, q.
If the Euclidean sequence is incomplete the signs of the coefficients of the
polynomials in the sequence may differ from the signs of the coefficients of
the corresponding polynomials in the subresultant prs; however, the absolute
values are the same.
To compute the coefficients, no determinant evaluation takes place.
Instead, polynomial divisions in Z[x] or Q[x] are performed, using
the function rem_z(f, g, x); the coefficients of the remainders
computed this way become subresultants with the help of the
Collins-Brown-Traub formula for coefficient reduction.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), No.3-4, 197-217.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
# make sure proper degrees
d0 = degree(f, x)
d1 = degree(g, x)
if d0 == 0 and d1 == 0:
return [f, g]
if d1 > d0:
d0, d1 = d1, d0
f, g = g, f
if d0 > 0 and d1 == 0:
return [f, g]
# initialize
a0 = f
a1 = g
euclid_seq = [a0, a1]
deg_dif_p1, c = degree(a0, x) - degree(a1, x) + 1, -1
# compute the first polynomial of the prs
i = 1
a2 = rem_z(a0, a1, x) / Abs( (-1)**deg_dif_p1 ) # first remainder
euclid_seq.append( a2 )
d2 = degree(a2, x) # actual degree of a2
# main loop
while d2 >= 1:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
i += 1
sigma0 = -LC(a0)
c = (sigma0**(deg_dif_p1 - 1)) / (c**(deg_dif_p1 - 2))
deg_dif_p1 = degree(a0, x) - d2 + 1
a2 = rem_z(a0, a1, x) / Abs( ((c**(deg_dif_p1 - 1)) * sigma0) )
euclid_seq.append( a2 )
d2 = degree(a2, x) # actual degree of a2
# gcd is of degree > 0 ?
m = len(euclid_seq)
if euclid_seq[m - 1] == nan or euclid_seq[m - 1] == 0:
euclid_seq.pop(m - 1)
return euclid_seq
def modified_subresultants_pg(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the ``modified'' subresultant prs of p and q in Z[x] or Q[x];
the coefficients of the polynomials in the sequence are
``modified'' subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester2, Sylvester's matrix of 1853.
To compute the coefficients, no determinant evaluation takes place. Instead,
polynomial divisions in Q[x] are performed, using the function rem(p, q, x);
the coefficients of the remainders computed this way become ``modified''
subresultants with the help of the Pell-Gordon Theorem of 1917.
If the ``modified'' subresultant prs is complete, and LC( p ) > 0, it coincides
with the (generalized) Sturm sequence of the polynomials p, q.
References
==========
1. Pell A. J., R. L. Gordon. The Modified Remainders Obtained in Finding
the Highest Common Factor of Two Polynomials. Annals of MatheMatics,
Second Series, 18 (1917), No. 4, 188-193.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29-46, 2014.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p,x)
d1 = degree(q,x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p,q]
# initialize
k = var('k') # index in summation formula
u_list = [] # of elements (-1)**u_i
subres_l = [p, q] # mod. subr. prs output list
a0, a1 = p, q # the input polys
del0 = d0 - d1 # degree difference
degdif = del0 # save it
rho_1 = LC(a0) # lead. coeff (a0)
# Initialize Pell-Gordon variables
rho_list_minus_1 = sign( LC(a0, x)) # sign of LC(a0)
rho1 = LC(a1, x) # leading coeff of a1
rho_list = [ sign(rho1)] # of signs
p_list = [del0] # of degree differences
u = summation(k, (k, 1, p_list[0])) # value of u
u_list.append(u) # of u values
v = sum(p_list) # v value
# first remainder
exp_deg = d1 - 1 # expected degree of a2
a2 = - rem(a0, a1, domain=QQ) # first remainder
rho2 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# mul_fac is the factor by which a2 is multiplied to
# get integer coefficients
mul_fac_old = rho1**(del0 + del1 - deg_diff_new)
# update Pell-Gordon variables
p_list.append(1 + deg_diff_new) # deg_diff_new is 0 for complete seq
# apply Pell-Gordon formula (7) in second reference
num = 1 # numerator of fraction
for k in range(len(u_list)):
num *= (-1)**u_list[k]
num = num * (-1)**v
# denominator depends on complete / incomplete seq
if deg_diff_new == 0: # complete seq
den = 1
for k in range(len(rho_list)):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
else: # incomplete seq
den = 1
for k in range(len(rho_list)-1):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
expo = (p_list[len(rho_list) - 1] + p_list[len(rho_list)] - deg_diff_new)
den = den * rho_list[len(rho_list) - 1]**expo
# the sign of the determinant depends on sg(num / den)
if sign(num / den) > 0:
subres_l.append( simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
else:
subres_l.append(- simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
# update Pell-Gordon variables
k = var('k')
rho_list.append( sign(rho2))
u = summation(k, (k, 1, p_list[len(p_list) - 1]))
u_list.append(u)
v = sum(p_list)
deg_diff_old=deg_diff_new
# main loop
while d2 > 0:
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
del0 = del1 # update degree difference
exp_deg = d1 - 1 # new expected degree
a2 = - rem(a0, a1, domain=QQ) # new remainder
rho3 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
deg_diff_new = exp_deg - d2 # expected - actual degree
del1 = d1 - d2 # degree difference
# take into consideration the power
# rho1**deg_diff_old that was "left out"
expo_old = deg_diff_old # rho1 raised to this power
expo_new = del0 + del1 - deg_diff_new # rho2 raised to this power
mul_fac_new = rho2**(expo_new) * rho1**(expo_old) * mul_fac_old
# update variables
deg_diff_old, mul_fac_old = deg_diff_new, mul_fac_new
rho1, rho2 = rho2, rho3
# update Pell-Gordon variables
p_list.append(1 + deg_diff_new) # deg_diff_new is 0 for complete seq
# apply Pell-Gordon formula (7) in second reference
num = 1 # numerator
for k in range(len(u_list)):
num *= (-1)**u_list[k]
num = num * (-1)**v
# denominator depends on complete / incomplete seq
if deg_diff_new == 0: # complete seq
den = 1
for k in range(len(rho_list)):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
else: # incomplete seq
den = 1
for k in range(len(rho_list)-1):
den *= rho_list[k]**(p_list[k] + p_list[k + 1])
den = den * rho_list_minus_1
expo = (p_list[len(rho_list) - 1] + p_list[len(rho_list)] - deg_diff_new)
den = den * rho_list[len(rho_list) - 1]**expo
# the sign of the determinant depends on sg(num / den)
if sign(num / den) > 0:
subres_l.append( simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
else:
subres_l.append(- simplify(rho_1**degdif*a2* Abs(mul_fac_old) ) )
# update Pell-Gordon variables
k = var('k')
rho_list.append( sign(rho2))
u = summation(k, (k, 1, p_list[len(p_list) - 1]))
u_list.append(u)
v = sum(p_list)
# gcd is of degree > 0 ?
m = len(subres_l)
if subres_l[m - 1] == nan or subres_l[m - 1] == 0:
subres_l.pop(m - 1)
# LC( p ) < 0
m = len(subres_l) # list may be shorter now due to deg(gcd ) > 0
if LC( p ) < 0:
aux_seq = [subres_l[0], subres_l[1]]
for i in range(2, m):
aux_seq.append(simplify(subres_l[i] * (-1) ))
subres_l = aux_seq
return subres_l
def subresultants_pg(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p and q in Z[x] or Q[x], from
the modified subresultant prs of p and q.
The coefficients of the polynomials in these two sequences differ only
in sign and the factor LC(p)**( deg(p)- deg(q)) as stated in
Theorem 2 of the reference.
The coefficients of the polynomials in the output sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: "On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials."
Serdica Journal of Computing 9(2) (2015), 123-138.
"""
# compute the modified subresultant prs
lst = modified_subresultants_pg(p,q,x) ## any other method would do
# defensive
if lst == [] or len(lst) == 2:
return lst
# the coefficients in lst are modified subresultants and, hence, are
# greater than those of the corresponding subresultants by the factor
# LC(lst[0])**( deg(lst[0]) - deg(lst[1])); see Theorem 2 in reference.
lcf = LC(lst[0])**( degree(lst[0], x) - degree(lst[1], x) )
# Initialize the subresultant prs list
subr_seq = [lst[0], lst[1]]
# compute the degree sequences m_i and j_i of Theorem 2 in reference.
deg_seq = [degree(Poly(poly, x), x) for poly in lst]
deg = deg_seq[0]
deg_seq_s = deg_seq[1:-1]
m_seq = [m-1 for m in deg_seq_s]
j_seq = [deg - m for m in m_seq]
# compute the AMV factors of Theorem 2 in reference.
fact = [(-1)**( j*(j-1)/S(2) ) for j in j_seq]
# shortened list without the first two polys
lst_s = lst[2:]
# poly lst_s[k] is multiplied times fact[k], divided by lcf
# and appended to the subresultant prs list
m = len(fact)
for k in range(m):
if sign(fact[k]) == -1:
subr_seq.append(-lst_s[k] / lcf)
else:
subr_seq.append(lst_s[k] / lcf)
return subr_seq
def subresultants_amv_q(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p and q in Q[x];
the coefficients of the polynomials in the sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
To compute the coefficients, no determinant evaluation takes place.
Instead, polynomial divisions in Q[x] are performed, using the
function rem(p, q, x); the coefficients of the remainders
computed this way become subresultants with the help of the
Akritas-Malaschonok-Vigklas Theorem of 2015.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), No.3-4, 197-217.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
d0 = degree(p, x)
d1 = degree(q, x)
if d0 == 0 and d1 == 0:
return [p, q]
if d1 > d0:
d0, d1 = d1, d0
p, q = q, p
if d0 > 0 and d1 == 0:
return [p, q]
# initialize
i, s = 0, 0 # counters for remainders & odd elements
p_odd_index_sum = 0 # contains the sum of p_1, p_3, etc
subres_l = [p, q] # subresultant prs output list
a0, a1 = p, q # the input polys
sigma1 = LC(a1, x) # leading coeff of a1
p0 = d0 - d1 # degree difference
if p0 % 2 == 1:
s += 1
phi = floor( (s + 1) / 2 )
mul_fac = 1
d2 = d1
# main loop
while d2 > 0:
i += 1
a2 = rem(a0, a1, domain= QQ) # new remainder
if i == 1:
sigma2 = LC(a2, x)
else:
sigma3 = LC(a2, x)
sigma1, sigma2 = sigma2, sigma3
d2 = degree(a2, x)
p1 = d1 - d2
psi = i + phi + p_odd_index_sum
# new mul_fac
mul_fac = sigma1**(p0 + 1) * mul_fac
## compute the sign of the first fraction in formula (9) of the paper
# numerator
num = (-1)**psi
# denominator
den = sign(mul_fac)
# the sign of the determinant depends on sign( num / den ) != 0
if sign(num / den) > 0:
subres_l.append( simplify(expand(a2* Abs(mul_fac))))
else:
subres_l.append(- simplify(expand(a2* Abs(mul_fac))))
## bring into mul_fac the missing power of sigma if there was a degree gap
if p1 - 1 > 0:
mul_fac = mul_fac * sigma1**(p1 - 1)
# update AMV variables
a0, a1, d0, d1 = a1, a2, d1, d2
p0 = p1
if p0 % 2 ==1:
s += 1
phi = floor( (s + 1) / 2 )
if i%2 == 1:
p_odd_index_sum += p0 # p_i has odd index
# gcd is of degree > 0 ?
m = len(subres_l)
if subres_l[m - 1] == nan or subres_l[m - 1] == 0:
subres_l.pop(m - 1)
return subres_l
def compute_sign(base, expo):
'''
base != 0 and expo >= 0 are integers;
returns the sign of base**expo without
evaluating the power itself!
'''
sb = sign(base)
if sb == 1:
return 1
pe = expo % 2
if pe == 0:
return -sb
else:
return sb
def rem_z(p, q, x):
'''
Intended mainly for p, q polynomials in Z[x] so that,
on dividing p by q, the remainder will also be in Z[x]. (However,
it also works fine for polynomials in Q[x].) It is assumed
that degree(p, x) >= degree(q, x).
It premultiplies p by the _absolute_ value of the leading coefficient
of q, raised to the power deg(p) - deg(q) + 1 and then performs
polynomial division in Q[x], using the function rem(p, q, x).
By contrast the function prem(p, q, x) does _not_ use the absolute
value of the leading coefficient of q.
This results not only in ``messing up the signs'' of the Euclidean and
Sturmian prs's as mentioned in the second reference,
but also in violation of the main results of the first and third
references --- Theorem 4 and Theorem 1 respectively. Theorems 4 and 1
establish a one-to-one correspondence between the Euclidean and the
Sturmian prs of p, q, on one hand, and the subresultant prs of p, q,
on the other.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials.''
Serdica Journal of Computing, 9(2) (2015), 123-138.
2. http://planetMath.org/sturmstheorem
3. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result on
the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
'''
if (p.as_poly().is_univariate and q.as_poly().is_univariate and
p.as_poly().gens == q.as_poly().gens):
delta = (degree(p, x) - degree(q, x) + 1)
return rem(Abs(LC(q, x))**delta * p, q, x)
else:
return prem(p, q, x)
def quo_z(p, q, x):
"""
Intended mainly for p, q polynomials in Z[x] so that,
on dividing p by q, the quotient will also be in Z[x]. (However,
it also works fine for polynomials in Q[x].) It is assumed
that degree(p, x) >= degree(q, x).
It premultiplies p by the _absolute_ value of the leading coefficient
of q, raised to the power deg(p) - deg(q) + 1 and then performs
polynomial division in Q[x], using the function quo(p, q, x).
By contrast the function pquo(p, q, x) does _not_ use the absolute
value of the leading coefficient of q.
See also function rem_z(p, q, x) for additional comments and references.
"""
if (p.as_poly().is_univariate and q.as_poly().is_univariate and
p.as_poly().gens == q.as_poly().gens):
delta = (degree(p, x) - degree(q, x) + 1)
return quo(Abs(LC(q, x))**delta * p, q, x)
else:
return pquo(p, q, x)
def subresultants_amv(f, g, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(f, x) >= degree(g, x).
Computes the subresultant prs of p and q in Z[x] or Q[x];
the coefficients of the polynomials in the sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
To compute the coefficients, no determinant evaluation takes place.
Instead, polynomial divisions in Z[x] or Q[x] are performed, using
the function rem_z(p, q, x); the coefficients of the remainders
computed this way become subresultants with the help of the
Akritas-Malaschonok-Vigklas Theorem of 2015 and the Collins-Brown-
Traub formula for coefficient reduction.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``A Basic Result
on the Theory of Subresultants.'' Serdica Journal of Computing 10 (2016), No.1, 31-48.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Subresultant Polynomial
remainder Sequences Obtained by Polynomial Divisions in Q[x] or in Z[x].''
Serdica Journal of Computing 10 (2016), No.3-4, 197-217.
"""
# make sure neither f nor g is 0
if f == 0 or g == 0:
return [f, g]
# make sure proper degrees
d0 = degree(f, x)
d1 = degree(g, x)
if d0 == 0 and d1 == 0:
return [f, g]
if d1 > d0:
d0, d1 = d1, d0
f, g = g, f
if d0 > 0 and d1 == 0:
return [f, g]
# initialize
a0 = f
a1 = g
subres_l = [a0, a1]
deg_dif_p1, c = degree(a0, x) - degree(a1, x) + 1, -1
# initialize AMV variables
sigma1 = LC(a1, x) # leading coeff of a1
i, s = 0, 0 # counters for remainders & odd elements
p_odd_index_sum = 0 # contains the sum of p_1, p_3, etc
p0 = deg_dif_p1 - 1
if p0 % 2 == 1:
s += 1
phi = floor( (s + 1) / 2 )
# compute the first polynomial of the prs
i += 1
a2 = rem_z(a0, a1, x) / Abs( (-1)**deg_dif_p1 ) # first remainder
sigma2 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
p1 = d1 - d2 # degree difference
# sgn_den is the factor, the denominator 1st fraction of (9),
# by which a2 is multiplied to get integer coefficients
sgn_den = compute_sign( sigma1, p0 + 1 )
## compute sign of the 1st fraction in formula (9) of the paper
# numerator
psi = i + phi + p_odd_index_sum
num = (-1)**psi
# denominator
den = sgn_den
# the sign of the determinant depends on sign(num / den) != 0
if sign(num / den) > 0:
subres_l.append( a2 )
else:
subres_l.append( -a2 )
# update AMV variable
if p1 % 2 == 1:
s += 1
# bring in the missing power of sigma if there was gap
if p1 - 1 > 0:
sgn_den = sgn_den * compute_sign( sigma1, p1 - 1 )
# main loop
while d2 >= 1:
phi = floor( (s + 1) / 2 )
if i%2 == 1:
p_odd_index_sum += p1 # p_i has odd index
a0, a1, d0, d1 = a1, a2, d1, d2 # update polys and degrees
p0 = p1 # update degree difference
i += 1
sigma0 = -LC(a0)
c = (sigma0**(deg_dif_p1 - 1)) / (c**(deg_dif_p1 - 2))
deg_dif_p1 = degree(a0, x) - d2 + 1
a2 = rem_z(a0, a1, x) / Abs( ((c**(deg_dif_p1 - 1)) * sigma0) )
sigma3 = LC(a2, x) # leading coeff of a2
d2 = degree(a2, x) # actual degree of a2
p1 = d1 - d2 # degree difference
psi = i + phi + p_odd_index_sum
# update variables
sigma1, sigma2 = sigma2, sigma3
# new sgn_den
sgn_den = compute_sign( sigma1, p0 + 1 ) * sgn_den
# compute the sign of the first fraction in formula (9) of the paper
# numerator
num = (-1)**psi
# denominator
den = sgn_den
# the sign of the determinant depends on sign( num / den ) != 0
if sign(num / den) > 0:
subres_l.append( a2 )
else:
subres_l.append( -a2 )
# update AMV variable
if p1 % 2 ==1:
s += 1
# bring in the missing power of sigma if there was gap
if p1 - 1 > 0:
sgn_den = sgn_den * compute_sign( sigma1, p1 - 1 )
# gcd is of degree > 0 ?
m = len(subres_l)
if subres_l[m - 1] == nan or subres_l[m - 1] == 0:
subres_l.pop(m - 1)
return subres_l
def modified_subresultants_amv(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the modified subresultant prs of p and q in Z[x] or Q[x],
from the subresultant prs of p and q.
The coefficients of the polynomials in the two sequences differ only
in sign and the factor LC(p)**( deg(p)- deg(q)) as stated in
Theorem 2 of the reference.
The coefficients of the polynomials in the output sequence are
modified subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester2, Sylvester's matrix of 1853.
If the modified subresultant prs is complete, and LC( p ) > 0, it coincides
with the (generalized) Sturm's sequence of the polynomials p, q.
References
==========
1. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: "On the Remainders
Obtained in Finding the Greatest Common Divisor of Two Polynomials."
Serdica Journal of Computing, Serdica Journal of Computing, 9(2) (2015), 123-138.
"""
# compute the subresultant prs
lst = subresultants_amv(p,q,x) ## any other method would do
# defensive
if lst == [] or len(lst) == 2:
return lst
# the coefficients in lst are subresultants and, hence, smaller than those
# of the corresponding modified subresultants by the factor
# LC(lst[0])**( deg(lst[0]) - deg(lst[1])); see Theorem 2.
lcf = LC(lst[0])**( degree(lst[0], x) - degree(lst[1], x) )
# Initialize the modified subresultant prs list
subr_seq = [lst[0], lst[1]]
# compute the degree sequences m_i and j_i of Theorem 2
deg_seq = [degree(Poly(poly, x), x) for poly in lst]
deg = deg_seq[0]
deg_seq_s = deg_seq[1:-1]
m_seq = [m-1 for m in deg_seq_s]
j_seq = [deg - m for m in m_seq]
# compute the AMV factors of Theorem 2
fact = [(-1)**( j*(j-1)/S(2) ) for j in j_seq]
# shortened list without the first two polys
lst_s = lst[2:]
# poly lst_s[k] is multiplied times fact[k] and times lcf
# and appended to the subresultant prs list
m = len(fact)
for k in range(m):
if sign(fact[k]) == -1:
subr_seq.append( simplify(-lst_s[k] * lcf) )
else:
subr_seq.append( simplify(lst_s[k] * lcf) )
return subr_seq
def correct_sign(deg_f, deg_g, s1, rdel, cdel):
"""
Used in various subresultant prs algorithms.
Evaluates the determinant, (a.k.a. subresultant) of a properly selected
submatrix of s1, Sylvester's matrix of 1840, to get the correct sign
and value of the leading coefficient of a given polynomial remainder.
deg_f, deg_g are the degrees of the original polynomials p, q for which the
matrix s1 = sylvester(p, q, x, 1) was constructed.
rdel denotes the expected degree of the remainder; it is the number of
rows to be deleted from each group of rows in s1 as described in the
reference below.
cdel denotes the expected degree minus the actual degree of the remainder;
it is the number of columns to be deleted --- starting with the last column
forming the square matrix --- from the matrix resulting after the row deletions.
References
==========
Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``Sturm Sequences
and Modified Subresultant Polynomial Remainder Sequences.''
Serdica Journal of Computing, Vol. 8, No 1, 29-46, 2014.
"""
M = s1[:, :] # copy of matrix s1
# eliminate rdel rows from the first deg_g rows
for i in range(M.rows - deg_f - 1, M.rows - deg_f - rdel - 1, -1):
M.row_del(i)
# eliminate rdel rows from the last deg_f rows
for i in range(M.rows - 1, M.rows - rdel - 1, -1):
M.row_del(i)
# eliminate cdel columns
for i in range(cdel):
M.col_del(M.rows - 1)
# define submatrix
Md = M[:, 0: M.rows]
return Md.det()
def subresultants_rem(p, q, x):
"""
p, q are polynomials in Z[x] or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p and q in Z[x] or Q[x];
the coefficients of the polynomials in the sequence are
subresultants. That is, they are determinants of appropriately
selected submatrices of sylvester1, Sylvester's matrix of 1840.
To compute the coefficients polynomial divisions in Q[x] are
performed, using the function rem(p, q, x). The coefficients
of the remainders computed this way become subresultants by evaluating
one subresultant per remainder --- that of the leading coefficient.
This way we obtain the correct sign and value of the leading coefficient
of the remainder and we easily ``force'' the rest of the coefficients
to become subresultants.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G.:``Three New Methods for Computing Subresultant
Polynomial Remainder Sequences (PRS's).'' Serdica Journal of Computing 9(1) (2015), 1-26.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
f, g = p, q
n = deg_f = degree(f, x)
m = deg_g = degree(g, x)
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f
if n > 0 and m == 0:
return [f, g]
# initialize
s1 = sylvester(f, g, x, 1)
sr_list = [f, g] # subresultant list
# main loop
while deg_g > 0:
r = rem(p, q, x)
d = degree(r, x)
if d < 0:
return sr_list
# make coefficients subresultants evaluating ONE determinant
exp_deg = deg_g - 1 # expected degree
sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d)
r = simplify((r / LC(r, x)) * sign_value)
# append poly with subresultant coeffs
sr_list.append(r)
# update degrees and polys
deg_f, deg_g = deg_g, d
p, q = q, r
# gcd is of degree > 0 ?
m = len(sr_list)
if sr_list[m - 1] == nan or sr_list[m - 1] == 0:
sr_list.pop(m - 1)
return sr_list
def pivot(M, i, j):
'''
M is a matrix, and M[i, j] specifies the pivot element.
All elements below M[i, j], in the j-th column, will
be zeroed, if they are not already 0, according to
Dodgson-Bareiss' integer preserving transformations.
References
==========
1. Akritas, A. G.: ``A new method for computing polynomial greatest
common divisors and polynomial remainder sequences.''
Numerische MatheMatik 52, 119-127, 1988.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences.''
Serdica Journal of Computing, 7, No 4, 101-134, 2013.
'''
ma = M[:, :] # copy of matrix M
rs = ma.rows # No. of rows
cs = ma.cols # No. of cols
for r in range(i+1, rs):
if ma[r, j] != 0:
for c in range(j + 1, cs):
ma[r, c] = ma[i, j] * ma[r, c] - ma[i, c] * ma[r, j]
ma[r, j] = 0
return ma
def rotate_r(L, k):
'''
Rotates right by k. L is a row of a matrix or a list.
'''
ll = list(L)
if ll == []:
return []
for i in range(k):
el = ll.pop(len(ll) - 1)
ll.insert(0, el)
return ll if type(L) is list else Matrix([ll])
def rotate_l(L, k):
'''
Rotates left by k. L is a row of a matrix or a list.
'''
ll = list(L)
if ll == []:
return []
for i in range(k):
el = ll.pop(0)
ll.insert(len(ll) - 1, el)
return ll if type(L) is list else Matrix([ll])
def row2poly(row, deg, x):
'''
Converts the row of a matrix to a poly of degree deg and variable x.
Some entries at the beginning and/or at the end of the row may be zero.
'''
k = 0
poly = []
leng = len(row)
# find the beginning of the poly ; i.e. the first
# non-zero element of the row
while row[k] == 0:
k = k + 1
# append the next deg + 1 elements to poly
for j in range( deg + 1):
if k + j <= leng:
poly.append(row[k + j])
return Poly(poly, x)
def create_ma(deg_f, deg_g, row1, row2, col_num):
'''
Creates a ``small'' matrix M to be triangularized.
deg_f, deg_g are the degrees of the divident and of the
divisor polynomials respectively, deg_g > deg_f.
The coefficients of the divident poly are the elements
in row2 and those of the divisor poly are the elements
in row1.
col_num defines the number of columns of the matrix M.
'''
if deg_g - deg_f >= 1:
print('Reverse degrees')
return
m = zeros(deg_f - deg_g + 2, col_num)
for i in range(deg_f - deg_g + 1):
m[i, :] = rotate_r(row1, i)
m[deg_f - deg_g + 1, :] = row2
return m
def find_degree(M, deg_f):
'''
Finds the degree of the poly corresponding (after triangularization)
to the _last_ row of the ``small'' matrix M, created by create_ma().
deg_f is the degree of the divident poly.
If _last_ row is all 0's returns None.
'''
j = deg_f
for i in range(0, M.cols):
if M[M.rows - 1, i] == 0:
j = j - 1
else:
return j if j >= 0 else 0
def final_touches(s2, r, deg_g):
"""
s2 is sylvester2, r is the row pointer in s2,
deg_g is the degree of the poly last inserted in s2.
After a gcd of degree > 0 has been found with Van Vleck's
method, and was inserted into s2, if its last term is not
in the last column of s2, then it is inserted as many
times as needed, rotated right by one each time, until
the condition is met.
"""
R = s2.row(r-1)
# find the first non zero term
for i in range(s2.cols):
if R[0,i] == 0:
continue
else:
break
# missing rows until last term is in last column
mr = s2.cols - (i + deg_g + 1)
# insert them by replacing the existing entries in the row
i = 0
while mr != 0 and r + i < s2.rows :
s2[r + i, : ] = rotate_r(R, i + 1)
i += 1
mr -= 1
return s2
def subresultants_vv(p, q, x, method = 0):
"""
p, q are polynomials in Z[x] (intended) or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p, q by triangularizing,
in Z[x] or in Q[x], all the smaller matrices encountered in the
process of triangularizing sylvester2, Sylvester's matrix of 1853;
see references 1 and 2 for Van Vleck's method. With each remainder,
sylvester2 gets updated and is prepared to be printed if requested.
If sylvester2 has small dimensions and you want to see the final,
triangularized matrix use this version with method=1; otherwise,
use either this version with method=0 (default) or the faster version,
subresultants_vv_2(p, q, x), where sylvester2 is used implicitly.
Sylvester's matrix sylvester1 is also used to compute one
subresultant per remainder; namely, that of the leading
coefficient, in order to obtain the correct sign and to
force the remainder coefficients to become subresultants.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
If the final, triangularized matrix s2 is printed, then:
(a) if deg(p) - deg(q) > 1 or deg( gcd(p, q) ) > 0, several
of the last rows in s2 will remain unprocessed;
(b) if deg(p) - deg(q) == 0, p will not appear in the final matrix.
References
==========
1. Akritas, A. G.: ``A new method for computing polynomial greatest
common divisors and polynomial remainder sequences.''
Numerische MatheMatik 52, 119-127, 1988.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences.''
Serdica Journal of Computing, 7, No 4, 101-134, 2013.
3. Akritas, A. G.:``Three New Methods for Computing Subresultant
Polynomial Remainder Sequences (PRS's).'' Serdica Journal of Computing 9(1) (2015), 1-26.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
f, g = p, q
n = deg_f = degree(f, x)
m = deg_g = degree(g, x)
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f
if n > 0 and m == 0:
return [f, g]
# initialize
s1 = sylvester(f, g, x, 1)
s2 = sylvester(f, g, x, 2)
sr_list = [f, g]
col_num = 2 * n # columns in s2
# make two rows (row0, row1) of poly coefficients
row0 = Poly(f, x, domain = QQ).all_coeffs()
leng0 = len(row0)
for i in range(col_num - leng0):
row0.append(0)
row0 = Matrix([row0])
row1 = Poly(g,x, domain = QQ).all_coeffs()
leng1 = len(row1)
for i in range(col_num - leng1):
row1.append(0)
row1 = Matrix([row1])
# row pointer for deg_f - deg_g == 1; may be reset below
r = 2
# modify first rows of s2 matrix depending on poly degrees
if deg_f - deg_g > 1:
r = 1
# replacing the existing entries in the rows of s2,
# insert row0 (deg_f - deg_g - 1) times, rotated each time
for i in range(deg_f - deg_g - 1):
s2[r + i, : ] = rotate_r(row0, i + 1)
r = r + deg_f - deg_g - 1
# insert row1 (deg_f - deg_g) times, rotated each time
for i in range(deg_f - deg_g):
s2[r + i, : ] = rotate_r(row1, r + i)
r = r + deg_f - deg_g
if deg_f - deg_g == 0:
r = 0
# main loop
while deg_g > 0:
# create a small matrix M, and triangularize it;
M = create_ma(deg_f, deg_g, row1, row0, col_num)
# will need only the first and last rows of M
for i in range(deg_f - deg_g + 1):
M1 = pivot(M, i, i)
M = M1[:, :]
# treat last row of M as poly; find its degree
d = find_degree(M, deg_f)
if d is None:
break
exp_deg = deg_g - 1
# evaluate one determinant & make coefficients subresultants
sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d)
poly = row2poly(M[M.rows - 1, :], d, x)
temp2 = LC(poly, x)
poly = simplify((poly / temp2) * sign_value)
# update s2 by inserting first row of M as needed
row0 = M[0, :]
for i in range(deg_g - d):
s2[r + i, :] = rotate_r(row0, r + i)
r = r + deg_g - d
# update s2 by inserting last row of M as needed
row1 = rotate_l(M[M.rows - 1, :], deg_f - d)
row1 = (row1 / temp2) * sign_value
for i in range(deg_g - d):
s2[r + i, :] = rotate_r(row1, r + i)
r = r + deg_g - d
# update degrees
deg_f, deg_g = deg_g, d
# append poly with subresultant coeffs
sr_list.append(poly)
# final touches to print the s2 matrix
if method != 0 and s2.rows > 2:
s2 = final_touches(s2, r, deg_g)
pprint(s2)
elif method != 0 and s2.rows == 2:
s2[1, :] = rotate_r(s2.row(1), 1)
pprint(s2)
return sr_list
def subresultants_vv_2(p, q, x):
"""
p, q are polynomials in Z[x] (intended) or Q[x]. It is assumed
that degree(p, x) >= degree(q, x).
Computes the subresultant prs of p, q by triangularizing,
in Z[x] or in Q[x], all the smaller matrices encountered in the
process of triangularizing sylvester2, Sylvester's matrix of 1853;
see references 1 and 2 for Van Vleck's method.
If the sylvester2 matrix has big dimensions use this version,
where sylvester2 is used implicitly. If you want to see the final,
triangularized matrix sylvester2, then use the first version,
subresultants_vv(p, q, x, 1).
sylvester1, Sylvester's matrix of 1840, is also used to compute
one subresultant per remainder; namely, that of the leading
coefficient, in order to obtain the correct sign and to
``force'' the remainder coefficients to become subresultants.
If the subresultant prs is complete, then it coincides with the
Euclidean sequence of the polynomials p, q.
References
==========
1. Akritas, A. G.: ``A new method for computing polynomial greatest
common divisors and polynomial remainder sequences.''
Numerische MatheMatik 52, 119-127, 1988.
2. Akritas, A. G., G.I. Malaschonok and P.S. Vigklas: ``On a Theorem
by Van Vleck Regarding Sturm Sequences.''
Serdica Journal of Computing, 7, No 4, 101-134, 2013.
3. Akritas, A. G.:``Three New Methods for Computing Subresultant
Polynomial Remainder Sequences (PRS's).'' Serdica Journal of Computing 9(1) (2015), 1-26.
"""
# make sure neither p nor q is 0
if p == 0 or q == 0:
return [p, q]
# make sure proper degrees
f, g = p, q
n = deg_f = degree(f, x)
m = deg_g = degree(g, x)
if n == 0 and m == 0:
return [f, g]
if n < m:
n, m, deg_f, deg_g, f, g = m, n, deg_g, deg_f, g, f
if n > 0 and m == 0:
return [f, g]
# initialize
s1 = sylvester(f, g, x, 1)
sr_list = [f, g] # subresultant list
col_num = 2 * n # columns in sylvester2
# make two rows (row0, row1) of poly coefficients
row0 = Poly(f, x, domain = QQ).all_coeffs()
leng0 = len(row0)
for i in range(col_num - leng0):
row0.append(0)
row0 = Matrix([row0])
row1 = Poly(g,x, domain = QQ).all_coeffs()
leng1 = len(row1)
for i in range(col_num - leng1):
row1.append(0)
row1 = Matrix([row1])
# main loop
while deg_g > 0:
# create a small matrix M, and triangularize it
M = create_ma(deg_f, deg_g, row1, row0, col_num)
for i in range(deg_f - deg_g + 1):
M1 = pivot(M, i, i)
M = M1[:, :]
# treat last row of M as poly; find its degree
d = find_degree(M, deg_f)
if d is None:
return sr_list
exp_deg = deg_g - 1
# evaluate one determinant & make coefficients subresultants
sign_value = correct_sign(n, m, s1, exp_deg, exp_deg - d)
poly = row2poly(M[M.rows - 1, :], d, x)
poly = simplify((poly / LC(poly, x)) * sign_value)
# append poly with subresultant coeffs
sr_list.append(poly)
# update degrees and rows
deg_f, deg_g = deg_g, d
row0 = row1
row1 = Poly(poly, x, domain = QQ).all_coeffs()
leng1 = len(row1)
for i in range(col_num - leng1):
row1.append(0)
row1 = Matrix([row1])
return sr_list
|
8853c66e545543f9051224ccd59a1adc17cc0d48b3e81b378ed7f1a389f625dd | """Sparse polynomial rings. """
from __future__ import print_function, division
from operator import add, mul, lt, le, gt, ge
from types import GeneratorType
from sympy.core.compatibility import is_sequence, reduce, string_types, range
from sympy.core.expr import Expr
from sympy.core.numbers import igcd, oo
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify, sympify
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.compatibility import IPolys
from sympy.polys.constructor import construct_domain
from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.heuristicgcd import heugcd
from sympy.polys.monomials import MonomialOps
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import (
CoercionFailed, GeneratorsError,
ExactQuotientFailed, MultivariatePolynomialError)
from sympy.polys.polyoptions import (Domain as DomainOpt,
Order as OrderOpt, build_options)
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
_parallel_dict_from_expr)
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.magic import pollute
@public
def ring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, x, y, z = ring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring,) + _ring.gens
@public
def xring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import xring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring, _ring.gens)
@public
def vring(symbols, domain, order=lex):
"""Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import vring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> vring("x,y,z", ZZ, lex)
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
return _ring
@public
def sring(exprs, *symbols, **options):
"""Construct a ring deriving generators and domain from options and input expressions.
Parameters
==========
exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
options : keyword arguments understood by :class:`~.Options`
Examples
========
>>> from sympy.core import symbols
>>> from sympy.polys.rings import sring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> x, y, z = symbols("x,y,z")
>>> R, f = sring(x + 2*y + 3*z)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> f
x + 2*y + 3*z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
# TODO: rewrite this so that it doesn't use expand() (see poly()).
reps, opt = _parallel_dict_from_expr(exprs, opt)
if opt.domain is None:
# NOTE: this is inefficient because construct_domain() automatically
# performs conversion to the target domain. It shouldn't do this.
coeffs = sum([ list(rep.values()) for rep in reps ], [])
opt.domain, _ = construct_domain(coeffs, opt=opt)
_ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = list(map(_ring.from_dict, reps))
if single:
return (_ring, polys[0])
else:
return (_ring, polys)
def _parse_symbols(symbols):
if isinstance(symbols, string_types):
return _symbols(symbols, seq=True) if symbols else ()
elif isinstance(symbols, Expr):
return (symbols,)
elif is_sequence(symbols):
if all(isinstance(s, string_types) for s in symbols):
return _symbols(symbols)
elif all(isinstance(s, Expr) for s in symbols):
return symbols
raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")
_ring_cache = {}
class PolyRing(DefaultPrinting, IPolys):
"""Multivariate distributed polynomial ring. """
def __new__(cls, symbols, domain, order=lex):
symbols = tuple(_parse_symbols(symbols))
ngens = len(symbols)
domain = DomainOpt.preprocess(domain)
order = OrderOpt.preprocess(order)
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _ring_cache.get(_hash_tuple)
if obj is None:
if domain.is_Composite and set(symbols) & set(domain.symbols):
raise GeneratorsError("polynomial ring and it's ground domain share generators")
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero_monom = (0,)*ngens
obj.gens = obj._gens()
obj._gens_set = set(obj.gens)
obj._one = [(obj.zero_monom, domain.one)]
if ngens:
# These expect monomials in at least one variable
codegen = MonomialOps(ngens)
obj.monomial_mul = codegen.mul()
obj.monomial_pow = codegen.pow()
obj.monomial_mulpow = codegen.mulpow()
obj.monomial_ldiv = codegen.ldiv()
obj.monomial_div = codegen.div()
obj.monomial_lcm = codegen.lcm()
obj.monomial_gcd = codegen.gcd()
else:
monunit = lambda a, b: ()
obj.monomial_mul = monunit
obj.monomial_pow = monunit
obj.monomial_mulpow = lambda a, b, c: ()
obj.monomial_ldiv = monunit
obj.monomial_div = monunit
obj.monomial_lcm = monunit
obj.monomial_gcd = monunit
if order is lex:
obj.leading_expv = lambda f: max(f)
else:
obj.leading_expv = lambda f: max(f, key=order)
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_ring_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
one = self.domain.one
_gens = []
for i in range(self.ngens):
expv = self.monomial_basis(i)
poly = self.zero
poly[expv] = one
_gens.append(poly)
return tuple(_gens)
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __getstate__(self):
state = self.__dict__.copy()
del state["leading_expv"]
for key, value in state.items():
if key.startswith("monomial_"):
del state[key]
return state
def __hash__(self):
return self._hash
def __eq__(self, other):
return isinstance(other, PolyRing) and \
(self.symbols, self.domain, self.ngens, self.order) == \
(other.symbols, other.domain, other.ngens, other.order)
def __ne__(self, other):
return not self == other
def clone(self, symbols=None, domain=None, order=None):
return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)
def monomial_basis(self, i):
"""Return the ith-basis element. """
basis = [0]*self.ngens
basis[i] = 1
return tuple(basis)
@property
def zero(self):
return self.dtype()
@property
def one(self):
return self.dtype(self._one)
def domain_new(self, element, orig_domain=None):
return self.domain.convert(element, orig_domain)
def ground_new(self, coeff):
return self.term_new(self.zero_monom, coeff)
def term_new(self, monom, coeff):
coeff = self.domain_new(coeff)
poly = self.zero
if coeff:
poly[monom] = coeff
return poly
def ring_new(self, element):
if isinstance(element, PolyElement):
if self == element.ring:
return element
elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, string_types):
raise NotImplementedError("parsing")
elif isinstance(element, dict):
return self.from_dict(element)
elif isinstance(element, list):
try:
return self.from_terms(element)
except ValueError:
return self.from_list(element)
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = ring_new
def from_dict(self, element):
domain_new = self.domain_new
poly = self.zero
for monom, coeff in element.items():
coeff = domain_new(coeff)
if coeff:
poly[monom] = coeff
return poly
def from_terms(self, element):
return self.from_dict(dict(element))
def from_list(self, element):
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))
def _rebuild_expr(self, expr, mapping):
domain = self.domain
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
elif expr.is_Pow and expr.exp.is_Integer and expr.exp >= 0:
return _rebuild(expr.base)**int(expr.exp)
else:
return domain.convert(expr)
return _rebuild(sympify(expr))
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
poly = self._rebuild_expr(expr, mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
else:
return self.ring_new(poly)
def index(self, gen):
"""Compute index of ``gen`` in ``self.gens``. """
if gen is None:
if self.ngens:
i = 0
else:
i = -1 # indicate impossible choice
elif isinstance(gen, int):
i = gen
if 0 <= i and i < self.ngens:
pass
elif -self.ngens <= i and i <= -1:
i = -i - 1
else:
raise ValueError("invalid generator index: %s" % gen)
elif isinstance(gen, self.dtype):
try:
i = self.gens.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
elif isinstance(gen, string_types):
try:
i = self.symbols.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
else:
raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)
return i
def drop(self, *gens):
"""Remove specified generators from this ring. """
indices = set(map(self.index, gens))
symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def __getitem__(self, key):
symbols = self.symbols[key]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def to_ground(self):
# TODO: should AlgebraicField be a Composite domain?
if self.domain.is_Composite or hasattr(self.domain, 'domain'):
return self.clone(domain=self.domain.domain)
else:
raise ValueError("%s is not a composite domain" % self.domain)
def to_domain(self):
return PolynomialRing(self)
def to_field(self):
from sympy.polys.fields import FracField
return FracField(self.symbols, self.domain, self.order)
@property
def is_univariate(self):
return len(self.gens) == 1
@property
def is_multivariate(self):
return len(self.gens) > 1
def add(self, *objs):
"""
Add a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
4*x**2 + 24
>>> _.factor_list()
(4, [(x**2 + 6, 1)])
"""
p = self.zero
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p += self.add(*obj)
else:
p += obj
return p
def mul(self, *objs):
"""
Multiply a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
>>> _.factor_list()
(1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])
"""
p = self.one
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p *= self.mul(*obj)
else:
p *= obj
return p
def drop_to_ground(self, *gens):
r"""
Remove specified generators from the ring and inject them into
its domain.
"""
indices = set(map(self.index, gens))
symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
gens = [gen for i, gen in enumerate(self.gens) if i not in indices]
if not symbols:
return self
else:
return self.clone(symbols=symbols, domain=self.drop(*gens))
def compose(self, other):
"""Add the generators of ``other`` to ``self``"""
if self != other:
syms = set(self.symbols).union(set(other.symbols))
return self.clone(symbols=list(syms))
else:
return self
def add_gens(self, symbols):
"""Add the elements of ``symbols`` as generators to ``self``"""
syms = set(self.symbols).union(set(symbols))
return self.clone(symbols=list(syms))
class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
"""Element of multivariate distributed polynomial ring. """
def new(self, init):
return self.__class__(init)
def parent(self):
return self.ring.to_domain()
def __getnewargs__(self):
return (self.ring, list(self.iterterms()))
_hash = None
def __hash__(self):
# XXX: This computes a hash of a dictionary, but currently we don't
# protect dictionary from being changed so any use site modifications
# will make hashing go wrong. Use this feature with caution until we
# figure out how to make a safe API without compromising speed of this
# low-level class.
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.ring, frozenset(self.items())))
return _hash
def copy(self):
"""Return a copy of polynomial self.
Polynomials are mutable; if one is interested in preserving
a polynomial, and one plans to use inplace operations, one
can copy the polynomial. This method makes a shallow copy.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> R, x, y = ring('x, y', ZZ)
>>> p = (x + y)**2
>>> p1 = p.copy()
>>> p2 = p
>>> p[R.zero_monom] = 3
>>> p
x**2 + 2*x*y + y**2 + 3
>>> p1
x**2 + 2*x*y + y**2
>>> p2
x**2 + 2*x*y + y**2 + 3
"""
return self.new(self)
def set_ring(self, new_ring):
if self.ring == new_ring:
return self
elif self.ring.symbols != new_ring.symbols:
terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
return new_ring.from_terms(terms)
else:
return new_ring.from_dict(self)
def as_expr(self, *symbols):
if symbols and len(symbols) != self.ring.ngens:
raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols)))
else:
symbols = self.ring.symbols
return expr_from_dict(self.as_expr_dict(), *symbols)
def as_expr_dict(self):
to_sympy = self.ring.domain.to_sympy
return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}
def clear_denoms(self):
domain = self.ring.domain
if not domain.is_Field or not domain.has_assoc_Ring:
return domain.one, self
ground_ring = domain.get_ring()
common = ground_ring.one
lcm = ground_ring.lcm
denom = domain.denom
for coeff in self.values():
common = lcm(common, denom(coeff))
poly = self.new([ (k, v*common) for k, v in self.items() ])
return common, poly
def strip_zero(self):
"""Eliminate monomials with zero coefficient. """
for k, v in list(self.items()):
if not v:
del self[k]
def __eq__(p1, p2):
"""Equality test for polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = (x + y)**2 + (x - y)**2
>>> p1 == 4*x*y
False
>>> p1 == 2*(x**2 + y**2)
True
"""
if not p2:
return not p1
elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
return dict.__eq__(p1, p2)
elif len(p1) > 1:
return False
else:
return p1.get(p1.ring.zero_monom) == p2
def __ne__(p1, p2):
return not p1 == p2
def almosteq(p1, p2, tolerance=None):
"""Approximate equality test for polynomials. """
ring = p1.ring
if isinstance(p2, ring.dtype):
if set(p1.keys()) != set(p2.keys()):
return False
almosteq = ring.domain.almosteq
for k in p1.keys():
if not almosteq(p1[k], p2[k], tolerance):
return False
return True
elif len(p1) > 1:
return False
else:
try:
p2 = ring.domain.convert(p2)
except CoercionFailed:
return False
else:
return ring.domain.almosteq(p1.const(), p2, tolerance)
def sort_key(self):
return (len(self), self.terms())
def _cmp(p1, p2, op):
if isinstance(p2, p1.ring.dtype):
return op(p1.sort_key(), p2.sort_key())
else:
return NotImplemented
def __lt__(p1, p2):
return p1._cmp(p2, lt)
def __le__(p1, p2):
return p1._cmp(p2, le)
def __gt__(p1, p2):
return p1._cmp(p2, gt)
def __ge__(p1, p2):
return p1._cmp(p2, ge)
def _drop(self, gen):
ring = self.ring
i = ring.index(gen)
if ring.ngens == 1:
return i, ring.domain
else:
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols)
def drop(self, gen):
i, ring = self._drop(gen)
if self.ring.ngens == 1:
if self.is_ground:
return self.coeff(1)
else:
raise ValueError("can't drop %s" % gen)
else:
poly = ring.zero
for k, v in self.items():
if k[i] == 0:
K = list(k)
del K[i]
poly[tuple(K)] = v
else:
raise ValueError("can't drop %s" % gen)
return poly
def _drop_to_ground(self, gen):
ring = self.ring
i = ring.index(gen)
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols, domain=ring[i])
def drop_to_ground(self, gen):
if self.ring.ngens == 1:
raise ValueError("can't drop only generator to ground")
i, ring = self._drop_to_ground(gen)
poly = ring.zero
gen = ring.domain.gens[0]
for monom, coeff in self.iterterms():
mon = monom[:i] + monom[i+1:]
if not mon in poly:
poly[mon] = (gen**monom[i]).mul_ground(coeff)
else:
poly[mon] += (gen**monom[i]).mul_ground(coeff)
return poly
def to_dense(self):
return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)
def to_dict(self):
return dict(self)
def str(self, printer, precedence, exp_pattern, mul_symbol):
if not self:
return printer._print(self.ring.domain.zero)
prec_mul = precedence["Mul"]
prec_atom = precedence["Atom"]
ring = self.ring
symbols = ring.symbols
ngens = ring.ngens
zm = ring.zero_monom
sexpvs = []
for expv, coeff in self.terms():
positive = ring.domain.is_positive(coeff)
sign = " + " if positive else " - "
sexpvs.append(sign)
if expv == zm:
scoeff = printer._print(coeff)
if scoeff.startswith("-"):
scoeff = scoeff[1:]
else:
if not positive:
coeff = -coeff
if coeff != 1:
scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
else:
scoeff = ''
sexpv = []
for i in range(ngens):
exp = expv[i]
if not exp:
continue
symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
if exp != 1:
if exp != int(exp) or exp < 0:
sexp = printer.parenthesize(exp, prec_atom, strict=False)
else:
sexp = exp
sexpv.append(exp_pattern % (symbol, sexp))
else:
sexpv.append('%s' % symbol)
if scoeff:
sexpv = [scoeff] + sexpv
sexpvs.append(mul_symbol.join(sexpv))
if sexpvs[0] in [" + ", " - "]:
head = sexpvs.pop(0)
if head == " - ":
sexpvs.insert(0, "-")
return "".join(sexpvs)
@property
def is_generator(self):
return self in self.ring._gens_set
@property
def is_ground(self):
return not self or (len(self) == 1 and self.ring.zero_monom in self)
@property
def is_monomial(self):
return not self or (len(self) == 1 and self.LC == 1)
@property
def is_term(self):
return len(self) <= 1
@property
def is_negative(self):
return self.ring.domain.is_negative(self.LC)
@property
def is_positive(self):
return self.ring.domain.is_positive(self.LC)
@property
def is_nonnegative(self):
return self.ring.domain.is_nonnegative(self.LC)
@property
def is_nonpositive(self):
return self.ring.domain.is_nonpositive(self.LC)
@property
def is_zero(f):
return not f
@property
def is_one(f):
return f == f.ring.one
@property
def is_monic(f):
return f.ring.domain.is_one(f.LC)
@property
def is_primitive(f):
return f.ring.domain.is_one(f.content())
@property
def is_linear(f):
return all(sum(monom) <= 1 for monom in f.itermonoms())
@property
def is_quadratic(f):
return all(sum(monom) <= 2 for monom in f.itermonoms())
@property
def is_squarefree(f):
if not f.ring.ngens:
return True
return f.ring.dmp_sqf_p(f)
@property
def is_irreducible(f):
if not f.ring.ngens:
return True
return f.ring.dmp_irreducible_p(f)
@property
def is_cyclotomic(f):
if f.ring.is_univariate:
return f.ring.dup_cyclotomic_p(f)
else:
raise MultivariatePolynomialError("cyclotomic polynomial")
def __neg__(self):
return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])
def __pos__(self):
return self
def __add__(p1, p2):
"""Add two polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> (x + y)**2 + (x - y)**2
2*x**2 + 2*y**2
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) + v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__radd__(p1)
else:
return NotImplemented
try:
cp2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
if not cp2:
return p
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = cp2
else:
if p2 == -p[zm]:
del p[zm]
else:
p[zm] += cp2
return p
def __radd__(p1, n):
p = p1.copy()
if not n:
return p
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = n
else:
if n == -p[zm]:
del p[zm]
else:
p[zm] += n
return p
def __sub__(p1, p2):
"""Subtract polynomial p2 from p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = x + y**2
>>> p2 = x*y + y**2
>>> p1 - p2
-x*y + x
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) - v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rsub__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = -p2
else:
if p2 == p[zm]:
del p[zm]
else:
p[zm] -= p2
return p
def __rsub__(p1, n):
"""n - p1 with n convertible to the coefficient domain.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 - p
-x - y + 4
"""
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
p = ring.zero
for expv in p1:
p[expv] = -p1[expv]
p += n
return p
def __mul__(p1, p2):
"""Multiply two polynomials.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', QQ)
>>> p1 = x + y
>>> p2 = x - y
>>> p1*p2
x**2 - y**2
"""
ring = p1.ring
p = ring.zero
if not p1 or not p2:
return p
elif isinstance(p2, ring.dtype):
get = p.get
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
p2it = list(p2.items())
for exp1, v1 in p1.items():
for exp2, v2 in p2it:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, zero) + v1*v2
p.strip_zero()
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmul__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = v1*p2
if v:
p[exp1] = v
return p
def __rmul__(p1, p2):
"""p2 * p1 with p2 in the coefficient domain of p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 * p
4*x + 4*y
"""
p = p1.ring.zero
if not p2:
return p
try:
p2 = p.ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = p2*v1
if v:
p[exp1] = v
return p
def __pow__(self, n):
"""raise polynomial to power `n`
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p**3
x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6
"""
ring = self.ring
if not n:
if self:
return ring.one
else:
raise ValueError("0**0")
elif len(self) == 1:
monom, coeff = list(self.items())[0]
p = ring.zero
if coeff == 1:
p[ring.monomial_pow(monom, n)] = coeff
else:
p[ring.monomial_pow(monom, n)] = coeff**n
return p
# For ring series, we need negative and rational exponent support only
# with monomials.
n = int(n)
if n < 0:
raise ValueError("Negative exponent")
elif n == 1:
return self.copy()
elif n == 2:
return self.square()
elif n == 3:
return self*self.square()
elif len(self) <= 5: # TODO: use an actual density measure
return self._pow_multinomial(n)
else:
return self._pow_generic(n)
def _pow_generic(self, n):
p = self.ring.one
c = self
while True:
if n & 1:
p = p*c
n -= 1
if not n:
break
c = c.square()
n = n // 2
return p
def _pow_multinomial(self, n):
multinomials = list(multinomial_coefficients(len(self), n).items())
monomial_mulpow = self.ring.monomial_mulpow
zero_monom = self.ring.zero_monom
terms = list(self.iterterms())
zero = self.ring.domain.zero
poly = self.ring.zero
for multinomial, multinomial_coeff in multinomials:
product_monom = zero_monom
product_coeff = multinomial_coeff
for exp, (monom, coeff) in zip(multinomial, terms):
if exp:
product_monom = monomial_mulpow(product_monom, monom, exp)
product_coeff *= coeff**exp
monom = tuple(product_monom)
coeff = product_coeff
coeff = poly.get(monom, zero) + coeff
if coeff:
poly[monom] = coeff
else:
del poly[monom]
return poly
def square(self):
"""square of a polynomial
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p.square()
x**2 + 2*x*y**2 + y**4
"""
ring = self.ring
p = ring.zero
get = p.get
keys = list(self.keys())
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
for i in range(len(keys)):
k1 = keys[i]
pk = self[k1]
for j in range(i):
k2 = keys[j]
exp = monomial_mul(k1, k2)
p[exp] = get(exp, zero) + pk*self[k2]
p = p.imul_num(2)
get = p.get
for k, v in self.items():
k2 = monomial_mul(k, k)
p[k2] = get(k2, zero) + v**2
p.strip_zero()
return p
def __divmod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.div(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rdivmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return (p1.quo_ground(p2), p1.rem_ground(p2))
def __rdivmod__(p1, p2):
return NotImplemented
def __mod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.rem(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.rem_ground(p2)
def __rmod__(p1, p2):
return NotImplemented
def __truediv__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
if p2.is_monomial:
return p1*(p2**(-1))
else:
return p1.quo(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rtruediv__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.quo_ground(p2)
def __rtruediv__(p1, p2):
return NotImplemented
__floordiv__ = __div__ = __truediv__
__rfloordiv__ = __rdiv__ = __rtruediv__
# TODO: use // (__floordiv__) for exquo()?
def _term_div(self):
zm = self.ring.zero_monom
domain = self.ring.domain
domain_quo = domain.quo
monomial_div = self.ring.monomial_div
if domain.is_Field:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if monom is not None:
return monom, domain_quo(a_lc, b_lc)
else:
return None
else:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if not (monom is None or a_lc % b_lc):
return monom, domain_quo(a_lc, b_lc)
else:
return None
return term_div
def div(self, fv):
"""Division algorithm, see [CLO] p64.
fv array of polynomials
return qv, r such that
self = sum(fv[i]*qv[i]) + r
All polynomials are required not to be Laurent polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> f = x**3
>>> f0 = x - y**2
>>> f1 = x - y
>>> qv, r = f.div((f0, f1))
>>> qv[0]
x**2 + x*y**2 + y**4
>>> qv[1]
0
>>> r
y**6
"""
ring = self.ring
ret_single = False
if isinstance(fv, PolyElement):
ret_single = True
fv = [fv]
if any(not f for f in fv):
raise ZeroDivisionError("polynomial division")
if not self:
if ret_single:
return ring.zero, ring.zero
else:
return [], ring.zero
for f in fv:
if f.ring != ring:
raise ValueError('self and f must have the same ring')
s = len(fv)
qv = [ring.zero for i in range(s)]
p = self.copy()
r = ring.zero
term_div = self._term_div()
expvs = [fx.leading_expv() for fx in fv]
while p:
i = 0
divoccurred = 0
while i < s and divoccurred == 0:
expv = p.leading_expv()
term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
if term is not None:
expv1, c = term
qv[i] = qv[i]._iadd_monom((expv1, c))
p = p._iadd_poly_monom(fv[i], (expv1, -c))
divoccurred = 1
else:
i += 1
if not divoccurred:
expv = p.leading_expv()
r = r._iadd_monom((expv, p[expv]))
del p[expv]
if expv == ring.zero_monom:
r += p
if ret_single:
if not qv:
return ring.zero, r
else:
return qv[0], r
else:
return qv, r
def rem(self, G):
f = self
if isinstance(G, PolyElement):
G = [G]
if any(not g for g in G):
raise ZeroDivisionError("polynomial division")
ring = f.ring
domain = ring.domain
zero = domain.zero
monomial_mul = ring.monomial_mul
r = ring.zero
term_div = f._term_div()
ltf = f.LT
f = f.copy()
get = f.get
while f:
for g in G:
tq = term_div(ltf, g.LT)
if tq is not None:
m, c = tq
for mg, cg in g.iterterms():
m1 = monomial_mul(mg, m)
c1 = get(m1, zero) - c*cg
if not c1:
del f[m1]
else:
f[m1] = c1
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
break
else:
ltm, ltc = ltf
if ltm in r:
r[ltm] += ltc
else:
r[ltm] = ltc
del f[ltm]
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
return r
def quo(f, G):
return f.div(G)[0]
def exquo(f, G):
q, r = f.div(G)
if not r:
return q
else:
raise ExactQuotientFailed(f, G)
def _iadd_monom(self, mc):
"""add to self the monomial coeff*x0**i0*x1**i1*...
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x**4 + 2*y
>>> m = (1, 2)
>>> p1 = p._iadd_monom((m, 5))
>>> p1
x**4 + 5*x*y**2 + 2*y
>>> p1 is p
True
>>> p = x
>>> p1 = p._iadd_monom((m, 5))
>>> p1
5*x*y**2 + x
>>> p1 is p
False
"""
if self in self.ring._gens_set:
cpself = self.copy()
else:
cpself = self
expv, coeff = mc
c = cpself.get(expv)
if c is None:
cpself[expv] = coeff
else:
c += coeff
if c:
cpself[expv] = c
else:
del cpself[expv]
return cpself
def _iadd_poly_monom(self, p2, mc):
"""add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p1 = x**4 + 2*y
>>> p2 = y + z
>>> m = (1, 2, 3)
>>> p1 = p1._iadd_poly_monom(p2, (m, 3))
>>> p1
x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y
"""
p1 = self
if p1 in p1.ring._gens_set:
p1 = p1.copy()
(m, c) = mc
get = p1.get
zero = p1.ring.domain.zero
monomial_mul = p1.ring.monomial_mul
for k, v in p2.items():
ka = monomial_mul(k, m)
coeff = get(ka, zero) + v*c
if coeff:
p1[ka] = coeff
else:
del p1[ka]
return p1
def degree(f, x=None):
"""
The leading degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo).
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return max([ monom[i] for monom in f.itermonoms() ])
def degrees(f):
"""
A tuple containing leading degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(max, list(zip(*f.itermonoms()))))
def tail_degree(f, x=None):
"""
The tail degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return min([ monom[i] for monom in f.itermonoms() ])
def tail_degrees(f):
"""
A tuple containing tail degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(min, list(zip(*f.itermonoms()))))
def leading_expv(self):
"""Leading monomial tuple according to the monomial ordering.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p = x**4 + x**3*y + x**2*z**2 + z**7
>>> p.leading_expv()
(4, 0, 0)
"""
if self:
return self.ring.leading_expv(self)
else:
return None
def _get_coeff(self, expv):
return self.get(expv, self.ring.domain.zero)
def coeff(self, element):
"""
Returns the coefficient that stands next to the given monomial.
Parameters
==========
element : PolyElement (with ``is_monomial = True``) or 1
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring("x,y,z", ZZ)
>>> f = 3*x**2*y - x*y*z + 7*z**3 + 23
>>> f.coeff(x**2*y)
3
>>> f.coeff(x*y)
0
>>> f.coeff(1)
23
"""
if element == 1:
return self._get_coeff(self.ring.zero_monom)
elif isinstance(element, self.ring.dtype):
terms = list(element.iterterms())
if len(terms) == 1:
monom, coeff = terms[0]
if coeff == self.ring.domain.one:
return self._get_coeff(monom)
raise ValueError("expected a monomial, got %s" % element)
def const(self):
"""Returns the constant coeffcient. """
return self._get_coeff(self.ring.zero_monom)
@property
def LC(self):
return self._get_coeff(self.leading_expv())
@property
def LM(self):
expv = self.leading_expv()
if expv is None:
return self.ring.zero_monom
else:
return expv
def leading_monom(self):
"""
Leading monomial as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_monom()
x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv:
p[expv] = self.ring.domain.one
return p
@property
def LT(self):
expv = self.leading_expv()
if expv is None:
return (self.ring.zero_monom, self.ring.domain.zero)
else:
return (expv, self._get_coeff(expv))
def leading_term(self):
"""Leading term as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_term()
3*x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv is not None:
p[expv] = self[expv]
return p
def _sorted(self, seq, order):
if order is None:
order = self.ring.order
else:
order = OrderOpt.preprocess(order)
if order is lex:
return sorted(seq, key=lambda monom: monom[0], reverse=True)
else:
return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)
def coeffs(self, order=None):
"""Ordered list of polynomial coefficients.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.coeffs()
[2, 1]
>>> f.coeffs(grlex)
[1, 2]
"""
return [ coeff for _, coeff in self.terms(order) ]
def monoms(self, order=None):
"""Ordered list of polynomial monomials.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.monoms()
[(2, 3), (1, 7)]
>>> f.monoms(grlex)
[(1, 7), (2, 3)]
"""
return [ monom for monom, _ in self.terms(order) ]
def terms(self, order=None):
"""Ordered list of polynomial terms.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.terms()
[((2, 3), 2), ((1, 7), 1)]
>>> f.terms(grlex)
[((1, 7), 1), ((2, 3), 2)]
"""
return self._sorted(list(self.items()), order)
def itercoeffs(self):
"""Iterator over coefficients of a polynomial. """
return iter(self.values())
def itermonoms(self):
"""Iterator over monomials of a polynomial. """
return iter(self.keys())
def iterterms(self):
"""Iterator over terms of a polynomial. """
return iter(self.items())
def listcoeffs(self):
"""Unordered list of polynomial coefficients. """
return list(self.values())
def listmonoms(self):
"""Unordered list of polynomial monomials. """
return list(self.keys())
def listterms(self):
"""Unordered list of polynomial terms. """
return list(self.items())
def imul_num(p, c):
"""multiply inplace the polynomial p by an element in the
coefficient ring, provided p is not one of the generators;
else multiply not inplace
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p1 = p.imul_num(3)
>>> p1
3*x + 3*y**2
>>> p1 is p
True
>>> p = x
>>> p1 = p.imul_num(3)
>>> p1
3*x
>>> p1 is p
False
"""
if p in p.ring._gens_set:
return p*c
if not c:
p.clear()
return
for exp in p:
p[exp] *= c
return p
def content(f):
"""Returns GCD of polynomial's coefficients. """
domain = f.ring.domain
cont = domain.zero
gcd = domain.gcd
for coeff in f.itercoeffs():
cont = gcd(cont, coeff)
return cont
def primitive(f):
"""Returns content and a primitive polynomial. """
cont = f.content()
return cont, f.quo_ground(cont)
def monic(f):
"""Divides all coefficients by the leading coefficient. """
if not f:
return f
else:
return f.quo_ground(f.LC)
def mul_ground(f, x):
if not x:
return f.ring.zero
terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
return f.new(terms)
def mul_monom(f, monom):
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def mul_term(f, term):
monom, coeff = term
if not f or not coeff:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.mul_ground(coeff)
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def quo_ground(f, x):
domain = f.ring.domain
if not x:
raise ZeroDivisionError('polynomial division')
if not f or x == domain.one:
return f
if domain.is_Field:
quo = domain.quo
terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
else:
terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]
return f.new(terms)
def quo_term(f, term):
monom, coeff = term
if not coeff:
raise ZeroDivisionError("polynomial division")
elif not f:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.quo_ground(coeff)
term_div = f._term_div()
terms = [ term_div(t, term) for t in f.iterterms() ]
return f.new([ t for t in terms if t is not None ])
def trunc_ground(f, p):
if f.ring.domain.is_ZZ:
terms = []
for monom, coeff in f.iterterms():
coeff = coeff % p
if coeff > p // 2:
coeff = coeff - p
terms.append((monom, coeff))
else:
terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]
poly = f.new(terms)
poly.strip_zero()
return poly
rem_ground = trunc_ground
def extract_ground(self, g):
f = self
fc = f.content()
gc = g.content()
gcd = f.ring.domain.gcd(fc, gc)
f = f.quo_ground(gcd)
g = g.quo_ground(gcd)
return gcd, f, g
def _norm(f, norm_func):
if not f:
return f.ring.domain.zero
else:
ground_abs = f.ring.domain.abs
return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])
def max_norm(f):
return f._norm(max)
def l1_norm(f):
return f._norm(sum)
def deflate(f, *G):
ring = f.ring
polys = [f] + list(G)
J = [0]*ring.ngens
for p in polys:
for monom in p.itermonoms():
for i, m in enumerate(monom):
J[i] = igcd(J[i], m)
for i, b in enumerate(J):
if not b:
J[i] = 1
J = tuple(J)
if all(b == 1 for b in J):
return J, polys
H = []
for p in polys:
h = ring.zero
for I, coeff in p.iterterms():
N = [ i // j for i, j in zip(I, J) ]
h[tuple(N)] = coeff
H.append(h)
return J, H
def inflate(f, J):
poly = f.ring.zero
for I, coeff in f.iterterms():
N = [ i*j for i, j in zip(I, J) ]
poly[tuple(N)] = coeff
return poly
def lcm(self, g):
f = self
domain = f.ring.domain
if not domain.is_Field:
fc, f = f.primitive()
gc, g = g.primitive()
c = domain.lcm(fc, gc)
h = (f*g).quo(f.gcd(g))
if not domain.is_Field:
return h.mul_ground(c)
else:
return h.monic()
def gcd(f, g):
return f.cofactors(g)[0]
def cofactors(f, g):
if not f and not g:
zero = f.ring.zero
return zero, zero, zero
elif not f:
h, cff, cfg = f._gcd_zero(g)
return h, cff, cfg
elif not g:
h, cfg, cff = g._gcd_zero(f)
return h, cff, cfg
elif len(f) == 1:
h, cff, cfg = f._gcd_monom(g)
return h, cff, cfg
elif len(g) == 1:
h, cfg, cff = g._gcd_monom(f)
return h, cff, cfg
J, (f, g) = f.deflate(g)
h, cff, cfg = f._gcd(g)
return (h.inflate(J), cff.inflate(J), cfg.inflate(J))
def _gcd_zero(f, g):
one, zero = f.ring.one, f.ring.zero
if g.is_nonnegative:
return g, zero, one
else:
return -g, zero, -one
def _gcd_monom(f, g):
ring = f.ring
ground_gcd = ring.domain.gcd
ground_quo = ring.domain.quo
monomial_gcd = ring.monomial_gcd
monomial_ldiv = ring.monomial_ldiv
mf, cf = list(f.iterterms())[0]
_mgcd, _cgcd = mf, cf
for mg, cg in g.iterterms():
_mgcd = monomial_gcd(_mgcd, mg)
_cgcd = ground_gcd(_cgcd, cg)
h = f.new([(_mgcd, _cgcd)])
cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
return h, cff, cfg
def _gcd(f, g):
ring = f.ring
if ring.domain.is_QQ:
return f._gcd_QQ(g)
elif ring.domain.is_ZZ:
return f._gcd_ZZ(g)
else: # TODO: don't use dense representation (port PRS algorithms)
return ring.dmp_inner_gcd(f, g)
def _gcd_ZZ(f, g):
return heugcd(f, g)
def _gcd_QQ(self, g):
f = self
ring = f.ring
new_ring = ring.clone(domain=ring.domain.get_ring())
cf, f = f.clear_denoms()
cg, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
h, cff, cfg = f._gcd_ZZ(g)
h = h.set_ring(ring)
c, h = h.LC, h.monic()
cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))
return h, cff, cfg
def cancel(self, g):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
(2*x + 2, x - 1)
"""
f = self
ring = f.ring
if not f:
return f, ring.one
domain = ring.domain
if not (domain.is_Field and domain.has_assoc_Ring):
_, p, q = f.cofactors(g)
if q.is_negative:
p, q = -p, -q
else:
new_ring = ring.clone(domain=domain.get_ring())
cq, f = f.clear_denoms()
cp, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
_, p, q = f.cofactors(g)
_, cp, cq = new_ring.domain.cofactors(cp, cq)
p = p.set_ring(ring)
q = q.set_ring(ring)
p_neg = p.is_negative
q_neg = q.is_negative
if p_neg and q_neg:
p, q = -p, -q
elif p_neg:
cp, p = -cp, -p
elif q_neg:
cp, q = -cp, -q
p = p.mul_ground(cp)
q = q.mul_ground(cq)
return p, q
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring("x,y", ZZ)
>>> p = x + x**2*y**3
>>> p.diff(x)
2*x*y**3 + 1
"""
ring = f.ring
i = ring.index(x)
m = ring.monomial_basis(i)
g = ring.zero
for expv, coeff in f.iterterms():
if expv[i]:
e = ring.monomial_ldiv(expv, m)
g[e] = ring.domain_new(coeff*expv[i])
return g
def __call__(f, *values):
if 0 < len(values) <= f.ring.ngens:
return f.evaluate(list(zip(f.ring.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))
def evaluate(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
(X, a), x = x[0], x[1:]
f = f.evaluate(X, a)
if not x:
return f
else:
x = [ (Y.drop(X), a) for (Y, a) in x ]
return f.evaluate(x)
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return result
else:
poly = ring.drop(x).zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def subs(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
for X, a in x:
f = f.subs(X, a)
return f
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return ring.ground_new(result)
else:
poly = ring.zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def compose(f, x, a=None):
ring = f.ring
poly = ring.zero
gens_map = dict(list(zip(ring.gens, list(range(ring.ngens)))))
if a is not None:
replacements = [(x, a)]
else:
if isinstance(x, list):
replacements = list(x)
elif isinstance(x, dict):
replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]])
else:
raise ValueError("expected a generator, value pair a sequence of such pairs")
for k, (x, g) in enumerate(replacements):
replacements[k] = (gens_map[x], ring.ring_new(g))
for monom, coeff in f.iterterms():
monom = list(monom)
subpoly = ring.one
for i, g in replacements:
n, monom[i] = monom[i], 0
if n:
subpoly *= g**n
subpoly = subpoly.mul_term((tuple(monom), coeff))
poly += subpoly
return poly
# TODO: following methods should point to polynomial
# representation independent algorithm implementations.
def pdiv(f, g):
return f.ring.dmp_pdiv(f, g)
def prem(f, g):
return f.ring.dmp_prem(f, g)
def pquo(f, g):
return f.ring.dmp_quo(f, g)
def pexquo(f, g):
return f.ring.dmp_exquo(f, g)
def half_gcdex(f, g):
return f.ring.dmp_half_gcdex(f, g)
def gcdex(f, g):
return f.ring.dmp_gcdex(f, g)
def subresultants(f, g):
return f.ring.dmp_subresultants(f, g)
def resultant(f, g):
return f.ring.dmp_resultant(f, g)
def discriminant(f):
return f.ring.dmp_discriminant(f)
def decompose(f):
if f.ring.is_univariate:
return f.ring.dup_decompose(f)
else:
raise MultivariatePolynomialError("polynomial decomposition")
def shift(f, a):
if f.ring.is_univariate:
return f.ring.dup_shift(f, a)
else:
raise MultivariatePolynomialError("polynomial shift")
def sturm(f):
if f.ring.is_univariate:
return f.ring.dup_sturm(f)
else:
raise MultivariatePolynomialError("sturm sequence")
def gff_list(f):
return f.ring.dmp_gff_list(f)
def sqf_norm(f):
return f.ring.dmp_sqf_norm(f)
def sqf_part(f):
return f.ring.dmp_sqf_part(f)
def sqf_list(f, all=False):
return f.ring.dmp_sqf_list(f, all=all)
def factor_list(f):
return f.ring.dmp_factor_list(f)
|
4f73b475c7c8f4201173fdd602f74a30ee481e1e5f1772322f0c7f7d02063579 | """Options manager for :class:`~.Poly` and public API functions. """
from __future__ import print_function, division
__all__ = ["Options"]
from sympy.core import S, Basic, sympify
from sympy.core.compatibility import string_types, with_metaclass
from sympy.polys.polyerrors import GeneratorsError, OptionError, FlagError
from sympy.utilities import numbered_symbols, topological_sort, public
from sympy.utilities.iterables import has_dups
import sympy.polys
import re
class Option(object):
"""Base class for all kinds of options. """
option = None
is_Flag = False
requires = []
excludes = []
after = []
before = []
@classmethod
def default(cls):
return None
@classmethod
def preprocess(cls, option):
return None
@classmethod
def postprocess(cls, options):
pass
class Flag(Option):
"""Base class for all kinds of flags. """
is_Flag = True
class BooleanOption(Option):
"""An option that must have a boolean value or equivalent assigned. """
@classmethod
def preprocess(cls, value):
if value in [True, False]:
return bool(value)
else:
raise OptionError("'%s' must have a boolean value assigned, got %s" % (cls.option, value))
class OptionType(type):
"""Base type for all options that does registers options. """
def __init__(cls, *args, **kwargs):
@property
def getter(self):
try:
return self[cls.option]
except KeyError:
return cls.default()
setattr(Options, cls.option, getter)
Options.__options__[cls.option] = cls
@public
class Options(dict):
"""
Options manager for polynomial manipulation module.
Examples
========
>>> from sympy.polys.polyoptions import Options
>>> from sympy.polys.polyoptions import build_options
>>> from sympy.abc import x, y, z
>>> Options((x, y, z), {'domain': 'ZZ'})
{'auto': False, 'domain': ZZ, 'gens': (x, y, z)}
>>> build_options((x, y, z), {'domain': 'ZZ'})
{'auto': False, 'domain': ZZ, 'gens': (x, y, z)}
**Options**
* Expand --- boolean option
* Gens --- option
* Wrt --- option
* Sort --- option
* Order --- option
* Field --- boolean option
* Greedy --- boolean option
* Domain --- option
* Split --- boolean option
* Gaussian --- boolean option
* Extension --- option
* Modulus --- option
* Symmetric --- boolean option
* Strict --- boolean option
**Flags**
* Auto --- boolean flag
* Frac --- boolean flag
* Formal --- boolean flag
* Polys --- boolean flag
* Include --- boolean flag
* All --- boolean flag
* Gen --- flag
* Series --- boolean flag
"""
__order__ = None
__options__ = {}
def __init__(self, gens, args, flags=None, strict=False):
dict.__init__(self)
if gens and args.get('gens', ()):
raise OptionError(
"both '*gens' and keyword argument 'gens' supplied")
elif gens:
args = dict(args)
args['gens'] = gens
defaults = args.pop('defaults', {})
def preprocess_options(args):
for option, value in args.items():
try:
cls = self.__options__[option]
except KeyError:
raise OptionError("'%s' is not a valid option" % option)
if issubclass(cls, Flag):
if flags is None or option not in flags:
if strict:
raise OptionError("'%s' flag is not allowed in this context" % option)
if value is not None:
self[option] = cls.preprocess(value)
preprocess_options(args)
for key, value in dict(defaults).items():
if key in self:
del defaults[key]
else:
for option in self.keys():
cls = self.__options__[option]
if key in cls.excludes:
del defaults[key]
break
preprocess_options(defaults)
for option in self.keys():
cls = self.__options__[option]
for require_option in cls.requires:
if self.get(require_option) is None:
raise OptionError("'%s' option is only allowed together with '%s'" % (option, require_option))
for exclude_option in cls.excludes:
if self.get(exclude_option) is not None:
raise OptionError("'%s' option is not allowed together with '%s'" % (option, exclude_option))
for option in self.__order__:
self.__options__[option].postprocess(self)
@classmethod
def _init_dependencies_order(cls):
"""Resolve the order of options' processing. """
if cls.__order__ is None:
vertices, edges = [], set([])
for name, option in cls.__options__.items():
vertices.append(name)
for _name in option.after:
edges.add((_name, name))
for _name in option.before:
edges.add((name, _name))
try:
cls.__order__ = topological_sort((vertices, list(edges)))
except ValueError:
raise RuntimeError(
"cycle detected in sympy.polys options framework")
def clone(self, updates={}):
"""Clone ``self`` and update specified options. """
obj = dict.__new__(self.__class__)
for option, value in self.items():
obj[option] = value
for option, value in updates.items():
obj[option] = value
return obj
def __setattr__(self, attr, value):
if attr in self.__options__:
self[attr] = value
else:
super(Options, self).__setattr__(attr, value)
@property
def args(self):
args = {}
for option, value in self.items():
if value is not None and option != 'gens':
cls = self.__options__[option]
if not issubclass(cls, Flag):
args[option] = value
return args
@property
def options(self):
options = {}
for option, cls in self.__options__.items():
if not issubclass(cls, Flag):
options[option] = getattr(self, option)
return options
@property
def flags(self):
flags = {}
for option, cls in self.__options__.items():
if issubclass(cls, Flag):
flags[option] = getattr(self, option)
return flags
class Expand(with_metaclass(OptionType, BooleanOption)):
"""``expand`` option to polynomial manipulation functions. """
option = 'expand'
requires = []
excludes = []
@classmethod
def default(cls):
return True
class Gens(with_metaclass(OptionType, Option)):
"""``gens`` option to polynomial manipulation functions. """
option = 'gens'
requires = []
excludes = []
@classmethod
def default(cls):
return ()
@classmethod
def preprocess(cls, gens):
if isinstance(gens, Basic):
gens = (gens,)
elif len(gens) == 1 and hasattr(gens[0], '__iter__'):
gens = gens[0]
if gens == (None,):
gens = ()
elif has_dups(gens):
raise GeneratorsError("duplicated generators: %s" % str(gens))
elif any(gen.is_commutative is False for gen in gens):
raise GeneratorsError("non-commutative generators: %s" % str(gens))
return tuple(gens)
class Wrt(with_metaclass(OptionType, Option)):
"""``wrt`` option to polynomial manipulation functions. """
option = 'wrt'
requires = []
excludes = []
_re_split = re.compile(r"\s*,\s*|\s+")
@classmethod
def preprocess(cls, wrt):
if isinstance(wrt, Basic):
return [str(wrt)]
elif isinstance(wrt, str):
wrt = wrt.strip()
if wrt.endswith(','):
raise OptionError('Bad input: missing parameter.')
if not wrt:
return []
return [ gen for gen in cls._re_split.split(wrt) ]
elif hasattr(wrt, '__getitem__'):
return list(map(str, wrt))
else:
raise OptionError("invalid argument for 'wrt' option")
class Sort(with_metaclass(OptionType, Option)):
"""``sort`` option to polynomial manipulation functions. """
option = 'sort'
requires = []
excludes = []
@classmethod
def default(cls):
return []
@classmethod
def preprocess(cls, sort):
if isinstance(sort, str):
return [ gen.strip() for gen in sort.split('>') ]
elif hasattr(sort, '__getitem__'):
return list(map(str, sort))
else:
raise OptionError("invalid argument for 'sort' option")
class Order(with_metaclass(OptionType, Option)):
"""``order`` option to polynomial manipulation functions. """
option = 'order'
requires = []
excludes = []
@classmethod
def default(cls):
return sympy.polys.orderings.lex
@classmethod
def preprocess(cls, order):
return sympy.polys.orderings.monomial_key(order)
class Field(with_metaclass(OptionType, BooleanOption)):
"""``field`` option to polynomial manipulation functions. """
option = 'field'
requires = []
excludes = ['domain', 'split', 'gaussian']
class Greedy(with_metaclass(OptionType, BooleanOption)):
"""``greedy`` option to polynomial manipulation functions. """
option = 'greedy'
requires = []
excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric']
class Composite(with_metaclass(OptionType, BooleanOption)):
"""``composite`` option to polynomial manipulation functions. """
option = 'composite'
@classmethod
def default(cls):
return None
requires = []
excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric']
class Domain(with_metaclass(OptionType, Option)):
"""``domain`` option to polynomial manipulation functions. """
option = 'domain'
requires = []
excludes = ['field', 'greedy', 'split', 'gaussian', 'extension']
after = ['gens']
_re_realfield = re.compile(r"^(R|RR)(_(\d+))?$")
_re_complexfield = re.compile(r"^(C|CC)(_(\d+))?$")
_re_finitefield = re.compile(r"^(FF|GF)\((\d+)\)$")
_re_polynomial = re.compile(r"^(Z|ZZ|Q|QQ|R|RR|C|CC)\[(.+)\]$")
_re_fraction = re.compile(r"^(Z|ZZ|Q|QQ)\((.+)\)$")
_re_algebraic = re.compile(r"^(Q|QQ)\<(.+)\>$")
@classmethod
def preprocess(cls, domain):
if isinstance(domain, sympy.polys.domains.Domain):
return domain
elif hasattr(domain, 'to_domain'):
return domain.to_domain()
elif isinstance(domain, string_types):
if domain in ['Z', 'ZZ']:
return sympy.polys.domains.ZZ
if domain in ['Q', 'QQ']:
return sympy.polys.domains.QQ
if domain == 'EX':
return sympy.polys.domains.EX
r = cls._re_realfield.match(domain)
if r is not None:
_, _, prec = r.groups()
if prec is None:
return sympy.polys.domains.RR
else:
return sympy.polys.domains.RealField(int(prec))
r = cls._re_complexfield.match(domain)
if r is not None:
_, _, prec = r.groups()
if prec is None:
return sympy.polys.domains.CC
else:
return sympy.polys.domains.ComplexField(int(prec))
r = cls._re_finitefield.match(domain)
if r is not None:
return sympy.polys.domains.FF(int(r.groups()[1]))
r = cls._re_polynomial.match(domain)
if r is not None:
ground, gens = r.groups()
gens = list(map(sympify, gens.split(',')))
if ground in ['Z', 'ZZ']:
return sympy.polys.domains.ZZ.poly_ring(*gens)
elif ground in ['Q', 'QQ']:
return sympy.polys.domains.QQ.poly_ring(*gens)
elif ground in ['R', 'RR']:
return sympy.polys.domains.RR.poly_ring(*gens)
else:
return sympy.polys.domains.CC.poly_ring(*gens)
r = cls._re_fraction.match(domain)
if r is not None:
ground, gens = r.groups()
gens = list(map(sympify, gens.split(',')))
if ground in ['Z', 'ZZ']:
return sympy.polys.domains.ZZ.frac_field(*gens)
else:
return sympy.polys.domains.QQ.frac_field(*gens)
r = cls._re_algebraic.match(domain)
if r is not None:
gens = list(map(sympify, r.groups()[1].split(',')))
return sympy.polys.domains.QQ.algebraic_field(*gens)
raise OptionError('expected a valid domain specification, got %s' % domain)
@classmethod
def postprocess(cls, options):
if 'gens' in options and 'domain' in options and options['domain'].is_Composite and \
(set(options['domain'].symbols) & set(options['gens'])):
raise GeneratorsError(
"ground domain and generators interfere together")
elif ('gens' not in options or not options['gens']) and \
'domain' in options and options['domain'] == sympy.polys.domains.EX:
raise GeneratorsError("you have to provide generators because EX domain was requested")
class Split(with_metaclass(OptionType, BooleanOption)):
"""``split`` option to polynomial manipulation functions. """
option = 'split'
requires = []
excludes = ['field', 'greedy', 'domain', 'gaussian', 'extension',
'modulus', 'symmetric']
@classmethod
def postprocess(cls, options):
if 'split' in options:
raise NotImplementedError("'split' option is not implemented yet")
class Gaussian(with_metaclass(OptionType, BooleanOption)):
"""``gaussian`` option to polynomial manipulation functions. """
option = 'gaussian'
requires = []
excludes = ['field', 'greedy', 'domain', 'split', 'extension',
'modulus', 'symmetric']
@classmethod
def postprocess(cls, options):
if 'gaussian' in options and options['gaussian'] is True:
options['extension'] = set([S.ImaginaryUnit])
Extension.postprocess(options)
class Extension(with_metaclass(OptionType, Option)):
"""``extension`` option to polynomial manipulation functions. """
option = 'extension'
requires = []
excludes = ['greedy', 'domain', 'split', 'gaussian', 'modulus',
'symmetric']
@classmethod
def preprocess(cls, extension):
if extension == 1:
return bool(extension)
elif extension == 0:
raise OptionError("'False' is an invalid argument for 'extension'")
else:
if not hasattr(extension, '__iter__'):
extension = set([extension])
else:
if not extension:
extension = None
else:
extension = set(extension)
return extension
@classmethod
def postprocess(cls, options):
if 'extension' in options and options['extension'] is not True:
options['domain'] = sympy.polys.domains.QQ.algebraic_field(
*options['extension'])
class Modulus(with_metaclass(OptionType, Option)):
"""``modulus`` option to polynomial manipulation functions. """
option = 'modulus'
requires = []
excludes = ['greedy', 'split', 'domain', 'gaussian', 'extension']
@classmethod
def preprocess(cls, modulus):
modulus = sympify(modulus)
if modulus.is_Integer and modulus > 0:
return int(modulus)
else:
raise OptionError(
"'modulus' must a positive integer, got %s" % modulus)
@classmethod
def postprocess(cls, options):
if 'modulus' in options:
modulus = options['modulus']
symmetric = options.get('symmetric', True)
options['domain'] = sympy.polys.domains.FF(modulus, symmetric)
class Symmetric(with_metaclass(OptionType, BooleanOption)):
"""``symmetric`` option to polynomial manipulation functions. """
option = 'symmetric'
requires = ['modulus']
excludes = ['greedy', 'domain', 'split', 'gaussian', 'extension']
class Strict(with_metaclass(OptionType, BooleanOption)):
"""``strict`` option to polynomial manipulation functions. """
option = 'strict'
@classmethod
def default(cls):
return True
class Auto(with_metaclass(OptionType, BooleanOption, Flag)):
"""``auto`` flag to polynomial manipulation functions. """
option = 'auto'
after = ['field', 'domain', 'extension', 'gaussian']
@classmethod
def default(cls):
return True
@classmethod
def postprocess(cls, options):
if ('domain' in options or 'field' in options) and 'auto' not in options:
options['auto'] = False
class Frac(with_metaclass(OptionType, BooleanOption, Flag)):
"""``auto`` option to polynomial manipulation functions. """
option = 'frac'
@classmethod
def default(cls):
return False
class Formal(with_metaclass(OptionType, BooleanOption, Flag)):
"""``formal`` flag to polynomial manipulation functions. """
option = 'formal'
@classmethod
def default(cls):
return False
class Polys(with_metaclass(OptionType, BooleanOption, Flag)):
"""``polys`` flag to polynomial manipulation functions. """
option = 'polys'
class Include(with_metaclass(OptionType, BooleanOption, Flag)):
"""``include`` flag to polynomial manipulation functions. """
option = 'include'
@classmethod
def default(cls):
return False
class All(with_metaclass(OptionType, BooleanOption, Flag)):
"""``all`` flag to polynomial manipulation functions. """
option = 'all'
@classmethod
def default(cls):
return False
class Gen(with_metaclass(OptionType, Flag)):
"""``gen`` flag to polynomial manipulation functions. """
option = 'gen'
@classmethod
def default(cls):
return 0
@classmethod
def preprocess(cls, gen):
if isinstance(gen, (Basic, int)):
return gen
else:
raise OptionError("invalid argument for 'gen' option")
class Series(with_metaclass(OptionType, BooleanOption, Flag)):
"""``series`` flag to polynomial manipulation functions. """
option = 'series'
@classmethod
def default(cls):
return False
class Symbols(with_metaclass(OptionType, Flag)):
"""``symbols`` flag to polynomial manipulation functions. """
option = 'symbols'
@classmethod
def default(cls):
return numbered_symbols('s', start=1)
@classmethod
def preprocess(cls, symbols):
if hasattr(symbols, '__iter__'):
return iter(symbols)
else:
raise OptionError("expected an iterator or iterable container, got %s" % symbols)
class Method(with_metaclass(OptionType, Flag)):
"""``method`` flag to polynomial manipulation functions. """
option = 'method'
@classmethod
def preprocess(cls, method):
if isinstance(method, str):
return method.lower()
else:
raise OptionError("expected a string, got %s" % method)
def build_options(gens, args=None):
"""Construct options from keyword arguments or ... options. """
if args is None:
gens, args = (), gens
if len(args) != 1 or 'opt' not in args or gens:
return Options(gens, args)
else:
return args['opt']
def allowed_flags(args, flags):
"""
Allow specified flags to be used in the given context.
Examples
========
>>> from sympy.polys.polyoptions import allowed_flags
>>> from sympy.polys.domains import ZZ
>>> allowed_flags({'domain': ZZ}, [])
>>> allowed_flags({'domain': ZZ, 'frac': True}, [])
Traceback (most recent call last):
...
FlagError: 'frac' flag is not allowed in this context
>>> allowed_flags({'domain': ZZ, 'frac': True}, ['frac'])
"""
flags = set(flags)
for arg in args.keys():
try:
if Options.__options__[arg].is_Flag and not arg in flags:
raise FlagError(
"'%s' flag is not allowed in this context" % arg)
except KeyError:
raise OptionError("'%s' is not a valid option" % arg)
def set_defaults(options, **defaults):
"""Update options with default values. """
if 'defaults' not in options:
options = dict(options)
options['defaults'] = defaults
return options
Options._init_dependencies_order()
|
b15d4bf2d062975d0748eeb406433deca63cb3ce62dcd2db84ffd69c0fc99ba4 | """Groebner bases algorithms. """
from __future__ import print_function, division
from sympy.core.compatibility import range
from sympy.core.symbol import Dummy
from sympy.polys.monomials import monomial_mul, monomial_lcm, monomial_divides, term_div
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import DomainError
from sympy.polys.polyconfig import query
def groebner(seq, ring, method=None):
"""
Computes Groebner basis for a set of polynomials in `K[X]`.
Wrapper around the (default) improved Buchberger and the other algorithms
for computing Groebner bases. The choice of algorithm can be changed via
``method`` argument or :func:`sympy.polys.polyconfig.setup`, where
``method`` can be either ``buchberger`` or ``f5b``.
"""
if method is None:
method = query('groebner')
_groebner_methods = {
'buchberger': _buchberger,
'f5b': _f5b,
}
try:
_groebner = _groebner_methods[method]
except KeyError:
raise ValueError("'%s' is not a valid Groebner bases algorithm (valid are 'buchberger' and 'f5b')" % method)
domain, orig = ring.domain, None
if not domain.is_Field or not domain.has_assoc_Field:
try:
orig, ring = ring, ring.clone(domain=domain.get_field())
except DomainError:
raise DomainError("can't compute a Groebner basis over %s" % domain)
else:
seq = [ s.set_ring(ring) for s in seq ]
G = _groebner(seq, ring)
if orig is not None:
G = [ g.clear_denoms()[1].set_ring(orig) for g in G ]
return G
def _buchberger(f, ring):
"""
Computes Groebner basis for a set of polynomials in `K[X]`.
Given a set of multivariate polynomials `F`, finds another
set `G`, such that Ideal `F = Ideal G` and `G` is a reduced
Groebner basis.
The resulting basis is unique and has monic generators if the
ground domains is a field. Otherwise the result is non-unique
but Groebner bases over e.g. integers can be computed (if the
input polynomials are monic).
Groebner bases can be used to choose specific generators for a
polynomial ideal. Because these bases are unique you can check
for ideal equality by comparing the Groebner bases. To see if
one polynomial lies in an ideal, divide by the elements in the
base and see if the remainder vanishes.
They can also be used to solve systems of polynomial equations
as, by choosing lexicographic ordering, you can eliminate one
variable at a time, provided that the ideal is zero-dimensional
(finite number of solutions).
Notes
=====
Algorithm used: an improved version of Buchberger's algorithm
as presented in T. Becker, V. Weispfenning, Groebner Bases: A
Computational Approach to Commutative Algebra, Springer, 1993,
page 232.
References
==========
.. [1] [Bose03]_
.. [2] [Giovini91]_
.. [3] [Ajwa95]_
.. [4] [Cox97]_
"""
order = ring.order
monomial_mul = ring.monomial_mul
monomial_div = ring.monomial_div
monomial_lcm = ring.monomial_lcm
def select(P):
# normal selection strategy
# select the pair with minimum LCM(LM(f), LM(g))
pr = min(P, key=lambda pair: order(monomial_lcm(f[pair[0]].LM, f[pair[1]].LM)))
return pr
def normal(g, J):
h = g.rem([ f[j] for j in J ])
if not h:
return None
else:
h = h.monic()
if not h in I:
I[h] = len(f)
f.append(h)
return h.LM, I[h]
def update(G, B, ih):
# update G using the set of critical pairs B and h
# [BW] page 230
h = f[ih]
mh = h.LM
# filter new pairs (h, g), g in G
C = G.copy()
D = set()
while C:
# select a pair (h, g) by popping an element from C
ig = C.pop()
g = f[ig]
mg = g.LM
LCMhg = monomial_lcm(mh, mg)
def lcm_divides(ip):
# LCM(LM(h), LM(p)) divides LCM(LM(h), LM(g))
m = monomial_lcm(mh, f[ip].LM)
return monomial_div(LCMhg, m)
# HT(h) and HT(g) disjoint: mh*mg == LCMhg
if monomial_mul(mh, mg) == LCMhg or (
not any(lcm_divides(ipx) for ipx in C) and
not any(lcm_divides(pr[1]) for pr in D)):
D.add((ih, ig))
E = set()
while D:
# select h, g from D (h the same as above)
ih, ig = D.pop()
mg = f[ig].LM
LCMhg = monomial_lcm(mh, mg)
if not monomial_mul(mh, mg) == LCMhg:
E.add((ih, ig))
# filter old pairs
B_new = set()
while B:
# select g1, g2 from B (-> CP)
ig1, ig2 = B.pop()
mg1 = f[ig1].LM
mg2 = f[ig2].LM
LCM12 = monomial_lcm(mg1, mg2)
# if HT(h) does not divide lcm(HT(g1), HT(g2))
if not monomial_div(LCM12, mh) or \
monomial_lcm(mg1, mh) == LCM12 or \
monomial_lcm(mg2, mh) == LCM12:
B_new.add((ig1, ig2))
B_new |= E
# filter polynomials
G_new = set()
while G:
ig = G.pop()
mg = f[ig].LM
if not monomial_div(mg, mh):
G_new.add(ig)
G_new.add(ih)
return G_new, B_new
# end of update ################################
if not f:
return []
# replace f with a reduced list of initial polynomials; see [BW] page 203
f1 = f[:]
while True:
f = f1[:]
f1 = []
for i in range(len(f)):
p = f[i]
r = p.rem(f[:i])
if r:
f1.append(r.monic())
if f == f1:
break
I = {} # ip = I[p]; p = f[ip]
F = set() # set of indices of polynomials
G = set() # set of indices of intermediate would-be Groebner basis
CP = set() # set of pairs of indices of critical pairs
for i, h in enumerate(f):
I[h] = i
F.add(i)
#####################################
# algorithm GROEBNERNEWS2 in [BW] page 232
while F:
# select p with minimum monomial according to the monomial ordering
h = min([f[x] for x in F], key=lambda f: order(f.LM))
ih = I[h]
F.remove(ih)
G, CP = update(G, CP, ih)
# count the number of critical pairs which reduce to zero
reductions_to_zero = 0
while CP:
ig1, ig2 = select(CP)
CP.remove((ig1, ig2))
h = spoly(f[ig1], f[ig2], ring)
# ordering divisors is on average more efficient [Cox] page 111
G1 = sorted(G, key=lambda g: order(f[g].LM))
ht = normal(h, G1)
if ht:
G, CP = update(G, CP, ht[1])
else:
reductions_to_zero += 1
######################################
# now G is a Groebner basis; reduce it
Gr = set()
for ig in G:
ht = normal(f[ig], G - set([ig]))
if ht:
Gr.add(ht[1])
Gr = [f[ig] for ig in Gr]
# order according to the monomial ordering
Gr = sorted(Gr, key=lambda f: order(f.LM), reverse=True)
return Gr
def spoly(p1, p2, ring):
"""
Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2
This is the S-poly provided p1 and p2 are monic
"""
LM1 = p1.LM
LM2 = p2.LM
LCM12 = ring.monomial_lcm(LM1, LM2)
m1 = ring.monomial_div(LCM12, LM1)
m2 = ring.monomial_div(LCM12, LM2)
s1 = p1.mul_monom(m1)
s2 = p2.mul_monom(m2)
s = s1 - s2
return s
# F5B
# convenience functions
def Sign(f):
return f[0]
def Polyn(f):
return f[1]
def Num(f):
return f[2]
def sig(monomial, index):
return (monomial, index)
def lbp(signature, polynomial, number):
return (signature, polynomial, number)
# signature functions
def sig_cmp(u, v, order):
"""
Compare two signatures by extending the term order to K[X]^n.
u < v iff
- the index of v is greater than the index of u
or
- the index of v is equal to the index of u and u[0] < v[0] w.r.t. order
u > v otherwise
"""
if u[1] > v[1]:
return -1
if u[1] == v[1]:
#if u[0] == v[0]:
# return 0
if order(u[0]) < order(v[0]):
return -1
return 1
def sig_key(s, order):
"""
Key for comparing two signatures.
s = (m, k), t = (n, l)
s < t iff [k > l] or [k == l and m < n]
s > t otherwise
"""
return (-s[1], order(s[0]))
def sig_mult(s, m):
"""
Multiply a signature by a monomial.
The product of a signature (m, i) and a monomial n is defined as
(m * t, i).
"""
return sig(monomial_mul(s[0], m), s[1])
# labeled polynomial functions
def lbp_sub(f, g):
"""
Subtract labeled polynomial g from f.
The signature and number of the difference of f and g are signature
and number of the maximum of f and g, w.r.t. lbp_cmp.
"""
if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) < 0:
max_poly = g
else:
max_poly = f
ret = Polyn(f) - Polyn(g)
return lbp(Sign(max_poly), ret, Num(max_poly))
def lbp_mul_term(f, cx):
"""
Multiply a labeled polynomial with a term.
The product of a labeled polynomial (s, p, k) by a monomial is
defined as (m * s, m * p, k).
"""
return lbp(sig_mult(Sign(f), cx[0]), Polyn(f).mul_term(cx), Num(f))
def lbp_cmp(f, g):
"""
Compare two labeled polynomials.
f < g iff
- Sign(f) < Sign(g)
or
- Sign(f) == Sign(g) and Num(f) > Num(g)
f > g otherwise
"""
if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) == -1:
return -1
if Sign(f) == Sign(g):
if Num(f) > Num(g):
return -1
#if Num(f) == Num(g):
# return 0
return 1
def lbp_key(f):
"""
Key for comparing two labeled polynomials.
"""
return (sig_key(Sign(f), Polyn(f).ring.order), -Num(f))
# algorithm and helper functions
def critical_pair(f, g, ring):
"""
Compute the critical pair corresponding to two labeled polynomials.
A critical pair is a tuple (um, f, vm, g), where um and vm are
terms such that um * f - vm * g is the S-polynomial of f and g (so,
wlog assume um * f > vm * g).
For performance sake, a critical pair is represented as a tuple
(Sign(um * f), um, f, Sign(vm * g), vm, g), since um * f creates
a new, relatively expensive object in memory, whereas Sign(um *
f) and um are lightweight and f (in the tuple) is a reference to
an already existing object in memory.
"""
domain = ring.domain
ltf = Polyn(f).LT
ltg = Polyn(g).LT
lt = (monomial_lcm(ltf[0], ltg[0]), domain.one)
um = term_div(lt, ltf, domain)
vm = term_div(lt, ltg, domain)
# The full information is not needed (now), so only the product
# with the leading term is considered:
fr = lbp_mul_term(lbp(Sign(f), Polyn(f).leading_term(), Num(f)), um)
gr = lbp_mul_term(lbp(Sign(g), Polyn(g).leading_term(), Num(g)), vm)
# return in proper order, such that the S-polynomial is just
# u_first * f_first - u_second * f_second:
if lbp_cmp(fr, gr) == -1:
return (Sign(gr), vm, g, Sign(fr), um, f)
else:
return (Sign(fr), um, f, Sign(gr), vm, g)
def cp_cmp(c, d):
"""
Compare two critical pairs c and d.
c < d iff
- lbp(c[0], _, Num(c[2]) < lbp(d[0], _, Num(d[2])) (this
corresponds to um_c * f_c and um_d * f_d)
or
- lbp(c[0], _, Num(c[2]) >< lbp(d[0], _, Num(d[2])) and
lbp(c[3], _, Num(c[5])) < lbp(d[3], _, Num(d[5])) (this
corresponds to vm_c * g_c and vm_d * g_d)
c > d otherwise
"""
zero = Polyn(c[2]).ring.zero
c0 = lbp(c[0], zero, Num(c[2]))
d0 = lbp(d[0], zero, Num(d[2]))
r = lbp_cmp(c0, d0)
if r == -1:
return -1
if r == 0:
c1 = lbp(c[3], zero, Num(c[5]))
d1 = lbp(d[3], zero, Num(d[5]))
r = lbp_cmp(c1, d1)
if r == -1:
return -1
#if r == 0:
# return 0
return 1
def cp_key(c, ring):
"""
Key for comparing critical pairs.
"""
return (lbp_key(lbp(c[0], ring.zero, Num(c[2]))), lbp_key(lbp(c[3], ring.zero, Num(c[5]))))
def s_poly(cp):
"""
Compute the S-polynomial of a critical pair.
The S-polynomial of a critical pair cp is cp[1] * cp[2] - cp[4] * cp[5].
"""
return lbp_sub(lbp_mul_term(cp[2], cp[1]), lbp_mul_term(cp[5], cp[4]))
def is_rewritable_or_comparable(sign, num, B):
"""
Check if a labeled polynomial is redundant by checking if its
signature and number imply rewritability or comparability.
(sign, num) is comparable if there exists a labeled polynomial
h in B, such that sign[1] (the index) is less than Sign(h)[1]
and sign[0] is divisible by the leading monomial of h.
(sign, num) is rewritable if there exists a labeled polynomial
h in B, such thatsign[1] is equal to Sign(h)[1], num < Num(h)
and sign[0] is divisible by Sign(h)[0].
"""
for h in B:
# comparable
if sign[1] < Sign(h)[1]:
if monomial_divides(Polyn(h).LM, sign[0]):
return True
# rewritable
if sign[1] == Sign(h)[1]:
if num < Num(h):
if monomial_divides(Sign(h)[0], sign[0]):
return True
return False
def f5_reduce(f, B):
"""
F5-reduce a labeled polynomial f by B.
Continuously searches for non-zero labeled polynomial h in B, such
that the leading term lt_h of h divides the leading term lt_f of
f and Sign(lt_h * h) < Sign(f). If such a labeled polynomial h is
found, f gets replaced by f - lt_f / lt_h * h. If no such h can be
found or f is 0, f is no further F5-reducible and f gets returned.
A polynomial that is reducible in the usual sense need not be
F5-reducible, e.g.:
>>> from sympy.polys.groebnertools import lbp, sig, f5_reduce, Polyn
>>> from sympy.polys import ring, QQ, lex
>>> R, x,y,z = ring("x,y,z", QQ, lex)
>>> f = lbp(sig((1, 1, 1), 4), x, 3)
>>> g = lbp(sig((0, 0, 0), 2), x, 2)
>>> Polyn(f).rem([Polyn(g)])
0
>>> f5_reduce(f, [g])
(((1, 1, 1), 4), x, 3)
"""
order = Polyn(f).ring.order
domain = Polyn(f).ring.domain
if not Polyn(f):
return f
while True:
g = f
for h in B:
if Polyn(h):
if monomial_divides(Polyn(h).LM, Polyn(f).LM):
t = term_div(Polyn(f).LT, Polyn(h).LT, domain)
if sig_cmp(sig_mult(Sign(h), t[0]), Sign(f), order) < 0:
# The following check need not be done and is in general slower than without.
#if not is_rewritable_or_comparable(Sign(gp), Num(gp), B):
hp = lbp_mul_term(h, t)
f = lbp_sub(f, hp)
break
if g == f or not Polyn(f):
return f
def _f5b(F, ring):
"""
Computes a reduced Groebner basis for the ideal generated by F.
f5b is an implementation of the F5B algorithm by Yao Sun and
Dingkang Wang. Similarly to Buchberger's algorithm, the algorithm
proceeds by computing critical pairs, computing the S-polynomial,
reducing it and adjoining the reduced S-polynomial if it is not 0.
Unlike Buchberger's algorithm, each polynomial contains additional
information, namely a signature and a number. The signature
specifies the path of computation (i.e. from which polynomial in
the original basis was it derived and how), the number says when
the polynomial was added to the basis. With this information it
is (often) possible to decide if an S-polynomial will reduce to
0 and can be discarded.
Optimizations include: Reducing the generators before computing
a Groebner basis, removing redundant critical pairs when a new
polynomial enters the basis and sorting the critical pairs and
the current basis.
Once a Groebner basis has been found, it gets reduced.
References
==========
.. [1] Yao Sun, Dingkang Wang: "A New Proof for the Correctness of F5
(F5-Like) Algorithm", http://arxiv.org/abs/1004.0084 (specifically
v4)
.. [2] Thomas Becker, Volker Weispfenning, Groebner bases: A computational
approach to commutative algebra, 1993, p. 203, 216
"""
order = ring.order
# reduce polynomials (like in Mario Pernici's implementation) (Becker, Weispfenning, p. 203)
B = F
while True:
F = B
B = []
for i in range(len(F)):
p = F[i]
r = p.rem(F[:i])
if r:
B.append(r)
if F == B:
break
# basis
B = [lbp(sig(ring.zero_monom, i + 1), F[i], i + 1) for i in range(len(F))]
B.sort(key=lambda f: order(Polyn(f).LM), reverse=True)
# critical pairs
CP = [critical_pair(B[i], B[j], ring) for i in range(len(B)) for j in range(i + 1, len(B))]
CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True)
k = len(B)
reductions_to_zero = 0
while len(CP):
cp = CP.pop()
# discard redundant critical pairs:
if is_rewritable_or_comparable(cp[0], Num(cp[2]), B):
continue
if is_rewritable_or_comparable(cp[3], Num(cp[5]), B):
continue
s = s_poly(cp)
p = f5_reduce(s, B)
p = lbp(Sign(p), Polyn(p).monic(), k + 1)
if Polyn(p):
# remove old critical pairs, that become redundant when adding p:
indices = []
for i, cp in enumerate(CP):
if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]):
indices.append(i)
elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]):
indices.append(i)
for i in reversed(indices):
del CP[i]
# only add new critical pairs that are not made redundant by p:
for g in B:
if Polyn(g):
cp = critical_pair(p, g, ring)
if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]):
continue
elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]):
continue
CP.append(cp)
# sort (other sorting methods/selection strategies were not as successful)
CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True)
# insert p into B:
m = Polyn(p).LM
if order(m) <= order(Polyn(B[-1]).LM):
B.append(p)
else:
for i, q in enumerate(B):
if order(m) > order(Polyn(q).LM):
B.insert(i, p)
break
k += 1
#print(len(B), len(CP), "%d critical pairs removed" % len(indices))
else:
reductions_to_zero += 1
# reduce Groebner basis:
H = [Polyn(g).monic() for g in B]
H = red_groebner(H, ring)
return sorted(H, key=lambda f: order(f.LM), reverse=True)
def red_groebner(G, ring):
"""
Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216
Selects a subset of generators, that already generate the ideal
and computes a reduced Groebner basis for them.
"""
def reduction(P):
"""
The actual reduction algorithm.
"""
Q = []
for i, p in enumerate(P):
h = p.rem(P[:i] + P[i + 1:])
if h:
Q.append(h)
return [p.monic() for p in Q]
F = G
H = []
while F:
f0 = F.pop()
if not any(monomial_divides(f.LM, f0.LM) for f in F + H):
H.append(f0)
# Becker, Weispfenning, p. 217: H is Groebner basis of the ideal generated by G.
return reduction(H)
def is_groebner(G, ring):
"""
Check if G is a Groebner basis.
"""
for i in range(len(G)):
for j in range(i + 1, len(G)):
s = spoly(G[i], G[j], ring)
s = s.rem(G)
if s:
return False
return True
def is_minimal(G, ring):
"""
Checks if G is a minimal Groebner basis.
"""
order = ring.order
domain = ring.domain
G.sort(key=lambda g: order(g.LM))
for i, g in enumerate(G):
if g.LC != domain.one:
return False
for h in G[:i] + G[i + 1:]:
if monomial_divides(h.LM, g.LM):
return False
return True
def is_reduced(G, ring):
"""
Checks if G is a reduced Groebner basis.
"""
order = ring.order
domain = ring.domain
G.sort(key=lambda g: order(g.LM))
for i, g in enumerate(G):
if g.LC != domain.one:
return False
for term in g.terms():
for h in G[:i] + G[i + 1:]:
if monomial_divides(h.LM, term[0]):
return False
return True
def groebner_lcm(f, g):
"""
Computes LCM of two polynomials using Groebner bases.
The LCM is computed as the unique generator of the intersection
of the two ideals generated by `f` and `g`. The approach is to
compute a Groebner basis with respect to lexicographic ordering
of `t*f` and `(1 - t)*g`, where `t` is an unrelated variable and
then filtering out the solution that doesn't contain `t`.
References
==========
.. [1] [Cox97]_
"""
if f.ring != g.ring:
raise ValueError("Values should be equal")
ring = f.ring
domain = ring.domain
if not f or not g:
return ring.zero
if len(f) <= 1 and len(g) <= 1:
monom = monomial_lcm(f.LM, g.LM)
coeff = domain.lcm(f.LC, g.LC)
return ring.term_new(monom, coeff)
fc, f = f.primitive()
gc, g = g.primitive()
lcm = domain.lcm(fc, gc)
f_terms = [ ((1,) + monom, coeff) for monom, coeff in f.terms() ]
g_terms = [ ((0,) + monom, coeff) for monom, coeff in g.terms() ] \
+ [ ((1,) + monom,-coeff) for monom, coeff in g.terms() ]
t = Dummy("t")
t_ring = ring.clone(symbols=(t,) + ring.symbols, order=lex)
F = t_ring.from_terms(f_terms)
G = t_ring.from_terms(g_terms)
basis = groebner([F, G], t_ring)
def is_independent(h, j):
return all(not monom[j] for monom in h.monoms())
H = [ h for h in basis if is_independent(h, 0) ]
h_terms = [ (monom[1:], coeff*lcm) for monom, coeff in H[0].terms() ]
h = ring.from_terms(h_terms)
return h
def groebner_gcd(f, g):
"""Computes GCD of two polynomials using Groebner bases. """
if f.ring != g.ring:
raise ValueError("Values should be equal")
domain = f.ring.domain
if not domain.is_Field:
fc, f = f.primitive()
gc, g = g.primitive()
gcd = domain.gcd(fc, gc)
H = (f*g).quo([groebner_lcm(f, g)])
if len(H) != 1:
raise ValueError("Length should be 1")
h = H[0]
if not domain.is_Field:
return gcd*h
else:
return h.monic()
|
44bd706f11250d61398d61c8c0de147fa57fbfabd1c2e442df17d8226c3579f0 | from sympy import Dummy
from sympy.core.compatibility import range
from sympy.ntheory import nextprime
from sympy.ntheory.modular import crt
from sympy.polys.domains import PolynomialRing
from sympy.polys.galoistools import (
gf_gcd, gf_from_dict, gf_gcdex, gf_div, gf_lcm)
from sympy.polys.polyerrors import ModularGCDFailed
from mpmath import sqrt
import random
def _trivial_gcd(f, g):
"""
Compute the GCD of two polynomials in trivial cases, i.e. when one
or both polynomials are zero.
"""
ring = f.ring
if not (f or g):
return ring.zero, ring.zero, ring.zero
elif not f:
if g.LC < ring.domain.zero:
return -g, ring.zero, -ring.one
else:
return g, ring.zero, ring.one
elif not g:
if f.LC < ring.domain.zero:
return -f, -ring.one, ring.zero
else:
return f, ring.one, ring.zero
return None
def _gf_gcd(fp, gp, p):
r"""
Compute the GCD of two univariate polynomials in `\mathbb{Z}_p[x]`.
"""
dom = fp.ring.domain
while gp:
rem = fp
deg = gp.degree()
lcinv = dom.invert(gp.LC, p)
while True:
degrem = rem.degree()
if degrem < deg:
break
rem = (rem - gp.mul_monom((degrem - deg,)).mul_ground(lcinv * rem.LC)).trunc_ground(p)
fp = gp
gp = rem
return fp.mul_ground(dom.invert(fp.LC, p)).trunc_ground(p)
def _degree_bound_univariate(f, g):
r"""
Compute an upper bound for the degree of the GCD of two univariate
integer polynomials `f` and `g`.
The function chooses a suitable prime `p` and computes the GCD of
`f` and `g` in `\mathbb{Z}_p[x]`. The choice of `p` guarantees that
the degree in `\mathbb{Z}_p[x]` is greater than or equal to the degree
in `\mathbb{Z}[x]`.
Parameters
==========
f : PolyElement
univariate integer polynomial
g : PolyElement
univariate integer polynomial
"""
gamma = f.ring.domain.gcd(f.LC, g.LC)
p = 1
p = nextprime(p)
while gamma % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
hp = _gf_gcd(fp, gp, p)
deghp = hp.degree()
return deghp
def _chinese_remainder_reconstruction_univariate(hp, hq, p, q):
r"""
Construct a polynomial `h_{pq}` in `\mathbb{Z}_{p q}[x]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials
`h_p` and `h_q` in `\mathbb{Z}_p[x]` and `\mathbb{Z}_q[x]`
respectively.
The coefficients of the polynomial `h_{pq}` are computed with the
Chinese Remainder Theorem. The symmetric representation in
`\mathbb{Z}_p[x]`, `\mathbb{Z}_q[x]` and `\mathbb{Z}_{p q}[x]` is used.
It is assumed that `h_p` and `h_q` have the same degree.
Parameters
==========
hp : PolyElement
univariate integer polynomial with coefficients in `\mathbb{Z}_p`
hq : PolyElement
univariate integer polynomial with coefficients in `\mathbb{Z}_q`
p : Integer
modulus of `h_p`, relatively prime to `q`
q : Integer
modulus of `h_q`, relatively prime to `p`
Examples
========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_univariate
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> p = 3
>>> q = 5
>>> hp = -x**3 - 1
>>> hq = 2*x**3 - 2*x**2 + x
>>> hpq = _chinese_remainder_reconstruction_univariate(hp, hq, p, q)
>>> hpq
2*x**3 + 3*x**2 + 6*x + 5
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
"""
n = hp.degree()
x = hp.ring.gens[0]
hpq = hp.ring.zero
for i in range(n+1):
hpq[(i,)] = crt([p, q], [hp.coeff(x**i), hq.coeff(x**i)], symmetric=True)[0]
hpq.strip_zero()
return hpq
def modgcd_univariate(f, g):
r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x]` using a modular
algorithm.
The algorithm computes the GCD of two univariate integer polynomials
`f` and `g` by computing the GCD in `\mathbb{Z}_p[x]` for suitable
primes `p` and then reconstructing the coefficients with the Chinese
Remainder Theorem. Trial division is only made for candidates which
are very likely the desired GCD.
Parameters
==========
f : PolyElement
univariate integer polynomial
g : PolyElement
univariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_univariate
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = x**5 - 1
>>> g = x - 1
>>> h, cff, cfg = modgcd_univariate(f, g)
>>> h, cff, cfg
(x - 1, x**4 + x**3 + x**2 + x + 1, 1)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = 6*x**2 - 6
>>> g = 2*x**2 + 4*x + 2
>>> h, cff, cfg = modgcd_univariate(f, g)
>>> h, cff, cfg
(2*x + 2, 3*x - 3, x + 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
bound = _degree_bound_univariate(f, g)
if bound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
gamma = ring.domain.gcd(f.LC, g.LC)
m = 1
p = 1
while True:
p = nextprime(p)
while gamma % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
hp = _gf_gcd(fp, gp, p)
deghp = hp.degree()
if deghp > bound:
continue
elif deghp < bound:
m = 1
bound = deghp
continue
hp = hp.mul_ground(gamma).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_univariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.quo_ground(hm.content())
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _primitive(f, p):
r"""
Compute the content and the primitive part of a polynomial in
`\mathbb{Z}_p[x_0, \ldots, x_{k-2}, y] \cong \mathbb{Z}_p[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
integer polynomial in `\mathbb{Z}_p[x0, \ldots, x{k-2}, y]`
p : Integer
modulus of `f`
Returns
=======
contf : PolyElement
integer polynomial in `\mathbb{Z}_p[y]`, content of `f`
ppf : PolyElement
primitive part of `f`, i.e. `\frac{f}{contf}`
Examples
========
>>> from sympy.polys.modulargcd import _primitive
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> p = 3
>>> f = x**2*y**2 + x**2*y - y**2 - y
>>> _primitive(f, p)
(y**2 + y, x**2 - 1)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*y*z - y**2*z**2
>>> _primitive(f, p)
(z, x*y - y**2*z)
"""
ring = f.ring
dom = ring.domain
k = ring.ngens
coeffs = {}
for monom, coeff in f.iterterms():
if monom[:-1] not in coeffs:
coeffs[monom[:-1]] = {}
coeffs[monom[:-1]][monom[-1]] = coeff
cont = []
for coeff in iter(coeffs.values()):
cont = gf_gcd(cont, gf_from_dict(coeff, p, dom), p, dom)
yring = ring.clone(symbols=ring.symbols[k-1])
contf = yring.from_dense(cont).trunc_ground(p)
return contf, f.quo(contf.set_ring(ring))
def _deg(f):
r"""
Compute the degree of a multivariate polynomial
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns
=======
degf : Integer tuple
degree of `f` in `x_0, \ldots, x_{k-2}`
Examples
========
>>> from sympy.polys.modulargcd import _deg
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _deg(f)
(2,)
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _deg(f)
(2, 2)
>>> f = x*y*z - y**2*z**2
>>> _deg(f)
(1, 1)
"""
k = f.ring.ngens
degf = (0,) * (k-1)
for monom in f.itermonoms():
if monom[:-1] > degf:
degf = monom[:-1]
return degf
def _LC(f):
r"""
Compute the leading coefficient of a multivariate polynomial
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`.
Parameters
==========
f : PolyElement
polynomial in `K[x_0, \ldots, x_{k-2}, y]`
Returns
=======
lcf : PolyElement
polynomial in `K[y]`, leading coefficient of `f`
Examples
========
>>> from sympy.polys.modulargcd import _LC
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _LC(f)
y**2 + y
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x**2*y**2 + x**2*y - 1
>>> _LC(f)
1
>>> f = x*y*z - y**2*z**2
>>> _LC(f)
z
"""
ring = f.ring
k = ring.ngens
yring = ring.clone(symbols=ring.symbols[k-1])
y = yring.gens[0]
degf = _deg(f)
lcf = yring.zero
for monom, coeff in f.iterterms():
if monom[:-1] == degf:
lcf += coeff*y**monom[-1]
return lcf
def _swap(f, i):
"""
Make the variable `x_i` the leading one in a multivariate polynomial `f`.
"""
ring = f.ring
fswap = ring.zero
for monom, coeff in f.iterterms():
monomswap = (monom[i],) + monom[:i] + monom[i+1:]
fswap[monomswap] = coeff
return fswap
def _degree_bound_bivariate(f, g):
r"""
Compute upper degree bounds for the GCD of two bivariate
integer polynomials `f` and `g`.
The GCD is viewed as a polynomial in `\mathbb{Z}[y][x]` and the
function returns an upper bound for its degree and one for the degree
of its content. This is done by choosing a suitable prime `p` and
computing the GCD of the contents of `f \; \mathrm{mod} \, p` and
`g \; \mathrm{mod} \, p`. The choice of `p` guarantees that the degree
of the content in `\mathbb{Z}_p[y]` is greater than or equal to the
degree in `\mathbb{Z}[y]`. To obtain the degree bound in the variable
`x`, the polynomials are evaluated at `y = a` for a suitable
`a \in \mathbb{Z}_p` and then their GCD in `\mathbb{Z}_p[x]` is
computed. If no such `a` exists, i.e. the degree in `\mathbb{Z}_p[x]`
is always smaller than the one in `\mathbb{Z}[y][x]`, then the bound is
set to the minimum of the degrees of `f` and `g` in `x`.
Parameters
==========
f : PolyElement
bivariate integer polynomial
g : PolyElement
bivariate integer polynomial
Returns
=======
xbound : Integer
upper bound for the degree of the GCD of the polynomials `f` and
`g` in the variable `x`
ycontbound : Integer
upper bound for the degree of the content of the GCD of the
polynomials `f` and `g` in the variable `y`
References
==========
1. [Monagan00]_
"""
ring = f.ring
gamma1 = ring.domain.gcd(f.LC, g.LC)
gamma2 = ring.domain.gcd(_swap(f, 1).LC, _swap(g, 1).LC)
badprimes = gamma1 * gamma2
p = 1
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
contfp, fp = _primitive(fp, p)
contgp, gp = _primitive(gp, p)
conthp = _gf_gcd(contfp, contgp, p) # polynomial in Z_p[y]
ycontbound = conthp.degree()
# polynomial in Z_p[y]
delta = _gf_gcd(_LC(fp), _LC(gp), p)
for a in range(p):
if not delta.evaluate(0, a) % p:
continue
fpa = fp.evaluate(1, a).trunc_ground(p)
gpa = gp.evaluate(1, a).trunc_ground(p)
hpa = _gf_gcd(fpa, gpa, p)
xbound = hpa.degree()
return xbound, ycontbound
return min(fp.degree(), gp.degree()), ycontbound
def _chinese_remainder_reconstruction_multivariate(hp, hq, p, q):
r"""
Construct a polynomial `h_{pq}` in
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` such that
.. math ::
h_{pq} = h_p \; \mathrm{mod} \, p
h_{pq} = h_q \; \mathrm{mod} \, q
for relatively prime integers `p` and `q` and polynomials
`h_p` and `h_q` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` and
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` respectively.
The coefficients of the polynomial `h_{pq}` are computed with the
Chinese Remainder Theorem. The symmetric representation in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`,
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` and
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` is used.
Parameters
==========
hp : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
hq : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_q`
p : Integer
modulus of `h_p`, relatively prime to `q`
q : Integer
modulus of `h_q`, relatively prime to `p`
Examples
========
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_multivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> p = 3
>>> q = 5
>>> hp = x**3*y - x**2 - 1
>>> hq = -x**3*y - 2*x*y**2 + 2
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q)
>>> hpq
4*x**3*y + 5*x**2 + 3*x*y**2 + 2
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> p = 6
>>> q = 5
>>> hp = 3*x**4 - y**3*z + z
>>> hq = -2*x**4 + z
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q)
>>> hpq
3*x**4 + 5*y**3*z + z
>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True
"""
hpmonoms = set(hp.monoms())
hqmonoms = set(hq.monoms())
monoms = hpmonoms.intersection(hqmonoms)
hpmonoms.difference_update(monoms)
hqmonoms.difference_update(monoms)
zero = hp.ring.domain.zero
hpq = hp.ring.zero
if isinstance(hp.ring.domain, PolynomialRing):
crt_ = _chinese_remainder_reconstruction_multivariate
else:
def crt_(cp, cq, p, q):
return crt([p, q], [cp, cq], symmetric=True)[0]
for monom in monoms:
hpq[monom] = crt_(hp[monom], hq[monom], p, q)
for monom in hpmonoms:
hpq[monom] = crt_(hp[monom], zero, p, q)
for monom in hqmonoms:
hpq[monom] = crt_(zero, hq[monom], p, q)
return hpq
def _interpolate_multivariate(evalpoints, hpeval, ring, i, p, ground=False):
r"""
Reconstruct a polynomial `h_p` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`
from a list of evaluation points in `\mathbb{Z}_p` and a list of
polynomials in
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, which
are the images of `h_p` evaluated in the variable `x_i`.
It is also possible to reconstruct a parameter of the ground domain,
i.e. if `h_p` is a polynomial over `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`.
In this case, one has to set ``ground=True``.
Parameters
==========
evalpoints : list of Integer objects
list of evaluation points in `\mathbb{Z}_p`
hpeval : list of PolyElement objects
list of polynomials in (resp. over)
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`,
images of `h_p` evaluated in the variable `x_i`
ring : PolyRing
`h_p` will be an element of this ring
i : Integer
index of the variable which has to be reconstructed
p : Integer
prime number, modulus of `h_p`
ground : Boolean
indicates whether `x_i` is in the ground domain, default is
``False``
Returns
=======
hp : PolyElement
interpolated polynomial in (resp. over)
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`
"""
hp = ring.zero
if ground:
domain = ring.domain.domain
y = ring.domain.gens[i]
else:
domain = ring.domain
y = ring.gens[i]
for a, hpa in zip(evalpoints, hpeval):
numer = ring.one
denom = domain.one
for b in evalpoints:
if b == a:
continue
numer *= y - b
denom *= a - b
denom = domain.invert(denom, p)
coeff = numer.mul_ground(denom)
hp += hpa.set_ring(ring) * coeff
return hp.trunc_ground(p)
def modgcd_bivariate(f, g):
r"""
Computes the GCD of two polynomials in `\mathbb{Z}[x, y]` using a
modular algorithm.
The algorithm computes the GCD of two bivariate integer polynomials
`f` and `g` by calculating the GCD in `\mathbb{Z}_p[x, y]` for
suitable primes `p` and then reconstructing the coefficients with the
Chinese Remainder Theorem. To compute the bivariate GCD over
`\mathbb{Z}_p`, the polynomials `f \; \mathrm{mod} \, p` and
`g \; \mathrm{mod} \, p` are evaluated at `y = a` for certain
`a \in \mathbb{Z}_p` and then their univariate GCD in `\mathbb{Z}_p[x]`
is computed. Interpolating those yields the bivariate GCD in
`\mathbb{Z}_p[x, y]`. To verify the result in `\mathbb{Z}[x, y]`, trial
division is done, but only for candidates which are very likely the
desired GCD.
Parameters
==========
f : PolyElement
bivariate integer polynomial
g : PolyElement
bivariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_bivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = x**2*y - x**2 - 4*y + 4
>>> g = x + 2
>>> h, cff, cfg = modgcd_bivariate(f, g)
>>> h, cff, cfg
(x + 2, x*y - x - 2*y + 2, 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
xbound, ycontbound = _degree_bound_bivariate(f, g)
if xbound == ycontbound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
fswap = _swap(f, 1)
gswap = _swap(g, 1)
degyf = fswap.degree()
degyg = gswap.degree()
ybound, xcontbound = _degree_bound_bivariate(fswap, gswap)
if ybound == xcontbound == 0:
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch)
# TODO: to improve performance, choose the main variable here
gamma1 = ring.domain.gcd(f.LC, g.LC)
gamma2 = ring.domain.gcd(fswap.LC, gswap.LC)
badprimes = gamma1 * gamma2
m = 1
p = 1
while True:
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
contfp, fp = _primitive(fp, p)
contgp, gp = _primitive(gp, p)
conthp = _gf_gcd(contfp, contgp, p) # monic polynomial in Z_p[y]
degconthp = conthp.degree()
if degconthp > ycontbound:
continue
elif degconthp < ycontbound:
m = 1
ycontbound = degconthp
continue
# polynomial in Z_p[y]
delta = _gf_gcd(_LC(fp), _LC(gp), p)
degcontfp = contfp.degree()
degcontgp = contgp.degree()
degdelta = delta.degree()
N = min(degyf - degcontfp, degyg - degcontgp,
ybound - ycontbound + degdelta) + 1
if p < N:
continue
n = 0
evalpoints = []
hpeval = []
unlucky = False
for a in range(p):
deltaa = delta.evaluate(0, a)
if not deltaa % p:
continue
fpa = fp.evaluate(1, a).trunc_ground(p)
gpa = gp.evaluate(1, a).trunc_ground(p)
hpa = _gf_gcd(fpa, gpa, p) # monic polynomial in Z_p[x]
deghpa = hpa.degree()
if deghpa > xbound:
continue
elif deghpa < xbound:
m = 1
xbound = deghpa
unlucky = True
break
hpa = hpa.mul_ground(deltaa).trunc_ground(p)
evalpoints.append(a)
hpeval.append(hpa)
n += 1
if n == N:
break
if unlucky:
continue
if n < N:
continue
hp = _interpolate_multivariate(evalpoints, hpeval, ring, 1, p)
hp = _primitive(hp, p)[1]
hp = hp * conthp.set_ring(ring)
degyhp = hp.degree(1)
if degyhp > ybound:
continue
if degyhp < ybound:
m = 1
ybound = degyhp
continue
hp = hp.mul_ground(gamma1).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.quo_ground(hm.content())
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _modgcd_multivariate_p(f, g, p, degbound, contbound):
r"""
Compute the GCD of two polynomials in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`.
The algorithm reduces the problem step by step by evaluating the
polynomials `f` and `g` at `x_{k-1} = a` for suitable
`a \in \mathbb{Z}_p` and then calls itself recursively to compute the GCD
in `\mathbb{Z}_p[x_0, \ldots, x_{k-2}]`. If these recursive calls are
successful for enough evaluation points, the GCD in `k` variables is
interpolated, otherwise the algorithm returns ``None``. Every time a GCD
or a content is computed, their degrees are compared with the bounds. If
a degree greater then the bound is encountered, then the current call
returns ``None`` and a new evaluation point has to be chosen. If at some
point the degree is smaller, the correspondent bound is updated and the
algorithm fails.
Parameters
==========
f : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
g : PolyElement
multivariate integer polynomial with coefficients in `\mathbb{Z}_p`
p : Integer
prime number, modulus of `f` and `g`
degbound : list of Integer objects
``degbound[i]`` is an upper bound for the degree of the GCD of `f`
and `g` in the variable `x_i`
contbound : list of Integer objects
``contbound[i]`` is an upper bound for the degree of the content of
the GCD in `\mathbb{Z}_p[x_i][x_0, \ldots, x_{i-1}]`,
``contbound[0]`` is not used can therefore be chosen
arbitrarily.
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g` or ``None``
References
==========
1. [Monagan00]_
2. [Brown71]_
"""
ring = f.ring
k = ring.ngens
if k == 1:
h = _gf_gcd(f, g, p).trunc_ground(p)
degh = h.degree()
if degh > degbound[0]:
return None
if degh < degbound[0]:
degbound[0] = degh
raise ModularGCDFailed
return h
degyf = f.degree(k-1)
degyg = g.degree(k-1)
contf, f = _primitive(f, p)
contg, g = _primitive(g, p)
conth = _gf_gcd(contf, contg, p) # polynomial in Z_p[y]
degcontf = contf.degree()
degcontg = contg.degree()
degconth = conth.degree()
if degconth > contbound[k-1]:
return None
if degconth < contbound[k-1]:
contbound[k-1] = degconth
raise ModularGCDFailed
lcf = _LC(f)
lcg = _LC(g)
delta = _gf_gcd(lcf, lcg, p) # polynomial in Z_p[y]
evaltest = delta
for i in range(k-1):
evaltest *= _gf_gcd(_LC(_swap(f, i)), _LC(_swap(g, i)), p)
degdelta = delta.degree()
N = min(degyf - degcontf, degyg - degcontg,
degbound[k-1] - contbound[k-1] + degdelta) + 1
if p < N:
return None
n = 0
d = 0
evalpoints = []
heval = []
points = set(range(p))
while points:
a = random.sample(points, 1)[0]
points.remove(a)
if not evaltest.evaluate(0, a) % p:
continue
deltaa = delta.evaluate(0, a) % p
fa = f.evaluate(k-1, a).trunc_ground(p)
ga = g.evaluate(k-1, a).trunc_ground(p)
# polynomials in Z_p[x_0, ..., x_{k-2}]
ha = _modgcd_multivariate_p(fa, ga, p, degbound, contbound)
if ha is None:
d += 1
if d > n:
return None
continue
if ha.is_ground:
h = conth.set_ring(ring).trunc_ground(p)
return h
ha = ha.mul_ground(deltaa).trunc_ground(p)
evalpoints.append(a)
heval.append(ha)
n += 1
if n == N:
h = _interpolate_multivariate(evalpoints, heval, ring, k-1, p)
h = _primitive(h, p)[1] * conth.set_ring(ring)
degyh = h.degree(k-1)
if degyh > degbound[k-1]:
return None
if degyh < degbound[k-1]:
degbound[k-1] = degyh
raise ModularGCDFailed
return h
return None
def modgcd_multivariate(f, g):
r"""
Compute the GCD of two polynomials in `\mathbb{Z}[x_0, \ldots, x_{k-1}]`
using a modular algorithm.
The algorithm computes the GCD of two multivariate integer polynomials
`f` and `g` by calculating the GCD in
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` for suitable primes `p` and then
reconstructing the coefficients with the Chinese Remainder Theorem. To
compute the multivariate GCD over `\mathbb{Z}_p` the recursive
subroutine :func:`_modgcd_multivariate_p` is used. To verify the result in
`\mathbb{Z}[x_0, \ldots, x_{k-1}]`, trial division is done, but only for
candidates which are very likely the desired GCD.
Parameters
==========
f : PolyElement
multivariate integer polynomial
g : PolyElement
multivariate integer polynomial
Returns
=======
h : PolyElement
GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac{f}{h}`
cfg : PolyElement
cofactor of `g`, i.e. `\frac{g}{h}`
Examples
========
>>> from sympy.polys.modulargcd import modgcd_multivariate
>>> from sympy.polys import ring, ZZ
>>> R, x, y = ring("x, y", ZZ)
>>> f = x**2 - y**2
>>> g = x**2 + 2*x*y + y**2
>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(x + y, x - y, x + y)
>>> cff * h == f
True
>>> cfg * h == g
True
>>> R, x, y, z = ring("x, y, z", ZZ)
>>> f = x*z**2 - y*z**2
>>> g = x**2*z + z
>>> h, cff, cfg = modgcd_multivariate(f, g)
>>> h, cff, cfg
(z, x*z - y*z, x**2 + 1)
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Monagan00]_
2. [Brown71]_
See also
========
_modgcd_multivariate_p
"""
assert f.ring == g.ring and f.ring.domain.is_ZZ
result = _trivial_gcd(f, g)
if result is not None:
return result
ring = f.ring
k = ring.ngens
# divide out integer content
cf, f = f.primitive()
cg, g = g.primitive()
ch = ring.domain.gcd(cf, cg)
gamma = ring.domain.gcd(f.LC, g.LC)
badprimes = ring.domain.one
for i in range(k):
badprimes *= ring.domain.gcd(_swap(f, i).LC, _swap(g, i).LC)
degbound = [min(fdeg, gdeg) for fdeg, gdeg in zip(f.degrees(), g.degrees())]
contbound = list(degbound)
m = 1
p = 1
while True:
p = nextprime(p)
while badprimes % p == 0:
p = nextprime(p)
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
try:
# monic GCD of fp, gp in Z_p[x_0, ..., x_{k-2}, y]
hp = _modgcd_multivariate_p(fp, gp, p, degbound, contbound)
except ModularGCDFailed:
m = 1
continue
if hp is None:
continue
hp = hp.mul_ground(gamma).trunc_ground(p)
if m == 1:
m = p
hlastm = hp
continue
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m)
m *= p
if not hm == hlastm:
hlastm = hm
continue
h = hm.primitive()[1]
fquo, frem = f.div(h)
gquo, grem = g.div(h)
if not frem and not grem:
if h.LC < 0:
ch = -ch
h = h.mul_ground(ch)
cff = fquo.mul_ground(cf // ch)
cfg = gquo.mul_ground(cg // ch)
return h, cff, cfg
def _gf_div(f, g, p):
r"""
Compute `\frac f g` modulo `p` for two univariate polynomials over
`\mathbb Z_p`.
"""
ring = f.ring
densequo, denserem = gf_div(f.to_dense(), g.to_dense(), p, ring.domain)
return ring.from_dense(densequo), ring.from_dense(denserem)
def _rational_function_reconstruction(c, p, m):
r"""
Reconstruct a rational function `\frac a b` in `\mathbb Z_p(t)` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are polynomials in `\mathbb Z_p[t]` and `m` has
positive degree.
The algorithm is based on the Euclidean Algorithm. In general, `m` is
not irreducible, so it is possible that `b` is not invertible modulo
`m`. In that case ``None`` is returned.
Parameters
==========
c : PolyElement
univariate polynomial in `\mathbb Z[t]`
p : Integer
prime number
m : PolyElement
modulus, not necessarily irreducible
Returns
=======
frac : FracElement
either `\frac a b` in `\mathbb Z(t)` or ``None``
References
==========
1. [Hoeij04]_
"""
ring = c.ring
domain = ring.domain
M = m.degree()
N = M // 2
D = M - N - 1
r0, s0 = m, ring.zero
r1, s1 = c, ring.one
while r1.degree() > N:
quo = _gf_div(r0, r1, p)[0]
r0, r1 = r1, (r0 - quo*r1).trunc_ground(p)
s0, s1 = s1, (s0 - quo*s1).trunc_ground(p)
a, b = r1, s1
if b.degree() > D or _gf_gcd(b, m, p) != 1:
return None
lc = b.LC
if lc != 1:
lcinv = domain.invert(lc, p)
a = a.mul_ground(lcinv).trunc_ground(p)
b = b.mul_ground(lcinv).trunc_ground(p)
field = ring.to_field()
return field(a) / field(b)
def _rational_reconstruction_func_coeffs(hm, p, m, ring, k):
r"""
Reconstruct every coefficient `c_h` of a polynomial `h` in
`\mathbb Z_p(t_k)[t_1, \ldots, t_{k-1}][x, z]` from the corresponding
coefficient `c_{h_m}` of a polynomial `h_m` in
`\mathbb Z_p[t_1, \ldots, t_k][x, z] \cong \mathbb Z_p[t_k][t_1, \ldots, t_{k-1}][x, z]`
such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z_p[t]`.
The reconstruction is based on the Euclidean Algorithm. In general, `m`
is not irreducible, so it is possible that this fails for some
coefficient. In that case ``None`` is returned.
Parameters
==========
hm : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]`
p : Integer
prime number, modulus of `\mathbb Z_p`
m : PolyElement
modulus, polynomial in `\mathbb Z[t]`, not necessarily irreducible
ring : PolyRing
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]`, `h` will be an
element of this ring
k : Integer
index of the parameter `t_k` which will be reconstructed
Returns
=======
h : PolyElement
reconstructed polynomial in
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]` or ``None``
See also
========
_rational_function_reconstruction
"""
h = ring.zero
for monom, coeff in hm.iterterms():
if k == 0:
coeffh = _rational_function_reconstruction(coeff, p, m)
if not coeffh:
return None
else:
coeffh = ring.domain.zero
for mon, c in coeff.drop_to_ground(k).iterterms():
ch = _rational_function_reconstruction(c, p, m)
if not ch:
return None
coeffh[mon] = ch
h[monom] = coeffh
return h
def _gf_gcdex(f, g, p):
r"""
Extended Euclidean Algorithm for two univariate polynomials over
`\mathbb Z_p`.
Returns polynomials `s, t` and `h`, such that `h` is the GCD of `f` and
`g` and `sf + tg = h \; \mathrm{mod} \, p`.
"""
ring = f.ring
s, t, h = gf_gcdex(f.to_dense(), g.to_dense(), p, ring.domain)
return ring.from_dense(s), ring.from_dense(t), ring.from_dense(h)
def _trunc(f, minpoly, p):
r"""
Compute the reduced representation of a polynomial `f` in
`\mathbb Z_p[z] / (\check m_{\alpha}(z))[x]`
Parameters
==========
f : PolyElement
polynomial in `\mathbb Z[x, z]`
minpoly : PolyElement
polynomial `\check m_{\alpha} \in \mathbb Z[z]`, not necessarily
irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
ftrunc : PolyElement
polynomial in `\mathbb Z[x, z]`, reduced modulo
`\check m_{\alpha}(z)` and `p`
"""
ring = f.ring
minpoly = minpoly.set_ring(ring)
p_ = ring.ground_new(p)
return f.trunc_ground(p).rem([minpoly, p_]).trunc_ground(p)
def _euclidean_algorithm(f, g, minpoly, p):
r"""
Compute the monic GCD of two univariate polynomials in
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x]` with the Euclidean
Algorithm.
In general, `\check m_{\alpha}(z)` is not irreducible, so it is possible
that some leading coefficient is not invertible modulo
`\check m_{\alpha}(z)`. In that case ``None`` is returned.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[x, z]`
minpoly : PolyElement
polynomial in `\mathbb Z[z]`, not necessarily irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
h : PolyElement
GCD of `f` and `g` in `\mathbb Z[z, x]` or ``None``, coefficients
are in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
"""
ring = f.ring
f = _trunc(f, minpoly, p)
g = _trunc(g, minpoly, p)
while g:
rem = f
deg = g.degree(0) # degree in x
lcinv, _, gcd = _gf_gcdex(ring.dmp_LC(g), minpoly, p)
if not gcd == 1:
return None
while True:
degrem = rem.degree(0) # degree in x
if degrem < deg:
break
quo = (lcinv * ring.dmp_LC(rem)).set_ring(ring)
rem = _trunc(rem - g.mul_monom((degrem - deg, 0))*quo, minpoly, p)
f = g
g = rem
lcfinv = _gf_gcdex(ring.dmp_LC(f), minpoly, p)[0].set_ring(ring)
return _trunc(f * lcfinv, minpoly, p)
def _trial_division(f, h, minpoly, p=None):
r"""
Check if `h` divides `f` in
`\mathbb K[t_1, \ldots, t_k][z]/(m_{\alpha}(z))`, where `\mathbb K` is
either `\mathbb Q` or `\mathbb Z_p`.
This algorithm is based on pseudo division and does not use any
fractions. By default `\mathbb K` is `\mathbb Q`, if a prime number `p`
is given, `\mathbb Z_p` is chosen instead.
Parameters
==========
f, h : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
polynomial `m_{\alpha}(z)` in `\mathbb Z[t_1, \ldots, t_k][z]`
p : Integer or None
if `p` is given, `\mathbb K` is set to `\mathbb Z_p` instead of
`\mathbb Q`, default is ``None``
Returns
=======
rem : PolyElement
remainder of `\frac f h`
References
==========
.. [1] [Hoeij02]_
"""
ring = f.ring
zxring = ring.clone(symbols=(ring.symbols[1], ring.symbols[0]))
minpoly = minpoly.set_ring(ring)
rem = f
degrem = rem.degree()
degh = h.degree()
degm = minpoly.degree(1)
lch = _LC(h).set_ring(ring)
lcm = minpoly.LC
while rem and degrem >= degh:
# polynomial in Z[t_1, ..., t_k][z]
lcrem = _LC(rem).set_ring(ring)
rem = rem*lch - h.mul_monom((degrem - degh, 0))*lcrem
if p:
rem = rem.trunc_ground(p)
degrem = rem.degree(1)
while rem and degrem >= degm:
# polynomial in Z[t_1, ..., t_k][x]
lcrem = _LC(rem.set_ring(zxring)).set_ring(ring)
rem = rem.mul_ground(lcm) - minpoly.mul_monom((0, degrem - degm))*lcrem
if p:
rem = rem.trunc_ground(p)
degrem = rem.degree(1)
degrem = rem.degree()
return rem
def _evaluate_ground(f, i, a):
r"""
Evaluate a polynomial `f` at `a` in the `i`-th variable of the ground
domain.
"""
ring = f.ring.clone(domain=f.ring.domain.ring.drop(i))
fa = ring.zero
for monom, coeff in f.iterterms():
fa[monom] = coeff.evaluate(i, a)
return fa
def _func_field_modgcd_p(f, g, minpoly, p):
r"""
Compute the GCD of two polynomials `f` and `g` in
`\mathbb Z_p(t_1, \ldots, t_k)[z]/(\check m_\alpha(z))[x]`.
The algorithm reduces the problem step by step by evaluating the
polynomials `f` and `g` at `t_k = a` for suitable `a \in \mathbb Z_p`
and then calls itself recursively to compute the GCD in
`\mathbb Z_p(t_1, \ldots, t_{k-1})[z]/(\check m_\alpha(z))[x]`. If these
recursive calls are successful, the GCD over `k` variables is
interpolated, otherwise the algorithm returns ``None``. After
interpolation, Rational Function Reconstruction is used to obtain the
correct coefficients. If this fails, a new evaluation point has to be
chosen, otherwise the desired polynomial is obtained by clearing
denominators. The result is verified with a fraction free trial
division.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`, not necessarily
irreducible
p : Integer
prime number, modulus of `\mathbb Z_p`
Returns
=======
h : PolyElement
primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of the
GCD of the polynomials `f` and `g` or ``None``, coefficients are
in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]`
References
==========
1. [Hoeij04]_
"""
ring = f.ring
domain = ring.domain # Z[t_1, ..., t_k]
if isinstance(domain, PolynomialRing):
k = domain.ngens
else:
return _euclidean_algorithm(f, g, minpoly, p)
if k == 1:
qdomain = domain.ring.to_field()
else:
qdomain = domain.ring.drop_to_ground(k - 1)
qdomain = qdomain.clone(domain=qdomain.domain.ring.to_field())
qring = ring.clone(domain=qdomain) # = Z(t_k)[t_1, ..., t_{k-1}][x, z]
n = 1
d = 1
# polynomial in Z_p[t_1, ..., t_k][z]
gamma = ring.dmp_LC(f) * ring.dmp_LC(g)
# polynomial in Z_p[t_1, ..., t_k]
delta = minpoly.LC
evalpoints = []
heval = []
LMlist = []
points = set(range(p))
while points:
a = random.sample(points, 1)[0]
points.remove(a)
if k == 1:
test = delta.evaluate(k-1, a) % p == 0
else:
test = delta.evaluate(k-1, a).trunc_ground(p) == 0
if test:
continue
gammaa = _evaluate_ground(gamma, k-1, a)
minpolya = _evaluate_ground(minpoly, k-1, a)
if gammaa.rem([minpolya, gammaa.ring(p)]) == 0:
continue
fa = _evaluate_ground(f, k-1, a)
ga = _evaluate_ground(g, k-1, a)
# polynomial in Z_p[x, t_1, ..., t_{k-1}, z]/(minpoly)
ha = _func_field_modgcd_p(fa, ga, minpolya, p)
if ha is None:
d += 1
if d > n:
return None
continue
if ha == 1:
return ha
LM = [ha.degree()] + [0]*(k-1)
if k > 1:
for monom, coeff in ha.iterterms():
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]):
LM[1:] = coeff.LM
evalpoints_a = [a]
heval_a = [ha]
if k == 1:
m = qring.domain.get_ring().one
else:
m = qring.domain.domain.get_ring().one
t = m.ring.gens[0]
for b, hb, LMhb in zip(evalpoints, heval, LMlist):
if LMhb == LM:
evalpoints_a.append(b)
heval_a.append(hb)
m *= (t - b)
m = m.trunc_ground(p)
evalpoints.append(a)
heval.append(ha)
LMlist.append(LM)
n += 1
# polynomial in Z_p[t_1, ..., t_k][x, z]
h = _interpolate_multivariate(evalpoints_a, heval_a, ring, k-1, p, ground=True)
# polynomial in Z_p(t_k)[t_1, ..., t_{k-1}][x, z]
h = _rational_reconstruction_func_coeffs(h, p, m, qring, k-1)
if h is None:
continue
if k == 1:
dom = qring.domain.field
den = dom.ring.one
for coeff in h.itercoeffs():
den = dom.ring.from_dense(gf_lcm(den.to_dense(), coeff.denom.to_dense(),
p, dom.domain))
else:
dom = qring.domain.domain.field
den = dom.ring.one
for coeff in h.itercoeffs():
for c in coeff.itercoeffs():
den = dom.ring.from_dense(gf_lcm(den.to_dense(), c.denom.to_dense(),
p, dom.domain))
den = qring.domain_new(den.trunc_ground(p))
h = ring(h.mul_ground(den).as_expr()).trunc_ground(p)
if not _trial_division(f, h, minpoly, p) and not _trial_division(g, h, minpoly, p):
return h
return None
def _integer_rational_reconstruction(c, m, domain):
r"""
Reconstruct a rational number `\frac a b` from
.. math::
c = \frac a b \; \mathrm{mod} \, m,
where `c` and `m` are integers.
The algorithm is based on the Euclidean Algorithm. In general, `m` is
not a prime number, so it is possible that `b` is not invertible modulo
`m`. In that case ``None`` is returned.
Parameters
==========
c : Integer
`c = \frac a b \; \mathrm{mod} \, m`
m : Integer
modulus, not necessarily prime
domain : IntegerRing
`a, b, c` are elements of ``domain``
Returns
=======
frac : Rational
either `\frac a b` in `\mathbb Q` or ``None``
References
==========
1. [Wang81]_
"""
if c < 0:
c += m
r0, s0 = m, domain.zero
r1, s1 = c, domain.one
bound = sqrt(m / 2) # still correct if replaced by ZZ.sqrt(m // 2) ?
while r1 >= bound:
quo = r0 // r1
r0, r1 = r1, r0 - quo*r1
s0, s1 = s1, s0 - quo*s1
if abs(s1) >= bound:
return None
if s1 < 0:
a, b = -r1, -s1
elif s1 > 0:
a, b = r1, s1
else:
return None
field = domain.get_field()
return field(a) / field(b)
def _rational_reconstruction_int_coeffs(hm, m, ring):
r"""
Reconstruct every rational coefficient `c_h` of a polynomial `h` in
`\mathbb Q[t_1, \ldots, t_k][x, z]` from the corresponding integer
coefficient `c_{h_m}` of a polynomial `h_m` in
`\mathbb Z[t_1, \ldots, t_k][x, z]` such that
.. math::
c_{h_m} = c_h \; \mathrm{mod} \, m,
where `m \in \mathbb Z`.
The reconstruction is based on the Euclidean Algorithm. In general,
`m` is not a prime number, so it is possible that this fails for some
coefficient. In that case ``None`` is returned.
Parameters
==========
hm : PolyElement
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]`
m : Integer
modulus, not necessarily prime
ring : PolyRing
`\mathbb Q[t_1, \ldots, t_k][x, z]`, `h` will be an element of this
ring
Returns
=======
h : PolyElement
reconstructed polynomial in `\mathbb Q[t_1, \ldots, t_k][x, z]` or
``None``
See also
========
_integer_rational_reconstruction
"""
h = ring.zero
if isinstance(ring.domain, PolynomialRing):
reconstruction = _rational_reconstruction_int_coeffs
domain = ring.domain.ring
else:
reconstruction = _integer_rational_reconstruction
domain = hm.ring.domain
for monom, coeff in hm.iterterms():
coeffh = reconstruction(coeff, m, domain)
if not coeffh:
return None
h[monom] = coeffh
return h
def _func_field_modgcd_m(f, g, minpoly):
r"""
Compute the GCD of two polynomials in
`\mathbb Q(t_1, \ldots, t_k)[z]/(m_{\alpha}(z))[x]` using a modular
algorithm.
The algorithm computes the GCD of two polynomials `f` and `g` by
calculating the GCD in
`\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha}(z))[x]` for
suitable primes `p` and the primitive associate `\check m_{\alpha}(z)`
of `m_{\alpha}(z)`. Then the coefficients are reconstructed with the
Chinese Remainder Theorem and Rational Reconstruction. To compute the
GCD over `\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha})[x]`,
the recursive subroutine ``_func_field_modgcd_p`` is used. To verify the
result in `\mathbb Q(t_1, \ldots, t_k)[z] / (m_{\alpha}(z))[x]`, a
fraction free trial division is used.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]`
minpoly : PolyElement
irreducible polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`
Returns
=======
h : PolyElement
the primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of
the GCD of `f` and `g`
Examples
========
>>> from sympy.polys.modulargcd import _func_field_modgcd_m
>>> from sympy.polys import ring, ZZ
>>> R, x, z = ring('x, z', ZZ)
>>> minpoly = (z**2 - 2).drop(0)
>>> f = x**2 + 2*x*z + 2
>>> g = x + z
>>> _func_field_modgcd_m(f, g, minpoly)
x + z
>>> D, t = ring('t', ZZ)
>>> R, x, z = ring('x, z', D)
>>> minpoly = (z**2-3).drop(0)
>>> f = x**2 + (t + 1)*x*z + 3*t
>>> g = x*z + 3*t
>>> _func_field_modgcd_m(f, g, minpoly)
x + t*z
References
==========
1. [Hoeij04]_
See also
========
_func_field_modgcd_p
"""
ring = f.ring
domain = ring.domain
if isinstance(domain, PolynomialRing):
k = domain.ngens
QQdomain = domain.ring.clone(domain=domain.domain.get_field())
QQring = ring.clone(domain=QQdomain)
else:
k = 0
QQring = ring.clone(domain=ring.domain.get_field())
cf, f = f.primitive()
cg, g = g.primitive()
# polynomial in Z[t_1, ..., t_k][z]
gamma = ring.dmp_LC(f) * ring.dmp_LC(g)
# polynomial in Z[t_1, ..., t_k]
delta = minpoly.LC
p = 1
primes = []
hplist = []
LMlist = []
while True:
p = nextprime(p)
if gamma.trunc_ground(p) == 0:
continue
if k == 0:
test = (delta % p == 0)
else:
test = (delta.trunc_ground(p) == 0)
if test:
continue
fp = f.trunc_ground(p)
gp = g.trunc_ground(p)
minpolyp = minpoly.trunc_ground(p)
hp = _func_field_modgcd_p(fp, gp, minpolyp, p)
if hp is None:
continue
if hp == 1:
return ring.one
LM = [hp.degree()] + [0]*k
if k > 0:
for monom, coeff in hp.iterterms():
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]):
LM[1:] = coeff.LM
hm = hp
m = p
for q, hq, LMhq in zip(primes, hplist, LMlist):
if LMhq == LM:
hm = _chinese_remainder_reconstruction_multivariate(hq, hm, q, m)
m *= q
primes.append(p)
hplist.append(hp)
LMlist.append(LM)
hm = _rational_reconstruction_int_coeffs(hm, m, QQring)
if hm is None:
continue
if k == 0:
h = hm.clear_denoms()[1]
else:
den = domain.domain.one
for coeff in hm.itercoeffs():
den = domain.domain.lcm(den, coeff.clear_denoms()[0])
h = hm.mul_ground(den)
# convert back to Z[t_1, ..., t_k][x, z] from Q[t_1, ..., t_k][x, z]
h = h.set_ring(ring)
h = h.primitive()[1]
if not (_trial_division(f.mul_ground(cf), h, minpoly) or
_trial_division(g.mul_ground(cg), h, minpoly)):
return h
def _to_ZZ_poly(f, ring):
r"""
Compute an associate of a polynomial
`f \in \mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` in
`\mathbb Z[x_1, \ldots, x_{n-1}][z] / (\check m_{\alpha}(z))[x_0]`,
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over
`\mathbb Q`.
Parameters
==========
f : PolyElement
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
ring : PolyRing
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
Returns
=======
f_ : PolyElement
associate of `f` in
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
"""
f_ = ring.zero
if isinstance(ring.domain, PolynomialRing):
domain = ring.domain.domain
else:
domain = ring.domain
den = domain.one
for coeff in f.itercoeffs():
for c in coeff.rep:
if c:
den = domain.lcm(den, c.denominator)
for monom, coeff in f.iterterms():
coeff = coeff.rep
m = ring.domain.one
if isinstance(ring.domain, PolynomialRing):
m = m.mul_monom(monom[1:])
n = len(coeff)
for i in range(n):
if coeff[i]:
c = domain(coeff[i] * den) * m
if (monom[0], n-i-1) not in f_:
f_[(monom[0], n-i-1)] = c
else:
f_[(monom[0], n-i-1)] += c
return f_
def _to_ANP_poly(f, ring):
r"""
Convert a polynomial
`f \in \mathbb Z[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha}(z))[x_0]`
to a polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`,
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over
`\mathbb Q`.
Parameters
==========
f : PolyElement
polynomial in `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]`
ring : PolyRing
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns
=======
f_ : PolyElement
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
"""
domain = ring.domain
f_ = ring.zero
if isinstance(f.ring.domain, PolynomialRing):
for monom, coeff in f.iterterms():
for mon, coef in coeff.iterterms():
m = (monom[0],) + mon
c = domain([domain.domain(coef)] + [0]*monom[1])
if m not in f_:
f_[m] = c
else:
f_[m] += c
else:
for monom, coeff in f.iterterms():
m = (monom[0],)
c = domain([domain.domain(coeff)] + [0]*monom[1])
if m not in f_:
f_[m] = c
else:
f_[m] += c
return f_
def _minpoly_from_dense(minpoly, ring):
r"""
Change representation of the minimal polynomial from ``DMP`` to
``PolyElement`` for a given ring.
"""
minpoly_ = ring.zero
for monom, coeff in minpoly.terms():
minpoly_[monom] = ring.domain(coeff)
return minpoly_
def _primitive_in_x0(f):
r"""
Compute the content in `x_0` and the primitive part of a polynomial `f`
in
`\mathbb Q(\alpha)[x_0, x_1, \ldots, x_{n-1}] \cong \mathbb Q(\alpha)[x_1, \ldots, x_{n-1}][x_0]`.
"""
fring = f.ring
ring = fring.drop_to_ground(*range(1, fring.ngens))
dom = ring.domain.ring
f_ = ring(f.as_expr())
cont = dom.zero
for coeff in f_.itercoeffs():
cont = func_field_modgcd(cont, coeff)[0]
if cont == dom.one:
return cont, f
return cont, f.quo(cont.set_ring(fring))
# TODO: add support for algebraic function fields
def func_field_modgcd(f, g):
r"""
Compute the GCD of two polynomials `f` and `g` in
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` using a modular algorithm.
The algorithm first computes the primitive associate
`\check m_{\alpha}(z)` of the minimal polynomial `m_{\alpha}` in
`\mathbb{Z}[z]` and the primitive associates of `f` and `g` in
`\mathbb{Z}[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha})[x_0]`. Then it
computes the GCD in
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]`.
This is done by calculating the GCD in
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` for
suitable primes `p` and then reconstructing the coefficients with the
Chinese Remainder Theorem and Rational Reconstuction. The GCD over
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` is
computed with a recursive subroutine, which evaluates the polynomials at
`x_{n-1} = a` for suitable evaluation points `a \in \mathbb Z_p` and
then calls itself recursively until the ground domain does no longer
contain any parameters. For
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x_0]` the Euclidean Algorithm is
used. The results of those recursive calls are then interpolated and
Rational Function Reconstruction is used to obtain the correct
coefficients. The results, both in
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]` and
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]`, are
verified by a fraction free trial division.
Apart from the above GCD computation some GCDs in
`\mathbb Q(\alpha)[x_1, \ldots, x_{n-1}]` have to be calculated,
because treating the polynomials as univariate ones can result in
a spurious content of the GCD. For this ``func_field_modgcd`` is
called recursively.
Parameters
==========
f, g : PolyElement
polynomials in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`
Returns
=======
h : PolyElement
monic GCD of the polynomials `f` and `g`
cff : PolyElement
cofactor of `f`, i.e. `\frac f h`
cfg : PolyElement
cofactor of `g`, i.e. `\frac g h`
Examples
========
>>> from sympy.polys.modulargcd import func_field_modgcd
>>> from sympy.polys import AlgebraicField, QQ, ring
>>> from sympy import sqrt
>>> A = AlgebraicField(QQ, sqrt(2))
>>> R, x = ring('x', A)
>>> f = x**2 - 2
>>> g = x + sqrt(2)
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2)
True
>>> cff * h == f
True
>>> cfg * h == g
True
>>> R, x, y = ring('x, y', A)
>>> f = x**2 + 2*sqrt(2)*x*y + 2*y**2
>>> g = x + sqrt(2)*y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == x + sqrt(2)*y
True
>>> cff * h == f
True
>>> cfg * h == g
True
>>> f = x + sqrt(2)*y
>>> g = x + y
>>> h, cff, cfg = func_field_modgcd(f, g)
>>> h == R.one
True
>>> cff * h == f
True
>>> cfg * h == g
True
References
==========
1. [Hoeij04]_
"""
ring = f.ring
domain = ring.domain
n = ring.ngens
assert ring == g.ring and domain.is_Algebraic
result = _trivial_gcd(f, g)
if result is not None:
return result
z = Dummy('z')
ZZring = ring.clone(symbols=ring.symbols + (z,), domain=domain.domain.get_ring())
if n == 1:
f_ = _to_ZZ_poly(f, ZZring)
g_ = _to_ZZ_poly(g, ZZring)
minpoly = ZZring.drop(0).from_dense(domain.mod.rep)
h = _func_field_modgcd_m(f_, g_, minpoly)
h = _to_ANP_poly(h, ring)
else:
# contx0f in Q(a)[x_1, ..., x_{n-1}], f in Q(a)[x_0, ..., x_{n-1}]
contx0f, f = _primitive_in_x0(f)
contx0g, g = _primitive_in_x0(g)
contx0h = func_field_modgcd(contx0f, contx0g)[0]
ZZring_ = ZZring.drop_to_ground(*range(1, n))
f_ = _to_ZZ_poly(f, ZZring_)
g_ = _to_ZZ_poly(g, ZZring_)
minpoly = _minpoly_from_dense(domain.mod, ZZring_.drop(0))
h = _func_field_modgcd_m(f_, g_, minpoly)
h = _to_ANP_poly(h, ring)
contx0h_, h = _primitive_in_x0(h)
h *= contx0h.set_ring(ring)
f *= contx0f.set_ring(ring)
g *= contx0g.set_ring(ring)
h = h.quo_ground(h.LC)
return h, f.quo(h), g.quo(h)
|
5e5945b018d82b3b24554d52bc1255ed78eff72120cc53134daa5094560f538c | """High-level polynomials manipulation functions. """
from __future__ import print_function, division
from sympy.core import S, Basic, Add, Mul, symbols, Dummy
from sympy.core.compatibility import range
from sympy.functions.combinatorial.factorials import factorial
from sympy.polys.polyerrors import (
PolificationFailed, ComputationFailed,
MultivariatePolynomialError, OptionError)
from sympy.polys.polyoptions import allowed_flags
from sympy.polys.polytools import (
poly_from_expr, parallel_poly_from_expr, Poly)
from sympy.polys.specialpolys import (
symmetric_poly, interpolating_poly)
from sympy.utilities import numbered_symbols, take, public
@public
def symmetrize(F, *gens, **args):
"""
Rewrite a polynomial in terms of elementary symmetric polynomials.
A symmetric polynomial is a multivariate polynomial that remains invariant
under any variable permutation, i.e., if ``f = f(x_1, x_2, ..., x_n)``,
then ``f = f(x_{i_1}, x_{i_2}, ..., x_{i_n})``, where
``(i_1, i_2, ..., i_n)`` is a permutation of ``(1, 2, ..., n)`` (an
element of the group ``S_n``).
Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that
``f = f1 + f2 + ... + fn``.
Examples
========
>>> from sympy.polys.polyfuncs import symmetrize
>>> from sympy.abc import x, y
>>> symmetrize(x**2 + y**2)
(-2*x*y + (x + y)**2, 0)
>>> symmetrize(x**2 + y**2, formal=True)
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
>>> symmetrize(x**2 - y**2)
(-2*x*y + (x + y)**2, -2*y**2)
>>> symmetrize(x**2 - y**2, formal=True)
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
"""
allowed_flags(args, ['formal', 'symbols'])
iterable = True
if not hasattr(F, '__iter__'):
iterable = False
F = [F]
try:
F, opt = parallel_poly_from_expr(F, *gens, **args)
except PolificationFailed as exc:
result = []
for expr in exc.exprs:
if expr.is_Number:
result.append((expr, S.Zero))
else:
raise ComputationFailed('symmetrize', len(F), exc)
if not iterable:
result, = result
if not exc.opt.formal:
return result
else:
if iterable:
return result, []
else:
return result + ([],)
polys, symbols = [], opt.symbols
gens, dom = opt.gens, opt.domain
for i in range(len(gens)):
poly = symmetric_poly(i + 1, gens, polys=True)
polys.append((next(symbols), poly.set_domain(dom)))
indices = list(range(len(gens) - 1))
weights = list(range(len(gens), 0, -1))
result = []
for f in F:
symmetric = []
if not f.is_homogeneous:
symmetric.append(f.TC())
f -= f.TC()
while f:
_height, _monom, _coeff = -1, None, None
for i, (monom, coeff) in enumerate(f.terms()):
if all(monom[i] >= monom[i + 1] for i in indices):
height = max([n*m for n, m in zip(weights, monom)])
if height > _height:
_height, _monom, _coeff = height, monom, coeff
if _height != -1:
monom, coeff = _monom, _coeff
else:
break
exponents = []
for m1, m2 in zip(monom, monom[1:] + (0,)):
exponents.append(m1 - m2)
term = [s**n for (s, _), n in zip(polys, exponents)]
poly = [p**n for (_, p), n in zip(polys, exponents)]
symmetric.append(Mul(coeff, *term))
product = poly[0].mul(coeff)
for p in poly[1:]:
product = product.mul(p)
f -= product
result.append((Add(*symmetric), f.as_expr()))
polys = [(s, p.as_expr()) for s, p in polys]
if not opt.formal:
for i, (sym, non_sym) in enumerate(result):
result[i] = (sym.subs(polys), non_sym)
if not iterable:
result, = result
if not opt.formal:
return result
else:
if iterable:
return result, polys
else:
return result + (polys,)
@public
def horner(f, *gens, **args):
"""
Rewrite a polynomial in Horner form.
Among other applications, evaluation of a polynomial at a point is optimal
when it is applied using the Horner scheme ([1]).
Examples
========
>>> from sympy.polys.polyfuncs import horner
>>> from sympy.abc import x, y, a, b, c, d, e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
x*(x*(x*(9*x + 8) + 7) + 6) + 5
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
e + x*(d + x*(c + x*(a*x + b)))
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
>>> horner(f, wrt=x)
x*(x*y*(4*y + 2) + y*(2*y + 1))
>>> horner(f, wrt=y)
y*(x*y*(4*x + 2) + x*(2*x + 1))
References
==========
[1] - https://en.wikipedia.org/wiki/Horner_scheme
"""
allowed_flags(args, [])
try:
F, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
return exc.expr
form, gen = S.Zero, F.gen
if F.is_univariate:
for coeff in F.all_coeffs():
form = form*gen + coeff
else:
F, gens = Poly(F, gen), gens[1:]
for coeff in F.all_coeffs():
form = form*gen + horner(coeff, *gens, **args)
return form
@public
def interpolate(data, x):
"""
Construct an interpolating polynomial for the data points
evaluated at point x (which can be symbolic or numeric).
Examples
========
>>> from sympy.polys.polyfuncs import interpolate
>>> from sympy.abc import a, b, x
A list is interpreted as though it were paired with a range starting
from 1:
>>> interpolate([1, 4, 9, 16], x)
x**2
This can be made explicit by giving a list of coordinates:
>>> interpolate([(1, 1), (2, 4), (3, 9)], x)
x**2
The (x, y) coordinates can also be given as keys and values of a
dictionary (and the points need not be equispaced):
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x)
x**2 + 1
>>> interpolate({-1: 2, 1: 2, 2: 5}, x)
x**2 + 1
If the interpolation is going to be used only once then the
value of interest can be passed instead of passing a symbol:
>>> interpolate([1, 4, 9], 5)
25
Symbolic coordinates are also supported:
>>> [(i,interpolate((a, b), i)) for i in range(1, 4)]
[(1, a), (2, b), (3, -a + 2*b)]
"""
n = len(data)
if isinstance(data, dict):
if x in data:
return S(data[x])
X, Y = list(zip(*data.items()))
else:
if isinstance(data[0], tuple):
X, Y = list(zip(*data))
if x in X:
return S(Y[X.index(x)])
else:
if x in range(1, n + 1):
return S(data[x - 1])
Y = list(data)
X = list(range(1, n + 1))
try:
return interpolating_poly(n, x, X, Y).expand()
except ValueError:
d = Dummy()
return interpolating_poly(n, d, X, Y).expand().subs(d, x)
@public
def rational_interpolate(data, degnum, X=symbols('x')):
"""
Returns a rational interpolation, where the data points are element of
any integral domain.
The first argument contains the data (as a list of coordinates). The
``degnum`` argument is the degree in the numerator of the rational
function. Setting it too high will decrease the maximal degree in the
denominator for the same amount of data.
Examples
========
>>> from sympy.polys.polyfuncs import rational_interpolate
>>> data = [(1, -210), (2, -35), (3, 105), (4, 231), (5, 350), (6, 465)]
>>> rational_interpolate(data, 2)
(105*x**2 - 525)/(x + 1)
Values do not need to be integers:
>>> from sympy import sympify
>>> x = [1, 2, 3, 4, 5, 6]
>>> y = sympify("[-1, 0, 2, 22/5, 7, 68/7]")
>>> rational_interpolate(zip(x, y), 2)
(3*x**2 - 7*x + 2)/(x + 1)
The symbol for the variable can be changed if needed:
>>> from sympy import symbols
>>> z = symbols('z')
>>> rational_interpolate(data, 2, X=z)
(105*z**2 - 525)/(z + 1)
References
==========
.. [1] Algorithm is adapted from:
http://axiom-wiki.newsynthesis.org/RationalInterpolation
"""
from sympy.matrices.dense import ones
xdata, ydata = list(zip(*data))
k = len(xdata) - degnum - 1
if k < 0:
raise OptionError("Too few values for the required degree.")
c = ones(degnum + k + 1, degnum + k + 2)
for j in range(max(degnum, k)):
for i in range(degnum + k + 1):
c[i, j + 1] = c[i, j]*xdata[i]
for j in range(k + 1):
for i in range(degnum + k + 1):
c[i, degnum + k + 1 - j] = -c[i, k - j]*ydata[i]
r = c.nullspace()[0]
return (sum(r[i] * X**i for i in range(degnum + 1))
/ sum(r[i + degnum + 1] * X**i for i in range(k + 1)))
@public
def viete(f, roots=None, *gens, **args):
"""
Generate Viete's formulas for ``f``.
Examples
========
>>> from sympy.polys.polyfuncs import viete
>>> from sympy import symbols
>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')
>>> viete(a*x**2 + b*x + c, [r1, r2], x)
[(r1 + r2, -b/a), (r1*r2, c/a)]
"""
allowed_flags(args, [])
if isinstance(roots, Basic):
gens, roots = (roots,) + gens, None
try:
f, opt = poly_from_expr(f, *gens, **args)
except PolificationFailed as exc:
raise ComputationFailed('viete', 1, exc)
if f.is_multivariate:
raise MultivariatePolynomialError(
"multivariate polynomials are not allowed")
n = f.degree()
if n < 1:
raise ValueError(
"can't derive Viete's formulas for a constant polynomial")
if roots is None:
roots = numbered_symbols('r', start=1)
roots = take(roots, n)
if n != len(roots):
raise ValueError("required %s roots, got %s" % (n, len(roots)))
lc, coeffs = f.LC(), f.all_coeffs()
result, sign = [], -1
for i, coeff in enumerate(coeffs[1:]):
poly = symmetric_poly(i + 1, roots)
coeff = sign*(coeff/lc)
result.append((poly, coeff))
sign = -sign
return result
|
d8ed334cd8f15c520fface2669eca75bda6eb85a4349dce4b06a87df6287767f | """
This module contains functions for two multivariate resultants. These
are:
- Dixon's resultant.
- Macaulay's resultant.
Multivariate resultants are used to identify whether a multivariate
system has common roots. That is when the resultant is equal to zero.
"""
from sympy import IndexedBase, Matrix, Mul, Poly
from sympy import rem, prod, degree_list, diag, simplify
from sympy.core.compatibility import range
from sympy.polys.monomials import itermonomials, monomial_deg
from sympy.polys.orderings import monomial_key
from sympy.polys.polytools import poly_from_expr, total_degree
from sympy.functions.combinatorial.factorials import binomial
from itertools import combinations_with_replacement
from sympy.utilities.exceptions import SymPyDeprecationWarning
class DixonResultant():
"""
A class for retrieving the Dixon's resultant of a multivariate
system.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.polys.multivariate_resultants import DixonResultant
>>> x, y = symbols('x, y')
>>> p = x + y
>>> q = x ** 2 + y ** 3
>>> h = x ** 2 + y
>>> dixon = DixonResultant(variables=[x, y], polynomials=[p, q, h])
>>> poly = dixon.get_dixon_polynomial()
>>> matrix = dixon.get_dixon_matrix(polynomial=poly)
>>> matrix
Matrix([
[ 0, 0, -1, 0, -1],
[ 0, -1, 0, -1, 0],
[-1, 0, 1, 0, 0],
[ 0, -1, 0, 0, 1],
[-1, 0, 0, 1, 0]])
>>> matrix.det()
0
See Also
========
Notebook in examples: sympy/example/notebooks.
References
==========
.. [1] [Kapur1994]_
.. [2] [Palancz08]_
"""
def __init__(self, polynomials, variables):
"""
A class that takes two lists, a list of polynomials and list of
variables. Returns the Dixon matrix of the multivariate system.
Parameters
----------
polynomials : list of polynomials
A list of m n-degree polynomials
variables: list
A list of all n variables
"""
self.polynomials = polynomials
self.variables = variables
self.n = len(self.variables)
self.m = len(self.polynomials)
a = IndexedBase("alpha")
# A list of n alpha variables (the replacing variables)
self.dummy_variables = [a[i] for i in range(self.n)]
# A list of the d_max of each variable.
self._max_degrees = [max(degree_list(poly)[i] for poly in self.polynomials)
for i in range(self.n)]
@property
def max_degrees(self):
SymPyDeprecationWarning(feature="max_degrees",
issue=17763,
deprecated_since_version="1.5").warn()
return self._max_degrees
def get_dixon_polynomial(self):
r"""
Returns
=======
dixon_polynomial: polynomial
Dixon's polynomial is calculated as:
delta = Delta(A) / ((x_1 - a_1) ... (x_n - a_n)) where,
A = |p_1(x_1,... x_n), ..., p_n(x_1,... x_n)|
|p_1(a_1,... x_n), ..., p_n(a_1,... x_n)|
|... , ..., ...|
|p_1(a_1,... a_n), ..., p_n(a_1,... a_n)|
"""
if self.m != (self.n + 1):
raise ValueError('Method invalid for given combination.')
# First row
rows = [self.polynomials]
temp = list(self.variables)
for idx in range(self.n):
temp[idx] = self.dummy_variables[idx]
substitution = {var: t for var, t in zip(self.variables, temp)}
rows.append([f.subs(substitution) for f in self.polynomials])
A = Matrix(rows)
terms = zip(self.variables, self.dummy_variables)
product_of_differences = Mul(*[a - b for a, b in terms])
dixon_polynomial = (A.det() / product_of_differences).factor()
return poly_from_expr(dixon_polynomial, self.dummy_variables)[0]
def get_upper_degree(self):
SymPyDeprecationWarning(feature="get_upper_degree",
useinstead="get_max_degrees",
issue=17763,
deprecated_since_version="1.5").warn()
list_of_products = [self.variables[i] ** self._max_degrees[i]
for i in range(self.n)]
product = prod(list_of_products)
product = Poly(product).monoms()
return monomial_deg(*product)
def get_max_degrees(self, polynomial):
r"""
Returns a list of the maximum degree of each variable appearing
in the coefficients of the Dixon polynomial. The coefficients are
viewed as polys in x_1, ... , x_n.
"""
deg_lists = [degree_list(Poly(poly, self.variables))
for poly in polynomial.coeffs()]
max_degrees = [max(degs) for degs in zip(*deg_lists)]
return max_degrees
def get_dixon_matrix(self, polynomial):
r"""
Construct the Dixon matrix from the coefficients of polynomial
\alpha. Each coefficient is viewed as a polynomial of x_1, ...,
x_n.
"""
max_degrees = self.get_max_degrees(polynomial)
# list of column headers of the Dixon matrix.
monomials = itermonomials(self.variables, max_degrees)
monomials = sorted(monomials, reverse=True,
key=monomial_key('lex', self.variables))
dixon_matrix = Matrix([[Poly(c, *self.variables).coeff_monomial(m)
for m in monomials]
for c in polynomial.coeffs()])
# remove columns if needed
if dixon_matrix.shape[0] != dixon_matrix.shape[1]:
keep = [column for column in range(dixon_matrix.shape[-1])
if any([element != 0 for element
in dixon_matrix[:, column]])]
dixon_matrix = dixon_matrix[:, keep]
return dixon_matrix
def KSY_precondition(self, matrix):
"""
Test for the validity of the Kapur-Saxena-Yang precondition.
The precondition requires that the column corresponding to the
monomial 1 = x_1 ^ 0 * x_2 ^ 0 * ... * x_n ^ 0 is not a linear
combination of the remaining ones. In sympy notation this is
the last column. For the precondition to hold the last non-zero
row of the rref matrix should be of the form [0, 0, ..., 1].
"""
if matrix.is_zero:
return False
m, n = matrix.shape
# simplify the matrix and keep only its non-zero rows
matrix = simplify(matrix.rref()[0])
rows = [i for i in range(m) if any(matrix[i, j] != 0 for j in range(n))]
matrix = matrix[rows,:]
condition = Matrix([[0]*(n-1) + [1]])
if matrix[-1,:] == condition:
return True
else:
return False
def delete_zero_rows_and_columns(self, matrix):
"""Remove the zero rows and columns of the matrix."""
rows = [i for i in range(matrix.rows) if not matrix.row(i).is_zero]
cols = [j for j in range(matrix.cols) if not matrix.col(j).is_zero]
return matrix[rows, cols]
def product_leading_entries(self, matrix):
"""Calculate the product of the leading entries of the matrix."""
res = 1
for row in range(matrix.rows):
for el in matrix.row(row):
if el != 0:
res = res * el
break
return res
def get_KSY_Dixon_resultant(self, matrix):
"""Calculate the Kapur-Saxena-Yang approach to the Dixon Resultant."""
matrix = self.delete_zero_rows_and_columns(matrix)
_, U, _ = matrix.LUdecomposition()
matrix = self.delete_zero_rows_and_columns(simplify(U))
return self.product_leading_entries(matrix)
class MacaulayResultant():
"""
A class for calculating the Macaulay resultant. Note that the
polynomials must be homogenized and their coefficients must be
given as symbols.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.polys.multivariate_resultants import MacaulayResultant
>>> x, y, z = symbols('x, y, z')
>>> a_0, a_1, a_2 = symbols('a_0, a_1, a_2')
>>> b_0, b_1, b_2 = symbols('b_0, b_1, b_2')
>>> c_0, c_1, c_2,c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4')
>>> f = a_0 * y - a_1 * x + a_2 * z
>>> g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2
>>> h = c_0 * y * z ** 2 - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + c_4 * z ** 3
>>> mac = MacaulayResultant(polynomials=[f, g, h], variables=[x, y, z])
>>> mac.monomial_set
[x**4, x**3*y, x**3*z, x**2*y**2, x**2*y*z, x**2*z**2, x*y**3,
x*y**2*z, x*y*z**2, x*z**3, y**4, y**3*z, y**2*z**2, y*z**3, z**4]
>>> matrix = mac.get_matrix()
>>> submatrix = mac.get_submatrix(matrix)
>>> submatrix
Matrix([
[-a_1, a_0, a_2, 0],
[ 0, -a_1, 0, 0],
[ 0, 0, -a_1, 0],
[ 0, 0, 0, -a_1]])
See Also
========
Notebook in examples: sympy/example/notebooks.
References
==========
.. [1] [Bruce97]_
.. [2] [Stiller96]_
"""
def __init__(self, polynomials, variables):
"""
Parameters
==========
variables: list
A list of all n variables
polynomials : list of sympy polynomials
A list of m n-degree polynomials
"""
self.polynomials = polynomials
self.variables = variables
self.n = len(variables)
# A list of the d_max of each polynomial.
self.degrees = [total_degree(poly, *self.variables) for poly
in self.polynomials]
self.degree_m = self._get_degree_m()
self.monomials_size = self.get_size()
# The set T of all possible monomials of degree degree_m
self.monomial_set = self.get_monomials_of_certain_degree(self.degree_m)
def _get_degree_m(self):
r"""
Returns
=======
degree_m: int
The degree_m is calculated as 1 + \sum_1 ^ n (d_i - 1),
where d_i is the degree of the i polynomial
"""
return 1 + sum(d - 1 for d in self.degrees)
def get_size(self):
r"""
Returns
=======
size: int
The size of set T. Set T is the set of all possible
monomials of the n variables for degree equal to the
degree_m
"""
return binomial(self.degree_m + self.n - 1, self.n - 1)
def get_monomials_of_certain_degree(self, degree):
"""
Returns
=======
monomials: list
A list of monomials of a certain degree.
"""
monomials = [Mul(*monomial) for monomial
in combinations_with_replacement(self.variables,
degree)]
return sorted(monomials, reverse=True,
key=monomial_key('lex', self.variables))
def get_row_coefficients(self):
"""
Returns
=======
row_coefficients: list
The row coefficients of Macaulay's matrix
"""
row_coefficients = []
divisible = []
for i in range(self.n):
if i == 0:
degree = self.degree_m - self.degrees[i]
monomial = self.get_monomials_of_certain_degree(degree)
row_coefficients.append(monomial)
else:
divisible.append(self.variables[i - 1] **
self.degrees[i - 1])
degree = self.degree_m - self.degrees[i]
poss_rows = self.get_monomials_of_certain_degree(degree)
for div in divisible:
for p in poss_rows:
if rem(p, div) == 0:
poss_rows = [item for item in poss_rows
if item != p]
row_coefficients.append(poss_rows)
return row_coefficients
def get_matrix(self):
"""
Returns
=======
macaulay_matrix: Matrix
The Macaulay numerator matrix
"""
rows = []
row_coefficients = self.get_row_coefficients()
for i in range(self.n):
for multiplier in row_coefficients[i]:
coefficients = []
poly = Poly(self.polynomials[i] * multiplier,
*self.variables)
for mono in self.monomial_set:
coefficients.append(poly.coeff_monomial(mono))
rows.append(coefficients)
macaulay_matrix = Matrix(rows)
return macaulay_matrix
def get_reduced_nonreduced(self):
r"""
Returns
=======
reduced: list
A list of the reduced monomials
non_reduced: list
A list of the monomials that are not reduced
Definition
==========
A polynomial is said to be reduced in x_i, if its degree (the
maximum degree of its monomials) in x_i is less than d_i. A
polynomial that is reduced in all variables but one is said
simply to be reduced.
"""
divisible = []
for m in self.monomial_set:
temp = []
for i, v in enumerate(self.variables):
temp.append(bool(total_degree(m, v) >= self.degrees[i]))
divisible.append(temp)
reduced = [i for i, r in enumerate(divisible)
if sum(r) < self.n - 1]
non_reduced = [i for i, r in enumerate(divisible)
if sum(r) >= self.n -1]
return reduced, non_reduced
def get_submatrix(self, matrix):
r"""
Returns
=======
macaulay_submatrix: Matrix
The Macaulay denominator matrix. Columns that are non reduced are kept.
The row which contains one of the a_{i}s is dropped. a_{i}s
are the coefficients of x_i ^ {d_i}.
"""
reduced, non_reduced = self.get_reduced_nonreduced()
# if reduced == [], then det(matrix) should be 1
if reduced == []:
return diag([1])
# reduced != []
reduction_set = [v ** self.degrees[i] for i, v
in enumerate(self.variables)]
ais = list([self.polynomials[i].coeff(reduction_set[i])
for i in range(self.n)])
reduced_matrix = matrix[:, reduced]
keep = []
for row in range(reduced_matrix.rows):
check = [ai in reduced_matrix[row, :] for ai in ais]
if True not in check:
keep.append(row)
return matrix[keep, non_reduced]
|
041711bb96af7f7cc4f67948975e36066259bf497e261877e67b27ee793b5e8e | """Tools for manipulation of rational expressions. """
from __future__ import print_function, division
from sympy.core import Basic, Add, sympify
from sympy.core.compatibility import iterable
from sympy.core.exprtools import gcd_terms
from sympy.utilities import public
@public
def together(expr, deep=False, fraction=True):
"""
Denest and combine rational expressions using symbolic methods.
This function takes an expression or a container of expressions
and puts it (them) together by denesting and combining rational
subexpressions. No heroic measures are taken to minimize degree
of the resulting numerator and denominator. To obtain completely
reduced expression use :func:`~.cancel`. However, :func:`~.together`
can preserve as much as possible of the structure of the input
expression in the output (no expansion is performed).
A wide variety of objects can be put together including lists,
tuples, sets, relational objects, integrals and others. It is
also possible to transform interior of function applications,
by setting ``deep`` flag to ``True``.
By definition, :func:`~.together` is a complement to :func:`~.apart`,
so ``apart(together(expr))`` should return expr unchanged. Note
however, that :func:`~.together` uses only symbolic methods, so
it might be necessary to use :func:`~.cancel` to perform algebraic
simplification and minimize degree of the numerator and denominator.
Examples
========
>>> from sympy import together, exp
>>> from sympy.abc import x, y, z
>>> together(1/x + 1/y)
(x + y)/(x*y)
>>> together(1/x + 1/y + 1/z)
(x*y + x*z + y*z)/(x*y*z)
>>> together(1/(x*y) + 1/y**2)
(x + y)/(x*y**2)
>>> together(1/(1 + 1/x) + 1/(1 + 1/y))
(x*(y + 1) + y*(x + 1))/((x + 1)*(y + 1))
>>> together(exp(1/x + 1/y))
exp(1/y + 1/x)
>>> together(exp(1/x + 1/y), deep=True)
exp((x + y)/(x*y))
>>> together(1/exp(x) + 1/(x*exp(x)))
(x + 1)*exp(-x)/x
>>> together(1/exp(2*x) + 1/(x*exp(3*x)))
(x*exp(x) + 1)*exp(-3*x)/x
"""
def _together(expr):
if isinstance(expr, Basic):
if expr.is_Atom or (expr.is_Function and not deep):
return expr
elif expr.is_Add:
return gcd_terms(list(map(_together, Add.make_args(expr))), fraction=fraction)
elif expr.is_Pow:
base = _together(expr.base)
if deep:
exp = _together(expr.exp)
else:
exp = expr.exp
return expr.__class__(base, exp)
else:
return expr.__class__(*[ _together(arg) for arg in expr.args ])
elif iterable(expr):
return expr.__class__([ _together(ex) for ex in expr ])
return expr
return _together(sympify(expr))
|
82de7bcd2df1bcbab5751aa96a20b5b7e3ee3ca8ba1b070c9259a2ee2f87eb55 | """Computational algebraic field theory. """
from __future__ import print_function, division
from sympy import (
S, Rational, AlgebraicNumber,
Add, Mul, sympify, Dummy, expand_mul, I, pi
)
from sympy.core.compatibility import reduce, range
from sympy.core.exprtools import Factors
from sympy.core.function import _mexpand
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.ntheory import sieve
from sympy.ntheory.factor_ import divisors
from sympy.polys.domains import ZZ, QQ
from sympy.polys.orthopolys import dup_chebyshevt
from sympy.polys.polyerrors import (
IsomorphismFailed,
CoercionFailed,
NotAlgebraic,
GeneratorsError,
)
from sympy.polys.polytools import (
Poly, PurePoly, invert, factor_list, groebner, resultant,
degree, poly_from_expr, parallel_poly_from_expr, lcm
)
from sympy.polys.polyutils import dict_from_expr, expr_from_dict
from sympy.polys.ring_series import rs_compose_add
from sympy.polys.rings import ring
from sympy.polys.rootoftools import CRootOf
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.printing.lambdarepr import LambdaPrinter
from sympy.printing.pycode import PythonCodePrinter, MpmathPrinter
from sympy.simplify.radsimp import _split_gcd
from sympy.simplify.simplify import _is_sum_surds
from sympy.utilities import (
numbered_symbols, variations, lambdify, public, sift
)
from mpmath import pslq, mp
def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5):
"""
Return a factor having root ``v``
It is assumed that one of the factors has root ``v``.
"""
if isinstance(factors[0], tuple):
factors = [f[0] for f in factors]
if len(factors) == 1:
return factors[0]
points = {x:v}
symbols = dom.symbols if hasattr(dom, 'symbols') else []
t = QQ(1, 10)
for n in range(bound**len(symbols)):
prec1 = 10
n_temp = n
for s in symbols:
points[s] = n_temp % bound
n_temp = n_temp // bound
while True:
candidates = []
eps = t**(prec1 // 2)
for f in factors:
if abs(f.as_expr().evalf(prec1, points)) < eps:
candidates.append(f)
if candidates:
factors = candidates
if len(factors) == 1:
return factors[0]
if prec1 > prec:
break
prec1 *= 2
raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v)
def _separate_sq(p):
"""
helper function for ``_minimal_polynomial_sq``
It selects a rational ``g`` such that the polynomial ``p``
consists of a sum of terms whose surds squared have gcd equal to ``g``
and a sum of terms with surds squared prime with ``g``;
then it takes the field norm to eliminate ``sqrt(g)``
See simplify.simplify.split_surds and polytools.sqf_norm.
Examples
========
>>> from sympy import sqrt
>>> from sympy.abc import x
>>> from sympy.polys.numberfields import _separate_sq
>>> p= -x + sqrt(2) + sqrt(3) + sqrt(7)
>>> p = _separate_sq(p); p
-x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8
>>> p = _separate_sq(p); p
-x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20
>>> p = _separate_sq(p); p
-x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400
"""
from sympy.utilities.iterables import sift
def is_sqrt(expr):
return expr.is_Pow and expr.exp is S.Half
# p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)]
a = []
for y in p.args:
if not y.is_Mul:
if is_sqrt(y):
a.append((S.One, y**2))
elif y.is_Atom:
a.append((y, S.One))
elif y.is_Pow and y.exp.is_integer:
a.append((y, S.One))
else:
raise NotImplementedError
continue
T, F = sift(y.args, is_sqrt, binary=True)
a.append((Mul(*F), Mul(*T)**2))
a.sort(key=lambda z: z[1])
if a[-1][1] is S.One:
# there are no surds
return p
surds = [z for y, z in a]
for i in range(len(surds)):
if surds[i] != 1:
break
g, b1, b2 = _split_gcd(*surds[i:])
a1 = []
a2 = []
for y, z in a:
if z in b1:
a1.append(y*z**S.Half)
else:
a2.append(y*z**S.Half)
p1 = Add(*a1)
p2 = Add(*a2)
p = _mexpand(p1**2) - _mexpand(p2**2)
return p
def _minimal_polynomial_sq(p, n, x):
"""
Returns the minimal polynomial for the ``nth-root`` of a sum of surds
or ``None`` if it fails.
Parameters
==========
p : sum of surds
n : positive integer
x : variable of the returned polynomial
Examples
========
>>> from sympy.polys.numberfields import _minimal_polynomial_sq
>>> from sympy import sqrt
>>> from sympy.abc import x
>>> q = 1 + sqrt(2) + sqrt(3)
>>> _minimal_polynomial_sq(q, 3, x)
x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8
"""
from sympy.simplify.simplify import _is_sum_surds
p = sympify(p)
n = sympify(n)
if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
return None
pn = p**Rational(1, n)
# eliminate the square roots
p -= x
while 1:
p1 = _separate_sq(p)
if p1 is p:
p = p1.subs({x:x**n})
break
else:
p = p1
# _separate_sq eliminates field extensions in a minimal way, so that
# if n = 1 then `p = constant*(minimal_polynomial(p))`
# if n > 1 it contains the minimal polynomial as a factor.
if n == 1:
p1 = Poly(p)
if p.coeff(x**p1.degree(x)) < 0:
p = -p
p = p.primitive()[1]
return p
# by construction `p` has root `pn`
# the minimal polynomial is the factor vanishing in x = pn
factors = factor_list(p)[1]
result = _choose_factor(factors, x, pn)
return result
def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None):
"""
return the minimal polynomial for ``op(ex1, ex2)``
Parameters
==========
op : operation ``Add`` or ``Mul``
ex1, ex2 : expressions for the algebraic elements
x : indeterminate of the polynomials
dom: ground domain
mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
Examples
========
>>> from sympy import sqrt, Add, Mul, QQ
>>> from sympy.polys.numberfields import _minpoly_op_algebraic_element
>>> from sympy.abc import x, y
>>> p1 = sqrt(sqrt(2) + 1)
>>> p2 = sqrt(sqrt(2) - 1)
>>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ)
x - 1
>>> q1 = sqrt(y)
>>> q2 = 1 / y
>>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y))
x**2*y**2 - 2*x*y - y**3 + 1
References
==========
.. [1] https://en.wikipedia.org/wiki/Resultant
.. [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
"Degrees of sums in a separable field extension".
"""
y = Dummy(str(x))
if mp1 is None:
mp1 = _minpoly_compose(ex1, x, dom)
if mp2 is None:
mp2 = _minpoly_compose(ex2, y, dom)
else:
mp2 = mp2.subs({x: y})
if op is Add:
# mp1a = mp1.subs({x: x - y})
if dom == QQ:
R, X = ring('X', QQ)
p1 = R(dict_from_expr(mp1)[0])
p2 = R(dict_from_expr(mp2)[0])
else:
(p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
r = p1.compose(p2)
mp1a = r.as_expr()
elif op is Mul:
mp1a = _muly(mp1, x, y)
else:
raise NotImplementedError('option not available')
if op is Mul or dom != QQ:
r = resultant(mp1a, mp2, gens=[y, x])
else:
r = rs_compose_add(p1, p2)
r = expr_from_dict(r.as_expr_dict(), x)
deg1 = degree(mp1, x)
deg2 = degree(mp2, y)
if op is Mul and deg1 == 1 or deg2 == 1:
# if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
# r = mp2(x - a), so that `r` is irreducible
return r
r = Poly(r, x, domain=dom)
_, factors = r.factor_list()
res = _choose_factor(factors, x, op(ex1, ex2), dom)
return res.as_expr()
def _invertx(p, x):
"""
Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))``
"""
p1 = poly_from_expr(p, x)[0]
n = degree(p1)
a = [c * x**(n - i) for (i,), c in p1.terms()]
return Add(*a)
def _muly(p, x, y):
"""
Returns ``_mexpand(y**deg*p.subs({x:x / y}))``
"""
p1 = poly_from_expr(p, x)[0]
n = degree(p1)
a = [c * x**i * y**(n - i) for (i,), c in p1.terms()]
return Add(*a)
def _minpoly_pow(ex, pw, x, dom, mp=None):
"""
Returns ``minpoly(ex**pw, x)``
Parameters
==========
ex : algebraic element
pw : rational number
x : indeterminate of the polynomial
dom: ground domain
mp : minimal polynomial of ``p``
Examples
========
>>> from sympy import sqrt, QQ, Rational
>>> from sympy.polys.numberfields import _minpoly_pow, minpoly
>>> from sympy.abc import x, y
>>> p = sqrt(1 + sqrt(2))
>>> _minpoly_pow(p, 2, x, QQ)
x**2 - 2*x - 1
>>> minpoly(p**2, x)
x**2 - 2*x - 1
>>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y))
x**3 - y
>>> minpoly(y**Rational(1, 3), x)
x**3 - y
"""
pw = sympify(pw)
if not mp:
mp = _minpoly_compose(ex, x, dom)
if not pw.is_rational:
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
if pw < 0:
if mp == x:
raise ZeroDivisionError('%s is zero' % ex)
mp = _invertx(mp, x)
if pw == -1:
return mp
pw = -pw
ex = 1/ex
y = Dummy(str(x))
mp = mp.subs({x: y})
n, d = pw.as_numer_denom()
res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom)
_, factors = res.factor_list()
res = _choose_factor(factors, x, ex**pw, dom)
return res.as_expr()
def _minpoly_add(x, dom, *a):
"""
returns ``minpoly(Add(*a), dom, x)``
"""
mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom)
p = a[0] + a[1]
for px in a[2:]:
mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp)
p = p + px
return mp
def _minpoly_mul(x, dom, *a):
"""
returns ``minpoly(Mul(*a), dom, x)``
"""
mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom)
p = a[0] * a[1]
for px in a[2:]:
mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp)
p = p * px
return mp
def _minpoly_sin(ex, x):
"""
Returns the minimal polynomial of ``sin(ex)``
see http://mathworld.wolfram.com/TrigonometryAngles.html
"""
c, a = ex.args[0].as_coeff_Mul()
if a is pi:
if c.is_rational:
n = c.q
q = sympify(n)
if q.is_prime:
# for a = pi*p/q with q odd prime, using chebyshevt
# write sin(q*a) = mp(sin(a))*sin(a);
# the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
a = dup_chebyshevt(n, ZZ)
return Add(*[x**(n - i - 1)*a[i] for i in range(n)])
if c.p == 1:
if q == 9:
return 64*x**6 - 96*x**4 + 36*x**2 - 3
if n % 2 == 1:
# for a = pi*p/q with q odd, use
# sin(q*a) = 0 to see that the minimal polynomial must be
# a factor of dup_chebyshevt(n, ZZ)
a = dup_chebyshevt(n, ZZ)
a = [x**(n - i)*a[i] for i in range(n + 1)]
r = Add(*a)
_, factors = factor_list(r)
res = _choose_factor(factors, x, ex)
return res
expr = ((1 - cos(2*c*pi))/2)**S.Half
res = _minpoly_compose(expr, x, QQ)
return res
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
def _minpoly_cos(ex, x):
"""
Returns the minimal polynomial of ``cos(ex)``
see http://mathworld.wolfram.com/TrigonometryAngles.html
"""
from sympy import sqrt
c, a = ex.args[0].as_coeff_Mul()
if a is pi:
if c.is_rational:
if c.p == 1:
if c.q == 7:
return 8*x**3 - 4*x**2 - 4*x + 1
if c.q == 9:
return 8*x**3 - 6*x + 1
elif c.p == 2:
q = sympify(c.q)
if q.is_prime:
s = _minpoly_sin(ex, x)
return _mexpand(s.subs({x:sqrt((1 - x)/2)}))
# for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p
n = int(c.q)
a = dup_chebyshevt(n, ZZ)
a = [x**(n - i)*a[i] for i in range(n + 1)]
r = Add(*a) - (-1)**c.p
_, factors = factor_list(r)
res = _choose_factor(factors, x, ex)
return res
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
def _minpoly_exp(ex, x):
"""
Returns the minimal polynomial of ``exp(ex)``
"""
c, a = ex.args[0].as_coeff_Mul()
q = sympify(c.q)
if a == I*pi:
if c.is_rational:
if c.p == 1 or c.p == -1:
if q == 3:
return x**2 - x + 1
if q == 4:
return x**4 + 1
if q == 6:
return x**4 - x**2 + 1
if q == 8:
return x**8 + 1
if q == 9:
return x**6 - x**3 + 1
if q == 10:
return x**8 - x**6 + x**4 - x**2 + 1
if q.is_prime:
s = 0
for i in range(q):
s += (-x)**i
return s
# x**(2*q) = product(factors)
factors = [cyclotomic_poly(i, x) for i in divisors(2*q)]
mp = _choose_factor(factors, x, ex)
return mp
else:
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
def _minpoly_rootof(ex, x):
"""
Returns the minimal polynomial of a ``CRootOf`` object.
"""
p = ex.expr
p = p.subs({ex.poly.gens[0]:x})
_, factors = factor_list(p, x)
result = _choose_factor(factors, x, ex)
return result
def _minpoly_compose(ex, x, dom):
"""
Computes the minimal polynomial of an algebraic element
using operations on minimal polynomials
Examples
========
>>> from sympy import minimal_polynomial, sqrt, Rational
>>> from sympy.abc import x, y
>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
x**2 - 2*x - 1
>>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
x**2*y**2 - 2*x*y - y**3 + 1
"""
if ex.is_Rational:
return ex.q*x - ex.p
if ex is I:
_, factors = factor_list(x**2 + 1, x, domain=dom)
return x**2 + 1 if len(factors) == 1 else x - I
if hasattr(dom, 'symbols') and ex in dom.symbols:
return x - ex
if dom.is_QQ and _is_sum_surds(ex):
# eliminate the square roots
ex -= x
while 1:
ex1 = _separate_sq(ex)
if ex1 is ex:
return ex
else:
ex = ex1
if ex.is_Add:
res = _minpoly_add(x, dom, *ex.args)
elif ex.is_Mul:
f = Factors(ex).factors
r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational)
if r[True] and dom == QQ:
ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
r1 = dict(r[True])
dens = [y.q for y in r1.values()]
lcmdens = reduce(lcm, dens, 1)
neg1 = S.NegativeOne
expn1 = r1.pop(neg1, S.Zero)
nums = [base**(y.p*lcmdens // y.q) for base, y in r1.items()]
ex2 = Mul(*nums)
mp1 = minimal_polynomial(ex1, x)
# use the fact that in SymPy canonicalization products of integers
# raised to rational powers are organized in relatively prime
# bases, and that in ``base**(n/d)`` a perfect power is
# simplified with the root
# Powers of -1 have to be treated separately to preserve sign.
mp2 = ex2.q*x**lcmdens - ex2.p*neg1**(expn1*lcmdens)
ex2 = neg1**expn1 * ex2**Rational(1, lcmdens)
res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2)
else:
res = _minpoly_mul(x, dom, *ex.args)
elif ex.is_Pow:
res = _minpoly_pow(ex.base, ex.exp, x, dom)
elif ex.__class__ is sin:
res = _minpoly_sin(ex, x)
elif ex.__class__ is cos:
res = _minpoly_cos(ex, x)
elif ex.__class__ is exp:
res = _minpoly_exp(ex, x)
elif ex.__class__ is CRootOf:
res = _minpoly_rootof(ex, x)
else:
raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex)
return res
@public
def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None):
"""
Computes the minimal polynomial of an algebraic element.
Parameters
==========
ex : Expr
Element or expression whose minimal polynomial is to be calculated.
x : Symbol, optional
Independent variable of the minimal polynomial
compose : boolean, optional (default=True)
Method to use for computing minimal polynomial. If ``compose=True``
(default) then ``_minpoly_compose`` is used, if ``compose=False`` then
groebner bases are used.
polys : boolean, optional (default=False)
If ``True`` returns a ``Poly`` object else an ``Expr`` object.
domain : Domain, optional
Ground domain
Notes
=====
By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
are computed, then the arithmetic operations on them are performed using the resultant
and factorization.
If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
The default algorithm stalls less frequently.
If no ground domain is given, it will be generated automatically from the expression.
Examples
========
>>> from sympy import minimal_polynomial, sqrt, solve, QQ
>>> from sympy.abc import x, y
>>> minimal_polynomial(sqrt(2), x)
x**2 - 2
>>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
x - sqrt(2)
>>> minimal_polynomial(sqrt(2) + sqrt(3), x)
x**4 - 10*x**2 + 1
>>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
x**3 + x + 3
>>> minimal_polynomial(sqrt(y), x)
x**2 - y
"""
from sympy.polys.polytools import degree
from sympy.polys.domains import FractionField
from sympy.core.basic import preorder_traversal
ex = sympify(ex)
if ex.is_number:
# not sure if it's always needed but try it for numbers (issue 8354)
ex = _mexpand(ex, recursive=True)
for expr in preorder_traversal(ex):
if expr.is_AlgebraicNumber:
compose = False
break
if x is not None:
x, cls = sympify(x), Poly
else:
x, cls = Dummy('x'), PurePoly
if not domain:
if ex.free_symbols:
domain = FractionField(QQ, list(ex.free_symbols))
else:
domain = QQ
if hasattr(domain, 'symbols') and x in domain.symbols:
raise GeneratorsError("the variable %s is an element of the ground "
"domain %s" % (x, domain))
if compose:
result = _minpoly_compose(ex, x, domain)
result = result.primitive()[1]
c = result.coeff(x**degree(result, x))
if c.is_negative:
result = expand_mul(-result)
return cls(result, x, field=True) if polys else result.collect(x)
if not domain.is_QQ:
raise NotImplementedError("groebner method only works for QQ")
result = _minpoly_groebner(ex, x, cls)
return cls(result, x, field=True) if polys else result.collect(x)
def _minpoly_groebner(ex, x, cls):
"""
Computes the minimal polynomial of an algebraic number
using Groebner bases
Examples
========
>>> from sympy import minimal_polynomial, sqrt, Rational
>>> from sympy.abc import x
>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
x**2 - 2*x - 1
"""
from sympy.polys.polytools import degree
from sympy.core.function import expand_multinomial
generator = numbered_symbols('a', cls=Dummy)
mapping, symbols = {}, {}
def update_mapping(ex, exp, base=None):
a = next(generator)
symbols[ex] = a
if base is not None:
mapping[ex] = a**exp + base
else:
mapping[ex] = exp.as_expr(a)
return a
def bottom_up_scan(ex):
if ex.is_Atom:
if ex is S.ImaginaryUnit:
if ex not in mapping:
return update_mapping(ex, 2, 1)
else:
return symbols[ex]
elif ex.is_Rational:
return ex
elif ex.is_Add:
return Add(*[ bottom_up_scan(g) for g in ex.args ])
elif ex.is_Mul:
return Mul(*[ bottom_up_scan(g) for g in ex.args ])
elif ex.is_Pow:
if ex.exp.is_Rational:
if ex.exp < 0 and ex.base.is_Add:
coeff, terms = ex.base.as_coeff_add()
elt, _ = primitive_element(terms, polys=True)
alg = ex.base - coeff
# XXX: turn this into eval()
inverse = invert(elt.gen + coeff, elt).as_expr()
base = inverse.subs(elt.gen, alg).expand()
if ex.exp == -1:
return bottom_up_scan(base)
else:
ex = base**(-ex.exp)
if not ex.exp.is_Integer:
base, exp = (
ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
else:
base, exp = ex.base, ex.exp
base = bottom_up_scan(base)
expr = base**exp
if expr not in mapping:
return update_mapping(expr, 1/exp, -base)
else:
return symbols[expr]
elif ex.is_AlgebraicNumber:
if ex.root not in mapping:
return update_mapping(ex.root, ex.minpoly)
else:
return symbols[ex.root]
raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex)
def simpler_inverse(ex):
"""
Returns True if it is more likely that the minimal polynomial
algorithm works better with the inverse
"""
if ex.is_Pow:
if (1/ex.exp).is_integer and ex.exp < 0:
if ex.base.is_Add:
return True
if ex.is_Mul:
hit = True
for p in ex.args:
if p.is_Add:
return False
if p.is_Pow:
if p.base.is_Add and p.exp > 0:
return False
if hit:
return True
return False
inverted = False
ex = expand_multinomial(ex)
if ex.is_AlgebraicNumber:
return ex.minpoly.as_expr(x)
elif ex.is_Rational:
result = ex.q*x - ex.p
else:
inverted = simpler_inverse(ex)
if inverted:
ex = ex**-1
res = None
if ex.is_Pow and (1/ex.exp).is_Integer:
n = 1/ex.exp
res = _minimal_polynomial_sq(ex.base, n, x)
elif _is_sum_surds(ex):
res = _minimal_polynomial_sq(ex, S.One, x)
if res is not None:
result = res
if res is None:
bus = bottom_up_scan(ex)
F = [x - bus] + list(mapping.values())
G = groebner(F, list(symbols.values()) + [x], order='lex')
_, factors = factor_list(G[-1])
# by construction G[-1] has root `ex`
result = _choose_factor(factors, x, ex)
if inverted:
result = _invertx(result, x)
if result.coeff(x**degree(result, x)) < 0:
result = expand_mul(-result)
return result
minpoly = minimal_polynomial
def _coeffs_generator(n):
"""Generate coefficients for `primitive_element()`. """
for coeffs in variations([1, -1, 2, -2, 3, -3], n, repetition=True):
# Two linear combinations with coeffs of opposite signs are
# opposites of each other. Hence it suffices to test only one.
if coeffs[0] > 0:
yield list(coeffs)
@public
def primitive_element(extension, x=None, **args):
"""Construct a common number field for all extensions. """
if not extension:
raise ValueError("can't compute primitive element for empty extension")
if x is not None:
x, cls = sympify(x), Poly
else:
x, cls = Dummy('x'), PurePoly
if not args.get('ex', False):
gen, coeffs = extension[0], [1]
# XXX when minimal_polynomial is extended to work
# with AlgebraicNumbers this test can be removed
if isinstance(gen, AlgebraicNumber):
g = gen.minpoly.replace(x)
else:
g = minimal_polynomial(gen, x, polys=True)
for ext in extension[1:]:
_, factors = factor_list(g, extension=ext)
g = _choose_factor(factors, x, gen)
s, _, g = g.sqf_norm()
gen += s*ext
coeffs.append(s)
if not args.get('polys', False):
return g.as_expr(), coeffs
else:
return cls(g), coeffs
generator = numbered_symbols('y', cls=Dummy)
F, Y = [], []
for ext in extension:
y = next(generator)
if ext.is_Poly:
if ext.is_univariate:
f = ext.as_expr(y)
else:
raise ValueError("expected minimal polynomial, got %s" % ext)
else:
f = minpoly(ext, y)
F.append(f)
Y.append(y)
coeffs_generator = args.get('coeffs', _coeffs_generator)
for coeffs in coeffs_generator(len(Y)):
f = x - sum([ c*y for c, y in zip(coeffs, Y)])
G = groebner(F + [f], Y + [x], order='lex', field=True)
H, g = G[:-1], cls(G[-1], x, domain='QQ')
for i, (h, y) in enumerate(zip(H, Y)):
try:
H[i] = Poly(y - h, x,
domain='QQ').all_coeffs() # XXX: composite=False
except CoercionFailed: # pragma: no cover
break # G is not a triangular set
else:
break
else: # pragma: no cover
raise RuntimeError("run out of coefficient configurations")
_, g = g.clear_denoms()
if not args.get('polys', False):
return g.as_expr(), coeffs, H
else:
return g, coeffs, H
def is_isomorphism_possible(a, b):
"""Returns `True` if there is a chance for isomorphism. """
n = a.minpoly.degree()
m = b.minpoly.degree()
if m % n != 0:
return False
if n == m:
return True
da = a.minpoly.discriminant()
db = b.minpoly.discriminant()
i, k, half = 1, m//n, db//2
while True:
p = sieve[i]
P = p**k
if P > half:
break
if ((da % p) % 2) and not (db % P):
return False
i += 1
return True
def field_isomorphism_pslq(a, b):
"""Construct field isomorphism using PSLQ algorithm. """
if not a.root.is_real or not b.root.is_real:
raise NotImplementedError("PSLQ doesn't support complex coefficients")
f = a.minpoly
g = b.minpoly.replace(f.gen)
n, m, prev = 100, b.minpoly.degree(), None
for i in range(1, 5):
A = a.root.evalf(n)
B = b.root.evalf(n)
basis = [1, B] + [ B**i for i in range(2, m) ] + [A]
dps, mp.dps = mp.dps, n
coeffs = pslq(basis, maxcoeff=int(1e10), maxsteps=1000)
mp.dps = dps
if coeffs is None:
break
if coeffs != prev:
prev = coeffs
else:
break
coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]]
while not coeffs[-1]:
coeffs.pop()
coeffs = list(reversed(coeffs))
h = Poly(coeffs, f.gen, domain='QQ')
if f.compose(h).rem(g).is_zero:
d, approx = len(coeffs) - 1, 0
for i, coeff in enumerate(coeffs):
approx += coeff*B**(d - i)
if A*approx < 0:
return [ -c for c in coeffs ]
else:
return coeffs
elif f.compose(-h).rem(g).is_zero:
return [ -c for c in coeffs ]
else:
n *= 2
return None
def field_isomorphism_factor(a, b):
"""Construct field isomorphism via factorization. """
_, factors = factor_list(a.minpoly, extension=b)
for f, _ in factors:
if f.degree() == 1:
coeffs = f.rep.TC().to_sympy_list()
d, terms = len(coeffs) - 1, []
for i, coeff in enumerate(coeffs):
terms.append(coeff*b.root**(d - i))
root = Add(*terms)
if (a.root - root).evalf(chop=True) == 0:
return coeffs
if (a.root + root).evalf(chop=True) == 0:
return [-c for c in coeffs]
return None
@public
def field_isomorphism(a, b, **args):
"""Construct an isomorphism between two number fields. """
a, b = sympify(a), sympify(b)
if not a.is_AlgebraicNumber:
a = AlgebraicNumber(a)
if not b.is_AlgebraicNumber:
b = AlgebraicNumber(b)
if a == b:
return a.coeffs()
n = a.minpoly.degree()
m = b.minpoly.degree()
if n == 1:
return [a.root]
if m % n != 0:
return None
if args.get('fast', True):
try:
result = field_isomorphism_pslq(a, b)
if result is not None:
return result
except NotImplementedError:
pass
return field_isomorphism_factor(a, b)
@public
def to_number_field(extension, theta=None, **args):
"""Express `extension` in the field generated by `theta`. """
gen = args.get('gen')
if hasattr(extension, '__iter__'):
extension = list(extension)
else:
extension = [extension]
if len(extension) == 1 and type(extension[0]) is tuple:
return AlgebraicNumber(extension[0])
minpoly, coeffs = primitive_element(extension, gen, polys=True)
root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ])
if theta is None:
return AlgebraicNumber((minpoly, root))
else:
theta = sympify(theta)
if not theta.is_AlgebraicNumber:
theta = AlgebraicNumber(theta, gen=gen)
coeffs = field_isomorphism(root, theta)
if coeffs is not None:
return AlgebraicNumber(theta, coeffs)
else:
raise IsomorphismFailed(
"%s is not in a subfield of %s" % (root, theta.root))
class IntervalPrinter(MpmathPrinter, LambdaPrinter):
"""Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
def _print_Integer(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Integer(expr)
def _print_Rational(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
def _print_Half(self, expr):
return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr)
def _print_Pow(self, expr):
return super(MpmathPrinter, self)._print_Pow(expr, rational=True)
@public
def isolate(alg, eps=None, fast=False):
"""Give a rational isolating interval for an algebraic number. """
alg = sympify(alg)
if alg.is_Rational:
return (alg, alg)
elif not alg.is_real:
raise NotImplementedError(
"complex algebraic numbers are not supported")
func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter())
poly = minpoly(alg, polys=True)
intervals = poly.intervals(sqf=True)
dps, done = mp.dps, False
try:
while not done:
alg = func()
for a, b in intervals:
if a <= alg.a and alg.b <= b:
done = True
break
else:
mp.dps *= 2
finally:
mp.dps = dps
if eps is not None:
a, b = poly.refine_root(a, b, eps=eps, fast=fast)
return (a, b)
|
5296bd87b492afd5b53d7a345a43444ac1ac319f39adc5a47abb81b64022dc58 | """ Unification in SymPy
See sympy.unify.core docstring for algorithmic details
See http://matthewrocklin.com/blog/work/2012/11/01/Unification/ for discussion
"""
from .usympy import unify, rebuild
from .rewrite import rewriterule
__all__ = [
'unify', 'rebuild',
'rewriterule',
]
|
6b94ece3e7477a342cee04cfa1f82a987536e721f66183e5fd3014acd2180c34 | from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.basic import Basic
from sympy.core.compatibility import string_types, range, Callable
from sympy.core.cache import cacheit
from sympy.core import S, Dummy, Lambda
from sympy import symbols, MatrixBase, ImmutableDenseMatrix
from sympy.solvers import solve
from sympy.vector.scalar import BaseScalar
from sympy import eye, trigsimp, ImmutableMatrix as Matrix, Symbol, sin, cos,\
sqrt, diff, Tuple, acos, atan2, simplify
import sympy.vector
from sympy.vector.orienters import (Orienter, AxisOrienter, BodyOrienter,
SpaceOrienter, QuaternionOrienter)
def CoordSysCartesian(*args, **kwargs):
SymPyDeprecationWarning(
feature="CoordSysCartesian",
useinstead="CoordSys3D",
issue=12865,
deprecated_since_version="1.1"
).warn()
return CoordSys3D(*args, **kwargs)
class CoordSys3D(Basic):
"""
Represents a coordinate system in 3-D space.
"""
def __new__(cls, name, transformation=None, parent=None, location=None,
rotation_matrix=None, vector_names=None, variable_names=None):
"""
The orientation/location parameters are necessary if this system
is being defined at a certain orientation or location wrt another.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
transformation : Lambda, Tuple, str
Transformation defined by transformation equations or chosen
from predefined ones.
location : Vector
The position vector of the new system's origin wrt the parent
instance.
rotation_matrix : SymPy ImmutableMatrix
The rotation matrix of the new coordinate system with respect
to the parent. In other words, the output of
new_system.rotation_matrix(parent).
parent : CoordSys3D
The coordinate system wrt which the orientation/location
(or both) is being defined.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
"""
name = str(name)
Vector = sympy.vector.Vector
BaseVector = sympy.vector.BaseVector
Point = sympy.vector.Point
if not isinstance(name, string_types):
raise TypeError("name should be a string")
if transformation is not None:
if (location is not None) or (rotation_matrix is not None):
raise ValueError("specify either `transformation` or "
"`location`/`rotation_matrix`")
if isinstance(transformation, (Tuple, tuple, list)):
if isinstance(transformation[0], MatrixBase):
rotation_matrix = transformation[0]
location = transformation[1]
else:
transformation = Lambda(transformation[0],
transformation[1])
elif isinstance(transformation, Callable):
x1, x2, x3 = symbols('x1 x2 x3', cls=Dummy)
transformation = Lambda((x1, x2, x3),
transformation(x1, x2, x3))
elif isinstance(transformation, string_types):
transformation = Symbol(transformation)
elif isinstance(transformation, (Symbol, Lambda)):
pass
else:
raise TypeError("transformation: "
"wrong type {0}".format(type(transformation)))
# If orientation information has been provided, store
# the rotation matrix accordingly
if rotation_matrix is None:
rotation_matrix = ImmutableDenseMatrix(eye(3))
else:
if not isinstance(rotation_matrix, MatrixBase):
raise TypeError("rotation_matrix should be an Immutable" +
"Matrix instance")
rotation_matrix = rotation_matrix.as_immutable()
# If location information is not given, adjust the default
# location as Vector.zero
if parent is not None:
if not isinstance(parent, CoordSys3D):
raise TypeError("parent should be a " +
"CoordSys3D/None")
if location is None:
location = Vector.zero
else:
if not isinstance(location, Vector):
raise TypeError("location should be a Vector")
# Check that location does not contain base
# scalars
for x in location.free_symbols:
if isinstance(x, BaseScalar):
raise ValueError("location should not contain" +
" BaseScalars")
origin = parent.origin.locate_new(name + '.origin',
location)
else:
location = Vector.zero
origin = Point(name + '.origin')
if transformation is None:
transformation = Tuple(rotation_matrix, location)
if isinstance(transformation, Tuple):
lambda_transformation = CoordSys3D._compose_rotation_and_translation(
transformation[0],
transformation[1],
parent
)
r, l = transformation
l = l._projections
lambda_lame = CoordSys3D._get_lame_coeff('cartesian')
lambda_inverse = lambda x, y, z: r.inv()*Matrix(
[x-l[0], y-l[1], z-l[2]])
elif isinstance(transformation, Symbol):
trname = transformation.name
lambda_transformation = CoordSys3D._get_transformation_lambdas(trname)
if parent is not None:
if parent.lame_coefficients() != (S.One, S.One, S.One):
raise ValueError('Parent for pre-defined coordinate '
'system should be Cartesian.')
lambda_lame = CoordSys3D._get_lame_coeff(trname)
lambda_inverse = CoordSys3D._set_inv_trans_equations(trname)
elif isinstance(transformation, Lambda):
if not CoordSys3D._check_orthogonality(transformation):
raise ValueError("The transformation equation does not "
"create orthogonal coordinate system")
lambda_transformation = transformation
lambda_lame = CoordSys3D._calculate_lame_coeff(lambda_transformation)
lambda_inverse = None
else:
lambda_transformation = lambda x, y, z: transformation(x, y, z)
lambda_lame = CoordSys3D._get_lame_coeff(transformation)
lambda_inverse = None
if variable_names is None:
if isinstance(transformation, Lambda):
variable_names = ["x1", "x2", "x3"]
elif isinstance(transformation, Symbol):
if transformation.name == 'spherical':
variable_names = ["r", "theta", "phi"]
elif transformation.name == 'cylindrical':
variable_names = ["r", "theta", "z"]
else:
variable_names = ["x", "y", "z"]
else:
variable_names = ["x", "y", "z"]
if vector_names is None:
vector_names = ["i", "j", "k"]
# All systems that are defined as 'roots' are unequal, unless
# they have the same name.
# Systems defined at same orientation/position wrt the same
# 'parent' are equal, irrespective of the name.
# This is true even if the same orientation is provided via
# different methods like Axis/Body/Space/Quaternion.
# However, coincident systems may be seen as unequal if
# positioned/oriented wrt different parents, even though
# they may actually be 'coincident' wrt the root system.
if parent is not None:
obj = super(CoordSys3D, cls).__new__(
cls, Symbol(name), transformation, parent)
else:
obj = super(CoordSys3D, cls).__new__(
cls, Symbol(name), transformation)
obj._name = name
# Initialize the base vectors
_check_strings('vector_names', vector_names)
vector_names = list(vector_names)
latex_vects = [(r'\mathbf{\hat{%s}_{%s}}' % (x, name)) for
x in vector_names]
pretty_vects = ['%s_%s' % (x, name) for x in vector_names]
obj._vector_names = vector_names
v1 = BaseVector(0, obj, pretty_vects[0], latex_vects[0])
v2 = BaseVector(1, obj, pretty_vects[1], latex_vects[1])
v3 = BaseVector(2, obj, pretty_vects[2], latex_vects[2])
obj._base_vectors = (v1, v2, v3)
# Initialize the base scalars
_check_strings('variable_names', vector_names)
variable_names = list(variable_names)
latex_scalars = [(r"\mathbf{{%s}_{%s}}" % (x, name)) for
x in variable_names]
pretty_scalars = ['%s_%s' % (x, name) for x in variable_names]
obj._variable_names = variable_names
obj._vector_names = vector_names
x1 = BaseScalar(0, obj, pretty_scalars[0], latex_scalars[0])
x2 = BaseScalar(1, obj, pretty_scalars[1], latex_scalars[1])
x3 = BaseScalar(2, obj, pretty_scalars[2], latex_scalars[2])
obj._base_scalars = (x1, x2, x3)
obj._transformation = transformation
obj._transformation_lambda = lambda_transformation
obj._lame_coefficients = lambda_lame(x1, x2, x3)
obj._transformation_from_parent_lambda = lambda_inverse
setattr(obj, variable_names[0], x1)
setattr(obj, variable_names[1], x2)
setattr(obj, variable_names[2], x3)
setattr(obj, vector_names[0], v1)
setattr(obj, vector_names[1], v2)
setattr(obj, vector_names[2], v3)
# Assign params
obj._parent = parent
if obj._parent is not None:
obj._root = obj._parent._root
else:
obj._root = obj
obj._parent_rotation_matrix = rotation_matrix
obj._origin = origin
# Return the instance
return obj
def __str__(self, printer=None):
return self._name
__repr__ = __str__
_sympystr = __str__
def __iter__(self):
return iter(self.base_vectors())
@staticmethod
def _check_orthogonality(equations):
"""
Helper method for _connect_to_cartesian. It checks if
set of transformation equations create orthogonal curvilinear
coordinate system
Parameters
==========
equations : Lambda
Lambda of transformation equations
"""
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy)
equations = equations(x1, x2, x3)
v1 = Matrix([diff(equations[0], x1),
diff(equations[1], x1), diff(equations[2], x1)])
v2 = Matrix([diff(equations[0], x2),
diff(equations[1], x2), diff(equations[2], x2)])
v3 = Matrix([diff(equations[0], x3),
diff(equations[1], x3), diff(equations[2], x3)])
if any(simplify(i[0] + i[1] + i[2]) == 0 for i in (v1, v2, v3)):
return False
else:
if simplify(v1.dot(v2)) == 0 and simplify(v2.dot(v3)) == 0 \
and simplify(v3.dot(v1)) == 0:
return True
else:
return False
@staticmethod
def _set_inv_trans_equations(curv_coord_name):
"""
Store information about inverse transformation equations for
pre-defined coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if curv_coord_name == 'cartesian':
return lambda x, y, z: (x, y, z)
if curv_coord_name == 'spherical':
return lambda x, y, z: (
sqrt(x**2 + y**2 + z**2),
acos(z/sqrt(x**2 + y**2 + z**2)),
atan2(y, x)
)
if curv_coord_name == 'cylindrical':
return lambda x, y, z: (
sqrt(x**2 + y**2),
atan2(y, x),
z
)
raise ValueError('Wrong set of parameters.'
'Type of coordinate system is defined')
def _calculate_inv_trans_equations(self):
"""
Helper method for set_coordinate_type. It calculates inverse
transformation equations for given transformations equations.
"""
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy, reals=True)
x, y, z = symbols("x, y, z", cls=Dummy)
equations = self._transformation(x1, x2, x3)
solved = solve([equations[0] - x,
equations[1] - y,
equations[2] - z], (x1, x2, x3), dict=True)[0]
solved = solved[x1], solved[x2], solved[x3]
self._transformation_from_parent_lambda = \
lambda x1, x2, x3: tuple(i.subs(list(zip((x, y, z), (x1, x2, x3)))) for i in solved)
@staticmethod
def _get_lame_coeff(curv_coord_name):
"""
Store information about Lame coefficients for pre-defined
coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if isinstance(curv_coord_name, string_types):
if curv_coord_name == 'cartesian':
return lambda x, y, z: (S.One, S.One, S.One)
if curv_coord_name == 'spherical':
return lambda r, theta, phi: (S.One, r, r*sin(theta))
if curv_coord_name == 'cylindrical':
return lambda r, theta, h: (S.One, r, S.One)
raise ValueError('Wrong set of parameters.'
' Type of coordinate system is not defined')
return CoordSys3D._calculate_lame_coefficients(curv_coord_name)
@staticmethod
def _calculate_lame_coeff(equations):
"""
It calculates Lame coefficients
for given transformations equations.
Parameters
==========
equations : Lambda
Lambda of transformation equations.
"""
return lambda x1, x2, x3: (
sqrt(diff(equations(x1, x2, x3)[0], x1)**2 +
diff(equations(x1, x2, x3)[1], x1)**2 +
diff(equations(x1, x2, x3)[2], x1)**2),
sqrt(diff(equations(x1, x2, x3)[0], x2)**2 +
diff(equations(x1, x2, x3)[1], x2)**2 +
diff(equations(x1, x2, x3)[2], x2)**2),
sqrt(diff(equations(x1, x2, x3)[0], x3)**2 +
diff(equations(x1, x2, x3)[1], x3)**2 +
diff(equations(x1, x2, x3)[2], x3)**2)
)
def _inverse_rotation_matrix(self):
"""
Returns inverse rotation matrix.
"""
return simplify(self._parent_rotation_matrix**-1)
@staticmethod
def _get_transformation_lambdas(curv_coord_name):
"""
Store information about transformation equations for pre-defined
coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if isinstance(curv_coord_name, string_types):
if curv_coord_name == 'cartesian':
return lambda x, y, z: (x, y, z)
if curv_coord_name == 'spherical':
return lambda r, theta, phi: (
r*sin(theta)*cos(phi),
r*sin(theta)*sin(phi),
r*cos(theta)
)
if curv_coord_name == 'cylindrical':
return lambda r, theta, h: (
r*cos(theta),
r*sin(theta),
h
)
raise ValueError('Wrong set of parameters.'
'Type of coordinate system is defined')
@classmethod
def _rotation_trans_equations(cls, matrix, equations):
"""
Returns the transformation equations obtained from rotation matrix.
Parameters
==========
matrix : Matrix
Rotation matrix
equations : tuple
Transformation equations
"""
return tuple(matrix * Matrix(equations))
@property
def origin(self):
return self._origin
@property
def delop(self):
SymPyDeprecationWarning(
feature="coord_system.delop has been replaced.",
useinstead="Use the Del() class",
deprecated_since_version="1.1",
issue=12866,
).warn()
from sympy.vector.deloperator import Del
return Del()
def base_vectors(self):
return self._base_vectors
def base_scalars(self):
return self._base_scalars
def lame_coefficients(self):
return self._lame_coefficients
def transformation_to_parent(self):
return self._transformation_lambda(*self.base_scalars())
def transformation_from_parent(self):
if self._parent is None:
raise ValueError("no parent coordinate system, use "
"`transformation_from_parent_function()`")
return self._transformation_from_parent_lambda(
*self._parent.base_scalars())
def transformation_from_parent_function(self):
return self._transformation_from_parent_lambda
def rotation_matrix(self, other):
"""
Returns the direction cosine matrix(DCM), also known as the
'rotation matrix' of this coordinate system with respect to
another system.
If v_a is a vector defined in system 'A' (in matrix format)
and v_b is the same vector defined in system 'B', then
v_a = A.rotation_matrix(B) * v_b.
A SymPy Matrix is returned.
Parameters
==========
other : CoordSys3D
The system which the DCM is generated to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> A = N.orient_new_axis('A', q1, N.i)
>>> N.rotation_matrix(A)
Matrix([
[1, 0, 0],
[0, cos(q1), -sin(q1)],
[0, sin(q1), cos(q1)]])
"""
from sympy.vector.functions import _path
if not isinstance(other, CoordSys3D):
raise TypeError(str(other) +
" is not a CoordSys3D")
# Handle special cases
if other == self:
return eye(3)
elif other == self._parent:
return self._parent_rotation_matrix
elif other._parent == self:
return other._parent_rotation_matrix.T
# Else, use tree to calculate position
rootindex, path = _path(self, other)
result = eye(3)
i = -1
for i in range(rootindex):
result *= path[i]._parent_rotation_matrix
i += 2
while i < len(path):
result *= path[i]._parent_rotation_matrix.T
i += 1
return result
@cacheit
def position_wrt(self, other):
"""
Returns the position vector of the origin of this coordinate
system with respect to another Point/CoordSys3D.
Parameters
==========
other : Point/CoordSys3D
If other is a Point, the position of this system's origin
wrt it is returned. If its an instance of CoordSyRect,
the position wrt its origin is returned.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N1 = N.locate_new('N1', 10 * N.i)
>>> N.position_wrt(N1)
(-10)*N.i
"""
return self.origin.position_wrt(other)
def scalar_map(self, other):
"""
Returns a dictionary which expresses the coordinate variables
(base scalars) of this frame in terms of the variables of
otherframe.
Parameters
==========
otherframe : CoordSys3D
The other system to map the variables to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import Symbol
>>> A = CoordSys3D('A')
>>> q = Symbol('q')
>>> B = A.orient_new_axis('B', q, A.k)
>>> A.scalar_map(B)
{A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
"""
relocated_scalars = []
origin_coords = tuple(self.position_wrt(other).to_matrix(other))
for i, x in enumerate(other.base_scalars()):
relocated_scalars.append(x - origin_coords[i])
vars_matrix = (self.rotation_matrix(other) *
Matrix(relocated_scalars))
mapping = {}
for i, x in enumerate(self.base_scalars()):
mapping[x] = trigsimp(vars_matrix[i])
return mapping
def locate_new(self, name, position, vector_names=None,
variable_names=None):
"""
Returns a CoordSys3D with its origin located at the given
position wrt this coordinate system's origin.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
position : Vector
The position vector of the new system's origin wrt this
one.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> A = CoordSys3D('A')
>>> B = A.locate_new('B', 10 * A.i)
>>> B.origin.position_wrt(A.origin)
10*A.i
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
return CoordSys3D(name, location=position,
vector_names=vector_names,
variable_names=variable_names,
parent=self)
def orient_new(self, name, orienters, location=None,
vector_names=None, variable_names=None):
"""
Creates a new CoordSys3D oriented in the user-specified way
with respect to this system.
Please refer to the documentation of the orienter classes
for more information about the orientation procedure.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
orienters : iterable/Orienter
An Orienter or an iterable of Orienters for orienting the
new coordinate system.
If an Orienter is provided, it is applied to get the new
system.
If an iterable is provided, the orienters will be applied
in the order in which they appear in the iterable.
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
Using an AxisOrienter
>>> from sympy.vector import AxisOrienter
>>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j)
>>> A = N.orient_new('A', (axis_orienter, ))
Using a BodyOrienter
>>> from sympy.vector import BodyOrienter
>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> B = N.orient_new('B', (body_orienter, ))
Using a SpaceOrienter
>>> from sympy.vector import SpaceOrienter
>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
>>> C = N.orient_new('C', (space_orienter, ))
Using a QuaternionOrienter
>>> from sympy.vector import QuaternionOrienter
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> D = N.orient_new('D', (q_orienter, ))
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
if isinstance(orienters, Orienter):
if isinstance(orienters, AxisOrienter):
final_matrix = orienters.rotation_matrix(self)
else:
final_matrix = orienters.rotation_matrix()
# TODO: trigsimp is needed here so that the matrix becomes
# canonical (scalar_map also calls trigsimp; without this, you can
# end up with the same CoordinateSystem that compares differently
# due to a differently formatted matrix). However, this is
# probably not so good for performance.
final_matrix = trigsimp(final_matrix)
else:
final_matrix = Matrix(eye(3))
for orienter in orienters:
if isinstance(orienter, AxisOrienter):
final_matrix *= orienter.rotation_matrix(self)
else:
final_matrix *= orienter.rotation_matrix()
return CoordSys3D(name, rotation_matrix=final_matrix,
vector_names=vector_names,
variable_names=variable_names,
location=location,
parent=self)
def orient_new_axis(self, name, angle, axis, location=None,
vector_names=None, variable_names=None):
"""
Axis rotation is a rotation about an arbitrary axis by
some angle. The angle is supplied as a SymPy expr scalar, and
the axis is supplied as a Vector.
Parameters
==========
name : string
The name of the new coordinate system
angle : Expr
The angle by which the new system is to be rotated
axis : Vector
The axis around which the rotation has to be performed
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
orienter = AxisOrienter(angle, axis)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_body(self, name, angle1, angle2, angle3,
rotation_order, location=None,
vector_names=None, variable_names=None):
"""
Body orientation takes this coordinate system through three
successive simple rotations.
Body fixed rotations include both Euler Angles and
Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.
Parameters
==========
name : string
The name of the new coordinate system
angle1, angle2, angle3 : Expr
Three successive angles to rotate the coordinate system by
rotation_order : string
String defining the order of axes for rotation
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
A 'Body' fixed rotation is described by three angles and
three body-fixed rotation axes. To orient a coordinate system D
with respect to N, each sequential rotation is always about
the orthogonal unit vectors fixed to D. For example, a '123'
rotation will specify rotations about N.i, then D.j, then
D.k. (Initially, D.i is same as N.i)
Therefore,
>>> D = N.orient_new_body('D', q1, q2, q3, '123')
is same as
>>> D = N.orient_new_axis('D', q1, N.i)
>>> D = D.orient_new_axis('D', q2, D.j)
>>> D = D.orient_new_axis('D', q3, D.k)
Acceptable rotation orders are of length 3, expressed in XYZ or
123, and cannot have a rotation about about an axis twice in a row.
>>> B = N.orient_new_body('B', q1, q2, q3, '123')
>>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
>>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')
"""
orienter = BodyOrienter(angle1, angle2, angle3, rotation_order)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_space(self, name, angle1, angle2, angle3,
rotation_order, location=None,
vector_names=None, variable_names=None):
"""
Space rotation is similar to Body rotation, but the rotations
are applied in the opposite order.
Parameters
==========
name : string
The name of the new coordinate system
angle1, angle2, angle3 : Expr
Three successive angles to rotate the coordinate system by
rotation_order : string
String defining the order of axes for rotation
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
See Also
========
CoordSys3D.orient_new_body : method to orient via Euler
angles
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
To orient a coordinate system D with respect to N, each
sequential rotation is always about N's orthogonal unit vectors.
For example, a '123' rotation will specify rotations about
N.i, then N.j, then N.k.
Therefore,
>>> D = N.orient_new_space('D', q1, q2, q3, '312')
is same as
>>> B = N.orient_new_axis('B', q1, N.i)
>>> C = B.orient_new_axis('C', q2, N.j)
>>> D = C.orient_new_axis('D', q3, N.k)
"""
orienter = SpaceOrienter(angle1, angle2, angle3, rotation_order)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_quaternion(self, name, q0, q1, q2, q3, location=None,
vector_names=None, variable_names=None):
"""
Quaternion orientation orients the new CoordSys3D with
Quaternions, defined as a finite rotation about lambda, a unit
vector, by some amount theta.
This orientation is described by four parameters:
q0 = cos(theta/2)
q1 = lambda_x sin(theta/2)
q2 = lambda_y sin(theta/2)
q3 = lambda_z sin(theta/2)
Quaternion does not take in a rotation order.
Parameters
==========
name : string
The name of the new coordinate system
q0, q1, q2, q3 : Expr
The quaternions to rotate the coordinate system by
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)
"""
orienter = QuaternionOrienter(q0, q1, q2, q3)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def create_new(self, name, transformation, variable_names=None, vector_names=None):
"""
Returns a CoordSys3D which is connected to self by transformation.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
transformation : Lambda, Tuple, str
Transformation defined by transformation equations or chosen
from predefined ones.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> a = CoordSys3D('a')
>>> b = a.create_new('b', transformation='spherical')
>>> b.transformation_to_parent()
(b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta))
>>> b.transformation_from_parent()
(sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
"""
return CoordSys3D(name, parent=self, transformation=transformation,
variable_names=variable_names, vector_names=vector_names)
def __init__(self, name, location=None, rotation_matrix=None,
parent=None, vector_names=None, variable_names=None,
latex_vects=None, pretty_vects=None, latex_scalars=None,
pretty_scalars=None, transformation=None):
# Dummy initializer for setting docstring
pass
__init__.__doc__ = __new__.__doc__
@staticmethod
def _compose_rotation_and_translation(rot, translation, parent):
r = lambda x, y, z: CoordSys3D._rotation_trans_equations(rot, (x, y, z))
if parent is None:
return r
dx, dy, dz = [translation.dot(i) for i in parent.base_vectors()]
t = lambda x, y, z: (
x + dx,
y + dy,
z + dz,
)
return lambda x, y, z: t(*r(x, y, z))
def _check_strings(arg_name, arg):
errorstr = arg_name + " must be an iterable of 3 string-types"
if len(arg) != 3:
raise ValueError(errorstr)
for s in arg:
if not isinstance(s, string_types):
raise TypeError(errorstr)
|
45cbfd165045bc1bd454c4a1b0e1de33795d1137ebad489245fd779fa18601e4 | from sympy.vector.vector import (Vector, VectorAdd, VectorMul,
BaseVector, VectorZero, Cross, Dot, cross, dot)
from sympy.vector.dyadic import (Dyadic, DyadicAdd, DyadicMul,
BaseDyadic, DyadicZero)
from sympy.vector.scalar import BaseScalar
from sympy.vector.deloperator import Del
from sympy.vector.coordsysrect import CoordSys3D, CoordSysCartesian
from sympy.vector.functions import (express, matrix_to_vector,
laplacian, is_conservative,
is_solenoidal, scalar_potential,
directional_derivative,
scalar_potential_difference)
from sympy.vector.point import Point
from sympy.vector.orienters import (AxisOrienter, BodyOrienter,
SpaceOrienter, QuaternionOrienter)
from sympy.vector.operators import Gradient, Divergence, Curl, Laplacian, gradient, curl, divergence
__all__ = [
'Vector', 'VectorAdd', 'VectorMul', 'BaseVector', 'VectorZero', 'Cross',
'Dot', 'cross', 'dot',
'Dyadic', 'DyadicAdd', 'DyadicMul', 'BaseDyadic', 'DyadicZero',
'BaseScalar',
'Del',
'CoordSys3D', 'CoordSysCartesian',
'express', 'matrix_to_vector', 'laplacian', 'is_conservative',
'is_solenoidal', 'scalar_potential', 'directional_derivative',
'scalar_potential_difference',
'Point',
'AxisOrienter', 'BodyOrienter', 'SpaceOrienter', 'QuaternionOrienter',
'Gradient', 'Divergence', 'Curl', 'Laplacian', 'gradient', 'curl',
'divergence',
]
|
28d8e4d610fd6575591c0e1710028ac1a57e409b1dc63b758282880c3ec6c8f2 | from sympy.simplify import simplify as simp, trigsimp as tsimp
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.core.assumptions import StdFactKB
from sympy import factor as fctr, diff as df, Integral
from sympy.core import S, Add, Mul
from sympy.core.expr import Expr
class BasisDependent(Expr):
"""
Super class containing functionality common to vectors and
dyadics.
Named so because the representation of these quantities in
sympy.vector is dependent on the basis they are expressed in.
"""
@call_highest_priority('__radd__')
def __add__(self, other):
return self._add_func(self, other)
@call_highest_priority('__add__')
def __radd__(self, other):
return self._add_func(other, self)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return self._add_func(self, -other)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return self._add_func(other, -self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return self._mul_func(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self._mul_func(other, self)
def __neg__(self):
return self._mul_func(S.NegativeOne, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rdiv__')
def __div__(self, other):
return self._div_helper(other)
@call_highest_priority('__div__')
def __rdiv__(self, other):
return TypeError("Invalid divisor for division")
__truediv__ = __div__
__rtruediv__ = __rdiv__
def evalf(self, prec=None, **options):
"""
Implements the SymPy evalf routine for this quantity.
evalf's documentation
=====================
"""
vec = self.zero
for k, v in self.components.items():
vec += v.evalf(prec, **options) * k
return vec
evalf.__doc__ += Expr.evalf.__doc__
n = evalf
def simplify(self, **kwargs):
"""
Implements the SymPy simplify routine for this quantity.
simplify's documentation
========================
"""
simp_components = [simp(v, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*simp_components)
simplify.__doc__ += simp.__doc__
def trigsimp(self, **opts):
"""
Implements the SymPy trigsimp routine, for this quantity.
trigsimp's documentation
========================
"""
trig_components = [tsimp(v, **opts) * k for
k, v in self.components.items()]
return self._add_func(*trig_components)
trigsimp.__doc__ += tsimp.__doc__
def _eval_simplify(self, **kwargs):
return self.simplify(**kwargs)
def _eval_trigsimp(self, **opts):
return self.trigsimp(**opts)
def _eval_derivative(self, wrt):
return self.diff(wrt)
def _eval_Integral(self, *symbols, **assumptions):
integral_components = [Integral(v, *symbols, **assumptions) * k
for k, v in self.components.items()]
return self._add_func(*integral_components)
def as_numer_denom(self):
"""
Returns the expression as a tuple wrt the following
transformation -
expression -> a/b -> a, b
"""
return self, S.One
def factor(self, *args, **kwargs):
"""
Implements the SymPy factor routine, on the scalar parts
of a basis-dependent expression.
factor's documentation
========================
"""
fctr_components = [fctr(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*fctr_components)
factor.__doc__ += fctr.__doc__
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return (S.One, self)
def as_coeff_add(self, *deps):
"""Efficiently extract the coefficient of a summation. """
l = [x * self.components[x] for x in self.components]
return 0, tuple(l)
def diff(self, *args, **kwargs):
"""
Implements the SymPy diff routine, for vectors.
diff's documentation
========================
"""
for x in args:
if isinstance(x, BasisDependent):
raise TypeError("Invalid arg for differentiation")
diff_components = [df(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*diff_components)
diff.__doc__ += df.__doc__
def doit(self, **hints):
"""Calls .doit() on each term in the Dyadic"""
doit_components = [self.components[x].doit(**hints) * x
for x in self.components]
return self._add_func(*doit_components)
class BasisDependentAdd(BasisDependent, Add):
"""
Denotes sum of basis dependent quantities such that they cannot
be expressed as base or Mul instances.
"""
def __new__(cls, *args, **options):
components = {}
# Check each arg and simultaneously learn the components
for i, arg in enumerate(args):
if not isinstance(arg, cls._expr_type):
if isinstance(arg, Mul):
arg = cls._mul_func(*(arg.args))
elif isinstance(arg, Add):
arg = cls._add_func(*(arg.args))
else:
raise TypeError(str(arg) +
" cannot be interpreted correctly")
# If argument is zero, ignore
if arg == cls.zero:
continue
# Else, update components accordingly
if hasattr(arg, "components"):
for x in arg.components:
components[x] = components.get(x, 0) + arg.components[x]
temp = list(components.keys())
for x in temp:
if components[x] == 0:
del components[x]
# Handle case of zero vector
if len(components) == 0:
return cls.zero
# Build object
newargs = [x * components[x] for x in components]
obj = super(BasisDependentAdd, cls).__new__(cls,
*newargs, **options)
if isinstance(obj, Mul):
return cls._mul_func(*obj.args)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = components
obj._sys = (list(components.keys()))[0]._sys
return obj
class BasisDependentMul(BasisDependent, Mul):
"""
Denotes product of base- basis dependent quantity with a scalar.
"""
def __new__(cls, *args, **options):
from sympy.vector import Cross, Dot, Curl, Gradient
count = 0
measure_number = S.One
zeroflag = False
extra_args = []
# Determine the component and check arguments
# Also keep a count to ensure two vectors aren't
# being multiplied
for arg in args:
if isinstance(arg, cls._zero_func):
count += 1
zeroflag = True
elif arg == S.Zero:
zeroflag = True
elif isinstance(arg, (cls._base_func, cls._mul_func)):
count += 1
expr = arg._base_instance
measure_number *= arg._measure_number
elif isinstance(arg, cls._add_func):
count += 1
expr = arg
elif isinstance(arg, (Cross, Dot, Curl, Gradient)):
extra_args.append(arg)
else:
measure_number *= arg
# Make sure incompatible types weren't multiplied
if count > 1:
raise ValueError("Invalid multiplication")
elif count == 0:
return Mul(*args, **options)
# Handle zero vector case
if zeroflag:
return cls.zero
# If one of the args was a VectorAdd, return an
# appropriate VectorAdd instance
if isinstance(expr, cls._add_func):
newargs = [cls._mul_func(measure_number, x) for
x in expr.args]
return cls._add_func(*newargs)
obj = super(BasisDependentMul, cls).__new__(cls, measure_number,
expr._base_instance,
*extra_args,
**options)
if isinstance(obj, Add):
return cls._add_func(*obj.args)
obj._base_instance = expr._base_instance
obj._measure_number = measure_number
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = {expr._base_instance: measure_number}
obj._sys = expr._base_instance._sys
return obj
def __str__(self, printer=None):
measure_str = self._measure_number.__str__()
if ('(' in measure_str or '-' in measure_str or
'+' in measure_str):
measure_str = '(' + measure_str + ')'
return measure_str + '*' + self._base_instance.__str__(printer)
__repr__ = __str__
_sympystr = __str__
class BasisDependentZero(BasisDependent):
"""
Class to denote a zero basis dependent instance.
"""
components = {}
def __new__(cls):
obj = super(BasisDependentZero, cls).__new__(cls)
# Pre-compute a specific hash value for the zero vector
# Use the same one always
obj._hash = tuple([S.Zero, cls]).__hash__()
return obj
def __hash__(self):
return self._hash
@call_highest_priority('__req__')
def __eq__(self, other):
return isinstance(other, self._zero_func)
__req__ = __eq__
@call_highest_priority('__radd__')
def __add__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__add__')
def __radd__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__rsub__')
def __sub__(self, other):
if isinstance(other, self._expr_type):
return -other
else:
raise TypeError("Invalid argument types for subtraction")
@call_highest_priority('__sub__')
def __rsub__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for subtraction")
def __neg__(self):
return self
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self
def __str__(self, printer=None):
return '0'
__repr__ = __str__
_sympystr = __str__
|
06e662e1f3b039684baf2f4de0ee9d8906b778cee78f561f47816f915779cb0f | from sympy.core.assumptions import StdFactKB
from sympy.core import S, Pow, sympify
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.compatibility import range, default_sort_key
from sympy import sqrt, ImmutableMatrix as Matrix, Add
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd,
BasisDependentMul, BasisDependentZero)
from sympy.vector.dyadic import BaseDyadic, Dyadic, DyadicAdd
class Vector(BasisDependent):
"""
Super class for all Vector classes.
Ideally, neither this class nor any of its subclasses should be
instantiated by the user.
"""
is_Vector = True
_op_priority = 12.0
@property
def components(self):
"""
Returns the components of this vector in the form of a
Python dictionary mapping BaseVector instances to the
corresponding measure numbers.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.components
{C.i: 3, C.j: 4, C.k: 5}
"""
# The '_components' attribute is defined according to the
# subclass of Vector the instance belongs to.
return self._components
def magnitude(self):
"""
Returns the magnitude of this vector.
"""
return sqrt(self & self)
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self / self.magnitude()
def dot(self, other):
"""
Returns the dot product of this Vector, either with another
Vector, or a Dyadic, or a Del operator.
If 'other' is a Vector, returns the dot product scalar (Sympy
expression).
If 'other' is a Dyadic, the dot product is returned as a Vector.
If 'other' is an instance of Del, returns the directional
derivative operator as a Python function. If this function is
applied to a scalar expression, it returns the directional
derivative of the scalar field wrt this Vector.
Parameters
==========
other: Vector/Dyadic/Del
The Vector or Dyadic we are dotting with, or a Del operator .
Examples
========
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> C.i.dot(C.j)
0
>>> C.i & C.i
1
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.dot(C.k)
5
>>> (C.i & delop)(C.x*C.y*C.z)
C.y*C.z
>>> d = C.i.outer(C.i)
>>> C.i.dot(d)
C.i
"""
# Check special cases
if isinstance(other, Dyadic):
if isinstance(self, VectorZero):
return Vector.zero
outvec = Vector.zero
for k, v in other.components.items():
vect_dot = k.args[0].dot(self)
outvec += vect_dot * v * k.args[1]
return outvec
from sympy.vector.deloperator import Del
if not isinstance(other, Vector) and not isinstance(other, Del):
raise TypeError(str(other) + " is not a vector, dyadic or " +
"del operator")
# Check if the other is a del operator
if isinstance(other, Del):
def directional_derivative(field):
from sympy.vector.functions import directional_derivative
return directional_derivative(field, self)
return directional_derivative
return dot(self, other)
def __and__(self, other):
return self.dot(other)
__and__.__doc__ = dot.__doc__
def cross(self, other):
"""
Returns the cross product of this Vector with another Vector or
Dyadic instance.
The cross product is a Vector, if 'other' is a Vector. If 'other'
is a Dyadic, this returns a Dyadic instance.
Parameters
==========
other: Vector/Dyadic
The Vector or Dyadic we are crossing with.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> C.i.cross(C.j)
C.k
>>> C.i ^ C.i
0
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v ^ C.i
5*C.j + (-4)*C.k
>>> d = C.i.outer(C.i)
>>> C.j.cross(d)
(-1)*(C.k|C.i)
"""
# Check special cases
if isinstance(other, Dyadic):
if isinstance(self, VectorZero):
return Dyadic.zero
outdyad = Dyadic.zero
for k, v in other.components.items():
cross_product = self.cross(k.args[0])
outer = cross_product.outer(k.args[1])
outdyad += v * outer
return outdyad
return cross(self, other)
def __xor__(self, other):
return self.cross(other)
__xor__.__doc__ = cross.__doc__
def outer(self, other):
"""
Returns the outer product of this vector with another, in the
form of a Dyadic instance.
Parameters
==========
other : Vector
The Vector with respect to which the outer product is to
be computed.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N.i.outer(N.j)
(N.i|N.j)
"""
# Handle the special cases
if not isinstance(other, Vector):
raise TypeError("Invalid operand for outer product")
elif (isinstance(self, VectorZero) or
isinstance(other, VectorZero)):
return Dyadic.zero
# Iterate over components of both the vectors to generate
# the required Dyadic instance
args = []
for k1, v1 in self.components.items():
for k2, v2 in other.components.items():
args.append((v1 * v2) * BaseDyadic(k1, k2))
return DyadicAdd(*args)
def projection(self, other, scalar=False):
"""
Returns the vector or scalar projection of the 'other' on 'self'.
Examples
========
>>> from sympy.vector.coordsysrect import CoordSys3D
>>> from sympy.vector.vector import Vector, BaseVector
>>> C = CoordSys3D('C')
>>> i, j, k = C.base_vectors()
>>> v1 = i + j + k
>>> v2 = 3*i + 4*j
>>> v1.projection(v2)
7/3*C.i + 7/3*C.j + 7/3*C.k
>>> v1.projection(v2, scalar=True)
7/3
"""
if self.equals(Vector.zero):
return S.zero if scalar else Vector.zero
if scalar:
return self.dot(other) / self.dot(self)
else:
return self.dot(other) / self.dot(self) * self
@property
def _projections(self):
"""
Returns the components of this vector but the output includes
also zero values components.
Examples
========
>>> from sympy.vector import CoordSys3D, Vector
>>> C = CoordSys3D('C')
>>> v1 = 3*C.i + 4*C.j + 5*C.k
>>> v1._projections
(3, 4, 5)
>>> v2 = C.x*C.y*C.z*C.i
>>> v2._projections
(C.x*C.y*C.z, 0, 0)
>>> v3 = Vector.zero
>>> v3._projections
(0, 0, 0)
"""
from sympy.vector.operators import _get_coord_sys_from_expr
if isinstance(self, VectorZero):
return (S.Zero, S.Zero, S.Zero)
base_vec = next(iter(_get_coord_sys_from_expr(self))).base_vectors()
return tuple([self.dot(i) for i in base_vec])
def __or__(self, other):
return self.outer(other)
__or__.__doc__ = outer.__doc__
def to_matrix(self, system):
"""
Returns the matrix form of this vector with respect to the
specified coordinate system.
Parameters
==========
system : CoordSys3D
The system wrt which the matrix form is to be computed
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> from sympy.abc import a, b, c
>>> v = a*C.i + b*C.j + c*C.k
>>> v.to_matrix(C)
Matrix([
[a],
[b],
[c]])
"""
return Matrix([self.dot(unit_vec) for unit_vec in
system.base_vectors()])
def separate(self):
"""
The constituents of this vector in different coordinate systems,
as per its definition.
Returns a dict mapping each CoordSys3D to the corresponding
constituent Vector.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> R1 = CoordSys3D('R1')
>>> R2 = CoordSys3D('R2')
>>> v = R1.i + R2.i
>>> v.separate() == {R1: R1.i, R2: R2.i}
True
"""
parts = {}
for vect, measure in self.components.items():
parts[vect.system] = (parts.get(vect.system, Vector.zero) +
vect * measure)
return parts
class BaseVector(Vector, AtomicExpr):
"""
Class to denote a base vector.
Unicode pretty forms in Python 2 should use the prefix ``u``.
"""
def __new__(cls, index, system, pretty_str=None, latex_str=None):
if pretty_str is None:
pretty_str = "x{0}".format(index)
if latex_str is None:
latex_str = "x_{0}".format(index)
pretty_str = str(pretty_str)
latex_str = str(latex_str)
# Verify arguments
if index not in range(0, 3):
raise ValueError("index must be 0, 1 or 2")
if not isinstance(system, CoordSys3D):
raise TypeError("system should be a CoordSys3D")
name = system._vector_names[index]
# Initialize an object
obj = super(BaseVector, cls).__new__(cls, S(index), system)
# Assign important attributes
obj._base_instance = obj
obj._components = {obj: S.One}
obj._measure_number = S.One
obj._name = system._name + '.' + name
obj._pretty_form = u'' + pretty_str
obj._latex_form = latex_str
obj._system = system
# The _id is used for printing purposes
obj._id = (index, system)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
# This attr is used for re-expression to one of the systems
# involved in the definition of the Vector. Applies to
# VectorMul and VectorAdd too.
obj._sys = system
return obj
@property
def system(self):
return self._system
def __str__(self, printer=None):
return self._name
@property
def free_symbols(self):
return {self}
__repr__ = __str__
_sympystr = __str__
class VectorAdd(BasisDependentAdd, Vector):
"""
Class to denote sum of Vector instances.
"""
def __new__(cls, *args, **options):
obj = BasisDependentAdd.__new__(cls, *args, **options)
return obj
def __str__(self, printer=None):
ret_str = ''
items = list(self.separate().items())
items.sort(key=lambda x: x[0].__str__())
for system, vect in items:
base_vects = system.base_vectors()
for x in base_vects:
if x in vect.components:
temp_vect = self.components[x] * x
ret_str += temp_vect.__str__(printer) + " + "
return ret_str[:-3]
__repr__ = __str__
_sympystr = __str__
class VectorMul(BasisDependentMul, Vector):
"""
Class to denote products of scalars and BaseVectors.
"""
def __new__(cls, *args, **options):
obj = BasisDependentMul.__new__(cls, *args, **options)
return obj
@property
def base_vector(self):
""" The BaseVector involved in the product. """
return self._base_instance
@property
def measure_number(self):
""" The scalar expression involved in the definition of
this VectorMul.
"""
return self._measure_number
class VectorZero(BasisDependentZero, Vector):
"""
Class to denote a zero vector
"""
_op_priority = 12.1
_pretty_form = u'0'
_latex_form = r'\mathbf{\hat{0}}'
def __new__(cls):
obj = BasisDependentZero.__new__(cls)
return obj
class Cross(Vector):
"""
Represents unevaluated Cross product.
Examples
========
>>> from sympy.vector import CoordSys3D, Cross
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> Cross(v1, v2)
Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k)
>>> Cross(v1, v2).doit()
(-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k
"""
def __new__(cls, expr1, expr2):
expr1 = sympify(expr1)
expr2 = sympify(expr2)
if default_sort_key(expr1) > default_sort_key(expr2):
return -Cross(expr2, expr1)
obj = Expr.__new__(cls, expr1, expr2)
obj._expr1 = expr1
obj._expr2 = expr2
return obj
def doit(self, **kwargs):
return cross(self._expr1, self._expr2)
class Dot(Expr):
"""
Represents unevaluated Dot product.
Examples
========
>>> from sympy.vector import CoordSys3D, Dot
>>> from sympy import symbols
>>> R = CoordSys3D('R')
>>> a, b, c = symbols('a b c')
>>> v1 = R.i + R.j + R.k
>>> v2 = a * R.i + b * R.j + c * R.k
>>> Dot(v1, v2)
Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k)
>>> Dot(v1, v2).doit()
a + b + c
"""
def __new__(cls, expr1, expr2):
expr1 = sympify(expr1)
expr2 = sympify(expr2)
expr1, expr2 = sorted([expr1, expr2], key=default_sort_key)
obj = Expr.__new__(cls, expr1, expr2)
obj._expr1 = expr1
obj._expr2 = expr2
return obj
def doit(self, **kwargs):
return dot(self._expr1, self._expr2)
def cross(vect1, vect2):
"""
Returns cross product of two vectors.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector.vector import cross
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> cross(v1, v2)
(-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k
"""
if isinstance(vect1, Add):
return VectorAdd.fromiter(cross(i, vect2) for i in vect1.args)
if isinstance(vect2, Add):
return VectorAdd.fromiter(cross(vect1, i) for i in vect2.args)
if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
if vect1._sys == vect2._sys:
n1 = vect1.args[0]
n2 = vect2.args[0]
if n1 == n2:
return Vector.zero
n3 = ({0,1,2}.difference({n1, n2})).pop()
sign = 1 if ((n1 + 1) % 3 == n2) else -1
return sign*vect1._sys.base_vectors()[n3]
from .functions import express
try:
v = express(vect1, vect2._sys)
except ValueError:
return Cross(vect1, vect2)
else:
return cross(v, vect2)
if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
return Vector.zero
if isinstance(vect1, VectorMul):
v1, m1 = next(iter(vect1.components.items()))
return m1*cross(v1, vect2)
if isinstance(vect2, VectorMul):
v2, m2 = next(iter(vect2.components.items()))
return m2*cross(vect1, v2)
return Cross(vect1, vect2)
def dot(vect1, vect2):
"""
Returns dot product of two vectors.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector.vector import dot
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> dot(v1, v2)
R.x + R.y + R.z
"""
if isinstance(vect1, Add):
return Add.fromiter(dot(i, vect2) for i in vect1.args)
if isinstance(vect2, Add):
return Add.fromiter(dot(vect1, i) for i in vect2.args)
if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
if vect1._sys == vect2._sys:
return S.One if vect1 == vect2 else S.Zero
from .functions import express
try:
v = express(vect2, vect1._sys)
except ValueError:
return Dot(vect1, vect2)
else:
return dot(vect1, v)
if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
return S.Zero
if isinstance(vect1, VectorMul):
v1, m1 = next(iter(vect1.components.items()))
return m1*dot(v1, vect2)
if isinstance(vect2, VectorMul):
v2, m2 = next(iter(vect2.components.items()))
return m2*dot(vect1, v2)
return Dot(vect1, vect2)
def _vect_div(one, other):
""" Helper for division involving vectors. """
if isinstance(one, Vector) and isinstance(other, Vector):
raise TypeError("Cannot divide two vectors")
elif isinstance(one, Vector):
if other == S.Zero:
raise ValueError("Cannot divide a vector by zero")
return VectorMul(one, Pow(other, S.NegativeOne))
else:
raise TypeError("Invalid division involving a vector")
Vector._expr_type = Vector
Vector._mul_func = VectorMul
Vector._add_func = VectorAdd
Vector._zero_func = VectorZero
Vector._base_func = BaseVector
Vector._div_helper = _vect_div
Vector.zero = VectorZero()
|
054d8c88a9bca89c9927f873d6a0bede71494cf11cbafc78858774da31e3a923 | """
A geometry module for the SymPy library. This module contains all of the
entities and functions needed to construct basic geometrical data and to
perform simple informational queries.
Usage:
======
Examples
========
"""
from sympy.geometry.point import Point, Point2D, Point3D
from sympy.geometry.line import Line, Ray, Segment, Line2D, Segment2D, Ray2D, \
Line3D, Segment3D, Ray3D
from sympy.geometry.plane import Plane
from sympy.geometry.ellipse import Ellipse, Circle
from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle, rad, deg
from sympy.geometry.util import are_similar, centroid, convex_hull, idiff, \
intersection, closest_points, farthest_points
from sympy.geometry.exceptions import GeometryError
from sympy.geometry.curve import Curve
from sympy.geometry.parabola import Parabola
__all__ = [
'Point', 'Point2D', 'Point3D',
'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D',
'Segment3D', 'Ray3D',
'Plane',
'Ellipse', 'Circle',
'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
'closest_points', 'farthest_points',
'GeometryError',
'Curve',
'Parabola',
]
|
ffa9101c28533fc3a88e7e917eec8911285b3283a1887204c21611ff5f2fe9aa | """Geometrical Points.
Contains
========
Point
Point2D
Point3D
When methods of Point require 1 or more points as arguments, they
can be passed as a sequence of coordinates or Points:
>>> from sympy.geometry.point import Point
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
False
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
False
"""
from __future__ import division, print_function
import warnings
from sympy.core import S, sympify, Expr
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.simplify import nsimplify, simplify
from sympy.geometry.exceptions import GeometryError
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import im
from sympy.matrices import Matrix
from sympy.core.numbers import Float
from sympy.core.evaluate import global_evaluate
from sympy.core.add import Add
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent, func_name, Undecidable
from .entity import GeometryEntity
class Point(GeometryEntity):
"""A point in a n-dimensional Euclidean space.
Parameters
==========
coords : sequence of n-coordinate values. In the special
case where n=2 or 3, a Point2D or Point3D will be created
as appropriate.
evaluate : if `True` (default), all floats are turn into
exact types.
dim : number of coordinates the point should have. If coordinates
are unspecified, they are padded with zeros.
on_morph : indicates what should happen when the number of
coordinates of a point need to be changed by adding or
removing zeros. Possible values are `'warn'`, `'error'`, or
`ignore` (default). No warning or error is given when `*args`
is empty and `dim` is given. An error is always raised when
trying to remove nonzero coordinates.
Attributes
==========
length
origin: A `Point` representing the origin of the
appropriately-dimensioned space.
Raises
======
TypeError : When instantiating with anything but a Point or sequence
ValueError : when instantiating with a sequence with length < 2 or
when trying to reduce dimensions if keyword `on_morph='error'` is
set.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point
>>> from sympy.abc import x
>>> Point(1, 2, 3)
Point3D(1, 2, 3)
>>> Point([1, 2])
Point2D(1, 2)
>>> Point(0, x)
Point2D(0, x)
>>> Point(dim=4)
Point(0, 0, 0, 0)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
is_Point = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
on_morph = kwargs.get('on_morph', 'ignore')
# unpack into coords
coords = args[0] if len(args) == 1 else args
# check args and handle quickly handle Point instances
if isinstance(coords, Point):
# even if we're mutating the dimension of a point, we
# don't reevaluate its coordinates
evaluate = False
if len(coords) == kwargs.get('dim', len(coords)):
return coords
if not is_sequence(coords):
raise TypeError(filldedent('''
Expecting sequence of coordinates, not `{}`'''
.format(func_name(coords))))
# A point where only `dim` is specified is initialized
# to zeros.
if len(coords) == 0 and kwargs.get('dim', None):
coords = (S.Zero,)*kwargs.get('dim')
coords = Tuple(*coords)
dim = kwargs.get('dim', len(coords))
if len(coords) < 2:
raise ValueError(filldedent('''
Point requires 2 or more coordinates or
keyword `dim` > 1.'''))
if len(coords) != dim:
message = ("Dimension of {} needs to be changed "
"from {} to {}.").format(coords, len(coords), dim)
if on_morph == 'ignore':
pass
elif on_morph == "error":
raise ValueError(message)
elif on_morph == 'warn':
warnings.warn(message)
else:
raise ValueError(filldedent('''
on_morph value should be 'error',
'warn' or 'ignore'.'''))
if any(coords[dim:]):
raise ValueError('Nonzero coordinates cannot be removed.')
if any(a.is_number and im(a) for a in coords):
raise ValueError('Imaginary coordinates are not permitted.')
if not all(isinstance(a, Expr) for a in coords):
raise TypeError('Coordinates must be valid SymPy expressions.')
# pad with zeros appropriately
coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
# Turn any Floats into rationals and simplify
# any expressions before we instantiate
if evaluate:
coords = coords.xreplace(dict(
[(f, simplify(nsimplify(f, rational=True)))
for f in coords.atoms(Float)]))
# return 2D or 3D instances
if len(coords) == 2:
kwargs['_nocheck'] = True
return Point2D(*coords, **kwargs)
elif len(coords) == 3:
kwargs['_nocheck'] = True
return Point3D(*coords, **kwargs)
# the general Point
return GeometryEntity.__new__(cls, *coords)
def __abs__(self):
"""Returns the distance between this point and the origin."""
origin = Point([0]*len(self))
return Point.distance(origin, self)
def __add__(self, other):
"""Add other to self by incrementing self's coordinates by
those of other.
Notes
=====
>>> from sympy.geometry.point import Point
When sequences of coordinates are passed to Point methods, they
are converted to a Point internally. This __add__ method does
not do that so if floating point values are used, a floating
point result (in terms of SymPy Floats) will be returned.
>>> Point(1, 2) + (.1, .2)
Point2D(1.1, 2.2)
If this is not desired, the `translate` method can be used or
another Point can be added:
>>> Point(1, 2).translate(.1, .2)
Point2D(11/10, 11/5)
>>> Point(1, 2) + Point(.1, .2)
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.translate
"""
try:
s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
except TypeError:
raise GeometryError("Don't know how to add {} and a Point object".format(other))
coords = [simplify(a + b) for a, b in zip(s, o)]
return Point(coords, evaluate=False)
def __contains__(self, item):
return item in self.args
def __div__(self, divisor):
"""Divide point's coordinates by a factor."""
divisor = sympify(divisor)
coords = [simplify(x/divisor) for x in self.args]
return Point(coords, evaluate=False)
def __eq__(self, other):
if not isinstance(other, Point) or len(self.args) != len(other.args):
return False
return self.args == other.args
def __getitem__(self, key):
return self.args[key]
def __hash__(self):
return hash(self.args)
def __iter__(self):
return self.args.__iter__()
def __len__(self):
return len(self.args)
def __mul__(self, factor):
"""Multiply point's coordinates by a factor.
Notes
=====
>>> from sympy.geometry.point import Point
When multiplying a Point by a floating point number,
the coordinates of the Point will be changed to Floats:
>>> Point(1, 2)*0.1
Point2D(0.1, 0.2)
If this is not desired, the `scale` method can be used or
else only multiply or divide by integers:
>>> Point(1, 2).scale(1.1, 1.1)
Point2D(11/10, 11/5)
>>> Point(1, 2)*11/10
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.scale
"""
factor = sympify(factor)
coords = [simplify(x*factor) for x in self.args]
return Point(coords, evaluate=False)
def __rmul__(self, factor):
"""Multiply a factor by point's coordinates."""
return self.__mul__(factor)
def __neg__(self):
"""Negate the point."""
coords = [-x for x in self.args]
return Point(coords, evaluate=False)
def __sub__(self, other):
"""Subtract two points, or subtract a factor from this point's
coordinates."""
return self + [-x for x in other]
@classmethod
def _normalize_dimension(cls, *points, **kwargs):
"""Ensure that points have the same dimension.
By default `on_morph='warn'` is passed to the
`Point` constructor."""
# if we have a built-in ambient dimension, use it
dim = getattr(cls, '_ambient_dimension', None)
# override if we specified it
dim = kwargs.get('dim', dim)
# if no dim was given, use the highest dimensional point
if dim is None:
dim = max(i.ambient_dimension for i in points)
if all(i.ambient_dimension == dim for i in points):
return list(points)
kwargs['dim'] = dim
kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
return [Point(i, **kwargs) for i in points]
@staticmethod
def affine_rank(*args):
"""The affine rank of a set of points is the dimension
of the smallest affine space containing all the points.
For example, if the points lie on a line (and are not all
the same) their affine rank is 1. If the points lie on a plane
but not a line, their affine rank is 2. By convention, the empty
set has affine rank -1."""
if len(args) == 0:
return -1
# make sure we're genuinely points
# and translate every point to the origin
points = Point._normalize_dimension(*[Point(i) for i in args])
origin = points[0]
points = [i - origin for i in points[1:]]
m = Matrix([i.args for i in points])
# XXX fragile -- what is a better way?
return m.rank(iszerofunc = lambda x:
abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)
@property
def ambient_dimension(self):
"""Number of components this point has."""
return getattr(self, '_ambient_dimension', len(self))
@classmethod
def are_coplanar(cls, *points):
"""Return True if there exists a plane in which all the points
lie. A trivial True value is returned if `len(points) < 3` or
all Points are 2-dimensional.
Parameters
==========
A set of points
Raises
======
ValueError : if less than 3 unique points are given
Returns
=======
boolean
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 2)
>>> p2 = Point3D(2, 7, 2)
>>> p3 = Point3D(0, 0, 2)
>>> p4 = Point3D(1, 1, 2)
>>> Point3D.are_coplanar(p1, p2, p3, p4)
True
>>> p5 = Point3D(0, 1, 3)
>>> Point3D.are_coplanar(p1, p2, p3, p5)
False
"""
if len(points) <= 1:
return True
points = cls._normalize_dimension(*[Point(i) for i in points])
# quick exit if we are in 2D
if points[0].ambient_dimension == 2:
return True
points = list(uniq(points))
return Point.affine_rank(*points) <= 2
def distance(self, other):
"""The Euclidean distance between self and another GeometricEntity.
Returns
=======
distance : number or symbolic expression.
Raises
======
TypeError : if other is not recognized as a GeometricEntity or is a
GeometricEntity for which distance is not defined.
See Also
========
sympy.geometry.line.Segment.length
sympy.geometry.point.Point.taxicab_distance
Examples
========
>>> from sympy.geometry import Point, Line
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> l = Line((3, 1), (2, 2))
>>> p1.distance(p2)
5
>>> p1.distance(l)
sqrt(2)
The computed distance may be symbolic, too:
>>> from sympy.abc import x, y
>>> p3 = Point(x, y)
>>> p3.distance((0, 0))
sqrt(x**2 + y**2)
"""
if not isinstance(other, GeometryEntity):
try:
other = Point(other, dim=self.ambient_dimension)
except TypeError:
raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
if isinstance(other, Point):
s, p = Point._normalize_dimension(self, Point(other))
return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
distance = getattr(other, 'distance', None)
if distance is None:
raise TypeError("distance between Point and %s is not defined" % type(other))
return distance(self)
def dot(self, p):
"""Return dot product of self with another Point."""
if not is_sequence(p):
p = Point(p) # raise the error via Point
return Add(*(a*b for a, b in zip(self, p)))
def equals(self, other):
"""Returns whether the coordinates of self and other agree."""
# a point is equal to another point if all its components are equal
if not isinstance(other, Point) or len(self) != len(other):
return False
return all(a.equals(b) for a, b in zip(self, other))
def evalf(self, prec=None, **options):
"""Evaluate the coordinates of the point.
This method will, where possible, create and return a new Point
where the coordinates are evaluated as floating point numbers to
the precision indicated (default=15).
Parameters
==========
prec : int
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Rational
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
>>> p1
Point2D(1/2, 3/2)
>>> p1.evalf()
Point2D(0.5, 1.5)
"""
coords = [x.evalf(prec, **options) for x in self.args]
return Point(*coords, evaluate=False)
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : GeometryEntity or sequence of coordinates
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point2D(0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other)
if isinstance(other, Point):
if self == other:
return [self]
p1, p2 = Point._normalize_dimension(self, other)
if p1 == self and p1 == p2:
return [self]
return []
return other.intersection(self)
def is_collinear(self, *args):
"""Returns `True` if there exists a line
that contains `self` and `points`. Returns `False` otherwise.
A trivially True value is returned if no points are given.
Parameters
==========
args : sequence of Points
Returns
=======
is_collinear : boolean
See Also
========
sympy.geometry.line.Line
Examples
========
>>> from sympy import Point
>>> from sympy.abc import x
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
>>> Point.is_collinear(p1, p2, p3, p4)
True
>>> Point.is_collinear(p1, p2, p3, p5)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
return Point.affine_rank(*points) <= 1
def is_concyclic(self, *args):
"""Do `self` and the given sequence of points lie in a circle?
Returns True if the set of points are concyclic and
False otherwise. A trivial value of True is returned
if there are fewer than 2 other points.
Parameters
==========
args : sequence of Points
Returns
=======
is_concyclic : boolean
Examples
========
>>> from sympy import Point
Define 4 points that are on the unit circle:
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
True
Define a point not on that circle:
>>> p = Point(1, 1)
>>> p.is_concyclic(p1, p2, p3)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
if not Point.affine_rank(*points) <= 2:
return False
origin = points[0]
points = [p - origin for p in points]
# points are concyclic if they are coplanar and
# there is a point c so that ||p_i-c|| == ||p_j-c|| for all
# i and j. Rearranging this equation gives us the following
# condition: the matrix `mat` must not a pivot in the last
# column.
mat = Matrix([list(i) + [i.dot(i)] for i in points])
rref, pivots = mat.rref()
if len(origin) not in pivots:
return True
return False
@property
def is_nonzero(self):
"""True if any coordinate is nonzero, False if every coordinate is zero,
and None if it cannot be determined."""
is_zero = self.is_zero
if is_zero is None:
return None
return not is_zero
def is_scalar_multiple(self, p):
"""Returns whether each coordinate of `self` is a scalar
multiple of the corresponding coordinate in point p.
"""
s, o = Point._normalize_dimension(self, Point(p))
# 2d points happen a lot, so optimize this function call
if s.ambient_dimension == 2:
(x1, y1), (x2, y2) = s.args, o.args
rv = (x1*y2 - x2*y1).equals(0)
if rv is None:
raise Undecidable(filldedent(
'''can't determine if %s is a scalar multiple of
%s''' % (s, o)))
# if the vectors p1 and p2 are linearly dependent, then they must
# be scalar multiples of each other
m = Matrix([s.args, o.args])
return m.rank() < 2
@property
def is_zero(self):
"""True if every coordinate is zero, False if any coordinate is not zero,
and None if it cannot be determined."""
nonzero = [x.is_nonzero for x in self.args]
if any(nonzero):
return False
if any(x is None for x in nonzero):
return None
return True
@property
def length(self):
"""
Treating a Point as a Line, this returns 0 for the length of a Point.
Examples
========
>>> from sympy import Point
>>> p = Point(0, 1)
>>> p.length
0
"""
return S.Zero
def midpoint(self, p):
"""The midpoint between self and point p.
Parameters
==========
p : Point
Returns
=======
midpoint : Point
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(13, 5)
>>> p1.midpoint(p2)
Point2D(7, 3)
"""
s, p = Point._normalize_dimension(self, Point(p))
return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
@property
def origin(self):
"""A point of all zeros of the same ambient dimension
as the current point"""
return Point([0]*len(self), evaluate=False)
@property
def orthogonal_direction(self):
"""Returns a non-zero point that is orthogonal to the
line containing `self` and the origin.
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2, 3)
>>> a.orthogonal_direction
Point3D(-2, 1, 0)
>>> b = _
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
True
"""
dim = self.ambient_dimension
# if a coordinate is zero, we can put a 1 there and zeros elsewhere
if self[0].is_zero:
return Point([1] + (dim - 1)*[0])
if self[1].is_zero:
return Point([0,1] + (dim - 2)*[0])
# if the first two coordinates aren't zero, we can create a non-zero
# orthogonal vector by swapping them, negating one, and padding with zeros
return Point([-self[1], self[0]] + (dim - 2)*[0])
@staticmethod
def project(a, b):
"""Project the point `a` onto the line between the origin
and point `b` along the normal direction.
Parameters
==========
a : Point
b : Point
Returns
=======
p : Point
See Also
========
sympy.geometry.line.LinearEntity.projection
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2)
>>> b = Point(2, 5)
>>> z = a.origin
>>> p = Point.project(a, b)
>>> Line(p, a).is_perpendicular(Line(p, b))
True
>>> Point.is_collinear(z, p, b)
True
"""
a, b = Point._normalize_dimension(Point(a), Point(b))
if b.is_zero:
raise ValueError("Cannot project to the zero vector.")
return b*(a.dot(b) / b.dot(b))
def taxicab_distance(self, p):
"""The Taxicab Distance from self to point p.
Returns the sum of the horizontal and vertical distances to point p.
Parameters
==========
p : Point
Returns
=======
taxicab_distance : The sum of the horizontal
and vertical distances to point p.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> p1.taxicab_distance(p2)
7
"""
s, p = Point._normalize_dimension(self, Point(p))
return Add(*(abs(a - b) for a, b in zip(s, p)))
def canberra_distance(self, p):
"""The Canberra Distance from self to point p.
Returns the weighted sum of horizontal and vertical distances to
point p.
Parameters
==========
p : Point
Returns
=======
canberra_distance : The weighted sum of horizontal and vertical
distances to point p. The weight used is the sum of absolute values
of the coordinates.
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(3, 3)
>>> p1.canberra_distance(p2)
1
>>> p1, p2 = Point(0, 0), Point(3, 3)
>>> p1.canberra_distance(p2)
2
Raises
======
ValueError when both vectors are zero.
See Also
========
sympy.geometry.point.Point.distance
"""
s, p = Point._normalize_dimension(self, Point(p))
if self.is_zero and p.is_zero:
raise ValueError("Cannot project to the zero vector.")
return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
@property
def unit(self):
"""Return the Point that is in the same direction as `self`
and a distance of 1 from the origin"""
return self / abs(self)
n = evalf
__truediv__ = __div__
class Point2D(Point):
"""A point in a 2-dimensional Euclidean space.
Parameters
==========
coords : sequence of 2 coordinate values.
Attributes
==========
x
y
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When trying to create a point with more than two dimensions.
When `intersection` is called with object other than a Point.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point2D
>>> from sympy.abc import x
>>> Point2D(1, 2)
Point2D(1, 2)
>>> Point2D([1, 2])
Point2D(1, 2)
>>> Point2D(0, x)
Point2D(0, x)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point2D(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point2D(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
_ambient_dimension = 2
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 2
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
return (self.x, self.y, self.x, self.y)
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
See Also
========
translate, scale
Examples
========
>>> from sympy import Point2D, pi
>>> t = Point2D(1, 0)
>>> t.rotate(pi/2)
Point2D(0, 1)
>>> t.rotate(pi/2, (2, 0))
Point2D(2, -1)
"""
from sympy import cos, sin, Point
c = cos(angle)
s = sin(angle)
rv = self
if pt is not None:
pt = Point(pt, dim=2)
rv -= pt
x, y = rv.args
rv = Point(c*x - s*y, s*x + c*y)
if pt is not None:
rv += pt
return rv
def scale(self, x=1, y=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
rotate, translate
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(1, 1)
>>> t.scale(2)
Point2D(2, 1)
>>> t.scale(2, 2)
Point2D(2, 2)
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return Point(self.x*x, self.y*y)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 3x3 Matrix, ``matrix``.
See Also
========
sympy.geometry.point.Point2D.rotate
sympy.geometry.point.Point2D.scale
sympy.geometry.point.Point2D.translate
"""
if not (matrix.is_Matrix and matrix.shape == (3, 3)):
raise ValueError("matrix must be a 3x3 matrix")
col, row = matrix.shape
x, y = self.args
return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
def translate(self, x=0, y=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
sympy.geometry.point.Point2D.rotate, scale
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(0, 1)
>>> t.translate(2)
Point2D(2, 1)
>>> t.translate(2, 2)
Point2D(2, 3)
>>> t + Point2D(2, 2)
Point2D(2, 3)
"""
return Point(self.x + x, self.y + y)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.y
1
"""
return self.args[1]
class Point3D(Point):
"""A point in a 3-dimensional Euclidean space.
Parameters
==========
coords : sequence of 3 coordinate values.
Attributes
==========
x
y
z
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When `intersection` is called with object other than a Point.
Examples
========
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> Point3D(1, 2, 3)
Point3D(1, 2, 3)
>>> Point3D([1, 2, 3])
Point3D(1, 2, 3)
>>> Point3D(0, x, 3)
Point3D(0, x, 3)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point3D(0.5, 0.25, 2)
Point3D(1/2, 1/4, 2)
>>> Point3D(0.5, 0.25, 3, evaluate=False)
Point3D(0.5, 0.25, 3)
"""
_ambient_dimension = 3
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 3
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@staticmethod
def are_collinear(*points):
"""Is a sequence of points collinear?
Test whether or not a set of points are collinear. Returns True if
the set of points are collinear, or False otherwise.
Parameters
==========
points : sequence of Point
Returns
=======
are_collinear : boolean
See Also
========
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Point3D, Matrix
>>> from sympy.abc import x
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
>>> Point3D.are_collinear(p1, p2, p3, p4)
True
>>> Point3D.are_collinear(p1, p2, p3, p5)
False
"""
return Point.is_collinear(*points)
def direction_cosine(self, point):
"""
Gives the direction cosine between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_cosine(Point3D(2, 3, 5))
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
"""
a = self.direction_ratio(point)
b = sqrt(Add(*(i**2 for i in a)))
return [(point.x - self.x) / b,(point.y - self.y) / b,
(point.z - self.z) / b]
def direction_ratio(self, point):
"""
Gives the direction ratio between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_ratio(Point3D(2, 3, 5))
[1, 1, 2]
"""
return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : GeometryEntity or sequence of coordinates
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point3D(0, 0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=3)
if isinstance(other, Point3D):
if self == other:
return [self]
return []
return other.intersection(self)
def scale(self, x=1, y=1, z=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
translate
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(1, 1, 1)
>>> t.scale(2)
Point3D(2, 1, 1)
>>> t.scale(2, 2)
Point3D(2, 2, 1)
"""
if pt:
pt = Point3D(pt)
return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
return Point3D(self.x*x, self.y*y, self.z*z)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 4x4 Matrix, ``matrix``.
See Also
========
sympy.geometry.point.Point3D.scale
sympy.geometry.point.Point3D.translate
"""
if not (matrix.is_Matrix and matrix.shape == (4, 4)):
raise ValueError("matrix must be a 4x4 matrix")
col, row = matrix.shape
from sympy.matrices.expressions import Transpose
x, y, z = self.args
m = Transpose(matrix)
return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
def translate(self, x=0, y=0, z=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
scale
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(0, 1, 1)
>>> t.translate(2)
Point3D(2, 1, 1)
>>> t.translate(2, 2)
Point3D(2, 3, 1)
>>> t + Point3D(2, 2, 2)
Point3D(2, 3, 3)
"""
return Point3D(self.x + x, self.y + y, self.z + z)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 3)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.y
1
"""
return self.args[1]
@property
def z(self):
"""
Returns the Z coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 1)
>>> p.z
1
"""
return self.args[2]
|
bb40794a27676ff0d3c423aa06721c8f8df431c3259f24a07121a756c5b051fb | """Elliptical geometrical entities.
Contains
* Ellipse
* Circle
"""
from __future__ import division, print_function
from sympy import Expr, Eq
from sympy.core import S, pi, sympify
from sympy.core.evaluate import global_evaluate
from sympy.core.logic import fuzzy_bool
from sympy.core.numbers import Rational, oo
from sympy.core.compatibility import ordered
from sympy.core.symbol import Dummy, _uniquely_named_symbol, _symbol
from sympy.simplify import simplify, trigsimp
from sympy.functions.elementary.miscellaneous import sqrt, Max
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.special.elliptic_integrals import elliptic_e
from sympy.geometry.exceptions import GeometryError
from sympy.geometry.line import Ray2D, Segment2D, Line2D, LinearEntity3D
from sympy.polys import DomainError, Poly, PolynomialError
from sympy.polys.polyutils import _not_a_coeff, _nsort
from sympy.solvers import solve
from sympy.solvers.solveset import linear_coeffs
from sympy.utilities.misc import filldedent, func_name
from .entity import GeometryEntity, GeometrySet
from .point import Point, Point2D, Point3D
from .line import Line, Segment
from .util import idiff
import random
class Ellipse(GeometrySet):
"""An elliptical GeometryEntity.
Parameters
==========
center : Point, optional
Default value is Point(0, 0)
hradius : number or SymPy expression, optional
vradius : number or SymPy expression, optional
eccentricity : number or SymPy expression, optional
Two of `hradius`, `vradius` and `eccentricity` must be supplied to
create an Ellipse. The third is derived from the two supplied.
Attributes
==========
center
hradius
vradius
area
circumference
eccentricity
periapsis
apoapsis
focus_distance
foci
Raises
======
GeometryError
When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
as parameters.
TypeError
When `center` is not a Point.
See Also
========
Circle
Notes
-----
Constructed from a center and two radii, the first being the horizontal
radius (along the x-axis) and the second being the vertical radius (along
the y-axis).
When symbolic value for hradius and vradius are used, any calculation that
refers to the foci or the major or minor axis will assume that the ellipse
has its major radius on the x-axis. If this is not true then a manual
rotation is necessary.
Examples
========
>>> from sympy import Ellipse, Point, Rational
>>> e1 = Ellipse(Point(0, 0), 5, 1)
>>> e1.hradius, e1.vradius
(5, 1)
>>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
>>> e2
Ellipse(Point2D(3, 1), 3, 9/5)
"""
def __contains__(self, o):
if isinstance(o, Point):
x = Dummy('x', real=True)
y = Dummy('y', real=True)
res = self.equation(x, y).subs({x: o.x, y: o.y})
return trigsimp(simplify(res)) is S.Zero
elif isinstance(o, Ellipse):
return self == o
return False
def __eq__(self, o):
"""Is the other GeometryEntity the same as this ellipse?"""
return isinstance(o, Ellipse) and (self.center == o.center and
self.hradius == o.hradius and
self.vradius == o.vradius)
def __hash__(self):
return super(Ellipse, self).__hash__()
def __new__(
cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
hradius = sympify(hradius)
vradius = sympify(vradius)
eccentricity = sympify(eccentricity)
if center is None:
center = Point(0, 0)
else:
center = Point(center, dim=2)
if len(center) != 2:
raise ValueError('The center of "{0}" must be a two dimensional point'.format(cls))
if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
raise ValueError(filldedent('''
Exactly two arguments of "hradius", "vradius", and
"eccentricity" must not be None.'''))
if eccentricity is not None:
if hradius is None:
hradius = vradius / sqrt(1 - eccentricity**2)
elif vradius is None:
vradius = hradius * sqrt(1 - eccentricity**2)
if hradius == vradius:
return Circle(center, hradius, **kwargs)
if hradius == 0 or vradius == 0:
return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))
return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG ellipse element for the Ellipse.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
c = N(self.center)
h, v = N(self.hradius), N(self.vradius)
return (
'<ellipse fill="{1}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>'
).format(2. * scale_factor, fill_color, c.x, c.y, h, v)
@property
def ambient_dimension(self):
return 2
@property
def apoapsis(self):
"""The apoapsis of the ellipse.
The greatest distance between the focus and the contour.
Returns
=======
apoapsis : number
See Also
========
periapsis : Returns shortest distance between foci and contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.apoapsis
2*sqrt(2) + 3
"""
return self.major * (1 + self.eccentricity)
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the ellipse.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
arbitrary_point : Point
Raises
======
ValueError
When `parameter` already appears in the functions.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.arbitrary_point()
Point2D(3*cos(t), 2*sin(t))
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError(filldedent('Symbol %s already appears in object '
'and cannot be used as a parameter.' % t.name))
return Point(self.center.x + self.hradius*cos(t),
self.center.y + self.vradius*sin(t))
@property
def area(self):
"""The area of the ellipse.
Returns
=======
area : number
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.area
3*pi
"""
return simplify(S.Pi * self.hradius * self.vradius)
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
h, v = self.hradius, self.vradius
return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)
@property
def center(self):
"""The center of the ellipse.
Returns
=======
center : number
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.center
Point2D(0, 0)
"""
return self.args[0]
@property
def circumference(self):
"""The circumference of the ellipse.
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.circumference
12*elliptic_e(8/9)
"""
if self.eccentricity == 1:
# degenerate
return 4*self.major
elif self.eccentricity == 0:
# circle
return 2*pi*self.hradius
else:
return 4*self.major*elliptic_e(self.eccentricity**2)
@property
def eccentricity(self):
"""The eccentricity of the ellipse.
Returns
=======
eccentricity : number
Examples
========
>>> from sympy import Point, Ellipse, sqrt
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, sqrt(2))
>>> e1.eccentricity
sqrt(7)/3
"""
return self.focus_distance / self.major
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
-----
Being on the border of self is considered False.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Ellipse, S
>>> from sympy.abc import t
>>> e = Ellipse((0, 0), 3, 2)
>>> e.encloses_point((0, 0))
True
>>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
False
>>> e.encloses_point((4, 0))
False
"""
p = Point(p, dim=2)
if p in self:
return False
if len(self.foci) == 2:
# if the combined distance from the foci to p (h1 + h2) is less
# than the combined distance from the foci to the minor axis
# (which is the same as the major axis length) then p is inside
# the ellipse
h1, h2 = [f.distance(p) for f in self.foci]
test = 2*self.major - (h1 + h2)
else:
test = self.radius - self.center.distance(p)
return fuzzy_bool(test.is_positive)
def equation(self, x='x', y='y', _slope=None):
"""
Returns the equation of an ellipse aligned with the x and y axes;
when slope is given, the equation returned corresponds to an ellipse
with a major axis having that slope.
Parameters
==========
x : str, optional
Label for the x-axis. Default value is 'x'.
y : str, optional
Label for the y-axis. Default value is 'y'.
_slope : Expr, optional
The slope of the major axis. Ignored when 'None'.
Returns
=======
equation : sympy expression
See Also
========
arbitrary_point : Returns parameterized point on ellipse
Examples
========
>>> from sympy import Point, Ellipse, pi
>>> from sympy.abc import x, y
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> eq1 = e1.equation(x, y); eq1
y**2/4 + (x/3 - 1/3)**2 - 1
>>> eq2 = e1.equation(x, y, _slope=1); eq2
(-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
A point on e1 satisfies eq1. Let's use one on the x-axis:
>>> p1 = e1.center + Point(e1.major, 0)
>>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
When rotated the same as the rotated ellipse, about the center
point of the ellipse, it will satisfy the rotated ellipse's
equation, too:
>>> r1 = p1.rotate(pi/4, e1.center)
>>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
References
==========
.. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
.. [2] https://en.wikipedia.org/wiki/Ellipse#Equation_of_a_shifted_ellipse
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
dx = x - self.center.x
dy = y - self.center.y
if _slope is not None:
L = (dy - _slope*dx)**2
l = (_slope*dy + dx)**2
h = 1 + _slope**2
b = h*self.major**2
a = h*self.minor**2
return l/b + L/a - 1
else:
t1 = (dx/self.hradius)**2
t2 = (dy/self.vradius)**2
return t1 + t2 - 1
def evolute(self, x='x', y='y'):
"""The equation of evolute of the ellipse.
Parameters
==========
x : str, optional
Label for the x-axis. Default value is 'x'.
y : str, optional
Label for the y-axis. Default value is 'y'.
Returns
=======
equation : sympy expression
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> e1.evolute()
2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
"""
if len(self.args) != 3:
raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
x = _symbol(x, real=True)
y = _symbol(y, real=True)
t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)
@property
def foci(self):
"""The foci of the ellipse.
Notes
-----
The foci can only be calculated if the major/minor axes are known.
Raises
======
ValueError
When the major and minor axis cannot be determined.
See Also
========
sympy.geometry.point.Point
focus_distance : Returns the distance between focus and center
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.foci
(Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
"""
c = self.center
hr, vr = self.hradius, self.vradius
if hr == vr:
return (c, c)
# calculate focus distance manually, since focus_distance calls this
# routine
fd = sqrt(self.major**2 - self.minor**2)
if hr == self.minor:
# foci on the y-axis
return (c + Point(0, -fd), c + Point(0, fd))
elif hr == self.major:
# foci on the x-axis
return (c + Point(-fd, 0), c + Point(fd, 0))
@property
def focus_distance(self):
"""The focal distance of the ellipse.
The distance between the center and one focus.
Returns
=======
focus_distance : number
See Also
========
foci
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.focus_distance
2*sqrt(2)
"""
return Point.distance(self.center, self.foci[0])
@property
def hradius(self):
"""The horizontal radius of the ellipse.
Returns
=======
hradius : number
See Also
========
vradius, major, minor
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.hradius
3
"""
return self.args[1]
def intersection(self, o):
"""The intersection of this ellipse and another geometrical entity
`o`.
Parameters
==========
o : GeometryEntity
Returns
=======
intersection : list of GeometryEntity objects
Notes
-----
Currently supports intersections with Point, Line, Segment, Ray,
Circle and Ellipse types.
See Also
========
sympy.geometry.entity.GeometryEntity
Examples
========
>>> from sympy import Ellipse, Point, Line, sqrt
>>> e = Ellipse(Point(0, 0), 5, 7)
>>> e.intersection(Point(0, 0))
[]
>>> e.intersection(Point(5, 0))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(0,0), Point(0, 1)))
[Point2D(0, -7), Point2D(0, 7)]
>>> e.intersection(Line(Point(5,0), Point(5, 1)))
[Point2D(5, 0)]
>>> e.intersection(Line(Point(6,0), Point(6, 1)))
[]
>>> e = Ellipse(Point(-1, 0), 4, 3)
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
[Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
[Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
[]
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
[Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
[Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
"""
# TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain
x = Dummy('x', real=True)
y = Dummy('y', real=True)
if isinstance(o, Point):
if o in self:
return [o]
else:
return []
elif isinstance(o, (Segment2D, Ray2D)):
ellipse_equation = self.equation(x, y)
result = solve([ellipse_equation, Line(o.points[0], o.points[1]).equation(x, y)], [x, y])
return list(ordered([Point(i) for i in result if i in o]))
elif isinstance(o, Polygon):
return o.intersection(self)
elif isinstance(o, (Ellipse, Line2D)):
if o == self:
return self
else:
ellipse_equation = self.equation(x, y)
return list(ordered([Point(i) for i in solve([ellipse_equation, o.equation(x, y)], [x, y])]))
elif isinstance(o, LinearEntity3D):
raise TypeError('Entity must be two dimensional, not three dimensional')
else:
raise TypeError('Intersection not handled for %s' % func_name(o))
def is_tangent(self, o):
"""Is `o` tangent to the ellipse?
Parameters
==========
o : GeometryEntity
An Ellipse, LinearEntity or Polygon
Raises
======
NotImplementedError
When the wrong type of argument is supplied.
Returns
=======
is_tangent: boolean
True if o is tangent to the ellipse, False otherwise.
See Also
========
tangent_lines
Examples
========
>>> from sympy import Point, Ellipse, Line
>>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
>>> e1 = Ellipse(p0, 3, 2)
>>> l1 = Line(p1, p2)
>>> e1.is_tangent(l1)
True
"""
if isinstance(o, Point2D):
return False
elif isinstance(o, Ellipse):
intersect = self.intersection(o)
if isinstance(intersect, Ellipse):
return True
elif intersect:
return all((self.tangent_lines(i)[0]).equals((o.tangent_lines(i)[0])) for i in intersect)
else:
return False
elif isinstance(o, Line2D):
hit = self.intersection(o)
if not hit:
return False
if len(hit) == 1:
return True
# might return None if it can't decide
return hit[0].equals(hit[1])
elif isinstance(o, Ray2D):
intersect = self.intersection(o)
if len(intersect) == 1:
return intersect[0] != o.source and not self.encloses_point(o.source)
else:
return False
elif isinstance(o, (Segment2D, Polygon)):
all_tangents = False
segments = o.sides if isinstance(o, Polygon) else [o]
for segment in segments:
intersect = self.intersection(segment)
if len(intersect) == 1:
if not any(intersect[0] in i for i in segment.points) \
and all(not self.encloses_point(i) for i in segment.points):
all_tangents = True
continue
else:
return False
else:
return all_tangents
return all_tangents
elif isinstance(o, (LinearEntity3D, Point3D)):
raise TypeError('Entity must be two dimensional, not three dimensional')
else:
raise TypeError('Is_tangent not handled for %s' % func_name(o))
@property
def major(self):
"""Longer axis of the ellipse (if it can be determined) else hradius.
Returns
=======
major : number or expression
See Also
========
hradius, vradius, minor
Examples
========
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.major
3
>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).major
a
>>> Ellipse(p1, b, a).major
b
>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).major
m + 1
"""
ab = self.args[1:3]
if len(ab) == 1:
return ab[0]
a, b = ab
o = b - a < 0
if o == True:
return a
elif o == False:
return b
return self.hradius
@property
def minor(self):
"""Shorter axis of the ellipse (if it can be determined) else vradius.
Returns
=======
minor : number or expression
See Also
========
hradius, vradius, major
Examples
========
>>> from sympy import Point, Ellipse, Symbol
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.minor
1
>>> a = Symbol('a')
>>> b = Symbol('b')
>>> Ellipse(p1, a, b).minor
b
>>> Ellipse(p1, b, a).minor
a
>>> m = Symbol('m')
>>> M = m + 1
>>> Ellipse(p1, m, M).minor
m
"""
ab = self.args[1:3]
if len(ab) == 1:
return ab[0]
a, b = ab
o = a - b < 0
if o == True:
return a
elif o == False:
return b
return self.vradius
def normal_lines(self, p, prec=None):
"""Normal lines between `p` and the ellipse.
Parameters
==========
p : Point
Returns
=======
normal_lines : list with 1, 2 or 4 Lines
Examples
========
>>> from sympy import Line, Point, Ellipse
>>> e = Ellipse((0, 0), 2, 3)
>>> c = e.center
>>> e.normal_lines(c + Point(1, 0))
[Line2D(Point2D(0, 0), Point2D(1, 0))]
>>> e.normal_lines(c)
[Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]
Off-axis points require the solution of a quartic equation. This
often leads to very large expressions that may be of little practical
use. An approximate solution of `prec` digits can be obtained by
passing in the desired value:
>>> e.normal_lines((3, 3), prec=2)
[Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
Whereas the above solution has an operation count of 12, the exact
solution has an operation count of 2020.
"""
p = Point(p, dim=2)
# XXX change True to something like self.angle == 0 if the arbitrarily
# rotated ellipse is introduced.
# https://github.com/sympy/sympy/issues/2815)
if True:
rv = []
if p.x == self.center.x:
rv.append(Line(self.center, slope=oo))
if p.y == self.center.y:
rv.append(Line(self.center, slope=0))
if rv:
# at these special orientations of p either 1 or 2 normals
# exist and we are done
return rv
# find the 4 normal points and construct lines through them with
# the corresponding slope
x, y = Dummy('x', real=True), Dummy('y', real=True)
eq = self.equation(x, y)
dydx = idiff(eq, y, x)
norm = -1/dydx
slope = Line(p, (x, y)).slope
seq = slope - norm
# TODO: Replace solve with solveset, when this line is tested
yis = solve(seq, y)[0]
xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
if len(xeq.free_symbols) == 1:
try:
# this is so much faster, it's worth a try
xsol = Poly(xeq, x).real_roots()
except (DomainError, PolynomialError, NotImplementedError):
# TODO: Replace solve with solveset, when these lines are tested
xsol = _nsort(solve(xeq, x), separated=True)[0]
points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
else:
raise NotImplementedError(
'intersections for the general ellipse are not supported')
slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
if prec is not None:
points = [pt.n(prec) for pt in points]
slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
@property
def periapsis(self):
"""The periapsis of the ellipse.
The shortest distance between the focus and the contour.
Returns
=======
periapsis : number
See Also
========
apoapsis : Returns greatest distance between focus and contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.periapsis
3 - 2*sqrt(2)
"""
return self.major * (1 - self.eccentricity)
@property
def semilatus_rectum(self):
"""
Calculates the semi-latus rectum of the Ellipse.
Semi-latus rectum is defined as one half of the the chord through a
focus parallel to the conic section directrix of a conic section.
Returns
=======
semilatus_rectum : number
See Also
========
apoapsis : Returns greatest distance between focus and contour
periapsis : The shortest distance between the focus and the contour
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.semilatus_rectum
1/3
References
==========
[1] http://mathworld.wolfram.com/SemilatusRectum.html
[2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum
"""
return self.major * (1 - self.eccentricity ** 2)
def auxiliary_circle(self):
"""Returns a Circle whose diameter is the major axis of the ellipse.
Examples
========
>>> from sympy import Circle, Ellipse, Point, symbols
>>> c = Point(1, 2)
>>> Ellipse(c, 8, 7).auxiliary_circle()
Circle(Point2D(1, 2), 8)
>>> a, b = symbols('a b')
>>> Ellipse(c, a, b).auxiliary_circle()
Circle(Point2D(1, 2), Max(a, b))
"""
return Circle(self.center, Max(self.hradius, self.vradius))
def director_circle(self):
"""
Returns a Circle consisting of all points where two perpendicular
tangent lines to the ellipse cross each other.
Returns
=======
Circle
A director circle returned as a geometric object.
Examples
========
>>> from sympy import Circle, Ellipse, Point, symbols
>>> c = Point(3,8)
>>> Ellipse(c, 7, 9).director_circle()
Circle(Point2D(3, 8), sqrt(130))
>>> a, b = symbols('a b')
>>> Ellipse(c, a, b).director_circle()
Circle(Point2D(3, 8), sqrt(a**2 + b**2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Director_circle
"""
return Circle(self.center, sqrt(self.hradius**2 + self.vradius**2))
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Ellipse.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.plot_interval()
[t, -pi, pi]
"""
t = _symbol(parameter, real=True)
return [t, -S.Pi, S.Pi]
def random_point(self, seed=None):
"""A random point on the ellipse.
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Ellipse, Segment
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.random_point() # gives some random point
Point2D(...)
>>> p1 = e1.random_point(seed=0); p1.n(2)
Point2D(2.1, 1.4)
Notes
=====
When creating a random point, one may simply replace the
parameter with a random number. When doing so, however, the
random number should be made a Rational or else the point
may not test as being in the ellipse:
>>> from sympy.abc import t
>>> from sympy import Rational
>>> arb = e1.arbitrary_point(t); arb
Point2D(3*cos(t), 2*sin(t))
>>> arb.subs(t, .1) in e1
False
>>> arb.subs(t, Rational(.1)) in e1
True
>>> arb.subs(t, Rational('.1')) in e1
True
See Also
========
sympy.geometry.point.Point
arbitrary_point : Returns parameterized point on ellipse
"""
from sympy import sin, cos, Rational
t = _symbol('t', real=True)
x, y = self.arbitrary_point(t).args
# get a random value in [-1, 1) corresponding to cos(t)
# and confirm that it will test as being in the ellipse
if seed is not None:
rng = random.Random(seed)
else:
rng = random
# simplify this now or else the Float will turn s into a Float
r = Rational(rng.random())
c = 2*r - 1
s = sqrt(1 - c**2)
return Point(x.subs(cos(t), c), y.subs(sin(t), s))
def reflect(self, line):
"""Override GeometryEntity.reflect since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
>>> from sympy import Ellipse, Line, Point
>>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
Traceback (most recent call last):
...
NotImplementedError:
General Ellipse is not supported but the equation of the reflected
Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
Notes
=====
Until the general ellipse (with no axis parallel to the x-axis) is
supported a NotImplemented error is raised and the equation whose
zeros define the rotated ellipse is given.
"""
if line.slope in (0, oo):
c = self.center
c = c.reflect(line)
return self.func(c, -self.hradius, self.vradius)
else:
x, y = [_uniquely_named_symbol(
name, (self, line), real=True) for name in 'xy']
expr = self.equation(x, y)
p = Point(x, y).reflect(line)
result = expr.subs(zip((x, y), p.args
), simultaneous=True)
raise NotImplementedError(filldedent(
'General Ellipse is not supported but the equation '
'of the reflected Ellipse is given by the zeros of: ' +
"f(%s, %s) = %s" % (str(x), str(y), str(result))))
def rotate(self, angle=0, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
Note: since the general ellipse is not supported, only rotations that
are integer multiples of pi/2 are allowed.
Examples
========
>>> from sympy import Ellipse, pi
>>> Ellipse((1, 0), 2, 1).rotate(pi/2)
Ellipse(Point2D(0, 1), 1, 2)
>>> Ellipse((1, 0), 2, 1).rotate(pi)
Ellipse(Point2D(-1, 0), 2, 1)
"""
if self.hradius == self.vradius:
return self.func(self.center.rotate(angle, pt), self.hradius)
if (angle/S.Pi).is_integer:
return super(Ellipse, self).rotate(angle, pt)
if (2*angle/S.Pi).is_integer:
return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
# XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since it is the major and minor
axes which must be scaled and they are not GeometryEntities.
Examples
========
>>> from sympy import Ellipse
>>> Ellipse((0, 0), 2, 1).scale(2, 4)
Circle(Point2D(0, 0), 4)
>>> Ellipse((0, 0), 2, 1).scale(2)
Ellipse(Point2D(0, 0), 4, 1)
"""
c = self.center
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
h = self.hradius
v = self.vradius
return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)
def tangent_lines(self, p):
"""Tangent lines between `p` and the ellipse.
If `p` is on the ellipse, returns the tangent line through point `p`.
Otherwise, returns the tangent line(s) from `p` to the ellipse, or
None if no tangent line is possible (e.g., `p` inside ellipse).
Parameters
==========
p : Point
Returns
=======
tangent_lines : list with 1 or 2 Lines
Raises
======
NotImplementedError
Can only find tangent lines for a point, `p`, on the ellipse.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Line
Examples
========
>>> from sympy import Point, Ellipse
>>> e1 = Ellipse(Point(0, 0), 3, 2)
>>> e1.tangent_lines(Point(3, 0))
[Line2D(Point2D(3, 0), Point2D(3, -12))]
"""
p = Point(p, dim=2)
if self.encloses_point(p):
return []
if p in self:
delta = self.center - p
rise = (self.vradius**2)*delta.x
run = -(self.hradius**2)*delta.y
p2 = Point(simplify(p.x + run),
simplify(p.y + rise))
return [Line(p, p2)]
else:
if len(self.foci) == 2:
f1, f2 = self.foci
maj = self.hradius
test = (2*maj -
Point.distance(f1, p) -
Point.distance(f2, p))
else:
test = self.radius - Point.distance(self.center, p)
if test.is_number and test.is_positive:
return []
# else p is outside the ellipse or we can't tell. In case of the
# latter, the solutions returned will only be valid if
# the point is not inside the ellipse; if it is, nan will result.
x, y = Dummy('x'), Dummy('y')
eq = self.equation(x, y)
dydx = idiff(eq, y, x)
slope = Line(p, Point(x, y)).slope
# TODO: Replace solve with solveset, when this line is tested
tangent_points = solve([slope - dydx, eq], [x, y])
# handle horizontal and vertical tangent lines
if len(tangent_points) == 1:
assert tangent_points[0][
0] == p.x or tangent_points[0][1] == p.y
return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
# others
return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
@property
def vradius(self):
"""The vertical radius of the ellipse.
Returns
=======
vradius : number
See Also
========
hradius, major, minor
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.vradius
1
"""
return self.args[2]
def second_moment_of_area(self, point=None):
"""Returns the second moment and product moment area of an ellipse.
Parameters
==========
point : Point, two-tuple of sympifiable objects, or None(default=None)
point is the point about which second moment of area is to be found.
If "point=None" it will be calculated about the axis passing through the
centroid of the ellipse.
Returns
=======
I_xx, I_yy, I_xy : number or sympy expression
I_xx, I_yy are second moment of area of an ellise.
I_xy is product moment of area of an ellipse.
Examples
========
>>> from sympy import Point, Ellipse
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> e1.second_moment_of_area()
(3*pi/4, 27*pi/4, 0)
References
==========
https://en.wikipedia.org/wiki/List_of_second_moments_of_area
"""
I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
I_xy = 0
if point is None:
return I_xx, I_yy, I_xy
# parallel axis theorem
I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)
return I_xx, I_yy, I_xy
def polar_second_moment_of_area(self):
"""Returns the polar second moment of area of an Ellipse
It is a constituent of the second moment of area, linked through
the perpendicular axis theorem. While the planar second moment of
area describes an object's resistance to deflection (bending) when
subjected to a force applied to a plane parallel to the central
axis, the polar second moment of area describes an object's
resistance to deflection when subjected to a moment applied in a
plane perpendicular to the object's central axis (i.e. parallel to
the cross-section)
References
==========
https://en.wikipedia.org/wiki/Polar_moment_of_inertia
Examples
========
>>> from sympy import symbols, Circle, Ellipse
>>> c = Circle((5, 5), 4)
>>> c.polar_second_moment_of_area()
128*pi
>>> a, b = symbols('a, b')
>>> e = Ellipse((0, 0), a, b)
>>> e.polar_second_moment_of_area()
pi*a**3*b/4 + pi*a*b**3/4
"""
second_moment = self.second_moment_of_area()
return second_moment[0] + second_moment[1]
def section_modulus(self, point=None):
"""Returns a tuple with the section modulus of an ellipse
Section modulus is a geometric property of an ellipse defined as the
ratio of second moment of area to the distance of the extreme end of
the ellipse from the centroidal axis.
References
==========
https://en.wikipedia.org/wiki/Section_modulus
Parameters
==========
point : Point, two-tuple of sympifyable objects, or None(default=None)
point is the point at which section modulus is to be found.
If "point=None" section modulus will be calculated for the
point farthest from the centroidal axis of the ellipse.
Returns
=======
S_x, S_y: numbers or SymPy expressions
S_x is the section modulus with respect to the x-axis
S_y is the section modulus with respect to the y-axis
A negetive sign indicates that the section modulus is
determined for a point below the centroidal axis.
Examples
========
>>> from sympy import Symbol, Ellipse, Circle, Point2D
>>> d = Symbol('d', positive=True)
>>> c = Circle((0, 0), d/2)
>>> c.section_modulus()
(pi*d**3/32, pi*d**3/32)
>>> e = Ellipse(Point2D(0, 0), 2, 4)
>>> e.section_modulus()
(8*pi, 4*pi)
"""
x_c, y_c = self.center
if point is None:
# taking x and y as maximum distances from centroid
x_min, y_min, x_max, y_max = self.bounds
y = max(y_c - y_min, y_max - y_c)
x = max(x_c - x_min, x_max - x_c)
else:
# taking x and y as distances of the given point from the center
y = point.y - y_c
x = point.x - x_c
second_moment = self.second_moment_of_area()
S_x = second_moment[0]/y
S_y = second_moment[1]/x
return S_x, S_y
class Circle(Ellipse):
"""A circle in space.
Constructed simply from a center and a radius, from three
non-collinear points, or the equation of a circle.
Parameters
==========
center : Point
radius : number or sympy expression
points : sequence of three Points
equation : equation of a circle
Attributes
==========
radius (synonymous with hradius, vradius, major and minor)
circumference
equation
Raises
======
GeometryError
When the given equation is not that of a circle.
When trying to construct circle from incorrect parameters.
See Also
========
Ellipse, sympy.geometry.point.Point
Examples
========
>>> from sympy import Eq
>>> from sympy.geometry import Point, Circle
>>> from sympy.abc import x, y, a, b
A circle constructed from a center and radius:
>>> c1 = Circle(Point(0, 0), 5)
>>> c1.hradius, c1.vradius, c1.radius
(5, 5, 5)
A circle constructed from three points:
>>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
>>> c2.hradius, c2.vradius, c2.radius, c2.center
(sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
A circle can be constructed from an equation in the form
`a*x**2 + by**2 + gx + hy + c = 0`, too:
>>> Circle(x**2 + y**2 - 25)
Circle(Point2D(0, 0), 5)
If the variables corresponding to x and y are named something
else, their name or symbol can be supplied:
>>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
Circle(Point2D(0, 0), 5)
"""
def __new__(cls, *args, **kwargs):
from sympy.geometry.util import find
from .polygon import Triangle
evaluate = kwargs.get('evaluate', global_evaluate[0])
if len(args) == 1 and isinstance(args[0], Expr):
x = kwargs.get('x', 'x')
y = kwargs.get('y', 'y')
equation = args[0]
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
x = find(x, equation)
y = find(y, equation)
try:
a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
except ValueError:
raise GeometryError("The given equation is not that of a circle.")
if a == 0 or b == 0 or a != b:
raise GeometryError("The given equation is not that of a circle.")
center_x = -c/a/2
center_y = -d/b/2
r2 = (center_x**2) + (center_y**2) - e
return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)
else:
c, r = None, None
if len(args) == 3:
args = [Point(a, dim=2, evaluate=evaluate) for a in args]
t = Triangle(*args)
if not isinstance(t, Triangle):
return t
c = t.circumcenter
r = t.circumradius
elif len(args) == 2:
# Assume (center, radius) pair
c = Point(args[0], dim=2, evaluate=evaluate)
r = args[1]
# this will prohibit imaginary radius
try:
r = Point(r, 0, evaluate=evaluate).x
except ValueError:
raise GeometryError("Circle with imaginary radius is not permitted")
if not (c is None or r is None):
if r == 0:
return c
return GeometryEntity.__new__(cls, c, r, **kwargs)
raise GeometryError("Circle.__new__ received unknown arguments")
@property
def circumference(self):
"""The circumference of the circle.
Returns
=======
circumference : number or SymPy expression
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.circumference
12*pi
"""
return 2 * S.Pi * self.radius
def equation(self, x='x', y='y'):
"""The equation of the circle.
Parameters
==========
x : str or Symbol, optional
Default value is 'x'.
y : str or Symbol, optional
Default value is 'y'.
Returns
=======
equation : SymPy expression
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(0, 0), 5)
>>> c1.equation()
x**2 + y**2 - 25
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
t1 = (x - self.center.x)**2
t2 = (y - self.center.y)**2
return t1 + t2 - self.major**2
def intersection(self, o):
"""The intersection of this circle with another geometrical entity.
Parameters
==========
o : GeometryEntity
Returns
=======
intersection : list of GeometryEntities
Examples
========
>>> from sympy import Point, Circle, Line, Ray
>>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
>>> p4 = Point(5, 0)
>>> c1 = Circle(p1, 5)
>>> c1.intersection(p2)
[]
>>> c1.intersection(p4)
[Point2D(5, 0)]
>>> c1.intersection(Ray(p1, p2))
[Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
>>> c1.intersection(Line(p2, p3))
[]
"""
return Ellipse.intersection(self, o)
@property
def radius(self):
"""The radius of the circle.
Returns
=======
radius : number or sympy expression
See Also
========
Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.radius
6
"""
return self.args[1]
def reflect(self, line):
"""Override GeometryEntity.reflect since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle, Line
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point2D(1, 0), -1)
"""
c = self.center
c = c.reflect(line)
return self.func(c, -self.radius)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since the radius
is not a GeometryEntity.
Examples
========
>>> from sympy import Circle
>>> Circle((0, 0), 1).scale(2, 2)
Circle(Point2D(0, 0), 2)
>>> Circle((0, 0), 1).scale(2, 4)
Ellipse(Point2D(0, 0), 2, 4)
"""
c = self.center
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
c = c.scale(x, y)
x, y = [abs(i) for i in (x, y)]
if x == y:
return self.func(c, x*self.radius)
h = v = self.radius
return Ellipse(c, hradius=h*x, vradius=v*y)
@property
def vradius(self):
"""
This Ellipse property is an alias for the Circle's radius.
Whereas hradius, major and minor can use Ellipse's conventions,
the vradius does not exist for a circle. It is always a positive
value in order that the Circle, like Polygons, will have an
area that can be positive or negative as determined by the sign
of the hradius.
Examples
========
>>> from sympy import Point, Circle
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.vradius
6
"""
return abs(self.radius)
from .polygon import Polygon
|
55af47963e64e4b8d3d4ae496155566137cf2fd99110054c5fcc8f6c23647f0b | """The definition of the base geometrical entity with attributes common to
all derived geometrical entities.
Contains
========
GeometryEntity
GeometricSet
Notes
=====
A GeometryEntity is any object that has special geometric properties.
A GeometrySet is a superclass of any GeometryEntity that can also
be viewed as a sympy.sets.Set. In particular, points are the only
GeometryEntity not considered a Set.
Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and
R3 are currently the only ambient spaces implemented.
"""
from __future__ import division, print_function
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence
from sympy.core.containers import Tuple
from sympy.core.sympify import sympify
from sympy.functions import cos, sin
from sympy.matrices import eye
from sympy.multipledispatch import dispatch
from sympy.sets import Set
from sympy.sets.handlers.intersection import intersection_sets
from sympy.sets.handlers.union import union_sets
from sympy.utilities.misc import func_name
# How entities are ordered; used by __cmp__ in GeometryEntity
ordering_of_classes = [
"Point2D",
"Point3D",
"Point",
"Segment2D",
"Ray2D",
"Line2D",
"Segment3D",
"Line3D",
"Ray3D",
"Segment",
"Ray",
"Line",
"Plane",
"Triangle",
"RegularPolygon",
"Polygon",
"Circle",
"Ellipse",
"Curve",
"Parabola"
]
class GeometryEntity(Basic):
"""The base class for all geometrical entities.
This class doesn't represent any particular geometric entity, it only
provides the implementation of some methods common to all subclasses.
"""
def __cmp__(self, other):
"""Comparison of two GeometryEntities."""
n1 = self.__class__.__name__
n2 = other.__class__.__name__
c = (n1 > n2) - (n1 < n2)
if not c:
return 0
i1 = -1
for cls in self.__class__.__mro__:
try:
i1 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i1 = -1
if i1 == -1:
return c
i2 = -1
for cls in other.__class__.__mro__:
try:
i2 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i2 = -1
if i2 == -1:
return c
return (i1 > i2) - (i1 < i2)
def __contains__(self, other):
"""Subclasses should implement this method for anything more complex than equality."""
if type(self) == type(other):
return self == other
raise NotImplementedError()
def __getnewargs__(self):
"""Returns a tuple that will be passed to __new__ on unpickling."""
return tuple(self.args)
def __ne__(self, o):
"""Test inequality of two geometrical entities."""
return not self == o
def __new__(cls, *args, **kwargs):
# Points are sequences, but they should not
# be converted to Tuples, so use this detection function instead.
def is_seq_and_not_point(a):
# we cannot use isinstance(a, Point) since we cannot import Point
if hasattr(a, 'is_Point') and a.is_Point:
return False
return is_sequence(a)
args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args]
return Basic.__new__(cls, *args)
def __radd__(self, a):
"""Implementation of reverse add method."""
return a.__add__(self)
def __rdiv__(self, a):
"""Implementation of reverse division method."""
return a.__div__(self)
def __repr__(self):
"""String representation of a GeometryEntity that can be evaluated
by sympy."""
return type(self).__name__ + repr(self.args)
def __rmul__(self, a):
"""Implementation of reverse multiplication method."""
return a.__mul__(self)
def __rsub__(self, a):
"""Implementation of reverse subtraction method."""
return a.__sub__(self)
def __str__(self):
"""String representation of a GeometryEntity."""
from sympy.printing import sstr
return type(self).__name__ + sstr(self.args)
def _eval_subs(self, old, new):
from sympy.geometry.point import Point, Point3D
if is_sequence(old) or is_sequence(new):
if isinstance(self, Point3D):
old = Point3D(old)
new = Point3D(new)
else:
old = Point(old)
new = Point(new)
return self._subs(old, new)
def _repr_svg_(self):
"""SVG representation of a GeometryEntity suitable for IPython"""
from sympy.core.evalf import N
try:
bounds = self.bounds
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
svg_top = '''<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
width="{1}" height="{2}" viewBox="{0}"
preserveAspectRatio="xMinYMin meet">
<defs>
<marker id="markerCircle" markerWidth="8" markerHeight="8"
refx="5" refy="5" markerUnits="strokeWidth">
<circle cx="5" cy="5" r="1.5" style="stroke: none; fill:#000000;"/>
</marker>
<marker id="markerArrow" markerWidth="13" markerHeight="13" refx="2" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M2,2 L2,6 L6,4" style="fill: #000000;" />
</marker>
<marker id="markerReverseArrow" markerWidth="13" markerHeight="13" refx="6" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M6,2 L6,6 L2,4" style="fill: #000000;" />
</marker>
</defs>'''
# Establish SVG canvas that will fit all the data + small space
xmin, ymin, xmax, ymax = map(N, bounds)
if xmin == xmax and ymin == ymax:
# This is a point; buffer using an arbitrary size
xmin, ymin, xmax, ymax = xmin - .5, ymin -.5, xmax + .5, ymax + .5
else:
# Expand bounds by a fraction of the data ranges
expand = 0.1 # or 10%; this keeps arrowheads in view (R plots use 4%)
widest_part = max([xmax - xmin, ymax - ymin])
expand_amount = widest_part * expand
xmin -= expand_amount
ymin -= expand_amount
xmax += expand_amount
ymax += expand_amount
dx = xmax - xmin
dy = ymax - ymin
width = min([max([100., dx]), 300])
height = min([max([100., dy]), 300])
scale_factor = 1. if max(width, height) == 0 else max(dx, dy) / max(width, height)
try:
svg = self._svg(scale_factor)
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
view_box = "{0} {1} {2} {3}".format(xmin, ymin, dx, dy)
transform = "matrix(1,0,0,-1,0,{0})".format(ymax + ymin)
svg_top = svg_top.format(view_box, width, height)
return svg_top + (
'<g transform="{0}">{1}</g></svg>'
).format(transform, svg)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the GeometryEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
raise NotImplementedError()
def _sympy_(self):
return self
@property
def ambient_dimension(self):
"""What is the dimension of the space that the object is contained in?"""
raise NotImplementedError()
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
raise NotImplementedError()
def encloses(self, o):
"""
Return True if o is inside (not on or outside) the boundaries of self.
The object will be decomposed into Points and individual Entities need
only define an encloses_point method for their class.
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
sympy.geometry.polygon.Polygon.encloses_point
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
>>> t2.encloses(t)
True
>>> t.encloses(t2)
False
"""
from sympy.geometry.point import Point
from sympy.geometry.line import Segment, Ray, Line
from sympy.geometry.ellipse import Ellipse
from sympy.geometry.polygon import Polygon, RegularPolygon
if isinstance(o, Point):
return self.encloses_point(o)
elif isinstance(o, Segment):
return all(self.encloses_point(x) for x in o.points)
elif isinstance(o, Ray) or isinstance(o, Line):
return False
elif isinstance(o, Ellipse):
return self.encloses_point(o.center) and \
self.encloses_point(
Point(o.center.x + o.hradius, o.center.y)) and \
not self.intersection(o)
elif isinstance(o, Polygon):
if isinstance(o, RegularPolygon):
if not self.encloses_point(o.center):
return False
return all(self.encloses_point(v) for v in o.vertices)
raise NotImplementedError()
def equals(self, o):
return self == o
def intersection(self, o):
"""
Returns a list of all of the intersections of self with o.
Notes
=====
An entity is not required to implement this method.
If two different types of entities can intersect, the item with
higher index in ordering_of_classes should implement
intersections with anything having a lower index.
See Also
========
sympy.geometry.util.intersection
"""
raise NotImplementedError()
def is_similar(self, other):
"""Is this geometrical entity similar to another geometrical entity?
Two entities are similar if a uniform scaling (enlarging or
shrinking) of one of the entities will allow one to obtain the other.
Notes
=====
This method is not intended to be used directly but rather
through the `are_similar` function found in util.py.
An entity is not required to implement this method.
If two different types of entities can be similar, it is only
required that one of them be able to determine this.
See Also
========
scale
"""
raise NotImplementedError()
def reflect(self, line):
"""
Reflects an object across a line.
Parameters
==========
line: Line
Examples
========
>>> from sympy import pi, sqrt, Line, RegularPolygon
>>> l = Line((0, pi), slope=sqrt(2))
>>> pent = RegularPolygon((1, 2), 1, 5)
>>> rpent = pent.reflect(l)
>>> rpent
RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
>>> from sympy import pi, Line, Circle, Point
>>> l = Line((0, pi), slope=1)
>>> circ = Circle(Point(0, 0), 5)
>>> rcirc = circ.reflect(l)
>>> rcirc
Circle(Point2D(-pi, pi), -5)
"""
from sympy import atan, Point, Dummy, oo
g = self
l = line
o = Point(0, 0)
if l.slope.is_zero:
y = l.args[0].y
if not y: # x-axis
return g.scale(y=-1)
reps = [(p, p.translate(y=2*(y - p.y))) for p in g.atoms(Point)]
elif l.slope is oo:
x = l.args[0].x
if not x: # y-axis
return g.scale(x=-1)
reps = [(p, p.translate(x=2*(x - p.x))) for p in g.atoms(Point)]
else:
if not hasattr(g, 'reflect') and not all(
isinstance(arg, Point) for arg in g.args):
raise NotImplementedError(
'reflect undefined or non-Point args in %s' % g)
a = atan(l.slope)
c = l.coefficients
d = -c[-1]/c[1] # y-intercept
# apply the transform to a single point
x, y = Dummy(), Dummy()
xf = Point(x, y)
xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1
).rotate(a, o).translate(y=d)
# replace every point using that transform
reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)]
return g.xreplace(dict(reps))
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
The default pt is the origin, Point(0, 0)
See Also
========
scale, translate
Examples
========
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t # vertex on x axis
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.rotate(pi/2) # vertex on y axis now
Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.rotate(angle, pt))
else:
newargs.append(a)
return type(self)(*newargs)
def scale(self, x=1, y=1, pt=None):
"""Scale the object by multiplying the x,y-coordinates by x and y.
If pt is given, the scaling is done relative to that point; the
object is shifted by -pt, scaled, and shifted by pt.
See Also
========
rotate, translate
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.scale(2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
>>> t.scale(2, 2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
"""
from sympy.geometry.point import Point
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class
def translate(self, x=0, y=0):
"""Shift the object by adding to the x,y-coordinates the values x and y.
See Also
========
rotate, scale
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.translate(2)
Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
>>> t.translate(2, 2)
Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.translate(x, y))
else:
newargs.append(a)
return self.func(*newargs)
def parameter_value(self, other, t):
"""Return the parameter corresponding to the given point.
Evaluating an arbitrary point of the entity at this parameter
value will return the given point.
Examples
========
>>> from sympy import Line, Point
>>> from sympy.abc import t
>>> a = Point(0, 0)
>>> b = Point(2, 2)
>>> Line(a, b).parameter_value((1, 1), t)
{t: 1/2}
>>> Line(a, b).arbitrary_point(t).subs(_)
Point2D(1, 1)
"""
from sympy.geometry.point import Point
from sympy.core.symbol import Dummy
from sympy.solvers.solvers import solve
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other, Point):
raise ValueError("other must be a point")
T = Dummy('t', real=True)
sol = solve(self.arbitrary_point(T) - other, T, dict=True)
if not sol:
raise ValueError("Given point is not on %s" % func_name(self))
return {t: sol[0][T]}
class GeometrySet(GeometryEntity, Set):
"""Parent class of all GeometryEntity that are also Sets
(compatible with sympy.sets)
"""
def _contains(self, other):
"""sympy.sets uses the _contains method, so include it for compatibility."""
if isinstance(other, Set) and other.is_FiniteSet:
return all(self.__contains__(i) for i in other)
return self.__contains__(other)
@dispatch(GeometrySet, Set)
def union_sets(self, o): # noqa:F811
""" Returns the union of self and o
for use with sympy.sets.Set, if possible. """
from sympy.sets import Union, FiniteSet
# if its a FiniteSet, merge any points
# we contain and return a union with the rest
if o.is_FiniteSet:
other_points = [p for p in o if not self._contains(p)]
if len(other_points) == len(o):
return None
return Union(self, FiniteSet(*other_points))
if self._contains(o):
return self
return None
@dispatch(GeometrySet, Set)
def intersection_sets(self, o): # noqa:F811
""" Returns a sympy.sets.Set of intersection objects,
if possible. """
from sympy.sets import FiniteSet, Union
from sympy.geometry import Point
try:
# if o is a FiniteSet, find the intersection directly
# to avoid infinite recursion
if o.is_FiniteSet:
inter = FiniteSet(*(p for p in o if self.contains(p)))
else:
inter = self.intersection(o)
except NotImplementedError:
# sympy.sets.Set.reduce expects None if an object
# doesn't know how to simplify
return None
# put the points in a FiniteSet
points = FiniteSet(*[p for p in inter if isinstance(p, Point)])
non_points = [p for p in inter if not isinstance(p, Point)]
return Union(*(non_points + [points]))
def translate(x, y):
"""Return the matrix to translate a 2-D point by x and y."""
rv = eye(3)
rv[2, 0] = x
rv[2, 1] = y
return rv
def scale(x, y, pt=None):
"""Return the matrix to multiply a 2-D point's coordinates by x and y.
If pt is given, the scaling is done relative to that point."""
rv = eye(3)
rv[0, 0] = x
rv[1, 1] = y
if pt:
from sympy.geometry.point import Point
pt = Point(pt, dim=2)
tr1 = translate(*(-pt).args)
tr2 = translate(*pt.args)
return tr1*rv*tr2
return rv
def rotate(th):
"""Return the matrix to rotate a 2-D point about the origin by ``angle``.
The angle is measured in radians. To Point a point about a point other
then the origin, translate the Point, do the rotation, and
translate it back:
>>> from sympy.geometry.entity import rotate, translate
>>> from sympy import Point, pi
>>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1)
>>> Point(1, 1).transform(rot_about_11)
Point2D(1, 1)
>>> Point(0, 0).transform(rot_about_11)
Point2D(2, 0)
"""
s = sin(th)
rv = eye(3)*cos(th)
rv[0, 1] = s
rv[1, 0] = -s
rv[2, 2] = 1
return rv
|
a78d60976e1b14e3d70a4cc4180a43eb69ea776ececa75cfdb354f25c2b5bdfb | """Utility functions for geometrical entities.
Contains
========
intersection
convex_hull
closest_points
farthest_points
are_coplanar
are_similar
"""
from __future__ import division, print_function
from sympy import Function, Symbol, solve, sqrt
from sympy.core.compatibility import (
is_sequence, range, string_types, ordered)
from sympy.core.containers import OrderedSet
from .point import Point, Point2D
def find(x, equation):
"""
Checks whether the parameter 'x' is present in 'equation' or not.
If it is present then it returns the passed parameter 'x' as a free
symbol, else, it returns a ValueError.
"""
free = equation.free_symbols
xs = [i for i in free if (i.name if isinstance(x, string_types) else i) == x]
if not xs:
raise ValueError('could not find %s' % x)
if len(xs) != 1:
raise ValueError('ambiguous %s' % x)
return xs[0]
def _ordered_points(p):
"""Return the tuple of points sorted numerically according to args"""
return tuple(sorted(p, key=lambda x: x.args))
def are_coplanar(*e):
""" Returns True if the given entities are coplanar otherwise False
Parameters
==========
e: entities to be checked for being coplanar
Returns
=======
Boolean
Examples
========
>>> from sympy import Point3D, Line3D
>>> from sympy.geometry.util import are_coplanar
>>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
>>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
>>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
>>> are_coplanar(a, b, c)
False
"""
from sympy.geometry.line import LinearEntity3D
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point3D
from sympy.geometry.plane import Plane
# XXX update tests for coverage
e = set(e)
# first work with a Plane if present
for i in list(e):
if isinstance(i, Plane):
e.remove(i)
return all(p.is_coplanar(i) for p in e)
if all(isinstance(i, Point3D) for i in e):
if len(e) < 3:
return False
# remove pts that are collinear with 2 pts
a, b = e.pop(), e.pop()
for i in list(e):
if Point3D.are_collinear(a, b, i):
e.remove(i)
if not e:
return False
else:
# define a plane
p = Plane(a, b, e.pop())
for i in e:
if i not in p:
return False
return True
else:
pt3d = []
for i in e:
if isinstance(i, Point3D):
pt3d.append(i)
elif isinstance(i, LinearEntity3D):
pt3d.extend(i.args)
elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised
# all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
for p in i.args:
if isinstance(p, Point):
pt3d.append(Point3D(*(p.args + (0,))))
return are_coplanar(*pt3d)
def are_similar(e1, e2):
"""Are two geometrical entities similar.
Can one geometrical entity be uniformly scaled to the other?
Parameters
==========
e1 : GeometryEntity
e2 : GeometryEntity
Returns
=======
are_similar : boolean
Raises
======
GeometryError
When `e1` and `e2` cannot be compared.
Notes
=====
If the two objects are equal then they are similar.
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy import Point, Circle, Triangle, are_similar
>>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
>>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
>>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
>>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
>>> are_similar(t1, t2)
True
>>> are_similar(t1, t3)
False
"""
from .exceptions import GeometryError
if e1 == e2:
return True
is_similar1 = getattr(e1, 'is_similar', None)
if is_similar1:
return is_similar1(e2)
is_similar2 = getattr(e2, 'is_similar', None)
if is_similar2:
return is_similar2(e1)
n1 = e1.__class__.__name__
n2 = e2.__class__.__name__
raise GeometryError(
"Cannot test similarity between %s and %s" % (n1, n2))
def centroid(*args):
"""Find the centroid (center of mass) of the collection containing only Points,
Segments or Polygons. The centroid is the weighted average of the individual centroid
where the weights are the lengths (of segments) or areas (of polygons).
Overlapping regions will add to the weight of that region.
If there are no objects (or a mixture of objects) then None is returned.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment,
sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy import Point, Segment, Polygon
>>> from sympy.geometry.util import centroid
>>> p = Polygon((0, 0), (10, 0), (10, 10))
>>> q = p.translate(0, 20)
>>> p.centroid, q.centroid
(Point2D(20/3, 10/3), Point2D(20/3, 70/3))
>>> centroid(p, q)
Point2D(20/3, 40/3)
>>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
>>> centroid(p, q)
Point2D(1, 2 - sqrt(2))
>>> centroid(Point(0, 0), Point(2, 0))
Point2D(1, 0)
Stacking 3 polygons on top of each other effectively triples the
weight of that polygon:
>>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
>>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
>>> centroid(p, q)
Point2D(3/2, 1/2)
>>> centroid(p, p, p, q) # centroid x-coord shifts left
Point2D(11/10, 1/2)
Stacking the squares vertically above and below p has the same
effect:
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
Point2D(11/10, 1/2)
"""
from sympy.geometry import Polygon, Segment, Point
if args:
if all(isinstance(g, Point) for g in args):
c = Point(0, 0)
for g in args:
c += g
den = len(args)
elif all(isinstance(g, Segment) for g in args):
c = Point(0, 0)
L = 0
for g in args:
l = g.length
c += g.midpoint*l
L += l
den = L
elif all(isinstance(g, Polygon) for g in args):
c = Point(0, 0)
A = 0
for g in args:
a = g.area
c += g.centroid*a
A += a
den = A
c /= den
return c.func(*[i.simplify() for i in c.args])
def closest_points(*args):
"""Return the subset of points from a set of points that were
the closest to each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html
[2] Sweep line algorithm
https://en.wikipedia.org/wiki/Sweep_line_algorithm
Examples
========
>>> from sympy.geometry import closest_points, Point2D, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> closest_points(*_)
{(Point2D(0, 0), Point2D(3, 0))}
"""
from collections import deque
from math import sqrt as _sqrt
from sympy.functions.elementary.miscellaneous import sqrt
p = [Point2D(i) for i in set(args)]
if len(p) < 2:
raise ValueError('At least 2 distinct points must be given.')
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
else:
from math import hypot
rv = [(0, 1)]
best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
i = 2
left = 0
box = deque([0, 1])
while i < len(p):
while left < i and p[i][0] - p[left][0] > best_dist:
box.popleft()
left += 1
for j in box:
d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
if d < best_dist:
rv = [(j, i)]
elif d == best_dist:
rv.append((j, i))
else:
continue
best_dist = d
box.append(i)
i += 1
return {tuple([p[i] for i in pair]) for pair in rv}
def convex_hull(*args, **kwargs):
"""The convex hull surrounding the Points contained in the list of entities.
Parameters
==========
args : a collection of Points, Segments and/or Polygons
Returns
=======
convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where ``L`` and ``U`` are the lower and upper hulls, respectively.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line.
References
==========
[1] https://en.wikipedia.org/wiki/Graham_scan
[2] Andrew's Monotone Chain Algorithm
(A.M. Andrew,
"Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
http://geomalgorithms.com/a10-_hull-1.html
See Also
========
sympy.geometry.point.Point, sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy.geometry import Point, convex_hull
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
>>> convex_hull(*points)
Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
>>> convex_hull(*points, **dict(polygon=False))
([Point2D(-5, 2), Point2D(15, 4)],
[Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
"""
from .entity import GeometryEntity
from .point import Point
from .line import Segment
from .polygon import Polygon
polygon = kwargs.get('polygon', True)
p = OrderedSet()
for e in args:
if not isinstance(e, GeometryEntity):
try:
e = Point(e)
except NotImplementedError:
raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
if isinstance(e, Point):
p.add(e)
elif isinstance(e, Segment):
p.update(e.points)
elif isinstance(e, Polygon):
p.update(e.vertices)
else:
raise NotImplementedError(
'Convex hull for %s not implemented.' % type(e))
# make sure all our points are of the same dimension
if any(len(x) != 2 for x in p):
raise ValueError('Can only compute the convex hull in two dimensions')
p = list(p)
if len(p) == 1:
return p[0] if polygon else (p[0], None)
elif len(p) == 2:
s = Segment(p[0], p[1])
return s if polygon else (s, None)
def _orientation(p, q, r):
'''Return positive if p-q-r are clockwise, neg if ccw, zero if
collinear.'''
return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)
# scan to find upper and lower convex hulls of a set of 2d points.
U = []
L = []
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
for p_i in p:
while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
U.pop()
while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
L.pop()
U.append(p_i)
L.append(p_i)
U.reverse()
convexHull = tuple(L + U[1:-1])
if len(convexHull) == 2:
s = Segment(convexHull[0], convexHull[1])
return s if polygon else (s, None)
if polygon:
return Polygon(*convexHull)
else:
U.reverse()
return (U, L)
def farthest_points(*args):
"""Return the subset of points from a set of points that were
the furthest apart from each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/
[2] Rotating Callipers Technique
https://en.wikipedia.org/wiki/Rotating_calipers
Examples
========
>>> from sympy.geometry import farthest_points, Point2D, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> farthest_points(*_)
{(Point2D(0, 0), Point2D(3, 4))}
"""
from math import sqrt as _sqrt
def rotatingCalipers(Points):
U, L = convex_hull(*Points, **dict(polygon=False))
if L is None:
if isinstance(U, Point):
raise ValueError('At least two distinct points must be given.')
yield U.args
else:
i = 0
j = len(L) - 1
while i < len(U) - 1 or j > 0:
yield U[i], L[j]
# if all the way through one side of hull, advance the other side
if i == len(U) - 1:
j -= 1
elif j == 0:
i += 1
# still points left on both lists, compare slopes of next hull edges
# being careful to avoid divide-by-zero in slope calculation
elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
(L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
i += 1
else:
j -= 1
p = [Point2D(i) for i in set(args)]
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
else:
from math import hypot
rv = []
diam = 0
for pair in rotatingCalipers(args):
h, q = _ordered_points(pair)
d = hypot(h.x - q.x, h.y - q.y)
if d > diam:
rv = [(h, q)]
elif d == diam:
rv.append((h, q))
else:
continue
diam = d
return set(rv)
def idiff(eq, y, x, n=1):
"""Return ``dy/dx`` assuming that ``eq == 0``.
Parameters
==========
y : the dependent variable or a list of dependent variables (with y first)
x : the variable that the derivative is being taken with respect to
n : the order of the derivative (default is 1)
Examples
========
>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff
>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
-(x**2 + y**2)/y**3
Here, ``a`` is assumed to be independent of ``x``:
>>> idiff(x + a + y, y, x)
-1
Now the x-dependence of ``a`` is made explicit by listing ``a`` after
``y`` in a list.
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
See Also
========
sympy.core.function.Derivative: represents unevaluated derivatives
sympy.core.function.diff: explicitly differentiates wrt symbols
"""
if is_sequence(y):
dep = set(y)
y = y[0]
elif isinstance(y, Symbol):
dep = {y}
elif isinstance(y, Function):
pass
else:
raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y)
f = {s: Function(s.name)(x) for s in eq.free_symbols
if s != x and s in dep}
if isinstance(y, Symbol):
dydx = Function(y.name)(x).diff(x)
else:
dydx = y.diff(x)
eq = eq.subs(f)
derivs = {}
for i in range(n):
yp = solve(eq.diff(x), dydx)[0].subs(derivs)
if i == n - 1:
return yp.subs([(v, k) for k, v in f.items()])
derivs[dydx] = yp
eq = dydx - yp
dydx = dydx.diff(x)
def intersection(*entities, **kwargs):
"""The intersection of a collection of GeometryEntity instances.
Parameters
==========
entities : sequence of GeometryEntity
pairwise (keyword argument) : Can be either True or False
Returns
=======
intersection : list of GeometryEntity
Raises
======
NotImplementedError
When unable to calculate intersection.
Notes
=====
The intersection of any geometrical entity with itself should return
a list with one item: the entity in question.
An intersection requires two or more entities. If only a single
entity is given then the function will return an empty list.
It is possible for `intersection` to miss intersections that one
knows exists because the required quantities were not fully
simplified internally.
Reals should be converted to Rationals, e.g. Rational(str(real_num))
or else failures due to floating point issues may result.
Case 1: When the keyword argument 'pairwise' is False (default value):
In this case, the function returns a list of intersections common to
all entities.
Case 2: When the keyword argument 'pairwise' is True:
In this case, the functions returns a list intersections that occur
between any pair of entities.
See Also
========
sympy.geometry.entity.GeometryEntity.intersection
Examples
========
>>> from sympy.geometry import Ray, Circle, intersection
>>> c = Circle((0, 1), 1)
>>> intersection(c, c.center)
[]
>>> right = Ray((0, 0), (1, 0))
>>> up = Ray((0, 0), (0, 1))
>>> intersection(c, right, up)
[Point2D(0, 0)]
>>> intersection(c, right, up, pairwise=True)
[Point2D(0, 0), Point2D(0, 2)]
>>> left = Ray((1, 0), (0, 0))
>>> intersection(right, left)
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
"""
from .entity import GeometryEntity
from .point import Point
pairwise = kwargs.pop('pairwise', False)
if len(entities) <= 1:
return []
# entities may be an immutable tuple
entities = list(entities)
for i, e in enumerate(entities):
if not isinstance(e, GeometryEntity):
entities[i] = Point(e)
if not pairwise:
# find the intersection common to all objects
res = entities[0].intersection(entities[1])
for entity in entities[2:]:
newres = []
for x in res:
newres.extend(x.intersection(entity))
res = newres
return res
# find all pairwise intersections
ans = []
for j in range(0, len(entities)):
for k in range(j + 1, len(entities)):
ans.extend(intersection(entities[j], entities[k]))
return list(ordered(set(ans)))
|
90f01f02a294cc646bdc96ef6bb3c385adc70082250464ef987ae448cba12f55 | """Line-like geometrical entities.
Contains
========
LinearEntity
Line
Ray
Segment
LinearEntity2D
Line2D
Ray2D
Segment2D
LinearEntity3D
Line3D
Ray3D
Segment3D
"""
from __future__ import division, print_function
from sympy import Expr
from sympy.core import S, sympify
from sympy.core.compatibility import ordered
from sympy.core.numbers import Rational, oo
from sympy.core.relational import Eq
from sympy.core.symbol import _symbol, Dummy
from sympy.functions.elementary.trigonometric import (_pi_coeff as pi_coeff, acos, tan, atan2)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.logic.boolalg import And
from sympy.simplify.simplify import simplify
from sympy.geometry.exceptions import GeometryError
from sympy.core.containers import Tuple
from sympy.core.decorators import deprecated
from sympy.sets import Intersection
from sympy.matrices import Matrix
from sympy.solvers.solveset import linear_coeffs
from .entity import GeometryEntity, GeometrySet
from .point import Point, Point3D
from sympy.utilities.misc import Undecidable, filldedent
from sympy.utilities.exceptions import SymPyDeprecationWarning
class LinearEntity(GeometrySet):
"""A base class for all linear entities (Line, Ray and Segment)
in n-dimensional Euclidean space.
Attributes
==========
ambient_dimension
direction
length
p1
p2
points
Notes
=====
This is an abstract class and is not meant to be instantiated.
See Also
========
sympy.geometry.entity.GeometryEntity
"""
def __new__(cls, p1, p2=None, **kwargs):
p1, p2 = Point._normalize_dimension(p1, p2)
if p1 == p2:
# sometimes we return a single point if we are not given two unique
# points. This is done in the specific subclass
raise ValueError(
"%s.__new__ requires two unique Points." % cls.__name__)
if len(p1) != len(p2):
raise ValueError(
"%s.__new__ requires two Points of equal dimension." % cls.__name__)
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
def __contains__(self, other):
"""Return a definitive answer or else raise an error if it cannot
be determined that other is on the boundaries of self."""
result = self.contains(other)
if result is not None:
return result
else:
raise Undecidable(
"can't decide whether '%s' contains '%s'" % (self, other))
def _span_test(self, other):
"""Test whether the point `other` lies in the positive span of `self`.
A point x is 'in front' of a point y if x.dot(y) >= 0. Return
-1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and
and 1 if `other` is in front of `self.p1`."""
if self.p1 == other:
return 0
rel_pos = other - self.p1
d = self.direction
if d.dot(rel_pos) > 0:
return 1
return -1
@property
def ambient_dimension(self):
"""A property method that returns the dimension of LinearEntity
object.
Parameters
==========
p1 : LinearEntity
Returns
=======
dimension : integer
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
2
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
3
"""
return len(self.p1)
def angle_between(l1, l2):
"""Return the non-reflex angle formed by rays emanating from
the origin with directions the same as the direction vectors
of the linear entities.
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
angle : angle in radians
Notes
=====
From the dot product of vectors v1 and v2 it is known that:
``dot(v1, v2) = |v1|*|v2|*cos(A)``
where A is the angle formed between the two vectors. We can
get the directional vectors of the two lines and readily
find the angle between the two using the above formula.
See Also
========
is_perpendicular, Ray2D.closing_angle
Examples
========
>>> from sympy import Point, Line, pi
>>> e = Line((0, 0), (1, 0))
>>> ne = Line((0, 0), (1, 1))
>>> sw = Line((1, 1), (0, 0))
>>> ne.angle_between(e)
pi/4
>>> sw.angle_between(e)
3*pi/4
To obtain the non-obtuse angle at the intersection of lines, use
the ``smallest_angle_between`` method:
>>> sw.smallest_angle_between(e)
pi/4
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
>>> l1.angle_between(l2)
acos(-sqrt(2)/3)
>>> l1.smallest_angle_between(l2)
acos(sqrt(2)/3)
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
v1, v2 = l1.direction, l2.direction
return acos(v1.dot(v2)/(abs(v1)*abs(v2)))
def smallest_angle_between(l1, l2):
"""Return the smallest angle formed at the intersection of the
lines containing the linear entities.
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
angle : angle in radians
See Also
========
angle_between, is_perpendicular, Ray2D.closing_angle
Examples
========
>>> from sympy import Point, Line, pi
>>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.smallest_angle_between(l2)
pi/4
See Also
========
angle_between, Ray2D.closing_angle
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
v1, v2 = l1.direction, l2.direction
return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2)))
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the Line.
Parameters
==========
parameter : str, optional
The name of the parameter which will be used for the parametric
point. The default value is 't'. When this parameter is 0, the
first point used to define the line will be returned, and when
it is 1 the second point will be returned.
Returns
=======
point : Point
Raises
======
ValueError
When ``parameter`` already appears in the Line's definition.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.arbitrary_point()
Point2D(4*t + 1, 3*t)
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
>>> l1 = Line3D(p1, p2)
>>> l1.arbitrary_point()
Point3D(4*t + 1, 3*t, t)
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError(filldedent('''
Symbol %s already appears in object
and cannot be used as a parameter.
''' % t.name))
# multiply on the right so the variable gets
# combined with the coordinates of the point
return self.p1 + (self.p2 - self.p1)*t
@staticmethod
def are_concurrent(*lines):
"""Is a sequence of linear entities concurrent?
Two or more linear entities are concurrent if they all
intersect at a single point.
Parameters
==========
lines : a sequence of linear entities.
Returns
=======
True : if the set of linear entities intersect in one point
False : otherwise.
See Also
========
sympy.geometry.util.intersection
Examples
========
>>> from sympy import Point, Line, Line3D
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> p3, p4 = Point(-2, -2), Point(0, 2)
>>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
>>> Line.are_concurrent(l1, l2, l3)
True
>>> l4 = Line(p2, p3)
>>> Line.are_concurrent(l2, l3, l4)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2)
>>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1)
>>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4)
>>> Line3D.are_concurrent(l1, l2, l3)
True
>>> l4 = Line3D(p2, p3)
>>> Line3D.are_concurrent(l2, l3, l4)
False
"""
common_points = Intersection(*lines)
if common_points.is_FiniteSet and len(common_points) == 1:
return True
return False
def contains(self, other):
"""Subclasses should implement this method and should return
True if other is on the boundaries of self;
False if not on the boundaries of self;
None if a determination cannot be made."""
raise NotImplementedError()
@property
def direction(self):
"""The direction vector of the LinearEntity.
Returns
=======
p : a Point; the ray from the origin to this point is the
direction of `self`
Examples
========
>>> from sympy.geometry import Line
>>> a, b = (1, 1), (1, 3)
>>> Line(a, b).direction
Point2D(0, 2)
>>> Line(b, a).direction
Point2D(0, -2)
This can be reported so the distance from the origin is 1:
>>> Line(b, a).direction.unit
Point2D(0, -1)
See Also
========
sympy.geometry.point.Point.unit
"""
return self.p2 - self.p1
def intersection(self, other):
"""The intersection with another geometrical entity.
Parameters
==========
o : Point or LinearEntity
Returns
=======
intersection : list of geometrical entities
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
>>> l1 = Line(p1, p2)
>>> l1.intersection(p3)
[Point2D(7, 7)]
>>> p4, p5 = Point(5, 0), Point(0, 3)
>>> l2 = Line(p4, p5)
>>> l1.intersection(l2)
[Point2D(15/8, 15/8)]
>>> p6, p7 = Point(0, 5), Point(2, 6)
>>> s1 = Segment(p6, p7)
>>> l1.intersection(s1)
[]
>>> from sympy import Point3D, Line3D, Segment3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
>>> l1 = Line3D(p1, p2)
>>> l1.intersection(p3)
[Point3D(7, 7, 7)]
>>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17))
>>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8])
>>> l1.intersection(l2)
[Point3D(1, 1, -3)]
>>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
>>> s1 = Segment3D(p6, p7)
>>> l1.intersection(s1)
[]
"""
def intersect_parallel_rays(ray1, ray2):
if ray1.direction.dot(ray2.direction) > 0:
# rays point in the same direction
# so return the one that is "in front"
return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1]
else:
# rays point in opposite directions
st = ray1._span_test(ray2.p1)
if st < 0:
return []
elif st == 0:
return [ray2.p1]
return [Segment(ray1.p1, ray2.p1)]
def intersect_parallel_ray_and_segment(ray, seg):
st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2)
if st1 < 0 and st2 < 0:
return []
elif st1 >= 0 and st2 >= 0:
return [seg]
elif st1 >= 0: # st2 < 0:
return [Segment(ray.p1, seg.p1)]
elif st2 >= 0: # st1 < 0:
return [Segment(ray.p1, seg.p2)]
def intersect_parallel_segments(seg1, seg2):
if seg1.contains(seg2):
return [seg2]
if seg2.contains(seg1):
return [seg1]
# direct the segments so they're oriented the same way
if seg1.direction.dot(seg2.direction) < 0:
seg2 = Segment(seg2.p2, seg2.p1)
# order the segments so seg1 is "behind" seg2
if seg1._span_test(seg2.p1) < 0:
seg1, seg2 = seg2, seg1
if seg2._span_test(seg1.p2) < 0:
return []
return [Segment(seg2.p1, seg1.p2)]
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if other.is_Point:
if self.contains(other):
return [other]
else:
return []
elif isinstance(other, LinearEntity):
# break into cases based on whether
# the lines are parallel, non-parallel intersecting, or skew
pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2)
rank = Point.affine_rank(*pts)
if rank == 1:
# we're collinear
if isinstance(self, Line):
return [other]
if isinstance(other, Line):
return [self]
if isinstance(self, Ray) and isinstance(other, Ray):
return intersect_parallel_rays(self, other)
if isinstance(self, Ray) and isinstance(other, Segment):
return intersect_parallel_ray_and_segment(self, other)
if isinstance(self, Segment) and isinstance(other, Ray):
return intersect_parallel_ray_and_segment(other, self)
if isinstance(self, Segment) and isinstance(other, Segment):
return intersect_parallel_segments(self, other)
elif rank == 2:
# we're in the same plane
l1 = Line(*pts[:2])
l2 = Line(*pts[2:])
# check to see if we're parallel. If we are, we can't
# be intersecting, since the collinear case was already
# handled
if l1.direction.is_scalar_multiple(l2.direction):
return []
# find the intersection as if everything were lines
# by solving the equation t*d + p1 == s*d' + p1'
m = Matrix([l1.direction, -l2.direction]).transpose()
v = Matrix([l2.p1 - l1.p1]).transpose()
# we cannot use m.solve(v) because that only works for square matrices
m_rref, pivots = m.col_insert(2, v).rref(simplify=True)
# rank == 2 ensures we have 2 pivots, but let's check anyway
if len(pivots) != 2:
raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v))
coeff = m_rref[0, 2]
line_intersection = l1.direction*coeff + self.p1
# if we're both lines, we can skip a containment check
if isinstance(self, Line) and isinstance(other, Line):
return [line_intersection]
if ((isinstance(self, Line) or
self.contains(line_intersection)) and
other.contains(line_intersection)):
return [line_intersection]
return []
else:
# we're skew
return []
return other.intersection(self)
def is_parallel(l1, l2):
"""Are two linear entities parallel?
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
True : if l1 and l2 are parallel,
False : otherwise.
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4 = Point(3, 4), Point(6, 7)
>>> l1, l2 = Line(p1, p2), Line(p3, p4)
>>> Line.is_parallel(l1, l2)
True
>>> p5 = Point(6, 6)
>>> l3 = Line(p3, p5)
>>> Line.is_parallel(l1, l3)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5)
>>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11)
>>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4)
>>> Line3D.is_parallel(l1, l2)
True
>>> p5 = Point3D(6, 6, 6)
>>> l3 = Line3D(p3, p5)
>>> Line3D.is_parallel(l1, l3)
False
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
return l1.direction.is_scalar_multiple(l2.direction)
def is_perpendicular(l1, l2):
"""Are two linear entities perpendicular?
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
True : if l1 and l2 are perpendicular,
False : otherwise.
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.is_perpendicular(l2)
True
>>> p4 = Point(5, 3)
>>> l3 = Line(p1, p4)
>>> l1.is_perpendicular(l3)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
>>> l1.is_perpendicular(l2)
False
>>> p4 = Point3D(5, 3, 7)
>>> l3 = Line3D(p1, p4)
>>> l1.is_perpendicular(l3)
False
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
return S.Zero.equals(l1.direction.dot(l2.direction))
def is_similar(self, other):
"""
Return True if self and other are contained in the same line.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
>>> l1 = Line(p1, p2)
>>> l2 = Line(p1, p3)
>>> l1.is_similar(l2)
True
"""
l = Line(self.p1, self.p2)
return l.contains(other)
@property
def length(self):
"""
The length of the line.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.length
oo
"""
return S.Infinity
@property
def p1(self):
"""The first defining point of a linear entity.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p1
Point2D(0, 0)
"""
return self.args[0]
@property
def p2(self):
"""The second defining point of a linear entity.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p2
Point2D(5, 3)
"""
return self.args[1]
def parallel_line(self, p):
"""Create a new Line parallel to this linear entity which passes
through the point `p`.
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
is_parallel
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
"""
p = Point(p, dim=self.ambient_dimension)
return Line(p, p + self.direction)
def perpendicular_line(self, p):
"""Create a new Line perpendicular to this linear entity which passes
through the point `p`.
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.perpendicular_line(p3)
>>> p3 in l2
True
>>> l1.is_perpendicular(l2)
True
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> l2 = l1.perpendicular_line(p3)
>>> p3 in l2
True
>>> l1.is_perpendicular(l2)
True
"""
p = Point(p, dim=self.ambient_dimension)
if p in self:
p = p + self.direction.orthogonal_direction
return Line(p, self.projection(p))
def perpendicular_segment(self, p):
"""Create a perpendicular line segment from `p` to this line.
The enpoints of the segment are ``p`` and the closest point in
the line containing self. (If self is not a line, the point might
not be in self.)
Parameters
==========
p : Point
Returns
=======
segment : Segment
Notes
=====
Returns `p` itself if `p` is on this linear entity.
See Also
========
perpendicular_line
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
>>> l1 = Line(p1, p2)
>>> s1 = l1.perpendicular_segment(p3)
>>> l1.is_perpendicular(s1)
True
>>> p3 in s1
True
>>> l1.perpendicular_segment(Point(4, 0))
Segment2D(Point2D(4, 0), Point2D(2, 2))
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> s1 = l1.perpendicular_segment(p3)
>>> l1.is_perpendicular(s1)
True
>>> p3 in s1
True
>>> l1.perpendicular_segment(Point3D(4, 0, 0))
Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3))
"""
p = Point(p, dim=self.ambient_dimension)
if p in self:
return p
l = self.perpendicular_line(p)
# The intersection should be unique, so unpack the singleton
p2, = Intersection(Line(self.p1, self.p2), l)
return Segment(p, p2)
@property
def points(self):
"""The two points used to define this linear entity.
Returns
=======
points : tuple of Points
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 11)
>>> l1 = Line(p1, p2)
>>> l1.points
(Point2D(0, 0), Point2D(5, 11))
"""
return (self.p1, self.p2)
def projection(self, other):
"""Project a point, line, ray, or segment onto this linear entity.
Parameters
==========
other : Point or LinearEntity (Line, Ray, Segment)
Returns
=======
projection : Point or LinearEntity (Line, Ray, Segment)
The return type matches the type of the parameter ``other``.
Raises
======
GeometryError
When method is unable to perform projection.
Notes
=====
A projection involves taking the two points that define
the linear entity and projecting those points onto a
Line and then reforming the linear entity using these
projections.
A point P is projected onto a line L by finding the point
on L that is closest to P. This point is the intersection
of L and the line perpendicular to L that passes through P.
See Also
========
sympy.geometry.point.Point, perpendicular_line
Examples
========
>>> from sympy import Point, Line, Segment, Rational
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point2D(1/4, 1/4)
>>> p4, p5 = Point(10, 0), Point(12, 1)
>>> s1 = Segment(p4, p5)
>>> l1.projection(s1)
Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
>>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point3D(2/3, 2/3, 5/3)
>>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
>>> s1 = Segment(p4, p5)
>>> l1.projection(s1)
Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
def proj_point(p):
return Point.project(p - self.p1, self.direction) + self.p1
if isinstance(other, Point):
return proj_point(other)
elif isinstance(other, LinearEntity):
p1, p2 = proj_point(other.p1), proj_point(other.p2)
# test to see if we're degenerate
if p1 == p2:
return p1
projected = other.__class__(p1, p2)
projected = Intersection(self, projected)
# if we happen to have intersected in only a point, return that
if projected.is_FiniteSet and len(projected) == 1:
# projected is a set of size 1, so unpack it in `a`
a, = projected
return a
# order args so projection is in the same direction as self
if self.direction.dot(projected.direction) < 0:
p1, p2 = projected.args
projected = projected.func(p2, p1)
return projected
raise GeometryError(
"Do not know how to project %s onto %s" % (other, self))
def random_point(self, seed=None):
"""A random point on a LinearEntity.
Returns
=======
point : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line, Ray, Segment
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> line = Line(p1, p2)
>>> r = line.random_point(seed=42) # seed value is optional
>>> r.n(3)
Point2D(-0.72, -0.432)
>>> r in line
True
>>> Ray(p1, p2).random_point(seed=42).n(3)
Point2D(0.72, 0.432)
>>> Segment(p1, p2).random_point(seed=42).n(3)
Point2D(3.2, 1.92)
"""
import random
if seed is not None:
rng = random.Random(seed)
else:
rng = random
t = Dummy()
pt = self.arbitrary_point(t)
if isinstance(self, Ray):
v = abs(rng.gauss(0, 1))
elif isinstance(self, Segment):
v = rng.random()
elif isinstance(self, Line):
v = rng.gauss(0, 1)
else:
raise NotImplementedError('unhandled line type')
return pt.subs(t, Rational(v))
class Line(LinearEntity):
"""An infinite line in space.
A 2D line is declared with two distinct points, point and slope, or
an equation. A 3D line may be defined with a point and a direction ratio.
Parameters
==========
p1 : Point
p2 : Point
slope : sympy expression
direction_ratio : list
equation : equation of a line
Notes
=====
`Line` will automatically subclass to `Line2D` or `Line3D` based
on the dimension of `p1`. The `slope` argument is only relevant
for `Line2D` and the `direction_ratio` argument is only relevant
for `Line3D`.
See Also
========
sympy.geometry.point.Point
sympy.geometry.line.Line2D
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Point, Eq
>>> from sympy.geometry import Line, Segment
>>> from sympy.abc import x, y, a, b
>>> L = Line(Point(2,3), Point(3,5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
Instantiate with keyword ``slope``:
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
Instantiate with another linear object
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
The line corresponding to an equation in the for `ax + by + c = 0`,
can be entered:
>>> Line(3*x + y + 18)
Line2D(Point2D(0, -18), Point2D(1, -21))
If `x` or `y` has a different name, then they can be specified, too,
as a string (to match the name) or symbol:
>>> Line(Eq(3*a + b, -18), x='a', y=b)
Line2D(Point2D(0, -18), Point2D(1, -21))
"""
def __new__(cls, *args, **kwargs):
from sympy.geometry.util import find
if len(args) == 1 and isinstance(args[0], Expr):
x = kwargs.get('x', 'x')
y = kwargs.get('y', 'y')
equation = args[0]
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
xin, yin = x, y
x = find(x, equation) or Dummy()
y = find(y, equation) or Dummy()
a, b, c = linear_coeffs(equation, x, y)
if b:
return Line((0, -c/b), slope=-a/b)
if a:
return Line((-c/a, 0), slope=oo)
raise ValueError('neither %s nor %s were found in the equation' % (xin, yin))
else:
if len(args) > 0:
p1 = args[0]
if len(args) > 1:
p2 = args[1]
else:
p2=None
if isinstance(p1, LinearEntity):
if p2:
raise ValueError('If p1 is a LinearEntity, p2 must be None.')
dim = len(p1.p1)
else:
p1 = Point(p1)
dim = len(p1)
if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim:
p2 = Point(p2)
if dim == 2:
return Line2D(p1, p2, **kwargs)
elif dim == 3:
return Line3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def contains(self, other):
"""
Return True if `other` is on this Line, or False otherwise.
Examples
========
>>> from sympy import Line,Point
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> l = Line(p1, p2)
>>> l.contains(p1)
True
>>> l.contains((0, 1))
True
>>> l.contains((0, 0))
False
>>> a = (0, 0, 0)
>>> b = (1, 1, 1)
>>> c = (2, 2, 2)
>>> l1 = Line(a, b)
>>> l2 = Line(b, a)
>>> l1 == l2
False
>>> l1 in l2
True
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
return Point.is_collinear(other, self.p1, self.p2)
if isinstance(other, LinearEntity):
return Point.is_collinear(self.p1, self.p2, other.p1, other.p2)
return False
def distance(self, other):
"""
Finds the shortest distance between a line and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1, 1))
2*sqrt(6)/3
>>> s.distance((-1, 1, 1))
2*sqrt(6)/3
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if self.contains(other):
return S.Zero
return self.perpendicular_segment(other).length
@deprecated(useinstead="equals", issue=12860, deprecated_since_version="1.0")
def equal(self, other):
return self.equals(other)
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
if not isinstance(other, Line):
return False
return Point.is_collinear(self.p1, other.p1, self.p2, other.p2)
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of line. Gives
values that will produce a line that is +/- 5 units long (where a
unit is the distance between the two points that define the line).
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.plot_interval()
[t, -5, 5]
"""
t = _symbol(parameter, real=True)
return [t, -5, 5]
class Ray(LinearEntity):
"""A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point
The source of the Ray
p2 : Point or radian value
This point determines the direction in which the Ray propagates.
If given as an angle it is interpreted in radians with the positive
direction being ccw.
Attributes
==========
source
See Also
========
sympy.geometry.line.Ray2D
sympy.geometry.line.Ray3D
sympy.geometry.point.Point
sympy.geometry.line.Line
Notes
=====
`Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the
dimension of `p1`.
Examples
========
>>> from sympy import Point, pi
>>> from sympy.geometry import Ray
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray2D(Point2D(2, 3), Point2D(3, 5))
>>> r.points
(Point2D(2, 3), Point2D(3, 5))
>>> r.source
Point2D(2, 3)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
"""
def __new__(cls, p1, p2=None, **kwargs):
p1 = Point(p1)
if p2 is not None:
p1, p2 = Point._normalize_dimension(p1, Point(p2))
dim = len(p1)
if dim == 2:
return Ray2D(p1, p2, **kwargs)
elif dim == 3:
return Ray3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
verts = (N(self.p1), N(self.p2))
coords = ["{0},{1}".format(p.x, p.y) for p in verts]
path = "M {0} L {1}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" '
'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
).format(2. * scale_factor, path, fill_color)
def contains(self, other):
"""
Is other GeometryEntity contained in this Ray?
Examples
========
>>> from sympy import Ray,Point,Segment
>>> p1, p2 = Point(0, 0), Point(4, 4)
>>> r = Ray(p1, p2)
>>> r.contains(p1)
True
>>> r.contains((1, 1))
True
>>> r.contains((1, 3))
False
>>> s = Segment((1, 1), (2, 2))
>>> r.contains(s)
True
>>> s = Segment((1, 2), (2, 5))
>>> r.contains(s)
False
>>> r1 = Ray((2, 2), (3, 3))
>>> r.contains(r1)
True
>>> r1 = Ray((2, 2), (3, 5))
>>> r.contains(r1)
False
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
if Point.is_collinear(self.p1, self.p2, other):
# if we're in the direction of the ray, our
# direction vector dot the ray's direction vector
# should be non-negative
return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero)
return False
elif isinstance(other, Ray):
if Point.is_collinear(self.p1, self.p2, other.p1, other.p2):
return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero)
return False
elif isinstance(other, Segment):
return other.p1 in self and other.p2 in self
# No other known entity can be contained in a Ray
return False
def distance(self, other):
"""
Finds the shortest distance between the ray and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Ray(p1, p2)
>>> s.distance(Point(-1, -1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
>>> s = Ray(p1, p2)
>>> s
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
>>> s.distance(Point(-1, -1, 2))
4*sqrt(3)/3
>>> s.distance((-1, -1, 2))
4*sqrt(3)/3
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if self.contains(other):
return S.Zero
proj = Line(self.p1, self.p2).projection(other)
if self.contains(proj):
return abs(other - proj)
else:
return abs(other - self.source)
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
if not isinstance(other, Ray):
return False
return self.source == other.source and other.p2 in self
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Ray. Gives
values that will produce a ray that is 10 units long (where a unit is
the distance between the two points that define the ray).
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Ray, pi
>>> r = Ray((0, 0), angle=pi/4)
>>> r.plot_interval()
[t, 0, 10]
"""
t = _symbol(parameter, real=True)
return [t, 0, 10]
@property
def source(self):
"""The point from which the ray emanates.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(4, 1)
>>> r1 = Ray(p1, p2)
>>> r1.source
Point2D(0, 0)
>>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
>>> r1 = Ray(p2, p1)
>>> r1.source
Point3D(4, 1, 5)
"""
return self.p1
class Segment(LinearEntity):
"""A line segment in space.
Parameters
==========
p1 : Point
p2 : Point
Attributes
==========
length : number or sympy expression
midpoint : Point
See Also
========
sympy.geometry.line.Segment2D
sympy.geometry.line.Segment3D
sympy.geometry.point.Point
sympy.geometry.line.Line
Notes
=====
If 2D or 3D points are used to define `Segment`, it will
be automatically subclassed to `Segment2D` or `Segment3D`.
Examples
========
>>> from sympy import Point
>>> from sympy.geometry import Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
>>> s.length
sqrt(13)
>>> s.midpoint
Point2D(5/2, 2)
>>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
>>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.length
sqrt(17)
>>> s.midpoint
Point3D(5/2, 2, 8)
"""
def __new__(cls, p1, p2, **kwargs):
p1, p2 = Point._normalize_dimension(Point(p1), Point(p2))
dim = len(p1)
if dim == 2:
return Segment2D(p1, p2, **kwargs)
elif dim == 3:
return Segment3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def contains(self, other):
"""
Is the other GeometryEntity contained within this Segment?
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s2 = Segment(p2, p1)
>>> s.contains(s2)
True
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
>>> s = Segment3D(p1, p2)
>>> s2 = Segment3D(p2, p1)
>>> s.contains(s2)
True
>>> s.contains((p1 + p2) / 2)
True
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
if Point.is_collinear(other, self.p1, self.p2):
if isinstance(self, Segment2D):
# if it is collinear and is in the bounding box of the
# segment then it must be on the segment
vert = (1/self.slope).equals(0)
if vert is False:
isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0
if isin in (True, False):
return isin
if vert is True:
isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0
if isin in (True, False):
return isin
# use the triangle inequality
d1, d2 = other - self.p1, other - self.p2
d = self.p2 - self.p1
# without the call to simplify, sympy cannot tell that an expression
# like (a+b)*(a/2+b/2) is always non-negative. If it cannot be
# determined, raise an Undecidable error
try:
# the triangle inequality says that |d1|+|d2| >= |d| and is strict
# only if other lies in the line segment
return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0)))
except TypeError:
raise Undecidable("Cannot determine if {} is in {}".format(other, self))
if isinstance(other, Segment):
return other.p1 in self and other.p2 in self
return False
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
return isinstance(other, self.func) and list(
ordered(self.args)) == list(ordered(other.args))
def distance(self, other):
"""
Finds the shortest distance between a line segment and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s.distance(Point(10, 15))
sqrt(170)
>>> s.distance((0, 12))
sqrt(73)
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
>>> s = Segment3D(p1, p2)
>>> s.distance(Point3D(10, 15, 12))
sqrt(341)
>>> s.distance((10, 15, 12))
sqrt(341)
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
vp1 = other - self.p1
vp2 = other - self.p2
dot_prod_sign_1 = self.direction.dot(vp1) >= 0
dot_prod_sign_2 = self.direction.dot(vp2) <= 0
if dot_prod_sign_1 and dot_prod_sign_2:
return Line(self.p1, self.p2).distance(other)
if dot_prod_sign_1 and not dot_prod_sign_2:
return abs(vp2)
if not dot_prod_sign_1 and dot_prod_sign_2:
return abs(vp1)
raise NotImplementedError()
@property
def length(self):
"""The length of the line segment.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.length
5
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
>>> s1 = Segment3D(p1, p2)
>>> s1.length
sqrt(34)
"""
return Point.distance(self.p1, self.p2)
@property
def midpoint(self):
"""The midpoint of the line segment.
See Also
========
sympy.geometry.point.Point.midpoint
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.midpoint
Point2D(2, 3/2)
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
>>> s1 = Segment3D(p1, p2)
>>> s1.midpoint
Point3D(2, 3/2, 3/2)
"""
return Point.midpoint(self.p1, self.p2)
def perpendicular_bisector(self, p=None):
"""The perpendicular bisector of this segment.
If no point is specified or the point specified is not on the
bisector then the bisector is returned as a Line. Otherwise a
Segment is returned that joins the point specified and the
intersection of the bisector and the segment.
Parameters
==========
p : Point
Returns
=======
bisector : Line or Segment
See Also
========
LinearEntity.perpendicular_segment
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
>>> s1 = Segment(p1, p2)
>>> s1.perpendicular_bisector()
Line2D(Point2D(3, 3), Point2D(-3, 9))
>>> s1.perpendicular_bisector(p3)
Segment2D(Point2D(5, 1), Point2D(3, 3))
"""
l = self.perpendicular_line(self.midpoint)
if p is not None:
p2 = Point(p, dim=self.ambient_dimension)
if p2 in l:
return Segment(p2, self.midpoint)
return l
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Segment gives
values that will produce the full segment in a plot.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> s1 = Segment(p1, p2)
>>> s1.plot_interval()
[t, 0, 1]
"""
t = _symbol(parameter, real=True)
return [t, 0, 1]
class LinearEntity2D(LinearEntity):
"""A base class for all linear entities (line, ray and segment)
in a 2-dimensional Euclidean space.
Attributes
==========
p1
p2
coefficients
slope
points
Notes
=====
This is an abstract class and is not meant to be instantiated.
See Also
========
sympy.geometry.entity.GeometryEntity
"""
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
verts = self.points
xs = [p.x for p in verts]
ys = [p.y for p in verts]
return (min(xs), min(ys), max(xs), max(ys))
def perpendicular_line(self, p):
"""Create a new Line perpendicular to this linear entity which passes
through the point `p`.
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.perpendicular_line(p3)
>>> p3 in l2
True
>>> l1.is_perpendicular(l2)
True
"""
p = Point(p, dim=self.ambient_dimension)
# any two lines in R^2 intersect, so blindly making
# a line through p in an orthogonal direction will work
return Line(p, p + self.direction.orthogonal_direction)
@property
def slope(self):
"""The slope of this linear entity, or infinity if vertical.
Returns
=======
slope : number or sympy expression
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.slope
5/3
>>> p3 = Point(0, 4)
>>> l2 = Line(p1, p3)
>>> l2.slope
oo
"""
d1, d2 = (self.p1 - self.p2).args
if d1 == 0:
return S.Infinity
return simplify(d2/d1)
class Line2D(LinearEntity2D, Line):
"""An infinite line in space 2D.
A line is declared with two distinct points or a point and slope
as defined using keyword `slope`.
Parameters
==========
p1 : Point
pt : Point
slope : sympy expression
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point
>>> from sympy.abc import L
>>> from sympy.geometry import Line, Segment
>>> L = Line(Point(2,3), Point(3,5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
Instantiate with keyword ``slope``:
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
Instantiate with another linear object
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
"""
def __new__(cls, p1, pt=None, slope=None, **kwargs):
if isinstance(p1, LinearEntity):
if pt is not None:
raise ValueError('When p1 is a LinearEntity, pt should be None')
p1, pt = Point._normalize_dimension(*p1.args, dim=2)
else:
p1 = Point(p1, dim=2)
if pt is not None and slope is None:
try:
p2 = Point(pt, dim=2)
except (NotImplementedError, TypeError, ValueError):
raise ValueError(filldedent('''
The 2nd argument was not a valid Point.
If it was a slope, enter it with keyword "slope".
'''))
elif slope is not None and pt is None:
slope = sympify(slope)
if slope.is_finite is False:
# when infinite slope, don't change x
dx = 0
dy = 1
else:
# go over 1 up slope
dx = 1
dy = slope
# XXX avoiding simplification by adding to coords directly
p2 = Point(p1.x + dx, p1.y + dy, evaluate=False)
else:
raise ValueError('A 2nd Point or keyword "slope" must be used.')
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
verts = (N(self.p1), N(self.p2))
coords = ["{0},{1}".format(p.x, p.y) for p in verts]
path = "M {0} L {1}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" '
'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
).format(2. * scale_factor, path, fill_color)
@property
def coefficients(self):
"""The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`.
See Also
========
sympy.geometry.line.Line2D.equation
Examples
========
>>> from sympy import Point, Line
>>> from sympy.abc import x, y
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.coefficients
(-3, 5, 0)
>>> p3 = Point(x, y)
>>> l2 = Line(p1, p3)
>>> l2.coefficients
(-y, x, 0)
"""
p1, p2 = self.points
if p1.x == p2.x:
return (S.One, S.Zero, -p1.x)
elif p1.y == p2.y:
return (S.Zero, S.One, -p1.y)
return tuple([simplify(i) for i in
(self.p1.y - self.p2.y,
self.p2.x - self.p1.x,
self.p1.x*self.p2.y - self.p1.y*self.p2.x)])
def equation(self, x='x', y='y'):
"""The equation of the line: ax + by + c.
Parameters
==========
x : str, optional
The name to use for the x-axis, default value is 'x'.
y : str, optional
The name to use for the y-axis, default value is 'y'.
Returns
=======
equation : sympy expression
See Also
========
sympy.geometry.line.Line2D.coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.equation()
-3*x + 4*y + 3
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
p1, p2 = self.points
if p1.x == p2.x:
return x - p1.x
elif p1.y == p2.y:
return y - p1.y
a, b, c = self.coefficients
return a*x + b*y + c
class Ray2D(LinearEntity2D, Ray):
"""
A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point
The source of the Ray
p2 : Point or radian value
This point determines the direction in which the Ray propagates.
If given as an angle it is interpreted in radians with the positive
direction being ccw.
Attributes
==========
source
xdirection
ydirection
See Also
========
sympy.geometry.point.Point, Line
Examples
========
>>> from sympy import Point, pi
>>> from sympy.geometry import Ray
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray2D(Point2D(2, 3), Point2D(3, 5))
>>> r.points
(Point2D(2, 3), Point2D(3, 5))
>>> r.source
Point2D(2, 3)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
"""
def __new__(cls, p1, pt=None, angle=None, **kwargs):
p1 = Point(p1, dim=2)
if pt is not None and angle is None:
try:
p2 = Point(pt, dim=2)
except (NotImplementedError, TypeError, ValueError):
from sympy.utilities.misc import filldedent
raise ValueError(filldedent('''
The 2nd argument was not a valid Point; if
it was meant to be an angle it should be
given with keyword "angle".'''))
if p1 == p2:
raise ValueError('A Ray requires two distinct points.')
elif angle is not None and pt is None:
# we need to know if the angle is an odd multiple of pi/2
c = pi_coeff(sympify(angle))
p2 = None
if c is not None:
if c.is_Rational:
if c.q == 2:
if c.p == 1:
p2 = p1 + Point(0, 1)
elif c.p == 3:
p2 = p1 + Point(0, -1)
elif c.q == 1:
if c.p == 0:
p2 = p1 + Point(1, 0)
elif c.p == 1:
p2 = p1 + Point(-1, 0)
if p2 is None:
c *= S.Pi
else:
c = angle % (2*S.Pi)
if not p2:
m = 2*c/S.Pi
left = And(1 < m, m < 3) # is it in quadrant 2 or 3?
x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True))
p2 = p1 + Point(x, y)
else:
raise ValueError('A 2nd point or keyword "angle" must be used.')
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
@property
def xdirection(self):
"""The x direction of the ray.
Positive infinity if the ray points in the positive x direction,
negative infinity if the ray points in the negative x direction,
or 0 if the ray is vertical.
See Also
========
ydirection
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
"""
if self.p1.x < self.p2.x:
return S.Infinity
elif self.p1.x == self.p2.x:
return S.Zero
else:
return S.NegativeInfinity
@property
def ydirection(self):
"""The y direction of the ray.
Positive infinity if the ray points in the positive y direction,
negative infinity if the ray points in the negative y direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
"""
if self.p1.y < self.p2.y:
return S.Infinity
elif self.p1.y == self.p2.y:
return S.Zero
else:
return S.NegativeInfinity
def closing_angle(r1, r2):
"""Return the angle by which r2 must be rotated so it faces the same
direction as r1.
Parameters
==========
r1 : Ray2D
r2 : Ray2D
Returns
=======
angle : angle in radians (ccw angle is positive)
See Also
========
LinearEntity.angle_between
Examples
========
>>> from sympy import Ray, pi
>>> r1 = Ray((0, 0), (1, 0))
>>> r2 = r1.rotate(-pi/2)
>>> angle = r1.closing_angle(r2); angle
pi/2
>>> r2.rotate(angle).direction.unit == r1.direction.unit
True
>>> r2.closing_angle(r1)
-pi/2
"""
if not all(isinstance(r, Ray2D) for r in (r1, r2)):
# although the direction property is defined for
# all linear entities, only the Ray is truly a
# directed object
raise TypeError('Both arguments must be Ray2D objects.')
a1 = atan2(*list(reversed(r1.direction.args)))
a2 = atan2(*list(reversed(r2.direction.args)))
if a1*a2 < 0:
a1 = 2*S.Pi + a1 if a1 < 0 else a1
a2 = 2*S.Pi + a2 if a2 < 0 else a2
return a1 - a2
class Segment2D(LinearEntity2D, Segment):
"""A line segment in 2D space.
Parameters
==========
p1 : Point
p2 : Point
Attributes
==========
length : number or sympy expression
midpoint : Point
See Also
========
sympy.geometry.point.Point, Line
Examples
========
>>> from sympy import Point
>>> from sympy.geometry import Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1)); s
Segment2D(Point2D(4, 3), Point2D(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
>>> s.length
sqrt(13)
>>> s.midpoint
Point2D(5/2, 2)
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point(p1, dim=2)
p2 = Point(p2, dim=2)
if p1 == p2:
return p1
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
verts = (N(self.p1), N(self.p2))
coords = ["{0},{1}".format(p.x, p.y) for p in verts]
path = "M {0} L {1}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" />'
).format(2. * scale_factor, path, fill_color)
class LinearEntity3D(LinearEntity):
"""An base class for all linear entities (line, ray and segment)
in a 3-dimensional Euclidean space.
Attributes
==========
p1
p2
direction_ratio
direction_cosine
points
Notes
=====
This is a base class and is not meant to be instantiated.
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point3D(p1, dim=3)
p2 = Point3D(p2, dim=3)
if p1 == p2:
# if it makes sense to return a Point, handle in subclass
raise ValueError(
"%s.__new__ requires two unique Points." % cls.__name__)
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
ambient_dimension = 3
@property
def direction_ratio(self):
"""The direction ratio of a given line in 3D.
See Also
========
sympy.geometry.line.Line3D.equation
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_ratio
[5, 3, 1]
"""
p1, p2 = self.points
return p1.direction_ratio(p2)
@property
def direction_cosine(self):
"""The normalized direction ratio of a given line in 3D.
See Also
========
sympy.geometry.line.Line3D.equation
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_cosine
[sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
>>> sum(i**2 for i in _)
1
"""
p1, p2 = self.points
return p1.direction_cosine(p2)
class Line3D(LinearEntity3D, Line):
"""An infinite 3D line in space.
A line is declared with two distinct points or a point and direction_ratio
as defined using keyword `direction_ratio`.
Parameters
==========
p1 : Point3D
pt : Point3D
direction_ratio : list
See Also
========
sympy.geometry.point.Point3D
sympy.geometry.line.Line
sympy.geometry.line.Line2D
Examples
========
>>> from sympy import Point3D
>>> from sympy.geometry import Line3D, Segment3D
>>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L
Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L.points
(Point3D(2, 3, 4), Point3D(3, 5, 1))
"""
def __new__(cls, p1, pt=None, direction_ratio=[], **kwargs):
if isinstance(p1, LinearEntity3D):
if pt is not None:
raise ValueError('if p1 is a LinearEntity, pt must be None.')
p1, pt = p1.args
else:
p1 = Point(p1, dim=3)
if pt is not None and len(direction_ratio) == 0:
pt = Point(pt, dim=3)
elif len(direction_ratio) == 3 and pt is None:
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
p1.z + direction_ratio[2])
else:
raise ValueError('A 2nd Point or keyword "direction_ratio" must '
'be used.')
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
def equation(self, x='x', y='y', z='z', k=None):
"""Return the equations that define the line in 3D.
Parameters
==========
x : str, optional
The name to use for the x-axis, default value is 'x'.
y : str, optional
The name to use for the y-axis, default value is 'y'.
z : str, optional
The name to use for the z-axis, default value is 'z'.
Returns
=======
equation : Tuple of simultaneous equations
Examples
========
>>> from sympy import Point3D, Line3D, solve
>>> from sympy.abc import x, y, z
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
>>> l1 = Line3D(p1, p2)
>>> eq = l1.equation(x, y, z); eq
(-3*x + 4*y + 3, z)
>>> solve(eq.subs(z, 0), (x, y, z))
{x: 4*y/3 + 1}
"""
if k is not None:
SymPyDeprecationWarning(
feature="equation() no longer needs 'k'",
issue=13742,
deprecated_since_version="1.2").warn()
from sympy import solve
x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')]
p1, p2 = self.points
d1, d2, d3 = p1.direction_ratio(p2)
x1, y1, z1 = p1
eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1]
# eliminate k from equations by solving first eq with k for k
for i, e in enumerate(eqs):
if e.has(k):
kk = solve(eqs[i], k)[0]
eqs.pop(i)
break
return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs])
class Ray3D(LinearEntity3D, Ray):
"""
A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point3D
The source of the Ray
p2 : Point or a direction vector
direction_ratio: Determines the direction in which the Ray propagates.
Attributes
==========
source
xdirection
ydirection
zdirection
See Also
========
sympy.geometry.point.Point3D, Line3D
Examples
========
>>> from sympy import Point3D
>>> from sympy.geometry import Ray3D
>>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r
Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.points
(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.source
Point3D(2, 3, 4)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.direction_ratio
[1, 2, -4]
"""
def __new__(cls, p1, pt=None, direction_ratio=[], **kwargs):
from sympy.utilities.misc import filldedent
if isinstance(p1, LinearEntity3D):
if pt is not None:
raise ValueError('If p1 is a LinearEntity, pt must be None')
p1, pt = p1.args
else:
p1 = Point(p1, dim=3)
if pt is not None and len(direction_ratio) == 0:
pt = Point(pt, dim=3)
elif len(direction_ratio) == 3 and pt is None:
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
p1.z + direction_ratio[2])
else:
raise ValueError(filldedent('''
A 2nd Point or keyword "direction_ratio" must be used.
'''))
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
@property
def xdirection(self):
"""The x direction of the ray.
Positive infinity if the ray points in the positive x direction,
negative infinity if the ray points in the negative x direction,
or 0 if the ray is vertical.
See Also
========
ydirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
"""
if self.p1.x < self.p2.x:
return S.Infinity
elif self.p1.x == self.p2.x:
return S.Zero
else:
return S.NegativeInfinity
@property
def ydirection(self):
"""The y direction of the ray.
Positive infinity if the ray points in the positive y direction,
negative infinity if the ray points in the negative y direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
"""
if self.p1.y < self.p2.y:
return S.Infinity
elif self.p1.y == self.p2.y:
return S.Zero
else:
return S.NegativeInfinity
@property
def zdirection(self):
"""The z direction of the ray.
Positive infinity if the ray points in the positive z direction,
negative infinity if the ray points in the negative z direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
>>> r2.zdirection
0
"""
if self.p1.z < self.p2.z:
return S.Infinity
elif self.p1.z == self.p2.z:
return S.Zero
else:
return S.NegativeInfinity
class Segment3D(LinearEntity3D, Segment):
"""A line segment in a 3D space.
Parameters
==========
p1 : Point3D
p2 : Point3D
Attributes
==========
length : number or sympy expression
midpoint : Point3D
See Also
========
sympy.geometry.point.Point3D, Line3D
Examples
========
>>> from sympy import Point3D
>>> from sympy.geometry import Segment3D
>>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
>>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.length
sqrt(17)
>>> s.midpoint
Point3D(5/2, 2, 8)
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point(p1, dim=3)
p2 = Point(p2, dim=3)
if p1 == p2:
return p1
return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
|
f5d7efd88da864a832f7597e35b48217e08cebc30a19bfcd9167dc3c2d480206 | from __future__ import division, print_function
from sympy.core import Expr, S, Symbol, oo, pi, sympify
from sympy.core.compatibility import as_int, range, ordered
from sympy.core.symbol import _symbol, Dummy, symbols
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin, tan
from sympy.geometry.exceptions import GeometryError
from sympy.logic import And
from sympy.matrices import Matrix
from sympy.simplify import simplify
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation
from sympy.utilities.misc import func_name
from .entity import GeometryEntity, GeometrySet
from .point import Point
from .ellipse import Circle
from .line import Line, Segment, Ray
import warnings
class Polygon(GeometrySet):
"""A two-dimensional polygon.
A simple polygon in space. Can be constructed from a sequence of points
or from a center, radius, number of sides and rotation angle.
Parameters
==========
vertices : sequence of Points
Attributes
==========
area
angles
perimeter
vertices
centroid
sides
Raises
======
GeometryError
If all parameters are not Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
Notes
=====
Polygons are treated as closed paths rather than 2D areas so
some calculations can be be negative or positive (e.g., area)
based on the orientation of the points.
Any consecutive identical points are reduced to a single point
and any points collinear and between two points will be removed
unless they are needed to define an explicit intersection (see examples).
A Triangle, Segment or Point will be returned when there are 3 or
fewer points provided.
Examples
========
>>> from sympy import Point, Polygon, pi
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
>>> Polygon(p1, p2, p3, p4)
Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
>>> Polygon(p1, p2)
Segment2D(Point2D(0, 0), Point2D(1, 0))
>>> Polygon(p1, p2, p5)
Segment2D(Point2D(0, 0), Point2D(3, 0))
The area of a polygon is calculated as positive when vertices are
traversed in a ccw direction. When the sides of a polygon cross the
area will have positive and negative contributions. The following
defines a Z shape where the bottom right connects back to the top
left.
>>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
0
When the the keyword `n` is used to define the number of sides of the
Polygon then a RegularPolygon is created and the other arguments are
interpreted as center, radius and rotation. The unrotated RegularPolygon
will always have a vertex at Point(r, 0) where `r` is the radius of the
circle that circumscribes the RegularPolygon. Its method `spin` can be
used to increment that angle.
>>> p = Polygon((0,0), 1, n=3)
>>> p
RegularPolygon(Point2D(0, 0), 1, 3, 0)
>>> p.vertices[0]
Point2D(1, 0)
>>> p.args[0]
Point2D(0, 0)
>>> p.spin(pi/2)
>>> p.vertices[0]
Point2D(0, 1)
"""
def __new__(cls, *args, **kwargs):
if kwargs.get('n', 0):
n = kwargs.pop('n')
args = list(args)
# return a virtual polygon with n sides
if len(args) == 2: # center, radius
args.append(n)
elif len(args) == 3: # center, radius, rotation
args.insert(2, n)
return RegularPolygon(*args, **kwargs)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
if Point.is_collinear(a, b, c):
nodup.pop(i + 1)
if a == c:
nodup.pop(i)
else:
i += 1
vertices = list(nodup)
if len(vertices) > 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 3:
return Triangle(*vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def area(self):
"""
The area of the polygon.
Notes
=====
The area calculation can be positive or negative based on the
orientation of the points. If any side of the polygon crosses
any other side, there will be areas having opposite signs.
See Also
========
sympy.geometry.ellipse.Ellipse.area
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.area
3
In the Z shaped polygon (with the lower right connecting back
to the upper left) the areas cancel out:
>>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
>>> Z.area
0
In the M shaped polygon, areas do not cancel because no side
crosses any other (though there is a point of contact).
>>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
>>> M.area
-3/2
"""
area = 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
area += x1*y2 - x2*y1
return simplify(area) / 2
@staticmethod
def _isright(a, b, c):
"""Return True/False for cw/ccw orientation.
Examples
========
>>> from sympy import Point, Polygon
>>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
>>> Polygon._isright(a, b, c)
True
>>> Polygon._isright(a, c, b)
False
"""
ba = b - a
ca = c - a
t_area = simplify(ba.x*ca.y - ca.x*ba.y)
res = t_area.is_nonpositive
if res is None:
raise ValueError("Can't determine orientation")
return res
@property
def angles(self):
"""The internal angle at each vertex.
Returns
=======
angles : dict
A dictionary where each key is a vertex and each value is the
internal angle at that vertex. The vertices are represented as
Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.angles[p1]
pi/2
>>> poly.angles[p2]
acos(-4*sqrt(17)/17)
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-1], args[0], args[1])
ret = {}
for i in range(len(args)):
a, b, c = args[i - 2], args[i - 1], args[i]
ang = Ray(b, a).angle_between(Ray(b, c))
if cw ^ self._isright(a, b, c):
ret[b] = 2*S.Pi - ang
else:
ret[b] = ang
return ret
@property
def ambient_dimension(self):
return self.vertices[0].ambient_dimension
@property
def perimeter(self):
"""The perimeter of the polygon.
Returns
=======
perimeter : number or Basic instance
See Also
========
sympy.geometry.line.Segment.length
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.perimeter
sqrt(17) + 7
"""
p = 0
args = self.vertices
for i in range(len(args)):
p += args[i - 1].distance(args[i])
return simplify(p)
@property
def vertices(self):
"""The vertices of the polygon.
Returns
=======
vertices : list of Points
Notes
=====
When iterating over the vertices, it is more efficient to index self
rather than to request the vertices and index them. Only use the
vertices when you want to process all of them at once. This is even
more important with RegularPolygons that calculate each vertex.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.vertices
[Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
>>> poly.vertices[0]
Point2D(0, 0)
"""
return list(self.args)
@property
def centroid(self):
"""The centroid of the polygon.
Returns
=======
centroid : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.util.centroid
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.centroid
Point2D(31/18, 11/18)
"""
A = 1/(6*self.area)
cx, cy = 0, 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
cx += v*(x1 + x2)
cy += v*(y1 + y2)
return Point(simplify(A*cx), simplify(A*cy))
def second_moment_of_area(self, point=None):
"""Returns the second moment and product moment of area of a two dimensional polygon.
Parameters
==========
point : Point, two-tuple of sympifyable objects, or None(default=None)
point is the point about which second moment of area is to be found.
If "point=None" it will be calculated about the axis passing through the
centroid of the polygon.
Returns
=======
I_xx, I_yy, I_xy : number or sympy expression
I_xx, I_yy are second moment of area of a two dimensional polygon.
I_xy is product moment of area of a two dimensional polygon.
Examples
========
>>> from sympy import Point, Polygon, symbols
>>> a, b = symbols('a, b')
>>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> rectangle.second_moment_of_area()
(a*b**3/12, a**3*b/12, 0)
>>> rectangle.second_moment_of_area(p5)
(a*b**3/9, a**3*b/9, a**2*b**2/36)
References
==========
https://en.wikipedia.org/wiki/Second_moment_of_area
"""
I_xx, I_yy, I_xy = 0, 0, 0
args = self.vertices
for i in range(len(args)):
x1, y1 = args[i-1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
I_xx += (y1**2 + y1*y2 + y2**2)*v
I_yy += (x1**2 + x1*x2 + x2**2)*v
I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
A = self.area
c_x = self.centroid[0]
c_y = self.centroid[1]
# parallel axis theorem
I_xx_c = (I_xx/12) - (A*(c_y**2))
I_yy_c = (I_yy/12) - (A*(c_x**2))
I_xy_c = (I_xy/24) - (A*(c_x*c_y))
if point is None:
return I_xx_c, I_yy_c, I_xy_c
I_xx = (I_xx_c + A*((point[1]-c_y)**2))
I_yy = (I_yy_c + A*((point[0]-c_x)**2))
I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
return I_xx, I_yy, I_xy
def first_moment_of_area(self, point=None):
"""
Returns the first moment of area of a two-dimensional polygon with
respect to a certain point of interest.
First moment of area is a measure of the distribution of the area
of a polygon in relation to an axis. The first moment of area of
the entire polygon about its own centroid is always zero. Therefore,
here it is calculated for an area, above or below a certain point
of interest, that makes up a smaller portion of the polygon. This
area is bounded by the point of interest and the extreme end
(top or bottom) of the polygon. The first moment for this area is
is then determined about the centroidal axis of the initial polygon.
References
==========
https://skyciv.com/docs/tutorials/section-tutorials/calculating-the-statical-or-first-moment-of-area-of-beam-sections/?cc=BMD
https://mechanicalc.com/reference/cross-sections
Parameters
==========
point: Point, two-tuple of sympifyable objects, or None (default=None)
point is the point above or below which the area of interest lies
If ``point=None`` then the centroid acts as the point of interest.
Returns
=======
Q_x, Q_y: number or sympy expressions
Q_x is the first moment of area about the x-axis
Q_y is the first moment of area about the y-axis
A negetive sign indicates that the section modulus is
determined for a section below (or left of) the centroidal axis
Examples
========
>>> from sympy import Point, Polygon, symbol
>>> a, b = 50, 10
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
>>> p = Polygon(p1, p2, p3, p4)
>>> p.first_moment_of_area()
(625, 3125)
>>> p.first_moment_of_area(point=Point(30, 7))
(525, 3000)
"""
if point:
xc, yc = self.centroid
else:
point = self.centroid
xc, yc = point
h_line = Line(point, slope=0)
v_line = Line(point, slope=S.Infinity)
h_poly = self.cut_section(h_line)
v_poly = self.cut_section(v_line)
x_min, y_min, x_max, y_max = self.bounds
poly_1 = h_poly[0] if h_poly[0].area <= h_poly[1].area else h_poly[1]
poly_2 = v_poly[0] if v_poly[0].area <= v_poly[1].area else v_poly[1]
Q_x = (poly_1.centroid.y - yc)*poly_1.area
Q_y = (poly_2.centroid.x - xc)*poly_2.area
return Q_x, Q_y
def polar_second_moment_of_area(self):
"""Returns the polar modulus of a two-dimensional polygon
It is a constituent of the second moment of area, linked through
the perpendicular axis theorem. While the planar second moment of
area describes an object's resistance to deflection (bending) when
subjected to a force applied to a plane parallel to the central
axis, the polar second moment of area describes an object's
resistance to deflection when subjected to a moment applied in a
plane perpendicular to the object's central axis (i.e. parallel to
the cross-section)
References
==========
https://en.wikipedia.org/wiki/Polar_moment_of_inertia
Examples
========
>>> from sympy import Polygon, symbols
>>> a, b = symbols('a, b')
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
>>> rectangle.polar_second_moment_of_area()
a**3*b/12 + a*b**3/12
"""
second_moment = self.second_moment_of_area()
return second_moment[0] + second_moment[1]
def section_modulus(self, point=None):
"""Returns a tuple with the section modulus of a two-dimensional
polygon.
Section modulus is a geometric property of a polygon defined as the
ratio of second moment of area to the distance of the extreme end of
the polygon from the centroidal axis.
References
==========
https://en.wikipedia.org/wiki/Section_modulus
Parameters
==========
point : Point, two-tuple of sympifyable objects, or None(default=None)
point is the point at which section modulus is to be found.
If "point=None" it will be calculated for the point farthest from the
centroidal axis of the polygon.
Returns
=======
S_x, S_y: numbers or SymPy expressions
S_x is the section modulus with respect to the x-axis
S_y is the section modulus with respect to the y-axis
A negetive sign indicates that the section modulus is
determined for a point below the centroidal axis
Examples
========
>>> from sympy import symbols, Polygon, Point
>>> a, b = symbols('a, b', positive=True)
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
>>> rectangle.section_modulus()
(a*b**2/6, a**2*b/6)
>>> rectangle.section_modulus(Point(a/4, b/4))
(-a*b**2/3, -a**2*b/3)
"""
x_c, y_c = self.centroid
if point is None:
# taking x and y as maximum distances from centroid
x_min, y_min, x_max, y_max = self.bounds
y = max(y_c - y_min, y_max - y_c)
x = max(x_c - x_min, x_max - x_c)
else:
# taking x and y as distances of the given point from the centroid
y = point.y - y_c
x = point.x - x_c
second_moment= self.second_moment_of_area()
S_x = second_moment[0]/y
S_y = second_moment[1]/x
return S_x, S_y
@property
def sides(self):
"""The directed line segments that form the sides of the polygon.
Returns
=======
sides : list of sides
Each side is a directed Segment.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.sides
[Segment2D(Point2D(0, 0), Point2D(1, 0)),
Segment2D(Point2D(1, 0), Point2D(5, 1)),
Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
"""
res = []
args = self.vertices
for i in range(-len(args), 0):
res.append(Segment(args[i], args[i + 1]))
return res
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
verts = self.vertices
xs = [p.x for p in verts]
ys = [p.y for p in verts]
return (min(xs), min(ys), max(xs), max(ys))
def is_convex(self):
"""Is the polygon convex?
A polygon is convex if all its interior angles are less than 180
degrees and there are no intersections between sides.
Returns
=======
is_convex : boolean
True if this polygon is convex, False otherwise.
See Also
========
sympy.geometry.util.convex_hull
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.is_convex()
True
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-2], args[-1], args[0])
for i in range(1, len(args)):
if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
return False
# check for intersecting sides
sides = self.sides
for i, si in enumerate(sides):
pts = si.args
# exclude the sides connected to si
for j in range(1 if i == len(sides) - 1 else 0, i - 1):
sj = sides[j]
if sj.p1 not in pts and sj.p2 not in pts:
hit = si.intersection(sj)
if hit:
return False
return True
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import Polygon, Point
>>> from sympy.abc import t
>>> p = Polygon((0, 0), (4, 0), (4, 4))
>>> p.encloses_point(Point(2, 1))
True
>>> p.encloses_point(Point(2, 2))
False
>>> p.encloses_point(Point(5, 5))
False
References
==========
[1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
"""
p = Point(p, dim=2)
if p in self.vertices or any(p in s for s in self.sides):
return False
# move to p, checking that the result is numeric
lit = []
for v in self.vertices:
lit.append(v - p) # the difference is simplified
if lit[-1].free_symbols:
return None
poly = Polygon(*lit)
# polygon closure is assumed in the following test but Polygon removes duplicate pts so
# the last point has to be added so all sides are computed. Using Polygon.sides is
# not good since Segments are unordered.
args = poly.args
indices = list(range(-len(args), 1))
if poly.is_convex():
orientation = None
for i in indices:
a = args[i]
b = args[i + 1]
test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
if orientation is None:
orientation = test
elif test is not orientation:
return False
return True
hit_odd = False
p1x, p1y = args[0].args
for i in indices[1:]:
p2x, p2y = args[i].args
if 0 > min(p1y, p2y):
if 0 <= max(p1y, p2y):
if 0 <= max(p1x, p2x):
if p1y != p2y:
xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
if p1x == p2x or 0 <= xinters:
hit_odd = not hit_odd
p1x, p1y = p2x, p2y
return hit_odd
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the polygon.
The parameter, varying from 0 to 1, assigns points to the position on
the perimeter that is that fraction of the total perimeter. So the
point evaluated at t=1/2 would return the point from the first vertex
that is 1/2 way around the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
arbitrary_point : Point
Raises
======
ValueError
When `parameter` already appears in the Polygon's definition.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Polygon, S, Symbol
>>> t = Symbol('t', real=True)
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
>>> p = tri.arbitrary_point('t')
>>> perimeter = tri.perimeter
>>> s1, s2 = [s.length for s in tri.sides[:2]]
>>> p.subs(t, (s1 + s2/2)/perimeter)
Point2D(1, 1/2)
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
sides = []
perimeter = self.perimeter
perim_fraction_start = 0
for s in self.sides:
side_perim_fraction = s.length/perimeter
perim_fraction_end = perim_fraction_start + side_perim_fraction
pt = s.arbitrary_point(parameter).subs(
t, (t - perim_fraction_start)/side_perim_fraction)
sides.append(
(pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
perim_fraction_start = perim_fraction_end
return Piecewise(*sides)
def parameter_value(self, other, t):
from sympy.solvers.solvers import solve
if not isinstance(other,GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other,Point):
raise ValueError("other must be a point")
if other.free_symbols:
raise NotImplementedError('non-numeric coordinates')
unknown = False
T = Dummy('t', real=True)
p = self.arbitrary_point(T)
for pt, cond in p.args:
sol = solve(pt - other, T, dict=True)
if not sol:
continue
value = sol[0][T]
if simplify(cond.subs(T, value)) == True:
return {t: value}
unknown = True
if unknown:
raise ValueError("Given point may not be on %s" % func_name(self))
raise ValueError("Given point is not on %s" % func_name(self))
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Polygon
>>> p = Polygon((0, 0), (1, 0), (1, 1))
>>> p.plot_interval()
[t, 0, 1]
"""
t = Symbol(parameter, real=True)
return [t, 0, 1]
def intersection(self, o):
"""The intersection of polygon and geometry entity.
The intersection may be empty and can contain individual Points and
complete Line Segments.
Parameters
==========
other: GeometryEntity
Returns
=======
intersection : list
The list of Segments and Points
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon, Line
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly1 = Polygon(p1, p2, p3, p4)
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
>>> poly2 = Polygon(p5, p6, p7)
>>> poly1.intersection(poly2)
[Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
>>> poly1.intersection(Line(p1, p2))
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
>>> poly1.intersection(p1)
[Point2D(0, 0)]
"""
intersection_result = []
k = o.sides if isinstance(o, Polygon) else [o]
for side in self.sides:
for side1 in k:
intersection_result.extend(side.intersection(side1))
intersection_result = list(uniq(intersection_result))
points = [entity for entity in intersection_result if isinstance(entity, Point)]
segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
if points and segments:
points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
if points_in_segments:
for i in points_in_segments:
points.remove(i)
return list(ordered(segments + points))
else:
return list(ordered(intersection_result))
def cut_section(self, line):
"""
Returns a tuple of two polygon segments that lie above and below
the intersecting line respectively.
Parameters
==========
line: Line object of geometry module
line which cuts the Polygon. The part of the Polygon that lies
above and below this line is returned.
Returns
=======
upper_polygon, lower_polygon: Polygon objects or None
upper_polygon is the polygon that lies above the given line.
lower_polygon is the polygon that lies below the given line.
upper_polygon and lower polygon are ``None`` when no polygon
exists above the line or below the line.
Raises
======
ValueError: When the line does not intersect the polygon
References
==========
https://github.com/sympy/sympy/wiki/A-method-to-return-a-cut-section-of-any-polygon-geometry
Examples
========
>>> from sympy import Point, Symbol, Polygon, Line
>>> a, b = 20, 10
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> t = rectangle.cut_section(Line((0, 5), slope=0))
>>> t
(Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 10)),
Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5)))
>>> upper_segment, lower_segment = t
>>> upper_segment.area
100
>>> upper_segment.centroid
Point2D(10, 15/2)
>>> lower_segment.centroid
Point2D(10, 5/2)
"""
intersection_points = self.intersection(line)
if not intersection_points:
raise ValueError("This line does not intersect the polygon")
points = list(self.vertices)
points.append(points[0])
x, y = symbols('x, y', real=True, cls=Dummy)
eq = line.equation(x, y)
# considering equation of line to be `ax +by + c`
a = eq.coeff(x)
b = eq.coeff(y)
upper_vertices = []
lower_vertices = []
# prev is true when previous point is above the line
prev = True
prev_point = None
for point in points:
# when coefficient of y is 0, right side of the line is
# considered
compare = eq.subs({x: point.x, y: point.y})/b if b \
else eq.subs(x, point.x)/a
# if point lies above line
if compare > 0:
if not prev:
# if previous point lies below the line, the intersection
# point of the polygon egde and the line has to be included
edge = Line(point, prev_point)
new_point = edge.intersection(line)
upper_vertices.append(new_point[0])
lower_vertices.append(new_point[0])
upper_vertices.append(point)
prev = True
else:
if prev and prev_point:
edge = Line(point, prev_point)
new_point = edge.intersection(line)
upper_vertices.append(new_point[0])
lower_vertices.append(new_point[0])
lower_vertices.append(point)
prev = False
prev_point = point
upper_polygon, lower_polygon = None, None
if upper_vertices and isinstance(Polygon(*upper_vertices), Polygon):
upper_polygon = Polygon(*upper_vertices)
if lower_vertices and isinstance(Polygon(*lower_vertices), Polygon):
lower_polygon = Polygon(*lower_vertices)
return upper_polygon, lower_polygon
def distance(self, o):
"""
Returns the shortest distance between self and o.
If o is a point, then self does not need to be convex.
If o is another polygon self and o must be convex.
Examples
========
>>> from sympy import Point, Polygon, RegularPolygon
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
>>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
>>> poly.distance(p2)
sqrt(61)
"""
if isinstance(o, Point):
dist = oo
for side in self.sides:
current = side.distance(o)
if current == 0:
return S.Zero
elif current < dist:
dist = current
return dist
elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
return self._do_poly_distance(o)
raise NotImplementedError()
def _do_poly_distance(self, e2):
"""
Calculates the least distance between the exteriors of two
convex polygons e1 and e2. Does not check for the convexity
of the polygons as this is checked by Polygon.distance.
Notes
=====
- Prints a warning if the two polygons possibly intersect as the return
value will not be valid in such a case. For a more through test of
intersection use intersection().
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point, Polygon
>>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
>>> square._do_poly_distance(triangle)
sqrt(2)/2
Description of method used
==========================
Method:
[1] http://cgm.cs.mcgill.ca/~orm/mind2p.html
Uses rotating calipers:
[2] https://en.wikipedia.org/wiki/Rotating_calipers
and antipodal points:
[3] https://en.wikipedia.org/wiki/Antipodal_point
"""
e1 = self
'''Tests for a possible intersection between the polygons and outputs a warning'''
e1_center = e1.centroid
e2_center = e2.centroid
e1_max_radius = S.Zero
e2_max_radius = S.Zero
for vertex in e1.vertices:
r = Point.distance(e1_center, vertex)
if e1_max_radius < r:
e1_max_radius = r
for vertex in e2.vertices:
r = Point.distance(e2_center, vertex)
if e2_max_radius < r:
e2_max_radius = r
center_dist = Point.distance(e1_center, e2_center)
if center_dist <= e1_max_radius + e2_max_radius:
warnings.warn("Polygons may intersect producing erroneous output")
'''
Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
'''
e1_ymax = Point(0, -oo)
e2_ymin = Point(0, oo)
for vertex in e1.vertices:
if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
e1_ymax = vertex
for vertex in e2.vertices:
if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
e2_ymin = vertex
min_dist = Point.distance(e1_ymax, e2_ymin)
'''
Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
to which the vertex is connected as its value. The same is then done for e2.
'''
e1_connections = {}
e2_connections = {}
for side in e1.sides:
if side.p1 in e1_connections:
e1_connections[side.p1].append(side.p2)
else:
e1_connections[side.p1] = [side.p2]
if side.p2 in e1_connections:
e1_connections[side.p2].append(side.p1)
else:
e1_connections[side.p2] = [side.p1]
for side in e2.sides:
if side.p1 in e2_connections:
e2_connections[side.p1].append(side.p2)
else:
e2_connections[side.p1] = [side.p2]
if side.p2 in e2_connections:
e2_connections[side.p2].append(side.p1)
else:
e2_connections[side.p2] = [side.p1]
e1_current = e1_ymax
e2_current = e2_ymin
support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
'''
Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
this information combined with the above produced dictionaries determines the
path that will be taken around the polygons
'''
point1 = e1_connections[e1_ymax][0]
point2 = e1_connections[e1_ymax][1]
angle1 = support_line.angle_between(Line(e1_ymax, point1))
angle2 = support_line.angle_between(Line(e1_ymax, point2))
if angle1 < angle2:
e1_next = point1
elif angle2 < angle1:
e1_next = point2
elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
e1_next = point2
else:
e1_next = point1
point1 = e2_connections[e2_ymin][0]
point2 = e2_connections[e2_ymin][1]
angle1 = support_line.angle_between(Line(e2_ymin, point1))
angle2 = support_line.angle_between(Line(e2_ymin, point2))
if angle1 > angle2:
e2_next = point1
elif angle2 > angle1:
e2_next = point2
elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
e2_next = point2
else:
e2_next = point1
'''
Loop which determines the distance between anti-podal pairs and updates the
minimum distance accordingly. It repeats until it reaches the starting position.
'''
while True:
e1_angle = support_line.angle_between(Line(e1_current, e1_next))
e2_angle = pi - support_line.angle_between(Line(
e2_current, e2_next))
if (e1_angle < e2_angle) is True:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
min_dist_current = e1_segment.distance(e2_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
elif (e1_angle > e2_angle) is True:
support_line = Line(e2_next, e2_current)
e2_segment = Segment(e2_current, e2_next)
min_dist_current = e2_segment.distance(e1_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
else:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
e2_segment = Segment(e2_current, e2_next)
min1 = e1_segment.distance(e2_next)
min2 = e2_segment.distance(e1_next)
min_dist_current = min(min1, min2)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
if e1_current == e1_ymax and e2_current == e2_ymin:
break
return min_dist
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the Polygon.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
verts = map(N, self.vertices)
coords = ["{0},{1}".format(p.x, p.y) for p in verts]
path = "M {0} L {1} z".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" />'
).format(2. * scale_factor, path, fill_color)
def _hashable_content(self):
D = {}
def ref_list(point_list):
kee = {}
for i, p in enumerate(ordered(set(point_list))):
kee[p] = i
D[i] = p
return [kee[p] for p in point_list]
S1 = ref_list(self.args)
r_nor = rotate_left(S1, least_rotation(S1))
S2 = ref_list(list(reversed(self.args)))
r_rev = rotate_left(S2, least_rotation(S2))
if r_nor < r_rev:
r = r_nor
else:
r = r_rev
canonical_args = [ D[order] for order in r ]
return tuple(canonical_args)
def __contains__(self, o):
"""
Return True if o is contained within the boundary lines of self.altitudes
Parameters
==========
other : GeometryEntity
Returns
=======
contained in : bool
The points (and sides, if applicable) are contained in self.
See Also
========
sympy.geometry.entity.GeometryEntity.encloses
Examples
========
>>> from sympy import Line, Segment, Point
>>> p = Point(0, 0)
>>> q = Point(1, 1)
>>> s = Segment(p, q*2)
>>> l = Line(p, q)
>>> p in q
False
>>> p in s
True
>>> q*3 in s
False
>>> s in l
True
"""
if isinstance(o, Polygon):
return self == o
elif isinstance(o, Segment):
return any(o in s for s in self.sides)
elif isinstance(o, Point):
if o in self.vertices:
return True
for side in self.sides:
if o in side:
return True
return False
class RegularPolygon(Polygon):
"""
A regular polygon.
Such a polygon has all internal angles equal and all sides the same length.
Parameters
==========
center : Point
radius : number or Basic instance
The distance from the center to a vertex
n : int
The number of sides
Attributes
==========
vertices
center
radius
rotation
apothem
interior_angle
exterior_angle
circumcircle
incircle
angles
Raises
======
GeometryError
If the `center` is not a Point, or the `radius` is not a number or Basic
instance, or the number of sides, `n`, is less than three.
Notes
=====
A RegularPolygon can be instantiated with Polygon with the kwarg n.
Regular polygons are instantiated with a center, radius, number of sides
and a rotation angle. Whereas the arguments of a Polygon are vertices, the
vertices of the RegularPolygon must be obtained with the vertices method.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r
RegularPolygon(Point2D(0, 0), 5, 3, 0)
>>> r.vertices[0]
Point2D(5, 0)
"""
__slots__ = ['_n', '_center', '_radius', '_rot']
def __new__(self, c, r, n, rot=0, **kwargs):
r, n, rot = map(sympify, (r, n, rot))
c = Point(c, dim=2, **kwargs)
if not isinstance(r, Expr):
raise GeometryError("r must be an Expr object, not %s" % r)
if n.is_Number:
as_int(n) # let an error raise if necessary
if n < 3:
raise GeometryError("n must be a >= 3, not %s" % n)
obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
obj._n = n
obj._center = c
obj._radius = r
obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
return obj
@property
def args(self):
"""
Returns the center point, the radius,
the number of sides, and the orientation angle.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.args
(Point2D(0, 0), 5, 3, 0)
"""
return self._center, self._radius, self._n, self._rot
def __str__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
def __repr__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
@property
def area(self):
"""Returns the area.
Examples
========
>>> from sympy.geometry import RegularPolygon
>>> square = RegularPolygon((0, 0), 1, 4)
>>> square.area
2
>>> _ == square.length**2
True
"""
c, r, n, rot = self.args
return sign(r)*n*self.length**2/(4*tan(pi/n))
@property
def length(self):
"""Returns the length of the sides.
The half-length of the side and the apothem form two legs
of a right triangle whose hypotenuse is the radius of the
regular polygon.
Examples
========
>>> from sympy.geometry import RegularPolygon
>>> from sympy import sqrt
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
>>> s.length
sqrt(2)
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
True
"""
return self.radius*2*sin(pi/self._n)
@property
def center(self):
"""The center of the RegularPolygon
This is also the center of the circumscribing circle.
Returns
=======
center : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point2D(0, 0)
"""
return self._center
centroid = center
@property
def circumcenter(self):
"""
Alias for center.
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.circumcenter
Point2D(0, 0)
"""
return self.center
@property
def radius(self):
"""Radius of the RegularPolygon
This is also the radius of the circumscribing circle.
Returns
=======
radius : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.radius
r
"""
return self._radius
@property
def circumradius(self):
"""
Alias for radius.
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.circumradius
r
"""
return self.radius
@property
def rotation(self):
"""CCW angle by which the RegularPolygon is rotated
Returns
=======
rotation : number or instance of Basic
Examples
========
>>> from sympy import pi
>>> from sympy.abc import a
>>> from sympy.geometry import RegularPolygon, Point
>>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
pi/4
Numerical rotation angles are made canonical:
>>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
a
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
0
"""
return self._rot
@property
def apothem(self):
"""The inradius of the RegularPolygon.
The apothem/inradius is the radius of the inscribed circle.
Returns
=======
apothem : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.apothem
sqrt(2)*r/2
"""
return self.radius * cos(S.Pi/self._n)
@property
def inradius(self):
"""
Alias for apothem.
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.inradius
sqrt(2)*r/2
"""
return self.apothem
@property
def interior_angle(self):
"""Measure of the interior angles.
Returns
=======
interior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.interior_angle
3*pi/4
"""
return (self._n - 2)*S.Pi/self._n
@property
def exterior_angle(self):
"""Measure of the exterior angles.
Returns
=======
exterior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.exterior_angle
pi/4
"""
return 2*S.Pi/self._n
@property
def circumcircle(self):
"""The circumcircle of the RegularPolygon.
Returns
=======
circumcircle : Circle
See Also
========
circumcenter, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.circumcircle
Circle(Point2D(0, 0), 4)
"""
return Circle(self.center, self.radius)
@property
def incircle(self):
"""The incircle of the RegularPolygon.
Returns
=======
incircle : Circle
See Also
========
inradius, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
>>> rp.incircle
Circle(Point2D(0, 0), 4*cos(pi/7))
"""
return Circle(self.center, self.apothem)
@property
def angles(self):
"""
Returns a dictionary with keys, the vertices of the Polygon,
and values, the interior angle at each vertex.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.angles
{Point2D(-5/2, -5*sqrt(3)/2): pi/3,
Point2D(-5/2, 5*sqrt(3)/2): pi/3,
Point2D(5, 0): pi/3}
"""
ret = {}
ang = self.interior_angle
for v in self.vertices:
ret[v] = ang
return ret
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
The general Polygon.encloses_point method is called only if
a point is not within or beyond the incircle or circumcircle,
respectively.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import RegularPolygon, S, Point, Symbol
>>> p = RegularPolygon((0, 0), 3, 4)
>>> p.encloses_point(Point(0, 0))
True
>>> r, R = p.inradius, p.circumradius
>>> p.encloses_point(Point((r + R)/2, 0))
True
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
False
>>> t = Symbol('t', real=True)
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
False
>>> p.encloses_point(Point(5, 5))
False
"""
c = self.center
d = Segment(c, p).length
if d >= self.radius:
return False
elif d < self.inradius:
return True
else:
# now enumerate the RegularPolygon like a general polygon.
return Polygon.encloses_point(self, p)
def spin(self, angle):
"""Increment *in place* the virtual Polygon's rotation by ccw angle.
See also: rotate method which moves the center.
>>> from sympy import Polygon, Point, pi
>>> r = Polygon(Point(0,0), 1, n=3)
>>> r.vertices[0]
Point2D(1, 0)
>>> r.spin(pi/6)
>>> r.vertices[0]
Point2D(sqrt(3)/2, 1/2)
See Also
========
rotation
rotate : Creates a copy of the RegularPolygon rotated about a Point
"""
self._rot += angle
def rotate(self, angle, pt=None):
"""Override GeometryEntity.rotate to first rotate the RegularPolygon
about its center.
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = RegularPolygon(Point(1, 0), 1, 3)
>>> t.vertices[0] # vertex on x-axis
Point2D(2, 0)
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
Point2D(0, 2)
See Also
========
rotation
spin : Rotates a RegularPolygon in place
"""
r = type(self)(*self.args) # need a copy or else changes are in-place
r._rot += angle
return GeometryEntity.rotate(r, angle, pt)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since it is the radius that must be
scaled (if x == y) or else a new Polygon must be returned.
>>> from sympy import RegularPolygon
Symmetric scaling returns a RegularPolygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
RegularPolygon(Point2D(0, 0), 2, 4, 0)
Asymmetric scaling returns a kite as a Polygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
if x != y:
return Polygon(*self.vertices).scale(x, y)
c, r, n, rot = self.args
r *= x
return self.func(c, r, n, rot)
def reflect(self, line):
"""Override GeometryEntity.reflect since this is not made of only
points.
Examples
========
>>> from sympy import RegularPolygon, Line
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
"""
c, r, n, rot = self.args
v = self.vertices[0]
d = v - c
cc = c.reflect(line)
vv = v.reflect(line)
dd = vv - cc
# calculate rotation about the new center
# which will align the vertices
l1 = Ray((0, 0), dd)
l2 = Ray((0, 0), d)
ang = l1.closing_angle(l2)
rot += ang
# change sign of radius as point traversal is reversed
return self.func(cc, -r, n, rot)
@property
def vertices(self):
"""The vertices of the RegularPolygon.
Returns
=======
vertices : list
Each vertex is a Point.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.vertices
[Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
"""
c = self._center
r = abs(self._radius)
rot = self._rot
v = 2*S.Pi/self._n
return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
for k in range(self._n)]
def __eq__(self, o):
if not isinstance(o, Polygon):
return False
elif not isinstance(o, RegularPolygon):
return Polygon.__eq__(o, self)
return self.args == o.args
def __hash__(self):
return super(RegularPolygon, self).__hash__()
class Triangle(Polygon):
"""
A polygon with three vertices and three sides.
Parameters
==========
points : sequence of Points
keyword: asa, sas, or sss to specify sides/angles of the triangle
Attributes
==========
vertices
altitudes
orthocenter
circumcenter
circumradius
circumcircle
inradius
incircle
exradii
medians
medial
nine_point_circle
Raises
======
GeometryError
If the number of vertices is not equal to three, or one of the vertices
is not a Point, or a valid keyword is not given.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
Keywords sss, sas, or asa can be used to give the desired
side lengths (in order) and interior angles (in degrees) that
define the triangle:
>>> Triangle(sss=(3, 4, 5))
Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> Triangle(asa=(30, 1, 30))
Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
>>> Triangle(sas=(1, 45, 2))
Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
"""
def __new__(cls, *args, **kwargs):
if len(args) != 3:
if 'sss' in kwargs:
return _sss(*[simplify(a) for a in kwargs['sss']])
if 'asa' in kwargs:
return _asa(*[simplify(a) for a in kwargs['asa']])
if 'sas' in kwargs:
return _sas(*[simplify(a) for a in kwargs['sas']])
msg = "Triangle instantiates with three points or a valid keyword."
raise GeometryError(msg)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = sorted(
[nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
if Point.is_collinear(a, b, c):
nodup[i] = a
nodup[i + 1] = None
nodup.pop(i + 1)
i += 1
vertices = list(filter(lambda x: x is not None, nodup))
if len(vertices) == 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def vertices(self):
"""The triangle's vertices
Returns
=======
vertices : tuple
Each element in the tuple is a Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t.vertices
(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
"""
return self.args
def is_similar(t1, t2):
"""Is another triangle similar to this one.
Two triangles are similar if one can be uniformly scaled to the other.
Parameters
==========
other: Triangle
Returns
=======
is_similar : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
>>> t1.is_similar(t2)
True
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
>>> t1.is_similar(t2)
False
"""
if not isinstance(t2, Polygon):
return False
s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
s2 = [side.length for side in t2.sides]
def _are_similar(u1, u2, u3, v1, v2, v3):
e1 = simplify(u1/v1)
e2 = simplify(u2/v2)
e3 = simplify(u3/v3)
return bool(e1 == e2) and bool(e2 == e3)
# There's only 6 permutations, so write them out
return _are_similar(s1_1, s1_2, s1_3, *s2) or \
_are_similar(s1_1, s1_3, s1_2, *s2) or \
_are_similar(s1_2, s1_1, s1_3, *s2) or \
_are_similar(s1_2, s1_3, s1_1, *s2) or \
_are_similar(s1_3, s1_1, s1_2, *s2) or \
_are_similar(s1_3, s1_2, s1_1, *s2)
def is_equilateral(self):
"""Are all the sides the same length?
Returns
=======
is_equilateral : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
is_isosceles, is_right, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_equilateral()
False
>>> from sympy import sqrt
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
>>> t2.is_equilateral()
True
"""
return not has_variety(s.length for s in self.sides)
def is_isosceles(self):
"""Are two or more of the sides the same length?
Returns
=======
is_isosceles : boolean
See Also
========
is_equilateral, is_right, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
>>> t1.is_isosceles()
True
"""
return has_dups(s.length for s in self.sides)
def is_scalene(self):
"""Are all the sides of the triangle of different lengths?
Returns
=======
is_scalene : boolean
See Also
========
is_equilateral, is_isosceles, is_right
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
>>> t1.is_scalene()
True
"""
return not has_dups(s.length for s in self.sides)
def is_right(self):
"""Is the triangle right-angled.
Returns
=======
is_right : boolean
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular
is_equilateral, is_isosceles, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_right()
True
"""
s = self.sides
return Segment.is_perpendicular(s[0], s[1]) or \
Segment.is_perpendicular(s[1], s[2]) or \
Segment.is_perpendicular(s[0], s[2])
@property
def altitudes(self):
"""The altitudes of the triangle.
An altitude of a triangle is a segment through a vertex,
perpendicular to the opposite side, with length being the
height of the vertex measured from the line containing the side.
Returns
=======
altitudes : dict
The dictionary consists of keys which are vertices and values
which are Segments.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment.length
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.altitudes[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: s[1].perpendicular_segment(v[0]),
v[1]: s[2].perpendicular_segment(v[1]),
v[2]: s[0].perpendicular_segment(v[2])}
@property
def orthocenter(self):
"""The orthocenter of the triangle.
The orthocenter is the intersection of the altitudes of a triangle.
It may lie inside, outside or on the triangle.
Returns
=======
orthocenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.orthocenter
Point2D(0, 0)
"""
a = self.altitudes
v = self.vertices
return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
@property
def circumcenter(self):
"""The circumcenter of the triangle
The circumcenter is the center of the circumcircle.
Returns
=======
circumcenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcenter
Point2D(1/2, 1/2)
"""
a, b, c = [x.perpendicular_bisector() for x in self.sides]
if not a.intersection(b):
print(a,b,a.intersection(b))
return a.intersection(b)[0]
@property
def circumradius(self):
"""The radius of the circumcircle of the triangle.
Returns
=======
circumradius : number of Basic instance
See Also
========
sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import Point, Triangle
>>> a = Symbol('a')
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
>>> t = Triangle(p1, p2, p3)
>>> t.circumradius
sqrt(a**2/4 + 1/4)
"""
return Point.distance(self.circumcenter, self.vertices[0])
@property
def circumcircle(self):
"""The circle which passes through the three vertices of the triangle.
Returns
=======
circumcircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcircle
Circle(Point2D(1/2, 1/2), sqrt(2)/2)
"""
return Circle(self.circumcenter, self.circumradius)
def bisectors(self):
"""The angle bisectors of the triangle.
An angle bisector of a triangle is a straight line through a vertex
which cuts the corresponding angle in half.
Returns
=======
bisectors : dict
Each key is a vertex (Point) and each value is the corresponding
bisector (Segment).
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy.geometry import Point, Triangle, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> from sympy import sqrt
>>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
True
"""
# use lines containing sides so containment check during
# intersection calculation can be avoided, thus reducing
# the processing time for calculating the bisectors
s = [Line(l) for l in self.sides]
v = self.vertices
c = self.incenter
l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
return {v[0]: l1, v[1]: l2, v[2]: l3}
@property
def incenter(self):
"""The center of the incircle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incenter : Point
See Also
========
incircle, sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.incenter
Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
"""
s = self.sides
l = Matrix([s[i].length for i in [1, 2, 0]])
p = sum(l)
v = self.vertices
x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
return Point(x, y)
@property
def inradius(self):
"""The radius of the incircle.
Returns
=======
inradius : number of Basic instance
See Also
========
incircle, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
>>> t = Triangle(p1, p2, p3)
>>> t.inradius
1
"""
return simplify(2 * self.area / self.perimeter)
@property
def incircle(self):
"""The incircle of the triangle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.incircle
Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
"""
return Circle(self.incenter, self.inradius)
@property
def exradii(self):
"""The radius of excircles of a triangle.
An excircle of the triangle is a circle lying outside the triangle,
tangent to one of its sides and tangent to the extensions of the
other two.
Returns
=======
exradii : dict
See Also
========
sympy.geometry.polygon.Triangle.inradius
Examples
========
The exradius touches the side of the triangle to which it is keyed, e.g.
the exradius touching side 2 is:
>>> from sympy.geometry import Point, Triangle, Segment2D, Point2D
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.exradii[t.sides[2]]
-2 + sqrt(10)
References
==========
[1] http://mathworld.wolfram.com/Exradius.html
[2] http://mathworld.wolfram.com/Excircles.html
"""
side = self.sides
a = side[0].length
b = side[1].length
c = side[2].length
s = (a+b+c)/2
area = self.area
exradii = {self.sides[0]: simplify(area/(s-a)),
self.sides[1]: simplify(area/(s-b)),
self.sides[2]: simplify(area/(s-c))}
return exradii
@property
def excenters(self):
"""Excenters of the triangle.
An excenter is the center of a circle that is tangent to a side of the
triangle and the extensions of the other two sides.
Returns
=======
excenters : dict
Examples
========
The excenters are keyed to the side of the triangle to which their corresponding
excircle is tangent: The center is keyed, e.g. the excenter of a circle touching
side 0 is:
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.excenters[t.sides[0]]
Point2D(12*sqrt(10), 2/3 + sqrt(10)/3)
See Also
========
sympy.geometry.polygon.Triangle.exradii
References
==========
.. [1] http://mathworld.wolfram.com/Excircles.html
"""
s = self.sides
v = self.vertices
a = s[0].length
b = s[1].length
c = s[2].length
x = [v[0].x, v[1].x, v[2].x]
y = [v[0].y, v[1].y, v[2].y]
exc_coords = {
"x1": simplify(-a*x[0]+b*x[1]+c*x[2]/(-a+b+c)),
"x2": simplify(a*x[0]-b*x[1]+c*x[2]/(a-b+c)),
"x3": simplify(a*x[0]+b*x[1]-c*x[2]/(a+b-c)),
"y1": simplify(-a*y[0]+b*y[1]+c*y[2]/(-a+b+c)),
"y2": simplify(a*y[0]-b*y[1]+c*y[2]/(a-b+c)),
"y3": simplify(a*y[0]+b*y[1]-c*y[2]/(a+b-c))
}
excenters = {
s[0]: Point(exc_coords["x1"], exc_coords["y1"]),
s[1]: Point(exc_coords["x2"], exc_coords["y2"]),
s[2]: Point(exc_coords["x3"], exc_coords["y3"])
}
return excenters
@property
def medians(self):
"""The medians of the triangle.
A median of a triangle is a straight line through a vertex and the
midpoint of the opposite side, and divides the triangle into two
equal areas.
Returns
=======
medians : dict
Each key is a vertex (Point) and each value is the median (Segment)
at that point.
See Also
========
sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medians[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: Segment(v[0], s[1].midpoint),
v[1]: Segment(v[1], s[2].midpoint),
v[2]: Segment(v[2], s[0].midpoint)}
@property
def medial(self):
"""The medial triangle of the triangle.
The triangle which is formed from the midpoints of the three sides.
Returns
=======
medial : Triangle
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medial
Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
"""
s = self.sides
return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
@property
def nine_point_circle(self):
"""The nine-point circle of the triangle.
Nine-point circle is the circumcircle of the medial triangle, which
passes through the feet of altitudes and the middle points of segments
connecting the vertices and the orthocenter.
Returns
=======
nine_point_circle : Circle
See also
========
sympy.geometry.line.Segment.midpoint
sympy.geometry.polygon.Triangle.medial
sympy.geometry.polygon.Triangle.orthocenter
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.nine_point_circle
Circle(Point2D(1/4, 1/4), sqrt(2)/4)
"""
return Circle(*self.medial.vertices)
@property
def eulerline(self):
"""The Euler line of the triangle.
The line which passes through circumcenter, centroid and orthocenter.
Returns
=======
eulerline : Line (or Point for equilateral triangles in which case all
centers coincide)
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.eulerline
Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
if self.is_equilateral():
return self.orthocenter
return Line(self.orthocenter, self.circumcenter)
def rad(d):
"""Return the radian value for the given degrees (pi = 180 degrees)."""
return d*pi/180
def deg(r):
"""Return the degree value for the given radians (pi = 180 degrees)."""
return r/pi*180
def _slope(d):
rv = tan(rad(d))
return rv
def _asa(d1, l, d2):
"""Return triangle having side with length l on the x-axis."""
xy = Line((0, 0), slope=_slope(d1)).intersection(
Line((l, 0), slope=_slope(180 - d2)))[0]
return Triangle((0, 0), (l, 0), xy)
def _sss(l1, l2, l3):
"""Return triangle having side of length l1 on the x-axis."""
c1 = Circle((0, 0), l3)
c2 = Circle((l1, 0), l2)
inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
if not inter:
return None
pt = inter[0]
return Triangle((0, 0), (l1, 0), pt)
def _sas(l1, d, l2):
"""Return triangle having side with length l2 on the x-axis."""
p1 = Point(0, 0)
p2 = Point(l2, 0)
p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
return Triangle(p1, p2, p3)
|
0601c8a246923a8de7c099463bf71a247cf7ee7eb2a00f0678cf578e7e333297 | r"""
The :py:mod:`~sympy.holonomic` module is intended to deal with holonomic functions along
with various operations on them like addition, multiplication, composition,
integration and differentiation. The module also implements various kinds of
conversions such as converting holonomic functions to a different form and the
other way around.
"""
from .holonomic import (DifferentialOperator, HolonomicFunction, DifferentialOperators,
from_hyper, from_meijerg, expr_to_holonomic)
from .recurrence import RecurrenceOperators, RecurrenceOperator, HolonomicSequence
__all__ = [
'DifferentialOperator', 'HolonomicFunction', 'DifferentialOperators',
'from_hyper', 'from_meijerg', 'expr_to_holonomic',
'RecurrenceOperators', 'RecurrenceOperator', 'HolonomicSequence',
]
|
8412193275e0e5762845c5eabf63983dc0114d1beba6245a8952bb8946e129da | """
This module implements Holonomic Functions and
various operations on them.
"""
from __future__ import print_function, division
from sympy import (Symbol, S, Dummy, Order, rf, I,
solve, limit, Float, nsimplify, gamma)
from sympy.core.compatibility import range, ordered, string_types
from sympy.core.numbers import NaN, Infinity, NegativeInfinity
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.functions.elementary.exponential import exp_polar, exp
from sympy.functions.special.hyper import hyper, meijerg
from sympy.integrals import meijerint
from sympy.matrices import Matrix
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, RR
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
from sympy.printing import sstr
from sympy.simplify.hyperexpand import hyperexpand
from .linearsolver import NewMatrix
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
SingularityError, NotHolonomicError)
def DifferentialOperators(base, generator):
r"""
This function is used to create annihilators using ``Dx``.
Returns an Algebra of Differential Operators also called Weyl Algebra
and the operator for differentiation i.e. the ``Dx`` operator.
Parameters
==========
base:
Base polynomial ring for the algebra.
The base polynomial ring is the ring of polynomials in :math:`x` that
will appear as coefficients in the operators.
generator:
Generator of the algebra which can
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
>>> Dx*x
(1) + (x)*Dx
"""
ring = DifferentialOperatorAlgebra(base, generator)
return (ring, ring.derivative_operator)
class DifferentialOperatorAlgebra(object):
r"""
An Ore Algebra is a set of noncommutative polynomials in the
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
It follows the commutation rule:
.. math ::
Dxa = \sigma(a)Dx + \delta(a)
for :math:`a \subset A`.
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A`
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`.
If one takes the sigma as identity map and delta as the standard derivation
then it becomes the algebra of Differential Operators also called
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
This class represents a Weyl Algebra and serves as the parent ring for
Differential Operators.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring
ZZ[x]
See Also
========
DifferentialOperator
"""
def __init__(self, base, generator):
# the base polynomial ring for the algebra
self.base = base
# the operator representing differentiation i.e. `Dx`
self.derivative_operator = DifferentialOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = Symbol('Dx', commutative=False)
else:
if isinstance(generator, string_types):
self.gen_symbol = Symbol(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Differential Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
class DifferentialOperator(object):
"""
Differential Operators are elements of Weyl Algebra. The Operators
are defined by a list of polynomials in the base ring and the
parent ring of the Operator i.e. the algebra it belongs to.
Takes a list of polynomials for each power of ``Dx`` and the
parent ring which must be an instance of DifferentialOperatorAlgebra.
A Differential Operator can be created easily using
the operator ``Dx``. See examples below.
Examples
========
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2
>>> (x*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
"""
Parameters
==========
list_of_poly:
List of polynomials belonging to the base ring of the algebra.
parent:
Parent algebra of the operator.
"""
# the parent ring for this operator
# must be an DifferentialOperatorAlgebra object
self.parent = parent
base = self.parent.base
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
# sequence of polynomials in x for each power of Dx
# the list should not have trailing zeroes
# represents the operator
# convert the expressions into ring elements using from_sympy
for i, j in enumerate(list_of_poly):
if not isinstance(j, base.dtype):
list_of_poly[i] = base.from_sympy(sympify(j))
else:
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
self.listofpoly = list_of_poly
# highest power of `Dx`
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two DifferentialOperator and returns another
DifferentialOperator instance using the commutation rule
Dx*a = a*Dx + a'
"""
listofself = self.listofpoly
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiplies a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Dx^i * b
def _mul_Dxi_b(b):
sol1 = [self.parent.base.zero]
sol2 = []
if isinstance(b, list):
for i in b:
sol1.append(i)
sol2.append(i.diff())
else:
sol1.append(self.parent.base.from_sympy(b))
sol2.append(self.parent.base.from_sympy(b).diff())
return _add_lists(sol1, sol2)
for i in range(1, len(listofself)):
# find Dx^i * b in ith iteration
listofother = _mul_Dxi_b(listofother)
# solution = solution + listofself[i] * (Dx^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return DifferentialOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(sympify(other))
sol = []
for j in self.listofpoly:
sol.append(other * j)
return DifferentialOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, DifferentialOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return DifferentialOperator(sol, self.parent)
else:
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(sympify(other))]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return DifferentialOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __neg__(self):
return -1 * self
def __div__(self, other):
return self * (S.One / other)
def __truediv__(self, other):
return self.__div__(other)
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return DifferentialOperator([self.parent.base.one], self.parent)
# if self is `Dx`
if self.listofpoly == self.parent.derivative_operator.listofpoly:
sol = []
for i in range(0, n):
sol.append(self.parent.base.zero)
sol.append(self.parent.base.one)
return DifferentialOperator(sol, self.parent)
# the general case
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
continue
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, DifferentialOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in self.listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
def is_singular(self, x0):
"""
Checks if the differential equation is singular at x0.
"""
base = self.parent.base
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
class HolonomicFunction(object):
r"""
A Holonomic Function is a solution to a linear homogeneous ordinary
differential equation with polynomial coefficients. This differential
equation can also be represented by an annihilator i.e. a Differential
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
initial conditions can also be provided along with the annihilator.
Holonomic functions have closure properties and thus forms a ring.
Given two Holonomic Functions f and g, their sum, product,
integral and derivative is also a Holonomic Function.
For ordinary points initial condition should be a vector of values of
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
For regular singular points initial conditions can also be provided in this
format:
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
where s0, s1, ... are the roots of indicial equation and vectors
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
terms of the associated power series. See Examples below.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
An example of initial conditions for regular singular points,
the indicial equation has only one root `1/2`.
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
sqrt(x)
To plot a Holonomic Function, one can use `.evalf()` for numerical
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
>>> import sympy.holonomic # doctest: +SKIP
>>> from sympy import var, sin # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np # doctest: +SKIP
>>> var("x") # doctest: +SKIP
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
_op_priority = 20
def __init__(self, annihilator, x, x0=0, y0=None):
"""
Parameters
==========
annihilator:
Annihilator of the Holonomic Function, represented by a
`DifferentialOperator` object.
x:
Variable of the function.
x0:
The point at which initial conditions are stored.
Generally an integer.
y0:
The initial condition. The proper format for the initial condition
is described in class docstring. To make the function unique,
length of the vector `y0` should be equal to or greater than the
order of differential equation.
"""
# initial condition
self.y0 = y0
# the point for initial conditions, default is zero.
self.x0 = x0
# differential operator L such that L.f = 0
self.annihilator = annihilator
self.x = x
def __str__(self):
if self._have_init_cond():
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
sstr(self.x), sstr(self.x0), sstr(self.y0))
else:
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
sstr(self.x))
return str_sol
__repr__ = __str__
def unify(self, other):
"""
Unifies the base polynomial ring of a given two Holonomic
Functions.
"""
R1 = self.annihilator.parent.base
R2 = other.annihilator.parent.base
dom1 = R1.dom
dom2 = R2.dom
if R1 == R2:
return (self, other)
R = (dom1.unify(dom2)).old_poly_ring(self.x)
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
sol1 = DifferentialOperator(sol1, newparent)
sol2 = DifferentialOperator(sol2, newparent)
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
return (sol1, sol2)
def is_singularics(self):
"""
Returns True if the function have singular initial condition
in the dictionary format.
Returns False if the function have ordinary initial condition
in the list format.
Returns None for all other cases.
"""
if isinstance(self.y0, dict):
return True
elif isinstance(self.y0, list):
return False
def _have_init_cond(self):
"""
Checks if the function have initial condition.
"""
return bool(self.y0)
def _singularics_to_ord(self):
"""
Converts a singular initial condition to ordinary if possible.
"""
a = list(self.y0)[0]
b = self.y0[a]
if len(self.y0) == 1 and a == int(a) and a > 0:
y0 = []
a = int(a)
for i in range(a):
y0.append(S.Zero)
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
def __add__(self, other):
# if the ground domains are different
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a + b
deg1 = self.annihilator.order
deg2 = other.annihilator.order
dim = max(deg1, deg2)
R = self.annihilator.parent.base
K = R.get_field()
rowsself = [self.annihilator]
rowsother = [other.annihilator]
gen = self.annihilator.parent.derivative_operator
# constructing annihilators up to order dim
for i in range(dim - deg1):
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
for i in range(dim - deg2):
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
# constructing the matrix of the ansatz
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(0)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S.Zero for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
# solving the linear system using gauss jordan solver
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# if a solution is not obtained then increasing the order by 1 in each
# iteration
while sol.is_zero:
dim += 1
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(S.Zero)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S.Zero for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# taking only the coefficients needed to multiply with `self`
# can be also be done the other way by taking R.H.S and multiplying with
# `other`
sol = sol[:dim + 1 - deg1]
sol1 = _normalize(sol, self.annihilator.parent)
# annihilator of the solution
sol = sol1 * (self.annihilator)
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol, self.x)
# both the functions have ordinary initial conditions
if self.is_singularics() == False and other.is_singularics() == False:
# directly add the corresponding value
if self.x0 == other.x0:
# try to extended the initial conditions
# using the annihilator
y1 = _extend_y0(self, sol.order)
y2 = _extend_y0(other, sol.order)
y0 = [a + b for a, b in zip(y1, y2)]
return HolonomicFunction(sol, self.x, self.x0, y0)
else:
# change the intiial conditions to a same point
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self + other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) + other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self + other.change_ics(self.x0)
else:
return self.change_ics(other.x0) + other
if self.x0 != other.x0:
return HolonomicFunction(sol, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
# convert the ordinary initial condition to singular.
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
# computing singular initial condition for the result
# taking union of the series terms of both functions
y0 = {}
for i in y1:
# add corresponding initial terms if the power
# on `x` is same
if i in y2:
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
else:
y0[i] = y1[i]
for i in y2:
if not i in y1:
y0[i] = y2[i]
return HolonomicFunction(sol, self.x, self.x0, y0)
def integrate(self, limits, initcond=False):
"""
Integrates the given holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
"""
# to get the annihilator, just multiply by Dx from right
D = self.annihilator.parent.derivative_operator
# if the function have initial conditions of the series format
if self.is_singularics() == True:
r = self._singularics_to_ord()
if r:
return r.integrate(limits, initcond=initcond)
# computing singular initial condition for the function
# produced after integration.
y0 = {}
for i in self.y0:
c = self.y0[i]
c2 = []
for j in range(len(c)):
if c[j] == 0:
c2.append(S.Zero)
# if power on `x` is -1, the integration becomes log(x)
# TODO: Implement this case
elif i + j + 1 == 0:
raise NotImplementedError("logarithmic terms in the series are not supported")
else:
c2.append(c[j] / S(i + j + 1))
y0[i + 1] = c2
if hasattr(limits, "__iter__"):
raise NotImplementedError("Definite integration for singular initial conditions")
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
# if no initial conditions are available for the function
if not self._have_init_cond():
if initcond:
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero])
return HolonomicFunction(self.annihilator * D, self.x)
# definite integral
# initial conditions for the answer will be stored at point `a`,
# where `a` is the lower limit of the integrand
if hasattr(limits, "__iter__"):
if len(limits) == 3 and limits[0] == self.x:
x0 = self.x0
a = limits[1]
b = limits[2]
definite = True
else:
definite = False
y0 = [S.Zero]
y0 += self.y0
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
if not definite:
return indefinite_integral
# use evalf to get the values at `a`
if x0 != a:
try:
indefinite_expr = indefinite_integral.to_expr()
except (NotHyperSeriesError, NotPowerSeriesError):
indefinite_expr = None
if indefinite_expr:
lower = indefinite_expr.subs(self.x, a)
if isinstance(lower, NaN):
lower = indefinite_expr.limit(self.x, a)
else:
lower = indefinite_integral.evalf(a)
if b == self.x:
y0[0] = y0[0] - lower
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
elif S(b).is_Number:
if indefinite_expr:
upper = indefinite_expr.subs(self.x, b)
if isinstance(upper, NaN):
upper = indefinite_expr.limit(self.x, b)
else:
upper = indefinite_integral.evalf(b)
return upper - lower
# if the upper limit is `x`, the answer will be a function
if b == self.x:
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
# if the upper limits is a Number, a numerical value will be returned
elif S(b).is_Number:
try:
s = HolonomicFunction(self.annihilator * D, self.x, a,\
y0).to_expr()
indefinite = s.subs(self.x, b)
if not isinstance(indefinite, NaN):
return indefinite
else:
return s.limit(self.x, b)
except (NotHyperSeriesError, NotPowerSeriesError):
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
return HolonomicFunction(self.annihilator * D, self.x)
def diff(self, *args, **kwargs):
r"""
Differentiation of the given Holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
2*exp(2*x)
See Also
========
.integrate()
"""
kwargs.setdefault('evaluate', True)
if args:
if args[0] != self.x:
return S.Zero
elif len(args) == 2:
sol = self
for i in range(args[1]):
sol = sol.diff(args[0])
return sol
ann = self.annihilator
# if the function is constant.
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
return S.Zero
# if the coefficient of y in the differential equation is zero.
# a shifting is done to compute the answer in this case.
elif ann.listofpoly[0] == ann.parent.base.zero:
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
if self._have_init_cond():
# if ordinary initial condition
if self.is_singularics() == False:
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
# TODO: support for singular initial condition
return HolonomicFunction(sol, self.x)
else:
return HolonomicFunction(sol, self.x)
# the general algorithm
R = ann.parent.base
K = R.get_field()
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
rhs.insert(0, K.zero)
# differentiate both lhs and rhs
sol = _derivate_diff_eq(rhs)
# add the term y' in lhs to rhs
sol = _add_lists(sol, [K.zero, K.one])
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
if not self._have_init_cond() or self.is_singularics() == True:
return HolonomicFunction(sol, self.x)
y0 = _extend_y0(self, sol.order + 1)[1:]
return HolonomicFunction(sol, self.x, self.x0, y0)
def __eq__(self, other):
if self.annihilator == other.annihilator:
if self.x == other.x:
if self._have_init_cond() and other._have_init_cond():
if self.x0 == other.x0 and self.y0 == other.y0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
def __mul__(self, other):
ann_self = self.annihilator
if not isinstance(other, HolonomicFunction):
other = sympify(other)
if other.has(self.x):
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
if not self._have_init_cond():
return self
else:
y0 = _extend_y0(self, ann_self.order)
y1 = []
for j in y0:
y1.append((Poly.new(j, self.x) * other).rep)
return HolonomicFunction(ann_self, self.x, self.x0, y1)
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a * b
ann_other = other.annihilator
list_self = []
list_other = []
a = ann_self.order
b = ann_other.order
R = ann_self.parent.base
K = R.get_field()
for j in ann_self.listofpoly:
list_self.append(K.new(j.rep))
for j in ann_other.listofpoly:
list_other.append(K.new(j.rep))
# will be used to reduce the degree
self_red = [-list_self[i] / list_self[a] for i in range(a)]
other_red = [-list_other[i] / list_other[b] for i in range(b)]
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
coeff_mul = [[S.Zero for i in range(b + 1)] for j in range(a + 1)]
coeff_mul[0][0] = S.One
# making the ansatz
lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
homo_sys = [[S.Zero for q in range(a * b)]]
homo_sys = NewMatrix(homo_sys).transpose()
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
# until a non trivial solution is found
while sol[0].is_zero:
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
for i in range(a - 1, -1, -1):
for j in range(b - 1, -1, -1):
coeff_mul[i][j + 1] += coeff_mul[i][j]
coeff_mul[i + 1][j] += coeff_mul[i][j]
if isinstance(coeff_mul[i][j], K.dtype):
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
else:
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
# reduce the terms to lower power using annihilators of f, g
for i in range(a + 1):
if not coeff_mul[i][b].is_zero:
for j in range(b):
coeff_mul[i][j] += other_red[j] * \
coeff_mul[i][b]
coeff_mul[i][b] = S.Zero
# not d2 + 1, as that is already covered in previous loop
for j in range(b):
if not coeff_mul[a][j] == 0:
for i in range(a):
coeff_mul[i][j] += self_red[i] * \
coeff_mul[a][j]
coeff_mul[a][j] = S.Zero
lin_sys.append([coeff_mul[i][j] for i in range(a)
for j in range(b)])
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol_ann, self.x)
if self.is_singularics() == False and other.is_singularics() == False:
# if both the conditions are at same point
if self.x0 == other.x0:
# try to find more initial conditions
y0_self = _extend_y0(self, sol_ann.order)
y0_other = _extend_y0(other, sol_ann.order)
# h(x0) = f(x0) * g(x0)
y0 = [y0_self[0] * y0_other[0]]
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
for i in range(1, min(len(y0_self), len(y0_other))):
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
for j in range(i + 1):
for k in range(i + 1):
if j + k == i:
coeff[j][k] = binomial(i, j)
sol = 0
for j in range(i + 1):
for k in range(i + 1):
sol += coeff[j][k]* y0_self[j] * y0_other[k]
y0.append(sol)
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
# if the points are different, consider one
else:
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self * other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) * other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self * other.change_ics(self.x0)
else:
return self.change_ics(other.x0) * other
if self.x0 != other.x0:
return HolonomicFunction(sol_ann, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
y0 = {}
# multiply every possible pair of the series terms
for i in y1:
for j in y2:
k = min(len(y1[i]), len(y2[j]))
c = []
for a in range(k):
s = S.Zero
for b in range(a + 1):
s += y1[i][b] * y2[j][a - b]
c.append(s)
if not i + j in y0:
y0[i + j] = c
else:
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
__rmul__ = __mul__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __neg__(self):
return -1 * self
def __div__(self, other):
return self * (S.One / other)
def __truediv__(self, other):
return self.__div__(other)
def __pow__(self, n):
if self.annihilator.order <= 1:
ann = self.annihilator
parent = ann.parent
if self.y0 is None:
y0 = None
else:
y0 = [list(self.y0)[0] ** n]
p0 = ann.listofpoly[0]
p1 = ann.listofpoly[1]
p0 = (Poly.new(p0, self.x) * n).rep
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
dd = DifferentialOperator(sol, parent)
return HolonomicFunction(dd, self.x, self.x0, y0)
if n < 0:
raise NotHolonomicError("Negative Power on a Holonomic Function")
if n == 0:
Dx = self.annihilator.parent.derivative_operator
return HolonomicFunction(Dx, self.x, S.Zero, [S.One])
if n == 1:
return self
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def degree(self):
"""
Returns the highest power of `x` in the annihilator.
"""
sol = [i.degree() for i in self.annihilator.listofpoly]
return max(sol)
def composition(self, expr, *args, **kwargs):
"""
Returns function after composition of a holonomic
function with an algebraic function. The method can't compute
initial conditions for the result by itself, so they can be also be
provided.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
See Also
========
from_hyper()
"""
R = self.annihilator.parent
a = self.annihilator.order
diff = expr.diff(self.x)
listofpoly = self.annihilator.listofpoly
for i, j in enumerate(listofpoly):
if isinstance(j, self.annihilator.parent.base.dtype):
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
r = listofpoly[a].subs({self.x:expr})
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
coeffs[0] = S.One
system = [coeffs]
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose()
sol = S.Zero
while sol.is_zero:
coeffs_next = [p.diff(self.x) for p in coeffs]
for i in range(a - 1):
coeffs_next[i + 1] += (coeffs[i] * diff)
for i in range(a):
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
coeffs = coeffs_next
# check for linear relations
system.append(coeffs)
sol, taus = (Matrix(system).transpose()
).gauss_jordan_solve(homogeneous)
tau = list(taus)[0]
sol = sol.subs(tau, 1)
sol = _normalize(sol[0:], R, negative=False)
# if initial conditions are given for the resulting function
if args:
return HolonomicFunction(sol, self.x, args[0], args[1])
return HolonomicFunction(sol, self.x)
def to_sequence(self, lb=True):
r"""
Finds recurrence relation for the coefficients in the series expansion
of the function about :math:`x_0`, where :math:`x_0` is the point at
which the initial condition is stored.
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
smallest ``n`` for which the recurrence holds true.
If the point :math:`x_0` is regular singular, a list of solutions in
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
Each tuple in this vector represents a recurrence relation :math:`R`
associated with a root of the indicial equation ``p``. Conditions of
a different format can also be provided in this case, see the
docstring of HolonomicFunction class.
If it's not possible to numerically compute a initial condition,
it is returned as a symbol :math:`C_j`, denoting the coefficient of
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
See Also
========
HolonomicFunction.series()
References
==========
.. [1] https://hal.inria.fr/inria-00070025/document
.. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
"""
if self.x0 != 0:
return self.shift_x(self.x0).to_sequence()
# check whether a power series exists if the point is singular
if self.annihilator.is_singular(self.x0):
return self._frobenius(lb=lb)
dict1 = {}
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
# substituting each term of the form `x^k Dx^j` in the
# annihilator, according to the formula below:
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
# for explanation see [2].
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k) in dict1:
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
else:
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = self.degree()
# the recurrence relation holds for all values of
# n greater than smallest_n, i.e. n >= smallest_n
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
# an appropriate shift of the recurrence
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
y0 = _extend_y0(self, order)
u0 = []
# u(n) = y^n(0)/factorial(n)
for i, j in enumerate(y0):
u0.append(j / factorial(i))
# if sufficient conditions can't be computed then
# try to use the series method i.e.
# equate the coefficients of x^k in the equation formed by
# substituting the series in differential equation, to zero.
if len(u0) < order:
for i in range(degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
def _frobenius(self, lb=True):
# compute the roots of indicial equation
indicialroots = self._indicial()
reals = []
compl = []
for i in ordered(indicialroots.keys()):
if i.is_real:
reals.extend([i] * indicialroots[i])
else:
a, b = i.as_real_imag()
compl.extend([(i, a, b)] * indicialroots[i])
# sort the roots for a fixed ordering of solution
compl.sort(key=lambda x : x[1])
compl.sort(key=lambda x : x[2])
reals.sort()
# grouping the roots, roots differ by an integer are put in the same group.
grp = []
for i in reals:
intdiff = False
if len(grp) == 0:
grp.append([i])
continue
for j in grp:
if int(j[0] - i) == j[0] - i:
j.append(i)
intdiff = True
break
if not intdiff:
grp.append([i])
# True if none of the roots differ by an integer i.e.
# each element in group have only one member
independent = True if all(len(i) == 1 for i in grp) else False
allpos = all(i >= 0 for i in reals)
allint = all(int(i) == i for i in reals)
# if initial conditions are provided
# then use them.
if self.is_singularics() == True:
rootstoconsider = []
for i in ordered(self.y0.keys()):
for j in ordered(indicialroots.keys()):
if j == i:
rootstoconsider.append(i)
elif allpos and allint:
rootstoconsider = [min(reals)]
elif independent:
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
elif not allint:
rootstoconsider = []
for i in reals:
if not int(i) == i:
rootstoconsider.append(i)
elif not allpos:
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
rootstoconsider = [min(reals)]
else:
posroots = []
for i in reals:
if i >= 0:
posroots.append(i)
rootstoconsider = [min(posroots)]
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
finalsol = []
char = ord('C')
for p in rootstoconsider:
dict1 = {}
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k - i) in dict1:
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
else:
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = max([i[1] for i in dict1])
degree2 = min([i[1] for i in dict1])
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
u0 = []
if self.is_singularics() == True:
u0 = self.y0[p]
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
y0 = _extend_y0(self, order + int(p))
# u(n) = y^n(0)/factorial(n)
if len(y0) > int(p):
for i in range(int(p), len(y0)):
u0.append(y0[i] / factorial(i))
if len(u0) < order:
for i in range(degree2, degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
letter = chr(char) + '_%s' %(i + j[0])
dummys[i + j[0]] = Symbol(letter)
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
continue
else:
finalsol.append((HolonomicSequence(sol, u0), p))
continue
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
else:
finalsol.append((HolonomicSequence(sol, u0), p))
char += 1
return finalsol
def series(self, n=6, coefficient=False, order=True, _recur=None):
r"""
Finds the power series expansion of given holonomic function about :math:`x_0`.
A list of series might be returned if :math:`x_0` is a regular point with
multiple roots of the indicial equation.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
See Also
========
HolonomicFunction.to_sequence()
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = []
for i in recurrence:
sol.append(self.series(_recur=i))
return sol
n = n - int(constantpower)
l = len(recurrence.u0) - 1
k = recurrence.recurrence.order
x = self.x
x0 = self.x0
seq_dmp = recurrence.recurrence.listofpoly
R = recurrence.recurrence.parent.base
K = R.get_field()
seq = []
for i, j in enumerate(seq_dmp):
seq.append(K.new(j.rep))
sub = [-seq[i] / seq[k] for i in range(k)]
sol = [i for i in recurrence.u0]
if l + 1 >= n:
pass
else:
# use the initial conditions to find the next term
for i in range(l + 1 - k, n - k):
coeff = S.Zero
for j in range(k):
if i + j >= 0:
coeff += DMFsubs(sub[j], i) * sol[i + j]
sol.append(coeff)
if coefficient:
return sol
ser = S.Zero
for i, j in enumerate(sol):
ser += x**(i + constantpower) * j
if order:
ser += Order(x**(n + int(constantpower)), x)
if x0 != 0:
return ser.subs(x, x - x0)
return ser
def _indicial(self):
"""
Computes roots of the Indicial equation.
"""
if self.x0 != 0:
return self.shift_x(self.x0)._indicial()
list_coeff = self.annihilator.listofpoly
R = self.annihilator.parent.base
x = self.x
s = R.zero
y = R.one
def _pole_degree(poly):
root_all = roots(R.to_sympy(poly), x, filter='Z')
if 0 in root_all.keys():
return root_all[0]
else:
return 0
degree = [j.degree() for j in list_coeff]
degree = max(degree)
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
deg = lambda q: inf if q.is_zero else _pole_degree(q)
b = deg(list_coeff[0])
for j in range(1, len(list_coeff)):
b = min(b, deg(list_coeff[j]) - j)
for i, j in enumerate(list_coeff):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
if - i - b <= 0 and degree - i - b >= 0:
s = s + listofdmp[degree - i - b] * y
y *= x - i
return roots(R.to_sympy(s), x)
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
r"""
Finds numerical value of a holonomic function using numerical methods.
(RK4 by default). A set of points (real or complex) must be provided
which will be the path for the numerical integration.
The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical
values will be computed at each point in this order
:math:`x_1 --> x_2 --> x_3 ... --> x_n`.
Returns values of the function at :math:`x_1, x_2, ... x_n` in a list.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
A straight line on the real axis from (0 to 1)
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
Runge-Kutta 4th order on e^x from 0.1 to 1.
Exact solution at 1 is 2.71828182845905
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
2.45960141378007, 2.71827974413517]
Euler's method for the same
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
2.357947691, 2.5937424601]
One can also observe that the value obtained using Runge-Kutta 4th order
is much more accurate than Euler's method.
"""
from sympy.holonomic.numerical import _evalf
lp = False
# if a point `b` is given instead of a mesh
if not hasattr(points, "__iter__"):
lp = True
b = S(points)
if self.x0 == b:
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
if not b.is_Number:
raise NotImplementedError
a = self.x0
if a > b:
h = -h
n = int((b - a) / h)
points = [a + h]
for i in range(n - 1):
points.append(points[-1] + h)
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
if i == self.x0 or i in points:
raise SingularityError(self, i)
if lp:
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
return _evalf(self, points, method=method, derivatives=derivatives)
def change_x(self, z):
"""
Changes only the variable of Holonomic Function, for internal
purposes. For composition use HolonomicFunction.composition()
"""
dom = self.annihilator.parent.base.dom
R = dom.old_poly_ring(z)
parent, _ = DifferentialOperators(R, 'Dx')
sol = []
for j in self.annihilator.listofpoly:
sol.append(R(j.rep))
sol = DifferentialOperator(sol, parent)
return HolonomicFunction(sol, z, self.x0, self.y0)
def shift_x(self, a):
"""
Substitute `x + a` for `x`.
"""
x = self.x
listaftershift = self.annihilator.listofpoly
base = self.annihilator.parent.base
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
sol = DifferentialOperator(sol, self.annihilator.parent)
x0 = self.x0 - a
if not self._have_init_cond():
return HolonomicFunction(sol, x)
return HolonomicFunction(sol, x, x0, self.y0)
def to_hyper(self, as_list=False, _recur=None):
r"""
Returns a hypergeometric function (or linear combination of them)
representing the given holonomic function.
Returns an answer of the form:
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...`
This is very useful as one can now use ``hyperexpand`` to find the
symbolic expressions/functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper((), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper((), (), x)
See Also
========
from_hyper, from_meijerg
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
smallest_n = recurrence[1]
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
smallest_n = recurrence[2]
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
smallest_n = recurrence[0][1]
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
smallest_n = recurrence[0][2]
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
for i in recurrence[1:]:
sol += self.to_hyper(as_list=as_list, _recur=i)
return sol
u0 = recurrence.u0
r = recurrence.recurrence
x = self.x
x0 = self.x0
# order of the recurrence relation
m = r.order
# when no recurrence exists, and the power series have finite terms
if m == 0:
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
sol = S.Zero
for j, i in enumerate(nonzeroterms):
if i < 0 or int(i) != i:
continue
i = int(i)
if i < len(u0):
if isinstance(u0[i], (PolyElement, FracElement)):
u0[i] = u0[i].as_expr()
sol += u0[i] * x**i
else:
sol += Symbol('C_%s' %j) * x**i
if isinstance(sol, (PolyElement, FracElement)):
sol = sol.as_expr() * x**constantpower
else:
sol = sol * x**constantpower
if as_list:
if x0 != 0:
return [(sol.subs(x, x - x0), )]
return [(sol, )]
if x0 != 0:
return sol.subs(x, x - x0)
return sol
if smallest_n + m > len(u0):
raise NotImplementedError("Can't compute sufficient Initial Conditions")
# check if the recurrence represents a hypergeometric series
is_hyper = True
for i in range(1, len(r.listofpoly)-1):
if r.listofpoly[i] != r.parent.base.zero:
is_hyper = False
break
if not is_hyper:
raise NotHyperSeriesError(self, self.x0)
a = r.listofpoly[0]
b = r.listofpoly[-1]
# the constant multiple of argument of hypergeometric function
if isinstance(a.rep[0], (PolyElement, FracElement)):
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
else:
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
sol = 0
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
# iterate through the initial conditions to find
# the hypergeometric representation of the given
# function.
# The answer will be a linear combination
# of different hypergeometric series which satisfies
# the recurrence.
if as_list:
listofsol = []
for i in range(smallest_n + m):
# if the recurrence relation doesn't hold for `n = i`,
# then a Hypergeometric representation doesn't exist.
# add the algebraic term a * x**i to the solution,
# where a is u0[i]
if i < smallest_n:
if as_list:
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
else:
sol += S(u0[i]) * x**i
continue
# if the coefficient u0[i] is zero, then the
# independent hypergeomtric series starting with
# x**i is not a part of the answer.
if S(u0[i]) == 0:
continue
ap = []
bq = []
# substitute m * n + i for n
for k in ordered(arg1.keys()):
ap.extend([nsimplify((i - k) / m)] * arg1[k])
for k in ordered(arg2.keys()):
bq.extend([nsimplify((i - k) / m)] * arg2[k])
# convention of (k + 1) in the denominator
if 1 in bq:
bq.remove(1)
else:
ap.append(1)
if as_list:
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
else:
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
if as_list:
return listofsol
sol = sol * x**constantpower
if x0 != 0:
return sol.subs(x, x - x0)
return sol
def to_expr(self):
"""
Converts a Holonomic Function back to elementary functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
"""
return hyperexpand(self.to_hyper()).simplify()
def change_ics(self, b, lenics=None):
"""
Changes the point `x0` to `b` for initial conditions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import symbols, sin, cos, exp
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x)).change_ics(1)
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
>>> expr_to_holonomic(exp(x)).change_ics(2)
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
"""
symbolic = True
if lenics is None and len(self.y0) > self.annihilator.order:
lenics = len(self.y0)
dom = self.annihilator.parent.base.domain
try:
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
except (NotPowerSeriesError, NotHyperSeriesError):
symbolic = False
if symbolic and sol.x0 == b:
return sol
y0 = self.evalf(b, derivatives=True)
return HolonomicFunction(self.annihilator, self.x, b, y0)
def to_meijerg(self):
"""
Returns a linear combination of Meijer G-functions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
See Also
========
to_hyper()
"""
# convert to hypergeometric first
rep = self.to_hyper(as_list=True)
sol = S.Zero
for i in rep:
if len(i) == 1:
sol += i[0]
elif len(i) == 2:
sol += i[0] * _hyper_to_meijerg(i[1])
return sol
def from_hyper(func, x0=0, evalf=False):
r"""
Converts a hypergeometric function to holonomic.
``func`` is the Hypergeometric Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
"""
a = func.ap
b = func.bq
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# generalized hypergeometric differential equation
r1 = 1
for i in range(len(a)):
r1 = r1 * (x * Dx + a[i])
r2 = Dx
for i in range(len(b)):
r2 = r2 * (x * Dx + b[i] - 1)
sol = r1 - r2
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
# return None if it is Infinite or NaN
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# if the function is known symbolically
if not isinstance(simp, hyper):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
# if values don't exist at 0, then try to find initial
# conditions at 1. If it doesn't exist at 1 too then
# try 2 and so on.
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, hyper):
x0 = 1
# use evalf if the function can't be simplified
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
"""
Converts a Meijer G-function to Holonomic.
``func`` is the G-Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_meijerg, DifferentialOperators
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
"""
a = func.ap
b = func.bq
n = len(func.an)
m = len(func.bm)
p = len(a)
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
# compute the differential equation satisfied by the
# Meijer G-function.
mnp = (-1)**(m + n - p)
r1 = x * mnp
for i in range(len(a)):
r1 *= x * Dx + 1 - a[i]
r2 = 1
for i in range(len(b)):
r2 *= x * Dx - b[i]
sol = r1 - r2
if not initcond:
return HolonomicFunction(sol, x).composition(z)
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# computing initial conditions
if not isinstance(simp, meijerg):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, meijerg):
x0 = 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
"""
Converts a function or an expression to a holonomic function.
Parameters
==========
func:
The expression to be converted.
x:
variable for the function.
x0:
point at which initial condition must be computed.
y0:
One can optionally provide initial condition if the method
isn't able to do it automatically.
lenics:
Number of terms in the initial condition. By default it is
equal to the order of the annihilator.
domain:
Ground domain for the polynomials in `x` appearing as coefficients
in the annihilator.
initcond:
Set it false if you don't want the initial conditions to be computed.
Examples
========
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
See Also
========
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table
"""
func = sympify(func)
syms = func.free_symbols
if not x:
if len(syms) == 1:
x= syms.pop()
else:
raise ValueError("Specify the variable for the function")
elif x in syms:
syms.remove(x)
extra_syms = list(syms)
if domain is None:
if func.has(Float):
domain = RR
else:
domain = QQ
if len(extra_syms) != 0:
domain = domain[extra_syms].get_field()
# try to convert if the function is polynomial or rational
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
if solpoly:
return solpoly
# create the lookup table
global _lookup_table, domain_for_table
if not _lookup_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
elif domain != domain_for_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
# use the table directly to convert to Holonomic
if func.is_Function:
f = func.subs(x, x_1)
t = _mytype(f, x_1)
if t in _lookup_table:
l = _lookup_table[t]
sol = l[0][1].change_x(x)
else:
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
if y0 or not initcond:
sol = sol.composition(func.args[0])
if y0:
sol.y0 = y0
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return sol.composition(func.args[0], x0, _y0)
# iterate through the expression recursively
args = func.args
f = func.func
from sympy.core import Add, Mul, Pow
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
if f is Add:
for i in range(1, len(args)):
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Mul:
for i in range(1, len(args)):
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Pow:
sol = sol**args[1]
sol.x0 = x0
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
return sol
if sol.y0:
return sol
if not lenics:
lenics = sol.annihilator.order
if sol.annihilator.is_singular(x0):
r = sol._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol.annihilator, x, x0, y0)
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
## Some helper functions ##
def _normalize(list_of, parent, negative=True):
"""
Normalize a given annihilator
"""
num = []
denom = []
base = parent.base
K = base.get_field()
lcm_denom = base.from_sympy(S.One)
list_of_coeff = []
# convert polynomials to the elements of associated
# fraction field
for i, j in enumerate(list_of):
if isinstance(j, base.dtype):
list_of_coeff.append(K.new(j.rep))
elif not isinstance(j, K.dtype):
list_of_coeff.append(K.from_sympy(sympify(j)))
else:
list_of_coeff.append(j)
# corresponding numerators of the sequence of polynomials
num.append(list_of_coeff[i].numer())
# corresponding denominators
denom.append(list_of_coeff[i].denom())
# lcm of denominators in the coefficients
for i in denom:
lcm_denom = i.lcm(lcm_denom)
if negative:
lcm_denom = -lcm_denom
lcm_denom = K.new(lcm_denom.rep)
# multiply the coefficients with lcm
for i, j in enumerate(list_of_coeff):
list_of_coeff[i] = j * lcm_denom
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
# gcd of numerators in the coefficients
for i in num:
gcd_numer = i.gcd(gcd_numer)
gcd_numer = K.new(gcd_numer.rep)
# divide all the coefficients by the gcd
for i, j in enumerate(list_of_coeff):
frac_ans = j / gcd_numer
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
return DifferentialOperator(list_of_coeff, parent)
def _derivate_diff_eq(listofpoly):
"""
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
where a0, a1,... are polynomials or rational functions. The function
returns b0, b1, b2... such that the differential equation
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
former equation.
"""
sol = []
a = len(listofpoly) - 1
sol.append(DMFdiff(listofpoly[0]))
for i, j in enumerate(listofpoly[1:]):
sol.append(DMFdiff(j) + listofpoly[i])
sol.append(listofpoly[a])
return sol
def _hyper_to_meijerg(func):
"""
Converts a `hyper` to meijerg.
"""
ap = func.ap
bq = func.bq
ispoly = any(i <= 0 and int(i) == i for i in ap)
if ispoly:
return hyperexpand(func)
z = func.args[2]
# parameters of the `meijerg` function.
an = (1 - i for i in ap)
anp = ()
bm = (S.Zero, )
bmq = (1 - i for i in bq)
k = S.One
for i in bq:
k = k * gamma(i)
for i in ap:
k = k / gamma(i)
return k * meijerg(an, anp, bm, bmq, -z)
def _add_lists(list1, list2):
"""Takes polynomial sequences of two annihilators a and b and returns
the list of polynomials of sum of a and b.
"""
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
def _extend_y0(Holonomic, n):
"""
Tries to find more initial conditions by substituting the initial
value point in the differential equation.
"""
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
return Holonomic.y0
annihilator = Holonomic.annihilator
a = annihilator.order
listofpoly = []
y0 = Holonomic.y0
R = annihilator.parent.base
K = R.get_field()
for i, j in enumerate(annihilator.listofpoly):
if isinstance(j, annihilator.parent.base.dtype):
listofpoly.append(K.new(j.rep))
if len(y0) < a or n <= len(y0):
return y0
else:
list_red = [-listofpoly[i] / listofpoly[a]
for i in range(a)]
if len(y0) > a:
y1 = [y0[i] for i in range(a)]
else:
y1 = [i for i in y0]
for i in range(n - a):
sol = 0
for a, b in zip(y1, list_red):
r = DMFsubs(b, Holonomic.x0)
if not getattr(r, 'is_finite', True):
return y0
if isinstance(r, (PolyElement, FracElement)):
r = r.as_expr()
sol += a * r
y1.append(sol)
list_red = _derivate_diff_eq(list_red)
return y0 + y1[len(y0):]
def DMFdiff(frac):
# differentiate a DMF object represented as p/q
if not isinstance(frac, DMF):
return frac.diff()
K = frac.ring
p = K.numer(frac)
q = K.denom(frac)
sol_num = - p * q.diff() + q * p.diff()
sol_denom = q**2
return K((sol_num.rep, sol_denom.rep))
def DMFsubs(frac, x0, mpm=False):
# substitute the point x0 in DMF object of the form p/q
if not isinstance(frac, DMF):
return frac
p = frac.num
q = frac.den
sol_p = S.Zero
sol_q = S.Zero
if mpm:
from mpmath import mp
for i, j in enumerate(reversed(p)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_p += j * x0**i
for i, j in enumerate(reversed(q)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_q += j * x0**i
if isinstance(sol_p, (PolyElement, FracElement)):
sol_p = sol_p.as_expr()
if isinstance(sol_q, (PolyElement, FracElement)):
sol_q = sol_q.as_expr()
return sol_p / sol_q
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
"""
Converts polynomials, rationals and algebraic functions to holonomic.
"""
ispoly = func.is_polynomial()
if not ispoly:
israt = func.is_rational_function()
else:
israt = True
if not (ispoly or israt):
basepoly, ratexp = func.as_base_exp()
if basepoly.is_polynomial() and ratexp.is_Number:
if isinstance(ratexp, Float):
ratexp = nsimplify(ratexp)
m, n = ratexp.p, ratexp.q
is_alg = True
else:
is_alg = False
else:
is_alg = True
if not (ispoly or israt or is_alg):
return None
R = domain.old_poly_ring(x)
_, Dx = DifferentialOperators(R, 'Dx')
# if the function is constant
if not func.has(x):
return HolonomicFunction(Dx, x, 0, [func])
if ispoly:
# differential equation satisfied by polynomial
sol = func * Dx - func.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular:
rep = R.from_sympy(func).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
else:
coeff = list(reversed(rep))[i:]
indicial = i
break
for i, j in enumerate(coeff):
if isinstance(j, (PolyElement, FracElement)):
coeff[i] = j.as_expr()
y0 = {indicial: S(coeff)}
elif israt:
p, q = func.as_numer_denom()
# differential equation satisfied by rational
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
elif is_alg:
sol = n * (x / m) * Dx - 1
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular and \
(lenics is None or lenics <= 1):
rep = R.from_sympy(basepoly).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
if isinstance(j, (PolyElement, FracElement)):
j = j.as_expr()
coeff = S(j)**ratexp
indicial = S(i) * ratexp
break
if isinstance(coeff, (PolyElement, FracElement)):
coeff = coeff.as_expr()
y0 = {indicial: S([coeff])}
if y0 or not initcond:
return HolonomicFunction(sol, x, x0, y0)
if not lenics:
lenics = sol.order
if sol.is_singular(x0):
r = HolonomicFunction(sol, x, x0)._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol, x, x0, y0)
y0 = _find_conditions(func, x, x0, lenics)
while not y0:
x0 += 1
y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol, x, x0, y0)
def _convert_meijerint(func, x, initcond=True, domain=QQ):
args = meijerint._rewrite1(func, x)
if args:
fac, po, g, _ = args
else:
return None
# lists for sum of meijerg functions
fac_list = [fac * i[0] for i in g]
t = po.as_base_exp()
s = t[1] if t[0] is x else S.Zero
po_list = [s + i[1] for i in g]
G_list = [i[2] for i in g]
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
def _shift(func, s):
z = func.args[-1]
if z.has(I):
z = z.subs(exp_polar, exp)
d = z.collect(x, evaluate=False)
b = list(d)[0]
a = d[b]
t = b.as_base_exp()
b = t[1] if t[0] is x else S.Zero
r = s / b
an = (i + r for i in func.args[0][0])
ap = (i + r for i in func.args[0][1])
bm = (i + r for i in func.args[1][0])
bq = (i + r for i in func.args[1][1])
return a**-r, meijerg((an, ap), (bm, bq), z)
coeff, m = _shift(G_list[0], po_list[0])
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
# add all the meijerg functions after converting to holonomic
for i in range(1, len(G_list)):
coeff, m = _shift(G_list[i], po_list[i])
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
return sol
def _create_table(table, domain=QQ):
"""
Creates the look-up table. For a similar implementation
see meijerint._create_lookup_table.
"""
def add(formula, annihilator, arg, x0=0, y0=[]):
"""
Adds a formula in the dictionary
"""
table.setdefault(_mytype(formula, x_1), []).append((formula,
HolonomicFunction(annihilator, arg, x0, y0)))
R = domain.old_poly_ring(x_1)
_, Dx = DifferentialOperators(R, 'Dx')
from sympy import (sin, cos, exp, log, erf, sqrt, pi,
sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi)
# add some basic functions
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
add(exp(x_1), Dx - 1, x_1, 0, 1)
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
def _find_conditions(func, x, x0, order):
y0 = []
for i in range(order):
val = func.subs(x, x0)
if isinstance(val, NaN):
val = limit(func, x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
func = func.diff(x)
return y0
|
957e2db84969437dee09e90fbf69f3b926eff817cb7d594e096ecb6383c7c532 | from sympy.printing import pycode, ccode, fcode
from sympy.external import import_module
from sympy.utilities.decorator import doctest_depends_on
lfortran = import_module('lfortran')
cin = import_module('clang.cindex', __import__kwargs = {'fromlist': ['cindex']})
if not lfortran and not cin:
class SymPyExpression(object):
def __init__(self, *args, **kwargs):
raise ImportError('Module not available.')
else:
if lfortran:
from sympy.parsing.fortran.fortran_parser import src_to_sympy
if cin:
from sympy.parsing.c.c_parser import parse_c
@doctest_depends_on(modules=['lfortran', 'clang.cindex'])
class SymPyExpression(object):
"""Class to store and handle SymPy expressions
This class will hold SymPy Expressions and handle the API for the
conversion to and from different languages.
It works with the C and the Fortran Parser to generate SymPy expressions
which are stored here and which can be converted to multiple language's
source code.
Notes
=====
The module and its API are currently under development and experimental
and can be changed during development.
The Fortran parser does not support numeric assignments, so all the
variables have been Initialized to zero.
The module also depends on external dependencies:
- LFortran which is required to use the Fortran parser
- Clang which is required for the C parser
Examples
========
Example of parsing C code:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src = '''
... int a,b;
... float c = 2, d =4;
... '''
>>> a = SymPyExpression(src, 'c')
>>> a.return_expr()
[Declaration(Variable(a, type=integer, value=0)),
Declaration(Variable(b, type=integer, value=0)),
Declaration(Variable(c, type=real, value=2.0)),
Declaration(Variable(d, type=real, value=4.0))]
An example of variable definiton:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
>>> p.convert_to_c()
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0', 'double q = 0.0', 'double r = 0.0', 'double s = 0.0']
An example of Assignment:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer :: a, b, c, d, e
... d = a + b - c
... e = b * d + c * e / a
... '''
>>> p = SymPyExpression(src3, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'e = 0', 'd = a + b - c', 'e = b*d + c*e/a']
An example of function definition:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... end function
... '''
>>> a = SymPyExpression(src, 'f')
>>> a.convert_to_python()
['def f(a, b):\\n f = 0\\n r = 0\\n return f']
"""
def __init__(self, source_code = None, mode = None):
"""Constructor for SymPyExpression class"""
super(SymPyExpression, self).__init__()
if not(mode or source_code):
self._expr = []
elif mode:
if source_code:
if mode.lower() == 'f':
if lfortran:
self._expr = src_to_sympy(source_code)
else:
raise ImportError("LFortran is not installed, cannot parse Fortran code")
elif mode.lower() == 'c':
if cin:
self._expr = parse_c(source_code)
else:
raise ImportError("Clang is not installed, cannot parse C code")
else:
raise NotImplementedError(
'Parser for specified language is not implemented'
)
else:
raise ValueError('Source code not present')
else:
raise ValueError('Please specify a mode for conversion')
def convert_to_expr(self, src_code, mode):
"""Converts the given source code to sympy Expressions
Attributes
==========
src_code : String
the source code or filename of the source code that is to be
converted
mode: String
the mode to determine which parser is to be used according to
the language of the source code
f or F for Fortran
c or C for C/C++
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer function f(a,b) result(r)
... integer, intent(in) :: a, b
... integer :: x
... r = a + b -x
... end function
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src3, 'f')
>>> p.return_expr()
[FunctionDefinition(integer, name=f, parameters=(Variable(a), Variable(b)), body=CodeBlock(
Declaration(Variable(r, type=integer, value=0)),
Declaration(Variable(x, type=integer, value=0)),
Assignment(Variable(r), a + b - x),
Return(Variable(r))
))]
"""
if mode.lower() == 'f':
if lfortran:
self._expr = src_to_sympy(src_code)
else:
raise ImportError("LFortran is not installed, cannot parse Fortran code")
elif mode.lower() == 'c':
if cin:
self._expr = parse_c(src_code)
else:
raise ImportError("Clang is not installed, cannot parse C code")
else:
raise NotImplementedError(
"Parser for specified language has not been implemented"
)
def convert_to_python(self):
"""Returns a list with python code for the sympy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'p = 0.0', 'q = 0.0', 'r = 0.0', 's = 0.0', 'c = a/b', 'd = c/a', 's = p/q', 'r = q/p']
"""
self._pycode = []
for iter in self._expr:
self._pycode.append(pycode(iter))
return self._pycode
def convert_to_c(self):
"""Returns a list with the c source code for the sympy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
>>> p.convert_to_c()
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0', 'double q = 0.0', 'double r = 0.0', 'double s = 0.0', 'c = a/b;', 'd = c/a;', 's = p/q;', 'r = q/p;']
"""
self._ccode = []
for iter in self._expr:
self._ccode.append(ccode(iter))
return self._ccode
def convert_to_fortran(self):
"""Returns a list with the fortran source code for the sympy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_fortran()
[' integer*4 a', ' integer*4 b', ' integer*4 c', ' integer*4 d', ' real*8 p', ' real*8 q', ' real*8 r', ' real*8 s', ' c = a/b', ' d = c/a', ' s = p/q', ' r = q/p']
"""
self._fcode = []
for iter in self._expr:
self._fcode.append(fcode(iter))
return self._fcode
def return_expr(self):
"""Returns the expression list
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... r = a+b
... f = r
... end function
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src3, 'f')
>>> p.return_expr()
[FunctionDefinition(integer, name=f, parameters=(Variable(a), Variable(b)), body=CodeBlock(
Declaration(Variable(f, type=integer, value=0)),
Declaration(Variable(r, type=integer, value=0)),
Assignment(Variable(f), Variable(r)),
Return(Variable(f))
))]
"""
return self._expr
|
287bb20de1d8d627e95714f86933a1a266b308161522b296776f23aa9e98349f | """Used for translating a string into a SymPy expression. """
__all__ = ['parse_expr']
from .sympy_parser import parse_expr
|
b715477d42207651e6d8dc85b4e57dca02be3093c2233ac456c239be0bb17b9e | """Transform a string with Python-like source code into SymPy expression. """
from __future__ import print_function, division
from tokenize import (generate_tokens, untokenize, TokenError,
NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)
from keyword import iskeyword
import ast
import unicodedata
from sympy.core.compatibility import exec_, StringIO, iterable
from sympy.core.basic import Basic
from sympy.core import Symbol
from sympy.core.function import arity
from sympy.utilities.misc import filldedent, func_name
def _token_splittable(token):
"""
Predicate for whether a token name can be split into multiple tokens.
A token is splittable if it does not contain an underscore character and
it is not the name of a Greek letter. This is used to implicitly convert
expressions like 'xyz' into 'x*y*z'.
"""
if '_' in token:
return False
else:
try:
return not unicodedata.lookup('GREEK SMALL LETTER ' + token)
except KeyError:
pass
if len(token) > 1:
return True
return False
def _token_callable(token, local_dict, global_dict, nextToken=None):
"""
Predicate for whether a token name represents a callable function.
Essentially wraps ``callable``, but looks up the token name in the
locals and globals.
"""
func = local_dict.get(token[1])
if not func:
func = global_dict.get(token[1])
return callable(func) and not isinstance(func, Symbol)
def _add_factorial_tokens(name, result):
if result == [] or result[-1][1] == '(':
raise TokenError()
beginning = [(NAME, name), (OP, '(')]
end = [(OP, ')')]
diff = 0
length = len(result)
for index, token in enumerate(result[::-1]):
toknum, tokval = token
i = length - index - 1
if tokval == ')':
diff += 1
elif tokval == '(':
diff -= 1
if diff == 0:
if i - 1 >= 0 and result[i - 1][0] == NAME:
return result[:i - 1] + beginning + result[i - 1:] + end
else:
return result[:i] + beginning + result[i:] + end
return result
class AppliedFunction(object):
"""
A group of tokens representing a function and its arguments.
`exponent` is for handling the shorthand sin^2, ln^2, etc.
"""
def __init__(self, function, args, exponent=None):
if exponent is None:
exponent = []
self.function = function
self.args = args
self.exponent = exponent
self.items = ['function', 'args', 'exponent']
def expand(self):
"""Return a list of tokens representing the function"""
result = []
result.append(self.function)
result.extend(self.args)
return result
def __getitem__(self, index):
return getattr(self, self.items[index])
def __repr__(self):
return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
self.exponent)
class ParenthesisGroup(list):
"""List of tokens representing an expression in parentheses."""
pass
def _flatten(result):
result2 = []
for tok in result:
if isinstance(tok, AppliedFunction):
result2.extend(tok.expand())
else:
result2.append(tok)
return result2
def _group_parentheses(recursor):
def _inner(tokens, local_dict, global_dict):
"""Group tokens between parentheses with ParenthesisGroup.
Also processes those tokens recursively.
"""
result = []
stacks = []
stacklevel = 0
for token in tokens:
if token[0] == OP:
if token[1] == '(':
stacks.append(ParenthesisGroup([]))
stacklevel += 1
elif token[1] == ')':
stacks[-1].append(token)
stack = stacks.pop()
if len(stacks) > 0:
# We don't recurse here since the upper-level stack
# would reprocess these tokens
stacks[-1].extend(stack)
else:
# Recurse here to handle nested parentheses
# Strip off the outer parentheses to avoid an infinite loop
inner = stack[1:-1]
inner = recursor(inner,
local_dict,
global_dict)
parenGroup = [stack[0]] + inner + [stack[-1]]
result.append(ParenthesisGroup(parenGroup))
stacklevel -= 1
continue
if stacklevel:
stacks[-1].append(token)
else:
result.append(token)
if stacklevel:
raise TokenError("Mismatched parentheses")
return result
return _inner
def _apply_functions(tokens, local_dict, global_dict):
"""Convert a NAME token + ParenthesisGroup into an AppliedFunction.
Note that ParenthesisGroups, if not applied to any function, are
converted back into lists of tokens.
"""
result = []
symbol = None
for tok in tokens:
if tok[0] == NAME:
symbol = tok
result.append(tok)
elif isinstance(tok, ParenthesisGroup):
if symbol and _token_callable(symbol, local_dict, global_dict):
result[-1] = AppliedFunction(symbol, tok)
symbol = None
else:
result.extend(tok)
else:
symbol = None
result.append(tok)
return result
def _implicit_multiplication(tokens, local_dict, global_dict):
"""Implicitly adds '*' tokens.
Cases:
- Two AppliedFunctions next to each other ("sin(x)cos(x)")
- AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")
- A close parenthesis next to an AppliedFunction ("(x+2)sin x")\
- A close parenthesis next to an open parenthesis ("(x+2)(x+3)")
- AppliedFunction next to an implicitly applied function ("sin(x)cos x")
"""
result = []
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (isinstance(tok, AppliedFunction) and
isinstance(nextTok, AppliedFunction)):
result.append((OP, '*'))
elif (isinstance(tok, AppliedFunction) and
nextTok[0] == OP and nextTok[1] == '('):
# Applied function followed by an open parenthesis
if tok.function[1] == "Function":
result[-1].function = (result[-1].function[0], 'Symbol')
result.append((OP, '*'))
elif (tok[0] == OP and tok[1] == ')' and
isinstance(nextTok, AppliedFunction)):
# Close parenthesis followed by an applied function
result.append((OP, '*'))
elif (tok[0] == OP and tok[1] == ')' and
nextTok[0] == NAME):
# Close parenthesis followed by an implicitly applied function
result.append((OP, '*'))
elif (tok[0] == nextTok[0] == OP
and tok[1] == ')' and nextTok[1] == '('):
# Close parenthesis followed by an open parenthesis
result.append((OP, '*'))
elif (isinstance(tok, AppliedFunction) and nextTok[0] == NAME):
# Applied function followed by implicitly applied function
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
nextTok[0] == OP and nextTok[1] == '('):
# Constant followed by parenthesis
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
nextTok[0] == NAME and
not _token_callable(nextTok, local_dict, global_dict)):
# Constant followed by constant
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
(isinstance(nextTok, AppliedFunction) or nextTok[0] == NAME)):
# Constant followed by (implicitly applied) function
result.append((OP, '*'))
if tokens:
result.append(tokens[-1])
return result
def _implicit_application(tokens, local_dict, global_dict):
"""Adds parentheses as needed after functions."""
result = []
appendParen = 0 # number of closing parentheses to add
skip = 0 # number of tokens to delay before adding a ')' (to
# capture **, ^, etc.)
exponentSkip = False # skipping tokens before inserting parentheses to
# work with function exponentiation
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
if _token_callable(tok, local_dict, global_dict, nextTok):
result.append((OP, '('))
appendParen += 1
# name followed by exponent - function exponentiation
elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
if _token_callable(tok, local_dict, global_dict):
exponentSkip = True
elif exponentSkip:
# if the last token added was an applied function (i.e. the
# power of the function exponent) OR a multiplication (as
# implicit multiplication would have added an extraneous
# multiplication)
if (isinstance(tok, AppliedFunction)
or (tok[0] == OP and tok[1] == '*')):
# don't add anything if the next token is a multiplication
# or if there's already a parenthesis (if parenthesis, still
# stop skipping tokens)
if not (nextTok[0] == OP and nextTok[1] == '*'):
if not(nextTok[0] == OP and nextTok[1] == '('):
result.append((OP, '('))
appendParen += 1
exponentSkip = False
elif appendParen:
if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
skip = 1
continue
if skip:
skip -= 1
continue
result.append((OP, ')'))
appendParen -= 1
if tokens:
result.append(tokens[-1])
if appendParen:
result.extend([(OP, ')')] * appendParen)
return result
def function_exponentiation(tokens, local_dict, global_dict):
"""Allows functions to be exponentiated, e.g. ``cos**2(x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, function_exponentiation)
>>> transformations = standard_transformations + (function_exponentiation,)
>>> parse_expr('sin**4(x)', transformations=transformations)
sin(x)**4
"""
result = []
exponent = []
consuming_exponent = False
level = 0
for tok, nextTok in zip(tokens, tokens[1:]):
if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
if _token_callable(tok, local_dict, global_dict):
consuming_exponent = True
elif consuming_exponent:
if tok[0] == NAME and tok[1] == 'Function':
tok = (NAME, 'Symbol')
exponent.append(tok)
# only want to stop after hitting )
if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
consuming_exponent = False
# if implicit multiplication was used, we may have )*( instead
if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
consuming_exponent = False
del exponent[-1]
continue
elif exponent and not consuming_exponent:
if tok[0] == OP:
if tok[1] == '(':
level += 1
elif tok[1] == ')':
level -= 1
if level == 0:
result.append(tok)
result.extend(exponent)
exponent = []
continue
result.append(tok)
if tokens:
result.append(tokens[-1])
if exponent:
result.extend(exponent)
return result
def split_symbols_custom(predicate):
"""Creates a transformation that splits symbol names.
``predicate`` should return True if the symbol name is to be split.
For instance, to retain the default behavior but avoid splitting certain
symbol names, a predicate like this would work:
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
... standard_transformations, implicit_multiplication,
... split_symbols_custom)
>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse_expr('unsplittable', transformations=standard_transformations +
... (transformation, implicit_multiplication))
unsplittable
"""
def _split_symbols(tokens, local_dict, global_dict):
result = []
split = False
split_previous=False
for tok in tokens:
if split_previous:
# throw out closing parenthesis of Symbol that was split
split_previous=False
continue
split_previous=False
if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
split = True
elif split and tok[0] == NAME:
symbol = tok[1][1:-1]
if predicate(symbol):
tok_type = result[-2][1] # Symbol or Function
del result[-2:] # Get rid of the call to Symbol
i = 0
while i < len(symbol):
char = symbol[i]
if char in local_dict or char in global_dict:
result.extend([(NAME, "%s" % char)])
elif char.isdigit():
char = [char]
for i in range(i + 1, len(symbol)):
if not symbol[i].isdigit():
i -= 1
break
char.append(symbol[i])
char = ''.join(char)
result.extend([(NAME, 'Number'), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
else:
use = tok_type if i == len(symbol) else 'Symbol'
result.extend([(NAME, use), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
i += 1
# Set split_previous=True so will skip
# the closing parenthesis of the original Symbol
split = False
split_previous = True
continue
else:
split = False
result.append(tok)
return result
return _split_symbols
#: Splits symbol names for implicit multiplication.
#:
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
#: split Greek character names, so ``theta`` will *not* become
#: ``t*h*e*t*a``. Generally this should be used with
#: ``implicit_multiplication``.
split_symbols = split_symbols_custom(_token_splittable)
def implicit_multiplication(result, local_dict, global_dict):
"""Makes the multiplication operator optional in most cases.
Use this before :func:`implicit_application`, otherwise expressions like
``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication)
>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse_expr('3 x y', transformations=transformations)
3*x*y
"""
# These are interdependent steps, so we don't expose them separately
for step in (_group_parentheses(implicit_multiplication),
_apply_functions,
_implicit_multiplication):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
def implicit_application(result, local_dict, global_dict):
"""Makes parentheses optional in some cases for function calls.
Use this after :func:`implicit_multiplication`, otherwise expressions
like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_application)
>>> transformations = standard_transformations + (implicit_application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)
"""
for step in (_group_parentheses(implicit_application),
_apply_functions,
_implicit_application,):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
def implicit_multiplication_application(result, local_dict, global_dict):
"""Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between
symbols).
- Functions can be exponentiated.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication_application)
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
... transformations=(standard_transformations +
... (implicit_multiplication_application,)))
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
"""
for step in (split_symbols, implicit_multiplication,
implicit_application, function_exponentiation):
result = step(result, local_dict, global_dict)
return result
def auto_symbol(tokens, local_dict, global_dict):
"""Inserts calls to ``Symbol``/``Function`` for undefined variables."""
result = []
prevTok = (None, None)
tokens.append((None, None)) # so zip traverses all tokens
for tok, nextTok in zip(tokens, tokens[1:]):
tokNum, tokVal = tok
nextTokNum, nextTokVal = nextTok
if tokNum == NAME:
name = tokVal
if (name in ['True', 'False', 'None']
or iskeyword(name)
# Don't convert attribute access
or (prevTok[0] == OP and prevTok[1] == '.')
# Don't convert keyword arguments
or (prevTok[0] == OP and prevTok[1] in ('(', ',')
and nextTokNum == OP and nextTokVal == '=')):
result.append((NAME, name))
continue
elif name in local_dict:
if isinstance(local_dict[name], Symbol) and nextTokVal == '(':
result.extend([(NAME, 'Function'),
(OP, '('),
(NAME, repr(str(local_dict[name]))),
(OP, ')')])
else:
result.append((NAME, name))
continue
elif name in global_dict:
obj = global_dict[name]
if isinstance(obj, (Basic, type)) or callable(obj):
result.append((NAME, name))
continue
result.extend([
(NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
(OP, '('),
(NAME, repr(str(name))),
(OP, ')'),
])
else:
result.append((tokNum, tokVal))
prevTok = (tokNum, tokVal)
return result
def lambda_notation(tokens, local_dict, global_dict):
"""Substitutes "lambda" with its Sympy equivalent Lambda().
However, the conversion doesn't take place if only "lambda"
is passed because that is a syntax error.
"""
result = []
flag = False
toknum, tokval = tokens[0]
tokLen = len(tokens)
if toknum == NAME and tokval == 'lambda':
if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
# In Python 3.6.7+, inputs without a newline get NEWLINE added to
# the tokens
result.extend(tokens)
elif tokLen > 2:
result.extend([
(NAME, 'Lambda'),
(OP, '('),
(OP, '('),
(OP, ')'),
(OP, ')'),
])
for tokNum, tokVal in tokens[1:]:
if tokNum == OP and tokVal == ':':
tokVal = ','
flag = True
if not flag and tokNum == OP and tokVal in ['*', '**']:
raise TokenError("Starred arguments in lambda not supported")
if flag:
result.insert(-1, (tokNum, tokVal))
else:
result.insert(-2, (tokNum, tokVal))
else:
result.extend(tokens)
return result
def factorial_notation(tokens, local_dict, global_dict):
"""Allows standard notation for factorial."""
result = []
nfactorial = 0
for toknum, tokval in tokens:
if toknum == ERRORTOKEN:
op = tokval
if op == '!':
nfactorial += 1
else:
nfactorial = 0
result.append((OP, op))
else:
if nfactorial == 1:
result = _add_factorial_tokens('factorial', result)
elif nfactorial == 2:
result = _add_factorial_tokens('factorial2', result)
elif nfactorial > 2:
raise TokenError
nfactorial = 0
result.append((toknum, tokval))
return result
def convert_xor(tokens, local_dict, global_dict):
"""Treats XOR, ``^``, as exponentiation, ``**``."""
result = []
for toknum, tokval in tokens:
if toknum == OP:
if tokval == '^':
result.append((OP, '**'))
else:
result.append((toknum, tokval))
else:
result.append((toknum, tokval))
return result
def repeated_decimals(tokens, local_dict, global_dict):
"""
Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)
Run this before auto_number.
"""
result = []
def is_digit(s):
return all(i in '0123456789_' for i in s)
# num will running match any DECIMAL [ INTEGER ]
num = []
for toknum, tokval in tokens:
if toknum == NUMBER:
if (not num and '.' in tokval and 'e' not in tokval.lower() and
'j' not in tokval.lower()):
num.append((toknum, tokval))
elif is_digit(tokval)and len(num) == 2:
num.append((toknum, tokval))
elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
# Python 2 tokenizes 00123 as '00', '123'
# Python 3 tokenizes 01289 as '012', '89'
num.append((toknum, tokval))
else:
num = []
elif toknum == OP:
if tokval == '[' and len(num) == 1:
num.append((OP, tokval))
elif tokval == ']' and len(num) >= 3:
num.append((OP, tokval))
elif tokval == '.' and not num:
# handle .[1]
num.append((NUMBER, '0.'))
else:
num = []
else:
num = []
result.append((toknum, tokval))
if num and num[-1][1] == ']':
# pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
# and d/e = repetend
result = result[:-len(num)]
pre, post = num[0][1].split('.')
repetend = num[2][1]
if len(num) == 5:
repetend += num[3][1]
pre = pre.replace('_', '')
post = post.replace('_', '')
repetend = repetend.replace('_', '')
zeros = '0'*len(post)
post, repetends = [w.lstrip('0') for w in [post, repetend]]
# or else interpreted as octal
a = pre or '0'
b, c = post or '0', '1' + zeros
d, e = repetends, ('9'*len(repetend)) + zeros
seq = [
(OP, '('),
(NAME, 'Integer'),
(OP, '('),
(NUMBER, a),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, b),
(OP, ','),
(NUMBER, c),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, d),
(OP, ','),
(NUMBER, e),
(OP, ')'),
(OP, ')'),
]
result.extend(seq)
num = []
return result
def auto_number(tokens, local_dict, global_dict):
"""
Converts numeric literals to use SymPy equivalents.
Complex numbers use ``I``, integer literals use ``Integer``, and float
literals use ``Float``.
"""
result = []
for toknum, tokval in tokens:
if toknum == NUMBER:
number = tokval
postfix = []
if number.endswith('j') or number.endswith('J'):
number = number[:-1]
postfix = [(OP, '*'), (NAME, 'I')]
if '.' in number or (('e' in number or 'E' in number) and
not (number.startswith('0x') or number.startswith('0X'))):
seq = [(NAME, 'Float'), (OP, '('),
(NUMBER, repr(str(number))), (OP, ')')]
else:
seq = [(NAME, 'Integer'), (OP, '('), (
NUMBER, number), (OP, ')')]
result.extend(seq + postfix)
else:
result.append((toknum, tokval))
return result
def rationalize(tokens, local_dict, global_dict):
"""Converts floats into ``Rational``. Run AFTER ``auto_number``."""
result = []
passed_float = False
for toknum, tokval in tokens:
if toknum == NAME:
if tokval == 'Float':
passed_float = True
tokval = 'Rational'
result.append((toknum, tokval))
elif passed_float == True and toknum == NUMBER:
passed_float = False
result.append((STRING, tokval))
else:
result.append((toknum, tokval))
return result
def _transform_equals_sign(tokens, local_dict, global_dict):
"""Transforms the equals sign ``=`` to instances of Eq.
This is a helper function for `convert_equals_signs`.
Works with expressions containing one equals sign and no
nesting. Expressions like `(1=2)=False` won't work with this
and should be used with `convert_equals_signs`.
Examples: 1=2 to Eq(1,2)
1*2=x to Eq(1*2, x)
This does not deal with function arguments yet.
"""
result = []
if (OP, "=") in tokens:
result.append((NAME, "Eq"))
result.append((OP, "("))
for index, token in enumerate(tokens):
if token == (OP, "="):
result.append((OP, ","))
continue
result.append(token)
result.append((OP, ")"))
else:
result = tokens
return result
def convert_equals_signs(result, local_dict, global_dict):
""" Transforms all the equals signs ``=`` to instances of Eq.
Parses the equals signs in the expression and replaces them with
appropriate Eq instances.Also works with nested equals signs.
Does not yet play well with function arguments.
For example, the expression `(x=y)` is ambiguous and can be interpreted
as x being an argument to a function and `convert_equals_signs` won't
work for this.
See also
========
convert_equality_operators
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, convert_equals_signs)
>>> parse_expr("1*2=x", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(2, x)
>>> parse_expr("(1*2=x)=False", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(Eq(2, x), False)
"""
for step in (_group_parentheses(convert_equals_signs),
_apply_functions,
_transform_equals_sign):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
#: Standard transformations for :func:`parse_expr`.
#: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
standard_transformations = (lambda_notation, auto_symbol, repeated_decimals, auto_number,
factorial_notation)
def stringify_expr(s, local_dict, global_dict, transformations):
"""
Converts the string ``s`` to Python code, in ``local_dict``
Generally, ``parse_expr`` should be used.
"""
tokens = []
input_code = StringIO(s.strip())
for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
tokens.append((toknum, tokval))
for transform in transformations:
tokens = transform(tokens, local_dict, global_dict)
return untokenize(tokens)
def eval_expr(code, local_dict, global_dict):
"""
Evaluate Python code generated by ``stringify_expr``.
Generally, ``parse_expr`` should be used.
"""
expr = eval(
code, global_dict, local_dict) # take local objects in preference
return expr
def parse_expr(s, local_dict=None, transformations=standard_transformations,
global_dict=None, evaluate=True):
"""Converts the string ``s`` to a SymPy expression, in ``local_dict``
Parameters
==========
s : str
The string to parse.
local_dict : dict, optional
A dictionary of local variables to use when parsing.
global_dict : dict, optional
A dictionary of global variables. By default, this is initialized
with ``from sympy import *``; provide this parameter to override
this behavior (for instance, to parse ``"Q & S"``).
transformations : tuple, optional
A tuple of transformation functions used to modify the tokens of the
parsed expression before evaluation. The default transformations
convert numeric literals into their SymPy equivalents, convert
undefined variables into SymPy symbols, and allow the use of standard
mathematical factorial notation (e.g. ``x!``).
evaluate : bool, optional
When False, the order of the arguments will remain as they were in the
string and automatic simplification that would normally occur is
suppressed. (see examples)
Examples
========
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("1/2")
1/2
>>> type(_)
<class 'sympy.core.numbers.Half'>
>>> from sympy.parsing.sympy_parser import standard_transformations,\\
... implicit_multiplication_application
>>> transformations = (standard_transformations +
... (implicit_multiplication_application,))
>>> parse_expr("2x", transformations=transformations)
2*x
When evaluate=False, some automatic simplifications will not occur:
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
(8, 2**3)
In addition the order of the arguments will not be made canonical.
This feature allows one to tell exactly how the expression was entered:
>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)
See Also
========
stringify_expr, eval_expr, standard_transformations,
implicit_multiplication_application
"""
if local_dict is None:
local_dict = {}
elif not isinstance(local_dict, dict):
raise TypeError('expecting local_dict to be a dict')
if global_dict is None:
global_dict = {}
exec_('from sympy import *', global_dict)
elif not isinstance(global_dict, dict):
raise TypeError('expecting global_dict to be a dict')
transformations = transformations or ()
if transformations:
if not iterable(transformations):
raise TypeError(
'`transformations` should be a list of functions.')
for _ in transformations:
if not callable(_):
raise TypeError(filldedent('''
expected a function in `transformations`,
not %s''' % func_name(_)))
if arity(_) != 3:
raise TypeError(filldedent('''
a transformation should be function that
takes 3 arguments'''))
code = stringify_expr(s, local_dict, global_dict, transformations)
if not evaluate:
code = compile(evaluateFalse(code), '<string>', 'eval')
return eval_expr(code, local_dict, global_dict)
def evaluateFalse(s):
"""
Replaces operators with the SymPy equivalent and sets evaluate=False.
"""
node = ast.parse(s)
node = EvaluateFalseTransformer().visit(node)
# node is a Module, we want an Expression
node = ast.Expression(node.body[0].value)
return ast.fix_missing_locations(node)
class EvaluateFalseTransformer(ast.NodeTransformer):
operators = {
ast.Add: 'Add',
ast.Mult: 'Mul',
ast.Pow: 'Pow',
ast.Sub: 'Add',
ast.Div: 'Mul',
ast.BitOr: 'Or',
ast.BitAnd: 'And',
ast.BitXor: 'Not',
}
def flatten(self, args, func):
result = []
for arg in args:
if isinstance(arg, ast.Call):
arg_func = arg.func
if isinstance(arg_func, ast.Call):
arg_func = arg_func.func
if arg_func.id == func:
result.extend(self.flatten(arg.args, func))
else:
result.append(arg)
else:
result.append(arg)
return result
def visit_BinOp(self, node):
if node.op.__class__ in self.operators:
sympy_class = self.operators[node.op.__class__]
right = self.visit(node.right)
left = self.visit(node.left)
if isinstance(node.left, ast.UnaryOp) and (isinstance(node.right, ast.UnaryOp) == 0) and sympy_class in ('Mul',):
left, right = right, left
if isinstance(node.op, ast.Sub):
right = ast.Call(
func=ast.Name(id='Mul', ctx=ast.Load()),
args=[ast.UnaryOp(op=ast.USub(), operand=ast.Num(1)), right],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if isinstance(node.op, ast.Div):
if isinstance(node.left, ast.UnaryOp):
if isinstance(node.right,ast.UnaryOp):
left, right = right, left
left = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
else:
right = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if sympy_class in ('Add', 'Mul'):
# Denest Add or Mul as appropriate
new_node.args = self.flatten(new_node.args, sympy_class)
return new_node
return node
|
6a915ad0a7860d030c7fa0f8e64ccde128df204b6ee73c5267810e97339f5bd7 | """
This module implements the functionality to take any Python expression as a
string and fix all numbers and other things before evaluating it,
thus
1/2
returns
Integer(1)/Integer(2)
We use the Python ast module for that, which is in python2.6 and later. It is
well documented at docs.python.org.
Some tips to understand how this works: use dump() to get a nice
representation of any node. Then write a string of what you want to get,
e.g. "Integer(1)", parse it, dump it and you'll see that you need to do
"Call(Name('Integer', Load()), [node], [], None, None)". You don't need
to bother with lineno and col_offset, just call fix_missing_locations()
before returning the node.
"""
from __future__ import print_function, division
from sympy.core.basic import Basic
from sympy.core.compatibility import exec_
from sympy.core.sympify import SympifyError
from ast import parse, NodeTransformer, Call, Name, Load, \
fix_missing_locations, Str, Tuple
class Transform(NodeTransformer):
def __init__(self, local_dict, global_dict):
NodeTransformer.__init__(self)
self.local_dict = local_dict
self.global_dict = global_dict
def visit_Num(self, node):
if isinstance(node.n, int):
return fix_missing_locations(Call(func=Name('Integer', Load()),
args=[node], keywords=[]))
elif isinstance(node.n, float):
return fix_missing_locations(Call(func=Name('Float', Load()),
args=[node], keywords=[]))
return node
def visit_Name(self, node):
if node.id in self.local_dict:
return node
elif node.id in self.global_dict:
name_obj = self.global_dict[node.id]
if isinstance(name_obj, (Basic, type)) or callable(name_obj):
return node
elif node.id in ['True', 'False']:
return node
return fix_missing_locations(Call(func=Name('Symbol', Load()),
args=[Str(node.id)], keywords=[]))
def visit_Lambda(self, node):
args = [self.visit(arg) for arg in node.args.args]
body = self.visit(node.body)
n = Call(func=Name('Lambda', Load()),
args=[Tuple(args, Load()), body], keywords=[])
return fix_missing_locations(n)
def parse_expr(s, local_dict):
"""
Converts the string "s" to a SymPy expression, in local_dict.
It converts all numbers to Integers before feeding it to Python and
automatically creates Symbols.
"""
global_dict = {}
exec_('from sympy import *', global_dict)
try:
a = parse(s.strip(), mode="eval")
except SyntaxError:
raise SympifyError("Cannot parse %s." % repr(s))
a = Transform(local_dict, global_dict).visit(a)
e = compile(a, "<string>", "eval")
return eval(e, global_dict, local_dict)
|
7845cfb07da44b2f3e788756a307ce47ca3e65af6c75680e5ad56c16dde7a787 | # -*- coding: utf-8 -*-
r"""
Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients
Collection of functions for calculating Wigner 3j, 6j, 9j,
Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all
evaluating to a rational number times the square root of a rational
number [Rasch03]_.
Please see the description of the individual functions for further
details and examples.
References
~~~~~~~~~~
.. [Regge58] 'Symmetry Properties of Clebsch-Gordan Coefficients',
T. Regge, Nuovo Cimento, Volume 10, pp. 544 (1958)
.. [Regge59] 'Symmetry Properties of Racah Coefficients',
T. Regge, Nuovo Cimento, Volume 11, pp. 116 (1959)
.. [Edmonds74] A. R. Edmonds. Angular momentum in quantum mechanics.
Investigations in physics, 4.; Investigations in physics, no. 4.
Princeton, N.J., Princeton University Press, 1957.
.. [Rasch03] J. Rasch and A. C. H. Yu, 'Efficient Storage Scheme for
Pre-calculated Wigner 3j, 6j and Gaunt Coefficients', SIAM
J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)
.. [Liberatodebrito82] 'FORTRAN program for the integral of three
spherical harmonics', A. Liberato de Brito,
Comput. Phys. Commun., Volume 25, pp. 81-85 (1982)
Credits and Copyright
~~~~~~~~~~~~~~~~~~~~~
This code was taken from Sage with the permission of all authors:
https://groups.google.com/forum/#!topic/sage-devel/M4NZdu-7O38
AUTHORS:
- Jens Rasch (2009-03-24): initial version for Sage
- Jens Rasch (2009-05-31): updated to sage-4.0
- Oscar Gerardo Lazo Arjona (2017-06-18): added Wigner D matrices
Copyright (C) 2008 Jens Rasch <[email protected]>
"""
from __future__ import print_function, division
from sympy import (Integer, pi, sqrt, sympify, Dummy, S, Sum, Ynm, zeros,
Function, sin, cos, exp, I, factorial, binomial,
Add, ImmutableMatrix)
from sympy.core.compatibility import range
# This list of precomputed factorials is needed to massively
# accelerate future calculations of the various coefficients
_Factlist = [1]
def _calc_factlist(nn):
r"""
Function calculates a list of precomputed factorials in order to
massively accelerate future calculations of the various
coefficients.
INPUT:
- ``nn`` - integer, highest factorial to be computed
OUTPUT:
list of integers -- the list of precomputed factorials
EXAMPLES:
Calculate list of factorials::
sage: from sage.functions.wigner import _calc_factlist
sage: _calc_factlist(10)
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
"""
if nn >= len(_Factlist):
for ii in range(len(_Factlist), int(nn + 1)):
_Factlist.append(_Factlist[ii - 1] * ii)
return _Factlist[:int(nn) + 1]
def wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3):
r"""
Calculate the Wigner 3j symbol `\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)`.
INPUT:
- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer
OUTPUT:
Rational number times the square root of a rational number.
Examples
========
>>> from sympy.physics.wigner import wigner_3j
>>> wigner_3j(2, 6, 4, 0, 0, 0)
sqrt(715)/143
>>> wigner_3j(2, 6, 4, 0, 0, 1)
0
It is an error to have arguments that are not integer or half
integer values::
sage: wigner_3j(2.1, 6, 4, 0, 0, 0)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer
sage: wigner_3j(2, 6, 4, 1, 0, -1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer or half integer
NOTES:
The Wigner 3j symbol obeys the following symmetry rules:
- invariant under any permutation of the columns (with the
exception of a sign change where `J:=j_1+j_2+j_3`):
.. math::
\begin{aligned}
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)
&=\operatorname{Wigner3j}(j_3,j_1,j_2,m_3,m_1,m_2) \\
&=\operatorname{Wigner3j}(j_2,j_3,j_1,m_2,m_3,m_1) \\
&=(-1)^J \operatorname{Wigner3j}(j_3,j_2,j_1,m_3,m_2,m_1) \\
&=(-1)^J \operatorname{Wigner3j}(j_1,j_3,j_2,m_1,m_3,m_2) \\
&=(-1)^J \operatorname{Wigner3j}(j_2,j_1,j_3,m_2,m_1,m_3)
\end{aligned}
- invariant under space inflection, i.e.
.. math::
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)
=(-1)^J \operatorname{Wigner3j}(j_1,j_2,j_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 additional symmetries based on
the work by [Regge58]_
- zero for `j_1`, `j_2`, `j_3` not fulfilling triangle relation
- zero for `m_1 + m_2 + m_3 \neq 0`
- zero for violating any one of the conditions
`j_1 \ge |m_1|`, `j_2 \ge |m_2|`, `j_3 \ge |m_3|`
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
if int(j_1 * 2) != j_1 * 2 or int(j_2 * 2) != j_2 * 2 or \
int(j_3 * 2) != j_3 * 2:
raise ValueError("j values must be integer or half integer")
if int(m_1 * 2) != m_1 * 2 or int(m_2 * 2) != m_2 * 2 or \
int(m_3 * 2) != m_3 * 2:
raise ValueError("m values must be integer or half integer")
if m_1 + m_2 + m_3 != 0:
return 0
prefid = Integer((-1) ** int(j_1 - j_2 - m_3))
m_3 = -m_3
a1 = j_1 + j_2 - j_3
if a1 < 0:
return 0
a2 = j_1 - j_2 + j_3
if a2 < 0:
return 0
a3 = -j_1 + j_2 + j_3
if a3 < 0:
return 0
if (abs(m_1) > j_1) or (abs(m_2) > j_2) or (abs(m_3) > j_3):
return 0
maxfact = max(j_1 + j_2 + j_3 + 1, j_1 + abs(m_1), j_2 + abs(m_2),
j_3 + abs(m_3))
_calc_factlist(int(maxfact))
argsqrt = Integer(_Factlist[int(j_1 + j_2 - j_3)] *
_Factlist[int(j_1 - j_2 + j_3)] *
_Factlist[int(-j_1 + j_2 + j_3)] *
_Factlist[int(j_1 - m_1)] *
_Factlist[int(j_1 + m_1)] *
_Factlist[int(j_2 - m_2)] *
_Factlist[int(j_2 + m_2)] *
_Factlist[int(j_3 - m_3)] *
_Factlist[int(j_3 + m_3)]) / \
_Factlist[int(j_1 + j_2 + j_3 + 1)]
ressqrt = sqrt(argsqrt)
if ressqrt.is_complex or ressqrt.is_infinite:
ressqrt = ressqrt.as_real_imag()[0]
imin = max(-j_3 + j_1 + m_2, -j_3 + j_2 - m_1, 0)
imax = min(j_2 + m_2, j_1 - m_1, j_1 + j_2 - j_3)
sumres = 0
for ii in range(int(imin), int(imax) + 1):
den = _Factlist[ii] * \
_Factlist[int(ii + j_3 - j_1 - m_2)] * \
_Factlist[int(j_2 + m_2 - ii)] * \
_Factlist[int(j_1 - ii - m_1)] * \
_Factlist[int(ii + j_3 - j_2 + m_1)] * \
_Factlist[int(j_1 + j_2 - j_3 - ii)]
sumres = sumres + Integer((-1) ** ii) / den
res = ressqrt * sumres * prefid
return res
def clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3):
r"""
Calculates the Clebsch-Gordan coefficient
`\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle`.
The reference for this function is [Edmonds74]_.
INPUT:
- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer
OUTPUT:
Rational number times the square root of a rational number.
EXAMPLES::
>>> from sympy import S
>>> from sympy.physics.wigner import clebsch_gordan
>>> clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2)
1
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1)
sqrt(3)/2
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0)
-sqrt(2)/2
NOTES:
The Clebsch-Gordan coefficient will be evaluated via its relation
to Wigner 3j symbols:
.. math::
\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle
=(-1)^{j_1-j_2+m_3} \sqrt{2j_3+1}
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,-m_3)
See also the documentation on Wigner 3j symbols which exhibit much
higher symmetry relations than the Clebsch-Gordan coefficient.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
res = (-1) ** sympify(j_1 - j_2 + m_3) * sqrt(2 * j_3 + 1) * \
wigner_3j(j_1, j_2, j_3, m_1, m_2, -m_3)
return res
def _big_delta_coeff(aa, bb, cc, prec=None):
r"""
Calculates the Delta coefficient of the 3 angular momenta for
Racah symbols. Also checks that the differences are of integer
value.
INPUT:
- ``aa`` - first angular momentum, integer or half integer
- ``bb`` - second angular momentum, integer or half integer
- ``cc`` - third angular momentum, integer or half integer
- ``prec`` - precision of the ``sqrt()`` calculation
OUTPUT:
double - Value of the Delta coefficient
EXAMPLES::
sage: from sage.functions.wigner import _big_delta_coeff
sage: _big_delta_coeff(1,1,1)
1/2*sqrt(1/6)
"""
if int(aa + bb - cc) != (aa + bb - cc):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if int(aa + cc - bb) != (aa + cc - bb):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if int(bb + cc - aa) != (bb + cc - aa):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if (aa + bb - cc) < 0:
return 0
if (aa + cc - bb) < 0:
return 0
if (bb + cc - aa) < 0:
return 0
maxfact = max(aa + bb - cc, aa + cc - bb, bb + cc - aa, aa + bb + cc + 1)
_calc_factlist(maxfact)
argsqrt = Integer(_Factlist[int(aa + bb - cc)] *
_Factlist[int(aa + cc - bb)] *
_Factlist[int(bb + cc - aa)]) / \
Integer(_Factlist[int(aa + bb + cc + 1)])
ressqrt = sqrt(argsqrt)
if prec:
ressqrt = ressqrt.evalf(prec).as_real_imag()[0]
return ressqrt
def racah(aa, bb, cc, dd, ee, ff, prec=None):
r"""
Calculate the Racah symbol `W(a,b,c,d;e,f)`.
INPUT:
- ``a``, ..., ``f`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import racah
>>> racah(3,3,3,3,3,3)
-1/14
NOTES:
The Racah symbol is related to the Wigner 6j symbol:
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
Please see the 6j symbol for its much richer symmetries and for
additional properties.
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
prefac = _big_delta_coeff(aa, bb, ee, prec) * \
_big_delta_coeff(cc, dd, ee, prec) * \
_big_delta_coeff(aa, cc, ff, prec) * \
_big_delta_coeff(bb, dd, ff, prec)
if prefac == 0:
return 0
imin = max(aa + bb + ee, cc + dd + ee, aa + cc + ff, bb + dd + ff)
imax = min(aa + bb + cc + dd, aa + dd + ee + ff, bb + cc + ee + ff)
maxfact = max(imax + 1, aa + bb + cc + dd, aa + dd + ee + ff,
bb + cc + ee + ff)
_calc_factlist(maxfact)
sumres = 0
for kk in range(int(imin), int(imax) + 1):
den = _Factlist[int(kk - aa - bb - ee)] * \
_Factlist[int(kk - cc - dd - ee)] * \
_Factlist[int(kk - aa - cc - ff)] * \
_Factlist[int(kk - bb - dd - ff)] * \
_Factlist[int(aa + bb + cc + dd - kk)] * \
_Factlist[int(aa + dd + ee + ff - kk)] * \
_Factlist[int(bb + cc + ee + ff - kk)]
sumres = sumres + Integer((-1) ** kk * _Factlist[kk + 1]) / den
res = prefac * sumres * (-1) ** int(aa + bb + cc + dd)
return res
def wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None):
r"""
Calculate the Wigner 6j symbol `\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)`.
INPUT:
- ``j_1``, ..., ``j_6`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import wigner_6j
>>> wigner_6j(3,3,3,3,3,3)
-1/14
>>> wigner_6j(5,5,5,5,5,5)
1/52
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
NOTES:
The Wigner 6j symbol is related to the Racah symbol but exhibits
more symmetries as detailed below.
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
The Wigner 6j symbol obeys the following symmetry rules:
- Wigner 6j symbols are left invariant under any permutation of
the columns:
.. math::
\begin{aligned}
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
&=\operatorname{Wigner6j}(j_3,j_1,j_2,j_6,j_4,j_5) \\
&=\operatorname{Wigner6j}(j_2,j_3,j_1,j_5,j_6,j_4) \\
&=\operatorname{Wigner6j}(j_3,j_2,j_1,j_6,j_5,j_4) \\
&=\operatorname{Wigner6j}(j_1,j_3,j_2,j_4,j_6,j_5) \\
&=\operatorname{Wigner6j}(j_2,j_1,j_3,j_5,j_4,j_6)
\end{aligned}
- They are invariant under the exchange of the upper and lower
arguments in each of any two columns, i.e.
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=\operatorname{Wigner6j}(j_1,j_5,j_6,j_4,j_2,j_3)
=\operatorname{Wigner6j}(j_4,j_2,j_6,j_1,j_5,j_3)
=\operatorname{Wigner6j}(j_4,j_5,j_3,j_1,j_2,j_6)
- additional 6 symmetries [Regge59]_ giving rise to 144 symmetries
in total
- only non-zero if any triple of `j`'s fulfill a triangle relation
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
"""
res = (-1) ** int(j_1 + j_2 + j_4 + j_5) * \
racah(j_1, j_2, j_5, j_4, j_3, j_6, prec)
return res
def wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None):
r"""
Calculate the Wigner 9j symbol
`\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)`.
INPUT:
- ``j_1``, ..., ``j_9`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import wigner_9j
>>> wigner_9j(1,1,1, 1,1,1, 1,1,0 ,prec=64) # ==1/18
0.05555555...
>>> wigner_9j(1/2,1/2,0, 1/2,3/2,1, 0,1,1 ,prec=64) # ==1/6
0.1666666...
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
"""
imax = int(min(j_1 + j_9, j_2 + j_6, j_4 + j_8) * 2)
imin = imax % 2
sumres = 0
for kk in range(imin, int(imax) + 1, 2):
sumres = sumres + (kk + 1) * \
racah(j_1, j_2, j_9, j_6, j_3, kk / 2, prec) * \
racah(j_4, j_6, j_8, j_2, j_5, kk / 2, prec) * \
racah(j_1, j_4, j_9, j_8, j_7, kk / 2, prec)
return sumres
def gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None):
r"""
Calculate the Gaunt coefficient.
The Gaunt coefficient is defined as the integral over three
spherical harmonics:
.. math::
\begin{aligned}
\operatorname{Gaunt}(l_1,l_2,l_3,m_1,m_2,m_3)
&=\int Y_{l_1,m_1}(\Omega)
Y_{l_2,m_2}(\Omega) Y_{l_3,m_3}(\Omega) \,d\Omega \\
&=\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}}
\operatorname{Wigner3j}(l_1,l_2,l_3,0,0,0)
\operatorname{Wigner3j}(l_1,l_2,l_3,m_1,m_2,m_3)
\end{aligned}
INPUT:
- ``l_1``, ``l_2``, ``l_3``, ``m_1``, ``m_2``, ``m_3`` - integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import gaunt
>>> gaunt(1,0,1,1,0,-1)
-1/(2*sqrt(pi))
>>> gaunt(1000,1000,1200,9,3,-12).n(64)
0.00689500421922113448...
It is an error to use non-integer values for `l` and `m`::
sage: gaunt(1.2,0,1.2,0,0,0)
Traceback (most recent call last):
...
ValueError: l values must be integer
sage: gaunt(1,0,1,1.1,0,-1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer
NOTES:
The Gaunt coefficient obeys the following symmetry rules:
- invariant under any permutation of the columns
.. math::
\begin{aligned}
Y(l_1,l_2,l_3,m_1,m_2,m_3)
&=Y(l_3,l_1,l_2,m_3,m_1,m_2) \\
&=Y(l_2,l_3,l_1,m_2,m_3,m_1) \\
&=Y(l_3,l_2,l_1,m_3,m_2,m_1) \\
&=Y(l_1,l_3,l_2,m_1,m_3,m_2) \\
&=Y(l_2,l_1,l_3,m_2,m_1,m_3)
\end{aligned}
- invariant under space inflection, i.e.
.. math::
Y(l_1,l_2,l_3,m_1,m_2,m_3)
=Y(l_1,l_2,l_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 Regge symmetries as inherited
for the `3j` symbols [Regge58]_
- zero for `l_1`, `l_2`, `l_3` not fulfilling triangle relation
- zero for violating any one of the conditions: `l_1 \ge |m_1|`,
`l_2 \ge |m_2|`, `l_3 \ge |m_3|`
- non-zero only for an even sum of the `l_i`, i.e.
`L = l_1 + l_2 + l_3 = 2n` for `n` in `\mathbb{N}`
ALGORITHM:
This function uses the algorithm of [Liberatodebrito82]_ to
calculate the value of the Gaunt coefficient exactly. Note that
the formula contains alternating sums over large factorials and is
therefore unsuitable for finite precision arithmetic and only
useful for a computer algebra system [Rasch03]_.
AUTHORS:
- Jens Rasch (2009-03-24): initial version for Sage
"""
if int(l_1) != l_1 or int(l_2) != l_2 or int(l_3) != l_3:
raise ValueError("l values must be integer")
if int(m_1) != m_1 or int(m_2) != m_2 or int(m_3) != m_3:
raise ValueError("m values must be integer")
sumL = l_1 + l_2 + l_3
bigL = sumL // 2
a1 = l_1 + l_2 - l_3
if a1 < 0:
return 0
a2 = l_1 - l_2 + l_3
if a2 < 0:
return 0
a3 = -l_1 + l_2 + l_3
if a3 < 0:
return 0
if sumL % 2:
return 0
if (m_1 + m_2 + m_3) != 0:
return 0
if (abs(m_1) > l_1) or (abs(m_2) > l_2) or (abs(m_3) > l_3):
return 0
imin = max(-l_3 + l_1 + m_2, -l_3 + l_2 - m_1, 0)
imax = min(l_2 + m_2, l_1 - m_1, l_1 + l_2 - l_3)
maxfact = max(l_1 + l_2 + l_3 + 1, imax + 1)
_calc_factlist(maxfact)
argsqrt = (2 * l_1 + 1) * (2 * l_2 + 1) * (2 * l_3 + 1) * \
_Factlist[l_1 - m_1] * _Factlist[l_1 + m_1] * _Factlist[l_2 - m_2] * \
_Factlist[l_2 + m_2] * _Factlist[l_3 - m_3] * _Factlist[l_3 + m_3] / \
(4*pi)
ressqrt = sqrt(argsqrt)
prefac = Integer(_Factlist[bigL] * _Factlist[l_2 - l_1 + l_3] *
_Factlist[l_1 - l_2 + l_3] * _Factlist[l_1 + l_2 - l_3])/ \
_Factlist[2 * bigL + 1]/ \
(_Factlist[bigL - l_1] *
_Factlist[bigL - l_2] * _Factlist[bigL - l_3])
sumres = 0
for ii in range(int(imin), int(imax) + 1):
den = _Factlist[ii] * _Factlist[ii + l_3 - l_1 - m_2] * \
_Factlist[l_2 + m_2 - ii] * _Factlist[l_1 - ii - m_1] * \
_Factlist[ii + l_3 - l_2 + m_1] * _Factlist[l_1 + l_2 - l_3 - ii]
sumres = sumres + Integer((-1) ** ii) / den
res = ressqrt * prefac * sumres * Integer((-1) ** (bigL + l_3 + m_1 - m_2))
if prec is not None:
res = res.n(prec)
return res
class Wigner3j(Function):
def doit(self, **hints):
if all(obj.is_number for obj in self.args):
return wigner_3j(*self.args)
else:
return self
def dot_rot_grad_Ynm(j, p, l, m, theta, phi):
r"""
Returns dot product of rotational gradients of spherical harmonics.
This function returns the right hand side of the following expression:
.. math ::
\vec{R}Y{_j^{p}} \cdot \vec{R}Y{_l^{m}} = (-1)^{m+p}
\sum\limits_{k=|l-j|}^{l+j}Y{_k^{m+p}} * \alpha_{l,m,j,p,k} *
\frac{1}{2} (k^2-j^2-l^2+k-j-l)
Arguments
=========
j, p, l, m .... indices in spherical harmonics (expressions or integers)
theta, phi .... angle arguments in spherical harmonics
Example
=======
>>> from sympy import symbols
>>> from sympy.physics.wigner import dot_rot_grad_Ynm
>>> theta, phi = symbols("theta phi")
>>> dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit()
3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
"""
j = sympify(j)
p = sympify(p)
l = sympify(l)
m = sympify(m)
theta = sympify(theta)
phi = sympify(phi)
k = Dummy("k")
def alpha(l,m,j,p,k):
return sqrt((2*l+1)*(2*j+1)*(2*k+1)/(4*pi)) * \
Wigner3j(j, l, k, S.Zero, S.Zero, S.Zero) * \
Wigner3j(j, l, k, p, m, -m-p)
return (S.NegativeOne)**(m+p) * Sum(Ynm(k, m+p, theta, phi) * alpha(l,m,j,p,k) / 2 \
*(k**2-j**2-l**2+k-j-l), (k, abs(l-j), l+j))
def wigner_d_small(J, beta):
u"""Return the small Wigner d matrix for angular momentum J.
INPUT:
- ``J`` - An integer, half-integer, or sympy symbol for the total angular
momentum of the angular momentum space being rotated.
- ``beta`` - A real number representing the Euler angle of rotation about
the so-called line of nodes. See [Edmonds74]_.
OUTPUT:
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of `J_z`).
.. math ::
\\mathcal{d}_{\\beta} = \\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)
The components are calculated using the general form [Edmonds74]_,
equation 4.1.15.
Examples
========
>>> from sympy import Integer, symbols, pi, pprint
>>> from sympy.physics.wigner import wigner_d_small
>>> half = 1/Integer(2)
>>> beta = symbols("beta", real=True)
>>> pprint(wigner_d_small(half, beta), use_unicode=True)
⎡ ⎛β⎞ ⎛β⎞⎤
⎢cos⎜─⎟ sin⎜─⎟⎥
⎢ ⎝2⎠ ⎝2⎠⎥
⎢ ⎥
⎢ ⎛β⎞ ⎛β⎞⎥
⎢-sin⎜─⎟ cos⎜─⎟⎥
⎣ ⎝2⎠ ⎝2⎠⎦
>>> pprint(wigner_d_small(2*half, beta), use_unicode=True)
⎡ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎤
⎢ cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟ sin ⎜─⎟ ⎥
⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎥
⎢ ⎥
⎢ ⎛β⎞ ⎛β⎞ 2⎛β⎞ 2⎛β⎞ ⎛β⎞ ⎛β⎞⎥
⎢-√2⋅sin⎜─⎟⋅cos⎜─⎟ - sin ⎜─⎟ + cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟⎥
⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠⎥
⎢ ⎥
⎢ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎥
⎢ sin ⎜─⎟ -√2⋅sin⎜─⎟⋅cos⎜─⎟ cos ⎜─⎟ ⎥
⎣ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎦
From table 4 in [Edmonds74]_
>>> pprint(wigner_d_small(half, beta).subs({beta:pi/2}), use_unicode=True)
⎡ √2 √2⎤
⎢ ── ──⎥
⎢ 2 2 ⎥
⎢ ⎥
⎢-√2 √2⎥
⎢──── ──⎥
⎣ 2 2 ⎦
>>> pprint(wigner_d_small(2*half, beta).subs({beta:pi/2}),
... use_unicode=True)
⎡ √2 ⎤
⎢1/2 ── 1/2⎥
⎢ 2 ⎥
⎢ ⎥
⎢-√2 √2 ⎥
⎢──── 0 ── ⎥
⎢ 2 2 ⎥
⎢ ⎥
⎢ -√2 ⎥
⎢1/2 ──── 1/2⎥
⎣ 2 ⎦
>>> pprint(wigner_d_small(3*half, beta).subs({beta:pi/2}),
... use_unicode=True)
⎡ √2 √6 √6 √2⎤
⎢ ── ── ── ──⎥
⎢ 4 4 4 4 ⎥
⎢ ⎥
⎢-√6 -√2 √2 √6⎥
⎢──── ──── ── ──⎥
⎢ 4 4 4 4 ⎥
⎢ ⎥
⎢ √6 -√2 -√2 √6⎥
⎢ ── ──── ──── ──⎥
⎢ 4 4 4 4 ⎥
⎢ ⎥
⎢-√2 √6 -√6 √2⎥
⎢──── ── ──── ──⎥
⎣ 4 4 4 4 ⎦
>>> pprint(wigner_d_small(4*half, beta).subs({beta:pi/2}),
... use_unicode=True)
⎡ √6 ⎤
⎢1/4 1/2 ── 1/2 1/4⎥
⎢ 4 ⎥
⎢ ⎥
⎢-1/2 -1/2 0 1/2 1/2⎥
⎢ ⎥
⎢ √6 √6 ⎥
⎢ ── 0 -1/2 0 ── ⎥
⎢ 4 4 ⎥
⎢ ⎥
⎢-1/2 1/2 0 -1/2 1/2⎥
⎢ ⎥
⎢ √6 ⎥
⎢1/4 -1/2 ── -1/2 1/4⎥
⎣ 4 ⎦
"""
M = [J-i for i in range(2*J+1)]
d = zeros(2*J+1)
for i, Mi in enumerate(M):
for j, Mj in enumerate(M):
# We get the maximum and minimum value of sigma.
sigmamax = max([-Mi-Mj, J-Mj])
sigmamin = min([0, J-Mi])
dij = sqrt(factorial(J+Mi)*factorial(J-Mi) /
factorial(J+Mj)/factorial(J-Mj))
terms = [(-1)**(J-Mi-s) *
binomial(J+Mj, J-Mi-s) *
binomial(J-Mj, s) *
cos(beta/2)**(2*s+Mi+Mj) *
sin(beta/2)**(2*J-2*s-Mj-Mi)
for s in range(sigmamin, sigmamax+1)]
d[i, j] = dij*Add(*terms)
return ImmutableMatrix(d)
def wigner_d(J, alpha, beta, gamma):
u"""Return the Wigner D matrix for angular momentum J.
INPUT:
- ``J`` - An integer, half-integer, or sympy symbol for the total angular
momentum of the angular momentum space being rotated.
- ``alpha``, ``beta``, ``gamma`` - Real numbers representing the Euler
angles of rotation about the so-called vertical, line of nodes, and
figure axes. See [Edmonds74]_.
OUTPUT:
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of `J_z`).
.. math ::
\\mathcal{D}_{\\alpha \\beta \\gamma} =
\\exp\\big( \\frac{i\\alpha}{\\hbar} J_z\\big)
\\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)
\\exp\\big( \\frac{i\\gamma}{\\hbar} J_z\\big)
The components are calculated using the general form [Edmonds74]_,
equation 4.1.12.
Examples
========
The simplest possible example:
>>> from sympy.physics.wigner import wigner_d
>>> from sympy import Integer, symbols, pprint
>>> from sympy.physics.wigner import wigner_d_small
>>> half = 1/Integer(2)
>>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
>>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True)
⎡ ⅈ⋅α ⅈ⋅γ ⅈ⋅α -ⅈ⋅γ ⎤
⎢ ─── ─── ─── ───── ⎥
⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞ ⎥
⎢ ℯ ⋅ℯ ⋅cos⎜─⎟ ℯ ⋅ℯ ⋅sin⎜─⎟ ⎥
⎢ ⎝2⎠ ⎝2⎠ ⎥
⎢ ⎥
⎢ -ⅈ⋅α ⅈ⋅γ -ⅈ⋅α -ⅈ⋅γ ⎥
⎢ ───── ─── ───── ───── ⎥
⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞⎥
⎢-ℯ ⋅ℯ ⋅sin⎜─⎟ ℯ ⋅ℯ ⋅cos⎜─⎟⎥
⎣ ⎝2⎠ ⎝2⎠⎦
"""
d = wigner_d_small(J, beta)
M = [J-i for i in range(2*J+1)]
D = [[exp(I*Mi*alpha)*d[i, j]*exp(I*Mj*gamma)
for j, Mj in enumerate(M)] for i, Mi in enumerate(M)]
return ImmutableMatrix(D)
|
3e48fd2da039068ea79f947e89c21ba7856845408f92798049d687a804093858 | """
A module that helps solving problems in physics
"""
from . import units
from .matrices import mgamma, msigma, minkowski_tensor, mdft
__all__ = [
'units',
'mgamma', 'msigma', 'minkowski_tensor', 'mdft',
]
|
196a7cbd505dd0377d864a93e1a3916a4e44eb9c26c0d49b0aa00bdc961b9a28 | from sympy.physics.optics.gaussopt import RayTransferMatrix, FreeSpace,\
FlatRefraction, CurvedRefraction, FlatMirror, CurvedMirror, ThinLens,\
GeometricRay, BeamParameter, waist2rayleigh, rayleigh2waist, geometric_conj_ab,\
geometric_conj_af, geometric_conj_bf, gaussian_conj, conjugate_gauss_beams
__all__ = [
'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction',
'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter',
'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab',
'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj',
'conjugate_gauss_beams',
]
from sympy.utilities.exceptions import SymPyDeprecationWarning
SymPyDeprecationWarning(feature="Module sympy.physics.gaussopt",
useinstead="sympy.physics.optics.gaussopt",
deprecated_since_version="0.7.6", issue=7659).warn()
|
cfee75251fed485f258203c8814b6daf5149f40be59e8d86bdd88b9bbf2c9623 | """
Second quantization operators and states for bosons.
This follow the formulation of Fetter and Welecka, "Quantum Theory
of Many-Particle Systems."
"""
from __future__ import print_function, division
from collections import defaultdict
from sympy import (Add, Basic, cacheit, Dummy, Expr, Function, I,
KroneckerDelta, Mul, Pow, S, sqrt, Symbol, sympify, Tuple,
zeros)
from sympy.printing.str import StrPrinter
from sympy.core.compatibility import range
from sympy.utilities.iterables import has_dups
from sympy.utilities import default_sort_key
__all__ = [
'Dagger',
'KroneckerDelta',
'BosonicOperator',
'AnnihilateBoson',
'CreateBoson',
'AnnihilateFermion',
'CreateFermion',
'FockState',
'FockStateBra',
'FockStateKet',
'FockStateBosonKet',
'FockStateBosonBra',
'FockStateFermionKet',
'FockStateFermionBra',
'BBra',
'BKet',
'FBra',
'FKet',
'F',
'Fd',
'B',
'Bd',
'apply_operators',
'InnerProduct',
'BosonicBasis',
'VarBosonicBasis',
'FixedBosonicBasis',
'Commutator',
'matrix_rep',
'contraction',
'wicks',
'NO',
'evaluate_deltas',
'AntiSymmetricTensor',
'substitute_dummies',
'PermutationOperator',
'simplify_index_permutations',
]
class SecondQuantizationError(Exception):
pass
class AppliesOnlyToSymbolicIndex(SecondQuantizationError):
pass
class ContractionAppliesOnlyToFermions(SecondQuantizationError):
pass
class ViolationOfPauliPrinciple(SecondQuantizationError):
pass
class SubstitutionOfAmbigousOperatorFailed(SecondQuantizationError):
pass
class WicksTheoremDoesNotApply(SecondQuantizationError):
pass
class Dagger(Expr):
"""
Hermitian conjugate of creation/annihilation operators.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
"""
def __new__(cls, arg):
arg = sympify(arg)
r = cls.eval(arg)
if isinstance(r, Basic):
return r
obj = Basic.__new__(cls, arg)
return obj
@classmethod
def eval(cls, arg):
"""
Evaluates the Dagger instance.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
The eval() method is called automatically.
"""
dagger = getattr(arg, '_dagger_', None)
if dagger is not None:
return dagger()
if isinstance(arg, Basic):
if arg.is_Add:
return Add(*tuple(map(Dagger, arg.args)))
if arg.is_Mul:
return Mul(*tuple(map(Dagger, reversed(arg.args))))
if arg.is_Number:
return arg
if arg.is_Pow:
return Pow(Dagger(arg.args[0]), arg.args[1])
if arg == I:
return -arg
else:
return None
def _dagger_(self):
return self.args[0]
class TensorSymbol(Expr):
is_commutative = True
class AntiSymmetricTensor(TensorSymbol):
"""Stores upper and lower indices in separate Tuple's.
Each group of indices is assumed to be antisymmetric.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (i, a), (b, j))
-AntiSymmetricTensor(v, (a, i), (b, j))
As you can see, the indices are automatically sorted to a canonical form.
"""
def __new__(cls, symbol, upper, lower):
try:
upper, signu = _sort_anticommuting_fermions(
upper, key=cls._sortkey)
lower, signl = _sort_anticommuting_fermions(
lower, key=cls._sortkey)
except ViolationOfPauliPrinciple:
return S.Zero
symbol = sympify(symbol)
upper = Tuple(*upper)
lower = Tuple(*lower)
if (signu + signl) % 2:
return -TensorSymbol.__new__(cls, symbol, upper, lower)
else:
return TensorSymbol.__new__(cls, symbol, upper, lower)
@classmethod
def _sortkey(cls, index):
"""Key for sorting of indices.
particle < hole < general
FIXME: This is a bottle-neck, can we do it faster?
"""
h = hash(index)
label = str(index)
if isinstance(index, Dummy):
if index.assumptions0.get('above_fermi'):
return (20, label, h)
elif index.assumptions0.get('below_fermi'):
return (21, label, h)
else:
return (22, label, h)
if index.assumptions0.get('above_fermi'):
return (10, label, h)
elif index.assumptions0.get('below_fermi'):
return (11, label, h)
else:
return (12, label, h)
def _latex(self, printer):
return "%s^{%s}_{%s}" % (
self.symbol,
"".join([ i.name for i in self.args[1]]),
"".join([ i.name for i in self.args[2]])
)
@property
def symbol(self):
"""
Returns the symbol of the tensor.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol
v
"""
return self.args[0]
@property
def upper(self):
"""
Returns the upper indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).upper
(a, i)
"""
return self.args[1]
@property
def lower(self):
"""
Returns the lower indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).lower
(b, j)
"""
return self.args[2]
def __str__(self):
return "%s(%s,%s)" % self.args
def doit(self, **kw_args):
"""
Returns self.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j)).doit()
AntiSymmetricTensor(v, (a, i), (b, j))
"""
return self
class SqOperator(Expr):
"""
Base class for Second Quantization operators.
"""
op_symbol = 'sq'
is_commutative = False
def __new__(cls, k):
obj = Basic.__new__(cls, sympify(k))
return obj
@property
def state(self):
"""
Returns the state index related to this operator.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd, B, Bd
>>> p = Symbol('p')
>>> F(p).state
p
>>> Fd(p).state
p
>>> B(p).state
p
>>> Bd(p).state
p
"""
return self.args[0]
@property
def is_symbolic(self):
"""
Returns True if the state is a symbol (as opposed to a number).
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> p = Symbol('p')
>>> F(p).is_symbolic
True
>>> F(1).is_symbolic
False
"""
if self.state.is_Integer:
return False
else:
return True
def doit(self, **kw_args):
"""
FIXME: hack to prevent crash further up...
"""
return self
def __repr__(self):
return NotImplemented
def __str__(self):
return "%s(%r)" % (self.op_symbol, self.state)
def apply_operator(self, state):
"""
Applies an operator to itself.
"""
raise NotImplementedError('implement apply_operator in a subclass')
class BosonicOperator(SqOperator):
pass
class Annihilator(SqOperator):
pass
class Creator(SqOperator):
pass
class AnnihilateBoson(BosonicOperator, Annihilator):
"""
Bosonic annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import B
>>> from sympy.abc import x
>>> B(x)
AnnihilateBoson(x)
"""
op_symbol = 'b'
def _dagger_(self):
return CreateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, BKet
>>> from sympy.abc import x, y, n
>>> B(x).apply_operator(y)
y*AnnihilateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element])
return amp*state.down(element)
else:
return Mul(self, state)
def __repr__(self):
return "AnnihilateBoson(%s)" % self.state
def _latex(self, printer):
return "b_{%s}" % self.state.name
class CreateBoson(BosonicOperator, Creator):
"""
Bosonic creation operator.
"""
op_symbol = 'b+'
def _dagger_(self):
return AnnihilateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element] + 1)
return amp*state.up(element)
else:
return Mul(self, state)
def __repr__(self):
return "CreateBoson(%s)" % self.state
def _latex(self, printer):
return "b^\\dagger_{%s}" % self.state.name
B = AnnihilateBoson
Bd = CreateBoson
class FermionicOperator(SqOperator):
@property
def is_restricted(self):
"""
Is this FermionicOperator restricted with respect to fermi level?
Return values:
1 : restricted to orbits above fermi
0 : no restriction
-1 : restricted to orbits below fermi
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_restricted
1
>>> Fd(a).is_restricted
1
>>> F(i).is_restricted
-1
>>> Fd(i).is_restricted
-1
>>> F(p).is_restricted
0
>>> Fd(p).is_restricted
0
"""
ass = self.args[0].assumptions0
if ass.get("below_fermi"):
return -1
if ass.get("above_fermi"):
return 1
return 0
@property
def is_above_fermi(self):
"""
Does the index of this FermionicOperator allow values above fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_above_fermi
True
>>> F(i).is_above_fermi
False
>>> F(p).is_above_fermi
True
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("below_fermi")
@property
def is_below_fermi(self):
"""
Does the index of this FermionicOperator allow values below fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_below_fermi
False
>>> F(i).is_below_fermi
True
>>> F(p).is_below_fermi
True
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("above_fermi")
@property
def is_only_below_fermi(self):
"""
Is the index of this FermionicOperator restricted to values below fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_below_fermi
False
>>> F(i).is_only_below_fermi
True
>>> F(p).is_only_below_fermi
False
The same applies to creation operators Fd
"""
return self.is_below_fermi and not self.is_above_fermi
@property
def is_only_above_fermi(self):
"""
Is the index of this FermionicOperator restricted to values above fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_above_fermi
True
>>> F(i).is_only_above_fermi
False
>>> F(p).is_only_above_fermi
False
The same applies to creation operators Fd
"""
return self.is_above_fermi and not self.is_below_fermi
def _sortkey(self):
h = hash(self)
label = str(self.args[0])
if self.is_only_q_creator:
return 1, label, h
if self.is_only_q_annihilator:
return 4, label, h
if isinstance(self, Annihilator):
return 3, label, h
if isinstance(self, Creator):
return 2, label, h
class AnnihilateFermion(FermionicOperator, Annihilator):
"""
Fermionic annihilation operator.
"""
op_symbol = 'f'
def _dagger_(self):
return CreateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.down(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].down(element)] + nc_part[1:]))
else:
return Mul(self, state)
else:
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_q_creator
0
>>> F(i).is_q_creator
-1
>>> F(p).is_q_creator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> F(a).is_q_annihilator
1
>>> F(i).is_q_annihilator
0
>>> F(p).is_q_annihilator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_creator
False
>>> F(i).is_only_q_creator
True
>>> F(p).is_only_q_creator
False
"""
return self.is_only_below_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_annihilator
True
>>> F(i).is_only_q_annihilator
False
>>> F(p).is_only_q_annihilator
False
"""
return self.is_only_above_fermi
def __repr__(self):
return "AnnihilateFermion(%s)" % self.state
def _latex(self, printer):
return "a_{%s}" % self.state.name
class CreateFermion(FermionicOperator, Creator):
"""
Fermionic creation operator.
"""
op_symbol = 'f+'
def _dagger_(self):
return AnnihilateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.up(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].up(element)] + nc_part[1:]))
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_q_creator
1
>>> Fd(i).is_q_creator
0
>>> Fd(p).is_q_creator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> Fd(a).is_q_annihilator
0
>>> Fd(i).is_q_annihilator
-1
>>> Fd(p).is_q_annihilator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_creator
True
>>> Fd(i).is_only_q_creator
False
>>> Fd(p).is_only_q_creator
False
"""
return self.is_only_above_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_annihilator
False
>>> Fd(i).is_only_q_annihilator
True
>>> Fd(p).is_only_q_annihilator
False
"""
return self.is_only_below_fermi
def __repr__(self):
return "CreateFermion(%s)" % self.state
def _latex(self, printer):
return "a^\\dagger_{%s}" % self.state.name
Fd = CreateFermion
F = AnnihilateFermion
class FockState(Expr):
"""
Many particle Fock state with a sequence of occupation numbers.
Anywhere you can have a FockState, you can also have S.Zero.
All code must check for this!
Base class to represent FockStates.
"""
is_commutative = False
def __new__(cls, occupations):
"""
occupations is a list with two possible meanings:
- For bosons it is a list of occupation numbers.
Element i is the number of particles in state i.
- For fermions it is a list of occupied orbits.
Element 0 is the state that was occupied first, element i
is the i'th occupied state.
"""
occupations = list(map(sympify, occupations))
obj = Basic.__new__(cls, Tuple(*occupations))
return obj
def __getitem__(self, i):
i = int(i)
return self.args[0][i]
def __repr__(self):
return ("FockState(%r)") % (self.args)
def __str__(self):
return "%s%r%s" % (self.lbracket, self._labels(), self.rbracket)
def _labels(self):
return self.args[0]
def __len__(self):
return len(self.args[0])
class BosonState(FockState):
"""
Base class for FockStateBoson(Ket/Bra).
"""
def up(self, i):
"""
Performs the action of a creation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.up(1)
FockStateBosonBra((1, 3))
"""
i = int(i)
new_occs = list(self.args[0])
new_occs[i] = new_occs[i] + S.One
return self.__class__(new_occs)
def down(self, i):
"""
Performs the action of an annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.down(1)
FockStateBosonBra((1, 1))
"""
i = int(i)
new_occs = list(self.args[0])
if new_occs[i] == S.Zero:
return S.Zero
else:
new_occs[i] = new_occs[i] - S.One
return self.__class__(new_occs)
class FermionState(FockState):
"""
Base class for FockStateFermion(Ket/Bra).
"""
fermi_level = 0
def __new__(cls, occupations, fermi_level=0):
occupations = list(map(sympify, occupations))
if len(occupations) > 1:
try:
(occupations, sign) = _sort_anticommuting_fermions(
occupations, key=hash)
except ViolationOfPauliPrinciple:
return S.Zero
else:
sign = 0
cls.fermi_level = fermi_level
if cls._count_holes(occupations) > fermi_level:
return S.Zero
if sign % 2:
return S.NegativeOne*FockState.__new__(cls, occupations)
else:
return FockState.__new__(cls, occupations)
def up(self, i):
"""
Performs the action of a creation operator.
If below fermi we try to remove a hole,
if above fermi we try to create a particle.
if general index p we return Kronecker(p,i)*self
where i is a new symbol with restriction above or below.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> FKet([]).up(a)
FockStateFermionKet((a,))
A creator acting on vacuum below fermi vanishes
>>> FKet([]).up(i)
0
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
elif self._only_below_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._remove_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._add_orbit(i)
def down(self, i):
"""
Performs the action of an annihilation operator.
If below fermi we try to create a hole,
if above fermi we try to remove a particle.
if general index p we return Kronecker(p,i)*self
where i is a new symbol with restriction above or below.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
An annihilator acting on vacuum above fermi vanishes
>>> FKet([]).down(a)
0
Also below fermi, it vanishes, unless we specify a fermi level > 0
>>> FKet([]).down(i)
0
>>> FKet([],4).down(i)
FockStateFermionKet((i,))
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
elif self._only_below_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._add_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._remove_orbit(i)
@classmethod
def _only_below_fermi(cls, i):
"""
Tests if given orbit is only below fermi surface.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i <= cls.fermi_level
if i.assumptions0.get('below_fermi'):
return True
return False
@classmethod
def _only_above_fermi(cls, i):
"""
Tests if given orbit is only above fermi surface.
If fermi level has not been set we return True.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i > cls.fermi_level
if i.assumptions0.get('above_fermi'):
return True
return not cls.fermi_level
def _remove_orbit(self, i):
"""
Removes particle/fills hole in orbit i. No input tests performed here.
"""
new_occs = list(self.args[0])
pos = new_occs.index(i)
del new_occs[pos]
if (pos) % 2:
return S.NegativeOne*self.__class__(new_occs, self.fermi_level)
else:
return self.__class__(new_occs, self.fermi_level)
def _add_orbit(self, i):
"""
Adds particle/creates hole in orbit i. No input tests performed here.
"""
return self.__class__((i,) + self.args[0], self.fermi_level)
@classmethod
def _count_holes(cls, list):
"""
returns number of identified hole states in list.
"""
return len([i for i in list if cls._only_below_fermi(i)])
def _negate_holes(self, list):
return tuple([-i if i <= self.fermi_level else i for i in list])
def __repr__(self):
if self.fermi_level:
return "FockStateKet(%r, fermi_level=%s)" % (self.args[0], self.fermi_level)
else:
return "FockStateKet(%r)" % (self.args[0],)
def _labels(self):
return self._negate_holes(self.args[0])
class FockStateKet(FockState):
"""
Representation of a ket.
"""
lbracket = '|'
rbracket = '>'
class FockStateBra(FockState):
"""
Representation of a bra.
"""
lbracket = '<'
rbracket = '|'
def __mul__(self, other):
if isinstance(other, FockStateKet):
return InnerProduct(self, other)
else:
return Expr.__mul__(self, other)
class FockStateBosonKet(BosonState, FockStateKet):
"""
Many particle Fock state with a sequence of occupation numbers.
Occupation numbers can be any integer >= 0.
Examples
========
>>> from sympy.physics.secondquant import BKet
>>> BKet([1, 2])
FockStateBosonKet((1, 2))
"""
def _dagger_(self):
return FockStateBosonBra(*self.args)
class FockStateBosonBra(BosonState, FockStateBra):
"""
Describes a collection of BosonBra particles.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> BBra([1, 2])
FockStateBosonBra((1, 2))
"""
def _dagger_(self):
return FockStateBosonKet(*self.args)
class FockStateFermionKet(FermionState, FockStateKet):
"""
Many-particle Fock state with a sequence of occupied orbits.
Each state can only have one particle, so we choose to store a list of
occupied orbits rather than a tuple with occupation numbers (zeros and ones).
states below fermi level are holes, and are represented by negative labels
in the occupation list.
For symbolic state labels, the fermi_level caps the number of allowed hole-
states.
Examples
========
>>> from sympy.physics.secondquant import FKet
>>> FKet([1, 2])
FockStateFermionKet((1, 2))
"""
def _dagger_(self):
return FockStateFermionBra(*self.args)
class FockStateFermionBra(FermionState, FockStateBra):
"""
See Also
========
FockStateFermionKet
Examples
========
>>> from sympy.physics.secondquant import FBra
>>> FBra([1, 2])
FockStateFermionBra((1, 2))
"""
def _dagger_(self):
return FockStateFermionKet(*self.args)
BBra = FockStateBosonBra
BKet = FockStateBosonKet
FBra = FockStateFermionBra
FKet = FockStateFermionKet
def _apply_Mul(m):
"""
Take a Mul instance with operators and apply them to states.
This method applies all operators with integer state labels
to the actual states. For symbolic state labels, nothing is done.
When inner products of FockStates are encountered (like <a|b>),
they are converted to instances of InnerProduct.
This does not currently work on double inner products like,
<a|b><c|d>.
If the argument is not a Mul, it is simply returned as is.
"""
if not isinstance(m, Mul):
return m
c_part, nc_part = m.args_cnc()
n_nc = len(nc_part)
if n_nc == 0 or n_nc == 1:
return m
else:
last = nc_part[-1]
next_to_last = nc_part[-2]
if isinstance(last, FockStateKet):
if isinstance(next_to_last, SqOperator):
if next_to_last.is_symbolic:
return m
else:
result = next_to_last.apply_operator(last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
elif isinstance(next_to_last, Pow):
if isinstance(next_to_last.base, SqOperator) and \
next_to_last.exp.is_Integer:
if next_to_last.base.is_symbolic:
return m
else:
result = last
for i in range(next_to_last.exp):
result = next_to_last.base.apply_operator(result)
if result == 0:
break
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
elif isinstance(next_to_last, FockStateBra):
result = InnerProduct(next_to_last, last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
else:
return m
def apply_operators(e):
"""
Take a sympy expression with operators and states and apply the operators.
Examples
========
>>> from sympy.physics.secondquant import apply_operators
>>> from sympy import sympify
>>> apply_operators(sympify(3)+4)
7
"""
e = e.expand()
muls = e.atoms(Mul)
subs_list = [(m, _apply_Mul(m)) for m in iter(muls)]
return e.subs(subs_list)
class InnerProduct(Basic):
"""
An unevaluated inner product between a bra and ket.
Currently this class just reduces things to a product of
Kronecker Deltas. In the future, we could introduce abstract
states like ``|a>`` and ``|b>``, and leave the inner product unevaluated as
``<a|b>``.
"""
is_commutative = True
def __new__(cls, bra, ket):
if not isinstance(bra, FockStateBra):
raise TypeError("must be a bra")
if not isinstance(ket, FockStateKet):
raise TypeError("must be a key")
return cls.eval(bra, ket)
@classmethod
def eval(cls, bra, ket):
result = S.One
for i, j in zip(bra.args[0], ket.args[0]):
result *= KroneckerDelta(i, j)
if result == 0:
break
return result
@property
def bra(self):
"""Returns the bra part of the state"""
return self.args[0]
@property
def ket(self):
"""Returns the ket part of the state"""
return self.args[1]
def __repr__(self):
sbra = repr(self.bra)
sket = repr(self.ket)
return "%s|%s" % (sbra[:-1], sket[1:])
def __str__(self):
return self.__repr__()
def matrix_rep(op, basis):
"""
Find the representation of an operator in a basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
>>> b = VarBosonicBasis(5)
>>> o = B(0)
>>> matrix_rep(o, b)
Matrix([
[0, 1, 0, 0, 0],
[0, 0, sqrt(2), 0, 0],
[0, 0, 0, sqrt(3), 0],
[0, 0, 0, 0, 2],
[0, 0, 0, 0, 0]])
"""
a = zeros(len(basis))
for i in range(len(basis)):
for j in range(len(basis)):
a[i, j] = apply_operators(Dagger(basis[i])*op*basis[j])
return a
class BosonicBasis(object):
"""
Base class for a basis set of bosonic Fock states.
"""
pass
class VarBosonicBasis(object):
"""
A single state, variable particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,)),
FockState((3,)), FockState((4,))]
"""
def __init__(self, n_max):
self.n_max = n_max
self._build_states()
def _build_states(self):
self.basis = []
for i in range(self.n_max):
self.basis.append(FockStateBosonKet([i]))
self.n_basis = len(self.basis)
def index(self, state):
"""
Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(3)
>>> state = b.state(1)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,))]
>>> state
FockStateBosonKet((1,))
>>> b.index(state)
1
"""
return self.basis.index(state)
def state(self, i):
"""
The state of a single basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b.state(3)
FockStateBosonKet((3,))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class FixedBosonicBasis(BosonicBasis):
"""
Fixed particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 2)
>>> state = b.state(1)
>>> b
[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
>>> state
FockStateBosonKet((1, 1))
>>> b.index(state)
1
"""
def __init__(self, n_particles, n_levels):
self.n_particles = n_particles
self.n_levels = n_levels
self._build_particle_locations()
self._build_states()
def _build_particle_locations(self):
tup = ["i%i" % i for i in range(self.n_particles)]
first_loop = "for i0 in range(%i)" % self.n_levels
other_loops = ''
for cur, prev in zip(tup[1:], tup):
temp = "for %s in range(%s + 1) " % (cur, prev)
other_loops = other_loops + temp
tup_string = "(%s)" % ", ".join(tup)
list_comp = "[%s %s %s]" % (tup_string, first_loop, other_loops)
result = eval(list_comp)
if self.n_particles == 1:
result = [(item,) for item in result]
self.particle_locations = result
def _build_states(self):
self.basis = []
for tuple_of_indices in self.particle_locations:
occ_numbers = self.n_levels*[0]
for level in tuple_of_indices:
occ_numbers[level] += 1
self.basis.append(FockStateBosonKet(occ_numbers))
self.n_basis = len(self.basis)
def index(self, state):
"""Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.index(b.state(3))
3
"""
return self.basis.index(state)
def state(self, i):
"""Returns the state that lies at index i of the basis
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.state(3)
FockStateBosonKet((1, 0, 1))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class Commutator(Function):
"""
The Commutator: [A, B] = A*B - B*A
The arguments are ordered according to .__cmp__()
>>> from sympy import symbols
>>> from sympy.physics.secondquant import Commutator
>>> A, B = symbols('A,B', commutative=False)
>>> Commutator(B, A)
-Commutator(A, B)
Evaluate the commutator with .doit()
>>> comm = Commutator(A,B); comm
Commutator(A, B)
>>> comm.doit()
A*B - B*A
For two second quantization operators the commutator is evaluated
immediately:
>>> from sympy.physics.secondquant import Fd, F
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> p,q = symbols('p,q')
>>> Commutator(Fd(a),Fd(i))
2*NO(CreateFermion(a)*CreateFermion(i))
But for more complicated expressions, the evaluation is triggered by
a call to .doit()
>>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm
Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i))
>>> comm.doit(wicks=True)
-KroneckerDelta(i, p)*CreateFermion(q) +
KroneckerDelta(i, q)*CreateFermion(p)
"""
is_commutative = False
@classmethod
def eval(cls, a, b):
"""
The Commutator [A,B] is on canonical form if A < B.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy.abc import x
>>> c1 = Commutator(F(x), Fd(x))
>>> c2 = Commutator(Fd(x), F(x))
>>> Commutator.eval(c1, c2)
0
"""
if not (a and b):
return S.Zero
if a == b:
return S.Zero
if a.is_commutative or b.is_commutative:
return S.Zero
#
# [A+B,C] -> [A,C] + [B,C]
#
a = a.expand()
if isinstance(a, Add):
return Add(*[cls(term, b) for term in a.args])
b = b.expand()
if isinstance(b, Add):
return Add(*[cls(a, term) for term in b.args])
#
# [xA,yB] -> xy*[A,B]
#
ca, nca = a.args_cnc()
cb, ncb = b.args_cnc()
c_part = list(ca) + list(cb)
if c_part:
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
#
# single second quantization operators
#
if isinstance(a, BosonicOperator) and isinstance(b, BosonicOperator):
if isinstance(b, CreateBoson) and isinstance(a, AnnihilateBoson):
return KroneckerDelta(a.state, b.state)
if isinstance(a, CreateBoson) and isinstance(b, AnnihilateBoson):
return S.NegativeOne*KroneckerDelta(a.state, b.state)
else:
return S.Zero
if isinstance(a, FermionicOperator) and isinstance(b, FermionicOperator):
return wicks(a*b) - wicks(b*a)
#
# Canonical ordering of arguments
#
if a.sort_key() > b.sort_key():
return S.NegativeOne*cls(b, a)
def doit(self, **hints):
"""
Enables the computation of complex expressions.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy import symbols
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
>>> c.doit(wicks=True)
0
"""
a = self.args[0]
b = self.args[1]
if hints.get("wicks"):
a = a.doit(**hints)
b = b.doit(**hints)
try:
return wicks(a*b) - wicks(b*a)
except ContractionAppliesOnlyToFermions:
pass
except WicksTheoremDoesNotApply:
pass
return (a*b - b*a).doit(**hints)
def __repr__(self):
return "Commutator(%s,%s)" % (self.args[0], self.args[1])
def __str__(self):
return "[%s,%s]" % (self.args[0], self.args[1])
def _latex(self, printer):
return "\\left[%s,%s\\right]" % tuple([
printer._print(arg) for arg in self.args])
class NO(Expr):
"""
This Object is used to represent normal ordering brackets.
i.e. {abcd} sometimes written :abcd:
Applying the function NO(arg) to an argument means that all operators in
the argument will be assumed to anticommute, and have vanishing
contractions. This allows an immediate reordering to canonical form
upon object creation.
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> p,q = symbols('p,q')
>>> NO(Fd(p)*F(q))
NO(CreateFermion(p)*AnnihilateFermion(q))
>>> NO(F(q)*Fd(p))
-NO(CreateFermion(p)*AnnihilateFermion(q))
Note:
If you want to generate a normal ordered equivalent of an expression, you
should use the function wicks(). This class only indicates that all
operators inside the brackets anticommute, and have vanishing contractions.
Nothing more, nothing less.
"""
is_commutative = False
def __new__(cls, arg):
"""
Use anticommutation to get canonical form of operators.
Employ associativity of normal ordered product: {ab{cd}} = {abcd}
but note that {ab}{cd} /= {abcd}.
We also employ distributivity: {ab + cd} = {ab} + {cd}.
Canonical form also implies expand() {ab(c+d)} = {abc} + {abd}.
"""
# {ab + cd} = {ab} + {cd}
arg = sympify(arg)
arg = arg.expand()
if arg.is_Add:
return Add(*[ cls(term) for term in arg.args])
if arg.is_Mul:
# take coefficient outside of normal ordering brackets
c_part, seq = arg.args_cnc()
if c_part:
coeff = Mul(*c_part)
if not seq:
return coeff
else:
coeff = S.One
# {ab{cd}} = {abcd}
newseq = []
foundit = False
for fac in seq:
if isinstance(fac, NO):
newseq.extend(fac.args)
foundit = True
else:
newseq.append(fac)
if foundit:
return coeff*cls(Mul(*newseq))
# We assume that the user don't mix B and F operators
if isinstance(seq[0], BosonicOperator):
raise NotImplementedError
try:
newseq, sign = _sort_anticommuting_fermions(seq)
except ViolationOfPauliPrinciple:
return S.Zero
if sign % 2:
return (S.NegativeOne*coeff)*cls(Mul(*newseq))
elif sign:
return coeff*cls(Mul(*newseq))
else:
pass # since sign==0, no permutations was necessary
# if we couldn't do anything with Mul object, we just
# mark it as normal ordered
if coeff != S.One:
return coeff*cls(Mul(*newseq))
return Expr.__new__(cls, Mul(*newseq))
if isinstance(arg, NO):
return arg
# if object was not Mul or Add, normal ordering does not apply
return arg
@property
def has_q_creators(self):
"""
Return 0 if the leftmost argument of the first argument is a not a
q_creator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_creators
1
>>> NO(F(i)*F(a)).has_q_creators
-1
>>> NO(Fd(i)*F(a)).has_q_creators #doctest: +SKIP
0
"""
return self.args[0].args[0].is_q_creator
@property
def has_q_annihilators(self):
"""
Return 0 if the rightmost argument of the first argument is a not a
q_annihilator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_annihilators
-1
>>> NO(F(i)*F(a)).has_q_annihilators
1
>>> NO(Fd(a)*F(i)).has_q_annihilators
0
"""
return self.args[0].args[-1].is_q_annihilator
def doit(self, **kw_args):
"""
Either removes the brackets or enables complex computations
in its arguments.
Examples
========
>>> from sympy.physics.secondquant import NO, Fd, F
>>> from textwrap import fill
>>> from sympy import symbols, Dummy
>>> p,q = symbols('p,q', cls=Dummy)
>>> print(fill(str(NO(Fd(p)*F(q)).doit())))
KroneckerDelta(_a, _p)*KroneckerDelta(_a,
_q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a,
_p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) -
KroneckerDelta(_a, _q)*KroneckerDelta(_i,
_p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i,
_p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i)
"""
if kw_args.get("remove_brackets", True):
return self._remove_brackets()
else:
return self.__new__(type(self), self.args[0].doit(**kw_args))
def _remove_brackets(self):
"""
Returns the sorted string without normal order brackets.
The returned string have the property that no nonzero
contractions exist.
"""
# check if any creator is also an annihilator
subslist = []
for i in self.iter_q_creators():
if self[i].is_q_annihilator:
assume = self[i].state.assumptions0
# only operators with a dummy index can be split in two terms
if isinstance(self[i].state, Dummy):
# create indices with fermi restriction
assume.pop("above_fermi", None)
assume["below_fermi"] = True
below = Dummy('i', **assume)
assume.pop("below_fermi", None)
assume["above_fermi"] = True
above = Dummy('a', **assume)
cls = type(self[i])
split = (
self[i].__new__(cls, below)
* KroneckerDelta(below, self[i].state)
+ self[i].__new__(cls, above)
* KroneckerDelta(above, self[i].state)
)
subslist.append((self[i], split))
else:
raise SubstitutionOfAmbigousOperatorFailed(self[i])
if subslist:
result = NO(self.subs(subslist))
if isinstance(result, Add):
return Add(*[term.doit() for term in result.args])
else:
return self.args[0]
def _expand_operators(self):
"""
Returns a sum of NO objects that contain no ambiguous q-operators.
If an index q has range both above and below fermi, the operator F(q)
is ambiguous in the sense that it can be both a q-creator and a q-annihilator.
If q is dummy, it is assumed to be a summation variable and this method
rewrites it into a sum of NO terms with unambiguous operators:
{Fd(p)*F(q)} = {Fd(a)*F(b)} + {Fd(a)*F(i)} + {Fd(j)*F(b)} -{F(i)*Fd(j)}
where a,b are above and i,j are below fermi level.
"""
return NO(self._remove_brackets)
def __getitem__(self, i):
if isinstance(i, slice):
indices = i.indices(len(self))
return [self.args[0].args[i] for i in range(*indices)]
else:
return self.args[0].args[i]
def __len__(self):
return len(self.args[0].args)
def iter_q_annihilators(self):
"""
Iterates over the annihilation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(len(ops) - 1, -1, -1)
for i in iter:
if ops[i].is_q_annihilator:
yield i
else:
break
def iter_q_creators(self):
"""
Iterates over the creation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(0, len(ops))
for i in iter:
if ops[i].is_q_creator:
yield i
else:
break
def get_subNO(self, i):
"""
Returns a NO() without FermionicOperator at index i.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, NO
>>> p, q, r = symbols('p,q,r')
>>> NO(F(p)*F(q)*F(r)).get_subNO(1)
NO(AnnihilateFermion(p)*AnnihilateFermion(r))
"""
arg0 = self.args[0] # it's a Mul by definition of how it's created
mul = arg0._new_rawargs(*(arg0.args[:i] + arg0.args[i + 1:]))
return NO(mul)
def _latex(self, printer):
return "\\left\\{%s\\right\\}" % printer._print(self.args[0])
def __repr__(self):
return "NO(%s)" % self.args[0]
def __str__(self):
return ":%s:" % self.args[0]
def contraction(a, b):
"""
Calculates contraction of Fermionic operators a and b.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, Fd, contraction
>>> p, q = symbols('p,q')
>>> a, b = symbols('a,b', above_fermi=True)
>>> i, j = symbols('i,j', below_fermi=True)
A contraction is non-zero only if a quasi-creator is to the right of a
quasi-annihilator:
>>> contraction(F(a),Fd(b))
KroneckerDelta(a, b)
>>> contraction(Fd(i),F(j))
KroneckerDelta(i, j)
For general indices a non-zero result restricts the indices to below/above
the fermi surface:
>>> contraction(Fd(p),F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q)
>>> contraction(F(p),Fd(q))
KroneckerDelta(_a, q)*KroneckerDelta(p, q)
Two creators or two annihilators always vanishes:
>>> contraction(F(p),F(q))
0
>>> contraction(Fd(p),Fd(q))
0
"""
if isinstance(b, FermionicOperator) and isinstance(a, FermionicOperator):
if isinstance(a, AnnihilateFermion) and isinstance(b, CreateFermion):
if b.state.assumptions0.get("below_fermi"):
return S.Zero
if a.state.assumptions0.get("below_fermi"):
return S.Zero
if b.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('a', above_fermi=True)))
if isinstance(b, AnnihilateFermion) and isinstance(a, CreateFermion):
if b.state.assumptions0.get("above_fermi"):
return S.Zero
if a.state.assumptions0.get("above_fermi"):
return S.Zero
if b.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('i', below_fermi=True)))
# vanish if 2xAnnihilator or 2xCreator
return S.Zero
else:
#not fermion operators
t = ( isinstance(i, FermionicOperator) for i in (a, b) )
raise ContractionAppliesOnlyToFermions(*t)
def _sqkey(sq_operator):
"""Generates key for canonical sorting of SQ operators."""
return sq_operator._sortkey()
def _sort_anticommuting_fermions(string1, key=_sqkey):
"""Sort fermionic operators to canonical order, assuming all pairs anticommute.
Uses a bidirectional bubble sort. Items in string1 are not referenced
so in principle they may be any comparable objects. The sorting depends on the
operators '>' and '=='.
If the Pauli principle is violated, an exception is raised.
Returns
=======
tuple (sorted_str, sign)
sorted_str: list containing the sorted operators
sign: int telling how many times the sign should be changed
(if sign==0 the string was already sorted)
"""
verified = False
sign = 0
rng = list(range(len(string1) - 1))
rev = list(range(len(string1) - 3, -1, -1))
keys = list(map(key, string1))
key_val = dict(list(zip(keys, string1)))
while not verified:
verified = True
for i in rng:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
if verified:
break
for i in rev:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
string1 = [ key_val[k] for k in keys ]
return (string1, sign)
def evaluate_deltas(e):
"""
We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.
If one index is repeated it is summed over and in effect substituted with
the other one. If both indices are repeated we substitute according to what
is the preferred index. this is determined by
KroneckerDelta.preferred_index and KroneckerDelta.killable_index.
In case there are no possible substitutions or if a substitution would
imply a loss of information, nothing is done.
In case an index appears in more than one KroneckerDelta, the resulting
substitution depends on the order of the factors. Since the ordering is platform
dependent, the literal expression resulting from this function may be hard to
predict.
Examples
========
We assume the following:
>>> from sympy import symbols, Function, Dummy, KroneckerDelta
>>> from sympy.physics.secondquant import evaluate_deltas
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> a,b = symbols('a b', above_fermi=True, cls=Dummy)
>>> p,q = symbols('p q', cls=Dummy)
>>> f = Function('f')
>>> t = Function('t')
The order of preference for these indices according to KroneckerDelta is
(a, b, i, j, p, q).
Trivial cases:
>>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j)
f(_j)
>>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q)
f(_q)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p)
f(_p)
More interesting cases:
>>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))
f(_i, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q))
f(_a, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q))
f(_p, _p)
Finally, here are some cases where nothing is done, because that would
imply a loss of information:
>>> evaluate_deltas(KroneckerDelta(i,p)*f(q))
f(_q)*KroneckerDelta(_i, _p)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(i))
f(_i)*KroneckerDelta(_i, _p)
"""
# We treat Deltas only in mul objects
# for general function objects we don't evaluate KroneckerDeltas in arguments,
# but here we hard code exceptions to this rule
accepted_functions = (
Add,
)
if isinstance(e, accepted_functions):
return e.func(*[evaluate_deltas(arg) for arg in e.args])
elif isinstance(e, Mul):
# find all occurrences of delta function and count each index present in
# expression.
deltas = []
indices = {}
for i in e.args:
for s in i.free_symbols:
if s in indices:
indices[s] += 1
else:
indices[s] = 0 # geek counting simplifies logic below
if isinstance(i, KroneckerDelta):
deltas.append(i)
for d in deltas:
# If we do something, and there are more deltas, we should recurse
# to treat the resulting expression properly
if d.killable_index.is_Symbol and indices[d.killable_index]:
e = e.subs(d.killable_index, d.preferred_index)
if len(deltas) > 1:
return evaluate_deltas(e)
elif (d.preferred_index.is_Symbol and indices[d.preferred_index]
and d.indices_contain_equal_information):
e = e.subs(d.preferred_index, d.killable_index)
if len(deltas) > 1:
return evaluate_deltas(e)
else:
pass
return e
# nothing to do, maybe we hit a Symbol or a number
else:
return e
def substitute_dummies(expr, new_indices=False, pretty_indices={}):
"""
Collect terms by substitution of dummy variables.
This routine allows simplification of Add expressions containing terms
which differ only due to dummy variables.
The idea is to substitute all dummy variables consistently depending on
the structure of the term. For each term, we obtain a sequence of all
dummy variables, where the order is determined by the index range, what
factors the index belongs to and its position in each factor. See
_get_ordered_dummies() for more information about the sorting of dummies.
The index sequence is then substituted consistently in each term.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import substitute_dummies
>>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> f = Function('f')
>>> expr = f(a,b) + f(c,d); expr
f(_a, _b) + f(_c, _d)
Since a, b, c and d are equivalent summation indices, the expression can be
simplified to a single term (for which the dummy indices are still summed over)
>>> substitute_dummies(expr)
2*f(_a, _b)
Controlling output:
By default the dummy symbols that are already present in the expression
will be reused in a different permutation. However, if new_indices=True,
new dummies will be generated and inserted. The keyword 'pretty_indices'
can be used to control this generation of new symbols.
By default the new dummies will be generated on the form i_1, i_2, a_1,
etc. If you supply a dictionary with key:value pairs in the form:
{ index_group: string_of_letters }
The letters will be used as labels for the new dummy symbols. The
index_groups must be one of 'above', 'below' or 'general'.
>>> expr = f(a,b,i,j)
>>> my_dummies = { 'above':'st', 'below':'uv' }
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_s, _t, _u, _v)
If we run out of letters, or if there is no keyword for some index_group
the default dummy generator will be used as a fallback:
>>> p,q = symbols('p q', cls=Dummy) # general indices
>>> expr = f(p,q)
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_p_0, _p_1)
"""
# setup the replacing dummies
if new_indices:
letters_above = pretty_indices.get('above', "")
letters_below = pretty_indices.get('below', "")
letters_general = pretty_indices.get('general', "")
len_above = len(letters_above)
len_below = len(letters_below)
len_general = len(letters_general)
def _i(number):
try:
return letters_below[number]
except IndexError:
return 'i_' + str(number - len_below)
def _a(number):
try:
return letters_above[number]
except IndexError:
return 'a_' + str(number - len_above)
def _p(number):
try:
return letters_general[number]
except IndexError:
return 'p_' + str(number - len_general)
aboves = []
belows = []
generals = []
dummies = expr.atoms(Dummy)
if not new_indices:
dummies = sorted(dummies, key=default_sort_key)
# generate lists with the dummies we will insert
a = i = p = 0
for d in dummies:
assum = d.assumptions0
if assum.get("above_fermi"):
if new_indices:
sym = _a(a)
a += 1
l1 = aboves
elif assum.get("below_fermi"):
if new_indices:
sym = _i(i)
i += 1
l1 = belows
else:
if new_indices:
sym = _p(p)
p += 1
l1 = generals
if new_indices:
l1.append(Dummy(sym, **assum))
else:
l1.append(d)
expr = expr.expand()
terms = Add.make_args(expr)
new_terms = []
for term in terms:
i = iter(belows)
a = iter(aboves)
p = iter(generals)
ordered = _get_ordered_dummies(term)
subsdict = {}
for d in ordered:
if d.assumptions0.get('below_fermi'):
subsdict[d] = next(i)
elif d.assumptions0.get('above_fermi'):
subsdict[d] = next(a)
else:
subsdict[d] = next(p)
subslist = []
final_subs = []
for k, v in subsdict.items():
if k == v:
continue
if v in subsdict:
# We check if the sequence of substitutions end quickly. In
# that case, we can avoid temporary symbols if we ensure the
# correct substitution order.
if subsdict[v] in subsdict:
# (x, y) -> (y, x), we need a temporary variable
x = Dummy('x')
subslist.append((k, x))
final_subs.append((x, v))
else:
# (x, y) -> (y, a), x->y must be done last
# but before temporary variables are resolved
final_subs.insert(0, (k, v))
else:
subslist.append((k, v))
subslist.extend(final_subs)
new_terms.append(term.subs(subslist))
return Add(*new_terms)
class KeyPrinter(StrPrinter):
"""Printer for which only equal objects are equal in print"""
def _print_Dummy(self, expr):
return "(%s_%i)" % (expr.name, expr.dummy_index)
def __kprint(expr):
p = KeyPrinter()
return p.doprint(expr)
def _get_ordered_dummies(mul, verbose=False):
"""Returns all dummies in the mul sorted in canonical order
The purpose of the canonical ordering is that dummies can be substituted
consistently across terms with the result that equivalent terms can be
simplified.
It is not possible to determine if two terms are equivalent based solely on
the dummy order. However, a consistent substitution guided by the ordered
dummies should lead to trivially (non-)equivalent terms, thereby revealing
the equivalence. This also means that if two terms have identical sequences of
dummies, the (non-)equivalence should already be apparent.
Strategy
--------
The canoncial order is given by an arbitrary sorting rule. A sort key
is determined for each dummy as a tuple that depends on all factors where
the index is present. The dummies are thereby sorted according to the
contraction structure of the term, instead of sorting based solely on the
dummy symbol itself.
After all dummies in the term has been assigned a key, we check for identical
keys, i.e. unorderable dummies. If any are found, we call a specialized
method, _determine_ambiguous(), that will determine a unique order based
on recursive calls to _get_ordered_dummies().
Key description
---------------
A high level description of the sort key:
1. Range of the dummy index
2. Relation to external (non-dummy) indices
3. Position of the index in the first factor
4. Position of the index in the second factor
The sort key is a tuple with the following components:
1. A single character indicating the range of the dummy (above, below
or general.)
2. A list of strings with fully masked string representations of all
factors where the dummy is present. By masked, we mean that dummies
are represented by a symbol to indicate either below fermi, above or
general. No other information is displayed about the dummies at
this point. The list is sorted stringwise.
3. An integer number indicating the position of the index, in the first
factor as sorted in 2.
4. An integer number indicating the position of the index, in the second
factor as sorted in 2.
If a factor is either of type AntiSymmetricTensor or SqOperator, the index
position in items 3 and 4 is indicated as 'upper' or 'lower' only.
(Creation operators are considered upper and annihilation operators lower.)
If the masked factors are identical, the two factors cannot be ordered
unambiguously in item 2. In this case, items 3, 4 are left out. If several
indices are contracted between the unorderable factors, it will be handled by
_determine_ambiguous()
"""
# setup dicts to avoid repeated calculations in key()
args = Mul.make_args(mul)
fac_dum = dict([ (fac, fac.atoms(Dummy)) for fac in args] )
fac_repr = dict([ (fac, __kprint(fac)) for fac in args] )
all_dums = set().union(*fac_dum.values())
mask = {}
for d in all_dums:
if d.assumptions0.get('below_fermi'):
mask[d] = '0'
elif d.assumptions0.get('above_fermi'):
mask[d] = '1'
else:
mask[d] = '2'
dum_repr = {d: __kprint(d) for d in all_dums}
def _key(d):
dumstruct = [ fac for fac in fac_dum if d in fac_dum[fac] ]
other_dums = set().union(*[fac_dum[fac] for fac in dumstruct])
fac = dumstruct[-1]
if other_dums is fac_dum[fac]:
other_dums = fac_dum[fac].copy()
other_dums.remove(d)
masked_facs = [ fac_repr[fac] for fac in dumstruct ]
for d2 in other_dums:
masked_facs = [ fac.replace(dum_repr[d2], mask[d2])
for fac in masked_facs ]
all_masked = [ fac.replace(dum_repr[d], mask[d])
for fac in masked_facs ]
masked_facs = dict(list(zip(dumstruct, masked_facs)))
# dummies for which the ordering cannot be determined
if has_dups(all_masked):
all_masked.sort()
return mask[d], tuple(all_masked) # positions are ambiguous
# sort factors according to fully masked strings
keydict = dict(list(zip(dumstruct, all_masked)))
dumstruct.sort(key=lambda x: keydict[x])
all_masked.sort()
pos_val = []
for fac in dumstruct:
if isinstance(fac, AntiSymmetricTensor):
if d in fac.upper:
pos_val.append('u')
if d in fac.lower:
pos_val.append('l')
elif isinstance(fac, Creator):
pos_val.append('u')
elif isinstance(fac, Annihilator):
pos_val.append('l')
elif isinstance(fac, NO):
ops = [ op for op in fac if op.has(d) ]
for op in ops:
if isinstance(op, Creator):
pos_val.append('u')
else:
pos_val.append('l')
else:
# fallback to position in string representation
facpos = -1
while 1:
facpos = masked_facs[fac].find(dum_repr[d], facpos + 1)
if facpos == -1:
break
pos_val.append(facpos)
return (mask[d], tuple(all_masked), pos_val[0], pos_val[-1])
dumkey = dict(list(zip(all_dums, list(map(_key, all_dums)))))
result = sorted(all_dums, key=lambda x: dumkey[x])
if has_dups(iter(dumkey.values())):
# We have ambiguities
unordered = defaultdict(set)
for d, k in dumkey.items():
unordered[k].add(d)
for k in [ k for k in unordered if len(unordered[k]) < 2 ]:
del unordered[k]
unordered = [ unordered[k] for k in sorted(unordered) ]
result = _determine_ambiguous(mul, result, unordered)
return result
def _determine_ambiguous(term, ordered, ambiguous_groups):
# We encountered a term for which the dummy substitution is ambiguous.
# This happens for terms with 2 or more contractions between factors that
# cannot be uniquely ordered independent of summation indices. For
# example:
#
# Sum(p, q) v^{p, .}_{q, .}v^{q, .}_{p, .}
#
# Assuming that the indices represented by . are dummies with the
# same range, the factors cannot be ordered, and there is no
# way to determine a consistent ordering of p and q.
#
# The strategy employed here, is to relabel all unambiguous dummies with
# non-dummy symbols and call _get_ordered_dummies again. This procedure is
# applied to the entire term so there is a possibility that
# _determine_ambiguous() is called again from a deeper recursion level.
# break recursion if there are no ordered dummies
all_ambiguous = set()
for dummies in ambiguous_groups:
all_ambiguous |= dummies
all_ordered = set(ordered) - all_ambiguous
if not all_ordered:
# FIXME: If we arrive here, there are no ordered dummies. A method to
# handle this needs to be implemented. In order to return something
# useful nevertheless, we choose arbitrarily the first dummy and
# determine the rest from this one. This method is dependent on the
# actual dummy labels which violates an assumption for the
# canonicalization procedure. A better implementation is needed.
group = [ d for d in ordered if d in ambiguous_groups[0] ]
d = group[0]
all_ordered.add(d)
ambiguous_groups[0].remove(d)
stored_counter = _symbol_factory._counter
subslist = []
for d in [ d for d in ordered if d in all_ordered ]:
nondum = _symbol_factory._next()
subslist.append((d, nondum))
newterm = term.subs(subslist)
neworder = _get_ordered_dummies(newterm)
_symbol_factory._set_counter(stored_counter)
# update ordered list with new information
for group in ambiguous_groups:
ordered_group = [ d for d in neworder if d in group ]
ordered_group.reverse()
result = []
for d in ordered:
if d in group:
result.append(ordered_group.pop())
else:
result.append(d)
ordered = result
return ordered
class _SymbolFactory(object):
def __init__(self, label):
self._counterVar = 0
self._label = label
def _set_counter(self, value):
"""
Sets counter to value.
"""
self._counterVar = value
@property
def _counter(self):
"""
What counter is currently at.
"""
return self._counterVar
def _next(self):
"""
Generates the next symbols and increments counter by 1.
"""
s = Symbol("%s%i" % (self._label, self._counterVar))
self._counterVar += 1
return s
_symbol_factory = _SymbolFactory('_]"]_') # most certainly a unique label
@cacheit
def _get_contractions(string1, keep_only_fully_contracted=False):
"""
Returns Add-object with contracted terms.
Uses recursion to find all contractions. -- Internal helper function --
Will find nonzero contractions in string1 between indices given in
leftrange and rightrange.
"""
# Should we store current level of contraction?
if keep_only_fully_contracted and string1:
result = []
else:
result = [NO(Mul(*string1))]
for i in range(len(string1) - 1):
for j in range(i + 1, len(string1)):
c = contraction(string1[i], string1[j])
if c:
sign = (j - i + 1) % 2
if sign:
coeff = S.NegativeOne*c
else:
coeff = c
#
# Call next level of recursion
# ============================
#
# We now need to find more contractions among operators
#
# oplist = string1[:i]+ string1[i+1:j] + string1[j+1:]
#
# To prevent overcounting, we don't allow contractions
# we have already encountered. i.e. contractions between
# string1[:i] <---> string1[i+1:j]
# and string1[:i] <---> string1[j+1:].
#
# This leaves the case:
oplist = string1[i + 1:j] + string1[j + 1:]
if oplist:
result.append(coeff*NO(
Mul(*string1[:i])*_get_contractions( oplist,
keep_only_fully_contracted=keep_only_fully_contracted)))
else:
result.append(coeff*NO( Mul(*string1[:i])))
if keep_only_fully_contracted:
break # next iteration over i leaves leftmost operator string1[0] uncontracted
return Add(*result)
def wicks(e, **kw_args):
"""
Returns the normal ordered equivalent of an expression using Wicks Theorem.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import wicks, F, Fd, NO
>>> p, q, r = symbols('p,q,r')
>>> wicks(Fd(p)*F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q) + NO(CreateFermion(p)*AnnihilateFermion(q))
By default, the expression is expanded:
>>> wicks(F(p)*(F(q)+F(r)))
NO(AnnihilateFermion(p)*AnnihilateFermion(q)) + NO(AnnihilateFermion(p)*AnnihilateFermion(r))
With the keyword 'keep_only_fully_contracted=True', only fully contracted
terms are returned.
By request, the result can be simplified in the following order:
-- KroneckerDelta functions are evaluated
-- Dummy variables are substituted consistently across terms
>>> p, q, r = symbols('p q r', cls=Dummy)
>>> wicks(Fd(p)*(F(q)+F(r)), keep_only_fully_contracted=True)
KroneckerDelta(_i, _q)*KroneckerDelta(_p, _q) + KroneckerDelta(_i, _r)*KroneckerDelta(_p, _r)
"""
if not e:
return S.Zero
opts = {
'simplify_kronecker_deltas': False,
'expand': True,
'simplify_dummies': False,
'keep_only_fully_contracted': False
}
opts.update(kw_args)
# check if we are already normally ordered
if isinstance(e, NO):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
elif isinstance(e, FermionicOperator):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
# break up any NO-objects, and evaluate commutators
e = e.doit(wicks=True)
# make sure we have only one term to consider
e = e.expand()
if isinstance(e, Add):
if opts['simplify_dummies']:
return substitute_dummies(Add(*[ wicks(term, **kw_args) for term in e.args]))
else:
return Add(*[ wicks(term, **kw_args) for term in e.args])
# For Mul-objects we can actually do something
if isinstance(e, Mul):
# we don't want to mess around with commuting part of Mul
# so we factorize it out before starting recursion
c_part = []
string1 = []
for factor in e.args:
if factor.is_commutative:
c_part.append(factor)
else:
string1.append(factor)
n = len(string1)
# catch trivial cases
if n == 0:
result = e
elif n == 1:
if opts['keep_only_fully_contracted']:
return S.Zero
else:
result = e
else: # non-trivial
if isinstance(string1[0], BosonicOperator):
raise NotImplementedError
string1 = tuple(string1)
# recursion over higher order contractions
result = _get_contractions(string1,
keep_only_fully_contracted=opts['keep_only_fully_contracted'] )
result = Mul(*c_part)*result
if opts['expand']:
result = result.expand()
if opts['simplify_kronecker_deltas']:
result = evaluate_deltas(result)
return result
# there was nothing to do
return e
class PermutationOperator(Expr):
"""
Represents the index permutation operator P(ij).
P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)
"""
is_commutative = True
def __new__(cls, i, j):
i, j = sorted(map(sympify, (i, j)), key=default_sort_key)
obj = Basic.__new__(cls, i, j)
return obj
def get_permuted(self, expr):
"""
Returns -expr with permuted indices.
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q = symbols('p,q')
>>> f = Function('f')
>>> PermutationOperator(p,q).get_permuted(f(p,q))
-f(q, p)
"""
i = self.args[0]
j = self.args[1]
if expr.has(i) and expr.has(j):
tmp = Dummy()
expr = expr.subs(i, tmp)
expr = expr.subs(j, i)
expr = expr.subs(tmp, j)
return S.NegativeOne*expr
else:
return expr
def _latex(self, printer):
return "P(%s%s)" % self.args
def simplify_index_permutations(expr, permutation_operators):
"""
Performs simplification by introducing PermutationOperators where appropriate.
Schematically:
[abij] - [abji] - [baij] + [baji] -> P(ab)*P(ij)*[abij]
permutation_operators is a list of PermutationOperators to consider.
If permutation_operators=[P(ab),P(ij)] we will try to introduce the
permutation operators P(ij) and P(ab) in the expression. If there are other
possible simplifications, we ignore them.
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import simplify_index_permutations
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q,r,s = symbols('p,q,r,s')
>>> f = Function('f')
>>> g = Function('g')
>>> expr = f(p)*g(q) - f(q)*g(p); expr
f(p)*g(q) - f(q)*g(p)
>>> simplify_index_permutations(expr,[PermutationOperator(p,q)])
f(p)*g(q)*PermutationOperator(p, q)
>>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)]
>>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r)
>>> simplify_index_permutations(expr,PermutList)
f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s)
"""
def _get_indices(expr, ind):
"""
Collects indices recursively in predictable order.
"""
result = []
for arg in expr.args:
if arg in ind:
result.append(arg)
else:
if arg.args:
result.extend(_get_indices(arg, ind))
return result
def _choose_one_to_keep(a, b, ind):
# we keep the one where indices in ind are in order ind[0] < ind[1]
return min(a, b, key=lambda x: default_sort_key(_get_indices(x, ind)))
expr = expr.expand()
if isinstance(expr, Add):
terms = set(expr.args)
for P in permutation_operators:
new_terms = set([])
on_hold = set([])
while terms:
term = terms.pop()
permuted = P.get_permuted(term)
if permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
# Some terms must get a second chance because the permuted
# term may already have canonical dummy ordering. Then
# substitute_dummies() does nothing. However, the other
# term, if it exists, will be able to match with us.
permuted1 = permuted
permuted = substitute_dummies(permuted)
if permuted1 == permuted:
on_hold.add(term)
elif permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
new_terms.add(term)
terms = new_terms | on_hold
return Add(*terms)
return expr
|
f7eefb0f8499f0f25355cd6c7fad50db36298de35bb5340ce7b121487effb7da | from sympy import tensorproduct, MutableDenseNDimArray
from sympy.tensor.tensor import (TensExpr, TensMul, TensorIndex)
class PartialDerivative(TensExpr):
"""
Partial derivative for tensor expressions.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead
>>> from sympy.tensor.toperators import PartialDerivative
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> A = TensorHead("A", [L])
>>> i, j = symbols("i j")
>>> expr = PartialDerivative(A(i), A(j))
>>> expr
PartialDerivative(A(i), A(j))
The ``PartialDerivative`` object behaves like a tensorial expression:
>>> expr.get_indices()
[i, -j]
Indices can be contracted:
>>> expr = PartialDerivative(A(i), A(i))
>>> expr
PartialDerivative(A(L_0), A(L_0))
>>> expr.get_indices()
[L_0, -L_0]
"""
def __new__(cls, expr, *variables):
# Flatten:
if isinstance(expr, PartialDerivative):
variables = expr.variables + variables
expr = expr.expr
# TODO: check that all variables have rank 1.
args, indices, free, dum = cls._contract_indices_for_derivative(
expr, variables)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._free = free
obj._dum = dum
return obj
@classmethod
def _contract_indices_for_derivative(cls, expr, variables):
variables_opposite_valence = []
for i in variables:
i_free_indices = i.get_free_indices()
variables_opposite_valence.append(i.xreplace({k: -k for k in i_free_indices}))
args, indices, free, dum = TensMul._tensMul_contract_indices(
[expr] + variables_opposite_valence, replace_indices=True)
for i in range(1, len(args)):
i_indices = args[i].get_free_indices()
args[i] = args[i].xreplace({k: -k for k in i_indices})
return args, indices, free, dum
def doit(self):
args, indices, free, dum = self._contract_indices_for_derivative(self.expr, self.variables)
obj = self.func(*args)
obj._indices = indices
obj._free = free
obj._dum = dum
return obj
def get_indices(self):
return self._indices
def get_free_indices(self):
free = sorted(self._free, key=lambda x: x[1])
return [i[0] for i in free]
@property
def expr(self):
return self.args[0]
@property
def variables(self):
return self.args[1:]
def _extract_data(self, replacement_dict):
from .array import derive_by_array, tensorcontraction
indices, array = self.expr._extract_data(replacement_dict)
for variable in self.variables:
var_indices, var_array = variable._extract_data(replacement_dict)
var_indices = [-i for i in var_indices]
coeff_array, var_array = zip(*[i.as_coeff_Mul() for i in var_array])
array = derive_by_array(array, var_array)
array = array.as_mutable() # type: MutableDenseNDimArray
varindex = var_indices[0] # type: TensorIndex
# Remove coefficients of base vector:
coeff_index = [0] + [slice(None) for i in range(len(indices))]
for i, coeff in enumerate(coeff_array):
coeff_index[0] = i
array[tuple(coeff_index)] /= coeff
if -varindex in indices:
pos = indices.index(-varindex)
array = tensorcontraction(array, (0, pos+1))
indices.pop(pos)
else:
indices.append(varindex)
return indices, array
|
e2544da270033f1f4d2b36bbbd9b0e8f1fc961441dee534a422b115b928be16e | """A module to manipulate symbolic objects with indices including tensors
"""
from .indexed import IndexedBase, Idx, Indexed
from .index_methods import get_contraction_structure, get_indices
from .array import (MutableDenseNDimArray, ImmutableDenseNDimArray,
MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray, tensorproduct,
tensorcontraction, derive_by_array, permutedims, Array, DenseNDimArray,
SparseNDimArray,)
__all__ = [
'IndexedBase', 'Idx', 'Indexed',
'get_contraction_structure', 'get_indices',
'MutableDenseNDimArray', 'ImmutableDenseNDimArray',
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray',
'tensorproduct', 'tensorcontraction', 'derive_by_array', 'permutedims',
'Array', 'DenseNDimArray', 'SparseNDimArray',
]
|
5fbc5975a114fcea11a227fee394594055c8fc47cb3081c66dc4c74bca306449 | """
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from __future__ import print_function, division
from collections import defaultdict
import operator
import itertools
from sympy import Rational, prod, Integer
from sympy.combinatorics import Permutation
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.compatibility import string_types, reduce, range, SYMPY_INTS
from sympy.core.containers import Tuple, Dict
from sympy.core.decorators import deprecated
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.matrices import eye
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.decorator import memoize_property
import warnings
@deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4")
def deprecate_data():
pass
@deprecated(useinstead=".substitute_indices()", issue=17515,
deprecated_since_version="1.5")
def deprecate_fun_eval():
pass
@deprecated(useinstead="tensor_heads()", issue=17108,
deprecated_since_version="1.5")
def deprecate_TensorType():
pass
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index.name
typ = index.tensor_index_type
contr = index.is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index.is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_name, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
return dummy_name_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self):
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({0}, {1}, {2})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
see ``canonicalize`` in ``tensor_can.py`` in combinatorics module
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# Converts the symmetry of the metric into msym from .canonicalize()
# method in the combinatorics module
def metric_symmetry_to_msym(metric):
if metric is None:
return None
sym = metric.symmetry
if sym == TensorSymmetry.fully_symmetric(2):
return 0
if sym == TensorSymmetry.fully_symmetric(-2):
return 1
return None
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(metric_symmetry_to_msym(typ.metric))
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h.comm == 0 or h.comm == 1:
comm = h.comm
else:
comm = TensorManager.get_comm(h.comm, h.comm)
v.append((h.symmetry.base, h.symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict = dict()
_substitutions_dict_tensmul = dict()
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
from .array.arrayop import Flatten
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, list(range(rank))))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(Flatten(last_data - sign_change*data_swapped)):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if not indextype.dim.is_number:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the transpose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, sympy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager(object):
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
get the commutation group number corresponding to ``i``
``i`` can be a symbol or a number or a string
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
set the commutation parameter ``c`` for commutation groups ``i, j``
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = TensorHead('A', [Lorentz])
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
set the commutation group numbers ``c`` for symbols ``i, j``
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
dummy_name : name of the head of dummy indices
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
metric_symmetry : integer that denotes metric symmetry or `None` for no metirc
metric_name : string with the name of the metric tensor
Attributes
==========
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The possible values of the `metric_symmetry` parameter are:
``1`` : metric tensor is fully symmetric
``0`` : metric tensor possesses no index symmetry
``-1`` : metric tensor is fully antisymmetric
``None``: there is no metric tensor (metric equals to `None`)
The metric is assumed to be symmetric by default. It can also be set
to a custom tensor by the `.set_metric()` method.
If there is a metric the metric is used to raise and lower indices.
In the case of non-symmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
From these it is easy to find:
``g(-a, b) = delta(-a, b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
For antisymmetric metrics there is also the following equality:
``g(a, -b) = -delta(a, -b)``
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
metric_symmetry=1, metric_name='metric', **kwargs):
if 'dummy_fmt' in kwargs:
SymPyDeprecationWarning(useinstead="dummy_name",
feature="dummy_fmt", issue=17517,
deprecated_since_version="1.5").warn()
dummy_name = kwargs.get('dummy_fmt')
if isinstance(name, string_types):
name = Symbol(name)
if dummy_name is None:
dummy_name = str(name)[0]
if isinstance(dummy_name, string_types):
dummy_name = Symbol(dummy_name)
if dim is None:
dim = Symbol("dim_" + dummy_name.name)
else:
dim = sympify(dim)
if eps_dim is None:
eps_dim = dim
else:
eps_dim = sympify(eps_dim)
metric_symmetry = sympify(metric_symmetry)
if isinstance(metric_name, string_types):
metric_name = Symbol(metric_name)
if 'metric' in kwargs:
SymPyDeprecationWarning(useinstead="metric_symmetry or .set_metric()",
feature="metric argument", issue=17517,
deprecated_since_version="1.5").warn()
metric = kwargs.get('metric')
if metric is not None:
if metric in (True, False, 0, 1):
metric_name = 'metric'
metric_antisym = metric
else:
metric_name = metric.name
metric_antisym = metric.antisym
if metric:
metric_symmetry = -1
else:
metric_symmetry = 1
obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
metric_symmetry, metric_name)
obj._autogenerated = []
return obj
@property
def name(self):
return self.args[0].name
@property
def dummy_name(self):
return self.args[1].name
@property
def dim(self):
return self.args[2]
@property
def eps_dim(self):
return self.args[3]
@memoize_property
def metric(self):
metric_symmetry = self.args[4]
metric_name = self.args[5]
if metric_symmetry is None:
return None
if metric_symmetry == 0:
symmetry = TensorSymmetry.no_symmetry(2)
elif metric_symmetry == 1:
symmetry = TensorSymmetry.fully_symmetric(2)
elif metric_symmetry == -1:
symmetry = TensorSymmetry.fully_symmetric(-2)
return TensorHead(metric_name, [self]*2, symmetry)
@memoize_property
def delta(self):
return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))
@memoize_property
def epsilon(self):
if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
return None
symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
return TensorHead('Eps', [self]*self.eps_dim, symmetry)
def set_metric(self, tensor):
self._metric = tensor
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
# Everything below this line is deprecated
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim.is_number:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim.is_number:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
@deprecated(useinstead=".delta", issue=17517,
deprecated_since_version="1.5")
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
delta = TensorHead('KD', [self]*2, sym2)
return delta
@deprecated(useinstead=".delta", issue=17517,
deprecated_since_version="1.5")
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
return epsilon
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents a tensor index
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensor_index_type : ``TensorIndexType`` of the index
is_up : flag for contravariant index (is_up=True by default)
Attributes
==========
``name``
``tensor_index_type``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name. Adding
``-`` to a covariant (is_up=False) index makes it contravariant.
Dummy indices have a name with head given by
``tensor_inde_type.dummy_name`` with underscore and a number.
Similar to ``symbols`` multiple contravariant indices can be created
at once using ``tensor_indices(s, typ)``, where ``s`` is a string
of names.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
>>> A = TensorHead('A', [Lorentz, Lorentz])
>>> A(mu, nu)
A(-mu, nu)
>>> A(-mu, -rho)
A(mu, -rho)
>>> A(mu, -mu)
A(-L_0, L_0)
"""
def __new__(cls, name, tensor_index_type, is_up=True):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{0}".format(len(tensor_index_type._autogenerated))
name_symbol = Symbol(name)
tensor_index_type._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)
@property
def name(self):
return self.args[0].name
@property
def tensor_index_type(self):
return self.args[1]
@property
def is_up(self):
return self.args[2]
def _print(self):
s = self.name
if not self.is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return ((self.tensor_index_type, self.name) <
(other.tensor_index_type, other.name))
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, string_types):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
index permutation). For the relevant terminology see ``tensor_can.py``
section of the combinatorics module.
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
(i.e., Bianchi identity), are not covered. See combinatorics module for
information on how to generate BSGS for a general index permutation group.
Simple symmetries can be generated using built-in methods.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor of rank 2
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
>>> T = TensorHead('T', [Lorentz]*2, sym)
Note, that the same can also be done using built-in TensorSymmetry methods
>>> sym2 = TensorSymmetry.fully_symmetric(2)
>>> sym == sym2
True
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
return Basic.__new__(cls, base, generators, **kw_args)
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.generators[0].size - 2
@classmethod
def fully_symmetric(cls, rank):
"""
Returns a fully symmetric (antisymmetric if ``rank``<0)
TensorSymmetry object for ``abs(rank)`` indices.
"""
if rank > 0:
bsgs = get_symmetric_group_sgs(rank, False)
elif rank < 0:
bsgs = get_symmetric_group_sgs(-rank, True)
elif rank == 0:
bsgs = ([], [Permutation(1)])
return TensorSymmetry(bsgs)
@classmethod
def direct_product(cls, *args):
"""
Returns a TensorSymmetry object that is being a direct product of
fully (anti-)symmetric index permutation groups.
Notes
=====
Some examples for different values of ``(*args)``:
``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting
``(1, 1, 1)`` tensor with 3 indices without any symmetry
"""
base, sgs = [], [Permutation(1)]
for arg in args:
if arg > 0:
bsgs2 = get_symmetric_group_sgs(arg, False)
elif arg < 0:
bsgs2 = get_symmetric_group_sgs(-arg, True)
else:
continue
base, sgs = bsgs_direct_product(base, sgs, *bsgs2)
return TensorSymmetry(base, sgs)
@classmethod
def riemann(cls):
"""
Returns a monotorem symmetry of the Riemann tensor
"""
return TensorSymmetry(riemann_bsgs)
@classmethod
def no_symmetry(cls, rank):
"""
TensorSymmetry object for ``rank`` indices with no symmetry
"""
return TensorSymmetry([], [Permutation(rank+1)])
@deprecated(useinstead="TensorSymmetry class constructor and methods", issue=17108,
deprecated_since_version="1.5")
def tensorsymmetry(*args):
"""
Returns a ``TensorSymmetry`` object. This method is deprecated, use
``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
class TensorType(Basic):
"""
Class of tensor types. Deprecated, use tensor_heads() instead.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
deprecate_TensorType()
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
``s`` name or string of names
``comm``: commutation group number
see ``_TensorManager.set_comm``
"""
if isinstance(s, string_types):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self.index_types, self.symmetry, comm)
else:
return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]
@deprecated(useinstead="TensorHead class constructor or tensor_heads()",
issue=17108, deprecated_since_version="1.5")
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s). This method is deprecated,
use TensorHead constructor or tensor_heads() instead.
Parameters
==========
name : name or sequence of names (as in ``symbols``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
sym = tensorsymmetry(*sym)
return TensorHead(name, typ, sym, comm)
class TensorHead(Basic):
"""
Tensor head of the tensor
Parameters
==========
name : name of the tensor
index_types : list of TensorIndexType
symmetry : TensorSymmetry of the tensor
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank`` : total number of indices
``symmetry``
``comm`` : commutation group
Notes
=====
Similar to ``symbols`` multiple TensorHeads can be created using
``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
is the string of names and ``sym`` is the monoterm tensor symmetry
(see ``tensorsymmetry``).
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
Define a fully antisymmetric tensor of rank 2:
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices
>>> from sympy import diag
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor:
>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, index_types, symmetry=None, comm=0):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
if symmetry is None:
symmetry = TensorSymmetry.no_symmetry(len(index_types))
else:
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry)
obj.comm = TensorManager.comm_symbols2i(comm)
return obj
@property
def name(self):
return self.args[0].name
@property
def index_types(self):
return list(self.args[1])
@property
def symmetry(self):
return self.args[2]
@property
def rank(self):
return len(self.index_types)
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self.comm, other.comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
tensor = Tensor(self, indices, **kw_args)
return tensor.doit()
# Everything below this line is deprecated
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power on abstract tensors.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.index_types]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (other * S.Half)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
deprecate_data()
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def tensor_heads(s, index_types, symmetry=None, comm=0):
"""
Returns a sequence of TensorHeads from a string `s`
"""
if isinstance(s, string_types):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
if len(thlist) == 1:
return thlist[0]
return thlist
class TensExpr(Expr):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __div__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rdiv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power without ndarray data.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (other * S.Half)
def __rpow__(self, other):
raise NotImplementedError
__truediv__ = __div__
__rtruediv__ = __rdiv__
def fun_eval(self, *index_tuples):
deprecate_fun_eval()
return self.substitute_indices(*index_tuples)
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy import Matrix
deprecate_data()
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import tensorcontraction, tensorproduct, permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# TODO: add possibility of metric after (spinors)
def contract_and_permute(metric, array, pos):
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(len(free_ind1)))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
# Raise indices:
for pos in pos2up:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = contract_and_permute(metric_inverse, array, pos)
# Lower indices:
for pos in pos2down:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
array = contract_and_permute(metric, array, pos)
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices=None):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read. The
original index order will be used if no value is passed.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import TensorHead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = TensorHead("A", [L])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
Since 'indices' is optional, we can also call replace_with_arrays by
this way if no specific index order is needed:
>>> A(i).replace_with_arrays({A(i): [1, 2]})
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]})
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
-3
Symmetrization of an array:
>>> H = TensorHead("H", [L, L])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl)
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array
indices = indices or []
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if
dim1.is_number else True for dim1, dim2 in zip(expected_shape,
array.shape)])):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
#permutation = self._get_indices_permutation(indices, ret_indices)
#if not hasattr(array, "rank"):
#return array
#if array.rank() == 0:
#array = array[()]
#return array
#array = permutedims(array, permutation)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(a) + q(a); t
p(a) + q(a)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
if not args:
return S.Zero
if len(args) == 1:
return args[0]
return Basic.__new__(cls, *args, **kw_args)
@memoize_property
def rank(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].rank
else:
return 0
@memoize_property
def free_args(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].free_args
else:
return []
@memoize_property
def free_indices(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].free_indices
else:
return set()
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
x = get_index_structure(t)
if not isinstance(t, TensExpr):
return ([], [], [])
return (t.components, x.free, x.dum)
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
indices0 = set([x[0] for x in get_index_structure(args[0]).free])
list_indices = [set([y[0] for y in get_index_structure(x).free]) for x in args[1:]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set([])
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set([]):
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other.coeff == 0:
return all(x.coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t.coeff == 0
else:
return all(x.coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensAdd(*new_args).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
>>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = TensorHead("A", [Lorentz, Lorentz])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
It is also possible to use symbols instead of inidices (appropriate indices
are then generated automatically).
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> A(x, mu)
A(x, mu)
>>> A(x, -x)
A(L_0, -L_0)
"""
is_commutative = False
def __new__(cls, tensor_head, indices, **kw_args):
is_canon_bp = kw_args.pop('is_canon_bp', False)
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj.free = obj._index_structure.free[:]
obj.dum = obj._index_structure.dum[:]
obj.ext_rank = obj._index_structure._ext_rank
obj.coeff = S.One
obj.nocoeff = obj
obj.component = tensor_head
obj.components = [tensor_head]
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj.is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@property
def head(self):
return self.args[0]
@property
def indices(self):
return self.args[1]
@property
def free_indices(self):
return set(self._index_structure.get_free_indices())
@property
def index_types(self):
return self.head.index_types
@property
def rank(self):
return len(self.free_indices)
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **kwargs):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=kw_args.pop('is_canon_bp', False)).doit()
def _get_free_indices_set(self):
return set([i[0] for i in self._index_structure.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return set(idx for i, idx in enumerate(self.args[1]) if i in dummy_pos)
def _get_indices_set(self):
return set(self.args[1].args)
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self.is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self):
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self):
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
indices = []
for index in self.indices:
for ind_old, ind_new in index_tuples:
if (index.name == ind_old.name and index.tensor_index_type ==
ind_old.tensor_index_type):
if index.is_up == ind_old.is_up:
indices.append(ind_new)
else:
indices.append(-ind_new)
break
else:
indices.append(index)
return self.head(*indices)
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
sign = sign*typ.dim
else:
# g(i, -i)
sign = sign*typ.dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
class TensMul(TensExpr, AssocOp):
"""
Product of tensors
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj.index_types = index_types[:]
obj._index_structure = index_structure
obj.free = index_structure.free[:]
obj.dum = index_structure.dum[:]
obj.free_indices = set([x[0] for x in obj.free])
obj.rank = len(obj.free)
obj.ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj.coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for _ in args]
#_index_order = all([_has_index_order(arg) for arg in args])
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_name_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [arg.xreplace(repl) for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **kwargs):
is_canon_bp = self._is_canon_bp
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj.ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj.coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return set([i[0] for i in self.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return set(idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos)
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self.coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self):
"""
Returns the list of free indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def split(self):
"""
Returns a list of tensors, whose product is ``self``
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if (self.coeff < 0) == True:
# expressions like "-A(a)"
sign = "-"
if self.coeff == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in [0, 1]:
continue
typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = dict()
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
is_canon_bp = kw_args.pop('is_canon_bp', False)
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensMul(*new_args).doit()
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
def get_free_indices(self):
return self._free_indices
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization. See ``tensor_can.py`` from the
combinatorics module for the details.
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = t_r*Rational(2, 3)
t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements ot the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
if not isinstance(t, TensExpr):
return t
return t.substitute_indices(*index_tuples)
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
cdfb700fa4b78c15c69e4846d02ac28e8ee0c171258f23adf82197618b98e498 | r"""Module that defines indexed objects
The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a
matrix element ``M[i, j]`` as in the following diagram::
1) The Indexed class represents the entire indexed object.
|
___|___
' '
M[i, j]
/ \__\______
| |
| |
| 2) The Idx class represents indices; each Idx can
| optionally contain information about its range.
|
3) IndexedBase represents the 'stem' of an indexed object, here `M`.
The stem used by itself is usually taken to represent the entire
array.
There can be any number of indices on an Indexed object. No
transformation properties are implemented in these Base objects, but
implicit contraction of repeated indices is supported.
Note that the support for complicated (i.e. non-atomic) integer
expressions as indices is limited. (This should be improved in
future releases.)
Examples
========
To express the above matrix element example you would write:
>>> from sympy import symbols, IndexedBase, Idx
>>> M = IndexedBase('M')
>>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]
Repeated indices in a product implies a summation, so to express a
matrix-vector product in terms of Indexed objects:
>>> x = IndexedBase('x')
>>> M[i, j]*x[j]
M[i, j]*x[j]
If the indexed objects will be converted to component based arrays, e.g.
with the code printers or the autowrap framework, you also need to provide
(symbolic or numerical) dimensions. This can be done by passing an
optional shape parameter to IndexedBase upon construction:
>>> dim1, dim2 = symbols('dim1 dim2', integer=True)
>>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
>>> A.shape
(dim1, 2*dim1, dim2)
>>> A[i, j, 3].shape
(dim1, 2*dim1, dim2)
If an IndexedBase object has no shape information, it is assumed that the
array is as large as the ranges of its indices:
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> M[i, j].shape
(m, n)
>>> M[i, j].ranges
[(0, m - 1), (0, n - 1)]
The above can be compared with the following:
>>> A[i, 2, j].shape
(dim1, 2*dim1, dim2)
>>> A[i, 2, j].ranges
[(0, m - 1), None, (0, n - 1)]
To analyze the structure of indexed expressions, you can use the methods
get_indices() and get_contraction_structure():
>>> from sympy.tensor import get_indices, get_contraction_structure
>>> get_indices(A[i, j, j])
({i}, {})
>>> get_contraction_structure(A[i, j, j])
{(j,): {A[i, j, j]}}
See the appropriate docstrings for a detailed explanation of the output.
"""
# TODO: (some ideas for improvement)
#
# o test and guarantee numpy compatibility
# - implement full support for broadcasting
# - strided arrays
#
# o more functions to analyze indexed expressions
# - identify standard constructs, e.g matrix-vector product in a subexpression
#
# o functions to generate component based arrays (numpy and sympy.Matrix)
# - generate a single array directly from Indexed
# - convert simple sub-expressions
#
# o sophisticated indexing (possibly in subclasses to preserve simplicity)
# - Idx with range smaller than dimension of Indexed
# - Idx with stepsize != 1
# - Idx with step determined by function call
from __future__ import print_function, division
from sympy.core.assumptions import StdFactKB
from sympy.core import Expr, Tuple, sympify, S
from sympy.core.symbol import _filter_assumptions, Symbol
from sympy.core.compatibility import (is_sequence, string_types, NotIterable,
Iterable)
from sympy.core.logic import fuzzy_bool
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
class IndexException(Exception):
pass
class Indexed(Expr):
"""Represents a mathematical object with indices.
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]
It is recommended that ``Indexed`` objects be created by indexing ``IndexedBase``:
``IndexedBase('A')[i, j]`` instead of ``Indexed(IndexedBase('A'), i, j)``.
>>> A = IndexedBase('A')
>>> a_ij = A[i, j] # Prefer this,
>>> b_ij = Indexed(A, i, j) # over this.
>>> a_ij == b_ij
True
"""
is_commutative = True
is_Indexed = True
is_symbol = True
is_Atom = True
def __new__(cls, base, *args, **kw_args):
from sympy.utilities.misc import filldedent
from sympy.tensor.array.ndim_array import NDimArray
from sympy.matrices.matrices import MatrixBase
if not args:
raise IndexException("Indexed needs at least one index.")
if isinstance(base, (string_types, Symbol)):
base = IndexedBase(base)
elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
raise TypeError(filldedent("""
The base can only be replaced with a string, Symbol,
IndexedBase or an object with a method for getting
items (i.e. an object with a `__getitem__` method).
"""))
args = list(map(sympify, args))
if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]):
if len(args) == 1:
return base[args[0]]
else:
return base[args]
obj = Expr.__new__(cls, base, *args, **kw_args)
try:
IndexedBase._set_assumptions(obj, base.assumptions0)
except AttributeError:
IndexedBase._set_assumptions(obj, {})
return obj
def _hashable_content(self):
return super(Indexed, self)._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def name(self):
return str(self)
@property
def _diff_wrt(self):
"""Allow derivatives with respect to an ``Indexed`` object."""
return True
def _eval_derivative(self, wrt):
from sympy.tensor.array.ndim_array import NDimArray
if isinstance(wrt, Indexed) and wrt.base == self.base:
if len(self.indices) != len(wrt.indices):
msg = "Different # of indices: d({!s})/d({!s})".format(self,
wrt)
raise IndexException(msg)
result = S.One
for index1, index2 in zip(self.indices, wrt.indices):
result *= KroneckerDelta(index1, index2)
return result
elif isinstance(self.base, NDimArray):
from sympy.tensor.array import derive_by_array
return Indexed(derive_by_array(self.base, wrt), *self.args[1:])
else:
if Tuple(self.indices).has(wrt):
return S.NaN
return S.Zero
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
@property
def base(self):
"""Returns the ``IndexedBase`` of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True
"""
return self.args[0]
@property
def indices(self):
"""
Returns the indices of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)
"""
return self.args[1:]
@property
def rank(self):
"""
Returns the rank of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True
"""
return len(self.args) - 1
@property
def shape(self):
"""Returns a list with dimensions of each index.
Dimensions is a property of the array, not of the indices. Still, if
the ``IndexedBase`` does not define a shape attribute, it is assumed
that the ranges of the indices correspond to the shape of the array.
>>> from sympy import IndexedBase, Idx, symbols
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)
"""
from sympy.utilities.misc import filldedent
if self.base.shape:
return self.base.shape
sizes = []
for i in self.indices:
upper = getattr(i, 'upper', None)
lower = getattr(i, 'lower', None)
if None in (upper, lower):
raise IndexException(filldedent("""
Range is not defined for all indices in: %s""" % self))
try:
size = upper - lower + 1
except TypeError:
raise IndexException(filldedent("""
Shape cannot be inferred from Idx with
undefined range: %s""" % self))
sizes.append(size)
return Tuple(*sizes)
@property
def ranges(self):
"""Returns a list of tuples with lower and upper range of each index.
If an index does not define the data members upper and lower, the
corresponding slot in the list contains ``None`` instead of a tuple.
Examples
========
>>> from sympy import Indexed,Idx, symbols
>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> x, y, z = symbols('x y z', integer=True)
>>> Indexed('A', x, y, z).ranges
[None, None, None]
"""
ranges = []
for i in self.indices:
sentinel = object()
upper = getattr(i, 'upper', sentinel)
lower = getattr(i, 'lower', sentinel)
if sentinel not in (upper, lower):
ranges.append(Tuple(lower, upper))
else:
ranges.append(None)
return ranges
def _sympystr(self, p):
indices = list(map(p.doprint, self.indices))
return "%s[%s]" % (p.doprint(self.base), ", ".join(indices))
@property
def free_symbols(self):
base_free_symbols = self.base.free_symbols
indices_free_symbols = {
fs for i in self.indices for fs in i.free_symbols}
if base_free_symbols:
return {self} | base_free_symbols | indices_free_symbols
else:
return indices_free_symbols
@property
def expr_free_symbols(self):
return {self}
class IndexedBase(Expr, NotIterable):
"""Represent the base or stem of an indexed object
The IndexedBase class represent an array that contains elements. The main purpose
of this class is to allow the convenient creation of objects of the Indexed
class. The __getitem__ method of IndexedBase returns an instance of
Indexed. Alone, without indices, the IndexedBase class can be used as a
notation for e.g. matrix equations, resembling what you could do with the
Symbol class. But, the IndexedBase class adds functionality that is not
available for Symbol instances:
- An IndexedBase object can optionally store shape information. This can
be used in to check array conformance and conditions for numpy
broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic
representation of array operations, using implicit summation of
repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent
to arrays, and is recognized as such for code generation and automatic
compilation and wrapping.
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> A = IndexedBase('A'); A
A
>>> type(A)
<class 'sympy.tensor.indexed.IndexedBase'>
When an IndexedBase object receives indices, it returns an array with named
axes, represented by an Indexed object:
>>> i, j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'sympy.tensor.indexed.Indexed'>
The IndexedBase constructor takes an optional shape argument. If given,
it overrides any shape information in the indices. (But not the index
ranges!)
>>> m, n, o, p = symbols('m n o p', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> A[i, j].shape
(m, n)
>>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)
Assumptions can be specified with keyword arguments the same way as for Symbol:
>>> A_real = IndexedBase('A', real=True)
>>> A_real.is_real
True
>>> A != A_real
True
Assumptions can also be inherited if a Symbol is used to initialize the IndexedBase:
>>> I = symbols('I', integer=True)
>>> C_inherit = IndexedBase(I)
>>> C_explicit = IndexedBase('I', integer=True)
>>> C_inherit == C_explicit
True
"""
is_commutative = True
is_symbol = True
is_Atom = True
@staticmethod
def _set_assumptions(obj, assumptions):
"""Set assumptions on obj, making sure to apply consistent values."""
tmp_asm_copy = assumptions.copy()
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
assumptions['commutative'] = is_commutative
obj._assumptions = StdFactKB(assumptions)
obj._assumptions._generator = tmp_asm_copy # Issue #8873
def __new__(cls, label, shape=None, **kw_args):
from sympy import MatrixBase, NDimArray
assumptions, kw_args = _filter_assumptions(kw_args)
if isinstance(label, string_types):
label = Symbol(label, **assumptions)
elif isinstance(label, Symbol):
assumptions = label._merge(assumptions)
elif isinstance(label, (MatrixBase, NDimArray)):
return label
elif isinstance(label, Iterable):
return _sympify(label)
else:
label = _sympify(label)
if is_sequence(shape):
shape = Tuple(*shape)
elif shape is not None:
shape = Tuple(shape)
offset = kw_args.pop('offset', S.Zero)
strides = kw_args.pop('strides', None)
if shape is not None:
obj = Expr.__new__(cls, label, shape)
else:
obj = Expr.__new__(cls, label)
obj._shape = shape
obj._offset = offset
obj._strides = strides
obj._name = str(label)
IndexedBase._set_assumptions(obj, assumptions)
return obj
@property
def name(self):
return self._name
def _hashable_content(self):
return super(IndexedBase, self)._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
def __getitem__(self, indices, **kw_args):
if is_sequence(indices):
# Special case needed because M[*my_tuple] is a syntax error.
if self.shape and len(self.shape) != len(indices):
raise IndexException("Rank mismatch.")
return Indexed(self, *indices, **kw_args)
else:
if self.shape and len(self.shape) != 1:
raise IndexException("Rank mismatch.")
return Indexed(self, indices, **kw_args)
@property
def shape(self):
"""Returns the shape of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase, Idx, Symbol
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).shape
(x, y)
Note: If the shape of the ``IndexedBase`` is specified, it will override
any shape information given by the indices.
>>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)
"""
return self._shape
@property
def strides(self):
"""Returns the strided scheme for the ``IndexedBase`` object.
Normally this is a tuple denoting the number of
steps to take in the respective dimension when traversing
an array. For code generation purposes strides='C' and
strides='F' can also be used.
strides='C' would mean that code printer would unroll
in row-major order and 'F' means unroll in column major
order.
"""
return self._strides
@property
def offset(self):
"""Returns the offset for the ``IndexedBase`` object.
This is the value added to the resulting index when the
2D Indexed object is unrolled to a 1D form. Used in code
generation.
Examples
==========
>>> from sympy.printing import ccode
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> l, m, n, o = symbols('l m n o', integer=True)
>>> A = IndexedBase('A', strides=(l, m, n), offset=o)
>>> i, j, k = map(Idx, 'ijk')
>>> ccode(A[i, j, k])
'A[l*i + m*j + n*k + o]'
"""
return self._offset
@property
def label(self):
"""Returns the label of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).label
A
"""
return self.args[0]
def _sympystr(self, p):
return p.doprint(self.label)
class Idx(Expr):
"""Represents an integer index as an ``Integer`` or integer expression.
There are a number of ways to create an ``Idx`` object. The constructor
takes two arguments:
``label``
An integer or a symbol that labels the index.
``range``
Optionally you can specify a range as either
* ``Symbol`` or integer: This is interpreted as a dimension. Lower and
upper bounds are set to ``0`` and ``range - 1``, respectively.
* ``tuple``: The two elements are interpreted as the lower and upper
bounds of the range, respectively.
Note: bounds of the range are assumed to be either integer or infinite (oo
and -oo are allowed to specify an unbounded range). If ``n`` is given as a
bound, then ``n.is_integer`` must not return false.
For convenience, if the label is given as a string it is automatically
converted to an integer symbol. (Note: this conversion is not done for
range or dimension arguments.)
Examples
========
>>> from sympy import IndexedBase, Idx, symbols, oo
>>> n, i, L, U = symbols('n i L U', integer=True)
If a string is given for the label an integer ``Symbol`` is created and the
bounds are both ``None``:
>>> idx = Idx('qwerty'); idx
qwerty
>>> idx.lower, idx.upper
(None, None)
Both upper and lower bounds can be specified:
>>> idx = Idx(i, (L, U)); idx
i
>>> idx.lower, idx.upper
(L, U)
When only a single bound is given it is interpreted as the dimension
and the lower bound defaults to 0:
>>> idx = Idx(i, n); idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4); idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo); idx.lower, idx.upper
(0, oo)
"""
is_integer = True
is_finite = True
is_real = True
is_symbol = True
is_Atom = True
_diff_wrt = True
def __new__(cls, label, range=None, **kw_args):
from sympy.utilities.misc import filldedent
if isinstance(label, string_types):
label = Symbol(label, integer=True)
label, range = list(map(sympify, (label, range)))
if label.is_Number:
if not label.is_integer:
raise TypeError("Index is not an integer number.")
return label
if not label.is_integer:
raise TypeError("Idx object requires an integer label.")
elif is_sequence(range):
if len(range) != 2:
raise ValueError(filldedent("""
Idx range tuple must have length 2, but got %s""" % len(range)))
for bound in range:
if (bound.is_integer is False and bound is not S.Infinity
and bound is not S.NegativeInfinity):
raise TypeError("Idx object requires integer bounds.")
args = label, Tuple(*range)
elif isinstance(range, Expr):
if not (range.is_integer or range is S.Infinity):
raise TypeError("Idx object requires an integer dimension.")
args = label, Tuple(0, range - 1)
elif range:
raise TypeError(filldedent("""
The range must be an ordered iterable or
integer SymPy expression."""))
else:
args = label,
obj = Expr.__new__(cls, *args, **kw_args)
obj._assumptions["finite"] = True
obj._assumptions["real"] = True
return obj
@property
def label(self):
"""Returns the label (Integer or integer expression) of the Idx object.
Examples
========
>>> from sympy import Idx, Symbol
>>> x = Symbol('x', integer=True)
>>> Idx(x).label
x
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1
"""
return self.args[0]
@property
def lower(self):
"""Returns the lower bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True
"""
try:
return self.args[1][0]
except IndexError:
return
@property
def upper(self):
"""Returns the upper bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True
"""
try:
return self.args[1][1]
except IndexError:
return
def _sympystr(self, p):
return p.doprint(self.label)
@property
def name(self):
return self.label.name if self.label.is_Symbol else str(self.label)
@property
def free_symbols(self):
return {self}
def __le__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.upper is not None and (self.upper <= other_lower) == True:
return True
if self.lower is not None and (self.lower > other_upper) == True:
return False
return super(Idx, self).__le__(other)
def __ge__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.lower is not None and (self.lower >= other_upper) == True:
return True
if self.upper is not None and (self.upper < other_lower) == True:
return False
return super(Idx, self).__ge__(other)
def __lt__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.upper is not None and (self.upper < other_lower) == True:
return True
if self.lower is not None and (self.lower >= other_upper) == True:
return False
return super(Idx, self).__lt__(other)
def __gt__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.lower is not None and (self.lower > other_upper) == True:
return True
if self.upper is not None and (self.upper <= other_lower) == True:
return False
return super(Idx, self).__gt__(other)
|
695d8d0b670efca983e90162c32e280b50fc7e6de916e3db6a24cc79698d59a9 | from .core import dispatch
from .dispatcher import (Dispatcher, halt_ordering, restart_ordering,
MDNotImplementedError)
__version__ = '0.4.9'
__all__ = [
'dispatch',
'Dispatcher', 'halt_ordering', 'restart_ordering', 'MDNotImplementedError',
]
|
30c66b95b85fbc5789a2ab08fcde1efcdb3a85d0e9cb2970181446959868f301 | """This module contains deprecations that could not stay in their original
module for some reason.
Such reasons include:
- Original module had to be removed.
- Adding @deprecated to a declaration caused an import cycle.
Since no modules in SymPy ever depend on deprecated code, SymPy always imports
this last, after all other modules have been imported.
"""
from sympy.deprecated.class_registry import C, ClassRegistry # noqa
|
005ab165923e75da3210dc93664aa739a8e05bdf3688fa1d46ad2b8c8acdbe3a | from .boolalg import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor, Implies,
Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map, true, false)
from .inference import satisfiable
__all__ = [
'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor',
'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic',
'bool_map', 'true', 'false',
'satisfiable',
]
|
8ad6be03f6914cfd6832f4e8467b1939c14fdea5abc0c79391123af5e039271a | """
Boolean algebra module for SymPy
"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import combinations, product
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.compatibility import (ordered, range, with_metaclass,
as_int)
from sympy.core.function import Application, Derivative
from sympy.core.numbers import Number
from sympy.core.operations import LatticeOp
from sympy.core.singleton import Singleton, S
from sympy.core.sympify import converter, _sympify, sympify
from sympy.utilities.iterables import sift, ibin
from sympy.utilities.misc import filldedent
def as_Boolean(e):
"""Like bool, return the Boolean value of an expression, e,
which can be any instance of Boolean or bool.
Examples
========
>>> from sympy import true, false, nan
>>> from sympy.logic.boolalg import as_Boolean
>>> from sympy.abc import x
>>> as_Boolean(1) is true
True
>>> as_Boolean(x)
x
>>> as_Boolean(2)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `2`.
"""
from sympy.core.symbol import Symbol
if e == True:
return S.true
if e == False:
return S.false
if isinstance(e, Symbol):
z = e.is_zero
if z is None:
return e
return S.false if z else S.true
if isinstance(e, Boolean):
return e
raise TypeError('expecting bool or Boolean, not `%s`.' % e)
class Boolean(Basic):
"""A boolean object is an object for which logic operations make sense."""
__slots__ = []
def __and__(self, other):
"""Overloading for & operator"""
return And(self, other)
__rand__ = __and__
def __or__(self, other):
"""Overloading for |"""
return Or(self, other)
__ror__ = __or__
def __invert__(self):
"""Overloading for ~"""
return Not(self)
def __rshift__(self, other):
"""Overloading for >>"""
return Implies(self, other)
def __lshift__(self, other):
"""Overloading for <<"""
return Implies(other, self)
__rrshift__ = __lshift__
__rlshift__ = __rshift__
def __xor__(self, other):
return Xor(self, other)
__rxor__ = __xor__
def equals(self, other):
"""
Returns True if the given formulas have the same truth table.
For two formulas to be equal they must have the same literals.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import And, Or, Not
>>> (A >> B).equals(~B >> ~A)
True
>>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C)))
False
>>> Not(And(A, Not(A))).equals(Or(B, Not(B)))
False
"""
from sympy.logic.inference import satisfiable
from sympy.core.relational import Relational
if self.has(Relational) or other.has(Relational):
raise NotImplementedError('handling of relationals')
return self.atoms() == other.atoms() and \
not satisfiable(Not(Equivalent(self, other)))
def to_nnf(self, simplify=True):
# override where necessary
return self
def as_set(self):
"""
Rewrites Boolean expression in terms of real sets.
Examples
========
>>> from sympy import Symbol, Eq, Or, And
>>> x = Symbol('x', real=True)
>>> Eq(x, 0).as_set()
FiniteSet(0)
>>> (x > 0).as_set()
Interval.open(0, oo)
>>> And(-2 < x, x < 2).as_set()
Interval.open(-2, 2)
>>> Or(x < -2, 2 < x).as_set()
Union(Interval.open(-oo, -2), Interval.open(2, oo))
"""
from sympy.calculus.util import periodicity
from sympy.core.relational import Relational
free = self.free_symbols
if len(free) == 1:
x = free.pop()
reps = {}
for r in self.atoms(Relational):
if periodicity(r, x) not in (0, None):
s = r._eval_as_set()
if s in (S.EmptySet, S.UniversalSet, S.Reals):
reps[r] = s.as_relational(x)
continue
raise NotImplementedError(filldedent('''
as_set is not implemented for relationals
with periodic solutions
'''))
return self.subs(reps)._eval_as_set()
else:
raise NotImplementedError("Sorry, as_set has not yet been"
" implemented for multivariate"
" expressions")
@property
def binary_symbols(self):
from sympy.core.relational import Eq, Ne
return set().union(*[i.binary_symbols for i in self.args
if i.is_Boolean or i.is_Symbol
or isinstance(i, (Eq, Ne))])
class BooleanAtom(Boolean):
"""
Base class of BooleanTrue and BooleanFalse.
"""
is_Boolean = True
is_Atom = True
_op_priority = 11 # higher than Expr
def simplify(self, *a, **kw):
return self
def expand(self, *a, **kw):
return self
@property
def canonical(self):
return self
def _noop(self, other=None):
raise TypeError('BooleanAtom not allowed in this context.')
__add__ = _noop
__radd__ = _noop
__sub__ = _noop
__rsub__ = _noop
__mul__ = _noop
__rmul__ = _noop
__pow__ = _noop
__rpow__ = _noop
__rdiv__ = _noop
__truediv__ = _noop
__div__ = _noop
__rtruediv__ = _noop
__mod__ = _noop
__rmod__ = _noop
_eval_power = _noop
# /// drop when Py2 is no longer supported
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__gt__ = __lt__
__ge__ = __lt__
# \\\
class BooleanTrue(with_metaclass(Singleton, BooleanAtom)):
"""
SymPy version of True, a singleton that can be accessed via S.true.
This is the SymPy version of True, for use in the logic module. The
primary advantage of using true instead of True is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
True they act bitwise on 1. Functions in the logic module will return this
class when they evaluate to true.
Notes
=====
There is liable to be some confusion as to when ``True`` should
be used and when ``S.true`` should be used in various contexts
throughout SymPy. An important thing to remember is that
``sympify(True)`` returns ``S.true``. This means that for the most
part, you can just use ``True`` and it will automatically be converted
to ``S.true`` when necessary, similar to how you can generally use 1
instead of ``S.One``.
The rule of thumb is:
"If the boolean in question can be replaced by an arbitrary symbolic
``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``.
Otherwise, use ``True``"
In other words, use ``S.true`` only on those contexts where the
boolean is being used as a symbolic representation of truth.
For example, if the object ends up in the ``.args`` of any expression,
then it must necessarily be ``S.true`` instead of ``True``, as
elements of ``.args`` must be ``Basic``. On the other hand,
``==`` is not a symbolic operation in SymPy, since it always returns
``True`` or ``False``, and does so in terms of structural equality
rather than mathematical, so it should return ``True``. The assumptions
system should use ``True`` and ``False``. Aside from not satisfying
the above rule of thumb, the assumptions system uses a three-valued logic
(``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false``
represent a two-valued logic. When in doubt, use ``True``.
"``S.true == True is True``."
While "``S.true is True``" is ``False``, "``S.true == True``"
is ``True``, so if there is any doubt over whether a function or
expression will return ``S.true`` or ``True``, just use ``==``
instead of ``is`` to do the comparison, and it will work in either
case. Finally, for boolean flags, it's better to just use ``if x``
instead of ``if x is True``. To quote PEP 8:
Don't compare boolean values to ``True`` or ``False``
using ``==``.
* Yes: ``if greeting:``
* No: ``if greeting == True:``
* Worse: ``if greeting is True:``
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(True)
True
>>> _ is True, _ is true
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanFalse
"""
def __nonzero__(self):
return True
__bool__ = __nonzero__
def __hash__(self):
return hash(True)
@property
def negated(self):
return S.false
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import true
>>> true.as_set()
UniversalSet
"""
return S.UniversalSet
class BooleanFalse(with_metaclass(Singleton, BooleanAtom)):
"""
SymPy version of False, a singleton that can be accessed via S.false.
This is the SymPy version of False, for use in the logic module. The
primary advantage of using false instead of False is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
False they act bitwise on 0. Functions in the logic module will return this
class when they evaluate to false.
Notes
======
See note in :py:class`sympy.logic.boolalg.BooleanTrue`
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(False)
False
>>> _ is False, _ is false
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for false but a
bitwise result for False
>>> ~false, ~False
(True, -1)
>>> false >> false, False >> False
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanTrue
"""
def __nonzero__(self):
return False
__bool__ = __nonzero__
def __hash__(self):
return hash(False)
@property
def negated(self):
return S.true
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import false
>>> false.as_set()
EmptySet
"""
return S.EmptySet
true = BooleanTrue()
false = BooleanFalse()
# We want S.true and S.false to work, rather than S.BooleanTrue and
# S.BooleanFalse, but making the class and instance names the same causes some
# major issues (like the inability to import the class directly from this
# file).
S.true = true
S.false = false
converter[bool] = lambda x: S.true if x else S.false
class BooleanFunction(Application, Boolean):
"""Boolean function is a function that lives in a boolean space
It is used as base class for And, Or, Not, etc.
"""
is_Boolean = True
def _eval_simplify(self, **kwargs):
rv = self.func(*[
a._eval_simplify(**kwargs) for a in self.args])
return simplify_logic(rv)
def simplify(self, **kwargs):
from sympy.simplify.simplify import simplify
return simplify(self, **kwargs)
# /// drop when Py2 is no longer supported
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__ge__ = __lt__
__gt__ = __lt__
# \\\
@classmethod
def binary_check_and_simplify(self, *args):
from sympy.core.relational import Relational, Eq, Ne
args = [as_Boolean(i) for i in args]
bin = set().union(*[i.binary_symbols for i in args])
rel = set().union(*[i.atoms(Relational) for i in args])
reps = {}
for x in bin:
for r in rel:
if x in bin and x in r.free_symbols:
if isinstance(r, (Eq, Ne)):
if not (
S.true in r.args or
S.false in r.args):
reps[r] = S.false
else:
raise TypeError(filldedent('''
Incompatible use of binary symbol `%s` as a
real variable in `%s`
''' % (x, r)))
return [i.subs(reps) for i in args]
def to_nnf(self, simplify=True):
return self._to_nnf(*self.args, simplify=simplify)
@classmethod
def _to_nnf(cls, *args, **kwargs):
simplify = kwargs.get('simplify', True)
argset = set([])
for arg in args:
if not is_literal(arg):
arg = arg.to_nnf(simplify)
if simplify:
if isinstance(arg, cls):
arg = arg.args
else:
arg = (arg,)
for a in arg:
if Not(a) in argset:
return cls.zero
argset.add(a)
else:
argset.add(arg)
return cls(*argset)
# the diff method below is copied from Expr class
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
def _eval_derivative(self, x):
from sympy.core.relational import Eq
from sympy.functions.elementary.piecewise import Piecewise
if x in self.binary_symbols:
return Piecewise(
(0, Eq(self.subs(x, 0), self.subs(x, 1))),
(1, True))
elif x in self.free_symbols:
# not implemented, see https://www.encyclopediaofmath.org/
# index.php/Boolean_differential_calculus
pass
else:
return S.Zero
def _apply_patternbased_simplification(self, rv, patterns, measure,
dominatingvalue,
replacementvalue=None):
"""
Replace patterns of Relational
Parameters
==========
rv : Expr
Boolean expression
patterns : tuple
Tuple of tuples, with (pattern to simplify, simplified pattern)
measure : function
Simplification measure
dominatingvalue : boolean or None
The dominating value for the function of consideration.
For example, for And S.false is dominating. As soon as one
expression is S.false in And, the whole expression is S.false.
replacementvalue : boolean or None, optional
The resulting value for the whole expression if one argument
evaluates to dominatingvalue.
For example, for Nand S.false is dominating, but in this case
the resulting value is S.true. Default is None. If replacementvalue
is None and dominatingvalue is not None,
replacementvalue = dominatingvalue
"""
from sympy.core.relational import Relational, _canonical
if replacementvalue is None and dominatingvalue is not None:
replacementvalue = dominatingvalue
# Use replacement patterns for Relationals
changed = True
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if len(Rel) <= 1:
return rv
Rel, nonRealRel = sift(Rel, lambda i: all(s.is_real is not False
for s in i.free_symbols),
binary=True)
Rel = [i.canonical for i in Rel]
while changed and len(Rel) >= 2:
changed = False
# Sort based on ordered
Rel = list(ordered(Rel))
# Create a list of possible replacements
results = []
# Try all combinations
for ((i, pi), (j, pj)) in combinations(enumerate(Rel), 2):
for k, (pattern, simp) in enumerate(patterns):
res = []
# use SymPy matching
oldexpr = rv.func(pi, pj)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing first relational
# This and the rest should not be required with a better
# canonical
oldexpr = rv.func(pi.reversed, pj)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing second relational
oldexpr = rv.func(pi, pj.reversed)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
# Try reversing both relationals
oldexpr = rv.func(pi.reversed, pj.reversed)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
if res:
for tmpres, oldexpr in res:
# we have a matching, compute replacement
np = simp.subs(tmpres)
if np == dominatingvalue:
# if dominatingvalue, the whole expression
# will be replacementvalue
return replacementvalue
# add replacement
if not isinstance(np, ITE):
# We only want to use ITE replacements if
# they simplify to a relational
costsaving = measure(oldexpr) - measure(np)
if costsaving > 0:
results.append((costsaving, (i, j, np)))
if results:
# Sort results based on complexity
results = list(reversed(sorted(results,
key=lambda pair: pair[0])))
# Replace the one providing most simplification
cost, replacement = results[0]
i, j, newrel = replacement
# Remove the old relationals
del Rel[j]
del Rel[i]
if dominatingvalue is None or newrel != ~dominatingvalue:
# Insert the new one (no need to insert a value that will
# not affect the result)
Rel.append(newrel)
# We did change something so try again
changed = True
rv = rv.func(*([_canonical(i) for i in ordered(Rel)]
+ nonRel + nonRealRel))
return rv
class And(LatticeOp, BooleanFunction):
"""
Logical AND function.
It evaluates its arguments in order, giving False immediately
if any of them are False, and True if they are all True.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import And
>>> x & y
x & y
Notes
=====
The ``&`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
and. Hence, ``And(a, b)`` and ``a & b`` will return different things if
``a`` and ``b`` are integers.
>>> And(x, y).subs(x, 1)
y
"""
zero = false
identity = true
nargs = None
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in reversed(args):
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = c.negated.canonical
if any(r == nc for r in rel):
return [S.false]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, And)
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == False:
return S.false
elif i != True:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
return self.func(*args)
def _eval_simplify(self, **kwargs):
from sympy.core.relational import Equality, Relational
from sympy.solvers.solveset import linear_coeffs
# standard simplify
rv = super(And, self)._eval_simplify(**kwargs)
if not isinstance(rv, And):
return rv
# simplify args that are equalities involving
# symbols so x == 0 & x == y -> x==0 & y == 0
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if not Rel:
return rv
eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True)
if not eqs:
return rv
measure, ratio = kwargs['measure'], kwargs['ratio']
reps = {}
sifted = {}
if eqs:
# group by length of free symbols
sifted = sift(ordered([
(i.free_symbols, i) for i in eqs]),
lambda x: len(x[0]))
eqs = []
while 1 in sifted:
for free, e in sifted.pop(1):
x = free.pop()
if e.lhs != x or x in e.rhs.free_symbols:
try:
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
enew = e.func(x, -b/m)
if measure(enew) <= ratio*measure(e):
e = enew
else:
eqs.append(e)
continue
except ValueError:
pass
if x in reps:
eqs.append(e.func(e.rhs, reps[x]))
else:
reps[x] = e.rhs
eqs.append(e)
resifted = defaultdict(list)
for k in sifted:
for f, e in sifted[k]:
e = e.subs(reps)
f = e.free_symbols
resifted[len(f)].append((f, e))
sifted = resifted
for k in sifted:
eqs.extend([e for f, e in sifted[k]])
other = [ei.subs(reps) for ei in other]
rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel))
patterns = simplify_patterns_and()
return self._apply_patternbased_simplification(rv, patterns,
measure, False)
def _eval_as_set(self):
from sympy.sets.sets import Intersection
return Intersection(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nor(self, *args, **kwargs):
return Nor(*[Not(arg) for arg in self.args])
class Or(LatticeOp, BooleanFunction):
"""
Logical OR function
It evaluates its arguments in order, giving True immediately
if any of them are True, and False if they are all False.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import Or
>>> x | y
x | y
Notes
=====
The ``|`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if
``a`` and ``b`` are integers.
>>> Or(x, y).subs(x, 0)
y
"""
zero = true
identity = false
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in args:
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = c.negated.canonical
if any(r == nc for r in rel):
return [S.true]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, Or)
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == True:
return S.true
elif i != False:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
return self.func(*args)
def _eval_as_set(self):
from sympy.sets.sets import Union
return Union(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nand(self, *args, **kwargs):
return Nand(*[Not(arg) for arg in self.args])
def _eval_simplify(self, **kwargs):
# standard simplify
rv = super(Or, self)._eval_simplify(**kwargs)
if not isinstance(rv, Or):
return rv
patterns = simplify_patterns_or()
return self._apply_patternbased_simplification(rv, patterns,
kwargs['measure'], S.true)
class Not(BooleanFunction):
"""
Logical Not function (negation)
Returns True if the statement is False
Returns False if the statement is True
Examples
========
>>> from sympy.logic.boolalg import Not, And, Or
>>> from sympy.abc import x, A, B
>>> Not(True)
False
>>> Not(False)
True
>>> Not(And(True, False))
True
>>> Not(Or(True, False))
False
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~x
>>> Not(And(Or(A, B), Or(~A, ~B)))
~((A | B) & (~A | ~B))
Notes
=====
- The ``~`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is
an integer. Furthermore, since bools in Python subclass from ``int``,
``~True`` is the same as ``~1`` which is ``-2``, which has a boolean
value of True. To avoid this issue, use the SymPy boolean types
``true`` and ``false``.
>>> from sympy import true
>>> ~True
-2
>>> ~true
False
"""
is_Not = True
@classmethod
def eval(cls, arg):
from sympy import (
Equality, GreaterThan, LessThan,
StrictGreaterThan, StrictLessThan, Unequality)
if isinstance(arg, Number) or arg in (True, False):
return false if arg else true
if arg.is_Not:
return arg.args[0]
# Simplify Relational objects.
if isinstance(arg, Equality):
return Unequality(*arg.args)
if isinstance(arg, Unequality):
return Equality(*arg.args)
if isinstance(arg, StrictLessThan):
return GreaterThan(*arg.args)
if isinstance(arg, StrictGreaterThan):
return LessThan(*arg.args)
if isinstance(arg, LessThan):
return StrictGreaterThan(*arg.args)
if isinstance(arg, GreaterThan):
return StrictLessThan(*arg.args)
def _eval_as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import Not, Symbol
>>> x = Symbol('x')
>>> Not(x > 0).as_set()
Interval(-oo, 0)
"""
return self.args[0].as_set().complement(S.Reals)
def to_nnf(self, simplify=True):
if is_literal(self):
return self
expr = self.args[0]
func, args = expr.func, expr.args
if func == And:
return Or._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Or:
return And._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Implies:
a, b = args
return And._to_nnf(a, ~b, simplify=simplify)
if func == Equivalent:
return And._to_nnf(Or(*args), Or(*[~arg for arg in args]),
simplify=simplify)
if func == Xor:
result = []
for i in range(1, len(args)+1, 2):
for neg in combinations(args, i):
clause = [~s if s in neg else s for s in args]
result.append(Or(*clause))
return And._to_nnf(*result, simplify=simplify)
if func == ITE:
a, b, c = args
return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify)
raise ValueError("Illegal operator %s in expression" % func)
class Xor(BooleanFunction):
"""
Logical XOR (exclusive OR) function.
Returns True if an odd number of the arguments are True and the rest are
False.
Returns False if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xor(True, False)
True
>>> Xor(True, True)
False
>>> Xor(True, False, True, True, False)
True
>>> Xor(True, False, True, False)
False
>>> x ^ y
x ^ y
Notes
=====
The ``^`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise xor. In
particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and
``b`` are integers.
>>> Xor(x, y).subs(y, 0)
x
"""
def __new__(cls, *args, **kwargs):
argset = set([])
obj = super(Xor, cls).__new__(cls, *args, **kwargs)
for arg in obj._args:
if isinstance(arg, Number) or arg in (True, False):
if arg:
arg = true
else:
continue
if isinstance(arg, Xor):
for a in arg.args:
argset.remove(a) if a in argset else argset.add(a)
elif arg in argset:
argset.remove(arg)
else:
argset.add(arg)
rel = [(r, r.canonical, r.negated.canonical)
for r in argset if r.is_Relational]
odd = False # is number of complimentary pairs odd? start 0 -> False
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
odd = ~odd
break
elif cj == c:
break
else:
continue
remove.append((r, rj))
if odd:
argset.remove(true) if true in argset else argset.add(true)
for a, b in remove:
argset.remove(a)
argset.remove(b)
if len(argset) == 0:
return false
elif len(argset) == 1:
return argset.pop()
elif True in argset:
argset.remove(True)
return Not(Xor(*argset))
else:
obj._args = tuple(ordered(argset))
obj._argset = frozenset(argset)
return obj
@property
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for i in range(0, len(self.args)+1, 2):
for neg in combinations(self.args, i):
clause = [~s if s in neg else s for s in self.args]
args.append(Or(*clause))
return And._to_nnf(*args, simplify=simplify)
def _eval_rewrite_as_Or(self, *args, **kwargs):
a = self.args
return Or(*[_convert_to_varsSOP(x, self.args)
for x in _get_odd_parity_terms(len(a))])
def _eval_rewrite_as_And(self, *args, **kwargs):
a = self.args
return And(*[_convert_to_varsPOS(x, self.args)
for x in _get_even_parity_terms(len(a))])
def _eval_simplify(self, **kwargs):
# as standard simplify uses simplify_logic which writes things as
# And and Or, we only simplify the partial expressions before using
# patterns
rv = self.func(*[a._eval_simplify(**kwargs) for a in self.args])
if not isinstance(rv, Xor): # This shouldn't really happen here
return rv
patterns = simplify_patterns_xor()
return self._apply_patternbased_simplification(rv, patterns,
kwargs['measure'], None)
class Nand(BooleanFunction):
"""
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any
of them are False, and False if they are all True.
Returns True if any of the arguments are False
Returns False if all arguments are True
Examples
========
>>> from sympy.logic.boolalg import Nand
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nand(False, True)
True
>>> Nand(True, True)
False
>>> Nand(x, y)
~(x & y)
"""
@classmethod
def eval(cls, *args):
return Not(And(*args))
class Nor(BooleanFunction):
"""
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any
of them are True, and True if they are all False.
Returns False if any argument is True
Returns True if all arguments are False
Examples
========
>>> from sympy.logic.boolalg import Nor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nor(True, False)
False
>>> Nor(True, True)
False
>>> Nor(False, True)
False
>>> Nor(False, False)
True
>>> Nor(x, y)
~(x | y)
"""
@classmethod
def eval(cls, *args):
return Not(Or(*args))
class Xnor(BooleanFunction):
"""
Logical XNOR function.
Returns False if an odd number of the arguments are True and the rest are
False.
Returns True if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xnor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xnor(True, False)
False
>>> Xnor(True, True)
True
>>> Xnor(True, False, True, True, False)
False
>>> Xnor(True, False, True, False)
True
"""
@classmethod
def eval(cls, *args):
return Not(Xor(*args))
class Implies(BooleanFunction):
"""
Logical implication.
A implies B is equivalent to !A v B
Accepts two Boolean arguments; A and B.
Returns False if A is True and B is False
Returns True otherwise.
Examples
========
>>> from sympy.logic.boolalg import Implies
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Implies(True, False)
False
>>> Implies(False, False)
True
>>> Implies(True, True)
True
>>> Implies(False, True)
True
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
Notes
=====
The ``>>`` and ``<<`` operators are provided as a convenience, but note
that their use here is different from their normal use in Python, which is
bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different
things if ``a`` and ``b`` are integers. In particular, since Python
considers ``True`` and ``False`` to be integers, ``True >> True`` will be
the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To
avoid this issue, use the SymPy objects ``true`` and ``false``.
>>> from sympy import true, false
>>> True >> False
1
>>> true >> false
False
"""
@classmethod
def eval(cls, *args):
try:
newargs = []
for x in args:
if isinstance(x, Number) or x in (0, 1):
newargs.append(True if x else False)
else:
newargs.append(x)
A, B = newargs
except ValueError:
raise ValueError(
"%d operand(s) used for an Implies "
"(pairs are required): %s" % (len(args), str(args)))
if A == True or A == False or B == True or B == False:
return Or(Not(A), B)
elif A == B:
return S.true
elif A.is_Relational and B.is_Relational:
if A.canonical == B.canonical:
return S.true
if A.negated.canonical == B.canonical:
return B
else:
return Basic.__new__(cls, *args)
def to_nnf(self, simplify=True):
a, b = self.args
return Or._to_nnf(~a, b, simplify=simplify)
class Equivalent(BooleanFunction):
"""
Equivalence relation.
Equivalent(A, B) is True iff A and B are both True or both False
Returns True if all of the arguments are logically equivalent.
Returns False otherwise.
Examples
========
>>> from sympy.logic.boolalg import Equivalent, And
>>> from sympy.abc import x, y
>>> Equivalent(False, False, False)
True
>>> Equivalent(True, False, False)
False
>>> Equivalent(x, And(x, True))
True
"""
def __new__(cls, *args, **options):
from sympy.core.relational import Relational
args = [_sympify(arg) for arg in args]
argset = set(args)
for x in args:
if isinstance(x, Number) or x in [True, False]: # Includes 0, 1
argset.discard(x)
argset.add(True if x else False)
rel = []
for r in argset:
if isinstance(r, Relational):
rel.append((r, r.canonical, r.negated.canonical))
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
return false
elif cj == c:
remove.append((r, rj))
break
for a, b in remove:
argset.remove(a)
argset.remove(b)
argset.add(True)
if len(argset) <= 1:
return true
if True in argset:
argset.discard(True)
return And(*argset)
if False in argset:
argset.discard(False)
return And(*[~arg for arg in argset])
_args = frozenset(argset)
obj = super(Equivalent, cls).__new__(cls, _args)
obj._argset = _args
return obj
@property
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for a, b in zip(self.args, self.args[1:]):
args.append(Or(~a, b))
args.append(Or(~self.args[-1], self.args[0]))
return And._to_nnf(*args, simplify=simplify)
class ITE(BooleanFunction):
"""
If then else clause.
ITE(A, B, C) evaluates and returns the result of B if A is true
else it returns the result of C. All args must be Booleans.
Examples
========
>>> from sympy.logic.boolalg import ITE, And, Xor, Or
>>> from sympy.abc import x, y, z
>>> ITE(True, False, True)
False
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
True
>>> ITE(x, y, z)
ITE(x, y, z)
>>> ITE(True, x, y)
x
>>> ITE(False, x, y)
y
>>> ITE(x, y, y)
y
Trying to use non-Boolean args will generate a TypeError:
>>> ITE(True, [], ())
Traceback (most recent call last):
...
TypeError: expecting bool, Boolean or ITE, not `[]`
"""
def __new__(cls, *args, **kwargs):
from sympy.core.relational import Eq, Ne
if len(args) != 3:
raise ValueError('expecting exactly 3 args')
a, b, c = args
# check use of binary symbols
if isinstance(a, (Eq, Ne)):
# in this context, we can evaluate the Eq/Ne
# if one arg is a binary symbol and the other
# is true/false
b, c = map(as_Boolean, (b, c))
bin = set().union(*[i.binary_symbols for i in (b, c)])
if len(set(a.args) - bin) == 1:
# one arg is a binary_symbols
_a = a
if a.lhs is S.true:
a = a.rhs
elif a.rhs is S.true:
a = a.lhs
elif a.lhs is S.false:
a = ~a.rhs
elif a.rhs is S.false:
a = ~a.lhs
else:
# binary can only equal True or False
a = S.false
if isinstance(_a, Ne):
a = ~a
else:
a, b, c = BooleanFunction.binary_check_and_simplify(
a, b, c)
rv = None
if kwargs.get('evaluate', True):
rv = cls.eval(a, b, c)
if rv is None:
rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False)
return rv
@classmethod
def eval(cls, *args):
from sympy.core.relational import Eq, Ne
# do the args give a singular result?
a, b, c = args
if isinstance(a, (Ne, Eq)):
_a = a
if S.true in a.args:
a = a.lhs if a.rhs is S.true else a.rhs
elif S.false in a.args:
a = ~a.lhs if a.rhs is S.false else ~a.rhs
else:
_a = None
if _a is not None and isinstance(_a, Ne):
a = ~a
if a is S.true:
return b
if a is S.false:
return c
if b == c:
return b
else:
# or maybe the results allow the answer to be expressed
# in terms of the condition
if b is S.true and c is S.false:
return a
if b is S.false and c is S.true:
return Not(a)
if [a, b, c] != args:
return cls(a, b, c, evaluate=False)
def to_nnf(self, simplify=True):
a, b, c = self.args
return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify)
def _eval_as_set(self):
return self.to_nnf().as_set()
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
from sympy.functions import Piecewise
return Piecewise((args[1], args[0]), (args[2], True))
# end class definitions. Some useful methods
def conjuncts(expr):
"""Return a list of the conjuncts in the expr s.
Examples
========
>>> from sympy.logic.boolalg import conjuncts
>>> from sympy.abc import A, B
>>> conjuncts(A & B)
frozenset({A, B})
>>> conjuncts(A | B)
frozenset({A | B})
"""
return And.make_args(expr)
def disjuncts(expr):
"""Return a list of the disjuncts in the sentence s.
Examples
========
>>> from sympy.logic.boolalg import disjuncts
>>> from sympy.abc import A, B
>>> disjuncts(A | B)
frozenset({A, B})
>>> disjuncts(A & B)
frozenset({A & B})
"""
return Or.make_args(expr)
def distribute_and_over_or(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
Examples
========
>>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_and_over_or(Or(A, And(Not(B), Not(C))))
(A | ~B) & (A | ~C)
"""
return _distribute((expr, And, Or))
def distribute_or_over_and(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in DNF.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_or_over_and(And(Or(Not(A), B), C))
(B & C) | (C & ~A)
"""
return _distribute((expr, Or, And))
def _distribute(info):
"""
Distributes info[1] over info[2] with respect to info[0].
"""
if isinstance(info[0], info[2]):
for arg in info[0].args:
if isinstance(arg, info[1]):
conj = arg
break
else:
return info[0]
rest = info[2](*[a for a in info[0].args if a is not conj])
return info[1](*list(map(_distribute,
[(info[2](c, rest), info[1], info[2])
for c in conj.args])))
elif isinstance(info[0], info[1]):
return info[1](*list(map(_distribute,
[(x, info[1], info[2])
for x in info[0].args])))
else:
return info[0]
def to_nnf(expr, simplify=True):
"""
Converts expr to Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simplify is True, the result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C, D
>>> from sympy.logic.boolalg import Not, Equivalent, to_nnf
>>> to_nnf(Not((~A & ~B) | (C & D)))
(A | B) & (~C | ~D)
>>> to_nnf(Equivalent(A >> B, B >> A))
(A | ~B | (A & ~B)) & (B | ~A | (B & ~A))
"""
if is_nnf(expr, simplify):
return expr
return expr.to_nnf(simplify)
def to_cnf(expr, simplify=False):
"""
Convert a propositional logical sentence s to conjunctive normal form.
That is, of the form ((A | ~B | ...) & (B | C | ...) & ...)
If simplify is True, the expr is evaluated to its simplest CNF form using
the Quine-McCluskey algorithm.
Examples
========
>>> from sympy.logic.boolalg import to_cnf
>>> from sympy.abc import A, B, D
>>> to_cnf(~(A | B) | D)
(D | ~A) & (D | ~B)
>>> to_cnf((A | B) & (A | ~A), True)
A | B
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
return simplify_logic(expr, 'cnf', True)
# Don't convert unless we have to
if is_cnf(expr):
return expr
expr = eliminate_implications(expr)
res = distribute_and_over_or(expr)
return res
def to_dnf(expr, simplify=False):
"""
Convert a propositional logical sentence s to disjunctive normal form.
That is, of the form ((A & ~B & ...) | (B & C & ...) | ...)
If simplify is True, the expr is evaluated to its simplest DNF form using
the Quine-McCluskey algorithm.
Examples
========
>>> from sympy.logic.boolalg import to_dnf
>>> from sympy.abc import A, B, C
>>> to_dnf(B & (A | C))
(A & B) | (B & C)
>>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True)
A | C
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
return simplify_logic(expr, 'dnf', True)
# Don't convert unless we have to
if is_dnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_or_over_and(expr)
def is_nnf(expr, simplified=True):
"""
Checks if expr is in Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simplified is True, checks if result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import Not, is_nnf
>>> is_nnf(A & B | ~C)
True
>>> is_nnf((A | ~A) & (B | C))
False
>>> is_nnf((A | ~A) & (B | C), False)
True
>>> is_nnf(Not(A & B) | C)
False
>>> is_nnf((A >> B) & (B >> A))
False
"""
expr = sympify(expr)
if is_literal(expr):
return True
stack = [expr]
while stack:
expr = stack.pop()
if expr.func in (And, Or):
if simplified:
args = expr.args
for arg in args:
if Not(arg) in args:
return False
stack.extend(expr.args)
elif not is_literal(expr):
return False
return True
def is_cnf(expr):
"""
Test whether or not an expression is in conjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_cnf
>>> from sympy.abc import A, B, C
>>> is_cnf(A | B | C)
True
>>> is_cnf(A & B & C)
True
>>> is_cnf((A & B) | C)
False
"""
return _is_form(expr, And, Or)
def is_dnf(expr):
"""
Test whether or not an expression is in disjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_dnf
>>> from sympy.abc import A, B, C
>>> is_dnf(A | B | C)
True
>>> is_dnf(A & B & C)
True
>>> is_dnf((A & B) | C)
True
>>> is_dnf(A & (B | C))
False
"""
return _is_form(expr, Or, And)
def _is_form(expr, function1, function2):
"""
Test whether or not an expression is of the required form.
"""
expr = sympify(expr)
def is_a_literal(lit):
if isinstance(lit, Not) \
and lit.args[0].is_Atom:
return True
elif lit.is_Atom:
return True
return False
vals = function1.make_args(expr) if isinstance(expr, function1) else [expr]
for lit in vals:
if isinstance(lit, function2):
vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit]
for l in vals2:
if is_a_literal(l) is False:
return False
elif is_a_literal(lit) is False:
return False
return True
def eliminate_implications(expr):
"""
Change >>, <<, and Equivalent into &, |, and ~. That is, return an
expression that is equivalent to s, but has only &, |, and ~ as logical
operators.
Examples
========
>>> from sympy.logic.boolalg import Implies, Equivalent, \
eliminate_implications
>>> from sympy.abc import A, B, C
>>> eliminate_implications(Implies(A, B))
B | ~A
>>> eliminate_implications(Equivalent(A, B))
(A | ~B) & (B | ~A)
>>> eliminate_implications(Equivalent(A, B, C))
(A | ~C) & (B | ~A) & (C | ~B)
"""
return to_nnf(expr, simplify=False)
def is_literal(expr):
"""
Returns True if expr is a literal, else False.
Examples
========
>>> from sympy import Or, Q
>>> from sympy.abc import A, B
>>> from sympy.logic.boolalg import is_literal
>>> is_literal(A)
True
>>> is_literal(~A)
True
>>> is_literal(Q.zero(A))
True
>>> is_literal(A + B)
True
>>> is_literal(Or(A, B))
False
"""
if isinstance(expr, Not):
return not isinstance(expr.args[0], BooleanFunction)
else:
return not isinstance(expr, BooleanFunction)
def to_int_repr(clauses, symbols):
"""
Takes clauses in CNF format and puts them into an integer representation.
Examples
========
>>> from sympy.logic.boolalg import to_int_repr
>>> from sympy.abc import x, y
>>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}]
True
"""
# Convert the symbol list into a dict
symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1)))))
def append_symbol(arg, symbols):
if isinstance(arg, Not):
return -symbols[arg.args[0]]
else:
return symbols[arg]
return [set(append_symbol(arg, symbols) for arg in Or.make_args(c))
for c in clauses]
def term_to_integer(term):
"""
Return an integer corresponding to the base-2 digits given by ``term``.
Parameters
==========
term : a string or list of ones and zeros
Examples
========
>>> from sympy.logic.boolalg import term_to_integer
>>> term_to_integer([1, 0, 0])
4
>>> term_to_integer('100')
4
"""
return int(''.join(list(map(str, list(term)))), 2)
def integer_to_term(k, n_bits=None):
"""
Return a list of the base-2 digits in the integer, ``k``.
Parameters
==========
k : int
n_bits : int
If ``n_bits`` is given and the number of digits in the binary
representation of ``k`` is smaller than ``n_bits`` then left-pad the
list with 0s.
Examples
========
>>> from sympy.logic.boolalg import integer_to_term
>>> integer_to_term(4)
[1, 0, 0]
>>> integer_to_term(4, 6)
[0, 0, 0, 1, 0, 0]
"""
s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0)))
return list(map(int, s))
def truth_table(expr, variables, input=True):
"""
Return a generator of all possible configurations of the input variables,
and the result of the boolean expression for those values.
Parameters
==========
expr : string or boolean expression
variables : list of variables
input : boolean (default True)
indicates whether to return the input combinations.
Examples
========
>>> from sympy.logic.boolalg import truth_table
>>> from sympy.abc import x,y
>>> table = truth_table(x >> y, [x, y])
>>> for t in table:
... print('{0} -> {1}'.format(*t))
[0, 0] -> True
[0, 1] -> True
[1, 0] -> False
[1, 1] -> True
>>> table = truth_table(x | y, [x, y])
>>> list(table)
[([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)]
If input is false, truth_table returns only a list of truth values.
In this case, the corresponding input values of variables can be
deduced from the index of a given output.
>>> from sympy.logic.boolalg import integer_to_term
>>> vars = [y, x]
>>> values = truth_table(x >> y, vars, input=False)
>>> values = list(values)
>>> values
[True, False, True, True]
>>> for i, value in enumerate(values):
... print('{0} -> {1}'.format(list(zip(
... vars, integer_to_term(i, len(vars)))), value))
[(y, 0), (x, 0)] -> True
[(y, 0), (x, 1)] -> False
[(y, 1), (x, 0)] -> True
[(y, 1), (x, 1)] -> True
"""
variables = [sympify(v) for v in variables]
expr = sympify(expr)
if not isinstance(expr, BooleanFunction) and not is_literal(expr):
return
table = product([0, 1], repeat=len(variables))
for term in table:
term = list(term)
value = expr.xreplace(dict(zip(variables, term)))
if input:
yield term, value
else:
yield value
def _check_pair(minterm1, minterm2):
"""
Checks if a pair of minterms differs by only one bit. If yes, returns
index, else returns -1.
"""
index = -1
for x, (i, j) in enumerate(zip(minterm1, minterm2)):
if i != j:
if index == -1:
index = x
else:
return -1
return index
def _convert_to_varsSOP(minterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for SOP).
"""
temp = []
for i, m in enumerate(minterm):
if m == 0:
temp.append(Not(variables[i]))
elif m == 1:
temp.append(variables[i])
else:
pass # ignore the 3s
return And(*temp)
def _convert_to_varsPOS(maxterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for POS).
"""
temp = []
for i, m in enumerate(maxterm):
if m == 1:
temp.append(Not(variables[i]))
elif m == 0:
temp.append(variables[i])
else:
pass # ignore the 3s
return Or(*temp)
def _get_odd_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an odd number of ones.
"""
op = []
for i in range(1, 2**n):
e = ibin(i, n)
if sum(e) % 2 == 1:
op.append(e)
return op
def _get_even_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an even number of ones.
"""
op = []
for i in range(2**n):
e = ibin(i, n)
if sum(e) % 2 == 0:
op.append(e)
return op
def _simplified_pairs(terms):
"""
Reduces a set of minterms, if possible, to a simplified set of minterms
with one less variable in the terms using QM method.
"""
simplified_terms = []
todo = list(range(len(terms)))
for i, ti in enumerate(terms[:-1]):
for j_i, tj in enumerate(terms[(i + 1):]):
index = _check_pair(ti, tj)
if index != -1:
todo[i] = todo[j_i + i + 1] = None
newterm = ti[:]
newterm[index] = 3
if newterm not in simplified_terms:
simplified_terms.append(newterm)
simplified_terms.extend(
[terms[i] for i in [_ for _ in todo if _ is not None]])
return simplified_terms
def _compare_term(minterm, term):
"""
Return True if a binary term is satisfied by the given term. Used
for recognizing prime implicants.
"""
for i, x in enumerate(term):
if x != 3 and x != minterm[i]:
return False
return True
def _rem_redundancy(l1, terms):
"""
After the truth table has been sufficiently simplified, use the prime
implicant table method to recognize and eliminate redundant pairs,
and return the essential arguments.
"""
if len(terms):
# Create dominating matrix
dommatrix = [[0]*len(l1) for n in range(len(terms))]
for primei, prime in enumerate(l1):
for termi, term in enumerate(terms):
if _compare_term(term, prime):
dommatrix[termi][primei] = 1
# Non-dominated prime implicants, dominated set to None
ndprimeimplicants = list(range(len(l1)))
# Non-dominated terms, dominated set to None
ndterms = list(range(len(terms)))
# Mark dominated rows and columns
oldndterms = None
oldndprimeimplicants = None
while ndterms != oldndterms or \
ndprimeimplicants != oldndprimeimplicants:
oldndterms = ndterms[:]
oldndprimeimplicants = ndprimeimplicants[:]
for rowi, row in enumerate(dommatrix):
if ndterms[rowi] is not None:
row = [row[i] for i in
[_ for _ in ndprimeimplicants if _ is not None]]
for row2i, row2 in enumerate(dommatrix):
if rowi != row2i and ndterms[row2i] is not None:
row2 = [row2[i] for i in
[_ for _ in ndprimeimplicants
if _ is not None]]
if all(a >= b for (a, b) in zip(row2, row)):
# row2 dominating row, keep row
ndterms[row2i] = None
for coli in range(len(l1)):
if ndprimeimplicants[coli] is not None:
col = [dommatrix[a][coli] for a in range(len(terms))]
col = [col[i] for i in
[_ for _ in oldndterms if _ is not None]]
for col2i in range(len(l1)):
if coli != col2i and \
ndprimeimplicants[col2i] is not None:
col2 = [dommatrix[a][col2i]
for a in range(len(terms))]
col2 = [col2[i] for i in
[_ for _ in oldndterms if _ is not None]]
if all(a >= b for (a, b) in zip(col, col2)):
# col dominating col2, keep col
ndprimeimplicants[col2i] = None
l1 = [l1[i] for i in [_ for _ in ndprimeimplicants if _ is not None]]
return l1
else:
return []
def _input_to_binlist(inputlist, variables):
binlist = []
bits = len(variables)
for val in inputlist:
if isinstance(val, int):
binlist.append(ibin(val, bits))
elif isinstance(val, dict):
nonspecvars = list(variables)
for key in val.keys():
nonspecvars.remove(key)
for t in product([0, 1], repeat=len(nonspecvars)):
d = dict(zip(nonspecvars, t))
d.update(val)
binlist.append([d[v] for v in variables])
elif isinstance(val, (list, tuple)):
if len(val) != bits:
raise ValueError("Each term must contain {} bits as there are"
"\n{} variables (or be an integer)."
"".format(bits, bits))
binlist.append(list(val))
else:
raise TypeError("A term list can only contain lists,"
" ints or dicts.")
return binlist
def SOPform(variables, minterms, dontcares=None):
"""
The SOPform function uses simplified_pairs and a redundant group-
eliminating algorithm to convert the list of all input combos that
generate '1' (the minterms) into the smallest Sum of Products form.
The variables must be given as the first argument.
Return a logical Or function (i.e., the "sum of products" or "SOP"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import SOPform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (z & ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (z & ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> SOPform([w, x, y, z], minterms)
(x & ~w) | (y & z & ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(w & y & z) | (x & y & z) | (~w & ~y)
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
old = None
new = minterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, minterms)
return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
def POSform(variables, minterms, dontcares=None):
"""
The POSform function uses simplified_pairs and a redundant-group
eliminating algorithm to convert the list of all input combinations
that generate '1' (the minterms) into the smallest Product of Sums form.
The variables must be given as the first argument.
Return a logical And function (i.e., the "product of sums" or "POS"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import POSform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
... [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> POSform([w, x, y, z], minterms)
(x | y) & (x | z) & (~w | ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
(w | x) & (y | ~w) & (z | ~y)
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
maxterms = []
for t in product([0, 1], repeat=len(variables)):
t = list(t)
if (t not in minterms) and (t not in dontcares):
maxterms.append(t)
old = None
new = maxterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, maxterms)
return And(*[_convert_to_varsPOS(x, variables) for x in essential])
def _find_predicates(expr):
"""Helper to find logical predicates in BooleanFunctions.
A logical predicate is defined here as anything within a BooleanFunction
that is not a BooleanFunction itself.
"""
if not isinstance(expr, BooleanFunction):
return {expr}
return set().union(*(_find_predicates(i) for i in expr.args))
def simplify_logic(expr, form=None, deep=True, force=False):
"""
This function simplifies a boolean function to its simplified version
in SOP or POS form. The return type is an Or or And object in SymPy.
Parameters
==========
expr : string or boolean expression
form : string ('cnf' or 'dnf') or None (default).
If 'cnf' or 'dnf', the simplest expression in the corresponding
normal form is returned; if None, the answer is returned
according to the form with fewest args (in CNF by default).
deep : boolean (default True)
Indicates whether to recursively simplify any
non-boolean functions contained within the input.
force : boolean (default False)
As the simplifications require exponential time in the number of
variables, there is by default a limit on expressions with 8 variables.
When the expression has more than 8 variables only symbolical
simplification (controlled by ``deep``) is made. By setting force to ``True``, this limit
is removed. Be aware that this can lead to very long simplification times.
Examples
========
>>> from sympy.logic import simplify_logic
>>> from sympy.abc import x, y, z
>>> from sympy import S
>>> b = (~x & ~y & ~z) | ( ~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
>>> S(b)
(z & ~x & ~y) | (~x & ~y & ~z)
>>> simplify_logic(_)
~x & ~y
"""
if form not in (None, 'cnf', 'dnf'):
raise ValueError("form can be cnf or dnf only")
expr = sympify(expr)
if deep:
variables = _find_predicates(expr)
from sympy.simplify.simplify import simplify
s = [simplify(v) for v in variables]
expr = expr.xreplace(dict(zip(variables, s)))
if not isinstance(expr, BooleanFunction):
return expr
# get variables in case not deep or after doing
# deep simplification since they may have changed
variables = _find_predicates(expr)
if not force and len(variables) > 8:
return expr
# group into constants and variable values
c, v = sift(variables, lambda x: x in (True, False), binary=True)
variables = c + v
truthtable = []
# standardize constants to be 1 or 0 in keeping with truthtable
c = [1 if i == True else 0 for i in c]
for t in product([0, 1], repeat=len(v)):
if expr.xreplace(dict(zip(v, t))) == True:
truthtable.append(c + list(t))
big = len(truthtable) >= (2 ** (len(variables) - 1))
if form == 'dnf' or form is None and big:
return SOPform(variables, truthtable)
return POSform(variables, truthtable)
def _finger(eq):
"""
Assign a 5-item fingerprint to each symbol in the equation:
[
# of times it appeared as a Symbol;
# of times it appeared as a Not(symbol);
# of times it appeared as a Symbol in an And or Or;
# of times it appeared as a Not(Symbol) in an And or Or;
a sorted tuple of tuples, (i, j, k), where i is the number of arguments
in an And or Or with which it appeared as a Symbol, and j is
the number of arguments that were Not(Symbol); k is the number
of times that (i, j) was seen.
]
Examples
========
>>> from sympy.logic.boolalg import _finger as finger
>>> from sympy import And, Or, Not, Xor, to_cnf, symbols
>>> from sympy.abc import a, b, x, y
>>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y))
>>> dict(finger(eq))
{(0, 0, 1, 0, ((2, 0, 1),)): [x],
(0, 0, 1, 0, ((2, 1, 1),)): [a, b],
(0, 0, 1, 2, ((2, 0, 1),)): [y]}
>>> dict(finger(x & ~y))
{(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]}
In the following, the (5, 2, 6) means that there were 6 Or
functions in which a symbol appeared as itself amongst 5 arguments in
which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)``
is counted once for a0, a1 and a2.
>>> dict(finger(to_cnf(Xor(*symbols('a:5')))))
{(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]}
The equation must not have more than one level of nesting:
>>> dict(finger(And(Or(x, y), y)))
{(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]}
>>> dict(finger(And(Or(x, And(a, x)), y)))
Traceback (most recent call last):
...
NotImplementedError: unexpected level of nesting
So y and x have unique fingerprints, but a and b do not.
"""
f = eq.free_symbols
d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f])))
for a in eq.args:
if a.is_Symbol:
d[a][0] += 1
elif a.is_Not:
d[a.args[0]][1] += 1
else:
o = len(a.args), sum(isinstance(ai, Not) for ai in a.args)
for ai in a.args:
if ai.is_Symbol:
d[ai][2] += 1
d[ai][-1][o] += 1
elif ai.is_Not:
d[ai.args[0]][3] += 1
else:
raise NotImplementedError('unexpected level of nesting')
inv = defaultdict(list)
for k, v in ordered(iter(d.items())):
v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()]))
inv[tuple(v)].append(k)
return inv
def bool_map(bool1, bool2):
"""
Return the simplified version of bool1, and the mapping of variables
that makes the two expressions bool1 and bool2 represent the same
logical behaviour for some correspondence between the variables
of each.
If more than one mappings of this sort exist, one of them
is returned.
For example, And(x, y) is logically equivalent to And(a, b) for
the mapping {x: a, y:b} or {x: b, y:a}.
If no such mapping exists, return False.
Examples
========
>>> from sympy import SOPform, bool_map, Or, And, Not, Xor
>>> from sympy.abc import w, x, y, z, a, b, c, d
>>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
The results are not necessarily unique, but they are canonical. Here,
``(w, z)`` could be ``(a, d)`` or ``(d, a)``:
>>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y))
>>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq, eq2)
((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d})
>>> eq = And(Xor(a, b), c, And(c,d))
>>> bool_map(eq, eq.subs(c, x))
(c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x})
"""
def match(function1, function2):
"""Return the mapping that equates variables between two
simplified boolean expressions if possible.
By "simplified" we mean that a function has been denested
and is either an And (or an Or) whose arguments are either
symbols (x), negated symbols (Not(x)), or Or (or an And) whose
arguments are only symbols or negated symbols. For example,
And(x, Not(y), Or(w, Not(z))).
Basic.match is not robust enough (see issue 4835) so this is
a workaround that is valid for simplified boolean expressions
"""
# do some quick checks
if function1.__class__ != function2.__class__:
return None # maybe simplification makes them the same?
if len(function1.args) != len(function2.args):
return None # maybe simplification makes them the same?
if function1.is_Symbol:
return {function1: function2}
# get the fingerprint dictionaries
f1 = _finger(function1)
f2 = _finger(function2)
# more quick checks
if len(f1) != len(f2):
return False
# assemble the match dictionary if possible
matchdict = {}
for k in f1.keys():
if k not in f2:
return False
if len(f1[k]) != len(f2[k]):
return False
for i, x in enumerate(f1[k]):
matchdict[x] = f2[k][i]
return matchdict
a = simplify_logic(bool1)
b = simplify_logic(bool2)
m = match(a, b)
if m:
return a, m
return m
def simplify_patterns_and():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
# With a better canonical fewer results are required
_matchers_and = ((And(Eq(a, b), Ge(a, b)), Eq(a, b)),
(And(Eq(a, b), Gt(a, b)), S.false),
(And(Eq(a, b), Le(a, b)), Eq(a, b)),
(And(Eq(a, b), Lt(a, b)), S.false),
(And(Ge(a, b), Gt(a, b)), Gt(a, b)),
(And(Ge(a, b), Le(a, b)), Eq(a, b)),
(And(Ge(a, b), Lt(a, b)), S.false),
(And(Ge(a, b), Ne(a, b)), Gt(a, b)),
(And(Gt(a, b), Le(a, b)), S.false),
(And(Gt(a, b), Lt(a, b)), S.false),
(And(Gt(a, b), Ne(a, b)), Gt(a, b)),
(And(Le(a, b), Lt(a, b)), Lt(a, b)),
(And(Le(a, b), Ne(a, b)), Lt(a, b)),
(And(Lt(a, b), Ne(a, b)), Lt(a, b)),
# Min/max
(And(Ge(a, b), Ge(a, c)), Ge(a, Max(b, c))),
(And(Ge(a, b), Gt(a, c)), ITE(b > c, Ge(a, b), Gt(a, c))),
(And(Gt(a, b), Gt(a, c)), Gt(a, Max(b, c))),
(And(Le(a, b), Le(a, c)), Le(a, Min(b, c))),
(And(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))),
(And(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))),
# Sign
(And(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))),
)
return _matchers_and
def simplify_patterns_or():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
_matchers_or = ((Or(Eq(a, b), Ge(a, b)), Ge(a, b)),
(Or(Eq(a, b), Gt(a, b)), Ge(a, b)),
(Or(Eq(a, b), Le(a, b)), Le(a, b)),
(Or(Eq(a, b), Lt(a, b)), Le(a, b)),
(Or(Ge(a, b), Gt(a, b)), Ge(a, b)),
(Or(Ge(a, b), Le(a, b)), S.true),
(Or(Ge(a, b), Lt(a, b)), S.true),
(Or(Ge(a, b), Ne(a, b)), S.true),
(Or(Gt(a, b), Le(a, b)), S.true),
(Or(Gt(a, b), Lt(a, b)), Ne(a, b)),
(Or(Gt(a, b), Ne(a, b)), Ne(a, b)),
(Or(Le(a, b), Lt(a, b)), Le(a, b)),
(Or(Le(a, b), Ne(a, b)), S.true),
(Or(Lt(a, b), Ne(a, b)), Ne(a, b)),
# Min/max
(Or(Ge(a, b), Ge(a, c)), Ge(a, Min(b, c))),
(Or(Ge(a, b), Gt(a, c)), ITE(b > c, Gt(a, c), Ge(a, b))),
(Or(Gt(a, b), Gt(a, c)), Gt(a, Min(b, c))),
(Or(Le(a, b), Le(a, c)), Le(a, Max(b, c))),
(Or(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))),
(Or(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))),
)
return _matchers_or
def simplify_patterns_xor():
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
_matchers_xor = ((Xor(Eq(a, b), Ge(a, b)), Gt(a, b)),
(Xor(Eq(a, b), Gt(a, b)), Ge(a, b)),
(Xor(Eq(a, b), Le(a, b)), Lt(a, b)),
(Xor(Eq(a, b), Lt(a, b)), Le(a, b)),
(Xor(Ge(a, b), Gt(a, b)), Eq(a, b)),
(Xor(Ge(a, b), Le(a, b)), Ne(a, b)),
(Xor(Ge(a, b), Lt(a, b)), S.true),
(Xor(Ge(a, b), Ne(a, b)), Le(a, b)),
(Xor(Gt(a, b), Le(a, b)), S.true),
(Xor(Gt(a, b), Lt(a, b)), Ne(a, b)),
(Xor(Gt(a, b), Ne(a, b)), Lt(a, b)),
(Xor(Le(a, b), Lt(a, b)), Eq(a, b)),
(Xor(Le(a, b), Ne(a, b)), Ge(a, b)),
(Xor(Lt(a, b), Ne(a, b)), Gt(a, b)),
# Min/max
(Xor(Ge(a, b), Ge(a, c)),
And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))),
(Xor(Ge(a, b), Gt(a, c)),
ITE(b > c, And(Gt(a, c), Lt(a, b)),
And(Ge(a, b), Le(a, c)))),
(Xor(Gt(a, b), Gt(a, c)),
And(Gt(a, Min(b, c)), Le(a, Max(b, c)))),
(Xor(Le(a, b), Le(a, c)),
And(Le(a, Max(b, c)), Gt(a, Min(b, c)))),
(Xor(Le(a, b), Lt(a, c)),
ITE(b < c, And(Lt(a, c), Gt(a, b)),
And(Le(a, b), Ge(a, c)))),
(Xor(Lt(a, b), Lt(a, c)),
And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))),
)
return _matchers_xor
|
ac7ba6db5e529b8bb269eee6f74e8fc9a7209e759e49269e6437dadb01bf81b2 | '''Functions returning normal forms of matrices'''
from __future__ import division, print_function
from sympy.matrices.dense import diag, zeros
def smith_normal_form(m, domain = None):
'''
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
This will only work if the ring is a principal ideal domain.
Examples
========
>>> from sympy.polys.solvers import RawMatrix as Matrix
>>> from sympy.polys.domains import ZZ
>>> from sympy.matrices.normalforms import smith_normal_form
>>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
>>> setattr(m, "ring", ZZ)
>>> print(smith_normal_form(m))
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])
'''
invs = invariant_factors(m, domain=domain)
smf = diag(*invs)
n = len(invs)
if m.rows > n:
smf = smf.row_insert(m.rows, zeros(m.rows-n, m.cols))
elif m.cols > n:
smf = smf.col_insert(m.cols, zeros(m.rows, m.cols-n))
return smf
def invariant_factors(m, domain = None):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form)
References
==========
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
[2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
'''
if not domain:
if not (hasattr(m, "ring") and m.ring.is_PID):
raise ValueError(
"The matrix entries must be over a principal ideal domain")
else:
domain = m.ring
if len(m) == 0:
return ()
m = m[:, :]
def add_rows(m, i, j, a, b, c, d):
# replace m[i, :] by a*m[i, :] + b*m[j, :]
# and m[j, :] by c*m[i, :] + d*m[j, :]
for k in range(m.cols):
e = m[i, k]
m[i, k] = a*e + b*m[j, k]
m[j, k] = c*e + d*m[j, k]
def add_columns(m, i, j, a, b, c, d):
# replace m[:, i] by a*m[:, i] + b*m[:, j]
# and m[:, j] by c*m[:, i] + d*m[:, j]
for k in range(m.rows):
e = m[k, i]
m[k, i] = a*e + b*m[k, j]
m[k, j] = c*e + d*m[k, j]
def clear_column(m):
# make m[1:, 0] zero by row and column operations
if m[0,0] == 0:
return m
pivot = m[0, 0]
for j in range(1, m.rows):
if m[j, 0] == 0:
continue
d, r = domain.div(m[j,0], pivot)
if r == 0:
add_rows(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[j,0])
d_0 = domain.div(m[j, 0], g)[0]
d_j = domain.div(pivot, g)[0]
add_rows(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
def clear_row(m):
# make m[0, 1:] zero by row and column operations
if m[0] == 0:
return m
pivot = m[0, 0]
for j in range(1, m.cols):
if m[0, j] == 0:
continue
d, r = domain.div(m[0, j], pivot)
if r == 0:
add_columns(m, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[0, j])
d_0 = domain.div(m[0, j], g)[0]
d_j = domain.div(pivot, g)[0]
add_columns(m, 0, j, a, b, d_0, -d_j)
pivot = g
return m
# permute the rows and columns until m[0,0] is non-zero if possible
ind = [i for i in range(m.rows) if m[i,0] != 0]
if ind and ind[0] != 0:
m = m.permute_rows([[0, ind[0]]])
else:
ind = [j for j in range(m.cols) if m[0,j] != 0]
if ind and ind[0] != 0:
m = m.permute_cols([[0, ind[0]]])
# make the first row and column except m[0,0] zero
while (any([m[0,i] != 0 for i in range(1,m.cols)]) or
any([m[i,0] != 0 for i in range(1,m.rows)])):
m = clear_column(m)
m = clear_row(m)
if 1 in m.shape:
invs = ()
else:
invs = invariant_factors(m[1:,1:], domain=domain)
if m[0,0]:
result = [m[0,0]]
result.extend(invs)
# in case m[0] doesn't divide the invariants of the rest of the matrix
for i in range(len(result)-1):
if result[i] and domain.div(result[i+1], result[i])[1] != 0:
g = domain.gcd(result[i+1], result[i])
result[i+1] = domain.div(result[i], g)[0]*result[i+1]
result[i] = g
else:
break
else:
result = invs + (m[0,0],)
return tuple(result)
|
ff5202219f8c09d641aade94bb11810d01bb81fffefc08acf86698f761059ac3 | """A module that handles matrices.
Includes functions for fast creating matrices like zero, one/eye, random
matrix, etc.
"""
from .common import ShapeError, NonSquareMatrixError
from .dense import (
GramSchmidt, casoratian, diag, eye, hessian, jordan_cell,
list2numpy, matrix2numpy, matrix_multiply_elementwise, ones,
randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian,
zeros)
from .dense import MutableDenseMatrix
from .matrices import DeferredVector, MatrixBase
Matrix = MutableMatrix = MutableDenseMatrix
from .sparse import MutableSparseMatrix
from .sparsetools import banded
from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix
ImmutableMatrix = ImmutableDenseMatrix
SparseMatrix = MutableSparseMatrix
from .expressions import (
MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity,
Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace,
Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint,
hadamard_product, HadamardProduct, HadamardPower, Determinant, det,
diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace,
DotProduct, kronecker_product, KroneckerProduct,
PermutationMatrix, MatrixPermute)
__all__ = [
'ShapeError', 'NonSquareMatrixError',
'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell',
'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones',
'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray',
'wronskian', 'zeros',
'MutableDenseMatrix',
'DeferredVector', 'MatrixBase',
'Matrix', 'MutableMatrix',
'MutableSparseMatrix',
'banded',
'ImmutableDenseMatrix', 'ImmutableSparseMatrix',
'ImmutableMatrix', 'SparseMatrix',
'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix',
'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr',
'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix',
'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint',
'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant',
'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix',
'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product',
'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute',
]
|
6ef0b20d397f54eb815d16a36a88fcd8fe0c7c731642decd454f1a6a7d0e97a5 | """
Basic methods common to all matrices to be used
when creating more advanced matrices (e.g., matrices over rings,
etc.).
"""
from __future__ import division, print_function
from collections import defaultdict
from inspect import isfunction
from sympy.assumptions.refine import refine
from sympy.core import SympifyError, Add
from sympy.core.basic import Atom
from sympy.core.compatibility import (
Iterable, as_int, is_sequence, range, reduce)
from sympy.core.decorators import call_highest_priority
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions import Abs
from sympy.polys import cancel, together
from sympy.simplify import simplify as _simplify, dotprodsimp as _dotprodsimp
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import filldedent
class MatrixError(Exception):
pass
class ShapeError(ValueError, MatrixError):
"""Wrong matrix shape"""
pass
class NonSquareMatrixError(ShapeError):
pass
class NonInvertibleMatrixError(ValueError, MatrixError):
"""The matrix in not invertible (division by multidimensional zero error)."""
pass
class NonPositiveDefiniteMatrixError(ValueError, MatrixError):
"""The matrix is not a positive-definite matrix."""
pass
class MatrixRequired(object):
"""All subclasses of matrix objects must implement the
required matrix properties listed here."""
rows = None
cols = None
shape = None
_simplify = None
@classmethod
def _new(cls, *args, **kwargs):
"""`_new` must, at minimum, be callable as
`_new(rows, cols, mat) where mat is a flat list of the
elements of the matrix."""
raise NotImplementedError("Subclasses must implement this.")
def __eq__(self, other):
raise NotImplementedError("Subclasses must implement this.")
def __getitem__(self, key):
"""Implementations of __getitem__ should accept ints, in which
case the matrix is indexed as a flat list, tuples (i,j) in which
case the (i,j) entry is returned, slices, or mixed tuples (a,b)
where a and b are any combintion of slices and integers."""
raise NotImplementedError("Subclasses must implement this.")
def __len__(self):
"""The total number of entries in the matrix."""
raise NotImplementedError("Subclasses must implement this.")
class MatrixShaping(MatrixRequired):
"""Provides basic matrix shaping and extracting of submatrices"""
def _eval_col_del(self, col):
def entry(i, j):
return self[i, j] if j < col else self[i, j + 1]
return self._new(self.rows, self.cols - 1, entry)
def _eval_col_insert(self, pos, other):
def entry(i, j):
if j < pos:
return self[i, j]
elif pos <= j < pos + other.cols:
return other[i, j - pos]
return self[i, j - other.cols]
return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_col_join(self, other):
rows = self.rows
def entry(i, j):
if i < rows:
return self[i, j]
return other[i - rows, j]
return classof(self, other)._new(self.rows + other.rows, self.cols,
lambda i, j: entry(i, j))
def _eval_extract(self, rowsList, colsList):
mat = list(self)
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices))
def _eval_get_diag_blocks(self):
sub_blocks = []
def recurse_sub_blocks(M):
i = 1
while i <= M.shape[0]:
if i == 1:
to_the_right = M[0, i:]
to_the_bottom = M[i:, 0]
else:
to_the_right = M[:i, i:]
to_the_bottom = M[i:, :i]
if any(to_the_right) or any(to_the_bottom):
i += 1
continue
else:
sub_blocks.append(M[:i, :i])
if M.shape == M[:i, :i].shape:
return
else:
recurse_sub_blocks(M[i:, i:])
return
recurse_sub_blocks(self)
return sub_blocks
def _eval_row_del(self, row):
def entry(i, j):
return self[i, j] if i < row else self[i + 1, j]
return self._new(self.rows - 1, self.cols, entry)
def _eval_row_insert(self, pos, other):
entries = list(self)
insert_pos = pos * self.cols
entries[insert_pos:insert_pos] = list(other)
return self._new(self.rows + other.rows, self.cols, entries)
def _eval_row_join(self, other):
cols = self.cols
def entry(i, j):
if j < cols:
return self[i, j]
return other[i, j - cols]
return classof(self, other)._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_tolist(self):
return [list(self[i,:]) for i in range(self.rows)]
def _eval_vec(self):
rows = self.rows
def entry(n, _):
# we want to read off the columns first
j = n // rows
i = n - j * rows
return self[i, j]
return self._new(len(self), 1, entry)
def col_del(self, col):
"""Delete the specified column."""
if col < 0:
col += self.cols
if not 0 <= col < self.cols:
raise ValueError("Column {} out of range.".format(col))
return self._eval_col_del(col)
def col_insert(self, pos, other):
"""Insert one or more columns at the given column position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
See Also
========
col
row_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return type(self)(other)
pos = as_int(pos)
if pos < 0:
pos = self.cols + pos
if pos < 0:
pos = 0
elif pos > self.cols:
pos = self.cols
if self.rows != other.rows:
raise ShapeError(
"`self` and `other` must have the same number of rows.")
return self._eval_col_insert(pos, other)
def col_join(self, other):
"""Concatenates two matrices along self's last and other's first row.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
See Also
========
col
row_join
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_col_join(other)
def col(self, j):
"""Elementary column selector.
Examples
========
>>> from sympy import eye
>>> eye(2).col(0)
Matrix([
[1],
[0]])
See Also
========
row
sympy.matrices.dense.MutableDenseMatrix.col_op
sympy.matrices.dense.MutableDenseMatrix.col_swap
col_del
col_join
col_insert
"""
return self[:, j]
def extract(self, rowsList, colsList):
"""Return a submatrix by specifying a list of rows and columns.
Negative indices can be given. All indices must be in the range
-n <= i < n where n is the number of rows or columns.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(4, 3, range(12))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
RowsList or colsList can also be a list of booleans, in which case
the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True])
Matrix([
[0, 2],
[3, 5],
[6, 8],
[9, 11]])
"""
if not is_sequence(rowsList) or not is_sequence(colsList):
raise TypeError("rowsList and colsList must be iterable")
# ensure rowsList and colsList are lists of integers
if rowsList and all(isinstance(i, bool) for i in rowsList):
rowsList = [index for index, item in enumerate(rowsList) if item]
if colsList and all(isinstance(i, bool) for i in colsList):
colsList = [index for index, item in enumerate(colsList) if item]
# ensure everything is in range
rowsList = [a2idx(k, self.rows) for k in rowsList]
colsList = [a2idx(k, self.cols) for k in colsList]
return self._eval_extract(rowsList, colsList)
def get_diag_blocks(self):
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of
linear equations which may be decoupled by having a block diagonal
structure.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
"""
return self._eval_get_diag_blocks()
@classmethod
def hstack(cls, *args):
"""Return a matrix formed by joining args horizontally (i.e.
by repeated application of row_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.row_join, args)
def reshape(self, rows, cols):
"""Reshape the matrix. Total number of elements must remain the same.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 3, lambda i, j: 1)
>>> m
Matrix([
[1, 1, 1],
[1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([
[1, 1],
[1, 1],
[1, 1]])
"""
if self.rows * self.cols != rows * cols:
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
return self._new(rows, cols, lambda i, j: self[i * cols + j])
def row_del(self, row):
"""Delete the specified row."""
if row < 0:
row += self.rows
if not 0 <= row < self.rows:
raise ValueError("Row {} out of range.".format(row))
return self._eval_row_del(row)
def row_insert(self, pos, other):
"""Insert one or more rows at the given row position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
See Also
========
row
col_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return self._new(other)
pos = as_int(pos)
if pos < 0:
pos = self.rows + pos
if pos < 0:
pos = 0
elif pos > self.rows:
pos = self.rows
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_row_insert(pos, other)
def row_join(self, other):
"""Concatenates two matrices along self's last and rhs's first column
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
See Also
========
row
col_join
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
if self.rows != other.rows:
raise ShapeError(
"`self` and `rhs` must have the same number of rows.")
return self._eval_row_join(other)
def diagonal(self, k=0):
"""Returns the kth diagonal of self. The main diagonal
corresponds to `k=0`; diagonals above and below correspond to
`k > 0` and `k < 0`, respectively. The values of `self[i, j]`
for which `j - i = k`, are returned in order of increasing
`i + j`, starting with `i + j = |k|`.
Examples
========
>>> from sympy import Matrix, SparseMatrix
>>> m = Matrix(3, 3, lambda i, j: j - i); m
Matrix([
[ 0, 1, 2],
[-1, 0, 1],
[-2, -1, 0]])
>>> _.diagonal()
Matrix([[0, 0, 0]])
>>> m.diagonal(1)
Matrix([[1, 1]])
>>> m.diagonal(-2)
Matrix([[-2]])
Even though the diagonal is returned as a Matrix, the element
retrieval can be done with a single index:
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
2
See Also
========
diag - to create a diagonal matrix
"""
rv = []
k = as_int(k)
r = 0 if k > 0 else -k
c = 0 if r else k
while True:
if r == self.rows or c == self.cols:
break
rv.append(self[r, c])
r += 1
c += 1
if not rv:
raise ValueError(filldedent('''
The %s diagonal is out of range [%s, %s]''' % (
k, 1 - self.rows, self.cols - 1)))
return self._new(1, len(rv), rv)
def row(self, i):
"""Elementary row selector.
Examples
========
>>> from sympy import eye
>>> eye(2).row(0)
Matrix([[1, 0]])
See Also
========
col
sympy.matrices.dense.MutableDenseMatrix.row_op
sympy.matrices.dense.MutableDenseMatrix.row_swap
row_del
row_join
row_insert
"""
return self[i, :]
@property
def shape(self):
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
========
>>> from sympy.matrices import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
"""
return (self.rows, self.cols)
def tolist(self):
"""Return the Matrix as a nested Python list.
Examples
========
>>> from sympy import Matrix, ones
>>> m = Matrix(3, 3, range(9))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
When there are no rows then it will not be possible to tell how
many columns were in the original matrix:
>>> ones(0, 3).tolist()
[]
"""
if not self.rows:
return []
if not self.cols:
return [[] for i in range(self.rows)]
return self._eval_tolist()
def vec(self):
"""Return the Matrix converted into a one column matrix by stacking columns
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
[1],
[2],
[3],
[4]])
See Also
========
vech
"""
return self._eval_vec()
@classmethod
def vstack(cls, *args):
"""Return a matrix formed by joining args vertically (i.e.
by repeated application of col_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.col_join, args)
class MatrixSpecial(MatrixRequired):
"""Construction of special matrices"""
@classmethod
def _eval_diag(cls, rows, cols, diag_dict):
"""diag_dict is a defaultdict containing
all the entries of the diagonal matrix."""
def entry(i, j):
return diag_dict[(i, j)]
return cls._new(rows, cols, entry)
@classmethod
def _eval_eye(cls, rows, cols):
def entry(i, j):
return cls.one if i == j else cls.zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'):
if band == 'lower':
def entry(i, j):
if i == j:
return eigenvalue
elif j + 1 == i:
return cls.one
return cls.zero
else:
def entry(i, j):
if i == j:
return eigenvalue
elif i + 1 == j:
return cls.one
return cls.zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_ones(cls, rows, cols):
def entry(i, j):
return cls.one
return cls._new(rows, cols, entry)
@classmethod
def _eval_zeros(cls, rows, cols):
def entry(i, j):
return cls.zero
return cls._new(rows, cols, entry)
@classmethod
def diag(kls, *args, **kwargs):
"""Returns a matrix with the specified diagonal.
If matrices are passed, a block-diagonal matrix
is created (i.e. the "direct sum" of the matrices).
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
cls : class for the resulting matrix
unpack : bool which, when True (default), unpacks a single
sequence rather than interpreting it as a Matrix.
strict : bool which, when False (default), allows Matrices to
have variable-length rows.
Examples
========
>>> from sympy.matrices import Matrix
>>> Matrix.diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
The current default is to unpack a single sequence. If this is
not desired, set `unpack=False` and it will be interpreted as
a matrix.
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
True
When more than one element is passed, each is interpreted as
something to put on the diagonal. Lists are converted to
matricecs. Filling of the diagonal always continues from
the bottom right hand corner of the previous item: this
will create a block-diagonal matrix whether the matrices
are square or not.
>>> col = [1, 2, 3]
>>> row = [[4, 5]]
>>> Matrix.diag(col, row)
Matrix([
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
[0, 4, 5]])
When `unpack` is False, elements within a list need not all be
of the same length. Setting `strict` to True would raise a
ValueError for the following:
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
Matrix([
[1, 2, 3],
[4, 5, 0],
[6, 0, 0]])
The type of the returned matrix can be set with the ``cls``
keyword.
>>> from sympy.matrices import ImmutableMatrix
>>> from sympy.utilities.misc import func_name
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
'ImmutableDenseMatrix'
A zero dimension matrix can be used to position the start of
the filling at the start of an arbitrary row or column:
>>> from sympy import ones
>>> r2 = ones(0, 2)
>>> Matrix.diag(r2, 1, 2)
Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
See Also
========
eye
diagonal - to extract a diagonal
.dense.diag
.expressions.blockmatrix.BlockMatrix
"""
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.dense import Matrix
from sympy.matrices.sparse import SparseMatrix
klass = kwargs.get('cls', kls)
strict = kwargs.get('strict', False) # lists -> Matrices
unpack = kwargs.get('unpack', True) # unpack single sequence
if unpack and len(args) == 1 and is_sequence(args[0]) and \
not isinstance(args[0], MatrixBase):
args = args[0]
# fill a default dict with the diagonal entries
diag_entries = defaultdict(int)
rmax = cmax = 0 # keep track of the biggest index seen
for m in args:
if isinstance(m, list):
if strict:
# if malformed, Matrix will raise an error
_ = Matrix(m)
r, c = _.shape
m = _.tolist()
else:
m = SparseMatrix(m)
for (i, j), _ in m._smat.items():
diag_entries[(i + rmax, j + cmax)] = _
r, c = m.shape
m = [] # to skip process below
elif hasattr(m, 'shape'): # a Matrix
# convert to list of lists
r, c = m.shape
m = m.tolist()
else: # in this case, we're a single value
diag_entries[(rmax, cmax)] = m
rmax += 1
cmax += 1
continue
# process list of lists
for i in range(len(m)):
for j, _ in enumerate(m[i]):
diag_entries[(i + rmax, j + cmax)] = _
rmax += r
cmax += c
rows = kwargs.get('rows', None)
cols = kwargs.get('cols', None)
if rows is None:
rows, cols = cols, rows
if rows is None:
rows, cols = rmax, cmax
else:
cols = rows if cols is None else cols
if rows < rmax or cols < cmax:
raise ValueError(filldedent('''
The constructed matrix is {} x {} but a size of {} x {}
was specified.'''.format(rmax, cmax, rows, cols)))
return klass._eval_diag(rows, cols, diag_entries)
@classmethod
def eye(kls, rows, cols=None, **kwargs):
"""Returns an identity matrix.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_eye(rows, cols)
@classmethod
def jordan_block(kls, size=None, eigenvalue=None, **kwargs):
"""Returns a Jordan block
Parameters
==========
size : Integer, optional
Specifies the shape of the Jordan block matrix.
eigenvalue : Number or Symbol
Specifies the value for the main diagonal of the matrix.
.. note::
The keyword ``eigenval`` is also specified as an alias
of this keyword, but it is not recommended to use.
We may deprecate the alias in later release.
band : 'upper' or 'lower', optional
Specifies the position of the off-diagonal to put `1` s on.
cls : Matrix, optional
Specifies the matrix class of the output form.
If it is not specified, the class type where the method is
being executed on will be returned.
rows, cols : Integer, optional
Specifies the shape of the Jordan block matrix. See Notes
section for the details of how these key works.
.. note::
This feature will be deprecated in the future.
Returns
=======
Matrix
A Jordan block matrix.
Raises
======
ValueError
If insufficient arguments are given for matrix size
specification, or no eigenvalue is given.
Examples
========
Creating a default Jordan block:
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> Matrix.jordan_block(4, x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Creating an alternative Jordan block matrix where `1` is on
lower off-diagonal:
>>> Matrix.jordan_block(4, x, band='lower')
Matrix([
[x, 0, 0, 0],
[1, x, 0, 0],
[0, 1, x, 0],
[0, 0, 1, x]])
Creating a Jordan block with keyword arguments
>>> Matrix.jordan_block(size=4, eigenvalue=x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Notes
=====
.. note::
This feature will be deprecated in the future.
The keyword arguments ``size``, ``rows``, ``cols`` relates to
the Jordan block size specifications.
If you want to create a square Jordan block, specify either
one of the three arguments.
If you want to create a rectangular Jordan block, specify
``rows`` and ``cols`` individually.
+--------------------------------+---------------------+
| Arguments Given | Matrix Shape |
+----------+----------+----------+----------+----------+
| size | rows | cols | rows | cols |
+==========+==========+==========+==========+==========+
| size | Any | size | size |
+----------+----------+----------+----------+----------+
| | None | ValueError |
| +----------+----------+----------+----------+
| None | rows | None | rows | rows |
| +----------+----------+----------+----------+
| | None | cols | cols | cols |
+ +----------+----------+----------+----------+
| | rows | cols | rows | cols |
+----------+----------+----------+----------+----------+
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix
"""
if 'rows' in kwargs or 'cols' in kwargs:
SymPyDeprecationWarning(
feature="Keyword arguments 'rows' or 'cols'",
issue=16102,
useinstead="a more generic banded matrix constructor",
deprecated_since_version="1.4"
).warn()
klass = kwargs.pop('cls', kls)
band = kwargs.pop('band', 'upper')
rows = kwargs.pop('rows', None)
cols = kwargs.pop('cols', None)
eigenval = kwargs.get('eigenval', None)
if eigenvalue is None and eigenval is None:
raise ValueError("Must supply an eigenvalue")
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
raise ValueError(
"Inconsistent values are given: 'eigenval'={}, "
"'eigenvalue'={}".format(eigenval, eigenvalue))
else:
if eigenval is not None:
eigenvalue = eigenval
if (size, rows, cols) == (None, None, None):
raise ValueError("Must supply a matrix size")
if size is not None:
rows, cols = size, size
elif rows is not None and cols is None:
cols = rows
elif cols is not None and rows is None:
rows = cols
rows, cols = as_int(rows), as_int(cols)
return klass._eval_jordan_block(rows, cols, eigenvalue, band)
@classmethod
def ones(kls, rows, cols=None, **kwargs):
"""Returns a matrix of ones.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_ones(rows, cols)
@classmethod
def zeros(kls, rows, cols=None, **kwargs):
"""Returns a matrix of zeros.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_zeros(rows, cols)
class MatrixProperties(MatrixRequired):
"""Provides basic properties of a matrix."""
def _eval_atoms(self, *types):
result = set()
for i in self:
result.update(i.atoms(*types))
return result
def _eval_free_symbols(self):
return set().union(*(i.free_symbols for i in self))
def _eval_has(self, *patterns):
return any(a.has(*patterns) for a in self)
def _eval_is_anti_symmetric(self, simpfunc):
if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
return False
return True
def _eval_is_diagonal(self):
for i in range(self.rows):
for j in range(self.cols):
if i != j and self[i, j]:
return False
return True
# _eval_is_hermitian is called by some general sympy
# routines and has a different *args signature. Make
# sure the names don't clash by adding `_matrix_` in name.
def _eval_is_matrix_hermitian(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
return mat.is_zero
def _eval_is_Identity(self):
def dirac(i, j):
if i == j:
return 1
return 0
return all(self[i, j] == dirac(i, j) for i in range(self.rows) for j in
range(self.cols))
def _eval_is_lower_hessenberg(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 2, self.cols))
def _eval_is_lower(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
def _eval_is_symbolic(self):
return self.has(Symbol)
def _eval_is_symmetric(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
return mat.is_zero
def _eval_is_zero(self):
if any(i.is_zero == False for i in self):
return False
if any(i.is_zero is None for i in self):
return None
return True
def _eval_is_upper_hessenberg(self):
return all(self[i, j].is_zero
for i in range(2, self.rows)
for j in range(min(self.cols, (i - 1))))
def _eval_values(self):
return [i for i in self if not i.is_zero]
def atoms(self, *types):
"""Returns the atoms that form the current object.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
"""
types = tuple(t if isinstance(t, type) else type(t) for t in types)
if not types:
types = (Atom,)
return self._eval_atoms(*types)
@property
def free_symbols(self):
"""Returns the free symbols within the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix([[x], [1]]).free_symbols
{x}
"""
return self._eval_free_symbols()
def has(self, *patterns):
"""Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import Matrix, SparseMatrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> B = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
>>> B.has(x)
True
>>> B.has(y)
False
>>> B.has(Float)
True
"""
return self._eval_has(*patterns)
def is_anti_symmetric(self, simplify=True):
"""Check if matrix M is an antisymmetric matrix,
that is, M is a square matrix with all M[i, j] == -M[j, i].
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
simplified before testing to see if it is zero. By default,
the SymPy simplify function is used. To use a custom function
set simplify to a function that accepts a single argument which
returns a simplified expression. To skip simplification, set
simplify to False but note that although this will be faster,
it may induce false negatives.
Examples
========
>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
>>> m.is_anti_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
... -(x + 1)**2 , 0, x*y,
... -y, -x*y, 0])
Simplification of matrix elements is done by default so even
though two elements which should be equal and opposite wouldn't
pass an equality test, the matrix is still reported as
anti-symmetric:
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
If 'simplify=False' is used for the case when a Matrix is already
simplified, this will speed things up. Here, we see that without
simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False)
False
But if the matrix were already expanded, then it would appear
anti-symmetric and simplification in the is_anti_symmetric routine
is not needed:
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
"""
# accept custom simplification
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_anti_symmetric(simpfunc)
def is_diagonal(self):
"""Check if matrix is diagonal,
that is matrix in which the entries outside the main diagonal are all zero.
Examples
========
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is_diagonal()
True
>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([
[1, 1],
[0, 2]])
>>> m.is_diagonal()
False
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> m.is_diagonal()
True
See Also
========
is_lower
is_upper
sympy.matrices.matrices.MatrixEigen.is_diagonalizable
diagonalize
"""
return self._eval_is_diagonal()
@property
def is_hermitian(self, simplify=True):
"""Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of
element j,i.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
"""
if not self.is_square:
return False
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
return self._eval_is_matrix_hermitian(simpfunc)
@property
def is_Identity(self):
if not self.is_square:
return False
return self._eval_is_Identity()
@property
def is_lower_hessenberg(self):
r"""Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries
above the first superdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
See Also
========
is_upper_hessenberg
is_lower
"""
return self._eval_is_lower_hessenberg()
@property
def is_lower(self):
"""Check if matrix is a lower triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_lower
True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
>>> from sympy.abc import x, y
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ 0, x + y]])
>>> m.is_lower
False
See Also
========
is_upper
is_diagonal
is_lower_hessenberg
"""
return self._eval_is_lower()
@property
def is_square(self):
"""Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns.
The empty matrix is square by definition, since the number of rows and
the number of columns are both zero.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
"""
return self.rows == self.cols
def is_symbolic(self):
"""Checks if any elements contain Symbols.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
"""
return self._eval_is_symbolic()
def is_symmetric(self, simplify=True):
"""Check if matrix is symmetric matrix,
that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry.
They can be skipped using 'simplify=False'; while speeding things a bit,
this may however induce false negatives.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3])
>>> m
Matrix([
[ 1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[ y, 0, 3]])
>>> m.is_symmetric()
True
If the matrix is already simplified, you may speed-up is_symmetric()
test by using 'simplify=False'.
>>> bool(m.is_symmetric(simplify=False))
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True
"""
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_symmetric(simpfunc)
@property
def is_upper_hessenberg(self):
"""Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries
below the first subdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
See Also
========
is_lower_hessenberg
is_upper
"""
return self._eval_is_upper_hessenberg()
@property
def is_upper(self):
"""Check if matrix is an upper triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False
See Also
========
is_lower
is_diagonal
is_upper_hessenberg
"""
return all(self[i, j].is_zero
for i in range(1, self.rows)
for j in range(min(i, self.cols)))
@property
def is_zero(self):
"""Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square
to be considered zero. The empty matrix is zero by the principle of
vacuous truth. For a matrix that may or may not be zero (e.g.
contains a symbol), this will be None
Examples
========
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero
True
>>> b.is_zero
True
>>> c.is_zero
False
>>> d.is_zero
True
>>> e.is_zero
"""
return self._eval_is_zero()
def values(self):
"""Return non-zero values of self."""
return self._eval_values()
class MatrixOperations(MatrixRequired):
"""Provides basic matrix shape and elementwise
operations. Should not be instantiated directly."""
def _eval_adjoint(self):
return self.transpose().conjugate()
def _eval_applyfunc(self, f):
out = self._new(self.rows, self.cols, [f(x) for x in self])
return out
def _eval_as_real_imag(self):
from sympy.functions.elementary.complexes import re, im
return (self.applyfunc(re), self.applyfunc(im))
def _eval_conjugate(self):
return self.applyfunc(lambda x: x.conjugate())
def _eval_permute_cols(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[i, mapping[j]]
return self._new(self.rows, self.cols, entry)
def _eval_permute_rows(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[mapping[i], j]
return self._new(self.rows, self.cols, entry)
def _eval_trace(self):
return sum(self[i, i] for i in range(self.rows))
def _eval_transpose(self):
return self._new(self.cols, self.rows, lambda i, j: self[j, i])
def adjoint(self):
"""Conjugate transpose or Hermitian conjugation."""
return self._eval_adjoint()
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
return self._eval_applyfunc(f)
def as_real_imag(self):
"""Returns a tuple containing the (real, imaginary) part of matrix."""
return self._eval_as_real_imag()
def conjugate(self):
"""Return the by-element conjugation.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> from sympy import I
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
>>> a
Matrix([
[1, 2 + I],
[3, 4],
[I, -I]])
>>> a.C
Matrix([
[ 1, 2 - I],
[ 3, 4],
[-I, I]])
See Also
========
transpose: Matrix transposition
H: Hermite conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self._eval_conjugate()
def doit(self, **kwargs):
return self.applyfunc(lambda x: x.doit())
def evalf(self, prec=None, **options):
"""Apply evalf() to each element of self."""
return self.applyfunc(lambda i: i.evalf(prec, **options))
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""Apply core.function.expand to each entry of the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
"""
return self.applyfunc(lambda x: x.expand(
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
**hints))
@property
def H(self):
"""Return Hermite conjugate.
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 2],
[ 3]])
>>> m.H
Matrix([[0, 1 - I, 2, 3]])
See Also
========
conjugate: By-element conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self.T.C
def permute(self, perm, orientation='rows', direction='forward'):
r"""Permute the rows or columns of a matrix by the given list of
swaps.
Parameters
==========
perm : Permutation, list, or list of lists
A representation for the permutation.
If it is ``Permutation``, it is used directly with some
resizing with respect to the matrix size.
If it is specified as list of lists,
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
from applying the product of cycles. The direction how the
cyclic product is applied is described in below.
If it is specified as a list, the list should represent
an array form of a permutation. (e.g., ``[1, 2, 0]``) which
would would form the swapping function
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
orientation : 'rows', 'cols'
A flag to control whether to permute the rows or the columns
direction : 'forward', 'backward'
A flag to control whether to apply the permutations from
the start of the list first, or from the back of the list
first.
For example, if the permutation specification is
``[[0, 1], [0, 2]]``,
If the flag is set to ``'forward'``, the cycle would be
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
If the flag is set to ``'backward'``, the cycle would be
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
If the argument ``perm`` is not in a form of list of lists,
this flag takes no effect.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
Notes
=====
If a bijective function
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
permutation.
If the matrix `A` is the matrix to permute, represented as
a horizontal or a vertical stack of vectors:
.. math::
A =
\begin{bmatrix}
a_0 \\ a_1 \\ \vdots \\ a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
\end{bmatrix}
If the matrix `B` is the result, the permutation of matrix rows
is defined as:
.. math::
B := \begin{bmatrix}
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
\end{bmatrix}
And the permutation of matrix columns is defined as:
.. math::
B := \begin{bmatrix}
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
\cdots & \alpha_{\sigma(n-1)}
\end{bmatrix}
"""
from sympy.combinatorics import Permutation
# allow british variants and `columns`
if direction == 'forwards':
direction = 'forward'
if direction == 'backwards':
direction = 'backward'
if orientation == 'columns':
orientation = 'cols'
if direction not in ('forward', 'backward'):
raise TypeError("direction='{}' is an invalid kwarg. "
"Try 'forward' or 'backward'".format(direction))
if orientation not in ('rows', 'cols'):
raise TypeError("orientation='{}' is an invalid kwarg. "
"Try 'rows' or 'cols'".format(orientation))
if not isinstance(perm, (Permutation, Iterable)):
raise ValueError(
"{} must be a list, a list of lists, "
"or a SymPy permutation object.".format(perm))
# ensure all swaps are in range
max_index = self.rows if orientation == 'rows' else self.cols
if not all(0 <= t <= max_index for t in flatten(list(perm))):
raise IndexError("`swap` indices out of range.")
if perm and not isinstance(perm, Permutation) and \
isinstance(perm[0], Iterable):
if direction == 'forward':
perm = list(reversed(perm))
perm = Permutation(perm, size=max_index)
else:
perm = Permutation(perm, size=max_index)
if orientation == 'rows':
return self._eval_permute_rows(perm)
if orientation == 'cols':
return self._eval_permute_cols(perm)
def permute_cols(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='cols', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='cols', direction=direction)
def permute_rows(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='rows', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='rows', direction=direction)
def refine(self, assumptions=True):
"""Apply refine to each element of the matrix.
Examples
========
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
>>> x = Symbol('x')
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
Matrix([
[ Abs(x)**2, sqrt(x**2)],
[sqrt(x**2), Abs(x)**2]])
>>> _.refine(Q.real(x))
Matrix([
[ x**2, Abs(x)],
[Abs(x), x**2]])
"""
return self.applyfunc(lambda x: refine(x, assumptions))
def replace(self, F, G, map=False):
"""Replaces Function F in Matrix entries with Function G.
Examples
========
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
"""
return self.applyfunc(lambda x: x.replace(F, G, map))
def simplify(self, **kwargs):
"""Apply simplify to each element of the matrix.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import sin, cos
>>> from sympy.matrices import SparseMatrix
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.simplify(**kwargs))
def subs(self, *args, **kwargs): # should mirror core.basic.subs
"""Return a new matrix with subs applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
def trace(self):
"""
Returns the trace of a square matrix i.e. the sum of the
diagonal elements.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.trace()
5
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
return self._eval_trace()
def transpose(self):
"""
Returns the transpose of the matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.transpose()
Matrix([
[1, 3],
[2, 4]])
>>> from sympy import Matrix, I
>>> m=Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m.transpose()
Matrix([
[ 1, 3],
[2 + I, 4]])
>>> m.T == m.transpose()
True
See Also
========
conjugate: By-element conjugation
"""
return self._eval_transpose()
T = property(transpose, None, None, "Matrix transposition.")
C = property(conjugate, None, None, "By-element conjugation.")
n = evalf
def xreplace(self, rule): # should mirror core.basic.xreplace
"""Return a new matrix with xreplace applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.xreplace(rule))
_eval_simplify = simplify
def _eval_trigsimp(self, **opts):
from sympy.simplify import trigsimp
return self.applyfunc(lambda x: trigsimp(x, **opts))
class MatrixArithmetic(MatrixRequired):
"""Provides basic matrix arithmetic operations.
Should not be instantiated directly."""
_op_priority = 10.01
def _eval_Abs(self):
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
def _eval_add(self, other):
return self._new(self.rows, self.cols,
lambda i, j: self[i, j] + other[i, j])
def _eval_matrix_mul(self, other):
def entry(i, j):
vec = [self[i,k]*other[k,j] for k in range(self.cols)]
try:
return Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
return reduce(lambda a, b: a + b, vec)
return self._new(self.rows, other.cols, entry)
def _eval_matrix_mul_elementwise(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
def _eval_matrix_rmul(self, other):
def entry(i, j):
return sum(other[i,k]*self[k,j] for k in range(other.cols))
return self._new(other.rows, self.cols, entry)
def _eval_pow_by_recursion(self, num):
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion(num - 1)
else:
a = b = self._eval_pow_by_recursion(num // 2)
return a.multiply(b)
def _eval_pow_by_recursion_mulsimp(self, num, dotprodsimp=None, prevsimp=None):
if dotprodsimp and prevsimp is None:
prevsimp = [True]*len(self)
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion_mulsimp(num - 1,
dotprodsimp=dotprodsimp, prevsimp=prevsimp)
else:
a = b = self._eval_pow_by_recursion_mulsimp(num // 2,
dotprodsimp=dotprodsimp, prevsimp=prevsimp)
m = a.multiply(b, dotprodsimp=False)
if not dotprodsimp:
return m
lenm = len(m)
elems = [None]*lenm
for i in range(lenm):
if prevsimp[i]:
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
else:
elems[i] = m[i]
return m._new(m.rows, m.cols, elems)
def _eval_scalar_mul(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
def _eval_scalar_rmul(self, other):
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
def _eval_Mod(self, other):
from sympy import Mod
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
# python arithmetic functions
def __abs__(self):
"""Returns a new matrix with entry-wise absolute values."""
return self._eval_Abs()
@call_highest_priority('__radd__')
def __add__(self, other):
"""Return self + other, raising ShapeError if shapes don't match."""
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape'):
if self.shape != other.shape:
raise ShapeError("Matrix size mismatch: %s + %s" % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
# call the highest-priority class's _eval_add
a, b = self, other
if a.__class__ != classof(a, b):
b, a = a, b
return a._eval_add(b)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_add(self, other)
raise TypeError('cannot add %s and %s' % (type(self), type(other)))
@call_highest_priority('__rdiv__')
def __div__(self, other):
return self * (self.one / other)
@call_highest_priority('__rmatmul__')
def __matmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__mul__(other)
def __mod__(self, other):
return self.applyfunc(lambda x: x % other)
@call_highest_priority('__rmul__')
def __mul__(self, other):
"""Return self*other where other is either a scalar or a matrix
of compatible dimensions.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([
[30, 36, 42],
[66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
>>>
See Also
========
matrix_multiply_elementwise
"""
return self.multiply(other)
def multiply(self, other, dotprodsimp=None):
"""Same as __mul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape') and len(other.shape) == 2:
if self.shape[1] != other.shape[0]:
raise ShapeError("Matrix size mismatch: %s * %s." % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_mul(other)
if dotprodsimp:
return m.applyfunc(_dotprodsimp)
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_mul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_mul(other)
except TypeError:
pass
return NotImplemented
def multiply_elementwise(self, other):
"""Return the Hadamard product (elementwise product) of A and B
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.matrices.MatrixBase.cross
sympy.matrices.matrices.MatrixBase.dot
multiply
"""
if self.shape != other.shape:
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
return self._eval_matrix_mul_elementwise(other)
def __neg__(self):
return self._eval_scalar_mul(-1)
@call_highest_priority('__rpow__')
def __pow__(self, exp):
"""Return self**exp a scalar or symbol."""
return self.pow(exp)
def pow(self, exp, dotprodsimp=None, jordan=None):
"""Return self**exp a scalar or symbol.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
jordan : bool, optional
If left as None then Jordan form exponentiation will be used under
certain conditions, True specifies that jordan_pow should always
be used if possible and False means it should not be used unless
it is the only way to calculate the power.
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
a = self
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
exp = sympify(exp)
if exp.is_zero:
return a._new(a.rows, a.cols, lambda i, j: int(i == j))
if exp == 1:
return a
diagonal = getattr(a, 'is_diagonal', None)
if diagonal is not None and diagonal():
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
if exp.is_Number and exp % 1 == 0:
if a.rows == 1:
return a._new([[a[0]**exp]])
if exp < 0:
exp = -exp
a = a.inv()
# When certain conditions are met,
# Jordan block algorithm is faster than
# computation by recursion.
elif jordan_pow is not None and (jordan or \
(jordan is not False and a.rows == 2 and exp > 100000)):
try:
return jordan_pow(exp, dotprodsimp=dotprodsimp)
except MatrixError:
if jordan:
raise
if dotprodsimp is not None:
return a._eval_pow_by_recursion_mulsimp(exp, dotprodsimp=dotprodsimp)
else:
return a._eval_pow_by_recursion(exp)
if jordan_pow:
try:
return jordan_pow(exp, dotprodsimp=dotprodsimp)
except NonInvertibleMatrixError:
# Raised by jordan_pow on zero determinant matrix unless exp is
# definitely known to be a non-negative integer.
# Here we raise if n is definitely not a non-negative integer
# but otherwise we can leave this as an unevaluated MatPow.
if exp.is_integer is False or exp.is_nonnegative is False:
raise
from sympy.matrices.expressions import MatPow
return MatPow(a, exp)
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
@call_highest_priority('__matmul__')
def __rmatmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__rmul__(other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape') and len(other.shape) == 2:
if self.shape[0] != other.shape[1]:
raise ShapeError("Matrix size mismatch.")
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
return other._new(other.as_mutable() * self)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_rmul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_rmul(other)
except TypeError:
pass
return NotImplemented
@call_highest_priority('__sub__')
def __rsub__(self, a):
return (-self) + a
@call_highest_priority('__rsub__')
def __sub__(self, a):
return self + (-a)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self.__div__(other)
class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
MatrixSpecial, MatrixShaping):
"""All common matrix operations including basic arithmetic, shaping,
and special matrices like `zeros`, and `eye`."""
_diff_wrt = True
class _MinimalMatrix(object):
"""Class providing the minimum functionality
for a matrix-like object and implementing every method
required for a `MatrixRequired`. This class does not have everything
needed to become a full-fledged SymPy object, but it will satisfy the
requirements of anything inheriting from `MatrixRequired`. If you wish
to make a specialized matrix type, make sure to implement these
methods and properties with the exception of `__init__` and `__repr__`
which are included for convenience."""
is_MatrixLike = True
_sympify = staticmethod(sympify)
_class_priority = 3
zero = S.Zero
one = S.One
is_Matrix = True
is_MatrixExpr = False
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args, **kwargs)
def __init__(self, rows, cols=None, mat=None):
if isfunction(mat):
# if we passed in a function, use that to populate the indices
mat = list(mat(i, j) for i in range(rows) for j in range(cols))
if cols is None and mat is None:
mat = rows
rows, cols = getattr(mat, 'shape', (rows, cols))
try:
# if we passed in a list of lists, flatten it and set the size
if cols is None and mat is None:
mat = rows
cols = len(mat[0])
rows = len(mat)
mat = [x for l in mat for x in l]
except (IndexError, TypeError):
pass
self.mat = tuple(self._sympify(x) for x in mat)
self.rows, self.cols = rows, cols
if self.rows is None or self.cols is None:
raise NotImplementedError("Cannot initialize matrix with given parameters")
def __getitem__(self, key):
def _normalize_slices(row_slice, col_slice):
"""Ensure that row_slice and col_slice don't have
`None` in their arguments. Any integers are converted
to slices of length 1"""
if not isinstance(row_slice, slice):
row_slice = slice(row_slice, row_slice + 1, None)
row_slice = slice(*row_slice.indices(self.rows))
if not isinstance(col_slice, slice):
col_slice = slice(col_slice, col_slice + 1, None)
col_slice = slice(*col_slice.indices(self.cols))
return (row_slice, col_slice)
def _coord_to_index(i, j):
"""Return the index in _mat corresponding
to the (i,j) position in the matrix. """
return i * self.cols + j
if isinstance(key, tuple):
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
# if the coordinates are not slices, make them so
# and expand the slices so they don't contain `None`
i, j = _normalize_slices(i, j)
rowsList, colsList = list(range(self.rows))[i], \
list(range(self.cols))[j]
indices = (i * self.cols + j for i in rowsList for j in
colsList)
return self._new(len(rowsList), len(colsList),
list(self.mat[i] for i in indices))
# if the key is a tuple of ints, change
# it to an array index
key = _coord_to_index(i, j)
return self.mat[key]
def __eq__(self, other):
try:
classof(self, other)
except TypeError:
return False
return (
self.shape == other.shape and list(self) == list(other))
def __len__(self):
return self.rows*self.cols
def __repr__(self):
return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
self.mat)
@property
def shape(self):
return (self.rows, self.cols)
class _MatrixWrapper(object):
"""Wrapper class providing the minimum functionality
for a matrix-like object: .rows, .cols, .shape, indexability,
and iterability. CommonMatrix math operations should work
on matrix-like objects. For example, wrapping a numpy
matrix in a MatrixWrapper allows it to be passed to CommonMatrix.
"""
is_MatrixLike = True
def __init__(self, mat, shape=None):
self.mat = mat
self.rows, self.cols = mat.shape if shape is None else shape
def __getattr__(self, attr):
"""Most attribute access is passed straight through
to the stored matrix"""
return getattr(self.mat, attr)
def __getitem__(self, key):
return self.mat.__getitem__(key)
def _matrixify(mat):
"""If `mat` is a Matrix or is matrix-like,
return a Matrix or MatrixWrapper object. Otherwise
`mat` is passed through without modification."""
if getattr(mat, 'is_Matrix', False):
return mat
if hasattr(mat, 'shape'):
if len(mat.shape) == 2:
return _MatrixWrapper(mat)
return mat
def a2idx(j, n=None):
"""Return integer after making positive and validating against n."""
if type(j) is not int:
jindex = getattr(j, '__index__', None)
if jindex is not None:
j = jindex()
else:
raise IndexError("Invalid index a[%r]" % (j,))
if n is not None:
if j < 0:
j += n
if not (j >= 0 and j < n):
raise IndexError("Index out of range: a[%s]" % (j,))
return int(j)
def classof(A, B):
"""
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
========
>>> from sympy import Matrix, ImmutableMatrix
>>> from sympy.matrices.common import classof
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
"""
priority_A = getattr(A, '_class_priority', None)
priority_B = getattr(B, '_class_priority', None)
if None not in (priority_A, priority_B):
if A._class_priority > B._class_priority:
return A.__class__
else:
return B.__class__
try:
import numpy
except ImportError:
pass
else:
if isinstance(A, numpy.ndarray):
return B.__class__
if isinstance(B, numpy.ndarray):
return A.__class__
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
|
ba78dbf4bae3a13646480ab9b521c15a169577a6e01f4570fab2a73d4c0b5709 | from __future__ import division, print_function
import random
from sympy.core import SympifyError, Add
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence, range, reduce
from sympy.core.expr import Expr
from sympy.core.function import count_ops, expand_mul
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.common import \
a2idx, classof, ShapeError, NonPositiveDefiniteMatrixError
from sympy.matrices.matrices import MatrixBase
from sympy.simplify import simplify as _simplify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.misc import filldedent
def _iszero(x):
"""Returns True if x is zero."""
return x.is_zero
def _compare_sequence(a, b):
"""Compares the elements of a list/tuple `a`
and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])`
is True, whereas `(1,2) == [1, 2]` is False"""
if type(a) is type(b):
# if they are the same type, compare directly
return a == b
# there is no overhead for calling `tuple` on a
# tuple
return tuple(a) == tuple(b)
class DenseMatrix(MatrixBase):
is_MatrixExpr = False
_op_priority = 10.01
_class_priority = 4
def __eq__(self, other):
other = sympify(other)
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, Matrix):
return _compare_sequence(self._mat, other._mat)
elif isinstance(other, MatrixBase):
return _compare_sequence(self._mat, Matrix(other)._mat)
def __getitem__(self, key):
"""Return portion of self defined by key. If the key involves a slice
then a list will be returned (if key is a single slice) or a matrix
(if key was a tuple involving a slice).
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix([
... [1, 2 + I],
... [3, 4 ]])
If the key is a tuple that doesn't involve a slice then that element
is returned:
>>> m[1, 0]
3
When a tuple key involves a slice, a matrix is returned. Here, the
first column is selected (all rows, column 0):
>>> m[:, 0]
Matrix([
[1],
[3]])
If the slice is not a tuple then it selects from the underlying
list of elements that are arranged in row order and a list is
returned if a slice is involved:
>>> m[0]
1
>>> m[::2]
[1, 3]
"""
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._mat[i*self.cols + j]
except (TypeError, IndexError):
if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
((i < 0) is True) or ((i >= self.shape[0]) is True):
raise ValueError("index out of boundary")
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
if isinstance(i, slice):
# XXX remove list() when PY2 support is dropped
i = list(range(self.rows))[i]
elif is_sequence(i):
pass
else:
i = [i]
if isinstance(j, slice):
# XXX remove list() when PY2 support is dropped
j = list(range(self.cols))[j]
elif is_sequence(j):
pass
else:
j = [j]
return self.extract(i, j)
else:
# row-wise decomposition of matrix
if isinstance(key, slice):
return self._mat[key]
return self._mat[a2idx(key)]
def __setitem__(self, key, value):
raise NotImplementedError()
def _cholesky(self, hermitian=True):
"""Helper function of cholesky.
Without the error checks.
To be used privately.
Implements the Cholesky-Banachiewicz algorithm.
Returns L such that L*L.H == self if hermitian flag is True,
or L*L.T == self if hermitian is False.
"""
L = zeros(self.rows, self.rows)
if hermitian:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / L[j, j])*expand_mul(self[i, j] -
sum(L[i, k]*L[j, k].conjugate() for k in range(j)))
Lii2 = expand_mul(self[i, i] -
sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
if Lii2.is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
L[i, i] = sqrt(Lii2)
else:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / L[j, j])*(self[i, j] -
sum(L[i, k]*L[j, k] for k in range(j)))
L[i, i] = sqrt(self[i, i] -
sum(L[i, k]**2 for k in range(i)))
return self._new(L)
def _eval_add(self, other):
# we assume both arguments are dense matrices since
# sparse matrices have a higher priority
mat = [a + b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_extract(self, rowsList, colsList):
mat = self._mat
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices), copy=False)
def _eval_matrix_mul(self, other):
other_len = other.rows*other.cols
new_len = self.rows*other.cols
new_mat = [self.zero]*new_len
# if we multiply an n x 0 with a 0 x m, the
# expected behavior is to produce an n x m matrix of zeros
if self.cols != 0 and other.rows != 0:
self_cols = self.cols
mat = self._mat
other_mat = other._mat
for i in range(new_len):
row, col = i // other.cols, i % other.cols
row_indices = range(self_cols*row, self_cols*(row+1))
col_indices = range(col, other_len, other.cols)
vec = [mat[a]*other_mat[b] for a, b in zip(row_indices, col_indices)]
try:
new_mat[i] = Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
new_mat[i] = reduce(lambda a, b: a + b, vec)
return classof(self, other)._new(self.rows, other.cols, new_mat, copy=False)
def _eval_matrix_mul_elementwise(self, other):
mat = [a*b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_inverse(self, **kwargs):
"""Return the matrix inverse using the method indicated (default
is Gauss elimination).
kwargs
======
method : ('GE', 'LU', or 'ADJ')
iszerofunc
try_block_diag
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
GE .... inverse_GE(); default
LU .... inverse_LU()
ADJ ... inverse_ADJ()
According to the ``try_block_diag`` keyword, it will try to form block
diagonal matrices using the method get_diag_blocks(), invert these
individually, and then reconstruct the full inverse matrix.
Note, the GE and LU methods may require the matrix to be simplified
before it is inverted in order to properly detect zeros during
pivoting. In difficult cases a custom zero detection function can
be provided by setting the ``iszerosfunc`` argument to a function that
should return True if its argument is zero. The ADJ routine computes
the determinant and uses that to detect singular matrices in addition
to testing for zeros on the diagonal.
See Also
========
inverse_LU
inverse_GE
inverse_ADJ
"""
from sympy.matrices import diag
method = kwargs.get('method', 'GE')
iszerofunc = kwargs.get('iszerofunc', _iszero)
if kwargs.get('try_block_diag', False):
blocks = self.get_diag_blocks()
r = []
for block in blocks:
r.append(block.inv(method=method, iszerofunc=iszerofunc))
return diag(*r)
M = self.as_mutable()
if method == "GE":
rv = M.inverse_GE(iszerofunc=iszerofunc)
elif method == "LU":
rv = M.inverse_LU(iszerofunc=iszerofunc)
elif method == "ADJ":
rv = M.inverse_ADJ(iszerofunc=iszerofunc)
else:
# make sure to add an invertibility check (as in inverse_LU)
# if a new method is added.
raise ValueError("Inversion method unrecognized")
return self._new(rv)
def _eval_scalar_mul(self, other):
mat = [other*a for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_scalar_rmul(self, other):
mat = [a*other for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_tolist(self):
mat = list(self._mat)
cols = self.cols
return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)]
def _LDLdecomposition(self, hermitian=True):
"""Helper function of LDLdecomposition.
Without the error checks.
To be used privately.
Returns L and D such that L*D*L.H == self if hermitian flag is True,
or L*D*L.T == self if hermitian is False.
"""
# https://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2
D = zeros(self.rows, self.rows)
L = eye(self.rows)
if hermitian:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*expand_mul(self[i, j] - sum(
L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
D[i, i] = expand_mul(self[i, i] -
sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
if D[i, i].is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
else:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*(self[i, j] - sum(
L[i, k]*L[j, k]*D[k, k] for k in range(j)))
D[i, i] = self[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
return self._new(L), self._new(D)
def _lower_triangular_solve(self, rhs):
"""Helper function of function lower_triangular_solve.
Without the error checks.
To be used privately.
"""
X = zeros(self.rows, rhs.cols)
for j in range(rhs.cols):
for i in range(self.rows):
if self[i, i] == 0:
raise TypeError("Matrix must be non-singular.")
X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
for k in range(i))) / self[i, i]
return self._new(X)
def _upper_triangular_solve(self, rhs):
"""Helper function of function upper_triangular_solve.
Without the error checks, to be used privately. """
X = zeros(self.rows, rhs.cols)
for j in range(rhs.cols):
for i in reversed(range(self.rows)):
if self[i, i] == 0:
raise ValueError("Matrix must be non-singular.")
X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
for k in range(i + 1, self.rows))) / self[i, i]
return self._new(X)
def as_immutable(self):
"""Returns an Immutable version of this Matrix
"""
from .immutable import ImmutableDenseMatrix as cls
if self.rows and self.cols:
return cls._new(self.tolist())
return cls._new(self.rows, self.cols, [])
def as_mutable(self):
"""Returns a mutable version of this matrix
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return Matrix(self)
def equals(self, other, failing_expression=False):
"""Applies ``equals`` to corresponding elements of the matrices,
trying to prove that the elements are equivalent, returning True
if they are, False if any pair is not, and None (or the first
failing expression if failing_expression is True) if it cannot
be decided if the expressions are equivalent or not. This is, in
general, an expensive operation.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x
>>> from sympy import cos
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
See Also
========
sympy.core.expr.Expr.equals
"""
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
rv = True
for i in range(self.rows):
for j in range(self.cols):
ans = self[i, j].equals(other[i, j], failing_expression)
if ans is False:
return False
elif ans is not True and rv is True:
rv = ans
return rv
def _force_mutable(x):
"""Return a matrix as a Matrix, otherwise return x."""
if getattr(x, 'is_Matrix', False):
return x.as_mutable()
elif isinstance(x, Basic):
return x
elif hasattr(x, '__array__'):
a = x.__array__()
if len(a.shape) == 0:
return sympify(a)
return Matrix(x)
return x
class MutableDenseMatrix(DenseMatrix, MatrixBase):
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
@classmethod
def _new(cls, *args, **kwargs):
# if the `copy` flag is set to False, the input
# was rows, cols, [list]. It should be used directly
# without creating a copy.
if kwargs.get('copy', True) is False:
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
self = object.__new__(cls)
self.rows = rows
self.cols = cols
self._mat = flat_list
return self
def __setitem__(self, key, value):
"""
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
self._mat[i*self.cols + j] = value
def as_mutable(self):
return self.copy()
def col_del(self, i):
"""Delete the given column.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_del(1)
>>> M
Matrix([
[1, 0],
[0, 0],
[0, 1]])
See Also
========
col
row_del
"""
if i < -self.cols or i >= self.cols:
raise IndexError("Index out of range: 'i=%s', valid -%s <= i < %s"
% (i, self.cols, self.cols))
for j in range(self.rows - 1, -1, -1):
del self._mat[i + j*self.cols]
self.cols -= 1
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i).
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[1, 2, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
col
row_op
"""
self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))]
def col_swap(self, i, j):
"""Swap the two given columns of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[1, 0], [1, 0]])
>>> M
Matrix([
[1, 0],
[1, 0]])
>>> M.col_swap(0, 1)
>>> M
Matrix([
[0, 1],
[0, 1]])
See Also
========
col
row_swap
"""
for k in range(0, self.rows):
self[k, i], self[k, j] = self[k, j], self[k, i]
def copyin_list(self, key, value):
"""Copy in elements from a list.
Parameters
==========
key : slice
The section of this matrix to replace.
value : iterable
The iterable to copy values from.
Examples
========
>>> from sympy.matrices import eye
>>> I = eye(3)
>>> I[:2, 0] = [1, 2] # col
>>> I
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
>>> I[1, :2] = [[3, 4]]
>>> I
Matrix([
[1, 0, 0],
[3, 4, 0],
[0, 0, 1]])
See Also
========
copyin_matrix
"""
if not is_sequence(value):
raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
return self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
"""Copy in values from a matrix into the given bounds.
Parameters
==========
key : slice
The section of this matrix to replace.
value : Matrix
The matrix to copy values from.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
>>> I = eye(3)
>>> I[:3, :2] = M
>>> I
Matrix([
[0, 1, 0],
[2, 3, 0],
[4, 5, 1]])
>>> I[0, 1] = M
>>> I
Matrix([
[0, 0, 1],
[2, 2, 3],
[4, 4, 5]])
See Also
========
copyin_list
"""
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
"same dimensions "
"as the in sub-Matrix given by `key`."))
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill the matrix with the scalar value.
See Also
========
zeros
ones
"""
self._mat = [value]*len(self)
def row_del(self, i):
"""Delete the given row.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_del(1)
>>> M
Matrix([
[1, 0, 0],
[0, 0, 1]])
See Also
========
row
col_del
"""
if i < -self.rows or i >= self.rows:
raise IndexError("Index out of range: 'i = %s', valid -%s <= i"
" < %s" % (i, self.rows, self.rows))
if i < 0:
i += self.rows
del self._mat[i*self.cols:(i+1)*self.cols]
self.rows -= 1
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
zip_row_op
col_op
"""
i0 = i*self.cols
ri = self._mat[i0: i0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))]
def row_swap(self, i, j):
"""Swap the two given rows of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[0, 1], [1, 0]])
>>> M
Matrix([
[0, 1],
[1, 0]])
>>> M.row_swap(0, 1)
>>> M
Matrix([
[1, 0],
[0, 1]])
See Also
========
row
col_swap
"""
for k in range(0, self.cols):
self[i, k], self[j, k] = self[j, k], self[i, k]
def simplify(self, **kwargs):
"""Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See Also
========
sympy.simplify.simplify.simplify
"""
for i in range(len(self._mat)):
self._mat[i] = _simplify(self._mat[i], **kwargs)
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
row_op
col_op
"""
i0 = i*self.cols
k0 = k*self.cols
ri = self._mat[i0: i0 + self.cols]
rk = self._mat[k0: k0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)]
# Utility functions
MutableMatrix = Matrix = MutableDenseMatrix
###########
# Numpy Utility Functions:
# list2numpy, matrix2numpy, symmarray, rot_axis[123]
###########
def list2numpy(l, dtype=object): # pragma: no cover
"""Converts python list of SymPy expressions to a NumPy array.
See Also
========
matrix2numpy
"""
from numpy import empty
a = empty(len(l), dtype)
for i, s in enumerate(l):
a[i] = s
return a
def matrix2numpy(m, dtype=object): # pragma: no cover
"""Converts SymPy's matrix to a NumPy array.
See Also
========
list2numpy
"""
from numpy import empty
a = empty(m.shape, dtype)
for i in range(m.rows):
for j in range(m.cols):
a[i, j] = m[i, j]
return a
def rot_axis3(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
def rot_axis2(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 2-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix([
[ 1/2, 0, -sqrt(3)/2],
[ 0, 1, 0],
[sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, 0, -st),
(0, 1, 0),
(st, 0, ct))
return Matrix(lil)
def rot_axis1(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 1-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis1(theta)
Matrix([
[1, 0, 0],
[0, 1/2, sqrt(3)/2],
[0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
See Also
========
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((1, 0, 0),
(0, ct, st),
(0, -st, ct))
return Matrix(lil)
@doctest_depends_on(modules=('numpy',))
def symarray(prefix, shape, **kwargs): # pragma: no cover
r"""Create a numpy ndarray of symbols (as an object array).
The created symbols are named ``prefix_i1_i2_``... You should thus provide a
non-empty prefix if you want your symbols to be unique for different output
arrays, as SymPy symbols with identical names are the same object.
Parameters
----------
prefix : string
A prefix prepended to the name of every symbol.
shape : int or tuple
Shape of the created array. If an int, the array is one-dimensional; for
more than one dimension the shape must be a tuple.
\*\*kwargs : dict
keyword arguments passed on to Symbol
Examples
========
These doctests require numpy.
>>> from sympy import symarray
>>> symarray('', 3)
[_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you *must*
provide unique prefixes:
>>> a = symarray('', 3)
>>> b = symarray('', 3)
>>> a[0] == b[0]
True
>>> a = symarray('a', 3)
>>> b = symarray('b', 3)
>>> a[0] == b[0]
False
Creating symarrays with a prefix:
>>> symarray('a', 3)
[a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3))
[[a_0_0 a_0_1 a_0_2]
[a_1_0 a_1_1 a_1_2]]
>>> symarray('a', (2, 3, 2))
[[[a_0_0_0 a_0_0_1]
[a_0_1_0 a_0_1_1]
[a_0_2_0 a_0_2_1]]
<BLANKLINE>
[[a_1_0_0 a_1_0_1]
[a_1_1_0 a_1_1_1]
[a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, True]
"""
from numpy import empty, ndindex
arr = empty(shape, dtype=object)
for index in ndindex(shape):
arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
**kwargs)
return arr
###############
# Functions
###############
def casoratian(seqs, n, zero=True):
"""Given linear difference operator L of order 'k' and homogeneous
equation Ly = 0 we want to compute kernel of L, which is a set
of 'k' sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian,
denoted as C(a, b, ..., z), do not vanish for n = 0.
Casoratian is defined by k x k determinant::
+ a(n) b(n) . . . z(n) +
| a(n+1) b(n+1) . . . z(n+1) |
| . . . . |
| . . . . |
| . . . . |
+ a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied
to a generating set of a recurrence to factor out linearly
dependent solutions and return a basis:
>>> from sympy import Symbol, casoratian, factorial
>>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0
True
"""
seqs = list(map(sympify, seqs))
if not zero:
f = lambda i, j: seqs[j].subs(n, n + i)
else:
f = lambda i, j: seqs[j].subs(n, i)
k = len(seqs)
return Matrix(k, k, f).det()
def eye(*args, **kwargs):
"""Create square identity matrix n x n
See Also
========
diag
zeros
ones
"""
return Matrix.eye(*args, **kwargs)
def diag(*values, **kwargs):
"""Returns a matrix with the provided values placed on the
diagonal. If non-square matrices are included, they will
produce a block-diagonal matrix.
Examples
========
This version of diag is a thin wrapper to Matrix.diag that differs
in that it treats all lists like matrices -- even when a single list
is given. If this is not desired, either put a `*` before the list or
set `unpack=True`.
>>> from sympy import diag
>>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> diag([1, 2, 3]) # a column vector
Matrix([
[1],
[2],
[3]])
See Also
========
.common.MatrixCommon.eye
.common.MatrixCommon.diagonal - to extract a diagonal
.common.MatrixCommon.diag
.expressions.blockmatrix.BlockMatrix
"""
# Extract any setting so we don't duplicate keywords sent
# as named parameters:
kw = kwargs.copy()
strict = kw.pop('strict', True) # lists will be converted to Matrices
unpack = kw.pop('unpack', False)
return Matrix.diag(*values, strict=strict, unpack=unpack, **kw)
def GramSchmidt(vlist, orthonormal=False):
"""Apply the Gram-Schmidt process to a set of vectors.
Parameters
==========
vlist : List of Matrix
Vectors to be orthogonalized for.
orthonormal : Bool, optional
If true, return an orthonormal basis.
Returns
=======
vlist : List of Matrix
Orthogonalized vectors
Notes
=====
This routine is mostly duplicate from ``Matrix.orthogonalize``,
except for some difference that this always raises error when
linearly dependent vectors are found, and the keyword ``normalize``
has been named as ``orthonormal`` in this function.
See Also
========
.matrices.MatrixSubspaces.orthogonalize
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
return MutableDenseMatrix.orthogonalize(
*vlist, normalize=orthonormal, rankcheck=True
)
def hessian(f, varlist, constraints=[]):
"""Compute Hessian matrix for a function f wrt parameters in varlist
which may be given as a sequence or a row/column vector. A list of
constraints may optionally be given.
Examples
========
>>> from sympy import Function, hessian, pprint
>>> from sympy.abc import x, y
>>> f = Function('f')(x, y)
>>> g1 = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]))
[ d d ]
[ 0 0 --(g(x, y)) --(g(x, y)) ]
[ dx dy ]
[ ]
[ 0 0 2*x 3 ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
[dx 2 dy dx ]
[ dx ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
[dy dy dx 2 ]
[ dy ]
References
==========
https://en.wikipedia.org/wiki/Hessian_matrix
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
wronskian
"""
# f is the expression representing a function f, return regular matrix
if isinstance(varlist, MatrixBase):
if 1 not in varlist.shape:
raise ShapeError("`varlist` must be a column or row vector.")
if varlist.cols == 1:
varlist = varlist.T
varlist = varlist.tolist()[0]
if is_sequence(varlist):
n = len(varlist)
if not n:
raise ShapeError("`len(varlist)` must not be zero.")
else:
raise ValueError("Improper variable list in hessian function")
if not getattr(f, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
m = len(constraints)
N = m + n
out = zeros(N)
for k, g in enumerate(constraints):
if not getattr(g, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
for i in range(n):
out[k, i + m] = g.diff(varlist[i])
for i in range(n):
for j in range(i, n):
out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
for i in range(N):
for j in range(i + 1, N):
out[j, i] = out[i, j]
return out
def jordan_cell(eigenval, n):
"""
Create a Jordan block:
Examples
========
>>> from sympy.matrices import jordan_cell
>>> from sympy.abc import x
>>> jordan_cell(x, 4)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
"""
return Matrix.jordan_block(size=n, eigenvalue=eigenval)
def matrix_multiply_elementwise(A, B):
"""Return the Hadamard product (elementwise product) of A and B
>>> from sympy.matrices import matrix_multiply_elementwise
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.common.MatrixCommon.__mul__
"""
return A.multiply_elementwise(B)
def ones(*args, **kwargs):
"""Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
zeros
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.ones(*args, **kwargs)
def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
percent=100, prng=None):
"""Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
the matrix will be square. If ``symmetric`` is True the matrix must be
square. If ``percent`` is less than 100 then only approximately the given
percentage of elements will be non-zero.
The pseudo-random number generator used to generate matrix is chosen in the
following way.
* If ``prng`` is supplied, it will be used as random number generator.
It should be an instance of ``random.Random``, or at least have
``randint`` and ``shuffle`` methods with same signatures.
* if ``prng`` is not supplied but ``seed`` is supplied, then new
``random.Random`` with given ``seed`` will be created;
* otherwise, a new ``random.Random`` with default seed will be used.
Examples
========
>>> from sympy.matrices import randMatrix
>>> randMatrix(3) # doctest:+SKIP
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
>>> randMatrix(3, 2) # doctest:+SKIP
[87, 29]
[23, 37]
[90, 26]
>>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
[0, 2, 0]
[2, 0, 1]
[0, 0, 1]
>>> randMatrix(3, symmetric=True) # doctest:+SKIP
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
[77, 70, 0],
[70, 0, 0],
[ 0, 0, 88]
"""
if c is None:
c = r
# Note that ``Random()`` is equivalent to ``Random(None)``
prng = prng or random.Random(seed)
if not symmetric:
m = Matrix._new(r, c, lambda i, j: prng.randint(min, max))
if percent == 100:
return m
z = int(r*c*(100 - percent) // 100)
m._mat[:z] = [S.Zero]*z
prng.shuffle(m._mat)
return m
# Symmetric case
if r != c:
raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
m = zeros(r)
ij = [(i, j) for i in range(r) for j in range(i, r)]
if percent != 100:
ij = prng.sample(ij, int(len(ij)*percent // 100))
for i, j in ij:
value = prng.randint(min, max)
m[i, j] = m[j, i] = value
return m
def wronskian(functions, var, method='bareiss'):
"""
Compute Wronskian for [] of functions
::
| f1 f2 ... fn |
| f1' f2' ... fn' |
| . . . . |
W(f1, ..., fn) = | . . . . |
| . . . . |
| (n) (n) (n) |
| D (f1) D (f2) ... D (fn) |
see: https://en.wikipedia.org/wiki/Wronskian
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
hessian
"""
for index in range(0, len(functions)):
functions[index] = sympify(functions[index])
n = len(functions)
if n == 0:
return 1
W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
return W.det(method)
def zeros(*args, **kwargs):
"""Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
ones
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.zeros(*args, **kwargs)
|
dd52db2a5ddd536ee892b4879650097406f309239402ca3c7a0924b8d7c0aaae | from __future__ import division, print_function
import copy
from collections import defaultdict
from sympy.core import SympifyError, Add
from sympy.core.compatibility import Callable, as_int, is_sequence, range, \
reduce
from sympy.core.containers import Dict
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.functions import Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent
from .common import a2idx
from .dense import Matrix
from .matrices import MatrixBase, ShapeError
class SparseMatrix(MatrixBase):
"""
A sparse matrix (a matrix with a large number of zero elements).
Examples
========
>>> from sympy.matrices import SparseMatrix, ones
>>> SparseMatrix(2, 2, range(4))
Matrix([
[0, 1],
[2, 3]])
>>> SparseMatrix(2, 2, {(1, 1): 2})
Matrix([
[0, 0],
[0, 2]])
A SparseMatrix can be instantiated from a ragged list of lists:
>>> SparseMatrix([[1, 2, 3], [1, 2], [1]])
Matrix([
[1, 2, 3],
[1, 2, 0],
[1, 0, 0]])
For safety, one may include the expected size and then an error
will be raised if the indices of any element are out of range or
(for a flat list) if the total number of elements does not match
the expected shape:
>>> SparseMatrix(2, 2, [1, 2])
Traceback (most recent call last):
...
ValueError: List length (2) != rows*columns (4)
Here, an error is not raised because the list is not flat and no
element is out of range:
>>> SparseMatrix(2, 2, [[1, 2]])
Matrix([
[1, 2],
[0, 0]])
But adding another element to the first (and only) row will cause
an error to be raised:
>>> SparseMatrix(2, 2, [[1, 2, 3]])
Traceback (most recent call last):
...
ValueError: The location (0, 2) is out of designated range: (1, 1)
To autosize the matrix, pass None for rows:
>>> SparseMatrix(None, [[1, 2, 3]])
Matrix([[1, 2, 3]])
>>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3})
Matrix([
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 3]])
Values that are themselves a Matrix are automatically expanded:
>>> SparseMatrix(4, 4, {(1, 1): ones(2)})
Matrix([
[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 0]])
A ValueError is raised if the expanding matrix tries to overwrite
a different element already present:
>>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2})
Traceback (most recent call last):
...
ValueError: collision at (1, 1)
See Also
========
DenseMatrix
MutableSparseMatrix
ImmutableSparseMatrix
"""
def __new__(cls, *args, **kwargs):
self = object.__new__(cls)
if len(args) == 1 and isinstance(args[0], SparseMatrix):
self.rows = args[0].rows
self.cols = args[0].cols
self._smat = dict(args[0]._smat)
return self
self._smat = {}
# autosizing
if len(args) == 2 and args[0] is None:
args = (None,) + args
if len(args) == 3:
r, c = args[:2]
if r is c is None:
self.rows = self.cols = None
elif None in (r, c):
raise ValueError(
'Pass rows=None and no cols for autosizing.')
else:
self.rows, self.cols = map(as_int, args[:2])
if isinstance(args[2], Callable):
op = args[2]
for i in range(self.rows):
for j in range(self.cols):
value = self._sympify(
op(self._sympify(i), self._sympify(j)))
if value:
self._smat[i, j] = value
elif isinstance(args[2], (dict, Dict)):
def update(i, j, v):
# update self._smat and make sure there are
# no collisions
if v:
if (i, j) in self._smat and v != self._smat[i, j]:
raise ValueError('collision at %s' % ((i, j),))
self._smat[i, j] = v
# manual copy, copy.deepcopy() doesn't work
for key, v in args[2].items():
r, c = key
if isinstance(v, SparseMatrix):
for (i, j), vij in v._smat.items():
update(r + i, c + j, vij)
else:
if isinstance(v, (Matrix, list, tuple)):
v = SparseMatrix(v)
for i, j in v._smat:
update(r + i, c + j, v[i, j])
else:
v = self._sympify(v)
update(r, c, self._sympify(v))
elif is_sequence(args[2]):
flat = not any(is_sequence(i) for i in args[2])
if not flat:
s = SparseMatrix(args[2])
self._smat = s._smat
else:
if len(args[2]) != self.rows*self.cols:
raise ValueError(
'Flat list length (%s) != rows*columns (%s)' %
(len(args[2]), self.rows*self.cols))
flat_list = args[2]
for i in range(self.rows):
for j in range(self.cols):
value = self._sympify(flat_list[i*self.cols + j])
if value:
self._smat[i, j] = value
if self.rows is None: # autosizing
k = self._smat.keys()
self.rows = max([i[0] for i in k]) + 1 if k else 0
self.cols = max([i[1] for i in k]) + 1 if k else 0
else:
for i, j in self._smat.keys():
if i and i >= self.rows or j and j >= self.cols:
r, c = self.shape
raise ValueError(filldedent('''
The location %s is out of designated
range: %s''' % ((i, j), (r - 1, c - 1))))
else:
if (len(args) == 1 and isinstance(args[0], (list, tuple))):
# list of values or lists
v = args[0]
c = 0
for i, row in enumerate(v):
if not isinstance(row, (list, tuple)):
row = [row]
for j, vij in enumerate(row):
if vij:
self._smat[i, j] = self._sympify(vij)
c = max(c, len(row))
self.rows = len(v) if c else 0
self.cols = c
else:
# handle full matrix forms with _handle_creation_inputs
r, c, _list = Matrix._handle_creation_inputs(*args)
self.rows = r
self.cols = c
for i in range(self.rows):
for j in range(self.cols):
value = _list[self.cols*i + j]
if value:
self._smat[i, j] = value
return self
def __eq__(self, other):
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, SparseMatrix):
return self._smat == other._smat
elif isinstance(other, MatrixBase):
return self._smat == MutableSparseMatrix(other)._smat
def __getitem__(self, key):
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._smat.get((i, j), S.Zero)
except (TypeError, IndexError):
if isinstance(i, slice):
# XXX remove list() when PY2 support is dropped
i = list(range(self.rows))[i]
elif is_sequence(i):
pass
elif isinstance(i, Expr) and not i.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if i >= self.rows:
raise IndexError('Row index out of bounds')
i = [i]
if isinstance(j, slice):
# XXX remove list() when PY2 support is dropped
j = list(range(self.cols))[j]
elif is_sequence(j):
pass
elif isinstance(j, Expr) and not j.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if j >= self.cols:
raise IndexError('Col index out of bounds')
j = [j]
return self.extract(i, j)
# check for single arg, like M[:] or M[3]
if isinstance(key, slice):
lo, hi = key.indices(len(self))[:2]
L = []
for i in range(lo, hi):
m, n = divmod(i, self.cols)
L.append(self._smat.get((m, n), S.Zero))
return L
i, j = divmod(a2idx(key, len(self)), self.cols)
return self._smat.get((i, j), S.Zero)
def __setitem__(self, key, value):
raise NotImplementedError()
def _cholesky_solve(self, rhs):
# for speed reasons, this is not uncommented, but if you are
# having difficulties, try uncommenting to make sure that the
# input matrix is symmetric
#assert self.is_symmetric()
L = self._cholesky_sparse()
Y = L._lower_triangular_solve(rhs)
rv = L.T._upper_triangular_solve(Y)
return rv
def _cholesky_sparse(self):
"""Algorithm for numeric Cholesky factorization of a sparse matrix."""
Crowstruc = self.row_structure_symbolic_cholesky()
C = self.zeros(self.rows)
for i in range(len(Crowstruc)):
for j in Crowstruc[i]:
if i != j:
C[i, j] = self[i, j]
summ = 0
for p1 in Crowstruc[i]:
if p1 < j:
for p2 in Crowstruc[j]:
if p2 < j:
if p1 == p2:
summ += C[i, p1]*C[j, p1]
else:
break
else:
break
C[i, j] -= summ
C[i, j] /= C[j, j]
else:
C[j, j] = self[j, j]
summ = 0
for k in Crowstruc[j]:
if k < j:
summ += C[j, k]**2
else:
break
C[j, j] -= summ
C[j, j] = sqrt(C[j, j])
return C
def _eval_inverse(self, **kwargs):
"""Return the matrix inverse using Cholesky or LDL (default)
decomposition as selected with the ``method`` keyword: 'CH' or 'LDL',
respectively.
Examples
========
>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix([
... [ 2, -1, 0],
... [-1, 2, -1],
... [ 0, 0, 2]])
>>> A.inv('CH')
Matrix([
[2/3, 1/3, 1/6],
[1/3, 2/3, 1/3],
[ 0, 0, 1/2]])
>>> A.inv(method='LDL') # use of 'method=' is optional
Matrix([
[2/3, 1/3, 1/6],
[1/3, 2/3, 1/3],
[ 0, 0, 1/2]])
>>> A * _
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
"""
sym = self.is_symmetric()
M = self.as_mutable()
I = M.eye(M.rows)
if not sym:
t = M.T
r1 = M[0, :]
M = t*M
I = t*I
method = kwargs.get('method', 'LDL')
if method in "LDL":
solve = M._LDL_solve
elif method == "CH":
solve = M._cholesky_solve
else:
raise NotImplementedError(
'Method may be "CH" or "LDL", not %s.' % method)
rv = M.hstack(*[solve(I[:, i]) for i in range(I.cols)])
if not sym:
scale = (r1*rv[:, 0])[0, 0]
rv /= scale
return self._new(rv)
def _eval_Abs(self):
return self.applyfunc(lambda x: Abs(x))
def _eval_add(self, other):
"""If `other` is a SparseMatrix, add efficiently. Otherwise,
do standard addition."""
if not isinstance(other, SparseMatrix):
return self + self._new(other)
smat = {}
zero = self._sympify(0)
for key in set().union(self._smat.keys(), other._smat.keys()):
sum = self._smat.get(key, zero) + other._smat.get(key, zero)
if sum != 0:
smat[key] = sum
return self._new(self.rows, self.cols, smat)
def _eval_col_insert(self, icol, other):
if not isinstance(other, SparseMatrix):
other = SparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if col >= icol:
col += other.cols
new_smat[row, col] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[row, col + icol] = val
return self._new(self.rows, self.cols + other.cols, new_smat)
def _eval_conjugate(self):
smat = {key: val.conjugate() for key,val in self._smat.items()}
return self._new(self.rows, self.cols, smat)
def _eval_extract(self, rowsList, colsList):
urow = list(uniq(rowsList))
ucol = list(uniq(colsList))
smat = {}
if len(urow)*len(ucol) < len(self._smat):
# there are fewer elements requested than there are elements in the matrix
for i, r in enumerate(urow):
for j, c in enumerate(ucol):
smat[i, j] = self._smat.get((r, c), 0)
else:
# most of the request will be zeros so check all of self's entries,
# keeping only the ones that are desired
for rk, ck in self._smat:
if rk in urow and ck in ucol:
smat[urow.index(rk), ucol.index(ck)] = self._smat[rk, ck]
rv = self._new(len(urow), len(ucol), smat)
# rv is nominally correct but there might be rows/cols
# which require duplication
if len(rowsList) != len(urow):
for i, r in enumerate(rowsList):
i_previous = rowsList.index(r)
if i_previous != i:
rv = rv.row_insert(i, rv.row(i_previous))
if len(colsList) != len(ucol):
for i, c in enumerate(colsList):
i_previous = colsList.index(c)
if i_previous != i:
rv = rv.col_insert(i, rv.col(i_previous))
return rv
@classmethod
def _eval_eye(cls, rows, cols):
entries = {(i,i): S.One for i in range(min(rows, cols))}
return cls._new(rows, cols, entries)
def _eval_has(self, *patterns):
# if the matrix has any zeros, see if S.Zero
# has the pattern. If _smat is full length,
# the matrix has no zeros.
zhas = S.Zero.has(*patterns)
if len(self._smat) == self.rows*self.cols:
zhas = False
return any(self[key].has(*patterns) for key in self._smat) or zhas
def _eval_is_Identity(self):
if not all(self[i, i] == 1 for i in range(self.rows)):
return False
return len(self._smat) == self.rows
def _eval_is_symmetric(self, simpfunc):
diff = (self - self.T).applyfunc(simpfunc)
return len(diff.values()) == 0
def _eval_matrix_mul(self, other):
"""Fast multiplication exploiting the sparsity of the matrix."""
if not isinstance(other, SparseMatrix):
other = self._new(other)
# if we made it here, we're both sparse matrices
# create quick lookups for rows and cols
row_lookup = defaultdict(dict)
for (i,j), val in self._smat.items():
row_lookup[i][j] = val
col_lookup = defaultdict(dict)
for (i,j), val in other._smat.items():
col_lookup[j][i] = val
smat = {}
for row in row_lookup.keys():
for col in col_lookup.keys():
# find the common indices of non-zero entries.
# these are the only things that need to be multiplied.
indices = set(col_lookup[col].keys()) & set(row_lookup[row].keys())
if indices:
vec = [row_lookup[row][k]*col_lookup[col][k] for k in indices]
try:
smat[row, col] = Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
smat[row, col] = reduce(lambda a, b: a + b, vec)
return self._new(self.rows, other.cols, smat)
def _eval_row_insert(self, irow, other):
if not isinstance(other, SparseMatrix):
other = SparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if row >= irow:
row += other.rows
new_smat[row, col] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[row + irow, col] = val
return self._new(self.rows + other.rows, self.cols, new_smat)
def _eval_scalar_mul(self, other):
return self.applyfunc(lambda x: x*other)
def _eval_scalar_rmul(self, other):
return self.applyfunc(lambda x: other*x)
def _eval_transpose(self):
"""Returns the transposed SparseMatrix of this SparseMatrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.T
Matrix([
[1, 3],
[2, 4]])
"""
smat = {(j,i): val for (i,j),val in self._smat.items()}
return self._new(self.cols, self.rows, smat)
def _eval_values(self):
return [v for k,v in self._smat.items() if not v.is_zero]
@classmethod
def _eval_zeros(cls, rows, cols):
return cls._new(rows, cols, {})
def _LDL_solve(self, rhs):
# for speed reasons, this is not uncommented, but if you are
# having difficulties, try uncommenting to make sure that the
# input matrix is symmetric
#assert self.is_symmetric()
L, D = self._LDL_sparse()
Z = L._lower_triangular_solve(rhs)
Y = D._diagonal_solve(Z)
return L.T._upper_triangular_solve(Y)
def _LDL_sparse(self):
"""Algorithm for numeric LDL factorization, exploiting sparse structure.
"""
Lrowstruc = self.row_structure_symbolic_cholesky()
L = self.eye(self.rows)
D = self.zeros(self.rows, self.cols)
for i in range(len(Lrowstruc)):
for j in Lrowstruc[i]:
if i != j:
L[i, j] = self[i, j]
summ = 0
for p1 in Lrowstruc[i]:
if p1 < j:
for p2 in Lrowstruc[j]:
if p2 < j:
if p1 == p2:
summ += L[i, p1]*L[j, p1]*D[p1, p1]
else:
break
else:
break
L[i, j] -= summ
L[i, j] /= D[j, j]
else: # i == j
D[i, i] = self[i, i]
summ = 0
for k in Lrowstruc[i]:
if k < i:
summ += L[i, k]**2*D[k, k]
else:
break
D[i, i] -= summ
return L, D
def _lower_triangular_solve(self, rhs):
"""Fast algorithm for solving a lower-triangular system,
exploiting the sparsity of the given matrix.
"""
rows = [[] for i in range(self.rows)]
for i, j, v in self.row_list():
if i > j:
rows[i].append((j, v))
X = rhs.as_mutable().copy()
for j in range(rhs.cols):
for i in range(rhs.rows):
for u, v in rows[i]:
X[i, j] -= v*X[u, j]
X[i, j] /= self[i, i]
return self._new(X)
@property
def _mat(self):
"""Return a list of matrix elements. Some routines
in DenseMatrix use `_mat` directly to speed up operations."""
return list(self)
def _upper_triangular_solve(self, rhs):
"""Fast algorithm for solving an upper-triangular system,
exploiting the sparsity of the given matrix.
"""
rows = [[] for i in range(self.rows)]
for i, j, v in self.row_list():
if i < j:
rows[i].append((j, v))
X = rhs.as_mutable().copy()
for j in range(rhs.cols):
for i in reversed(range(rhs.rows)):
for u, v in reversed(rows[i]):
X[i, j] -= v*X[u, j]
X[i, j] /= self[i, i]
return self._new(X)
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
out = self.copy()
for k, v in self._smat.items():
fv = f(v)
if fv:
out._smat[k] = fv
else:
out._smat.pop(k, None)
return out
def as_immutable(self):
"""Returns an Immutable version of this Matrix."""
from .immutable import ImmutableSparseMatrix
return ImmutableSparseMatrix(self)
def as_mutable(self):
"""Returns a mutable version of this matrix.
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return MutableSparseMatrix(self)
def cholesky(self):
"""
Returns the Cholesky decomposition L of a matrix A
such that L * L.T = A
A must be a square, symmetric, positive-definite
and non-singular matrix
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T == A
True
"""
from sympy.core.numbers import nan, oo
if not self.is_symmetric():
raise ValueError('Cholesky decomposition applies only to '
'symmetric matrices.')
M = self.as_mutable()._cholesky_sparse()
if M.has(nan) or M.has(oo):
raise ValueError('Cholesky decomposition applies only to '
'positive-definite matrices')
return self._new(M)
def col_list(self):
"""Returns a column-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a=SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.CL
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
See Also
========
sympy.matrices.sparse.MutableSparseMatrix.col_op
sympy.matrices.sparse.SparseMatrix.row_list
"""
return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(reversed(k)))]
def copy(self):
return self._new(self.rows, self.cols, self._smat)
def LDLdecomposition(self):
"""
Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
symmetric, positive-definite and non-singular.
This method eliminates the use of square root and ensures that all
the diagonal entries of L are 1.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T == A
True
"""
from sympy.core.numbers import nan, oo
if not self.is_symmetric():
raise ValueError('LDL decomposition applies only to '
'symmetric matrices.')
L, D = self.as_mutable()._LDL_sparse()
if L.has(nan) or L.has(oo) or D.has(nan) or D.has(oo):
raise ValueError('LDL decomposition applies only to '
'positive-definite matrices')
return self._new(L), self._new(D)
def liupc(self):
"""Liu's algorithm, for pre-determination of the Elimination Tree of
the given matrix, used in row-based symbolic Cholesky factorization.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.liupc()
([[0], [], [0], [1, 2]], [4, 3, 4, 4])
References
==========
Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
# Algorithm 2.4, p 17 of reference
# get the indices of the elements that are non-zero on or below diag
R = [[] for r in range(self.rows)]
for r, c, _ in self.row_list():
if c <= r:
R[r].append(c)
inf = len(R) # nothing will be this large
parent = [inf]*self.rows
virtual = [inf]*self.rows
for r in range(self.rows):
for c in R[r][:-1]:
while virtual[c] < r:
t = virtual[c]
virtual[c] = r
c = t
if virtual[c] == inf:
parent[c] = virtual[c] = r
return R, parent
def nnz(self):
"""Returns the number of non-zero elements in Matrix."""
return len(self._smat)
def row_list(self):
"""Returns a row-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.RL
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
See Also
========
sympy.matrices.sparse.MutableSparseMatrix.row_op
sympy.matrices.sparse.SparseMatrix.col_list
"""
return [tuple(k + (self[k],)) for k in
sorted(list(self._smat.keys()), key=lambda k: list(k))]
def row_structure_symbolic_cholesky(self):
"""Symbolic cholesky factorization, for pre-determination of the
non-zero structure of the Cholesky factororization.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.row_structure_symbolic_cholesky()
[[0], [], [0], [1, 2]]
References
==========
Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
R, parent = self.liupc()
inf = len(R) # this acts as infinity
Lrow = copy.deepcopy(R)
for k in range(self.rows):
for j in R[k]:
while j != inf and j != k:
Lrow[k].append(j)
j = parent[j]
Lrow[k] = list(sorted(set(Lrow[k])))
return Lrow
def scalar_multiply(self, scalar):
"Scalar element-wise multiplication"
M = self.zeros(*self.shape)
if scalar:
for i in self._smat:
v = scalar*self._smat[i]
if v:
M._smat[i] = v
else:
M._smat.pop(i, None)
return M
def solve_least_squares(self, rhs, method='LDL'):
"""Return the least-square fit to the data.
By default the cholesky_solve routine is used (method='CH'); other
methods of matrix inversion can be used. To find out which are
available, see the docstring of the .inv() method.
Examples
========
>>> from sympy.matrices import SparseMatrix, Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = SparseMatrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
t = self.T
return (t*self).inv(method=method)*t*rhs
def solve(self, rhs, method='LDL'):
"""Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
"""
if not self.is_square:
if self.rows < self.cols:
raise ValueError('Under-determined system.')
elif self.rows > self.cols:
raise ValueError('For over-determined system, M, having '
'more rows than columns, try M.solve_least_squares(rhs).')
else:
return self.inv(method=method)*rhs
RL = property(row_list, None, None, "Alternate faster representation")
CL = property(col_list, None, None, "Alternate faster representation")
class MutableSparseMatrix(SparseMatrix, MatrixBase):
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args)
def __setitem__(self, key, value):
"""Assign value to position designated by key.
Examples
========
>>> from sympy.matrices import SparseMatrix, ones
>>> M = SparseMatrix(2, 2, {})
>>> M[1] = 1; M
Matrix([
[0, 1],
[0, 0]])
>>> M[1, 1] = 2; M
Matrix([
[0, 1],
[0, 2]])
>>> M = SparseMatrix(2, 2, {})
>>> M[:, 1] = [1, 1]; M
Matrix([
[0, 1],
[0, 1]])
>>> M = SparseMatrix(2, 2, {})
>>> M[1, :] = [[1, 1]]; M
Matrix([
[0, 0],
[1, 1]])
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = SparseMatrix(4, 4, {})
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
if value:
self._smat[i, j] = value
elif (i, j) in self._smat:
del self._smat[i, j]
def as_mutable(self):
return self.copy()
__hash__ = None
def col_del(self, k):
"""Delete the given column of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix([[0, 0], [0, 1]])
>>> M
Matrix([
[0, 0],
[0, 1]])
>>> M.col_del(0)
>>> M
Matrix([
[0],
[1]])
See Also
========
row_del
"""
newD = {}
k = a2idx(k, self.cols)
for (i, j) in self._smat:
if j == k:
pass
elif j > k:
newD[i, j - 1] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.cols -= 1
def col_join(self, other):
"""Returns B augmented beneath A (row-wise joining)::
[A]
[B]
Examples
========
>>> from sympy import SparseMatrix, Matrix, ones
>>> A = SparseMatrix(ones(3))
>>> A
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
>>> B = SparseMatrix.eye(3)
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.col_join(B); C
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C == A.col_join(Matrix(B))
True
Joining along columns is the same as appending rows at the end
of the matrix:
>>> C == A.row_insert(A.rows, Matrix(B))
True
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
A, B = self, other
if not A.cols == B.cols:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[i + A.rows, j] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[i + A.rows, j] = v
A.rows += B.rows
return A
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i) for i in range(self.rows).
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[1, 0] = -1
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[ 2, 4, 0],
[-1, 0, 0],
[ 0, 0, 2]])
"""
for i in range(self.rows):
v = self._smat.get((i, j), S.Zero)
fv = f(v, i)
if fv:
self._smat[i, j] = fv
elif v:
self._smat.pop((i, j))
def col_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.col_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[2, 0, 1]])
"""
if i > j:
i, j = j, i
rows = self.col_list()
temp = []
for ii, jj, v in rows:
if jj == i:
self._smat.pop((ii, jj))
temp.append((ii, v))
elif jj == j:
self._smat.pop((ii, jj))
self._smat[ii, i] = v
elif jj > j:
break
for k, v in temp:
self._smat[k, j] = v
def copyin_list(self, key, value):
if not is_sequence(value):
raise TypeError("`value` must be of type list or tuple.")
self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
# include this here because it's not part of BaseMatrix
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(
"The Matrix `value` doesn't have the same dimensions "
"as the in sub-Matrix given by `key`.")
if not isinstance(value, SparseMatrix):
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
else:
if (rhi - rlo)*(chi - clo) < len(self):
for i in range(rlo, rhi):
for j in range(clo, chi):
self._smat.pop((i, j), None)
else:
for i, j, v in self.row_list():
if rlo <= i < rhi and clo <= j < chi:
self._smat.pop((i, j), None)
for k, v in value._smat.items():
i, j = k
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill self with the given value.
Notes
=====
Unless many values are going to be deleted (i.e. set to zero)
this will create a matrix that is slower than a dense matrix in
operations.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.zeros(3); M
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> M.fill(1); M
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
"""
if not value:
self._smat = {}
else:
v = self._sympify(value)
self._smat = {(i, j): v
for i in range(self.rows) for j in range(self.cols)}
def row_del(self, k):
"""Delete the given row of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix([[0, 0], [0, 1]])
>>> M
Matrix([
[0, 0],
[0, 1]])
>>> M.row_del(0)
>>> M
Matrix([[0, 1]])
See Also
========
col_del
"""
newD = {}
k = a2idx(k, self.rows)
for (i, j) in self._smat:
if i == k:
pass
elif i > k:
newD[i - 1, j] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.rows -= 1
def row_join(self, other):
"""Returns B appended after A (column-wise augmenting)::
[A B]
Examples
========
>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0)))
>>> A
Matrix([
[1, 0, 1],
[0, 1, 0],
[1, 1, 0]])
>>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.row_join(B); C
Matrix([
[1, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[1, 1, 0, 0, 0, 1]])
>>> C == A.row_join(Matrix(B))
True
Joining at row ends is the same as appending columns at the end
of the matrix:
>>> C == A.col_insert(A.cols, B)
True
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
A, B = self, other
if not A.rows == B.rows:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[i, j + A.cols] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[i, j + A.cols] = v
A.cols += B.cols
return A
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
zip_row_op
col_op
"""
for j in range(self.cols):
v = self._smat.get((i, j), S.Zero)
fv = f(v, j)
if fv:
self._smat[i, j] = fv
elif v:
self._smat.pop((i, j))
def row_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.row_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[0, 2, 1]])
"""
if i > j:
i, j = j, i
rows = self.row_list()
temp = []
for ii, jj, v in rows:
if ii == i:
self._smat.pop((ii, jj))
temp.append((jj, v))
elif ii == j:
self._smat.pop((ii, jj))
self._smat[i, jj] = v
elif ii > j:
break
for k, v in temp:
self._smat[j, k] = v
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
row_op
col_op
"""
self.row_op(i, lambda v, j: f(v, self[k, j]))
|
9048d60250f1f9ee0f39e6643b8d24000f4958ac62128fbeb062573e1998bf74 | from __future__ import division, print_function
from types import FunctionType
from mpmath.libmp.libmpf import prec_to_dps
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.compatibility import (
Callable, NotIterable, as_int, default_sort_key, is_sequence, range,
reduce, string_types)
from sympy.core.decorators import deprecated
from sympy.core.expr import Expr
from sympy.core.function import expand_mul
from sympy.core.logic import fuzzy_and, fuzzy_or
from sympy.core.numbers import Float, Integer, mod_inverse
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, _uniquely_named_symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions import exp, factorial, log
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.polys import PurePoly, cancel, roots
from sympy.printing import sstr
from sympy.simplify import nsimplify
from sympy.simplify import simplify as _simplify, dotprodsimp as _dotprodsimp
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten, numbered_symbols
from sympy.utilities.misc import filldedent
from .common import (
MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError,
ShapeError, NonPositiveDefiniteMatrixError)
def _iszero(x):
"""Returns True if x is zero."""
return getattr(x, 'is_zero', None)
def _is_zero_after_expand_mul(x):
"""Tests by expand_mul only, suitable for polynomials and rational
functions."""
return expand_mul(x) == 0
class DeferredVector(Symbol, NotIterable):
"""A vector whose components are deferred (e.g. for use with lambdify)
Examples
========
>>> from sympy import DeferredVector, lambdify
>>> X = DeferredVector( 'X' )
>>> X
X
>>> expr = (X[0] + 2, X[2] + 3)
>>> func = lambdify( X, expr)
>>> func( [1, 2, 3] )
(3, 6)
"""
def __getitem__(self, i):
if i == -0:
i = 0
if i < 0:
raise IndexError('DeferredVector index out of range')
component_name = '%s[%d]' % (self.name, i)
return Symbol(component_name)
def __str__(self):
return sstr(self)
def __repr__(self):
return "DeferredVector('%s')" % self.name
class MatrixDeterminant(MatrixCommon):
"""Provides basic matrix determinant operations.
Should not be instantiated directly."""
def _eval_berkowitz_toeplitz_matrix(self, dotprodsimp=None):
"""Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
corresponding to ``self`` and A is the first principal submatrix.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
# the 0 x 0 case is trivial
if self.rows == 0 and self.cols == 0:
return self._new(1,1, [self.one])
#
# Partition self = [ a_11 R ]
# [ C A ]
#
a, R = self[0,0], self[0, 1:]
C, A = self[1:, 0], self[1:,1:]
#
# The Toeplitz matrix looks like
#
# [ 1 ]
# [ -a 1 ]
# [ -RC -a 1 ]
# [ -RAC -RC -a 1 ]
# [ -RA**2C -RAC -RC -a 1 ]
# etc.
# Compute the diagonal entries.
# Because multiplying matrix times vector is so much
# more efficient than matrix times matrix, recursively
# compute -R * A**n * C.
diags = [C]
for i in range(self.rows - 2):
diags.append(A.multiply(diags[i], dotprodsimp=dotprodsimp))
diags = [(-R).multiply(d, dotprodsimp=dotprodsimp)[0, 0] for d in diags]
diags = [self.one, -a] + diags
def entry(i,j):
if j > i:
return self.zero
return diags[i - j]
toeplitz = self._new(self.cols + 1, self.rows, entry)
return (A, toeplitz)
def _eval_berkowitz_vector(self, dotprodsimp=None):
""" Run the Berkowitz algorithm and return a vector whose entries
are the coefficients of the characteristic polynomial of ``self``.
Given N x N matrix, efficiently compute
coefficients of characteristic polynomials of ``self``
without division in the ground domain.
This method is particularly useful for computing determinant,
principal minors and characteristic polynomial when ``self``
has complicated coefficients e.g. polynomials. Semi-direct
usage of this algorithm is also important in computing
efficiently sub-resultant PRS.
Assuming that M is a square matrix of dimension N x N and
I is N x N identity matrix, then the Berkowitz vector is
an N x 1 vector whose entries are coefficients of the
polynomial
charpoly(M) = det(t*I - M)
As a consequence, all polynomials generated by Berkowitz
algorithm are monic.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is
used during matrix multiplications to control expression blowup
and thus speed up calculation.
For more information on the implemented algorithm refer to:
[1] S.J. Berkowitz, On computing the determinant in small
parallel time using a small number of processors, ACM,
Information Processing Letters 18, 1984, pp. 147-150
[2] M. Keber, Division-Free computation of sub-resultants
using Bezout matrices, Tech. Report MPI-I-2006-1-006,
Saarbrucken, 2006
"""
# handle the trivial cases
if self.rows == 0 and self.cols == 0:
return self._new(1, 1, [self.one])
elif self.rows == 1 and self.cols == 1:
return self._new(2, 1, [self.one, -self[0,0]])
submat, toeplitz = self._eval_berkowitz_toeplitz_matrix(dotprodsimp=dotprodsimp)
return toeplitz.multiply(submat._eval_berkowitz_vector(dotprodsimp=dotprodsimp),
dotprodsimp=dotprodsimp)
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul,
dotprodsimp=None):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
"""
# Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
# thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
def bareiss(mat, cumm=1):
if mat.rows == 0:
return mat.one
elif mat.rows == 1:
return mat[0, 0]
# find a pivot and extract the remaining matrix
# With the default iszerofunc, _find_reasonable_pivot slows down
# the computation by the factor of 2.5 in one test.
# Relevant issues: #10279 and #13877.
pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0],
iszerofunc=iszerofunc)
if pivot_pos is None:
return mat.zero
# if we have a valid pivot, we'll do a "row swap", so keep the
# sign of the det
sign = (-1) ** (pivot_pos % 2)
# we want every row but the pivot row and every column
rows = list(i for i in range(mat.rows) if i != pivot_pos)
cols = list(range(mat.cols))
tmp_mat = mat.extract(rows, cols)
def entry(i, j):
ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
if dotprodsimp:
return _dotprodsimp(ret)
elif not ret.is_Atom:
return cancel(ret)
return ret
return sign*bareiss(self._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)
return bareiss(self)
def _eval_det_berkowitz(self, dotprodsimp=None):
""" Use the Berkowitz algorithm to compute the determinant.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
berk_vector = self._eval_berkowitz_vector(dotprodsimp=dotprodsimp)
return (-1)**(len(berk_vector) - 1) * berk_vector[-1]
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None, dotprodsimp=None):
""" Computes the determinant of a matrix from its LU decomposition.
This function uses the LU decomposition computed by
LUDecomposition_Simple().
The keyword arguments iszerofunc and simpfunc are passed to
LUDecomposition_Simple().
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
if self.rows == 0:
return self.one
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
lu, row_swaps = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=None,
dotprodsimp=dotprodsimp)
# P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
# Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
# P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
# LUdecomposition_Simple() returns a list of row exchange index pairs, rather
# than a permutation matrix, but det(P) = (-1)**len(row_swaps).
# Avoid forming the potentially time consuming product of U's diagonal entries
# if the product is zero.
# Bottom right entry of U is 0 => det(A) = 0.
# It may be impossible to determine if this entry of U is zero when it is symbolic.
if iszerofunc(lu[lu.rows-1, lu.rows-1]):
return self.zero
# Compute det(P)
det = -self.one if len(row_swaps)%2 else self.one
# Compute det(U) by calculating the product of U's diagonal entries.
# The upper triangular portion of lu is the upper triangular portion of the
# U factor in the LU decomposition.
for k in range(lu.rows):
det *= lu[k, k]
# return det(P)*det(U)
return det
def _eval_determinant(self):
"""Assumed to exist by matrix expressions; If we subclass
MatrixDeterminant, we can fully evaluate determinants."""
return self.det()
def adjugate(self, method="berkowitz"):
"""Returns the adjugate, or classical adjoint, of
a matrix. That is, the transpose of the matrix of cofactors.
https://en.wikipedia.org/wiki/Adjugate
See Also
========
cofactor_matrix
sympy.matrices.common.MatrixCommon.transpose
"""
return self.cofactor_matrix(method).transpose()
def charpoly(self, x='lambda', simplify=_simplify, dotprodsimp=None):
"""Computes characteristic polynomial det(x*I - self) where I is
the identity matrix.
A PurePoly is returned, so using different variables for ``x`` does
not affect the comparison or the polynomials:
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> A = Matrix([[1, 3], [2, 0]])
>>> A.charpoly(x) == A.charpoly(y)
True
Specifying ``x`` is optional; a symbol named ``lambda`` is used by
default (which looks good when pretty-printed in unicode):
>>> A.charpoly().as_expr()
lambda**2 - lambda - 6
And if ``x`` clashes with an existing symbol, underscores will
be prepended to the name to make it unique:
>>> A = Matrix([[1, 2], [x, 0]])
>>> A.charpoly(x).as_expr()
_x**2 - _x - 2*x
Whether you pass a symbol or not, the generator can be obtained
with the gen attribute since it may not be the same as the symbol
that was passed:
>>> A.charpoly(x).gen
_x
>>> A.charpoly(x).gen == x
False
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
to control expression blowup during matrix multiplication. If this
is true then the simplify function is not used.
Notes
=====
The Samuelson-Berkowitz algorithm is used to compute
the characteristic polynomial efficiently and without any
division operations. Thus the characteristic polynomial over any
commutative ring without zero divisors can be computed.
See Also
========
det
"""
if not self.is_square:
raise NonSquareMatrixError()
if dotprodsimp:
simplify = lambda e: e
berk_vector = self._eval_berkowitz_vector(dotprodsimp=dotprodsimp)
x = _uniquely_named_symbol(x, berk_vector)
return PurePoly([simplify(a) for a in berk_vector], x)
def cofactor(self, i, j, method="berkowitz", dotprodsimp=None):
"""Calculate the cofactor of an element.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
to control expression blowup during matrix multiplication. If this
is true then the simplify function is not used.
See Also
========
cofactor_matrix
minor
minor_submatrix
"""
if not self.is_square or self.rows < 1:
raise NonSquareMatrixError()
return (-1)**((i + j) % 2) * self.minor(i, j, method, dotprodsimp=dotprodsimp)
def cofactor_matrix(self, method="berkowitz", dotprodsimp=None):
"""Return a matrix containing the cofactor of each element.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
to control expression blowup during matrix multiplication. If this
is true then the simplify function is not used.
See Also
========
cofactor
minor
minor_submatrix
adjugate
"""
if not self.is_square or self.rows < 1:
raise NonSquareMatrixError()
return self._new(self.rows, self.cols,
lambda i, j: self.cofactor(i, j, method, dotprodsimp=dotprodsimp))
def det(self, method="bareiss", iszerofunc=None, dotprodsimp=None):
"""Computes the determinant of a matrix.
Parameters
==========
method : string, optional
Specifies the algorithm used for computing the matrix determinant.
If the matrix is at most 3x3, a hard-coded formula is used and the
specified method is ignored. Otherwise, it defaults to
``'bareiss'``.
If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
be used.
If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.
Otherwise, if it is set to ``'lu'``, LU decomposition will be used.
.. note::
For backward compatibility, legacy keys like "bareis" and
"det_lu" can still be used to indicate the corresponding
methods.
And the keys are also case-insensitive for now. However, it is
suggested to use the precise keys for specifying the method.
iszerofunc : FunctionType or None, optional
If it is set to ``None``, it will be defaulted to ``_iszero`` if the
method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
the method is set to ``'lu'``.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
tested as non-zero, and also ``None`` if it is undecidable.
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
Returns
=======
det : Basic
Result of determinant.
Raises
======
ValueError
If unrecognized keys are given for ``method`` or ``iszerofunc``.
NonSquareMatrixError
If attempted to calculate determinant from a non-square matrix.
"""
# sanitize `method`
method = method.lower()
if method == "bareis":
method = "bareiss"
if method == "det_lu":
method = "lu"
if method not in ("bareiss", "berkowitz", "lu"):
raise ValueError("Determinant method '%s' unrecognized" % method)
if iszerofunc is None:
if method == "bareiss":
iszerofunc = _is_zero_after_expand_mul
elif method == "lu":
iszerofunc = _iszero
elif not isinstance(iszerofunc, FunctionType):
raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)
# if methods were made internal and all determinant calculations
# passed through here, then these lines could be factored out of
# the method routines
if not self.is_square:
raise NonSquareMatrixError()
n = self.rows
if n == 0:
return self.one
elif n == 1:
return self[0,0]
elif n == 2:
m = self[0, 0] * self[1, 1] - self[0, 1] * self[1, 0]
return _dotprodsimp(m) if dotprodsimp else m
elif n == 3:
m = (self[0, 0] * self[1, 1] * self[2, 2]
+ self[0, 1] * self[1, 2] * self[2, 0]
+ self[0, 2] * self[1, 0] * self[2, 1]
- self[0, 2] * self[1, 1] * self[2, 0]
- self[0, 0] * self[1, 2] * self[2, 1]
- self[0, 1] * self[1, 0] * self[2, 2])
return _dotprodsimp(m) if dotprodsimp else m
if method == "bareiss":
return self._eval_det_bareiss(iszerofunc=iszerofunc, dotprodsimp=dotprodsimp)
elif method == "berkowitz":
return self._eval_det_berkowitz(dotprodsimp=dotprodsimp)
elif method == "lu":
return self._eval_det_lu(iszerofunc=iszerofunc, dotprodsimp=dotprodsimp)
def minor(self, i, j, method="berkowitz", dotprodsimp=None):
"""Return the (i,j) minor of ``self``. That is,
return the determinant of the matrix obtained by deleting
the `i`th row and `j`th column from ``self``.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
See Also
========
minor_submatrix
cofactor
det
"""
if not self.is_square or self.rows < 1:
raise NonSquareMatrixError()
return self.minor_submatrix(i, j).det(method=method, dotprodsimp=dotprodsimp)
def minor_submatrix(self, i, j):
"""Return the submatrix obtained by removing the `i`th row
and `j`th column from ``self``.
See Also
========
minor
cofactor
"""
if i < 0:
i += self.rows
if j < 0:
j += self.cols
if not 0 <= i < self.rows or not 0 <= j < self.cols:
raise ValueError("`i` and `j` must satisfy 0 <= i < ``self.rows`` "
"(%d)" % self.rows + "and 0 <= j < ``self.cols`` (%d)." % self.cols)
rows = [a for a in range(self.rows) if a != i]
cols = [a for a in range(self.cols) if a != j]
return self.extract(rows, cols)
class MatrixReductions(MatrixDeterminant):
"""Provides basic matrix row/column operations.
Should not be instantiated directly."""
def _eval_col_op_swap(self, col1, col2):
def entry(i, j):
if j == col1:
return self[i, col2]
elif j == col2:
return self[i, col1]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_multiply_col_by_const(self, col, k):
def entry(i, j):
if j == col:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
def entry(i, j):
if j == col:
return self[i, j] + k * self[i, col2]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_swap(self, row1, row2):
def entry(i, j):
if i == row1:
return self[row2, j]
elif i == row2:
return self[row1, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_multiply_row_by_const(self, row, k):
def entry(i, j):
if i == row:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
def entry(i, j):
if i == row:
return self[i, j] + k * self[row2, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_echelon_form(self, iszerofunc, simpfunc, dotprodsimp=None):
"""Returns (mat, swaps) where ``mat`` is a row-equivalent matrix
in echelon form and ``swaps`` is a list of row-swaps performed."""
reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc,
normalize_last=True,
normalize=False,
zero_above=False,
dotprodsimp=dotprodsimp)
return reduced, pivot_cols, swaps
def _eval_is_echelon(self, iszerofunc):
if self.rows <= 0 or self.cols <= 0:
return True
zeros_below = all(iszerofunc(t) for t in self[1:, 0])
if iszerofunc(self[0, 0]):
return zeros_below and self[:, 1:]._eval_is_echelon(iszerofunc)
return zeros_below and self[1:, 1:]._eval_is_echelon(iszerofunc)
def _eval_rref(self, iszerofunc, simpfunc, normalize_last=True, dotprodsimp=None):
reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc,
normalize_last, normalize=True,
zero_above=True,
dotprodsimp=dotprodsimp)
return reduced, pivot_cols
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
"""Validate the arguments for a row/column operation. ``error_str``
can be one of "row" or "col" depending on the arguments being parsed."""
if op not in ["n->kn", "n<->m", "n->n+km"]:
raise ValueError("Unknown {} operation '{}'. Valid col operations "
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))
# define self_col according to error_str
self_cols = self.cols if error_str == 'col' else self.rows
# normalize and validate the arguments
if op == "n->kn":
col = col if col is not None else col1
if col is None or k is None:
raise ValueError("For a {0} operation 'n->kn' you must provide the "
"kwargs `{0}` and `k`".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if op == "n<->m":
# we need two cols to swap. It doesn't matter
# how they were specified, so gather them together and
# remove `None`
cols = set((col, k, col1, col2)).difference([None])
if len(cols) > 2:
# maybe the user left `k` by mistake?
cols = set((col, col1, col2)).difference([None])
if len(cols) != 2:
raise ValueError("For a {0} operation 'n<->m' you must provide the "
"kwargs `{0}1` and `{0}2`".format(error_str))
col1, col2 = cols
if not 0 <= col1 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
if op == "n->n+km":
col = col1 if col is None else col
col2 = col1 if col2 is None else col2
if col is None or col2 is None or k is None:
raise ValueError("For a {0} operation 'n->n+km' you must provide the "
"kwargs `{0}`, `k`, and `{0}2`".format(error_str))
if col == col2:
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
"be different.".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
return op, col, k, col1, col2
def _permute_complexity_right(self, iszerofunc):
"""Permute columns with complicated elements as
far right as they can go. Since the ``sympy`` row reduction
algorithms start on the left, having complexity right-shifted
speeds things up.
Returns a tuple (mat, perm) where perm is a permutation
of the columns to perform to shift the complex columns right, and mat
is the permuted matrix."""
def complexity(i):
# the complexity of a column will be judged by how many
# element's zero-ness cannot be determined
return sum(1 if iszerofunc(e) is None else 0 for e in self[:, i])
complex = [(complexity(i), i) for i in range(self.cols)]
perm = [j for (i, j) in sorted(complex)]
return (self.permute(perm, orientation='cols'), perm)
def _row_reduce(self, iszerofunc, simpfunc, normalize_last=True,
normalize=True, zero_above=True, dotprodsimp=None):
"""Row reduce ``self`` and return a tuple (rref_matrix,
pivot_cols, swaps) where pivot_cols are the pivot columns
and swaps are any row swaps that were used in the process
of row reduction.
Parameters
==========
iszerofunc : determines if an entry can be used as a pivot
simpfunc : used to simplify elements and test if they are
zero if ``iszerofunc`` returns `None`
normalize_last : indicates where all row reduction should
happen in a fraction-free manner and then the rows are
normalized (so that the pivots are 1), or whether
rows should be normalized along the way (like the naive
row reduction algorithm)
normalize : whether pivot rows should be normalized so that
the pivot value is 1
zero_above : whether entries above the pivot should be zeroed.
If ``zero_above=False``, an echelon matrix will be returned.
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
rows, cols = self.rows, self.cols
mat = list(self)
def get_col(i):
return mat[i::cols]
def row_swap(i, j):
mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \
mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols]
def cross_cancel(a, i, b, j):
"""Does the row op row[i] = a*row[i] - b*row[j]"""
q = (j - i)*cols
for p in range(i*cols, (i + 1)*cols):
m = a*mat[p] - b*mat[p + q]
mat[p] = _dotprodsimp(m) if dotprodsimp else m
piv_row, piv_col = 0, 0
pivot_cols = []
swaps = []
# use a fraction free method to zero above and below each pivot
while piv_col < cols and piv_row < rows:
pivot_offset, pivot_val, \
assumed_nonzero, newly_determined = _find_reasonable_pivot(
get_col(piv_col)[piv_row:], iszerofunc, simpfunc)
# _find_reasonable_pivot may have simplified some things
# in the process. Let's not let them go to waste
for (offset, val) in newly_determined:
offset += piv_row
mat[offset*cols + piv_col] = val
if pivot_offset is None:
piv_col += 1
continue
pivot_cols.append(piv_col)
if pivot_offset != 0:
row_swap(piv_row, pivot_offset + piv_row)
swaps.append((piv_row, pivot_offset + piv_row))
# if we aren't normalizing last, we normalize
# before we zero the other rows
if normalize_last is False:
i, j = piv_row, piv_col
mat[i*cols + j] = self.one
for p in range(i*cols + j + 1, (i + 1)*cols):
m = mat[p] / pivot_val
mat[p] = _dotprodsimp(m) if dotprodsimp else m
# after normalizing, the pivot value is 1
pivot_val = self.one
# zero above and below the pivot
for row in range(rows):
# don't zero our current row
if row == piv_row:
continue
# don't zero above the pivot unless we're told.
if zero_above is False and row < piv_row:
continue
# if we're already a zero, don't do anything
val = mat[row*cols + piv_col]
if iszerofunc(val):
continue
cross_cancel(pivot_val, row, val, piv_row)
piv_row += 1
# normalize each row
if normalize_last is True and normalize is True:
for piv_i, piv_j in enumerate(pivot_cols):
pivot_val = mat[piv_i*cols + piv_j]
mat[piv_i*cols + piv_j] = self.one
for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols):
m = mat[p] / pivot_val
mat[p] = _dotprodsimp(m) if dotprodsimp else m
return self._new(self.rows, self.cols, mat), tuple(pivot_cols), tuple(swaps)
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False,
dotprodsimp=None):
"""Returns a matrix row-equivalent to ``self`` that is
in echelon form. Note that echelon form of a matrix
is *not* unique, however, properties like the row
space and the null space are preserved.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
mat, pivots, swaps = self._eval_echelon_form(iszerofunc, simpfunc,
dotprodsimp=dotprodsimp)
if with_pivots:
return mat, pivots
return mat
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
"""Performs the elementary column operation `op`.
`op` may be one of
* "n->kn" (column n goes to k*n)
* "n<->m" (swap column n and column m)
* "n->n+km" (column n goes to column n + k*column m)
Parameters
==========
op : string; the elementary row operation
col : the column to apply the column operation
k : the multiple to apply in the column operation
col1 : one column of a column swap
col2 : second column of a column swap or column "m" in the column operation
"n->n+km"
"""
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_col_op_multiply_col_by_const(col, k)
if op == "n<->m":
return self._eval_col_op_swap(col1, col2)
if op == "n->n+km":
return self._eval_col_op_add_multiple_to_other_col(col, k, col2)
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
"""Performs the elementary row operation `op`.
`op` may be one of
* "n->kn" (row n goes to k*n)
* "n<->m" (swap row n and row m)
* "n->n+km" (row n goes to row n + k*row m)
Parameters
==========
op : string; the elementary row operation
row : the row to apply the row operation
k : the multiple to apply in the row operation
row1 : one row of a row swap
row2 : second row of a row swap or row "m" in the row operation
"n->n+km"
"""
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_row_op_multiply_row_by_const(row, k)
if op == "n<->m":
return self._eval_row_op_swap(row1, row2)
if op == "n->n+km":
return self._eval_row_op_add_multiple_to_other_row(row, k, row2)
@property
def is_echelon(self, iszerofunc=_iszero):
"""Returns `True` if the matrix is in echelon form.
That is, all rows of zeros are at the bottom, and below
each leading non-zero in a row are exclusively zeros."""
return self._eval_is_echelon(iszerofunc)
def rank(self, iszerofunc=_iszero, simplify=False):
"""
Returns the rank of a matrix
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rank()
2
>>> n = Matrix(3, 3, range(1, 10))
>>> n.rank()
2
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
# for small matrices, we compute the rank explicitly
# if is_zero on elements doesn't answer the question
# for small matrices, we fall back to the full routine.
if self.rows <= 0 or self.cols <= 0:
return 0
if self.rows <= 1 or self.cols <= 1:
zeros = [iszerofunc(x) for x in self]
if False in zeros:
return 1
if self.rows == 2 and self.cols == 2:
zeros = [iszerofunc(x) for x in self]
if not False in zeros and not None in zeros:
return 0
det = self.det()
if iszerofunc(det) and False in zeros:
return 1
if iszerofunc(det) is False:
return 2
mat, _ = self._permute_complexity_right(iszerofunc=iszerofunc)
echelon_form, pivots, swaps = mat._eval_echelon_form(iszerofunc=iszerofunc, simpfunc=simpfunc)
return len(pivots)
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True,
normalize_last=True, dotprodsimp=None):
"""Return reduced row-echelon form of matrix and indices of pivot vars.
Parameters
==========
iszerofunc : Function
A function used for detecting whether an element can
act as a pivot. ``lambda x: x.is_zero`` is used by default.
simplify : Function
A function used to simplify elements when looking for a pivot.
By default SymPy's ``simplify`` is used.
pivots : True or False
If ``True``, a tuple containing the row-reduced matrix and a tuple
of pivot columns is returned. If ``False`` just the row-reduced
matrix is returned.
normalize_last : True or False
If ``True``, no pivots are normalized to `1` until after all
entries above and below each pivot are zeroed. This means the row
reduction algorithm is fraction free until the very last step.
If ``False``, the naive row reduction procedure is used where
each pivot is normalized to be `1` before row operations are
used to zero above and below the pivot.
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
Notes
=====
The default value of ``normalize_last=True`` can provide significant
speedup to row reduction, especially on matrices with symbols. However,
if you depend on the form row reduction algorithm leaves entries
of the matrix, set ``noramlize_last=False``
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rref()
(Matrix([
[1, 0],
[0, 1]]), (0, 1))
>>> rref_matrix, rref_pivots = m.rref()
>>> rref_matrix
Matrix([
[1, 0],
[0, 1]])
>>> rref_pivots
(0, 1)
"""
simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify
ret, pivot_cols = self._eval_rref(iszerofunc=iszerofunc,
simpfunc=simpfunc,
normalize_last=normalize_last,
dotprodsimp=dotprodsimp)
if pivots:
ret = (ret, pivot_cols)
return ret
class MatrixSubspaces(MatrixReductions):
"""Provides methods relating to the fundamental subspaces
of a matrix. Should not be instantiated directly."""
def columnspace(self, simplify=False, dotprodsimp=None):
"""Returns a list of vectors (Matrix objects) that span columnspace of ``self``
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.columnspace()
[Matrix([
[ 1],
[-2],
[ 3]]), Matrix([
[0],
[0],
[6]])]
See Also
========
nullspace
rowspace
"""
reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True,
dotprodsimp=dotprodsimp)
return [self.col(i) for i in pivots]
def nullspace(self, simplify=False, iszerofunc=_iszero, dotprodsimp=None):
"""Returns list of vectors (Matrix objects) that span nullspace of ``self``
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.nullspace()
[Matrix([
[-3],
[ 1],
[ 0]])]
See Also
========
columnspace
rowspace
"""
reduced, pivots = self.rref(iszerofunc=iszerofunc, simplify=simplify,
dotprodsimp=dotprodsimp)
free_vars = [i for i in range(self.cols) if i not in pivots]
basis = []
for free_var in free_vars:
# for each free variable, we will set it to 1 and all others
# to 0. Then, we will use back substitution to solve the system
vec = [self.zero]*self.cols
vec[free_var] = self.one
for piv_row, piv_col in enumerate(pivots):
vec[piv_col] -= reduced[piv_row, free_var]
basis.append(vec)
return [self._new(self.cols, 1, b) for b in basis]
def rowspace(self, simplify=False, dotprodsimp=None):
"""Returns a list of vectors that span the row space of ``self``.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True,
dotprodsimp=dotprodsimp)
return [reduced.row(i) for i in range(len(pivots))]
@classmethod
def orthogonalize(cls, *vecs, **kwargs):
"""Apply the Gram-Schmidt orthogonalization procedure
to vectors supplied in ``vecs``.
Parameters
==========
vecs
vectors to be made orthogonal
normalize : bool
If ``True``, return an orthonormal basis.
rankcheck : bool
If ``True``, the computation does not stop when encountering
linearly dependent vectors.
If ``False``, it will raise ``ValueError`` when any zero
or linearly dependent vectors are found.
Returns
=======
list
List of orthogonal (or orthonormal) basis vectors.
See Also
========
MatrixBase.QRdecomposition
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
normalize = kwargs.get('normalize', False)
rankcheck = kwargs.get('rankcheck', False)
def project(a, b):
return b * (a.dot(b, hermitian=True) / b.dot(b, hermitian=True))
def perp_to_subspace(vec, basis):
"""projects vec onto the subspace given
by the orthogonal basis ``basis``"""
components = [project(vec, b) for b in basis]
if len(basis) == 0:
return vec
return vec - reduce(lambda a, b: a + b, components)
ret = []
# make sure we start with a non-zero vector
vecs = list(vecs)
while len(vecs) > 0 and vecs[0].is_zero:
if rankcheck is False:
del vecs[0]
else:
raise ValueError(
"GramSchmidt: vector set not linearly independent")
for vec in vecs:
perp = perp_to_subspace(vec, ret)
if not perp.is_zero:
ret.append(perp)
elif rankcheck is True:
raise ValueError(
"GramSchmidt: vector set not linearly independent")
if normalize:
ret = [vec / vec.norm() for vec in ret]
return ret
class MatrixEigen(MatrixSubspaces):
"""Provides basic matrix eigenvalue/vector operations.
Should not be instantiated directly."""
def diagonalize(self, reals_only=False, sort=False, normalize=False,
dotprodsimp=None):
"""
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
Parameters
==========
reals_only : bool. Whether to throw an error if complex numbers are need
to diagonalize. (Default: False)
sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
normalize : bool. If True, normalize the columns of P. (Default: False)
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = m.diagonalize()
>>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>> P.inv() * m * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
See Also
========
is_diagonal
is_diagonalizable
"""
if not self.is_square:
raise NonSquareMatrixError()
is_diagonalizable, eigenvecs = self.is_diagonalizable_with_eigen(
reals_only=reals_only, dotprodsimp=dotprodsimp)
if not is_diagonalizable:
raise MatrixError("Matrix is not diagonalizable")
if sort:
eigenvecs = sorted(eigenvecs, key=default_sort_key)
p_cols, diag = [], []
for val, mult, basis in eigenvecs:
diag += [val] * mult
p_cols += basis
if normalize:
p_cols = [v / v.norm() for v in p_cols]
return self.hstack(*p_cols), self.diag(*diag)
def eigenvals(self, error_when_incomplete=True, dotprodsimp=None, **flags):
r"""Return eigenvalues using the Berkowitz agorithm to compute
the characteristic polynomial.
Parameters
==========
error_when_incomplete : bool, optional
If it is set to ``True``, it will raise an error if not all
eigenvalues are computed. This is caused by ``roots`` not returning
a full list of eigenvalues.
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
simplify : bool or function, optional
If it is set to ``True``, it attempts to return the most
simplified form of expressions returned by applying default
simplification method in every routine.
If it is set to ``False``, it will skip simplification in this
particular routine to save computation resources.
If a function is passed to, it will attempt to apply
the particular function as simplification method.
rational : bool, optional
If it is set to ``True``, every floating point numbers would be
replaced with rationals before computation. It can solve some
issues of ``roots`` routine not working well with floats.
multiple : bool, optional
If it is set to ``True``, the result will be in the form of a
list.
If it is set to ``False``, the result will be in the form of a
dictionary.
Returns
=======
eigs : list or dict
Eigenvalues of a matrix. The return format would be specified by
the key ``multiple``.
Raises
======
MatrixError
If not enough roots had got computed.
NonSquareMatrixError
If attempted to compute eigenvalues from a non-square matrix.
See Also
========
MatrixDeterminant.charpoly
eigenvects
Notes
=====
Eigenvalues of a matrix `A` can be computed by solving a matrix
equation `\det(A - \lambda I) = 0`
"""
simplify = flags.get('simplify', False) # Collect simplify flag before popped up, to reuse later in the routine.
multiple = flags.get('multiple', False) # Collect multiple flag to decide whether return as a dict or list.
rational = flags.pop('rational', True)
mat = self
if not mat:
return {}
if rational:
mat = mat.applyfunc(
lambda x: nsimplify(x, rational=True) if x.has(Float) else x)
if mat.is_upper or mat.is_lower:
if not self.is_square:
raise NonSquareMatrixError()
diagonal_entries = [mat[i, i] for i in range(mat.rows)]
if multiple:
eigs = diagonal_entries
else:
eigs = {}
for diagonal_entry in diagonal_entries:
if diagonal_entry not in eigs:
eigs[diagonal_entry] = 0
eigs[diagonal_entry] += 1
else:
flags.pop('simplify', None) # pop unsupported flag
if isinstance(simplify, FunctionType):
eigs = roots(mat.charpoly(x=Dummy('x'), simplify=simplify,
dotprodsimp=dotprodsimp), **flags)
else:
eigs = roots(mat.charpoly(x=Dummy('x'), dotprodsimp=dotprodsimp), **flags)
# make sure the algebraic multiplicity sums to the
# size of the matrix
if error_when_incomplete and (sum(eigs.values()) if
isinstance(eigs, dict) else len(eigs)) != self.cols:
raise MatrixError("Could not compute eigenvalues for {}".format(self))
# Since 'simplify' flag is unsupported in roots()
# simplify() function will be applied once at the end of the routine.
if not simplify:
return eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
# With 'multiple' flag set true, simplify() will be mapped for the list
# Otherwise, simplify() will be mapped for the keys of the dictionary
if not multiple:
return {simplify(key): value for key, value in eigs.items()}
else:
return [simplify(value) for value in eigs]
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero,
dotprodsimp=None, **flags):
"""Return list of triples (eigenval, multiplicity, eigenspace).
Parameters
==========
error_when_incomplete : bool, optional
Raise an error when not all eigenvalues are computed. This is
caused by ``roots`` not returning a full list of eigenvalues.
iszerofunc : function, optional
Specifies a zero testing function to be used in ``rref``.
Default value is ``_iszero``, which uses SymPy's naive and fast
default assumption handler.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
is tested as non-zero, and ``None`` if it is undecidable.
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
simplify : bool or function, optional
If ``True``, ``as_content_primitive()`` will be used to tidy up
normalization artifacts.
It will also be used by the ``nullspace`` routine.
chop : bool or positive number, optional
If the matrix contains any Floats, they will be changed to Rationals
for computation purposes, but the answers will be returned after
being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
When ``chop=True`` a default precision will be used; a number will
be interpreted as the desired level of precision.
Returns
=======
ret : [(eigenval, multiplicity, eigenspace), ...]
A ragged list containing tuples of data obtained by ``eigenvals``
and ``nullspace``.
``eigenspace`` is a list containing the ``eigenvector`` for each
eigenvalue.
``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.
Raises
======
NotImplementedError
If failed to compute nullspace.
See Also
========
eigenvals
MatrixSubspaces.nullspace
"""
simplify = flags.get('simplify', True)
if not isinstance(simplify, FunctionType):
simpfunc = _simplify if simplify else lambda x: x
primitive = flags.get('simplify', False)
chop = flags.pop('chop', False)
flags.pop('multiple', None) # remove this if it's there
mat = self
# roots doesn't like Floats, so replace them with Rationals
has_floats = self.has(Float)
if has_floats:
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
def eigenspace(eigenval):
"""Get a basis for the eigenspace for a particular eigenvalue"""
m = mat - self.eye(mat.rows) * eigenval
ret = m.nullspace(iszerofunc=iszerofunc, dotprodsimp=dotprodsimp)
# the nullspace for a real eigenvalue should be
# non-trivial. If we didn't find an eigenvector, try once
# more a little harder
if len(ret) == 0 and simplify:
ret = m.nullspace(iszerofunc=iszerofunc, simplify=True, dotprodsimp=dotprodsimp)
if len(ret) == 0:
raise NotImplementedError(
"Can't evaluate eigenvector for eigenvalue %s" % eigenval)
return ret
eigenvals = mat.eigenvals(rational=False,
error_when_incomplete=error_when_incomplete,
dotprodsimp=dotprodsimp,
**flags)
ret = [(val, mult, eigenspace(val)) for val, mult in
sorted(eigenvals.items(), key=default_sort_key)]
if primitive:
# if the primitive flag is set, get rid of any common
# integer denominators
def denom_clean(l):
from sympy import gcd
return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
if has_floats:
# if we had floats to start with, turn the eigenvectors to floats
ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret]
return ret
def is_diagonalizable_with_eigen(self, reals_only=False, dotprodsimp=None):
"""See is_diagonalizable. This function returns the bool along with the
eigenvectors to avoid calculating them again in functions like
``diagonalize``."""
if not self.is_square:
return False, []
eigenvecs = self.eigenvects(simplify=True, dotprodsimp=dotprodsimp)
for val, mult, basis in eigenvecs:
# if we have a complex eigenvalue
if reals_only and not val.is_real:
return False, eigenvecs
# if the geometric multiplicity doesn't equal the algebraic
if mult != len(basis):
return False, eigenvecs
return True, eigenvecs
def is_diagonalizable(self, reals_only=False, dotprodsimp=None, **kwargs):
"""Returns ``True`` if a matrix is diagonalizable.
Parameters
==========
reals_only : bool, optional
If ``True``, it tests whether the matrix can be diagonalized
without complex numbers. (Orthogonally diagonalizable)
If ``False``, it tests whether the matrix can be unitarily
diagonalizable.
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification
is used during matrix multiplications to control expression
blowup and thus speed up calculation.
Examples
========
Example of a diagonalizable matrix:
>>> from sympy import Matrix
>>> m = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
>>> m.is_diagonalizable()
True
Example of a non-diagonalizable matrix:
>>> m = Matrix([[0, 1], [0, 0]])
>>> m.is_diagonalizable()
False
Example of a unitarily diagonalizable, but not orthogonally
diagonalizable:
>>> m = Matrix([[0, 1], [-1, 0]])
>>> m.is_diagonalizable(reals_only=False)
True
>>> m.is_diagonalizable(reals_only=True)
False
See Also
========
is_diagonal
diagonalize
"""
if 'clear_cache' in kwargs:
SymPyDeprecationWarning(
feature='clear_cache',
deprecated_since_version=1.4,
issue=15887
).warn()
if 'clear_subproducts' in kwargs:
SymPyDeprecationWarning(
feature='clear_subproducts',
deprecated_since_version=1.4,
issue=15887
).warn()
if not self.is_square:
return False
if all(e.is_real for e in self) and self.is_symmetric():
return True
if all(e.is_complex for e in self) and self.is_hermitian \
and not reals_only:
return True
return self.is_diagonalizable_with_eigen(reals_only=reals_only,
dotprodsimp=dotprodsimp)[0]
def _eval_is_positive_definite(self, method="eigen"):
"""Algorithm dump for computing positive-definiteness of a
matrix.
Parameters
==========
method : str, optional
Specifies the method for computing positive-definiteness of
a matrix.
If ``'eigen'``, it computes the full eigenvalues and decides
if the matrix is positive-definite.
If ``'CH'``, it attempts computing the Cholesky
decomposition to detect the definitiveness.
If ``'LDL'``, it attempts computing the LDL
decomposition to detect the definitiveness.
"""
if self.is_hermitian:
if method == 'eigen':
eigen = self.eigenvals()
args = [x.is_positive for x in eigen.keys()]
return fuzzy_and(args)
elif method == 'CH':
try:
self.cholesky(hermitian=True)
except NonPositiveDefiniteMatrixError:
return False
return True
elif method == 'LDL':
try:
self.LDLdecomposition(hermitian=True)
except NonPositiveDefiniteMatrixError:
return False
return True
else:
raise NotImplementedError()
elif self.is_square:
M_H = (self + self.H) / 2
return M_H._eval_is_positive_definite(method=method)
def is_positive_definite(self):
return self._eval_is_positive_definite()
def is_positive_semidefinite(self):
if self.is_hermitian:
eigen = self.eigenvals()
args = [x.is_nonnegative for x in eigen.keys()]
return fuzzy_and(args)
elif self.is_square:
return ((self + self.H) / 2).is_positive_semidefinite
def is_negative_definite(self):
if self.is_hermitian:
eigen = self.eigenvals()
args = [x.is_negative for x in eigen.keys()]
return fuzzy_and(args)
elif self.is_square:
return ((self + self.H) / 2).is_negative_definite
def is_negative_semidefinite(self):
if self.is_hermitian:
eigen = self.eigenvals()
args = [x.is_nonpositive for x in eigen.keys()]
return fuzzy_and(args)
elif self.is_square:
return ((self + self.H) / 2).is_negative_semidefinite
def is_indefinite(self):
if self.is_hermitian:
eigen = self.eigenvals()
args1 = [x.is_positive for x in eigen.keys()]
any_positive = fuzzy_or(args1)
args2 = [x.is_negative for x in eigen.keys()]
any_negative = fuzzy_or(args2)
return fuzzy_and([any_positive, any_negative])
elif self.is_square:
return ((self + self.H) / 2).is_indefinite
_doc_positive_definite = \
r"""Finds out the definiteness of a matrix.
Examples
========
An example of numeric positive definite matrix:
>>> from sympy import Matrix
>>> A = Matrix([[1, -2], [-2, 6]])
>>> A.is_positive_definite
True
>>> A.is_positive_semidefinite
True
>>> A.is_negative_definite
False
>>> A.is_negative_semidefinite
False
>>> A.is_indefinite
False
An example of numeric negative definite matrix:
>>> A = Matrix([[-1, 2], [2, -6]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
False
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False
An example of numeric indefinite matrix:
>>> A = Matrix([[1, 2], [2, 1]])
>>> A.is_positive_definite
False
>>> A.is_positive_semidefinite
False
>>> A.is_negative_definite
True
>>> A.is_negative_semidefinite
True
>>> A.is_indefinite
False
Notes
=====
Definitiveness is not very commonly discussed for non-hermitian
matrices.
However, computing the definitiveness of a matrix can be
generalized over any real matrix by taking the symmetric part:
`A_S = 1/2 (A + A^{T})`
Or over any complex matrix by taking the hermitian part:
`A_H = 1/2 (A + A^{H})`
And computing the eigenvalues.
References
==========
.. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues
.. [2] http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
.. [3] Johnson, C. R. "Positive Definite Matrices." Amer.
Math. Monthly 77, 259-264 1970.
"""
is_positive_definite = \
property(fget=is_positive_definite, doc=_doc_positive_definite)
is_positive_semidefinite = \
property(fget=is_positive_semidefinite, doc=_doc_positive_definite)
is_negative_definite = \
property(fget=is_negative_definite, doc=_doc_positive_definite)
is_negative_semidefinite = \
property(fget=is_negative_semidefinite, doc=_doc_positive_definite)
is_indefinite = \
property(fget=is_indefinite, doc=_doc_positive_definite)
def jordan_form(self, calc_transform=True, **kwargs):
"""Return ``(P, J)`` where `J` is a Jordan block
matrix and `P` is a matrix such that
``self == P*J*P**-1``
Parameters
==========
calc_transform : bool
If ``False``, then only `J` is returned.
chop : bool
All matrices are converted to exact types when computing
eigenvalues and eigenvectors. As a result, there may be
approximation errors. If ``chop==True``, these errors
will be truncated.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
>>> P, J = m.jordan_form()
>>> J
Matrix([
[2, 1, 0, 0],
[0, 2, 0, 0],
[0, 0, 2, 1],
[0, 0, 0, 2]])
See Also
========
jordan_block
"""
if not self.is_square:
raise NonSquareMatrixError("Only square matrices have Jordan forms")
chop = kwargs.pop('chop', False)
mat = self
has_floats = self.has(Float)
if has_floats:
try:
max_prec = max(term._prec for term in self._mat if isinstance(term, Float))
except ValueError:
# if no term in the matrix is explicitly a Float calling max()
# will throw a error so setting max_prec to default value of 53
max_prec = 53
# setting minimum max_dps to 15 to prevent loss of precision in
# matrix containing non evaluated expressions
max_dps = max(prec_to_dps(max_prec), 15)
def restore_floats(*args):
"""If ``has_floats`` is `True`, cast all ``args`` as
matrices of floats."""
if has_floats:
args = [m.evalf(prec=max_dps, chop=chop) for m in args]
if len(args) == 1:
return args[0]
return args
# cache calculations for some speedup
mat_cache = {}
def eig_mat(val, pow):
"""Cache computations of ``(self - val*I)**pow`` for quick
retrieval"""
if (val, pow) in mat_cache:
return mat_cache[(val, pow)]
if (val, pow - 1) in mat_cache:
mat_cache[(val, pow)] = mat_cache[(val, pow - 1)] * mat_cache[(val, 1)]
else:
mat_cache[(val, pow)] = (mat - val*self.eye(self.rows))**pow
return mat_cache[(val, pow)]
# helper functions
def nullity_chain(val, algebraic_multiplicity):
"""Calculate the sequence [0, nullity(E), nullity(E**2), ...]
until it is constant where ``E = self - val*I``"""
# mat.rank() is faster than computing the null space,
# so use the rank-nullity theorem
cols = self.cols
ret = [0]
nullity = cols - eig_mat(val, 1).rank()
i = 2
while nullity != ret[-1]:
ret.append(nullity)
if nullity == algebraic_multiplicity:
break
nullity = cols - eig_mat(val, i).rank()
i += 1
# Due to issues like #7146 and #15872, SymPy sometimes
# gives the wrong rank. In this case, raise an error
# instead of returning an incorrect matrix
if nullity < ret[-1] or nullity > algebraic_multiplicity:
raise MatrixError(
"SymPy had encountered an inconsistent "
"result while computing Jordan block: "
"{}".format(self))
return ret
def blocks_from_nullity_chain(d):
"""Return a list of the size of each Jordan block.
If d_n is the nullity of E**n, then the number
of Jordan blocks of size n is
2*d_n - d_(n-1) - d_(n+1)"""
# d[0] is always the number of columns, so skip past it
mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
# d is assumed to plateau with "d[ len(d) ] == d[-1]", so
# 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
return mid + end
def pick_vec(small_basis, big_basis):
"""Picks a vector from big_basis that isn't in
the subspace spanned by small_basis"""
if len(small_basis) == 0:
return big_basis[0]
for v in big_basis:
_, pivots = self.hstack(*(small_basis + [v])).echelon_form(with_pivots=True)
if pivots[-1] == len(small_basis):
return v
# roots doesn't like Floats, so replace them with Rationals
if has_floats:
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
# first calculate the jordan block structure
eigs = mat.eigenvals()
# make sure that we found all the roots by counting
# the algebraic multiplicity
if sum(m for m in eigs.values()) != mat.cols:
raise MatrixError("Could not compute eigenvalues for {}".format(mat))
# most matrices have distinct eigenvalues
# and so are diagonalizable. In this case, don't
# do extra work!
if len(eigs.keys()) == mat.cols:
blocks = list(sorted(eigs.keys(), key=default_sort_key))
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks]
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
block_structure = []
for eig in sorted(eigs.keys(), key=default_sort_key):
algebraic_multiplicity = eigs[eig]
chain = nullity_chain(eig, algebraic_multiplicity)
block_sizes = blocks_from_nullity_chain(chain)
# if block_sizes == [a, b, c, ...], then the number of
# Jordan blocks of size 1 is a, of size 2 is b, etc.
# create an array that has (eig, block_size) with one
# entry for each block
size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
# we expect larger Jordan blocks to come earlier
size_nums.reverse()
block_structure.extend(
(eig, size) for size, num in size_nums for _ in range(num))
jordan_form_size = sum(size for eig, size in block_structure)
if jordan_form_size != self.rows:
raise MatrixError(
"SymPy had encountered an inconsistent result while "
"computing Jordan block. : {}".format(self))
blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
# For each generalized eigenspace, calculate a basis.
# We start by looking for a vector in null( (A - eig*I)**n )
# which isn't in null( (A - eig*I)**(n-1) ) where n is
# the size of the Jordan block
#
# Ideally we'd just loop through block_structure and
# compute each generalized eigenspace. However, this
# causes a lot of unneeded computation. Instead, we
# go through the eigenvalues separately, since we know
# their generalized eigenspaces must have bases that
# are linearly independent.
jordan_basis = []
for eig in sorted(eigs.keys(), key=default_sort_key):
eig_basis = []
for block_eig, size in block_structure:
if block_eig != eig:
continue
null_big = (eig_mat(eig, size)).nullspace()
null_small = (eig_mat(eig, size - 1)).nullspace()
# we want to pick something that is in the big basis
# and not the small, but also something that is independent
# of any other generalized eigenvectors from a different
# generalized eigenspace sharing the same eigenvalue.
vec = pick_vec(null_small + eig_basis, null_big)
new_vecs = [(eig_mat(eig, i))*vec for i in range(size)]
eig_basis.extend(new_vecs)
jordan_basis.extend(reversed(new_vecs))
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
def left_eigenvects(self, **flags):
"""Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity,
basis) for the left eigenvectors. Options are the same as for
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
eigenvects().
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
>>> M.left_eigenvects()
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1, [Matrix([[1, 1, 1]])])]
"""
eigs = self.transpose().eigenvects(**flags)
return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
def singular_values(self):
"""Compute the singular values of a Matrix
Examples
========
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> A.singular_values()
[sqrt(x**2 + 1), 1, 0]
See Also
========
condition_number
"""
mat = self
if self.rows >= self.cols:
valmultpairs = (mat.H * mat).eigenvals()
else:
valmultpairs = (mat * mat.H).eigenvals()
# Expands result from eigenvals into a simple list
vals = []
for k, v in valmultpairs.items():
vals += [sqrt(k)] * v # dangerous! same k in several spots!
# Pad with zeros if singular values are computed in reverse way,
# to give consistent format.
if len(vals) < self.cols:
vals += [self.zero] * (self.cols - len(vals))
# sort them in descending order
vals.sort(reverse=True, key=default_sort_key)
return vals
class MatrixCalculus(MatrixCommon):
"""Provides calculus-related matrix operations."""
def diff(self, *args, **kwargs):
"""Calculate the derivative of each element in the matrix.
``args`` will be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
See Also
========
integrate
limit
"""
# XXX this should be handled here rather than in Derivative
from sympy import Derivative
kwargs.setdefault('evaluate', True)
deriv = Derivative(self, *args, evaluate=True)
if not isinstance(self, Basic):
return deriv.as_mutable()
else:
return deriv
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def _accept_eval_derivative(self, s):
return s._visit_eval_derivative_array(self)
def _visit_eval_derivative_scalar(self, base):
# Types are (base: scalar, self: matrix)
return self.applyfunc(lambda x: base.diff(x))
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: matrix)
from sympy import derive_by_array
return derive_by_array(base, self)
def integrate(self, *args):
"""Integrate each element of the matrix. ``args`` will
be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x, ))
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
See Also
========
limit
diff
"""
return self.applyfunc(lambda x: x.integrate(*args))
def jacobian(self, X):
"""Calculates the Jacobian matrix (derivative of a vector-valued function).
Parameters
==========
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n).
X : set of x_i's in order, it can be a list or a Matrix
Both ``self`` and X can be a row or a column matrix in any order
(i.e., jacobian() should always work).
Examples
========
>>> from sympy import sin, cos, Matrix
>>> from sympy.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
See Also
========
hessian
wronskian
"""
if not isinstance(X, MatrixBase):
X = self._new(X)
# Both X and ``self`` can be a row or a column matrix, so we need to make
# sure all valid combinations work, but everything else fails:
if self.shape[0] == 1:
m = self.shape[1]
elif self.shape[1] == 1:
m = self.shape[0]
else:
raise TypeError("``self`` must be a row or a column matrix")
if X.shape[0] == 1:
n = X.shape[1]
elif X.shape[1] == 1:
n = X.shape[0]
else:
raise TypeError("X must be a row or a column matrix")
# m is the number of functions and n is the number of variables
# computing the Jacobian is now easy:
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
def limit(self, *args):
"""Calculate the limit of each element in the matrix.
``args`` will be passed to the ``limit`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
See Also
========
integrate
diff
"""
return self.applyfunc(lambda x: x.limit(*args))
# https://github.com/sympy/sympy/pull/12854
class MatrixDeprecated(MatrixCommon):
"""A class to house deprecated matrix methods."""
def _legacy_array_dot(self, b):
"""Compatibility function for deprecated behavior of ``matrix.dot(vector)``
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if mat.cols == b.rows:
if b.cols != 1:
mat = mat.T
b = b.T
prod = flatten((mat * b).tolist())
return prod
if mat.cols == b.cols:
return mat.dot(b.T)
elif mat.rows == b.rows:
return mat.T.dot(b)
else:
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (
self.shape, b.shape))
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
return self.charpoly(x=x)
def berkowitz_det(self):
"""Computes determinant using Berkowitz method.
See Also
========
det
berkowitz
"""
return self.det(method='berkowitz')
def berkowitz_eigenvals(self, **flags):
"""Computes eigenvalues of a Matrix using Berkowitz method.
See Also
========
berkowitz
"""
return self.eigenvals(**flags)
def berkowitz_minors(self):
"""Computes principal minors using Berkowitz method.
See Also
========
berkowitz
"""
sign, minors = self.one, []
for poly in self.berkowitz():
minors.append(sign * poly[-1])
sign = -sign
return tuple(minors)
def berkowitz(self):
from sympy.matrices import zeros
berk = ((1,),)
if not self:
return berk
if not self.is_square:
raise NonSquareMatrixError()
A, N = self, self.rows
transforms = [0] * (N - 1)
for n in range(N, 1, -1):
T, k = zeros(n + 1, n), n - 1
R, C = -A[k, :k], A[:k, k]
A, a = A[:k, :k], -A[k, k]
items = [C]
for i in range(0, n - 2):
items.append(A * items[i])
for i, B in enumerate(items):
items[i] = (R * B)[0, 0]
items = [self.one, a] + items
for i in range(n):
T[i:, i] = items[:n - i + 1]
transforms[k - 1] = T
polys = [self._new([self.one, -A[0, 0]])]
for i, T in enumerate(transforms):
polys.append(T * polys[i])
return berk + tuple(map(tuple, polys))
def cofactorMatrix(self, method="berkowitz"):
return self.cofactor_matrix(method=method)
def det_bareis(self):
return self.det(method='bareiss')
def det_bareiss(self):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
berkowitz_det
"""
return self.det(method='bareiss')
def det_LU_decomposition(self):
"""Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself
fails. In particular, if the matrix has no inverse this method
will fail.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
det_bareiss
berkowitz_det
"""
return self.det(method='lu')
def jordan_cell(self, eigenval, n):
return self.jordan_block(size=n, eigenvalue=eigenval)
def jordan_cells(self, calc_transformation=True):
P, J = self.jordan_form()
return P, J.get_diag_blocks()
def minorEntry(self, i, j, method="berkowitz"):
return self.minor(i, j, method=method)
def minorMatrix(self, i, j):
return self.minor_submatrix(i, j)
def permuteBkwd(self, perm):
"""Permute the rows of the matrix with the given permutation in reverse."""
return self.permute_rows(perm, direction='backward')
def permuteFwd(self, perm):
"""Permute the rows of the matrix with the given permutation."""
return self.permute_rows(perm, direction='forward')
class MatrixBase(MatrixDeprecated,
MatrixCalculus,
MatrixEigen,
MatrixCommon):
"""Base class for matrix objects."""
# Added just for numpy compatibility
__array_priority__ = 11
is_Matrix = True
_class_priority = 3
_sympify = staticmethod(sympify)
zero = S.Zero
one = S.One
__hash__ = None # Mutable
# Defined here the same as on Basic.
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='plain')
return "$\\displaystyle %s$" % s
_repr_latex_orig = _repr_latex_
def __array__(self, dtype=object):
from .dense import matrix2numpy
return matrix2numpy(self, dtype=dtype)
def __getattr__(self, attr):
if attr in ('diff', 'integrate', 'limit'):
def doit(*args):
item_doit = lambda item: getattr(item, attr)(*args)
return self.applyfunc(item_doit)
return doit
else:
raise AttributeError(
"%s has no attribute %s." % (self.__class__.__name__, attr))
def __len__(self):
"""Return the number of elements of ``self``.
Implemented mainly so bool(Matrix()) == False.
"""
return self.rows * self.cols
def __mathml__(self):
mml = ""
for i in range(self.rows):
mml += "<matrixrow>"
for j in range(self.cols):
mml += self[i, j].__mathml__()
mml += "</matrixrow>"
return "<matrix>" + mml + "</matrix>"
# needed for python 2 compatibility
def __ne__(self, other):
return not self == other
def _diagonal_solve(self, rhs):
"""Helper function of function diagonal_solve, without the error
checks, to be used privately.
"""
return self._new(
rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / self[i, i])
def _matrix_pow_by_jordan_blocks(self, num, dotprodsimp=None):
from sympy.matrices import diag, MutableMatrix
from sympy import binomial
def jordan_cell_power(jc, n):
N = jc.shape[0]
l = jc[0,0]
if l.is_zero:
if N == 1 and n.is_nonnegative:
jc[0,0] = l**n
elif not (n.is_integer and n.is_nonnegative):
raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer")
else:
for i in range(N):
jc[0,i] = KroneckerDelta(i, n)
else:
for i in range(N):
bn = binomial(n, i)
if isinstance(bn, binomial):
bn = bn._eval_expand_func()
jc[0,i] = l**(n-i)*bn
for i in range(N):
for j in range(1, N-i):
jc[j,i+j] = jc [j-1,i+j-1]
P, J = self.jordan_form()
jordan_cells = J.get_diag_blocks()
# Make sure jordan_cells matrices are mutable:
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
for j in jordan_cells:
jordan_cell_power(j, num)
return self._new(P.multiply(diag(*jordan_cells), dotprodsimp=dotprodsimp).multiply(
P.inv(), dotprodsimp=dotprodsimp))
def __repr__(self):
return sstr(self)
def __str__(self):
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
return "Matrix(%s)" % str(self.tolist())
def _format_str(self, printer=None):
if not printer:
from sympy.printing.str import StrPrinter
printer = StrPrinter()
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
if self.rows == 1:
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
@classmethod
def irregular(cls, ntop, *matrices, **kwargs):
"""Return a matrix filled by the given matrices which
are listed in order of appearance from left to right, top to
bottom as they first appear in the matrix. They must fill the
matrix completely.
Examples
========
>>> from sympy import ones, Matrix
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7)
Matrix([
[1, 2, 2, 2, 3, 3],
[1, 2, 2, 2, 3, 3],
[4, 2, 2, 2, 5, 5],
[6, 6, 7, 7, 5, 5]])
"""
from sympy.core.compatibility import as_int
ntop = as_int(ntop)
# make sure we are working with explicit matrices
b = [i.as_explicit() if hasattr(i, 'as_explicit') else i
for i in matrices]
q = list(range(len(b)))
dat = [i.rows for i in b]
active = [q.pop(0) for _ in range(ntop)]
cols = sum([b[i].cols for i in active])
rows = []
while any(dat):
r = []
for a, j in enumerate(active):
r.extend(b[j][-dat[j], :])
dat[j] -= 1
if dat[j] == 0 and q:
active[a] = q.pop(0)
if len(r) != cols:
raise ValueError(filldedent('''
Matrices provided do not appear to fill
the space completely.'''))
rows.append(r)
return cls._new(rows)
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
"""Return the number of rows, cols and flat matrix elements.
Examples
========
>>> from sympy import Matrix, I
Matrix can be constructed as follows:
* from a nested list of iterables
>>> Matrix( ((1, 2+I), (3, 4)) )
Matrix([
[1, 2 + I],
[3, 4]])
* from un-nested iterable (interpreted as a column)
>>> Matrix( [1, 2] )
Matrix([
[1],
[2]])
* from un-nested iterable with dimensions
>>> Matrix(1, 2, [1, 2] )
Matrix([[1, 2]])
* from no arguments (a 0 x 0 matrix)
>>> Matrix()
Matrix(0, 0, [])
* from a rule
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
Matrix([
[0, 0],
[1, 1/2]])
See Also
========
irregular - filling a matrix with irregular blocks
"""
from sympy.matrices.sparse import SparseMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.utilities.iterables import reshape
flat_list = None
if len(args) == 1:
# Matrix(SparseMatrix(...))
if isinstance(args[0], SparseMatrix):
return args[0].rows, args[0].cols, flatten(args[0].tolist())
# Matrix(Matrix(...))
elif isinstance(args[0], MatrixBase):
return args[0].rows, args[0].cols, args[0]._mat
# Matrix(MatrixSymbol('X', 2, 2))
elif isinstance(args[0], Basic) and args[0].is_Matrix:
return args[0].rows, args[0].cols, args[0].as_explicit()._mat
# Matrix(numpy.ones((2, 2)))
elif hasattr(args[0], "__array__"):
# NumPy array or matrix or some other object that implements
# __array__. So let's first use this method to get a
# numpy.array() and then make a python list out of it.
arr = args[0].__array__()
if len(arr.shape) == 2:
rows, cols = arr.shape[0], arr.shape[1]
flat_list = [cls._sympify(i) for i in arr.ravel()]
return rows, cols, flat_list
elif len(arr.shape) == 1:
rows, cols = arr.shape[0], 1
flat_list = [cls.zero] * rows
for i in range(len(arr)):
flat_list[i] = cls._sympify(arr[i])
return rows, cols, flat_list
else:
raise NotImplementedError(
"SymPy supports just 1D and 2D matrices")
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
elif is_sequence(args[0]) \
and not isinstance(args[0], DeferredVector):
dat = list(args[0])
ismat = lambda i: isinstance(i, MatrixBase) and (
evaluate or
isinstance(i, BlockMatrix) or
isinstance(i, MatrixSymbol))
raw = lambda i: is_sequence(i) and not ismat(i)
evaluate = kwargs.get('evaluate', True)
if evaluate:
def do(x):
# make Block and Symbol explicit
if isinstance(x, (list, tuple)):
return type(x)([do(i) for i in x])
if isinstance(x, BlockMatrix) or \
isinstance(x, MatrixSymbol) and \
all(_.is_Integer for _ in x.shape):
return x.as_explicit()
return x
dat = do(dat)
if dat == [] or dat == [[]]:
rows = cols = 0
flat_list = []
elif not any(raw(i) or ismat(i) for i in dat):
# a column as a list of values
flat_list = [cls._sympify(i) for i in dat]
rows = len(flat_list)
cols = 1 if rows else 0
elif evaluate and all(ismat(i) for i in dat):
# a column as a list of matrices
ncol = set(i.cols for i in dat if any(i.shape))
if ncol:
if len(ncol) != 1:
raise ValueError('mismatched dimensions')
flat_list = [_ for i in dat for r in i.tolist() for _ in r]
cols = ncol.pop()
rows = len(flat_list)//cols
else:
rows = cols = 0
flat_list = []
elif evaluate and any(ismat(i) for i in dat):
ncol = set()
flat_list = []
for i in dat:
if ismat(i):
flat_list.extend(
[k for j in i.tolist() for k in j])
if any(i.shape):
ncol.add(i.cols)
elif raw(i):
if i:
ncol.add(len(i))
flat_list.extend(i)
else:
ncol.add(1)
flat_list.append(i)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
cols = ncol.pop()
rows = len(flat_list)//cols
else:
# list of lists; each sublist is a logical row
# which might consist of many rows if the values in
# the row are matrices
flat_list = []
ncol = set()
rows = cols = 0
for row in dat:
if not is_sequence(row) and \
not getattr(row, 'is_Matrix', False):
raise ValueError('expecting list of lists')
if not row:
continue
if evaluate and all(ismat(i) for i in row):
r, c, flatT = cls._handle_creation_inputs(
[i.T for i in row])
T = reshape(flatT, [c])
flat = [T[i][j] for j in range(c) for i in range(r)]
r, c = c, r
else:
r = 1
if getattr(row, 'is_Matrix', False):
c = 1
flat = [row]
else:
c = len(row)
flat = [cls._sympify(i) for i in row]
ncol.add(c)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
flat_list.extend(flat)
rows += r
cols = ncol.pop() if ncol else 0
elif len(args) == 3:
rows = as_int(args[0])
cols = as_int(args[1])
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
# Matrix(2, 2, lambda i, j: i+j)
if len(args) == 3 and isinstance(args[2], Callable):
op = args[2]
flat_list = []
for i in range(rows):
flat_list.extend(
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
for j in range(cols)])
# Matrix(2, 2, [1, 2, 3, 4])
elif len(args) == 3 and is_sequence(args[2]):
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
'List length should be equal to rows*columns')
flat_list = [cls._sympify(i) for i in flat_list]
# Matrix()
elif len(args) == 0:
# Empty Matrix
rows = cols = 0
flat_list = []
if flat_list is None:
raise TypeError(filldedent('''
Data type not understood; expecting list of lists
or lists of values.'''))
return rows, cols, flat_list
def _setitem(self, key, value):
"""Helper to set value at location given by key.
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
from .dense import Matrix
is_slice = isinstance(key, slice)
i, j = key = self.key2ij(key)
is_mat = isinstance(value, MatrixBase)
if type(i) is slice or type(j) is slice:
if is_mat:
self.copyin_matrix(key, value)
return
if not isinstance(value, Expr) and is_sequence(value):
self.copyin_list(key, value)
return
raise ValueError('unexpected value: %s' % value)
else:
if (not is_mat and
not isinstance(value, Basic) and is_sequence(value)):
value = Matrix(value)
is_mat = True
if is_mat:
if is_slice:
key = (slice(*divmod(i, self.cols)),
slice(*divmod(j, self.cols)))
else:
key = (slice(i, i + value.rows),
slice(j, j + value.cols))
self.copyin_matrix(key, value)
else:
return i, j, self._sympify(value)
return
def add(self, b):
"""Return self + b """
return self + b
def cholesky_solve(self, rhs):
"""Solves ``Ax = B`` using Cholesky decomposition,
for a general square non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
hermitian = True
if self.is_symmetric():
hermitian = False
L = self._cholesky(hermitian=hermitian)
elif self.is_hermitian:
L = self._cholesky(hermitian=hermitian)
elif self.rows >= self.cols:
L = (self.H * self)._cholesky(hermitian=hermitian)
rhs = self.H * rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
if hermitian:
return (L.H)._upper_triangular_solve(Y)
else:
return (L.T)._upper_triangular_solve(Y)
def cholesky(self, hermitian=True):
"""Returns the Cholesky-type decomposition L of a matrix A
such that L * L.H == A if hermitian flag is True,
or L * L.T == A if hermitian is False.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix if it is False.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]])
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([
[ 3, 0],
[-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([
[ 9, 3*I],
[-3*I, 5]])
Non-hermitian Cholesky-type decomposition may be useful when the
matrix is not positive-definite.
>>> A = Matrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([
[1, 0],
[2, sqrt(3)*I]])
>>> L*L.T == A
True
See Also
========
LDLdecomposition
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not self.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._cholesky(hermitian=hermitian)
def condition_number(self):
"""Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
========
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
See Also
========
singular_values
"""
if not self:
return self.zero
singularvalues = self.singular_values()
return Max(*singularvalues) / Min(*singularvalues)
def copy(self):
"""
Returns the copy of a matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.copy()
Matrix([
[1, 2],
[3, 4]])
"""
return self._new(self.rows, self.cols, self._mat)
def cross(self, b):
r"""
Return the cross product of ``self`` and ``b`` relaxing the condition
of compatible dimensions: if each has 3 elements, a matrix of the
same type and shape as ``self`` will be returned. If ``b`` has the same
shape as ``self`` then common identities for the cross product (like
`a \times b = - b \times a`) will hold.
Parameters
==========
b : 3x1 or 1x3 Matrix
See Also
========
dot
multiply
multiply_elementwise
"""
if not is_sequence(b):
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
if not (self.rows * self.cols == b.rows * b.cols == 3):
raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
((self.rows, self.cols), (b.rows, b.cols)))
else:
return self._new(self.rows, self.cols, (
(self[1] * b[2] - self[2] * b[1]),
(self[2] * b[0] - self[0] * b[2]),
(self[0] * b[1] - self[1] * b[0])))
@property
def D(self):
"""Return Dirac conjugate (if ``self.rows == 4``).
Examples
========
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
[ 0, 1 - I, 0, 0],
[ 0, 0, -1 + I, 0],
[ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised
because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D
Traceback (most recent call last):
...
AttributeError: Matrix has no attribute D.
See Also
========
sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation
sympy.matrices.common.MatrixCommon.H: Hermite conjugation
"""
from sympy.physics.matrices import mgamma
if self.rows != 4:
# In Python 3.2, properties can only return an AttributeError
# so we can't raise a ShapeError -- see commit which added the
# first line of this inline comment. Also, there is no need
# for a message since MatrixBase will raise the AttributeError
raise AttributeError
return self.H * mgamma(0)
def diagonal_solve(self, rhs):
"""Solves ``Ax = B`` efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_diagonal():
raise TypeError("Matrix should be diagonal")
if rhs.rows != self.rows:
raise TypeError("Size mis-match")
return self._diagonal_solve(rhs)
def dot(self, b, hermitian=None, conjugate_convention=None):
"""Return the dot or inner product of two vectors of equal length.
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
A scalar is returned.
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
to compute the hermitian inner product.
Possible kwargs are ``hermitian`` and ``conjugate_convention``.
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
the conjugate of the first vector (``self``) is used. If ``"right"``
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = Matrix([1, 1, 1])
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> v = [3, 2, 1]
>>> M.row(0).dot(v)
10
>>> from sympy import I
>>> q = Matrix([1*I, 1*I, 1*I])
>>> q.dot(q, hermitian=False)
-3
>>> q.dot(q, hermitian=True)
3
>>> q1 = Matrix([1, 1, 1*I])
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
1 - 2*I
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
1 + 2*I
See Also
========
cross
multiply
multiply_elementwise
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if (1 not in mat.shape) or (1 not in b.shape) :
SymPyDeprecationWarning(
feature="Dot product of non row/column vectors",
issue=13815,
deprecated_since_version="1.2",
useinstead="* to take matrix products").warn()
return mat._legacy_array_dot(b)
if len(mat) != len(b):
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))
n = len(mat)
if mat.shape != (1, n):
mat = mat.reshape(1, n)
if b.shape != (n, 1):
b = b.reshape(n, 1)
# Now ``mat`` is a row vector and ``b`` is a column vector.
# If it so happens that only conjugate_convention is passed
# then automatically set hermitian to True. If only hermitian
# is true but no conjugate_convention is not passed then
# automatically set it to ``"maths"``
if conjugate_convention is not None and hermitian is None:
hermitian = True
if hermitian and conjugate_convention is None:
conjugate_convention = "maths"
if hermitian == True:
if conjugate_convention in ("maths", "left", "math"):
mat = mat.conjugate()
elif conjugate_convention in ("physics", "right"):
b = b.conjugate()
else:
raise ValueError("Unknown conjugate_convention was entered."
" conjugate_convention must be one of the"
" following: math, maths, left, physics or right.")
return (mat * b)[0]
def dual(self):
"""Returns the dual of a matrix, which is:
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l`
Since the levicivita method is anti_symmetric for any pairwise
exchange of indices, the dual of a symmetric matrix is the zero
matrix. Strictly speaking the dual defined here assumes that the
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
so that the dual is a covariant second rank tensor.
"""
from sympy import LeviCivita
from sympy.matrices import zeros
M, n = self[:, :], self.rows
work = zeros(n)
if self.is_symmetric():
return work
for i in range(1, n):
for j in range(1, n):
acum = 0
for k in range(1, n):
acum += LeviCivita(i, j, 0, k) * M[0, k]
work[i, j] = acum
work[j, i] = -acum
for l in range(1, n):
acum = 0
for a in range(1, n):
for b in range(1, n):
acum += LeviCivita(0, l, a, b) * M[a, b]
acum /= 2
work[0, l] = -acum
work[l, 0] = acum
return work
def _eval_matrix_exp_jblock(self):
"""A helper function to compute an exponential of a Jordan block
matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_exp_jblock()
Matrix([[exp(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_exp_jblock()
Matrix([
[exp(lamda), exp(lamda), exp(lamda)/2],
[ 0, exp(lamda), exp(lamda)],
[ 0, 0, exp(lamda)]])
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition
"""
size = self.rows
l = self[0, 0]
exp_l = exp(l)
bands = {i: exp_l / factorial(i) for i in range(size)}
from .sparsetools import banded
return self.__class__(banded(size, bands))
def exp(self, dotprodsimp=None):
"""Return the exponential of a square matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> t = Symbol('t')
>>> m = Matrix([[0, 1], [-1, 0]]) * t
>>> m.exp()
Matrix([
[ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2],
[I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
"""
if not self.is_square:
raise NonSquareMatrixError(
"Exponentiation is valid only for square matrices")
try:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
blocks = [cell._eval_matrix_exp_jblock() for cell in cells]
from sympy.matrices import diag
from sympy import re
eJ = diag(*blocks)
# n = self.rows
ret = P.multiply(eJ, dotprodsimp=dotprodsimp).multiply(P.inv(), dotprodsimp=dotprodsimp)
if all(value.is_real for value in self.values()):
return type(self)(re(ret))
else:
return type(self)(ret)
def _eval_matrix_log_jblock(self):
"""Helper function to compute logarithm of a jordan block.
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_log_jblock()
Matrix([[log(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_log_jblock()
Matrix([
[log(lamda), 1/lamda, -1/(2*lamda**2)],
[ 0, log(lamda), 1/lamda],
[ 0, 0, log(lamda)]])
"""
size = self.rows
l = self[0, 0]
if l.is_zero:
raise MatrixError(
'Could not take logarithm or reciprocal for the given '
'eigenvalue {}'.format(l))
bands = {0: log(l)}
for i in range(1, size):
bands[i] = -((-l) ** -i) / i
from .sparsetools import banded
return self.__class__(banded(size, bands))
def log(self, simplify=cancel):
"""Return the logarithm of a square matrix
Parameters
==========
simplify : function, bool
The function to simplify the result with.
Default is ``cancel``, which is effective to reduce the
expression growing for taking reciprocals and inverses for
symbolic matrices.
Examples
========
>>> from sympy import S, Matrix
Examples for positive-definite matrices:
>>> m = Matrix([[1, 1], [0, 1]])
>>> m.log()
Matrix([
[0, 1],
[0, 0]])
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> m.log()
Matrix([
[ 0, log(2)],
[log(2), 0]])
Examples for non positive-definite matrices:
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]])
>>> m.log()
Matrix([
[ I*pi/2, log(2) - I*pi/2],
[log(2) - I*pi/2, I*pi/2]])
>>> m = Matrix(
... [[0, 0, 0, 1],
... [0, 0, 1, 0],
... [0, 1, 0, 0],
... [1, 0, 0, 0]])
>>> m.log()
Matrix([
[ I*pi/2, 0, 0, -I*pi/2],
[ 0, I*pi/2, -I*pi/2, 0],
[ 0, -I*pi/2, I*pi/2, 0],
[-I*pi/2, 0, 0, I*pi/2]])
"""
if not self.is_square:
raise NonSquareMatrixError(
"Logarithm is valid only for square matrices")
try:
if simplify:
P, J = simplify(self).jordan_form()
else:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Logarithm is implemented only for matrices for which "
"the Jordan normal form can be computed")
blocks = [
cell._eval_matrix_log_jblock()
for cell in cells]
from sympy.matrices import diag
eJ = diag(*blocks)
if simplify:
ret = simplify(P * eJ * simplify(P.inv()))
ret = self.__class__(ret)
else:
ret = P * eJ * P.inv()
return ret
def gauss_jordan_solve(self, B, freevar=False):
"""
Solves ``Ax = B`` using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, it will
be returned parametrically. If no solutions exist, It will throw
ValueError.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
freevar : List
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
values of free variables. Then the index of the free variables
in the solutions (column Matrix) will be returned by freevar, if
the flag `freevar` is set to `True`.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
params : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
parameters. These arbitrary parameters are returned as params
Matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> taus_zeroes = { tau:0 for tau in params }
>>> sol_unique = sol.xreplace(taus_zeroes)
>>> sol_unique
Matrix([
[2],
[0],
[5],
[0]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> B = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-1],
[ 2],
[ 0]])
>>> params
Matrix(0, 1, [])
>>> A = Matrix([[2, -7], [-1, 4]])
>>> B = Matrix([[-21, 3], [12, -2]])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[0, -2],
[3, -1]])
>>> params
Matrix(0, 2, [])
See Also
========
lower_triangular_solve
upper_triangular_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
References
==========
.. [1] https://en.wikipedia.org/wiki/Gaussian_elimination
"""
from sympy.matrices import Matrix, zeros
cls = self.__class__
aug = self.hstack(self.copy(), B.copy())
B_cols = B.cols
row, col = aug[:, :-B_cols].shape
# solve by reduced row echelon form
A, pivots = aug.rref(simplify=True)
A, v = A[:, :-B_cols], A[:, -B_cols:]
pivots = list(filter(lambda p: p < col, pivots))
rank = len(pivots)
# Bring to block form
permutation = Matrix(range(col)).T
for i, c in enumerate(pivots):
permutation.col_swap(i, c)
# check for existence of solutions
# rank of aug Matrix should be equal to rank of coefficient matrix
if not v[rank:, :].is_zero:
raise ValueError("Linear system has no solution")
# Get index of free symbols (free parameters)
free_var_index = permutation[
len(pivots):] # non-pivots columns are free variables
# Free parameters
# what are current unnumbered free symbol names?
name = _uniquely_named_symbol('tau', aug,
compare=lambda i: str(i).rstrip('1234567890')).name
gen = numbered_symbols(name)
tau = Matrix([next(gen) for k in range((col - rank)*B_cols)]).reshape(
col - rank, B_cols)
# Full parametric solution
V = A[:rank, [c for c in range(A.cols) if c not in pivots]]
vt = v[:rank, :]
free_sol = tau.vstack(vt - V * tau, tau)
# Undo permutation
sol = zeros(col, B_cols)
for k in range(col):
sol[permutation[k], :] = free_sol[k,:]
sol, tau = cls(sol), cls(tau)
if freevar:
return sol, tau, free_var_index
else:
return sol, tau
def inv_mod(self, m):
r"""
Returns the inverse of the matrix `K` (mod `m`), if it exists.
Method to find the matrix inverse of `K` (mod `m`) implemented in this function:
* Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`.
* Compute `r = 1/\mathrm{det}(K) \pmod m`.
* `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.inv_mod(5)
Matrix([
[3, 1],
[4, 2]])
>>> A.inv_mod(3)
Matrix([
[1, 1],
[0, 1]])
"""
if not self.is_square:
raise NonSquareMatrixError()
N = self.cols
det_K = self.det()
det_inv = None
try:
det_inv = mod_inverse(det_K, m)
except ValueError:
raise NonInvertibleMatrixError('Matrix is not invertible (mod %d)' % m)
K_adj = self.adjugate()
K_inv = self.__class__(N, N,
[det_inv * K_adj[i, j] % m for i in range(N) for
j in range(N)])
return K_inv
def inverse_ADJ(self, iszerofunc=_iszero):
"""Calculates the inverse using the adjugate matrix and a determinant.
See Also
========
inv
inverse_LU
inverse_GE
"""
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
d = self.det(method='berkowitz')
zero = d.equals(0)
if zero is None:
# if equals() can't decide, will rref be able to?
ok = self.rref(simplify=True)[0]
zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows))
if zero:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
return self.adjugate() / d
def inverse_GE(self, iszerofunc=_iszero):
"""Calculates the inverse using Gaussian elimination.
See Also
========
inv
inverse_LU
inverse_ADJ
"""
from .dense import Matrix
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows))
red = big.rref(iszerofunc=iszerofunc, simplify=True)[0]
if any(iszerofunc(red[j, j]) for j in range(red.rows)):
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
return self._new(red[:, big.rows:])
def inverse_LU(self, iszerofunc=_iszero):
"""Calculates the inverse using LU decomposition.
See Also
========
inv
inverse_GE
inverse_ADJ
"""
if not self.is_square:
raise NonSquareMatrixError()
ok = self.rref(simplify=True)[0]
if any(iszerofunc(ok[j, j]) for j in range(ok.rows)):
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero)
def inv(self, method=None, **kwargs):
"""
Return the inverse of a matrix.
CASE 1: If the matrix is a dense matrix.
Return the matrix inverse using the method indicated (default
is Gauss elimination).
Parameters
==========
method : ('GE', 'LU', or 'ADJ')
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
GE .... inverse_GE(); default
LU .... inverse_LU()
ADJ ... inverse_ADJ()
See Also
========
inverse_LU
inverse_GE
inverse_ADJ
Raises
------
ValueError
If the determinant of the matrix is zero.
CASE 2: If the matrix is a sparse matrix.
Return the matrix inverse using Cholesky or LDL (default).
kwargs
======
method : ('CH', 'LDL')
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
LDL ... inverse_LDL(); default
CH .... inverse_CH()
Raises
------
ValueError
If the determinant of the matrix is zero.
"""
if not self.is_square:
raise NonSquareMatrixError()
if method is not None:
kwargs['method'] = method
return self._eval_inverse(**kwargs)
def is_nilpotent(self, dotprodsimp=None):
"""Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is
a zero matrix.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
"""
if not self:
return True
if not self.is_square:
raise NonSquareMatrixError(
"Nilpotency is valid only for square matrices")
x = _uniquely_named_symbol('x', self)
p = self.charpoly(x, dotprodsimp=dotprodsimp)
if p.args[0] == x ** self.rows:
return True
return False
def key2bounds(self, keys):
"""Converts a key with potentially mixed types of keys (integer and slice)
into a tuple of ranges and raises an error if any index is out of ``self``'s
range.
See Also
========
key2ij
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
islice, jslice = [isinstance(k, slice) for k in keys]
if islice:
if not self.rows:
rlo = rhi = 0
else:
rlo, rhi = keys[0].indices(self.rows)[:2]
else:
rlo = a2idx_(keys[0], self.rows)
rhi = rlo + 1
if jslice:
if not self.cols:
clo = chi = 0
else:
clo, chi = keys[1].indices(self.cols)[:2]
else:
clo = a2idx_(keys[1], self.cols)
chi = clo + 1
return rlo, rhi, clo, chi
def key2ij(self, key):
"""Converts key into canonical form, converting integers or indexable
items into valid integers for ``self``'s range or returning slices
unchanged.
See Also
========
key2bounds
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
if is_sequence(key):
if not len(key) == 2:
raise TypeError('key must be a sequence of length 2')
return [a2idx_(i, n) if not isinstance(i, slice) else i
for i, n in zip(key, self.shape)]
elif isinstance(key, slice):
return key.indices(len(self))[:2]
else:
return divmod(a2idx_(key, len(self)), self.cols)
def LDLdecomposition(self, hermitian=True):
"""Returns the LDL Decomposition (L, D) of matrix A,
such that L * D * L.H == A if hermitian flag is True, or
L * D * L.T == A if hermitian is False.
This method eliminates the use of square root.
Further this ensures that all the diagonal entries of L are 1.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix otherwise.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T * A.inv() == eye(A.rows)
True
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0],
[-I/3, 1]])
>>> D
Matrix([
[9, 0],
[0, 4]])
>>> L*D*L.H == A
True
See Also
========
cholesky
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not self.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._LDLdecomposition(hermitian=hermitian)
def LDLsolve(self, rhs):
"""Solves ``Ax = B`` using LDL decomposition,
for a general square and non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
See Also
========
LDLdecomposition
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LUsolve
QRsolve
pinv_solve
"""
hermitian = True
if self.is_symmetric():
hermitian = False
L, D = self.LDLdecomposition(hermitian=hermitian)
elif self.is_hermitian:
L, D = self.LDLdecomposition(hermitian=hermitian)
elif self.rows >= self.cols:
L, D = (self.H * self).LDLdecomposition(hermitian=hermitian)
rhs = self.H * rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
Z = D._diagonal_solve(Y)
if hermitian:
return (L.H)._upper_triangular_solve(Z)
else:
return (L.T)._upper_triangular_solve(Z)
def lower_triangular_solve(self, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise ShapeError("Matrices size mismatch.")
if not self.is_lower:
raise ValueError("Matrix must be lower triangular.")
return self._lower_triangular_solve(rhs)
def LUdecomposition(self,
iszerofunc=_iszero,
simpfunc=None,
rankcheck=False):
"""Returns (L, U, perm) where L is a lower triangular matrix with unit
diagonal, U is an upper triangular matrix, and perm is a list of row
swap index pairs. If A is the original matrix, then
A = (L*U).permuteBkwd(perm), and the row permutation matrix P such
that P*A = L*U can be computed by P=eye(A.row).permuteFwd(perm).
See documentation for LUCombined for details about the keyword argument
rankcheck, iszerofunc, and simpfunc.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>>> L
Matrix([
[ 1, 0],
[3/2, 1]])
>>> U
Matrix([
[4, 3],
[0, -3/2]])
See Also
========
cholesky
LDLdecomposition
QRdecomposition
LUdecomposition_Simple
LUdecompositionFF
LUsolve
"""
combined, p = self.LUdecomposition_Simple(iszerofunc=iszerofunc,
simpfunc=simpfunc,
rankcheck=rankcheck)
# L is lower triangular ``self.rows x self.rows``
# U is upper triangular ``self.rows x self.cols``
# L has unit diagonal. For each column in combined, the subcolumn
# below the diagonal of combined is shared by L.
# If L has more columns than combined, then the remaining subcolumns
# below the diagonal of L are zero.
# The upper triangular portion of L and combined are equal.
def entry_L(i, j):
if i < j:
# Super diagonal entry
return self.zero
elif i == j:
return self.one
elif j < combined.cols:
return combined[i, j]
# Subdiagonal entry of L with no corresponding
# entry in combined
return self.zero
def entry_U(i, j):
return self.zero if i > j else combined[i, j]
L = self._new(combined.rows, combined.rows, entry_L)
U = self._new(combined.rows, combined.cols, entry_U)
return L, U, p
def LUdecomposition_Simple(self,
iszerofunc=_iszero,
simpfunc=None,
rankcheck=False,
dotprodsimp=None):
"""Compute an lu decomposition of m x n matrix A, where P*A = L*U
* L is m x m lower triangular with unit diagonal
* U is m x n upper triangular
* P is an m x m permutation matrix
Returns an m x n matrix lu, and an m element list perm where each
element of perm is a pair of row exchange indices.
The factors L and U are stored in lu as follows:
The subdiagonal elements of L are stored in the subdiagonal elements
of lu, that is lu[i, j] = L[i, j] whenever i > j.
The elements on the diagonal of L are all 1, and are not explicitly
stored.
U is stored in the upper triangular portion of lu, that is
lu[i ,j] = U[i, j] whenever i <= j.
The output matrix can be visualized as:
Matrix([
[u, u, u, u],
[l, u, u, u],
[l, l, u, u],
[l, l, l, u]])
where l represents a subdiagonal entry of the L factor, and u
represents an entry from the upper triangular entry of the U
factor.
perm is a list row swap index pairs such that if A is the original
matrix, then A = (L*U).permuteBkwd(perm), and the row permutation
matrix P such that ``P*A = L*U`` can be computed by
``P=eye(A.row).permuteFwd(perm)``.
The keyword argument rankcheck determines if this function raises a
ValueError when passed a matrix whose rank is strictly less than
min(num rows, num cols). The default behavior is to decompose a rank
deficient matrix. Pass rankcheck=True to raise a
ValueError instead. (This mimics the previous behavior of this function).
The keyword arguments iszerofunc and simpfunc are used by the pivot
search algorithm.
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy.
When a matrix contains symbolic entries, the pivot search algorithm
differs from the case where every entry can be categorized as zero or
nonzero.
The algorithm searches column by column through the submatrix whose
top left entry coincides with the pivot position.
If it exists, the pivot is the first entry in the current search
column that iszerofunc guarantees is nonzero.
If no such candidate exists, then each candidate pivot is simplified
if simpfunc is not None.
The search is repeated, with the difference that a candidate may be
the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
In the second search the pivot is the first candidate that
iszerofunc can guarantee is nonzero.
If no such candidate exists, then the pivot is the first candidate
for which iszerofunc returns None.
If no such candidate exists, then the search is repeated in the next
column to the right.
The pivot search algorithm differs from the one in ``rref()``, which
relies on ``_find_reasonable_pivot()``.
Future versions of ``LUdecomposition_simple()`` may use
``_find_reasonable_pivot()``.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation.
See Also
========
LUdecomposition
LUdecompositionFF
LUsolve
"""
if rankcheck:
# https://github.com/sympy/sympy/issues/9796
pass
if self.rows == 0 or self.cols == 0:
# Define LU decomposition of a matrix with no entries as a matrix
# of the same dimensions with all zero entries.
return self.zeros(self.rows, self.cols), []
lu = self.as_mutable()
row_swaps = []
pivot_col = 0
for pivot_row in range(0, lu.rows - 1):
# Search for pivot. Prefer entry that iszeropivot determines
# is nonzero, over entry that iszeropivot cannot guarantee
# is zero.
# XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279
# Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
# to _find_reasonable_pivot().
# In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):``
# calls sympy.simplify(), and not the simplification function passed in via
# the keyword argument simpfunc.
iszeropivot = True
while pivot_col != self.cols and iszeropivot:
sub_col = (lu[r, pivot_col] for r in range(pivot_row, self.rows))
pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
_find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
iszeropivot = pivot_value is None
if iszeropivot:
# All candidate pivots in this column are zero.
# Proceed to next column.
pivot_col += 1
if rankcheck and pivot_col != pivot_row:
# All entries including and below the pivot position are
# zero, which indicates that the rank of the matrix is
# strictly less than min(num rows, num cols)
# Mimic behavior of previous implementation, by throwing a
# ValueError.
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
if candidate_pivot_row is None and iszeropivot:
# If candidate_pivot_row is None and iszeropivot is True
# after pivot search has completed, then the submatrix
# below and to the right of (pivot_row, pivot_col) is
# all zeros, indicating that Gaussian elimination is
# complete.
return lu, row_swaps
# Update entries simplified during pivot search.
for offset, val in ind_simplified_pairs:
lu[pivot_row + offset, pivot_col] = val
if pivot_row != candidate_pivot_row:
# Row swap book keeping:
# Record which rows were swapped.
# Update stored portion of L factor by multiplying L on the
# left and right with the current permutation.
# Swap rows of U.
row_swaps.append([pivot_row, candidate_pivot_row])
# Update L.
lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
# Swap pivot row of U with candidate pivot row.
lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
# Introduce zeros below the pivot by adding a multiple of the
# pivot row to a row under it, and store the result in the
# row under it.
# Only entries in the target row whose index is greater than
# start_col may be nonzero.
start_col = pivot_col + 1
for row in range(pivot_row + 1, lu.rows):
# Store factors of L in the subcolumn below
# (pivot_row, pivot_row).
lu[row, pivot_row] =\
lu[row, pivot_col]/lu[pivot_row, pivot_col]
# Form the linear combination of the pivot row and the current
# row below the pivot row that zeros the entries below the pivot.
# Employing slicing instead of a loop here raises
# NotImplementedError: Cannot add Zero to MutableSparseMatrix
# in sympy/matrices/tests/test_sparse.py.
# c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
for c in range(start_col, lu.cols):
e = lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c]
lu[row, c] = _dotprodsimp(e) if dotprodsimp else e
if pivot_row != pivot_col:
# matrix rank < min(num rows, num cols),
# so factors of L are not stored directly below the pivot.
# These entries are zero by construction, so don't bother
# computing them.
for row in range(pivot_row + 1, lu.rows):
lu[row, pivot_col] = self.zero
pivot_col += 1
if pivot_col == lu.cols:
# All candidate pivots are zero implies that Gaussian
# elimination is complete.
return lu, row_swaps
if rankcheck:
if iszerofunc(
lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]):
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
return lu, row_swaps
def LUdecompositionFF(self):
"""Compute a fraction-free LU decomposition.
Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
If the elements of the matrix belong to some integral domain I, then all
elements of L, D and U are guaranteed to belong to I.
**Reference**
- W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
for LU and QR factors". Frontiers in Computer Science in China,
Vol 2, no. 1, pp. 67-80, 2008.
See Also
========
LUdecomposition
LUdecomposition_Simple
LUsolve
"""
from sympy.matrices import SparseMatrix
zeros = SparseMatrix.zeros
eye = SparseMatrix.eye
n, m = self.rows, self.cols
U, L, P = self.as_mutable(), eye(n), eye(n)
DD = zeros(n, n)
oldpivot = 1
for k in range(n - 1):
if U[k, k] == 0:
for kpivot in range(k + 1, n):
if U[kpivot, k]:
break
else:
raise ValueError("Matrix is not full rank")
U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
L[k, k] = Ukk = U[k, k]
DD[k, k] = oldpivot * Ukk
for i in range(k + 1, n):
L[i, k] = Uik = U[i, k]
for j in range(k + 1, m):
U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
U[i, k] = 0
oldpivot = Ukk
DD[n - 1, n - 1] = oldpivot
return P, L, DD, U
def LUsolve(self, rhs, iszerofunc=_iszero):
"""Solve the linear system ``Ax = rhs`` for ``x`` where ``A = self``.
This is for symbolic matrices, for real or complex ones use
mpmath.lu_solve or mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
QRsolve
pinv_solve
LUdecomposition
"""
if rhs.rows != self.rows:
raise ShapeError(
"``self`` and ``rhs`` must have the same number of rows.")
m = self.rows
n = self.cols
if m < n:
raise NotImplementedError("Underdetermined systems not supported.")
try:
A, perm = self.LUdecomposition_Simple(
iszerofunc=_iszero, rankcheck=True)
except ValueError:
raise NotImplementedError("Underdetermined systems not supported.")
b = rhs.permute_rows(perm).as_mutable()
# forward substitution, all diag entries are scaled to 1
for i in range(m):
for j in range(min(i, n)):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y * scale)
# consistency check for overdetermined systems
if m > n:
for i in range(n, m):
for j in range(b.cols):
if not iszerofunc(b[i, j]):
raise ValueError("The system is inconsistent.")
b = b[0:n, :] # truncate zero rows if consistent
# backward substitution
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y * scale)
scale = A[i, i]
b.row_op(i, lambda x, _: x / scale)
return rhs.__class__(b)
def normalized(self, iszerofunc=_iszero):
"""Return the normalized version of ``self``.
Parameters
==========
iszerofunc : Function, optional
A function to determine whether ``self`` is a zero vector.
The default ``_iszero`` tests to see if each element is
exactly zero.
Returns
=======
Matrix
Normalized vector form of ``self``.
It has the same length as a unit vector. However, a zero vector
will be returned for a vector with norm 0.
Raises
======
ShapeError
If the matrix is not in a vector form.
See Also
========
norm
"""
if self.rows != 1 and self.cols != 1:
raise ShapeError("A Matrix must be a vector to normalize.")
norm = self.norm()
if iszerofunc(norm):
out = self.zeros(self.rows, self.cols)
else:
out = self.applyfunc(lambda i: i / norm)
return out
def norm(self, ord=None):
"""Return the Norm of a Matrix or Vector.
In the simplest case this is the geometric size of the vector
Other norms can be specified by the ord parameter
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm - does not exist
inf maximum row sum max(abs(x))
-inf -- min(abs(x))
1 maximum column sum as below
-1 -- as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - does not exist sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Examples
========
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp( v.norm() )
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(1) # maximum sum of absolute values of A is 2
2
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> A.norm(oo) # Infinity Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
See Also
========
normalized
"""
# Row or Column Vector Norms
vals = list(self.values()) or [0]
if self.rows == 1 or self.cols == 1:
if ord == 2 or ord is None: # Common case sqrt(<x, x>)
return sqrt(Add(*(abs(i) ** 2 for i in vals)))
elif ord == 1: # sum(abs(x))
return Add(*(abs(i) for i in vals))
elif ord is S.Infinity: # max(abs(x))
return Max(*[abs(i) for i in vals])
elif ord is S.NegativeInfinity: # min(abs(x))
return Min(*[abs(i) for i in vals])
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
# Note that while useful this is not mathematically a norm
try:
return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord)
except (NotImplementedError, TypeError):
raise ValueError("Expected order to be Number, Symbol, oo")
# Matrix Norms
else:
if ord == 1: # Maximum column sum
m = self.applyfunc(abs)
return Max(*[sum(m.col(i)) for i in range(m.cols)])
elif ord == 2: # Spectral Norm
# Maximum singular value
return Max(*self.singular_values())
elif ord == -2:
# Minimum singular value
return Min(*self.singular_values())
elif ord is S.Infinity: # Infinity Norm - Maximum row sum
m = self.applyfunc(abs)
return Max(*[sum(m.row(i)) for i in range(m.rows)])
elif (ord is None or isinstance(ord,
string_types) and ord.lower() in
['f', 'fro', 'frobenius', 'vector']):
# Reshape as vector and send back to norm function
return self.vec().norm(ord=2)
else:
raise NotImplementedError("Matrix Norms under development")
def pinv_solve(self, B, arbitrary_matrix=None):
"""Solve ``Ax = B`` using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, one will
be returned based on the value of arbitrary_matrix. If no solutions
exist, the least-squares solution is returned.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
arbitrary_matrix : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
matrix. This parameter may be set to a specific matrix to use
for that purpose; if so, it must be the same shape as x, with as
many rows as matrix A has columns, and as many columns as matrix
B. If left as None, an appropriate matrix containing dummy
symbols in the form of ``wn_m`` will be used, with n and m being
row and column position of each symbol.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
[ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]])
>>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
Notes
=====
This may return either exact solutions or least squares solutions.
To determine which, check ``A * A.pinv() * B == B``. It will be
True if exact solutions exist, and False if only a least-squares
solution exists. Be aware that the left hand side of that equation
may need to be simplified to correctly compare to the right hand
side.
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
"""
from sympy.matrices import eye
A = self
A_pinv = self.pinv()
if arbitrary_matrix is None:
rows, cols = A.cols, B.cols
w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy)
arbitrary_matrix = self.__class__(cols, rows, w).T
return A_pinv * B + (eye(A.cols) - A_pinv * A) * arbitrary_matrix
def _eval_pinv_full_rank(self):
"""Subroutine for full row or column rank matrices.
For full row rank matrices, inverse of ``A * A.H`` Exists.
For full column rank matrices, inverse of ``A.H * A`` Exists.
This routine can apply for both cases by checking the shape
and have small decision.
"""
if self.is_zero:
return self.H
if self.rows >= self.cols:
return (self.H * self).inv() * self.H
else:
return self.H * (self * self.H).inv()
def _eval_pinv_rank_decomposition(self):
"""Subroutine for rank decomposition
With rank decompositions, `A` can be decomposed into two full-
rank matrices, and each matrix can take pseudoinverse
individually.
"""
if self.is_zero:
return self.H
B, C = self.rank_decomposition()
Bp = B._eval_pinv_full_rank()
Cp = C._eval_pinv_full_rank()
return Cp * Bp
def _eval_pinv_diagonalization(self):
"""Subroutine using diagonalization
This routine can sometimes fail if SymPy's eigenvalue
computation is not reliable.
"""
if self.is_zero:
return self.H
A = self
AH = self.H
try:
if self.rows >= self.cols:
P, D = (AH * A).diagonalize(normalize=True)
D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x)
return P * D_pinv * P.H * AH
else:
P, D = (A * AH).diagonalize(normalize=True)
D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x)
return AH * P * D_pinv * P.H
except MatrixError:
raise NotImplementedError(
'pinv for rank-deficient matrices where '
'diagonalization of A.H*A fails is not supported yet.')
def pinv(self, method='RD'):
"""Calculate the Moore-Penrose pseudoinverse of the matrix.
The Moore-Penrose pseudoinverse exists and is unique for any matrix.
If the matrix is invertible, the pseudoinverse is the same as the
inverse.
Parameters
==========
method : String, optional
Specifies the method for computing the pseudoinverse.
If ``'RD'``, Rank-Decomposition will be used.
If ``'ED'``, Diagonalization will be used.
Examples
========
Computing pseudoinverse by rank decomposition :
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> A.pinv()
Matrix([
[-17/18, 4/9],
[ -1/9, 1/9],
[ 13/18, -2/9]])
Computing pseudoinverse by diagonalization :
>>> B = A.pinv(method='ED')
>>> B.simplify()
>>> B
Matrix([
[-17/18, 4/9],
[ -1/9, 1/9],
[ 13/18, -2/9]])
See Also
========
inv
pinv_solve
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
"""
# Trivial case: pseudoinverse of all-zero matrix is its transpose.
if self.is_zero:
return self.H
if method == 'RD':
return self._eval_pinv_rank_decomposition()
elif method == 'ED':
return self._eval_pinv_diagonalization()
else:
raise ValueError()
def print_nonzero(self, symb="X"):
"""Shows location of non-zero entries for fast shape lookup.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x ]
[ x ]
[ x ]
[ x]
"""
s = []
for i in range(self.rows):
line = []
for j in range(self.cols):
if self[i, j] == 0:
line.append(" ")
else:
line.append(str(symb))
s.append("[%s]" % ''.join(line))
print('\n'.join(s))
def project(self, v):
"""Return the projection of ``self`` onto the line containing ``v``.
Examples
========
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([sqrt(3)/2, S.Half])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
"""
return v * (self.dot(v) / v.dot(v))
def QRdecomposition(self):
"""Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular.
Examples
========
This is the example from wikipedia:
>>> from sympy import Matrix
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175, -58/175],
[ 3/7, 158/175, 6/175],
[-2/7, 6/35, -33/35]])
>>> R
Matrix([
[14, 21, -14],
[ 0, 175, -70],
[ 0, 0, 35]])
>>> A == Q*R
True
QR factorization of an identity matrix:
>>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> R
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
cholesky
LDLdecomposition
LUdecomposition
QRsolve
"""
cls = self.__class__
mat = self.as_mutable()
n = mat.rows
m = mat.cols
ranked = list()
# Pad with additional rows to make wide matrices square
# nOrig keeps track of original size so zeros can be trimmed from Q
if n < m:
nOrig = n
n = m
mat = mat.col_join(mat.zeros(n - nOrig, m))
else:
nOrig = n
Q, R = mat.zeros(n, m), mat.zeros(m)
for j in range(m): # for each column vector
tmp = mat[:, j] # take original v
for i in range(j):
# subtract the project of mat on new vector
R[i, j] = Q[:, i].dot(mat[:, j], hermitian=True)
tmp -= Q[:, i] * R[i, j]
tmp.expand()
# normalize it
R[j, j] = tmp.norm()
if not R[j, j].is_zero:
ranked.append(j)
Q[:, j] = tmp / R[j, j]
if len(ranked) != 0:
return (
cls(Q.extract(range(nOrig), ranked)),
cls(R.extract(ranked, range(R.cols)))
)
else:
# Trivial case handling for zero-rank matrix
# Force Q as matrix containing standard basis vectors
for i in range(Min(nOrig, m)):
Q[i, i] = 1
return (
cls(Q.extract(range(nOrig), range(Min(nOrig, m)))),
cls(R.extract(range(Min(nOrig, m)), range(R.cols)))
)
def QRsolve(self, b):
"""Solve the linear system ``Ax = b``.
``self`` is the matrix ``A``, the method argument is the vector
``b``. The method returns the solution vector ``x``. If ``b`` is a
matrix, the system is solved for each column of ``b`` and the
return value is a matrix of the same shape as ``b``.
This method is slower (approximately by a factor of 2) but
more stable for floating-point arithmetic than the LUsolve method.
However, LUsolve usually uses an exact arithmetic, so you don't need
to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real
(or complex) matrices use mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
pinv_solve
QRdecomposition
"""
Q, R = self.as_mutable().QRdecomposition()
y = Q.T * b
# back substitution to solve R*x = y:
# We build up the result "backwards" in the vector 'x' and reverse it
# only in the end.
x = []
n = R.rows
for j in range(n - 1, -1, -1):
tmp = y[j, :]
for k in range(j + 1, n):
tmp -= R[j, k] * x[n - 1 - k]
x.append(tmp / R[j, j])
return self._new([row._mat for row in reversed(x)])
def rank_decomposition(self, iszerofunc=_iszero, simplify=False):
r"""Returns a pair of matrices (`C`, `F`) with matching rank
such that `A = C F`.
Parameters
==========
iszerofunc : Function, optional
A function used for detecting whether an element can
act as a pivot. ``lambda x: x.is_zero`` is used by default.
simplify : Bool or Function, optional
A function used to simplify elements when looking for a
pivot. By default SymPy's ``simplify`` is used.
Returns
=======
(C, F) : Matrices
`C` and `F` are full-rank matrices with rank as same as `A`,
whose product gives `A`.
See Notes for additional mathematical details.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([
... [1, 3, 1, 4],
... [2, 7, 3, 9],
... [1, 5, 3, 1],
... [1, 2, 0, 8]
... ])
>>> C, F = A.rank_decomposition()
>>> C
Matrix([
[1, 3, 4],
[2, 7, 9],
[1, 5, 1],
[1, 2, 8]])
>>> F
Matrix([
[1, 0, -2, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
>>> C * F == A
True
Notes
=====
Obtaining `F`, an RREF of `A`, is equivalent to creating a
product
.. math::
E_n E_{n-1} ... E_1 A = F
where `E_n, E_{n-1}, ... , E_1` are the elimination matrices or
permutation matrices equivalent to each row-reduction step.
The inverse of the same product of elimination matrices gives
`C`:
.. math::
C = (E_n E_{n-1} ... E_1)^{-1}
It is not necessary, however, to actually compute the inverse:
the columns of `C` are those from the original matrix with the
same column indices as the indices of the pivot columns of `F`.
References
==========
.. [1] https://en.wikipedia.org/wiki/Rank_factorization
.. [2] Piziak, R.; Odell, P. L. (1 June 1999).
"Full Rank Factorization of Matrices".
Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882
See Also
========
rref
"""
(F, pivot_cols) = self.rref(
simplify=simplify, iszerofunc=iszerofunc, pivots=True)
rank = len(pivot_cols)
C = self.extract(range(self.rows), pivot_cols)
F = F[:rank, :]
return (C, F)
def solve_least_squares(self, rhs, method='CH'):
"""Return the least-square fit to the data.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string or boolean, optional
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
Otherwise, the conjugate of ``self`` will be used to create a system
of equations that is passed to ``solve`` along with the hint
defined by ``method``.
Returns
=======
solutions : Matrix
Vector representing the solution.
Examples
========
>>> from sympy.matrices import Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
if method == 'CH':
return self.cholesky_solve(rhs)
elif method == 'QR':
return self.QRsolve(rhs)
elif method == 'LDL':
return self.LDLsolve(rhs)
elif method == 'PINV':
return self.pinv_solve(rhs)
else:
t = self.H
return (t * self).solve(t * rhs, method=method)
def solve(self, rhs, method='GJ'):
"""Solves linear equation where the unique solution exists.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string, optional
If set to ``'GJ'``, the Gauss-Jordan elimination will be used, which
is implemented in the routine ``gauss_jordan_solve``.
If set to ``'LU'``, ``LUsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
It also supports the methods available for special linear systems
For positive definite systems:
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
To use a different method and to compute the solution via the
inverse, use a method defined in the .inv() docstring.
Returns
=======
solutions : Matrix
Vector representing the solution.
Raises
======
ValueError
If there is not a unique solution then a ``ValueError`` will be
raised.
If ``self`` is not square, a ``ValueError`` and a different routine
for solving the system will be suggested.
"""
if method == 'GJ':
try:
soln, param = self.gauss_jordan_solve(rhs)
if param:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible. "
"Try ``self.gauss_jordan_solve(rhs)`` to obtain a parametric solution.")
except ValueError:
# raise same error as in inv:
self.zeros(1).inv()
return soln
elif method == 'LU':
return self.LUsolve(rhs)
elif method == 'CH':
return self.cholesky_solve(rhs)
elif method == 'QR':
return self.QRsolve(rhs)
elif method == 'LDL':
return self.LDLsolve(rhs)
elif method == 'PINV':
return self.pinv_solve(rhs)
else:
return self.inv(method=method)*rhs
def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
colsep=', ', align='right'):
r"""
String form of Matrix as a table.
``printer`` is the printer to use for on the elements (generally
something like StrPrinter())
``rowstart`` is the string used to start each row (by default '[').
``rowend`` is the string used to end each row (by default ']').
``rowsep`` is the string used to separate rows (by default a newline).
``colsep`` is the string used to separate columns (by default ', ').
``align`` defines how the elements are aligned. Must be one of 'left',
'right', or 'center'. You can also use '<', '>', and '^' to mean the
same thing, respectively.
This is used by the string printer for Matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.printing.str import StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
"""
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return '[]'
# Build table of string representations of the elements
res = []
# Track per-column max lengths for pretty alignment
maxlen = [0] * self.cols
for i in range(self.rows):
res.append([])
for j in range(self.cols):
s = printer._print(self[i, j])
res[-1].append(s)
maxlen[j] = max(len(s), maxlen[j])
# Patch strings together
align = {
'left': 'ljust',
'right': 'rjust',
'center': 'center',
'<': 'ljust',
'>': 'rjust',
'^': 'center',
}[align]
for i, row in enumerate(res):
for j, elem in enumerate(row):
row[j] = getattr(elem, align)(maxlen[j])
res[i] = rowstart + colsep.join(row) + rowend
return rowsep.join(res)
def upper_triangular_solve(self, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise TypeError("Matrix size mismatch.")
if not self.is_upper:
raise TypeError("Matrix is not upper triangular.")
return self._upper_triangular_solve(rhs)
def vech(self, diagonal=True, check_symmetry=True):
"""Return the unique elements of a symmetric Matrix as a one column matrix
by stacking the elements in the lower triangle.
Arguments:
diagonal -- include the diagonal cells of ``self`` or not
check_symmetry -- checks symmetry of ``self`` but not completely reliably
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
See Also
========
vec
"""
from sympy.matrices import zeros
c = self.cols
if c != self.rows:
raise ShapeError("Matrix must be square")
if check_symmetry:
self.simplify()
if self != self.transpose():
raise ValueError(
"Matrix appears to be asymmetric; consider check_symmetry=False")
count = 0
if diagonal:
v = zeros(c * (c + 1) // 2, 1)
for j in range(c):
for i in range(j, c):
v[count] = self[i, j]
count += 1
else:
v = zeros(c * (c - 1) // 2, 1)
for j in range(c):
for i in range(j + 1, c):
v[count] = self[i, j]
count += 1
return v
@deprecated(
issue=15109,
useinstead="from sympy.matrices.common import classof",
deprecated_since_version="1.3")
def classof(A, B):
from sympy.matrices.common import classof as classof_
return classof_(A, B)
@deprecated(
issue=15109,
deprecated_since_version="1.3",
useinstead="from sympy.matrices.common import a2idx")
def a2idx(j, n=None):
from sympy.matrices.common import a2idx as a2idx_
return a2idx_(j, n)
def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
""" Find the lowest index of an item in ``col`` that is
suitable for a pivot. If ``col`` consists only of
Floats, the pivot with the largest norm is returned.
Otherwise, the first element where ``iszerofunc`` returns
False is used. If ``iszerofunc`` doesn't return false,
items are simplified and retested until a suitable
pivot is found.
Returns a 4-tuple
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
where pivot_offset is the index of the pivot, pivot_val is
the (possibly simplified) value of the pivot, assumed_nonzero
is True if an assumption that the pivot was non-zero
was made without being proved, and newly_determined are
elements that were simplified during the process of pivot
finding."""
newly_determined = []
col = list(col)
# a column that contains a mix of floats and integers
# but at least one float is considered a numerical
# column, and so we do partial pivoting
if all(isinstance(x, (Float, Integer)) for x in col) and any(
isinstance(x, Float) for x in col):
col_abs = [abs(x) for x in col]
max_value = max(col_abs)
if iszerofunc(max_value):
# just because iszerofunc returned True, doesn't
# mean the value is numerically zero. Make sure
# to replace all entries with numerical zeros
if max_value != 0:
newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
return (None, None, False, newly_determined)
index = col_abs.index(max_value)
return (index, col[index], False, newly_determined)
# PASS 1 (iszerofunc directly)
possible_zeros = []
for i, x in enumerate(col):
is_zero = iszerofunc(x)
# is someone wrote a custom iszerofunc, it may return
# BooleanFalse or BooleanTrue instead of True or False,
# so use == for comparison instead of `is`
if is_zero == False:
# we found something that is definitely not zero
return (i, x, False, newly_determined)
possible_zeros.append(is_zero)
# by this point, we've found no certain non-zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 2 (iszerofunc after simplify)
# we haven't found any for-sure non-zeros, so
# go through the elements iszerofunc couldn't
# make a determination about and opportunistically
# simplify to see if we find something
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
simped = simpfunc(x)
is_zero = iszerofunc(simped)
if is_zero == True or is_zero == False:
newly_determined.append((i, simped))
if is_zero == False:
return (i, simped, False, newly_determined)
possible_zeros[i] = is_zero
# after simplifying, some things that were recognized
# as zeros might be zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 3 (.equals(0))
# some expressions fail to simplify to zero, but
# ``.equals(0)`` evaluates to True. As a last-ditch
# attempt, apply ``.equals`` to these expressions
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
if x.equals(S.Zero):
# ``.iszero`` may return False with
# an implicit assumption (e.g., ``x.equals(0)``
# when ``x`` is a symbol), so only treat it
# as proved when ``.equals(0)`` returns True
possible_zeros[i] = True
newly_determined.append((i, S.Zero))
if all(possible_zeros):
return (None, None, False, newly_determined)
# at this point there is nothing that could definitely
# be a pivot. To maintain compatibility with existing
# behavior, we'll assume that an illdetermined thing is
# non-zero. We should probably raise a warning in this case
i = possible_zeros.index(None)
return (i, col[i], True, newly_determined)
def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
"""
Helper that computes the pivot value and location from a
sequence of contiguous matrix column elements. As a side effect
of the pivot search, this function may simplify some of the elements
of the input column. A list of these simplified entries and their
indices are also returned.
This function mimics the behavior of _find_reasonable_pivot(),
but does less work trying to determine if an indeterminate candidate
pivot simplifies to zero. This more naive approach can be much faster,
with the trade-off that it may erroneously return a pivot that is zero.
``col`` is a sequence of contiguous column entries to be searched for
a suitable pivot.
``iszerofunc`` is a callable that returns a Boolean that indicates
if its input is zero, or None if no such determination can be made.
``simpfunc`` is a callable that simplifies its input. It must return
its input if it does not simplify its input. Passing in
``simpfunc=None`` indicates that the pivot search should not attempt
to simplify any candidate pivots.
Returns a 4-tuple:
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
``pivot_offset`` is the sequence index of the pivot.
``pivot_val`` is the value of the pivot.
pivot_val and col[pivot_index] are equivalent, but will be different
when col[pivot_index] was simplified during the pivot search.
``assumed_nonzero`` is a boolean indicating if the pivot cannot be
guaranteed to be zero. If assumed_nonzero is true, then the pivot
may or may not be non-zero. If assumed_nonzero is false, then
the pivot is non-zero.
``newly_determined`` is a list of index-value pairs of pivot candidates
that were simplified during the pivot search.
"""
# indeterminates holds the index-value pairs of each pivot candidate
# that is neither zero or non-zero, as determined by iszerofunc().
# If iszerofunc() indicates that a candidate pivot is guaranteed
# non-zero, or that every candidate pivot is zero then the contents
# of indeterminates are unused.
# Otherwise, the only viable candidate pivots are symbolic.
# In this case, indeterminates will have at least one entry,
# and all but the first entry are ignored when simpfunc is None.
indeterminates = []
for i, col_val in enumerate(col):
col_val_is_zero = iszerofunc(col_val)
if col_val_is_zero == False:
# This pivot candidate is non-zero.
return i, col_val, False, []
elif col_val_is_zero is None:
# The candidate pivot's comparison with zero
# is indeterminate.
indeterminates.append((i, col_val))
if len(indeterminates) == 0:
# All candidate pivots are guaranteed to be zero, i.e. there is
# no pivot.
return None, None, False, []
if simpfunc is None:
# Caller did not pass in a simplification function that might
# determine if an indeterminate pivot candidate is guaranteed
# to be nonzero, so assume the first indeterminate candidate
# is non-zero.
return indeterminates[0][0], indeterminates[0][1], True, []
# newly_determined holds index-value pairs of candidate pivots
# that were simplified during the search for a non-zero pivot.
newly_determined = []
for i, col_val in indeterminates:
tmp_col_val = simpfunc(col_val)
if id(col_val) != id(tmp_col_val):
# simpfunc() simplified this candidate pivot.
newly_determined.append((i, tmp_col_val))
if iszerofunc(tmp_col_val) == False:
# Candidate pivot simplified to a guaranteed non-zero value.
return i, tmp_col_val, False, newly_determined
return indeterminates[0][0], indeterminates[0][1], True, newly_determined
|
2e78b84045b5c8984244b5db8f57d6c0d116cf793a290763288c4be9161e9ec2 | from .sets import (Set, Interval, Union, FiniteSet, ProductSet,
Intersection, imageset, Complement, SymmetricDifference)
from .fancysets import ImageSet, Range, ComplexRegion
from .contains import Contains
from .conditionset import ConditionSet
from .ordinals import Ordinal, OmegaPower, ord0
from .powerset import PowerSet
from ..core.singleton import S
Reals = S.Reals
Naturals = S.Naturals
Naturals0 = S.Naturals0
UniversalSet = S.UniversalSet
EmptySet = S.EmptySet
Integers = S.Integers
Rationals = S.Rationals
__all__ = [
'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet',
'Intersection', 'imageset', 'Complement', 'SymmetricDifference',
'ImageSet', 'Range', 'ComplexRegion', 'Reals',
'Contains',
'ConditionSet',
'Ordinal', 'OmegaPower', 'ord0',
'PowerSet',
'Reals', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals',
]
|
067910fac32470ae53331e7696c9b6fbe9a52f24b525c1ee86a8ffa923faaf53 | from __future__ import print_function, division
from sympy.core.decorators import _sympifyit
from sympy.core.evaluate import global_evaluate
from sympy.core.logic import fuzzy_bool
from sympy.core.singleton import S
from sympy.core.sympify import _sympify
from .sets import Set
class PowerSet(Set):
r"""A symbolic object representing a power set.
Parameters
==========
arg : Set
The set to take power of.
evaluate : bool
The flag to control evaluation.
If the evaluation is disabled for finite sets, it can take
advantage of using subset test as a membership test.
Notes
=====
Power set `\mathcal{P}(S)` is defined as a set containing all the
subsets of `S`.
If the set `S` is a finite set, its power set would have
`2^{\left| S \right|}` elements, where `\left| S \right|` denotes
the cardinality of `S`.
Examples
========
>>> from sympy.sets.powerset import PowerSet
>>> from sympy import S, FiniteSet
A power set of a finite set:
>>> PowerSet(FiniteSet(1, 2, 3))
PowerSet(FiniteSet(1, 2, 3))
A power set of an empty set:
>>> PowerSet(S.EmptySet)
PowerSet(EmptySet)
>>> PowerSet(PowerSet(S.EmptySet))
PowerSet(PowerSet(EmptySet))
A power set of an infinite set:
>>> PowerSet(S.Reals)
PowerSet(Reals)
Evaluating the power set of a finite set to its explicit form:
>>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
FiniteSet(FiniteSet(1), FiniteSet(1, 2), FiniteSet(1, 3),
FiniteSet(1, 2, 3), FiniteSet(2), FiniteSet(2, 3),
FiniteSet(3), EmptySet)
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
.. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set
"""
def __new__(cls, arg, evaluate=global_evaluate[0]):
arg = _sympify(arg)
if not isinstance(arg, Set):
raise ValueError('{} must be a set.'.format(arg))
return super(PowerSet, cls).__new__(cls, arg)
@property
def arg(self):
return self.args[0]
def _eval_rewrite_as_FiniteSet(self, *args, **kwargs):
arg = self.arg
if arg.is_FiniteSet:
return arg.powerset()
return None
@_sympifyit('other', NotImplemented)
def _contains(self, other):
if not isinstance(other, Set):
return None
return fuzzy_bool(self.arg.is_superset(other))
def _eval_is_subset(self, other):
if isinstance(other, PowerSet):
return self.arg.is_subset(other.arg)
def __len__(self):
return 2 ** len(self.arg)
def __iter__(self):
from .sets import FiniteSet
found = [S.EmptySet]
yield S.EmptySet
for x in self.arg:
temp = []
x = FiniteSet(x)
for y in found:
new = x + y
yield new
temp.append(new)
found.extend(temp)
|
0f26806231cb3169c179b731dc1ebb9495e238df195a506d2a538053caba92e1 | from __future__ import print_function, division
from functools import reduce
from sympy.core.basic import Basic
from sympy.core.compatibility import with_metaclass, range, PY3
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.core.numbers import oo, Integer
from sympy.core.relational import Eq
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Dummy, symbols, Symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And
from sympy.sets.sets import (Set, Interval, Union, FiniteSet,
ProductSet)
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import cartes
class Rationals(with_metaclass(Singleton, Set)):
"""
Represents the rational numbers. This set is also available as
the Singleton, S.Rationals.
Examples
========
>>> from sympy import S
>>> S.Half in S.Rationals
True
>>> iterable = iter(S.Rationals)
>>> [next(iterable) for i in range(12)]
[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
"""
is_iterable = True
_inf = S.NegativeInfinity
_sup = S.Infinity
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return False
if other.is_Number:
return other.is_Rational
return other.is_rational
def __iter__(self):
from sympy.core.numbers import igcd, Rational
yield S.Zero
yield S.One
yield S.NegativeOne
d = 2
while True:
for n in range(d):
if igcd(n, d) == 1:
yield Rational(n, d)
yield Rational(d, n)
yield Rational(-n, d)
yield Rational(-d, n)
d += 1
@property
def _boundary(self):
return S.Reals
class Naturals(with_metaclass(Singleton, Set)):
"""
Represents the natural numbers (or counting numbers) which are all
positive integers starting from 1. This set is also available as
the Singleton, S.Naturals.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Naturals)
>>> next(iterable)
1
>>> next(iterable)
2
>>> next(iterable)
3
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
{1, 2, ..., 10}
See Also
========
Naturals0 : non-negative integers (i.e. includes 0, too)
Integers : also includes negative integers
"""
is_iterable = True
_inf = S.One
_sup = S.Infinity
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return False
elif other.is_positive and other.is_integer:
return True
elif other.is_integer is False or other.is_positive is False:
return False
def _eval_is_subset(self, other):
return Range(1, oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(1, oo).is_superset(other)
def __iter__(self):
i = self._inf
while True:
yield i
i = i + 1
@property
def _boundary(self):
return self
def as_relational(self, x):
from sympy.functions.elementary.integers import floor
return And(Eq(floor(x), x), x >= self.inf, x < oo)
class Naturals0(Naturals):
"""Represents the whole numbers which are all the non-negative integers,
inclusive of zero.
See Also
========
Naturals : positive integers; does not include 0
Integers : also includes the negative integers
"""
_inf = S.Zero
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_integer and other.is_nonnegative:
return S.true
elif other.is_integer is False or other.is_nonnegative is False:
return S.false
def _eval_is_subset(self, other):
return Range(oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(oo).is_superset(other)
class Integers(with_metaclass(Singleton, Set)):
"""
Represents all integers: positive, negative and zero. This set is also
available as the Singleton, S.Integers.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Integers)
>>> next(iterable)
0
>>> next(iterable)
1
>>> next(iterable)
-1
>>> next(iterable)
2
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
{-4, -3, ..., 4}
See Also
========
Naturals0 : non-negative integers
Integers : positive and negative integers and zero
"""
is_iterable = True
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
return other.is_integer
def __iter__(self):
yield S.Zero
i = S.One
while True:
yield i
yield -i
i = i + 1
@property
def _inf(self):
return S.NegativeInfinity
@property
def _sup(self):
return S.Infinity
@property
def _boundary(self):
return self
def as_relational(self, x):
from sympy.functions.elementary.integers import floor
return And(Eq(floor(x), x), -oo < x, x < oo)
def _eval_is_subset(self, other):
return Range(-oo, oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(-oo, oo).is_superset(other)
class Reals(with_metaclass(Singleton, Interval)):
"""
Represents all real numbers
from negative infinity to positive infinity,
including all integer, rational and irrational numbers.
This set is also available as the Singleton, S.Reals.
Examples
========
>>> from sympy import S, Interval, Rational, pi, I
>>> 5 in S.Reals
True
>>> Rational(-1, 2) in S.Reals
True
>>> pi in S.Reals
True
>>> 3*I in S.Reals
False
>>> S.Reals.contains(pi)
True
See Also
========
ComplexRegion
"""
def __new__(cls):
return Interval.__new__(cls, S.NegativeInfinity, S.Infinity)
def __eq__(self, other):
return other == Interval(S.NegativeInfinity, S.Infinity)
def __hash__(self):
return hash(Interval(S.NegativeInfinity, S.Infinity))
class ImageSet(Set):
"""
Image of a set under a mathematical function. The transformation
must be given as a Lambda function which has as many arguments
as the elements of the set upon which it operates, e.g. 1 argument
when acting on the set of integers or 2 arguments when acting on
a complex region.
This function is not normally called directly, but is called
from `imageset`.
Examples
========
>>> from sympy import Symbol, S, pi, Dummy, Lambda
>>> from sympy.sets.sets import FiniteSet, Interval
>>> from sympy.sets.fancysets import ImageSet
>>> x = Symbol('x')
>>> N = S.Naturals
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
>>> 4 in squares
True
>>> 5 in squares
False
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
FiniteSet(1, 4, 9)
>>> square_iterable = iter(squares)
>>> for i in range(4):
... next(square_iterable)
1
4
9
16
If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
`x` value is in `base_set` or not before passing it as args)
>>> squares.lamda(2)
4
>>> squares.lamda(S(1)/2)
1/4
>>> n = Dummy('n')
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
>>> dom = Interval(-1, 1)
>>> dom.intersect(solutions)
FiniteSet(0)
See Also
========
sympy.sets.sets.imageset
"""
def __new__(cls, flambda, *sets):
if not isinstance(flambda, Lambda):
raise ValueError('First argument must be a Lambda')
signature = flambda.signature
if len(signature) != len(sets):
raise ValueError('Incompatible signature')
sets = [_sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Set arguments to ImageSet should of type Set")
if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
raise ValueError("Signature %s does not match sets %s" % (signature, sets))
if flambda is S.IdentityFunction and len(sets) == 1:
return sets[0]
if not set(flambda.variables) & flambda.expr.free_symbols:
is_empty = fuzzy_or(s.is_empty for s in sets)
if is_empty == True:
return S.EmptySet
elif is_empty == False:
return FiniteSet(flambda.expr)
return Basic.__new__(cls, flambda, *sets)
lamda = property(lambda self: self.args[0])
base_sets = property(lambda self: self.args[1:])
@property
def base_set(self):
# XXX: Maybe deprecate this? It is poorly defined in handling
# the multivariate case...
sets = self.base_sets
if len(sets) == 1:
return sets[0]
else:
return ProductSet(*sets).flatten()
@property
def base_pset(self):
return ProductSet(*self.base_sets)
@classmethod
def _check_sig(cls, sig_i, set_i):
if sig_i.is_symbol:
return True
elif isinstance(set_i, ProductSet):
sets = set_i.sets
if len(sig_i) != len(sets):
return False
# Recurse through the signature for nested tuples:
return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
else:
# XXX: Need a better way of checking whether a set is a set of
# Tuples or not. For example a FiniteSet can contain Tuples
# but so can an ImageSet or a ConditionSet. Others like
# Integers, Reals etc can not contain Tuples. We could just
# list the possibilities here... Current code for e.g.
# _contains probably only works for ProductSet.
return True # Give the benefit of the doubt
def __iter__(self):
already_seen = set()
for i in self.base_pset:
val = self.lamda(*i)
if val in already_seen:
continue
else:
already_seen.add(val)
yield val
def _is_multivariate(self):
return len(self.lamda.variables) > 1
def _contains(self, other):
from sympy.solvers.solveset import _solveset_multi
def get_symsetmap(signature, base_sets):
'''Attempt to get a map of symbols to base_sets'''
queue = list(zip(signature, base_sets))
symsetmap = {}
for sig, base_set in queue:
if sig.is_symbol:
symsetmap[sig] = base_set
elif base_set.is_ProductSet:
sets = base_set.sets
if len(sig) != len(sets):
raise ValueError("Incompatible signature")
# Recurse
queue.extend(zip(sig, sets))
else:
# If we get here then we have something like sig = (x, y) and
# base_set = {(1, 2), (3, 4)}. For now we give up.
return None
return symsetmap
def get_equations(expr, candidate):
'''Find the equations relating symbols in expr and candidate.'''
queue = [(expr, candidate)]
for e, c in queue:
if not isinstance(e, Tuple):
yield Eq(e, c)
elif not isinstance(c, Tuple) or len(e) != len(c):
yield False
return
else:
queue.extend(zip(e, c))
# Get the basic objects together:
other = _sympify(other)
expr = self.lamda.expr
sig = self.lamda.signature
variables = self.lamda.variables
base_sets = self.base_sets
# Use dummy symbols for ImageSet parameters so they don't match
# anything in other
rep = {v: Dummy(v.name) for v in variables}
variables = [v.subs(rep) for v in variables]
sig = sig.subs(rep)
expr = expr.subs(rep)
# Map the parts of other to those in the Lambda expr
equations = []
for eq in get_equations(expr, other):
# Unsatisfiable equation?
if eq is False:
return False
equations.append(eq)
# Map the symbols in the signature to the corresponding domains
symsetmap = get_symsetmap(sig, base_sets)
if symsetmap is None:
# Can't factor the base sets to a ProductSet
return None
# Which of the variables in the Lambda signature need to be solved for?
symss = (eq.free_symbols for eq in equations)
variables = set(variables) & reduce(set.union, symss, set())
# Use internal multivariate solveset
variables = tuple(variables)
base_sets = [symsetmap[v] for v in variables]
solnset = _solveset_multi(equations, variables, base_sets)
if solnset is None:
return None
return fuzzy_not(solnset.is_empty)
@property
def is_iterable(self):
return all(s.is_iterable for s in self.base_sets)
def doit(self, **kwargs):
from sympy.sets.setexpr import SetExpr
f = self.lamda
sig = f.signature
if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
base_set = self.base_sets[0]
return SetExpr(base_set)._eval_func(f).set
if all(s.is_FiniteSet for s in self.base_sets):
return FiniteSet(*(f(*a) for a in cartes(*self.base_sets)))
return self
class Range(Set):
"""
Represents a range of integers. Can be called as Range(stop),
Range(start, stop), or Range(start, stop, step); when stop is
not given it defaults to 1.
`Range(stop)` is the same as `Range(0, stop, 1)` and the stop value
(juse as for Python ranges) is not included in the Range values.
>>> from sympy import Range
>>> list(Range(3))
[0, 1, 2]
The step can also be negative:
>>> list(Range(10, 0, -2))
[10, 8, 6, 4, 2]
The stop value is made canonical so equivalent ranges always
have the same args:
>>> Range(0, 10, 3)
Range(0, 12, 3)
Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
set (``Range`` is always a subset of ``Integers``). If the starting point
is infinite, then the final value is ``stop - step``. To iterate such a
range, it needs to be reversed:
>>> from sympy import oo
>>> r = Range(-oo, 1)
>>> r[-1]
0
>>> next(iter(r))
Traceback (most recent call last):
...
TypeError: Cannot iterate over Range with infinite start
>>> next(iter(r.reversed))
0
Although Range is a set (and supports the normal set
operations) it maintains the order of the elements and can
be used in contexts where `range` would be used.
>>> from sympy import Interval
>>> Range(0, 10, 2).intersect(Interval(3, 7))
Range(4, 8, 2)
>>> list(_)
[4, 6]
Although slicing of a Range will always return a Range -- possibly
empty -- an empty set will be returned from any intersection that
is empty:
>>> Range(3)[:0]
Range(0, 0, 1)
>>> Range(3).intersect(Interval(4, oo))
EmptySet
>>> Range(3).intersect(Range(4, oo))
EmptySet
Range will accept symbolic arguments but has very limited support
for doing anything other than displaying the Range:
>>> from sympy import Symbol, pprint
>>> from sympy.abc import i, j, k
>>> Range(i, j, k).start
i
>>> Range(i, j, k).inf
Traceback (most recent call last):
...
ValueError: invalid method for symbolic range
Better success will be had when using integer symbols:
>>> n = Symbol('n', integer=True)
>>> r = Range(n, n + 20, 3)
>>> r.inf
n
>>> pprint(r)
{n, n + 3, ..., n + 17}
"""
is_iterable = True
def __new__(cls, *args):
from sympy.functions.elementary.integers import ceiling
if len(args) == 1:
if isinstance(args[0], range):
raise TypeError(
'use sympify(%s) to convert range to Range' % args[0])
# expand range
slc = slice(*args)
if slc.step == 0:
raise ValueError("step cannot be 0")
start, stop, step = slc.start or 0, slc.stop, slc.step or 1
try:
ok = []
for w in (start, stop, step):
w = sympify(w)
if w in [S.NegativeInfinity, S.Infinity] or (
w.has(Symbol) and w.is_integer != False):
ok.append(w)
elif not w.is_Integer:
raise ValueError
else:
ok.append(w)
except ValueError:
raise ValueError(filldedent('''
Finite arguments to Range must be integers; `imageset` can define
other cases, e.g. use `imageset(i, i/10, Range(3))` to give
[0, 1/10, 1/5].'''))
start, stop, step = ok
null = False
if any(i.has(Symbol) for i in (start, stop, step)):
if start == stop:
null = True
else:
end = stop
elif start.is_infinite:
span = step*(stop - start)
if span is S.NaN or span <= 0:
null = True
elif step.is_Integer and stop.is_infinite and abs(step) != 1:
raise ValueError(filldedent('''
Step size must be %s in this case.''' % (1 if step > 0 else -1)))
else:
end = stop
else:
oostep = step.is_infinite
if oostep:
step = S.One if step > 0 else S.NegativeOne
n = ceiling((stop - start)/step)
if n <= 0:
null = True
elif oostep:
end = start + 1
step = S.One # make it a canonical single step
else:
end = start + n*step
if null:
start = end = S.Zero
step = S.One
return Basic.__new__(cls, start, end, step)
start = property(lambda self: self.args[0])
stop = property(lambda self: self.args[1])
step = property(lambda self: self.args[2])
@property
def reversed(self):
"""Return an equivalent Range in the opposite order.
Examples
========
>>> from sympy import Range
>>> Range(10).reversed
Range(9, -1, -1)
"""
if self.has(Symbol):
_ = self.size # validate
if not self:
return self
return self.func(
self.stop - self.step, self.start - self.step, -self.step)
def _contains(self, other):
if not self:
return S.false
if other.is_infinite:
return S.false
if not other.is_integer:
return other.is_integer
if self.has(Symbol):
try:
_ = self.size # validate
except ValueError:
return
if self.start.is_finite:
ref = self.start
elif self.stop.is_finite:
ref = self.stop
else: # both infinite; step is +/- 1 (enforced by __new__)
return S.true
if self.size == 1:
return Eq(other, self[0])
res = (ref - other) % self.step
if res == S.Zero:
return And(other >= self.inf, other <= self.sup)
elif res.is_Integer: # off sequence
return S.false
else: # symbolic/unsimplified residue modulo step
return None
def __iter__(self):
if self.has(Symbol):
_ = self.size # validate
if self.start in [S.NegativeInfinity, S.Infinity]:
raise TypeError("Cannot iterate over Range with infinite start")
elif self:
i = self.start
step = self.step
while True:
if (step > 0 and not (self.start <= i < self.stop)) or \
(step < 0 and not (self.stop < i <= self.start)):
break
yield i
i += step
def __len__(self):
rv = self.size
if rv is S.Infinity:
raise ValueError('Use .size to get the length of an infinite Range')
return int(rv)
@property
def size(self):
if not self:
return S.Zero
dif = self.stop - self.start
if self.has(Symbol):
if dif.has(Symbol) or self.step.has(Symbol) or (
not self.start.is_integer and not self.stop.is_integer):
raise ValueError('invalid method for symbolic range')
if dif.is_infinite:
return S.Infinity
return Integer(abs(dif//self.step))
def __nonzero__(self):
return self.start != self.stop
__bool__ = __nonzero__
def __getitem__(self, i):
from sympy.functions.elementary.integers import ceiling
ooslice = "cannot slice from the end with an infinite value"
zerostep = "slice step cannot be zero"
infinite = "slicing not possible on range with infinite start"
# if we had to take every other element in the following
# oo, ..., 6, 4, 2, 0
# we might get oo, ..., 4, 0 or oo, ..., 6, 2
ambiguous = "cannot unambiguously re-stride from the end " + \
"with an infinite value"
if isinstance(i, slice):
if self.size.is_finite: # validates, too
start, stop, step = i.indices(self.size)
n = ceiling((stop - start)/step)
if n <= 0:
return Range(0)
canonical_stop = start + n*step
end = canonical_stop - step
ss = step*self.step
return Range(self[start], self[end] + ss, ss)
else: # infinite Range
start = i.start
stop = i.stop
if i.step == 0:
raise ValueError(zerostep)
step = i.step or 1
ss = step*self.step
#---------------------
# handle infinite Range
# i.e. Range(-oo, oo) or Range(oo, -oo, -1)
# --------------------
if self.start.is_infinite and self.stop.is_infinite:
raise ValueError(infinite)
#---------------------
# handle infinite on right
# e.g. Range(0, oo) or Range(0, -oo, -1)
# --------------------
if self.stop.is_infinite:
# start and stop are not interdependent --
# they only depend on step --so we use the
# equivalent reversed values
return self.reversed[
stop if stop is None else -stop + 1:
start if start is None else -start:
step].reversed
#---------------------
# handle infinite on the left
# e.g. Range(oo, 0, -1) or Range(-oo, 0)
# --------------------
# consider combinations of
# start/stop {== None, < 0, == 0, > 0} and
# step {< 0, > 0}
if start is None:
if stop is None:
if step < 0:
return Range(self[-1], self.start, ss)
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step < 0:
return Range(self[-1], self[stop], ss)
else: # > 0
return Range(self.start, self[stop], ss)
elif stop == 0:
if step > 0:
return Range(0)
else: # < 0
raise ValueError(ooslice)
elif stop == 1:
if step > 0:
raise ValueError(ooslice) # infinite singleton
else: # < 0
raise ValueError(ooslice)
else: # > 1
raise ValueError(ooslice)
elif start < 0:
if stop is None:
if step < 0:
return Range(self[start], self.start, ss)
else: # > 0
return Range(self[start], self.stop, ss)
elif stop < 0:
return Range(self[start], self[stop], ss)
elif stop == 0:
if step < 0:
raise ValueError(ooslice)
else: # > 0
return Range(0)
elif stop > 0:
raise ValueError(ooslice)
elif start == 0:
if stop is None:
if step < 0:
raise ValueError(ooslice) # infinite singleton
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step > 1:
raise ValueError(ambiguous)
elif step == 1:
return Range(self.start, self[stop], ss)
else: # < 0
return Range(0)
else: # >= 0
raise ValueError(ooslice)
elif start > 0:
raise ValueError(ooslice)
else:
if not self:
raise IndexError('Range index out of range')
if i == 0:
if self.start.is_infinite:
raise ValueError(ooslice)
if self.has(Symbol):
if (self.stop > self.start) == self.step.is_positive and self.step.is_positive is not None:
pass
else:
_ = self.size # validate
return self.start
if i == -1:
if self.stop.is_infinite:
raise ValueError(ooslice)
n = self.stop - self.step
if n.is_Integer or (
n.is_integer and (
(n - self.start).is_nonnegative ==
self.step.is_positive)):
return n
_ = self.size # validate
rv = (self.stop if i < 0 else self.start) + i*self.step
if rv.is_infinite:
raise ValueError(ooslice)
if rv < self.inf or rv > self.sup:
raise IndexError("Range index out of range")
return rv
@property
def _inf(self):
if not self:
raise NotImplementedError
if self.has(Symbol):
if self.step.is_positive:
return self[0]
elif self.step.is_negative:
return self[-1]
_ = self.size # validate
if self.step > 0:
return self.start
else:
return self.stop - self.step
@property
def _sup(self):
if not self:
raise NotImplementedError
if self.has(Symbol):
if self.step.is_positive:
return self[-1]
elif self.step.is_negative:
return self[0]
_ = self.size # validate
if self.step > 0:
return self.stop - self.step
else:
return self.start
@property
def _boundary(self):
return self
def as_relational(self, x):
"""Rewrite a Range in terms of equalities and logic operators. """
from sympy.functions.elementary.integers import floor
if self.size == 1:
return Eq(x, self[0])
else:
return And(
Eq(x, floor(x)),
x >= self.inf if self.inf in self else x > self.inf,
x <= self.sup if self.sup in self else x < self.sup)
# Using range from compatibility above (xrange on Py2)
if PY3:
converter[range] = lambda r: Range(r.start, r.stop, r.step)
else:
converter[range] = lambda r: Range(*r.__reduce__()[1])
def normalize_theta_set(theta):
"""
Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns
a normalized value of theta in the Set. For Interval, a maximum of
one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi],
returned normalized value would be [0, 2*pi). As of now intervals
with end points as non-multiples of `pi` is not supported.
Raises
======
NotImplementedError
The algorithms for Normalizing theta Set are not yet
implemented.
ValueError
The input is not valid, i.e. the input is not a real set.
RuntimeError
It is a bug, please report to the github issue tracker.
Examples
========
>>> from sympy.sets.fancysets import normalize_theta_set
>>> from sympy import Interval, FiniteSet, pi
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
Interval(pi/2, pi)
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-pi/2, pi/2))
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
Interval(pi/2, 3*pi/2)
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
FiniteSet(0, pi)
"""
from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
if theta.is_Interval:
interval_len = theta.measure
# one complete circle
if interval_len >= 2*S.Pi:
if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
k = coeff(theta.start)
return Union(Interval(0, k*S.Pi, False, True),
Interval(k*S.Pi, 2*S.Pi, True, True))
return Interval(0, 2*S.Pi, False, True)
k_start, k_end = coeff(theta.start), coeff(theta.end)
if k_start is None or k_end is None:
raise NotImplementedError("Normalizing theta without pi as coefficient is "
"not yet implemented")
new_start = k_start*S.Pi
new_end = k_end*S.Pi
if new_start > new_end:
return Union(Interval(S.Zero, new_end, False, theta.right_open),
Interval(new_start, 2*S.Pi, theta.left_open, True))
else:
return Interval(new_start, new_end, theta.left_open, theta.right_open)
elif theta.is_FiniteSet:
new_theta = []
for element in theta:
k = coeff(element)
if k is None:
raise NotImplementedError('Normalizing theta without pi as '
'coefficient, is not Implemented.')
else:
new_theta.append(k*S.Pi)
return FiniteSet(*new_theta)
elif theta.is_Union:
return Union(*[normalize_theta_set(interval) for interval in theta.args])
elif theta.is_subset(S.Reals):
raise NotImplementedError("Normalizing theta when, it is of type %s is not "
"implemented" % type(theta))
else:
raise ValueError(" %s is not a real set" % (theta))
class ComplexRegion(Set):
"""
Represents the Set of all Complex Numbers. It can represent a
region of Complex Plane in both the standard forms Polar and
Rectangular coordinates.
* Polar Form
Input is in the form of the ProductSet or Union of ProductSets
of the intervals of r and theta, & use the flag polar=True.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
* Rectangular Form
Input is in the form of the ProductSet or Union of ProductSets
of interval of x and y the of the Complex numbers in a Plane.
Default input type is in rectangular form.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets import Interval
>>> from sympy import S, I, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 6)
>>> c = Interval(1, 8)
>>> c1 = ComplexRegion(a*b) # Rectangular Form
>>> c1
CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))
* c1 represents the rectangular region in complex plane
surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
(2, 6), of the four vertices.
>>> c2 = ComplexRegion(Union(a*b, b*c))
>>> c2
CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))
* c2 represents the Union of two rectangular regions in complex
plane. One of them surrounded by the coordinates of c1 and
other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
(4, 8).
>>> 2.5 + 4.5*I in c1
True
>>> 2.5 + 6.5*I in c1
False
>>> r = Interval(0, 1)
>>> theta = Interval(0, 2*S.Pi)
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
>>> c2 # unit Disk
PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))
* c2 represents the region in complex plane inside the
Unit Disk centered at the origin.
>>> 0.5 + 0.5*I in c2
True
>>> 1 + 2*I in c2
False
>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
>>> intersection
PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
>>> intersection == upper_half_unit_disk
True
See Also
========
CartesianComplexRegion
PolarComplexRegion
Complexes
"""
is_ComplexRegion = True
def __new__(cls, sets, polar=False):
if polar is False:
return CartesianComplexRegion(sets)
elif polar is True:
return PolarComplexRegion(sets)
else:
raise ValueError("polar should be either True or False")
@property
def sets(self):
"""
Return raw input sets to the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.sets
ProductSet(Interval(2, 3), Interval(4, 5))
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.sets
Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
"""
return self.args[0]
@property
def psets(self):
"""
Return a tuple of sets (ProductSets) input of the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.psets
(ProductSet(Interval(2, 3), Interval(4, 5)),)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.psets
(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
"""
if self.sets.is_ProductSet:
psets = ()
psets = psets + (self.sets, )
else:
psets = self.sets.args
return psets
@property
def a_interval(self):
"""
Return the union of intervals of `x` when, self is in
rectangular form, or the union of intervals of `r` when
self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.a_interval
Interval(2, 3)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.a_interval
Union(Interval(2, 3), Interval(4, 5))
"""
a_interval = []
for element in self.psets:
a_interval.append(element.args[0])
a_interval = Union(*a_interval)
return a_interval
@property
def b_interval(self):
"""
Return the union of intervals of `y` when, self is in
rectangular form, or the union of intervals of `theta`
when self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.b_interval
Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.b_interval
Interval(1, 7)
"""
b_interval = []
for element in self.psets:
b_interval.append(element.args[1])
b_interval = Union(*b_interval)
return b_interval
@property
def _measure(self):
"""
The measure of self.sets.
Examples
========
>>> from sympy import Interval, ComplexRegion, S
>>> a, b = Interval(2, 5), Interval(4, 8)
>>> c = Interval(0, 2*S.Pi)
>>> c1 = ComplexRegion(a*b)
>>> c1.measure
12
>>> c2 = ComplexRegion(a*c, polar=True)
>>> c2.measure
6*pi
"""
return self.sets._measure
@classmethod
def from_real(cls, sets):
"""
Converts given subset of real numbers to a complex region.
Examples
========
>>> from sympy import Interval, ComplexRegion
>>> unit = Interval(0,1)
>>> ComplexRegion.from_real(unit)
CartesianComplexRegion(ProductSet(Interval(0, 1), FiniteSet(0)))
"""
if not sets.is_subset(S.Reals):
raise ValueError("sets must be a subset of the real line")
return CartesianComplexRegion(sets * FiniteSet(0))
def _contains(self, other):
from sympy.functions import arg, Abs
from sympy.core.containers import Tuple
other = sympify(other)
isTuple = isinstance(other, Tuple)
if isTuple and len(other) != 2:
raise ValueError('expecting Tuple of length 2')
# If the other is not an Expression, and neither a Tuple
if not isinstance(other, Expr) and not isinstance(other, Tuple):
return S.false
# self in rectangular form
if not self.polar:
re, im = other if isTuple else other.as_real_imag()
for element in self.psets:
if And(element.args[0]._contains(re),
element.args[1]._contains(im)):
return True
return False
# self in polar form
elif self.polar:
if isTuple:
r, theta = other
elif other.is_zero:
r, theta = S.Zero, S.Zero
else:
r, theta = Abs(other), arg(other)
for element in self.psets:
if And(element.args[0]._contains(r),
element.args[1]._contains(theta)):
return True
return False
class CartesianComplexRegion(ComplexRegion):
"""
Set representing a square region of the complex plane.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets.sets import Interval
>>> from sympy import I
>>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
>>> 2 + 5*I in region
True
>>> 5*I in region
False
See also
========
ComplexRegion
PolarComplexRegion
Complexes
"""
polar = False
variables = symbols('x, y', cls=Dummy)
def __new__(cls, sets):
if sets == S.Reals*S.Reals:
return S.Complexes
if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
# ** ProductSet of FiniteSets in the Complex Plane. **
# For Cases like ComplexRegion({2, 4}*{3}), It
# would return {2 + 3*I, 4 + 3*I}
# FIXME: This should probably be handled with something like:
# return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
complex_num = []
for x in sets.args[0]:
for y in sets.args[1]:
complex_num.append(x + S.ImaginaryUnit*y)
return FiniteSet(*complex_num)
else:
return Set.__new__(cls, sets)
@property
def expr(self):
x, y = self.variables
return x + S.ImaginaryUnit*y
class PolarComplexRegion(ComplexRegion):
"""
Set representing a polar region of the complex plane.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion, Interval
>>> from sympy import oo, pi, I
>>> rset = Interval(0, oo)
>>> thetaset = Interval(0, pi)
>>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
>>> 1 + I in upper_half_plane
True
>>> 1 - I in upper_half_plane
False
See also
========
ComplexRegion
CartesianComplexRegion
Complexes
"""
polar = True
variables = symbols('r, theta', cls=Dummy)
def __new__(cls, sets):
new_sets = []
# sets is Union of ProductSets
if not sets.is_ProductSet:
for k in sets.args:
new_sets.append(k)
# sets is ProductSets
else:
new_sets.append(sets)
# Normalize input theta
for k, v in enumerate(new_sets):
new_sets[k] = ProductSet(v.args[0],
normalize_theta_set(v.args[1]))
sets = Union(*new_sets)
return Set.__new__(cls, sets)
@property
def expr(self):
from sympy.functions.elementary.trigonometric import sin, cos
r, theta = self.variables
return r*(cos(theta) + S.ImaginaryUnit*sin(theta))
class Complexes(with_metaclass(Singleton, CartesianComplexRegion)):
"""
The Set of all complex numbers
Examples
========
>>> from sympy import S, I
>>> S.Complexes
Complexes
>>> 1 + I in S.Complexes
True
See also
========
Reals
ComplexRegion
"""
is_empty = False
is_finite_set = False
# Override property from superclass since Complexes has no args
sets = ProductSet(S.Reals, S.Reals)
def __new__(cls):
return Set.__new__(cls)
def __str__(self):
return "S.Complexes"
def __repr__(self):
return "S.Complexes"
|
1a2bc1169b53e64cba5585533e4cc4bfb735065c734bda47bfcf15a067027b80 | from __future__ import print_function, division
from collections import defaultdict
import inspect
from sympy.core.basic import Basic
from sympy.core.compatibility import (iterable, with_metaclass,
ordered, range, PY3, reduce)
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.decorators import (deprecated, sympify_method_args,
sympify_return)
from sympy.core.evalf import EvalfMixin
from sympy.core.evaluate import global_evaluate
from sympy.core.expr import Expr
from sympy.core.logic import fuzzy_bool, fuzzy_or, fuzzy_and, fuzzy_not
from sympy.core.numbers import Float
from sympy.core.operations import LatticeOp
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Symbol, Dummy, _uniquely_named_symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And, Or, Not, Xor, true, false
from sympy.sets.contains import Contains
from sympy.utilities import subsets
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import iproduct, sift, roundrobin
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
tfn = defaultdict(lambda: None, {
True: S.true,
S.true: S.true,
False: S.false,
S.false: S.false})
@sympify_method_args
class Set(Basic):
"""
The base class for any kind of set.
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection = None
is_UniversalSet = None
is_Complement = None
is_ComplexRegion = False
is_empty = None
is_finite_set = None
@property
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return None
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of 'self' and 'other'.
Examples
========
As a shortcut it is possible to use the '+' operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union(FiniteSet(3), Interval.Lopen(1, 2))
Similarly it is possible to use the '-' operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if 'self' and 'other' are disjoint
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
Complement(UniversalSet, Interval(0, 1))
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(self, ProductSet) and isinstance(other, ProductSet):
# If self and other are disjoint then other - self == self
if len(self.sets) != len(other.sets):
return other
# There can be other ways to represent this but this gives:
# (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
overlaps = []
pairs = list(zip(self.sets, other.sets))
for n in range(len(pairs)):
sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
overlaps.append(ProductSet(*sets))
return Union(*overlaps)
elif isinstance(other, Interval):
if isinstance(self, Interval) or isinstance(self, FiniteSet):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(*(o - self for o in other.args))
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif isinstance(other, EmptySet):
return S.EmptySet
elif isinstance(other, FiniteSet):
from sympy.utilities.iterables import sift
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of `self` and `other`.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet)
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns a SymPy value indicating whether ``other`` is contained
in ``self``: ``true`` if it is, ``false`` if it isn't, else
an unevaluated ``Contains`` expression (or, as in the case of
ConditionSet and a union of FiniteSet/Intervals, an expression
indicating the conditions for containment).
Examples
========
>>> from sympy import Interval, S
>>> from sympy.abc import x
>>> Interval(0, 1).contains(0.5)
True
As a shortcut it is possible to use the 'in' operator, but that
will raise an error unless an affirmative true or false is not
obtained.
>>> Interval(0, 1).contains(x)
(0 <= x) & (x <= 1)
>>> x in Interval(0, 1)
Traceback (most recent call last):
...
TypeError: did not evaluate to a bool: None
The result of 'in' is a bool, not a SymPy value
>>> 1 in Interval(0, 2)
True
>>> _ is S.true
False
"""
other = sympify(other, strict=True)
c = self._contains(other)
if c is None:
return Contains(other, self, evaluate=False)
b = tfn[c]
if b is None:
return c
return b
def _contains(self, other):
raise NotImplementedError(filldedent('''
(%s)._contains(%s) is not defined. This method, when
defined, will receive a sympified object. The method
should return True, False, None or something that
expresses what must be true for the containment of that
object in self to be evaluated. If None is returned
then a generic Contains object will be returned
by the ``contains`` method.''' % (self, other)))
def is_subset(self, other):
"""
Returns True if 'self' is a subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if not isinstance(other, Set):
raise ValueError("Unknown argument '%s'" % other)
# Handle the trivial cases
if self == other:
return True
is_empty = self.is_empty
if is_empty is True:
return True
elif fuzzy_not(is_empty) and other.is_empty:
return False
if self.is_finite_set is False and other.is_finite_set:
return False
# Dispatch on subclass rules
ret = self._eval_is_subset(other)
if ret is not None:
return ret
ret = other._eval_is_superset(self)
if ret is not None:
return ret
# Use pairwise rules from multiple dispatch
from sympy.sets.handlers.issubset import is_subset_sets
ret = is_subset_sets(self, other)
if ret is not None:
return ret
# Fall back on computing the intersection
# XXX: We shouldn't do this. A query like this should be handled
# without evaluating new Set objects. It should be the other way round
# so that the intersect method uses is_subset for evaluation.
if self.intersect(other) == self:
return True
def _eval_is_subset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
def _eval_is_superset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
# This should be deprecated:
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if 'self' is a proper subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if 'self' is a superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
# This should be deprecated:
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if 'self' is a proper superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
from .powerset import PowerSet
return PowerSet(self)
def powerset(self):
"""
Find the Power set of 'self'.
Examples
========
>>> from sympy import EmptySet, FiniteSet, Interval, PowerSet
A power set of an empty set:
>>> from sympy import FiniteSet, EmptySet
>>> A = EmptySet
>>> A.powerset()
FiniteSet(EmptySet)
A power set of a finite set:
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
True
A power set of an interval:
>>> Interval(1, 2).powerset()
PowerSet(Interval(1, 2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def boundary(self):
"""
The boundary or frontier of a set
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
FiniteSet(0, 1)
>>> Interval(0, 1, True, False).boundary
FiniteSet(0, 1)
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
A set is open if and only if it has an empty intersection with its
boundary. In particular, a subset A of the reals is open if and only
if each one of its points is contained in an open interval that is a
subset of A.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
>>> S.Rationals.is_open
False
"""
return Intersection(self, self.boundary).is_empty
@property
def is_closed(self):
"""
A property method to check whether a set is closed.
A set is closed if its complement is an open set. The closedness of a
subset of the reals is determined with respect to R and its standard
topology.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
@sympify_return([('other', 'Set')], NotImplemented)
def __add__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __or__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __and__(self, other):
return self.intersect(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __mul__(self, other):
return ProductSet(self, other)
@sympify_return([('other', 'Set')], NotImplemented)
def __xor__(self, other):
return SymmetricDifference(self, other)
@sympify_return([('exp', Expr)], NotImplemented)
def __pow__(self, exp):
if not (exp.is_Integer and exp >= 0):
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet(*[self]*exp)
@sympify_return([('other', 'Set')], NotImplemented)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
other = _sympify(other)
c = self._contains(other)
b = tfn[c]
if b is None:
raise TypeError('did not evaluate to a bool: %r' % c)
return b
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use '*' operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
ProductSet(Interval(0, 5), FiniteSet(1, 2, 3))
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
ProductSet(Interval(0, 1), Interval(0, 1))
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
The Cartesian product is not commutative or associative e.g.:
>>> I*S == S*I
False
>>> (I*I)*I == I*(I*I)
False
Notes
=====
- Passes most operations down to the argument sets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
SymPyDeprecationWarning(
feature="ProductSet(iterable)",
useinstead="ProductSet(*iterable)",
issue=17557,
deprecated_since_version="1.5"
).warn()
sets = tuple(sets[0])
sets = [sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Arguments to ProductSet should be of type Set")
# Nullary product of sets is *not* the empty set
if len(sets) == 0:
return FiniteSet(())
if S.EmptySet in sets:
return S.EmptySet
return Basic.__new__(cls, *sets, **assumptions)
@property
def sets(self):
return self.args
def flatten(self):
def _flatten(sets):
for s in sets:
if s.is_ProductSet:
for s2 in _flatten(s.sets):
yield s2
else:
yield s
return ProductSet(*_flatten(self.sets))
def _eval_Eq(self, other):
if not other.is_ProductSet:
return
if len(self.sets) != len(other.sets):
return false
eqs = (Eq(x, y) for x, y in zip(self.sets, other.sets))
return tfn[fuzzy_and(map(fuzzy_bool, eqs))]
def _contains(self, element):
"""
'in' operator for ProductSets
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
if element.is_Symbol:
return None
if not isinstance(element, Tuple) or len(element) != len(self.sets):
return False
return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
def as_relational(self, *symbols):
symbols = [_sympify(s) for s in symbols]
if len(symbols) != len(self.sets) or not all(
i.is_Symbol for i in symbols):
raise ValueError(
'number of symbols must match the number of sets')
return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
@property
def _boundary(self):
return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets)))
for i, a in enumerate(self.sets)))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval, ProductSet
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
return iproduct(*self.sets)
@property
def is_empty(self):
return fuzzy_or(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def _measure(self):
measure = 1
for s in self.sets:
measure *= s.measure
return measure
def __len__(self):
return reduce(lambda a, b: a*b, (len(s) for s in self.args))
def __bool__(self):
return all([bool(s) for s in self.sets])
__nonzero__ = __bool__
class Interval(Set, EvalfMixin):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points "start" and "end".
For left_open=True (default left_open is False) the interval
will be open on the left. Similarly, for right_open=True the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- Interval(a, b) with a > b will return the empty set
- Use the evalf() method to turn an Interval into an mpmath
'mpi' interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
inftys = [S.Infinity, S.NegativeInfinity]
# Only allow real intervals (use symbols with 'is_extended_real=True').
if not all(i.is_extended_real is not False or i in inftys for i in (start, end)):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if (end < start) == True:
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start is S.Infinity or start is S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start is S.NegativeInfinity:
left_open = true
if end is S.Infinity:
right_open = true
if start == S.Infinity or end == S.NegativeInfinity:
return S.EmptySet
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of 'self'.
This property takes the same value as the 'inf' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
_inf = left = start
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def end(self):
"""
The right end point of 'self'.
This property takes the same value as the 'sup' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
_sup = right = end
@property
def left_open(self):
"""
True if 'self' is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if 'self' is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
@property
def is_empty(self):
if self.left_open or self.right_open:
cond = self.start >= self.end # One/both bounds open
else:
cond = self.start > self.end # Both bounds closed
return fuzzy_bool(cond)
@property
def is_finite_set(self):
return self.measure.is_zero
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if not isinstance(other, Expr) or (
other is S.Infinity or
other is S.NegativeInfinity or
other is S.NaN or
other is S.ComplexInfinity) or other.is_extended_real is False:
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if not other.is_extended_real is None:
return other.is_extended_real
d = Dummy()
return self.as_relational(d).subs(d, other)
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
@property
def _measure(self):
return self.end - self.start
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._eval_evalf(prec),
self.right._eval_evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def _eval_Eq(self, other):
if not isinstance(other, Interval):
if isinstance(other, FiniteSet):
return false
elif isinstance(other, Set):
return None
return false
return And(Eq(self.left, other.left),
Eq(self.right, other.right),
self.left_open == other.left_open,
self.right_open == other.right_open)
class Union(Set, LatticeOp, EvalfMixin):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
@property
def identity(self):
return S.EmptySet
@property
def zero(self):
return S.UniversalSet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
@cacheit
def args(self):
return self._args
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
from sympy.functions.elementary.miscellaneous import Min
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
from sympy.functions.elementary.miscellaneous import Max
return Max(*[set.sup for set in self.args])
@property
def is_empty(self):
return fuzzy_and(set.is_empty for set in self.args)
@property
def is_finite_set(self):
return fuzzy_and(set.is_finite_set for set in self.args)
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for set in sets:
if set[0] in sos_list:
continue
else:
sos_list.append(set[0])
sets_list.append(set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(*map(boundary_of_set, range(len(self.args))))
def _contains(self, other):
return Or(*[s.contains(other) for s in self.args])
def is_subset(self, other):
return fuzzy_and(s.is_subset(other) for s in self.args)
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if all(isinstance(i, (FiniteSet, Interval)) for i in self.args):
if len(self.args) == 2:
a, b = self.args
if (a.sup == b.inf and a.inf is S.NegativeInfinity
and b.sup is S.Infinity):
return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf)
return Or(*[set.as_relational(symbol) for set in self.args])
raise NotImplementedError('relational of Union with non-Intervals')
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def _eval_evalf(self, prec):
try:
return Union(*(set._eval_evalf(prec) for set in self.args))
except (TypeError, ValueError, NotImplementedError):
import sys
raise (TypeError("Not all sets are evalf-able"),
None,
sys.exc_info()[2])
def __iter__(self):
return roundrobin(*(iter(arg) for arg in self.args))
class Intersection(Set, LatticeOp):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
@property
def identity(self):
return S.UniversalSet
@property
def zero(self):
return S.EmptySet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
# flatten inputs to merge intersections and iterables
args = list(ordered(set(_sympify(args))))
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_intersection(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
@cacheit
def args(self):
return self._args
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def is_finite_set(self):
if fuzzy_or(arg.is_finite_set for arg in self.args):
return True
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
sets_sift = sift(self.args, lambda x: x.is_iterable)
completed = False
candidates = sets_sift[True] + sets_sift[None]
finite_candidates, others = [], []
for candidate in candidates:
length = None
try:
length = len(candidate)
except TypeError:
others.append(candidate)
if length is not None:
finite_candidates.append(candidate)
finite_candidates.sort(key=len)
for s in finite_candidates + others:
other_sets = set(self.args) - set((s,))
other = Intersection(*other_sets, evaluate=False)
completed = True
for x in s:
try:
if x in other:
yield x
except TypeError:
completed = False
if completed:
return
if not completed:
if not candidates:
raise TypeError("None of the constituent sets are iterable")
raise TypeError(
"The computation had not completed because of the "
"undecidable set membership is found in every candidates.")
@staticmethod
def _handle_finite_sets(args):
'''Simplify intersection of one or more FiniteSets and other sets'''
# First separate the FiniteSets from the others
fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
# Let the caller handle intersection of non-FiniteSets
if not fs_args:
return
# Convert to Python sets and build the set of all elements
fs_sets = [set(fs) for fs in fs_args]
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Extract elements that are definitely in or definitely not in the
# intersection. Here we check contains for all of args.
definite = set()
for e in all_elements:
inall = fuzzy_and(s.contains(e) for s in args)
if inall is True:
definite.add(e)
if inall is not None:
for s in fs_sets:
s.discard(e)
# At this point all elements in all of fs_sets are possibly in the
# intersection. In some cases this is because they are definitely in
# the intersection of the finite sets but it's not clear if they are
# members of others. We might have {m, n}, {m}, and Reals where we
# don't know if m or n is real. We want to remove n here but it is
# possibly in because it might be equal to m. So what we do now is
# extract the elements that are definitely in the remaining finite
# sets iteratively until we end up with {n}, {}. At that point if we
# get any empty set all remaining elements are discarded.
fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Need fuzzy containment testing
fs_symsets = [FiniteSet(*s) for s in fs_sets]
while fs_elements:
for e in fs_elements:
infs = fuzzy_and(s.contains(e) for s in fs_symsets)
if infs is True:
definite.add(e)
if infs is not None:
for n, s in enumerate(fs_sets):
# Update Python set and FiniteSet
if e in s:
s.remove(e)
fs_symsets[n] = FiniteSet(*s)
fs_elements.remove(e)
break
# If we completed the for loop without removing anything we are
# done so quit the outer while loop
else:
break
# If any of the sets of remainder elements is empty then we discard
# all of them for the intersection.
if not all(fs_sets):
fs_sets = [set()]
# Here we fold back the definitely included elements into each fs.
# Since they are definitely included they must have been members of
# each FiniteSet to begin with. We could instead fold these in with a
# Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
if definite:
fs_sets = [fs | definite for fs in fs_sets]
if fs_sets == [set()]:
return S.EmptySet
sets = [FiniteSet(*s) for s in fs_sets]
# Any set in others is redundant if it contains all the elements that
# are in the finite sets so we don't need it in the Intersection
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
others = [o for o in others if not is_redundant(o)]
if others:
rest = Intersection(*others)
# XXX: Maybe this shortcut should be at the beginning. For large
# FiniteSets it could much more efficient to process the other
# sets first...
if rest is S.EmptySet:
return S.EmptySet
# Flatten the Intersection
if rest.is_Intersection:
sets.extend(rest.args)
else:
sets.append(rest)
if len(sets) == 1:
return sets[0]
else:
return Intersection(*sets, evaluate=False)
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set, EvalfMixin):
r"""Represents the set difference or relative complement of a set with
another set.
`A - B = \{x \in A \mid x \notin B\}`
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
FiniteSet(0, 2)
See Also
=========
Intersection, Union
References
==========
.. [1] http://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return S.EmptySet
if isinstance(B, Union):
return Intersection(*(s.complement(A) for s in B.args))
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
def as_relational(self, symbol):
"""Rewrite a complement in terms of equalities and logic
operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = Not(B.as_relational(symbol))
return And(A_rel, B_rel)
@property
def is_iterable(self):
if self.args[0].is_iterable:
return True
@property
def is_finite_set(self):
A, B = self.args
a_finite = A.is_finite_set
if a_finite is True:
return True
elif a_finite is False and B.is_finite_set:
return False
def __iter__(self):
A, B = self.args
for a in A:
if a not in B:
yield a
else:
continue
class EmptySet(with_metaclass(Singleton, Set)):
"""
Represents the empty set. The empty set is available as a singleton
as S.EmptySet.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_empty = True
is_finite_set = True
is_FiniteSet = True
@property
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _symmetric_difference(self, other):
return other
class UniversalSet(with_metaclass(Singleton, Set)):
"""
Represents the set of all things.
The universal set is available as a singleton as S.UniversalSet
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
is_empty = False
is_finite_set = False
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return S.EmptySet
class FiniteSet(Set, EvalfMixin):
"""
Represents a finite set of discrete numbers
Examples
========
>>> from sympy import FiniteSet
>>> FiniteSet(1, 2, 3, 4)
FiniteSet(1, 2, 3, 4)
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
FiniteSet(1, 2, 3, 4)
>>> f - FiniteSet(2)
FiniteSet(1, 3, 4)
>>> f + FiniteSet(2, 5)
FiniteSet(1, 2, 3, 4, 5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
is_empty = False
is_finite_set = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return S.EmptySet
else:
args = list(map(sympify, args))
_args_set = set(args)
args = list(ordered(_args_set, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._args_set = _args_set
return obj
def _eval_Eq(self, other):
if not isinstance(other, FiniteSet):
# XXX: If Interval(x, x, evaluate=False) worked then the line
# below would mean that
# FiniteSet(x) & Interval(x, x, evaluate=False) -> false
if isinstance(other, Interval):
return false
elif isinstance(other, Set):
return None
return false
def all_in_both():
s_set = set(self.args)
o_set = set(other.args)
yield fuzzy_and(self._contains(e) for e in o_set - s_set)
yield fuzzy_and(other._contains(e) for e in s_set - o_set)
return tfn[fuzzy_and(all_in_both())]
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
nums = sorted(m for m in self.args if m.is_number)
if other == S.Reals and nums != []:
syms = [m for m in self.args if m.is_Symbol]
# Reals cannot contain elements other than numbers and symbols.
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(*intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(*intervals, evaluate=False)
elif nums == []:
return None
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
The actual test is for mathematical equality (as opposed to
syntactical equality). In the worst case all elements of the
set must be checked.
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
if other in self._args_set:
return True
else:
# evaluate=True is needed to override evaluate=False context;
# we need Eq to do the evaluation
return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
for e in self.args)
def _eval_is_subset(self, other):
return fuzzy_and(other._contains(e) for e in self.args)
@property
def _boundary(self):
return self
@property
def _inf(self):
from sympy.functions.elementary.miscellaneous import Min
return Min(*self)
@property
def _sup(self):
from sympy.functions.elementary.miscellaneous import Max
return Max(*self)
@property
def measure(self):
return 0
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
from sympy.core.relational import Eq
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
return FiniteSet(*[elem._eval_evalf(prec) for elem in self])
@property
def _sorted_args(self):
return self.args
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
"""Rewriting method for a finite set to a power set."""
from .powerset import PowerSet
is2pow = lambda n: bool(n and not n & (n - 1))
if not is2pow(len(self)):
return None
fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
if not all((fs_test(arg) for arg in args)):
return None
biggest = max(args, key=len)
for arg in subsets(biggest.args):
arg_set = FiniteSet(*arg)
if arg_set not in args:
return None
return PowerSet(biggest)
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
converter[set] = lambda x: FiniteSet(*x)
converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
FiniteSet(1, 2, 4, 5)
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def as_relational(self, symbol):
"""Rewrite a symmetric_difference in terms of equalities and
logic operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = B.as_relational(symbol)
return Xor(A_rel, B_rel)
@property
def is_iterable(self):
if all(arg.is_iterable for arg in self.args):
return True
def __iter__(self):
args = self.args
union = roundrobin(*(iter(arg) for arg in args))
for item in union:
count = 0
for s in args:
if item in s:
count += 1
if count % 2 == 1:
yield item
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
If this function can't compute the image, it returns an
unevaluated ImageSet object.
.. math::
\{ f(x) \mid x \in \mathrm{self} \}
Examples
========
>>> from sympy import S, Interval, Symbol, imageset, sin, Lambda
>>> from sympy.abc import x, y
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(y, x + y), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from sympy.core import Lambda
from sympy.sets.fancysets import ImageSet
from sympy.sets.setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif callable(f):
nargs = getattr(f, 'nargs', {})
if nargs:
if len(nargs) != 1:
raise NotImplementedError(filldedent('''
This function can take more than 1 arg
but the potentially complicated set input
has not been analyzed at this point to
know its dimensions. TODO
'''))
N = nargs.args[0]
if N == 1:
s = 'x'
else:
s = [Symbol('x%i' % i) for i in range(1, N + 1)]
else:
if PY3:
s = inspect.signature(f).parameters
else:
s = inspect.getargspec(f).args
dexpr = _sympify(f(*[Dummy() for i in s]))
var = tuple(_uniquely_named_symbol(Symbol(i), dexpr) for i in s)
f = Lambda(var, f(*var))
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass,
not \'%s\'.''' % func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
try:
# TypeError if arg count != set dimensions
r = set_function(f, set)
if r is None:
raise TypeError
if not r:
return r
except TypeError:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
# XXX: Maybe this should just be:
# f2 = set.lambda
# fun = Lambda(f2.signature, f(*f2.expr))
# return imageset(fun, *set.base_sets)
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
x = set.lamda.variables[0]
y = f.variables[0]
return imageset(
Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
from sympy import exp, log
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
if not args:
return S.EmptySet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = set((new_set, ))
new_args = (args - set((s, t))).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(*args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
if not args:
return S.UniversalSet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# If any EmptySets return EmptySet
if S.EmptySet in args:
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - set((s,))
if len(other_sets) > 0:
other = Intersection(*other_sets)
return Union(*(Intersection(arg, other) for arg in s.args))
else:
return Union(*[arg for arg in s.args])
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - set((s,)):
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - set((s, t))).union(set((new_set, )))
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(*args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from sympy.sets import ImageSet
from sympy import symbols,Lambda
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
|
3b942f9441e606df1024aca875272c7b751d8f3a318d11384b42bb1964b8ab43 | from __future__ import print_function, division
from sympy import S
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import fuzzy_bool
from sympy.core.relational import Eq
from sympy.core.symbol import Symbol, Dummy
from sympy.core.sympify import _sympify
from sympy.logic.boolalg import And, as_Boolean
from sympy.utilities.iterables import sift
from sympy.utilities.misc import filldedent
from sympy.utilities.exceptions import SymPyDeprecationWarning
from .contains import Contains
from .sets import Set, EmptySet, Union, FiniteSet
class ConditionSet(Set):
"""
Set of elements which satisfies a given condition.
{x | condition(x) is True for x in S}
Examples
========
>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
>>> from sympy.abc import x, y, z
>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
>>> 2*pi in sin_sols
True
>>> pi/2 in sin_sols
False
>>> 3*pi in sin_sols
False
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
True
If the value is not in the base set, the result is false:
>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
False
Notes
=====
Symbols with assumptions should be avoided or else the
condition may evaluate without consideration of the set:
>>> n = Symbol('n', negative=True)
>>> cond = (n > 0); cond
False
>>> ConditionSet(n, cond, S.Integers)
EmptySet
In addition, substitution of a dummy symbol can only be
done with a generic symbol with matching commutativity
or else a symbol that has identical assumptions. If the
base set contains the dummy symbol it is logically distinct
and will be the target of substitution.
>>> c = ConditionSet(x, x < 1, {x, z})
>>> c.subs(x, y)
ConditionSet(x, x < 1, FiniteSet(y, z))
A second substitution is needed to change the dummy symbol, too:
>>> _.subs(x, y)
ConditionSet(y, y < 1, FiniteSet(y, z))
And trying to replace the dummy symbol with anything but a symbol
is ignored: the only change possible will be in the base set:
>>> ConditionSet(y, y < 1, {y, z}).subs(y, 1)
ConditionSet(y, y < 1, FiniteSet(z))
>>> _.subs(y, 1)
ConditionSet(y, y < 1, FiniteSet(z))
Notes
=====
If no base set is specified, the universal set is implied:
>>> ConditionSet(x, x < 1).base_set
UniversalSet
Although expressions other than symbols may be used, this
is discouraged and will raise an error if the expression
is not found in the condition:
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
ConditionSet(x + 1, x + 1 < 1, Integers)
>>> ConditionSet(x + 1, x < 1, S.Integers)
Traceback (most recent call last):
...
ValueError: non-symbol dummy not recognized in condition
Although the name is usually respected, it must be replaced if
the base set is another ConditionSet and the dummy symbol
and appears as a free symbol in the base set and the dummy symbol
of the base set appears as a free symbol in the condition:
>>> ConditionSet(x, x < y, ConditionSet(y, x + y < 2, S.Integers))
ConditionSet(lambda, (lambda < y) & (lambda + x < 2), Integers)
The best way to do anything with the dummy symbol is to access
it with the sym property.
>>> _.subs(_.sym, Symbol('_x'))
ConditionSet(_x, (_x < y) & (_x + x < 2), Integers)
"""
def __new__(cls, sym, condition, base_set=S.UniversalSet):
# nonlinsolve uses ConditionSet to return an unsolved system
# of equations (see _return_conditionset in solveset) so until
# that is changed we do minimal checking of the args
sym = _sympify(sym)
base_set = _sympify(base_set)
condition = _sympify(condition)
if isinstance(condition, FiniteSet):
condition_orig = condition
temp = (Eq(lhs, 0) for lhs in condition)
condition = And(*temp)
SymPyDeprecationWarning(
feature="Using {} for condition".format(condition_orig),
issue=17651,
deprecated_since_version='1.5',
useinstead="{} for condition".format(condition)
).warn()
condition = as_Boolean(condition)
if isinstance(sym, Tuple): # unsolved eqns syntax
return Basic.__new__(cls, sym, condition, base_set)
if not isinstance(base_set, Set):
raise TypeError('expecting set for base_set')
if condition is S.false:
return S.EmptySet
elif condition is S.true:
return base_set
if isinstance(base_set, EmptySet):
return base_set
know = None
if isinstance(base_set, FiniteSet):
sifted = sift(
base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
if sifted[None]:
know = FiniteSet(*sifted[True])
base_set = FiniteSet(*sifted[None])
else:
return FiniteSet(*sifted[True])
if isinstance(base_set, cls):
s, c, base_set = base_set.args
if sym == s:
condition = And(condition, c)
elif sym not in c.free_symbols:
condition = And(condition, c.xreplace({s: sym}))
elif s not in condition.free_symbols:
condition = And(condition.xreplace({sym: s}), c)
sym = s
else:
# user will have to use cls.sym to get symbol
dum = Symbol('lambda')
if dum in condition.free_symbols or \
dum in c.free_symbols:
dum = Dummy(str(dum))
condition = And(
condition.xreplace({sym: dum}),
c.xreplace({s: dum}))
sym = dum
if not isinstance(sym, Symbol):
s = Dummy('lambda')
if s not in condition.xreplace({sym: s}).free_symbols:
raise ValueError(
'non-symbol dummy not recognized in condition')
rv = Basic.__new__(cls, sym, condition, base_set)
return rv if know is None else Union(know, rv)
sym = property(lambda self: self.args[0])
condition = property(lambda self: self.args[1])
base_set = property(lambda self: self.args[2])
@property
def free_symbols(self):
s, c, b = self.args
return (c.free_symbols - s.free_symbols) | b.free_symbols
def _contains(self, other):
return And(
Contains(other, self.base_set),
Lambda(self.sym, self.condition)(other))
def as_relational(self, other):
return And(Lambda(self.sym, self.condition)(
other), self.base_set.contains(other))
def _eval_subs(self, old, new):
if not isinstance(self.sym, Expr):
# Don't do anything with the equation set syntax;
# that should go away, eventually.
return self
sym, cond, base = self.args
if old == sym:
# we try to be as lenient as possible to allow
# the dummy symbol to be changed
base = base.subs(old, new)
if isinstance(new, Symbol):
# if the assumptions don't match, the cond
# might evaluate or change
if (new.assumptions0 == old.assumptions0 or
len(new.assumptions0) == 1 and
old.is_commutative == new.is_commutative):
if base != self.base_set:
# it will be aggravating to have the dummy
# symbol change if you are trying to target
# the base set so if the base set is changed
# leave the dummy symbol alone -- a second
# subs will be needed to change the dummy
return self.func(sym, cond, base)
else:
return self.func(new, cond.subs(old, new), base)
raise ValueError(filldedent('''
A dummy symbol can only be
replaced with a symbol having the same
assumptions or one having a single assumption
having the same commutativity.
'''))
# don't target cond: it is there to tell how
# the base set should be filtered and if new is not in
# the base set then this substitution is ignored
return self.func(sym, cond, base)
cond = self.condition.subs(old, new)
base = self.base_set.subs(old, new)
if cond is S.true:
return ConditionSet(new, Contains(new, base), base)
return self.func(self.sym, cond, base)
def dummy_eq(self, other, symbol=None):
if not isinstance(other, self.func):
return False
if isinstance(self.sym, Symbol) != isinstance(other.sym, Symbol):
# this test won't be necessary when unsolved equations
# syntax is removed
return False
if symbol:
raise ValueError('symbol arg not supported for ConditionSet')
o = other
if isinstance(self.sym, Symbol) and isinstance(other.sym, Symbol):
# this code will not need to be in an if-block when
# the unsolved equations syntax is removed
o = other.func(self.sym,
other.condition.subs(other.sym, self.sym),
other.base_set)
return self == o
|
ea4f69d67ec37f86744b44d4ae55fcae40524d182fbff495d91b97a40faf69ec | from .plot import plot_backends
from .plot_implicit import plot_implicit
from .textplot import textplot
from .pygletplot import PygletPlot
from .plot import PlotGrid
from .plot import (plot, plot_parametric, plot3d, plot3d_parametric_surface,
plot3d_parametric_line)
__all__ = [
'plot_backends',
'plot_implicit',
'textplot',
'PygletPlot',
'PlotGrid',
'plot', 'plot_parametric', 'plot3d', 'plot3d_parametric_surface',
'plot3d_parametric_line',
]
|
3868b7ab89dbec4178af1398b6632ae00c71733fc00581259e4404d3411cafb0 | """Plotting module for Sympy.
A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from sympy
expressions. ``plot_backends`` is a dictionary with all the backends.
This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.
Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.
Simplicity of code takes much greater importance than performance. Don't use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""
from __future__ import print_function, division
import warnings
from sympy import sympify, Expr, Tuple, Dummy, Symbol
from sympy.external import import_module
from sympy.core.function import arity
from sympy.core.compatibility import range, Callable
from sympy.utilities.iterables import is_sequence
from .experimental_lambdify import (vectorized_lambdify, lambdify)
# N.B.
# When changing the minimum module version for matplotlib, please change
# the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py`
# Backend specific imports - textplot
from sympy.plotting.textplot import textplot
# Global variable
# Set to False when running tests / doctests so that the plots don't show.
_show = True
def unset_show():
"""
Disable show(). For use in the tests.
"""
global _show
_show = False
##############################################################################
# The public interface
##############################################################################
class Plot(object):
"""The central class of the plotting module.
For interactive work the function ``plot`` is better suited.
This class permits the plotting of sympy expressions using numerous
backends (matplotlib, textplot, the old pyglet module for sympy, Google
charts api, etc).
The figure can contain an arbitrary number of plots of sympy expressions,
lists of coordinates of points, etc. Plot has a private attribute _series that
contains all data series to be plotted (expressions for lines or surfaces,
lists of points, etc (all subclasses of BaseSeries)). Those data series are
instances of classes not imported by ``from sympy import *``.
The customization of the figure is on two levels. Global options that
concern the figure as a whole (eg title, xlabel, scale, etc) and
per-data series options (eg name) and aesthetics (eg. color, point shape,
line type, etc.).
The difference between options and aesthetics is that an aesthetic can be
a function of the coordinates (or parameters in a parametric plot). The
supported values for an aesthetic are:
- None (the backend uses default values)
- a constant
- a function of one variable (the first coordinate or parameter)
- a function of two variables (the first and second coordinate or
parameters)
- a function of three variables (only in nonparametric 3D plots)
Their implementation depends on the backend so they may not work in some
backends.
If the plot is parametric and the arity of the aesthetic function permits
it the aesthetic is calculated over parameters and not over coordinates.
If the arity does not permit calculation over parameters the calculation is
done over coordinates.
Only cartesian coordinates are supported for the moment, but you can use
the parametric plots to plot in polar, spherical and cylindrical
coordinates.
The arguments for the constructor Plot must be subclasses of BaseSeries.
Any global option can be specified as a keyword argument.
The global options for a figure are:
- title : str
- xlabel : str
- ylabel : str
- legend : bool
- xscale : {'linear', 'log'}
- yscale : {'linear', 'log'}
- axis : bool
- axis_center : tuple of two floats or {'center', 'auto'}
- xlim : tuple of two floats
- ylim : tuple of two floats
- aspect_ratio : tuple of two floats or {'auto'}
- autoscale : bool
- margin : float in [0, 1]
The per data series options and aesthetics are:
There are none in the base series. See below for options for subclasses.
Some data series support additional aesthetics or options:
ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries,
Parametric3DLineSeries support the following:
Aesthetics:
- line_color : function which returns a float.
options:
- label : str
- steps : bool
- integers_only : bool
SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following:
aesthetics:
- surface_color : function which returns a float.
"""
def __init__(self, *args, **kwargs):
super(Plot, self).__init__()
# Options for the graph as a whole.
# The possible values for each option are described in the docstring of
# Plot. They are based purely on convention, no checking is done.
self.title = None
self.xlabel = None
self.ylabel = None
self.aspect_ratio = 'auto'
self.xlim = None
self.ylim = None
self.axis_center = 'auto'
self.axis = True
self.xscale = 'linear'
self.yscale = 'linear'
self.legend = False
self.autoscale = True
self.margin = 0
self.annotations = None
self.markers = None
self.rectangles = None
self.fill = None
# Contains the data objects to be plotted. The backend should be smart
# enough to iterate over this list.
self._series = []
self._series.extend(args)
# The backend type. On every show() a new backend instance is created
# in self._backend which is tightly coupled to the Plot instance
# (thanks to the parent attribute of the backend).
self.backend = DefaultBackend
# The keyword arguments should only contain options for the plot.
for key, val in kwargs.items():
if hasattr(self, key):
setattr(self, key, val)
def show(self):
# TODO move this to the backend (also for save)
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
series_strs = [('[%d]: ' % i) + str(s)
for i, s in enumerate(self._series)]
return 'Plot object containing:\n' + '\n'.join(series_strs)
def __getitem__(self, index):
return self._series[index]
def __setitem__(self, index, *args):
if len(args) == 1 and isinstance(args[0], BaseSeries):
self._series[index] = args
def __delitem__(self, index):
del self._series[index]
def append(self, arg):
"""Adds an element from a plot's series to an existing plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot's first series object to the first, use the
``append`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x*x, show=False)
>>> p2 = plot(x, show=False)
>>> p1.append(p2[0])
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
>>> p1.show()
See Also
========
extend
"""
if isinstance(arg, BaseSeries):
self._series.append(arg)
else:
raise TypeError('Must specify element of plot to append.')
def extend(self, arg):
"""Adds all series from another plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot to the first, use the ``extend`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x**2, show=False)
>>> p2 = plot(x, -x, show=False)
>>> p1.extend(p2)
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
[2]: cartesian line: -x for x over (-10.0, 10.0)
>>> p1.show()
"""
if isinstance(arg, Plot):
self._series.extend(arg._series)
elif is_sequence(arg):
self._series.extend(arg)
else:
raise TypeError('Expecting Plot or sequence of BaseSeries')
class PlotGrid(object):
"""This class helps to plot subplots from already created sympy plots
in a single figure.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot, plot3d, PlotGrid
>>> x, y = symbols('x, y')
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
>>> p3 = plot(x**3, (x, -5, 5))
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plotting vertically in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 1 , p1, p2)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plotting horizontally in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(1, 3 , p2, p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Plotting in a grid form:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 2, p1, p2 ,p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[3]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
"""
def __init__(self, nrows, ncolumns, *args, **kwargs):
"""
Parameters
==========
nrows : The number of rows that should be in the grid of the
required subplot
ncolumns : The number of columns that should be in the grid
of the required subplot
nrows and ncolumns together define the required grid
Arguments
=========
A list of predefined plot objects entered in a row-wise sequence
i.e. plot objects which are to be in the top row of the required
grid are written first, then the second row objects and so on
Keyword arguments
=================
show : Boolean
The default value is set to ``True``. Set show to ``False`` and
the function will not display the subplot. The returned instance
of the ``PlotGrid`` class can then be used to save or display the
plot by calling the ``save()`` and ``show()`` methods
respectively.
"""
self.nrows = nrows
self.ncolumns = ncolumns
self._series = []
self.args = args
for arg in args:
self._series.append(arg._series)
self.backend = DefaultBackend
show = kwargs.pop('show', True)
if show:
self.show()
def show(self):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
plot_strs = [('Plot[%d]:' % i) + str(plot)
for i, plot in enumerate(self.args)]
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
##############################################################################
# Data Series
##############################################################################
#TODO more general way to calculate aesthetics (see get_color_array)
### The base class for all series
class BaseSeries(object):
"""Base class for the data objects containing stuff to be plotted.
The backend should check if it supports the data series that it's given.
(eg TextBackend supports only LineOver1DRange).
It's the backend responsibility to know how to use the class of
data series that it's given.
Some data series classes are grouped (using a class attribute like is_2Dline)
according to the api they present (based only on convention). The backend is
not obliged to use that api (eg. The LineOver1DRange belongs to the
is_2Dline group and presents the get_points method, but the
TextBackend does not use the get_points method).
"""
# Some flags follow. The rationale for using flags instead of checking base
# classes is that setting multiple flags is simpler than multiple
# inheritance.
is_2Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dsurface = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_contour = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_implicit = False
# Some of the backends expect:
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
# mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
# Different from is_contour as the colormap in backend will be
# different
is_parametric = False
# The calculation of aesthetics expects:
# - get_parameter_points returning one or two np.arrays (1D or 2D)
# used for calculation aesthetics
def __init__(self):
super(BaseSeries, self).__init__()
@property
def is_3D(self):
flags3D = [
self.is_3Dline,
self.is_3Dsurface
]
return any(flags3D)
@property
def is_line(self):
flagslines = [
self.is_2Dline,
self.is_3Dline
]
return any(flagslines)
### 2D lines
class Line2DBaseSeries(BaseSeries):
"""A base class for 2D lines.
- adding the label, steps and only_integers options
- making is_2Dline true
- defining get_segments and get_color_array
"""
is_2Dline = True
_dim = 2
def __init__(self):
super(Line2DBaseSeries, self).__init__()
self.label = None
self.steps = False
self.only_integers = False
self.line_color = None
def get_segments(self):
np = import_module('numpy')
points = self.get_points()
if self.steps is True:
x = np.array((points[0], points[0])).T.flatten()[1:]
y = np.array((points[1], points[1])).T.flatten()[:-1]
points = (x, y)
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
def get_color_array(self):
np = import_module('numpy')
c = self.line_color
if hasattr(c, '__call__'):
f = np.vectorize(c)
nargs = arity(c)
if nargs == 1 and self.is_parametric:
x = self.get_parameter_points()
return f(centers_of_segments(x))
else:
variables = list(map(centers_of_segments, self.get_points()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else: # only if the line is 3D (otherwise raises an error)
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class List2DSeries(Line2DBaseSeries):
"""Representation for a line consisting of list of points."""
def __init__(self, list_x, list_y):
np = import_module('numpy')
super(List2DSeries, self).__init__()
self.list_x = np.array(list_x)
self.list_y = np.array(list_y)
self.label = 'list'
def __str__(self):
return 'list plot'
def get_points(self):
return (self.list_x, self.list_y)
class LineOver1DRangeSeries(Line2DBaseSeries):
"""Representation for a line consisting of a SymPy expression over a range."""
def __init__(self, expr, var_start_end, **kwargs):
super(LineOver1DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.label = str(self.expr)
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
self.xscale = kwargs.get('xscale', 'linear')
def __str__(self):
return 'cartesian line: %s for %s over %s' % (
str(self.expr), str(self.var), str((self.start, self.end)))
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
.. [1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if self.only_integers or not self.adaptive:
return super(LineOver1DRangeSeries, self).get_segments()
else:
f = lambdify([self.var], self.expr)
list_segments = []
np = import_module('numpy')
def sample(p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
random = 0.45 + np.random.rand() * 0.1
if self.xscale == 'log':
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
np.log10(p[0])))
else:
xnew = p[0] + random * (q[0] - p[0])
ynew = f(xnew)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
list_segments.append([p, q])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif p[1] is None and q[1] is None:
if self.xscale == 'log':
xarray = np.logspace(p[0], q[0], 10)
else:
xarray = np.linspace(p[0], q[0], 10)
yarray = list(map(f, xarray))
if any(y is not None for y in yarray):
for i in range(len(yarray) - 1):
if yarray[i] is not None or yarray[i + 1] is not None:
sample([xarray[i], yarray[i]],
[xarray[i + 1], yarray[i + 1]], depth + 1)
# Sample further if one of the end points in None (i.e. a
# complex value) or the three points are not almost collinear.
elif (p[1] is None or q[1] is None or new_point[1] is None
or not flat(p, new_point, q)):
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start = f(self.start)
f_end = f(self.end)
sample(np.array([self.start, f_start]),
np.array([self.end, f_end]), 0)
return list_segments
def get_points(self):
np = import_module('numpy')
if self.only_integers is True:
if self.xscale == 'log':
list_x = np.logspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
list_x = np.linspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
if self.xscale == 'log':
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
else:
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
f = vectorized_lambdify([self.var], self.expr)
list_y = f(list_x)
return (list_x, list_y)
class Parametric2DLineSeries(Line2DBaseSeries):
"""Representation for a line consisting of two parametric sympy expressions
over a range."""
is_parametric = True
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
super(Parametric2DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.var),
str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
list_x = fx(param)
list_y = fy(param)
return (list_x, list_y)
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
[1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if not self.adaptive:
return super(Parametric2DLineSeries, self).get_segments()
f_x = lambdify([self.var], self.expr_x)
f_y = lambdify([self.var], self.expr_y)
list_segments = []
def sample(param_p, param_q, p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
np = import_module('numpy')
random = 0.45 + np.random.rand() * 0.1
param_new = param_p + random * (param_q - param_p)
xnew = f_x(param_new)
ynew = f_y(param_new)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
list_segments.append([p, q])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif ((p[0] is None and q[1] is None) or
(p[1] is None and q[1] is None)):
param_array = np.linspace(param_p, param_q, 10)
x_array = list(map(f_x, param_array))
y_array = list(map(f_y, param_array))
if any(x is not None and y is not None
for x, y in zip(x_array, y_array)):
for i in range(len(y_array) - 1):
if ((x_array[i] is not None and y_array[i] is not None) or
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
point_a = [x_array[i], y_array[i]]
point_b = [x_array[i + 1], y_array[i + 1]]
sample(param_array[i], param_array[i], point_a,
point_b, depth + 1)
# Sample further if one of the end points in None (i.e. a complex
# value) or the three points are not almost collinear.
elif (p[0] is None or p[1] is None
or q[1] is None or q[0] is None
or not flat(p, new_point, q)):
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start_x = f_x(self.start)
f_start_y = f_y(self.start)
start = [f_start_x, f_start_y]
f_end_x = f_x(self.end)
f_end_y = f_y(self.end)
end = [f_end_x, f_end_y]
sample(self.start, self.end, start, end, 0)
return list_segments
### 3D lines
class Line3DBaseSeries(Line2DBaseSeries):
"""A base class for 3D lines.
Most of the stuff is derived from Line2DBaseSeries."""
is_2Dline = False
is_3Dline = True
_dim = 3
def __init__(self):
super(Line3DBaseSeries, self).__init__()
class Parametric3DLineSeries(Line3DBaseSeries):
"""Representation for a 3D line consisting of two parametric sympy
expressions and a range."""
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
super(Parametric3DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.expr_z),
str(self.var), str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
fz = vectorized_lambdify([self.var], self.expr_z)
list_x = fx(param)
list_y = fy(param)
list_z = fz(param)
return (list_x, list_y, list_z)
### Surfaces
class SurfaceBaseSeries(BaseSeries):
"""A base class for 3D surfaces."""
is_3Dsurface = True
def __init__(self):
super(SurfaceBaseSeries, self).__init__()
self.surface_color = None
def get_color_array(self):
np = import_module('numpy')
c = self.surface_color
if isinstance(c, Callable):
f = np.vectorize(c)
nargs = arity(c)
if self.is_parametric:
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables)
variables = list(map(centers_of_faces, self.get_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else:
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of a sympy expression and 2D
range."""
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
super(SurfaceOver2DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('cartesian surface: %s for'
' %s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
class ParametricSurfaceSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of three parametric sympy
expressions and a range."""
is_parametric = True
def __init__(
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
**kwargs):
super(ParametricSurfaceSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.var_u = sympify(var_start_end_u[0])
self.start_u = float(var_start_end_u[1])
self.end_u = float(var_start_end_u[2])
self.var_v = sympify(var_start_end_v[0])
self.start_v = float(var_start_end_v[1])
self.end_v = float(var_start_end_v[2])
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('parametric cartesian surface: (%s, %s, %s) for'
' %s over %s and %s over %s') % (
str(self.expr_x),
str(self.expr_y),
str(self.expr_z),
str(self.var_u),
str((self.start_u, self.end_u)),
str(self.var_v),
str((self.start_v, self.end_v)))
def get_parameter_meshes(self):
np = import_module('numpy')
return np.meshgrid(np.linspace(self.start_u, self.end_u,
num=self.nb_of_points_u),
np.linspace(self.start_v, self.end_v,
num=self.nb_of_points_v))
def get_meshes(self):
mesh_u, mesh_v = self.get_parameter_meshes()
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v))
### Contours
class ContourSeries(BaseSeries):
"""Representation for a contour plot."""
# The code is mostly repetition of SurfaceOver2DRange.
# Presently used in contour_plot function
is_contour = True
def __init__(self, expr, var_start_end_x, var_start_end_y):
super(ContourSeries, self).__init__()
self.nb_of_points_x = 50
self.nb_of_points_y = 50
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_meshes
def __str__(self):
return ('contour: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
##############################################################################
# Backends
##############################################################################
class BaseBackend(object):
def __init__(self, parent):
super(BaseBackend, self).__init__()
self.parent = parent
# Don't have to check for the success of importing matplotlib in each case;
# we will only be using this backend if we can successfully import matploblib
class MatplotlibBackend(BaseBackend):
def __init__(self, parent):
super(MatplotlibBackend, self).__init__(parent)
self.matplotlib = import_module('matplotlib',
__import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
self.plt = self.matplotlib.pyplot
self.cm = self.matplotlib.cm
self.LineCollection = self.matplotlib.collections.LineCollection
if isinstance(self.parent, Plot):
nrows, ncolumns = 1, 1
series_list = [self.parent._series]
elif isinstance(self.parent, PlotGrid):
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns
series_list = self.parent._series
self.ax = []
self.fig = self.plt.figure()
for i, series in enumerate(series_list):
are_3D = [s.is_3D for s in series]
if any(are_3D) and not all(are_3D):
raise ValueError('The matplotlib backend can not mix 2D and 3D.')
elif all(are_3D):
# mpl_toolkits.mplot3d is necessary for
# projection='3d'
mpl_toolkits = import_module('mpl_toolkits', # noqa
__import__kwargs={'fromlist': ['mplot3d']})
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d'))
elif not any(are_3D):
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1))
self.ax[i].spines['left'].set_position('zero')
self.ax[i].spines['right'].set_color('none')
self.ax[i].spines['bottom'].set_position('zero')
self.ax[i].spines['top'].set_color('none')
self.ax[i].spines['left'].set_smart_bounds(True)
self.ax[i].spines['bottom'].set_smart_bounds(False)
self.ax[i].xaxis.set_ticks_position('bottom')
self.ax[i].yaxis.set_ticks_position('left')
def _process_series(self, series, ax, parent):
for s in series:
# Create the collections
if s.is_2Dline:
collection = self.LineCollection(s.get_segments())
ax.add_collection(collection)
elif s.is_contour:
ax.contour(*s.get_meshes())
elif s.is_3Dline:
# TODO too complicated, I blame matplotlib
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
art3d = mpl_toolkits.mplot3d.art3d
collection = art3d.Line3DCollection(s.get_segments())
ax.add_collection(collection)
x, y, z = s.get_points()
ax.set_xlim((min(x), max(x)))
ax.set_ylim((min(y), max(y)))
ax.set_zlim((min(z), max(z)))
elif s.is_3Dsurface:
x, y, z = s.get_meshes()
collection = ax.plot_surface(x, y, z,
cmap=getattr(self.cm, 'viridis', self.cm.jet),
rstride=1, cstride=1, linewidth=0.1)
elif s.is_implicit:
# Smart bounds have to be set to False for implicit plots.
ax.spines['left'].set_smart_bounds(False)
ax.spines['bottom'].set_smart_bounds(False)
points = s.get_raster()
if len(points) == 2:
# interval math plotting
x, y = _matplotlib_list(points[0])
ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
else:
# use contourf or contour depending on whether it is
# an inequality or equality.
# XXX: ``contour`` plots multiple lines. Should be fixed.
ListedColormap = self.matplotlib.colors.ListedColormap
colormap = ListedColormap(["white", s.line_color])
xarray, yarray, zarray, plot_type = points
if plot_type == 'contour':
ax.contour(xarray, yarray, zarray, cmap=colormap)
else:
ax.contourf(xarray, yarray, zarray, cmap=colormap)
else:
raise ValueError('The matplotlib backend supports only '
'is_2Dline, is_3Dline, is_3Dsurface and '
'is_contour objects.')
# Customise the collections with the corresponding per-series
# options.
if hasattr(s, 'label'):
collection.set_label(s.label)
if s.is_line and s.line_color:
if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable):
color_array = s.get_color_array()
collection.set_array(color_array)
else:
collection.set_color(s.line_color)
if s.is_3Dsurface and s.surface_color:
if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check
warnings.warn('The version of matplotlib is too old to use surface coloring.')
elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable):
color_array = s.get_color_array()
color_array = color_array.reshape(color_array.size)
collection.set_array(color_array)
else:
collection.set_color(s.surface_color)
# Set global options.
# TODO The 3D stuff
# XXX The order of those is important.
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
Axes3D = mpl_toolkits.mplot3d.Axes3D
if parent.xscale and not isinstance(ax, Axes3D):
ax.set_xscale(parent.xscale)
if parent.yscale and not isinstance(ax, Axes3D):
ax.set_yscale(parent.yscale)
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
ax.set_autoscale_on(parent.autoscale)
if parent.axis_center:
val = parent.axis_center
if isinstance(ax, Axes3D):
pass
elif val == 'center':
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
elif val == 'auto':
xl, xh = ax.get_xlim()
yl, yh = ax.get_ylim()
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
ax.spines['left'].set_position(pos_left)
ax.spines['bottom'].set_position(pos_bottom)
else:
ax.spines['left'].set_position(('data', val[0]))
ax.spines['bottom'].set_position(('data', val[1]))
if not parent.axis:
ax.set_axis_off()
if parent.legend:
if ax.legend():
ax.legend_.set_visible(parent.legend)
if parent.margin:
ax.set_xmargin(parent.margin)
ax.set_ymargin(parent.margin)
if parent.title:
ax.set_title(parent.title)
if parent.xlabel:
ax.set_xlabel(parent.xlabel, position=(1, 0))
if parent.ylabel:
ax.set_ylabel(parent.ylabel, position=(0, 1))
if parent.annotations:
for a in parent.annotations:
ax.annotate(**a)
if parent.markers:
for marker in parent.markers:
# make a copy of the marker dictionary
# so that it doesn't get altered
m = marker.copy()
args = m.pop('args')
ax.plot(*args, **m)
if parent.rectangles:
for r in parent.rectangles:
rect = self.matplotlib.patches.Rectangle(**r)
ax.add_patch(rect)
if parent.fill:
ax.fill_between(**parent.fill)
# xlim and ylim shoulld always be set at last so that plot limits
# doesn't get altered during the process.
if parent.xlim:
from sympy.core.basic import Basic
xlim = parent.xlim
if any(isinstance(i, Basic) and not i.is_real for i in xlim):
raise ValueError(
"All numbers from xlim={} must be real".format(xlim))
if any(isinstance(i, Basic) and not i.is_finite for i in xlim):
raise ValueError(
"All numbers from xlim={} must be finite".format(xlim))
xlim = (float(i) for i in xlim)
ax.set_xlim(xlim)
else:
if parent._series and all(isinstance(s, LineOver1DRangeSeries) for s in parent._series):
starts = [s.start for s in parent._series]
ends = [s.end for s in parent._series]
ax.set_xlim(min(starts), max(ends))
if parent.ylim:
from sympy.core.basic import Basic
ylim = parent.ylim
if any(isinstance(i,Basic) and not i.is_real for i in ylim):
raise ValueError(
"All numbers from ylim={} must be real".format(ylim))
if any(isinstance(i,Basic) and not i.is_finite for i in ylim):
raise ValueError(
"All numbers from ylim={} must be finite".format(ylim))
ylim = (float(i) for i in ylim)
ax.set_ylim(ylim)
def process_series(self):
"""
Iterates over every ``Plot`` object and further calls
_process_series()
"""
parent = self.parent
if isinstance(parent, Plot):
series_list = [parent._series]
else:
series_list = parent._series
for i, (series, ax) in enumerate(zip(series_list, self.ax)):
if isinstance(self.parent, PlotGrid):
parent = self.parent.args[i]
self._process_series(series, ax, parent)
def show(self):
self.process_series()
#TODO after fixing https://github.com/ipython/ipython/issues/1255
# you can uncomment the next line and remove the pyplot.show() call
#self.fig.show()
if _show:
self.fig.tight_layout()
self.plt.show()
else:
self.close()
def save(self, path):
self.process_series()
self.fig.savefig(path)
def close(self):
self.plt.close(self.fig)
class TextBackend(BaseBackend):
def __init__(self, parent):
super(TextBackend, self).__init__(parent)
def show(self):
if not _show:
return
if len(self.parent._series) != 1:
raise ValueError(
'The TextBackend supports only one graph per Plot.')
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
raise ValueError(
'The TextBackend supports only expressions over a 1D range')
else:
ser = self.parent._series[0]
textplot(ser.expr, ser.start, ser.end)
def close(self):
pass
class DefaultBackend(BaseBackend):
def __new__(cls, parent):
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
return MatplotlibBackend(parent)
else:
return TextBackend(parent)
plot_backends = {
'matplotlib': MatplotlibBackend,
'text': TextBackend,
'default': DefaultBackend
}
##############################################################################
# Finding the centers of line segments or mesh faces
##############################################################################
def centers_of_segments(array):
np = import_module('numpy')
return np.mean(np.vstack((array[:-1], array[1:])), 0)
def centers_of_faces(array):
np = import_module('numpy')
return np.mean(np.dstack((array[:-1, :-1],
array[1:, :-1],
array[:-1, 1:],
array[:-1, :-1],
)), 2)
def flat(x, y, z, eps=1e-3):
"""Checks whether three points are almost collinear"""
np = import_module('numpy')
# Workaround plotting piecewise (#8577):
# workaround for `lambdify` in `.experimental_lambdify` fails
# to return numerical values in some cases. Lower-level fix
# in `lambdify` is possible.
vector_a = (x - y).astype(np.float)
vector_b = (z - y).astype(np.float)
dot_product = np.dot(vector_a, vector_b)
vector_a_norm = np.linalg.norm(vector_a)
vector_b_norm = np.linalg.norm(vector_b)
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
return abs(cos_theta + 1) < eps
def _matplotlib_list(interval_list):
"""
Returns lists for matplotlib ``fill`` command from a list of bounding
rectangular intervals
"""
xlist = []
ylist = []
if len(interval_list):
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
xlist.extend([intervalx.start, intervalx.start,
intervalx.end, intervalx.end, None])
ylist.extend([intervaly.start, intervaly.end,
intervaly.end, intervaly.start, None])
else:
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
xlist.extend([None, None, None, None])
ylist.extend([None, None, None, None])
return xlist, ylist
####New API for plotting module ####
# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.
def plot(*args, **kwargs):
"""
Plots a function of a single variable and returns an instance of
the ``Plot`` class (also, see the description of the
``show`` keyword argument below).
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the plot. The adaptive algorithm uses a random point near
the midpoint of two points that has to be further sampled. Hence the same
plots can appear slightly different.
Usage
=====
Single Plot
``plot(expr, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with same range.
``plot(expr1, expr2, ..., range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot((expr1, range), (expr2, range), ..., **kwargs)``
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function of single variable
``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable.
Keyword Arguments
=================
Arguments for ``plot`` function:
``show``: Boolean. The default value is set to ``True``. Set show to
``False`` and the function will not display the plot. The returned
instance of the ``Plot`` class can then be used to save or display
the plot by calling the ``save()`` and ``show()`` methods
respectively.
Arguments for :obj:`LineOver1DRangeSeries` class:
``adaptive``: Boolean. The default value is set to True. Set adaptive to False and
specify ``nb_of_points`` if uniform sampling is required.
``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n``
samples a maximum of `2^{n}` points.
``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function
is uniformly sampled at ``nb_of_points`` number of points.
Aesthetics options:
``line_color``: float. Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
If there are multiple plots, then the same series series are applied to
all the plots. If you want to set these options separately, you can index
the ``Plot`` object returned and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
``xlabel`` : str. Label for the x-axis.
``ylabel`` : str. Label for the y-axis.
``xscale``: {'linear', 'log'} Sets the scaling of the x-axis.
``yscale``: {'linear', 'log'} Sets the scaling if the y-axis.
``axis_center``: tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
``xlim`` : tuple of two floats, denoting the x-axis limits.
``ylim`` : tuple of two floats, denoting the y-axis limits.
``annotations``: list. A list of dictionaries specifying the type of
annotation required. The keys in the dictionary should be equivalent
to the arguments of the matplotlib's annotate() function.
``markers``: list. A list of dictionaries specifying the type the
markers required. The keys in the dictionary should be equivalent
to the arguments of the matplotlib's plot() function along with the
marker related keyworded arguments.
``rectangles``: list. A list of dictionaries specifying the dimensions
of the rectangles to be plotted. The keys in the dictionary should be
equivalent to the arguments of the matplotlib's patches.Rectangle class.
``fill``: dict. A dictionary specifying the type of color filling
required in the plot. The keys in the dictionary should be equivalent
to the arguments of the matplotlib's fill_between() function.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, nb_of_points=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries
"""
args = list(map(sympify, args))
free = set()
for a in args:
if isinstance(a, Expr):
free |= a.free_symbols
if len(free) > 1:
raise ValueError(
'The same variable should be used in all '
'univariate expressions being plotted.')
x = free.pop() if free else Symbol('x')
kwargs.setdefault('xlabel', x.name)
kwargs.setdefault('ylabel', 'f(%s)' % x.name)
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 1, 1)
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_parametric(*args, **kwargs):
"""
Plots a 2D parametric plot.
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the plot. The adaptive algorithm uses a random point near
the midpoint of two points that has to be further sampled. Hence the same
plots can appear slightly different.
Usage
=====
Single plot.
``plot_parametric(expr_x, expr_y, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with same range.
``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_parametric((expr_x, expr_y, range), ..., **kwargs)``
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric2DLineSeries`` class:
``adaptive``: Boolean. The default value is set to True. Set adaptive to
False and specify ``nb_of_points`` if uniform sampling is required.
``depth``: int Recursion depth of the adaptive algorithm. A depth of
value ``n`` samples a maximum of `2^{n}` points.
``nb_of_points``: int. Used when the ``adaptive`` is set to False. The
function is uniformly sampled at ``nb_of_points`` number of points.
Aesthetics
----------
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same Series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``xlabel`` : str. Label for the x-axis.
``ylabel`` : str. Label for the y-axis.
``xscale``: {'linear', 'log'} Sets the scaling of the x-axis.
``yscale``: {'linear', 'log'} Sets the scaling if the y-axis.
``axis_center``: tuple of two floats denoting the coordinates of the center
or {'center', 'auto'}
``xlim`` : tuple of two floats, denoting the x-axis limits.
``ylim`` : tuple of two floats, denoting the y-axis limits.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot_parametric
>>> u = symbols('u')
Single Parametric plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric(cos(u), sin(u), (u, -5, 5))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
Multiple parametric plot with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
Multiple parametric plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
... (cos(u), u, (u, -5, 5)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric2DLineSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 2, 1)
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_line(*args, **kwargs):
"""
Plots a 3D parametric line plot.
Usage
=====
Single plot:
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``expr_z`` : Expression representing the function along z.
``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric3DLineSeries`` class.
``nb_of_points``: The range is uniformly sampled at ``nb_of_points``
number of points.
Aesthetics:
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class.
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
Multiple plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
... (sin(u), u**2, u, (u, -5, 5)))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric3DLineSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 3, 1)
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d(*args, **kwargs):
"""
Plots a 3D surface plot.
Usage
=====
Single plot
``plot3d(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``SurfaceOver2DRangeSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
Single plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with same range
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
See Also
========
Plot, SurfaceOver2DRangeSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 1, 2)
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_surface(*args, **kwargs):
"""
Plots a 3D parametric surface plot.
Usage
=====
Single plot.
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
If the ranges is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x``: Expression representing the function along ``x``.
``expr_y``: Expression representing the function along ``y``.
``expr_z``: Expression representing the function along ``z``.
``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u``
variable.
``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v
variable.
Keyword Arguments
=================
Arguments for ``ParametricSurfaceSeries`` class:
``nb_of_points_u``: int. The ``u`` range is sampled uniformly at
``nb_of_points_v`` of points
``nb_of_points_y``: int. The ``v`` range is sampled uniformly at
``nb_of_points_y`` of points
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied for
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
... (u, -5, 5), (v, -5, 5))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
See Also
========
Plot, ParametricSurfaceSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 3, 2)
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_contour(*args, **kwargs):
"""
Draws contour plot of a function
Usage
=====
Single plot
``plot_contour(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``ContourSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
See Also
========
Plot, ContourSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg in plot_expr]
plot_contours = Plot(*series, **kwargs)
if len(plot_expr[0].free_symbols) > 2:
raise ValueError('Contour Plot cannot Plot for more than two variables.')
if show:
plot_contours.show()
return plot_contours
def check_arguments(args, expr_len, nb_of_free_symbols):
"""
Checks the arguments and converts into tuples of the
form (exprs, ranges)
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import plot, cos, sin, symbols
>>> from sympy.plotting.plot import check_arguments
>>> x = symbols('x')
>>> check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10))]
>>> check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
"""
if not args:
return []
if expr_len > 1 and isinstance(args[0], Expr):
# Multiple expressions same range.
# The arguments are tuples when the expression length is
# greater than 1.
if len(args) < expr_len:
raise ValueError("len(args) should not be less than expr_len")
for i in range(len(args)):
if isinstance(args[i], Tuple):
break
else:
i = len(args) + 1
exprs = Tuple(*args[:i])
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
if len(args) == expr_len + nb_of_free_symbols:
#Ranges given
plots = [exprs + Tuple(*args[expr_len:])]
else:
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(len(free_symbols) - nb_of_free_symbols):
ranges.append(Tuple(Dummy()) + default_range)
plots = [exprs + Tuple(*ranges)]
return plots
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
len(args[0]) == expr_len and
expr_len != 3):
# Cannot handle expressions with number of expression = 3. It is
# not possible to differentiate between expressions and ranges.
#Series of plots with same range
for i in range(len(args)):
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
break
if not isinstance(args[i], Tuple):
args[i] = Tuple(args[i])
else:
i = len(args) + 1
exprs = args[:i]
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
for e in expr]))
if len(free_symbols) > nb_of_free_symbols:
raise ValueError("The number of free_symbols in the expression "
"is greater than %d" % nb_of_free_symbols)
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
ranges = Tuple(*[range_expr for range_expr in args[
i:i + nb_of_free_symbols]])
plots = [expr + ranges for expr in exprs]
return plots
else:
# Use default ranges.
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(nb_of_free_symbols - len(free_symbols)):
ranges.append(Tuple(Dummy()) + default_range)
ranges = Tuple(*ranges)
plots = [expr + ranges for expr in exprs]
return plots
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
# Multiple plots with different ranges.
for arg in args:
for i in range(expr_len):
if not isinstance(arg[i], Expr):
raise ValueError("Expected an expression, given %s" %
str(arg[i]))
for i in range(nb_of_free_symbols):
if not len(arg[i + expr_len]) == 3:
raise ValueError("The ranges should be a tuple of "
"length 3, got %s" % str(arg[i + expr_len]))
return args
|
84f6c74b9cacdaa905e7ae8da5e8a56387f8683e281e0ea4dda606e371007742 | from __future__ import print_function, division
from sympy.core.numbers import Float
from sympy.core.symbol import Dummy
from sympy.core.compatibility import range
from sympy.utilities.lambdify import lambdify
import math
def is_valid(x):
"""Check if a floating point number is valid"""
if x is None:
return False
if isinstance(x, complex):
return False
return not math.isinf(x) and not math.isnan(x)
def rescale(y, W, H, mi, ma):
"""Rescale the given array `y` to fit into the integer values
between `0` and `H-1` for the values between ``mi`` and ``ma``.
"""
y_new = list()
norm = ma - mi
offset = (ma + mi) / 2
for x in range(W):
if is_valid(y[x]):
normalized = (y[x] - offset) / norm
if not is_valid(normalized):
y_new.append(None)
else:
# XXX There are some test failings because of the
# difference between the python 2 and 3 rounding.
rescaled = Float((normalized*H + H/2) * (H-1)/H).round()
rescaled = int(rescaled)
y_new.append(rescaled)
else:
y_new.append(None)
return y_new
def linspace(start, stop, num):
return [start + (stop - start) * x / (num-1) for x in range(num)]
def textplot_str(expr, a, b, W=55, H=18):
"""Generator for the lines of the plot"""
free = expr.free_symbols
if len(free) > 1:
raise ValueError(
"The expression must have a single variable. (Got {})"
.format(free))
x = free.pop() if free else Dummy()
f = lambdify([x], expr)
a = float(a)
b = float(b)
# Calculate function values
x = linspace(a, b, W)
y = list()
for val in x:
try:
y.append(f(val))
# Not sure what exceptions to catch here or why...
except (ValueError, TypeError, ZeroDivisionError):
y.append(None)
# Normalize height to screen space
y_valid = list(filter(is_valid, y))
if y_valid:
ma = max(y_valid)
mi = min(y_valid)
if ma == mi:
if ma:
mi, ma = sorted([0, 2*ma])
else:
mi, ma = -1, 1
else:
mi, ma = -1, 1
y = rescale(y, W, H, mi, ma)
y_bins = linspace(mi, ma, H)
# Draw plot
margin = 7
for h in range(H - 1, -1, -1):
s = [' '] * W
for i in range(W):
if y[i] == h:
if (i == 0 or y[i - 1] == h - 1) and (i == W - 1 or y[i + 1] == h + 1):
s[i] = '/'
elif (i == 0 or y[i - 1] == h + 1) and (i == W - 1 or y[i + 1] == h - 1):
s[i] = '\\'
else:
s[i] = '.'
# Print y values
if h in (0, H//2, H - 1):
prefix = ("%g" % y_bins[h]).rjust(margin)[:margin]
else:
prefix = " "*margin
s = "".join(s)
if h == H//2:
s = s.replace(" ", "-")
yield prefix + " | " + s
# Print x values
bottom = " " * (margin + 3)
bottom += ("%g" % x[0]).ljust(W//2)
if W % 2 == 1:
bottom += ("%g" % x[W//2]).ljust(W//2)
else:
bottom += ("%g" % x[W//2]).ljust(W//2-1)
bottom += "%g" % x[-1]
yield bottom
def textplot(expr, a, b, W=55, H=18):
r"""
Print a crude ASCII art plot of the SymPy expression 'expr' (which
should contain a single symbol, e.g. x or something else) over the
interval [a, b].
Examples
========
>>> from sympy import Symbol, sin
>>> from sympy.plotting import textplot
>>> t = Symbol('t')
>>> textplot(sin(t)*t, 0, 15)
14.1605 | ...
| .
| .
| . .
| ..
| / .. .
| / .
| /
2.30284 | ------...---------------/--------.------------.--------
| .... ... /
| .. \ / . .
| .. / .
| .. / .
| ... .
| .
| .
| \ .
-11.037 | ...
0 7.5 15
"""
for line in textplot_str(expr, a, b, W, H):
print(line)
|
efc4992145f0df44c6e21eaddca002c25f76414181ce3edb7e5c21215f352824 | """ rewrite of lambdify - This stuff is not stable at all.
It is for internal use in the new plotting module.
It may (will! see the Q'n'A in the source) be rewritten.
It's completely self contained. Especially it does not use lambdarepr.
It does not aim to replace the current lambdify. Most importantly it will never
ever support anything else than sympy expressions (no Matrices, dictionaries
and so on).
"""
from __future__ import print_function, division
import re
from sympy import Symbol, NumberSymbol, I, zoo, oo
from sympy.core.compatibility import exec_, string_types
from sympy.utilities.iterables import numbered_symbols
# We parse the expression string into a tree that identifies functions. Then
# we translate the names of the functions and we translate also some strings
# that are not names of functions (all this according to translation
# dictionaries).
# If the translation goes to another module (like numpy) the
# module is imported and 'func' is translated to 'module.func'.
# If a function can not be translated, the inner nodes of that part of the
# tree are not translated. So if we have Integral(sqrt(x)), sqrt is not
# translated to np.sqrt and the Integral does not crash.
# A namespace for all this is generated by crawling the (func, args) tree of
# the expression. The creation of this namespace involves many ugly
# workarounds.
# The namespace consists of all the names needed for the sympy expression and
# all the name of modules used for translation. Those modules are imported only
# as a name (import numpy as np) in order to keep the namespace small and
# manageable.
# Please, if there is a bug, do not try to fix it here! Rewrite this by using
# the method proposed in the last Q'n'A below. That way the new function will
# work just as well, be just as simple, but it wont need any new workarounds.
# If you insist on fixing it here, look at the workarounds in the function
# sympy_expression_namespace and in lambdify.
# Q: Why are you not using python abstract syntax tree?
# A: Because it is more complicated and not much more powerful in this case.
# Q: What if I have Symbol('sin') or g=Function('f')?
# A: You will break the algorithm. We should use srepr to defend against this?
# The problem with Symbol('sin') is that it will be printed as 'sin'. The
# parser will distinguish it from the function 'sin' because functions are
# detected thanks to the opening parenthesis, but the lambda expression won't
# understand the difference if we have also the sin function.
# The solution (complicated) is to use srepr and maybe ast.
# The problem with the g=Function('f') is that it will be printed as 'f' but in
# the global namespace we have only 'g'. But as the same printer is used in the
# constructor of the namespace there will be no problem.
# Q: What if some of the printers are not printing as expected?
# A: The algorithm wont work. You must use srepr for those cases. But even
# srepr may not print well. All problems with printers should be considered
# bugs.
# Q: What about _imp_ functions?
# A: Those are taken care for by evalf. A special case treatment will work
# faster but it's not worth the code complexity.
# Q: Will ast fix all possible problems?
# A: No. You will always have to use some printer. Even srepr may not work in
# some cases. But if the printer does not work, that should be considered a
# bug.
# Q: Is there same way to fix all possible problems?
# A: Probably by constructing our strings ourself by traversing the (func,
# args) tree and creating the namespace at the same time. That actually sounds
# good.
from sympy.external import import_module
import warnings
#TODO debugging output
class vectorized_lambdify(object):
""" Return a sufficiently smart, vectorized and lambdified function.
Returns only reals.
This function uses experimental_lambdify to created a lambdified
expression ready to be used with numpy. Many of the functions in sympy
are not implemented in numpy so in some cases we resort to python cmath or
even to evalf.
The following translations are tried:
only numpy complex
- on errors raised by sympy trying to work with ndarray:
only python cmath and then vectorize complex128
When using python cmath there is no need for evalf or float/complex
because python cmath calls those.
This function never tries to mix numpy directly with evalf because numpy
does not understand sympy Float. If this is needed one can use the
float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or
better one can be explicit about the dtypes that numpy works with.
Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what
types of errors to expect.
"""
def __init__(self, args, expr):
self.args = args
self.expr = expr
self.lambda_func = experimental_lambdify(args, expr, use_np=True)
self.vector_func = self.lambda_func
self.failure = False
def __call__(self, *args):
np = import_module('numpy')
np_old_err = np.seterr(invalid='raise')
try:
temp_args = (np.array(a, dtype=np.complex) for a in args)
results = self.vector_func(*temp_args)
results = np.ma.masked_where(
np.abs(results.imag) > 1e-7 * np.abs(results),
results.real, copy=False)
except Exception as e:
#DEBUG: print 'Error', type(e), e
if ((isinstance(e, TypeError)
and 'unhashable type: \'numpy.ndarray\'' in str(e))
or
(isinstance(e, ValueError)
and ('Invalid limits given:' in str(e)
or 'negative dimensions are not allowed' in str(e) # XXX
or 'sequence too large; must be smaller than 32' in str(e)))): # XXX
# Almost all functions were translated to numpy, but some were
# left as sympy functions. They received an ndarray as an
# argument and failed.
# sin(ndarray(...)) raises "unhashable type"
# Integral(x, (x, 0, ndarray(...))) raises "Invalid limits"
# other ugly exceptions that are not well understood (marked with XXX)
# TODO: Cleanup the ugly special cases marked with xxx above.
# Solution: use cmath and vectorize the final lambda.
self.lambda_func = experimental_lambdify(
self.args, self.expr, use_python_cmath=True)
self.vector_func = np.vectorize(
self.lambda_func, otypes=[np.complex])
results = self.vector_func(*args)
results = np.ma.masked_where(
np.abs(results.imag) > 1e-7 * np.abs(results),
results.real, copy=False)
else:
# Complete failure. One last try with no translations, only
# wrapping in complex((...).evalf()) and returning the real
# part.
if self.failure:
raise e
else:
self.failure = True
self.lambda_func = experimental_lambdify(
self.args, self.expr, use_evalf=True,
complex_wrap_evalf=True)
self.vector_func = np.vectorize(
self.lambda_func, otypes=[np.complex])
results = self.vector_func(*args)
results = np.ma.masked_where(
np.abs(results.imag) > 1e-7 * np.abs(results),
results.real, copy=False)
warnings.warn('The evaluation of the expression is'
' problematic. We are trying a failback method'
' that may still work. Please report this as a bug.')
finally:
np.seterr(**np_old_err)
return results
class lambdify(object):
"""Returns the lambdified function.
This function uses experimental_lambdify to create a lambdified
expression. It uses cmath to lambdify the expression. If the function
is not implemented in python cmath, python cmath calls evalf on those
functions.
"""
def __init__(self, args, expr):
self.args = args
self.expr = expr
self.lambda_func = experimental_lambdify(args, expr, use_evalf=True,
use_python_cmath=True)
self.failure = False
def __call__(self, args, kwargs = {}):
if not self.lambda_func.use_python_math:
args = complex(args)
try:
#The result can be sympy.Float. Hence wrap it with complex type.
result = complex(self.lambda_func(args))
if abs(result.imag) > 1e-7 * abs(result):
return None
else:
return result.real
except Exception as e:
# The exceptions raised by sympy, cmath are not consistent and
# hence it is not possible to specify all the exceptions that
# are to be caught. Presently there are no cases for which the code
# reaches this block other than ZeroDivisionError and complex
# comparison. Also the exception is caught only once. If the
# exception repeats itself,
# then it is not caught and the corresponding error is raised.
# XXX: Remove catching all exceptions once the plotting module
# is heavily tested.
if isinstance(e, ZeroDivisionError):
return None
elif isinstance(e, TypeError) and ('no ordering relation is'
' defined for complex numbers'
in str(e) or 'unorderable '
'types' in str(e) or "not "
"supported between instances of"
in str(e)):
self.lambda_func = experimental_lambdify(self.args, self.expr,
use_evalf=True,
use_python_math=True)
result = self.lambda_func(args.real)
return result
else:
if self.failure:
raise e
#Failure
#Try wrapping it with complex(..).evalf()
self.failure = True
self.lambda_func = experimental_lambdify(self.args, self.expr,
use_evalf=True,
complex_wrap_evalf=True)
result = self.lambda_func(args)
warnings.warn('The evaluation of the expression is'
' problematic. We are trying a failback method'
' that may still work. Please report this as a bug.')
if abs(result.imag) > 1e-7 * abs(result):
return None
else:
return result.real
def experimental_lambdify(*args, **kwargs):
l = Lambdifier(*args, **kwargs)
return l
class Lambdifier(object):
def __init__(self, args, expr, print_lambda=False, use_evalf=False,
float_wrap_evalf=False, complex_wrap_evalf=False,
use_np=False, use_python_math=False, use_python_cmath=False,
use_interval=False):
self.print_lambda = print_lambda
self.use_evalf = use_evalf
self.float_wrap_evalf = float_wrap_evalf
self.complex_wrap_evalf = complex_wrap_evalf
self.use_np = use_np
self.use_python_math = use_python_math
self.use_python_cmath = use_python_cmath
self.use_interval = use_interval
# Constructing the argument string
# - check
if not all([isinstance(a, Symbol) for a in args]):
raise ValueError('The arguments must be Symbols.')
# - use numbered symbols
syms = numbered_symbols(exclude=expr.free_symbols)
newargs = [next(syms) for _ in args]
expr = expr.xreplace(dict(zip(args, newargs)))
argstr = ', '.join([str(a) for a in newargs])
del syms, newargs, args
# Constructing the translation dictionaries and making the translation
self.dict_str = self.get_dict_str()
self.dict_fun = self.get_dict_fun()
exprstr = str(expr)
newexpr = self.tree2str_translate(self.str2tree(exprstr))
# Constructing the namespaces
namespace = {}
namespace.update(self.sympy_atoms_namespace(expr))
namespace.update(self.sympy_expression_namespace(expr))
# XXX Workaround
# Ugly workaround because Pow(a,Half) prints as sqrt(a)
# and sympy_expression_namespace can not catch it.
from sympy import sqrt
namespace.update({'sqrt': sqrt})
namespace.update({'Eq': lambda x, y: x == y})
namespace.update({'Ne': lambda x, y: x != y})
# End workaround.
if use_python_math:
namespace.update({'math': __import__('math')})
if use_python_cmath:
namespace.update({'cmath': __import__('cmath')})
if use_np:
try:
namespace.update({'np': __import__('numpy')})
except ImportError:
raise ImportError(
'experimental_lambdify failed to import numpy.')
if use_interval:
namespace.update({'imath': __import__(
'sympy.plotting.intervalmath', fromlist=['intervalmath'])})
namespace.update({'math': __import__('math')})
# Construct the lambda
if self.print_lambda:
print(newexpr)
eval_str = 'lambda %s : ( %s )' % (argstr, newexpr)
self.eval_str = eval_str
exec_("from __future__ import division; MYNEWLAMBDA = %s" % eval_str, namespace)
self.lambda_func = namespace['MYNEWLAMBDA']
def __call__(self, *args, **kwargs):
return self.lambda_func(*args, **kwargs)
##############################################################################
# Dicts for translating from sympy to other modules
##############################################################################
###
# builtins
###
# Functions with different names in builtins
builtin_functions_different = {
'Min': 'min',
'Max': 'max',
'Abs': 'abs',
}
# Strings that should be translated
builtin_not_functions = {
'I': '1j',
# 'oo': '1e400',
}
###
# numpy
###
# Functions that are the same in numpy
numpy_functions_same = [
'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
'sqrt', 'floor', 'conjugate',
]
# Functions with different names in numpy
numpy_functions_different = {
"acos": "arccos",
"acosh": "arccosh",
"arg": "angle",
"asin": "arcsin",
"asinh": "arcsinh",
"atan": "arctan",
"atan2": "arctan2",
"atanh": "arctanh",
"ceiling": "ceil",
"im": "imag",
"ln": "log",
"Max": "amax",
"Min": "amin",
"re": "real",
"Abs": "abs",
}
# Strings that should be translated
numpy_not_functions = {
'pi': 'np.pi',
'oo': 'np.inf',
'E': 'np.e',
}
###
# python math
###
# Functions that are the same in math
math_functions_same = [
'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2',
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma',
]
# Functions with different names in math
math_functions_different = {
'ceiling': 'ceil',
'ln': 'log',
'loggamma': 'lgamma'
}
# Strings that should be translated
math_not_functions = {
'pi': 'math.pi',
'E': 'math.e',
}
###
# python cmath
###
# Functions that are the same in cmath
cmath_functions_same = [
'sin', 'cos', 'tan', 'asin', 'acos', 'atan',
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
'exp', 'log', 'sqrt',
]
# Functions with different names in cmath
cmath_functions_different = {
'ln': 'log',
'arg': 'phase',
}
# Strings that should be translated
cmath_not_functions = {
'pi': 'cmath.pi',
'E': 'cmath.e',
}
###
# intervalmath
###
interval_not_functions = {
'pi': 'math.pi',
'E': 'math.e'
}
interval_functions_same = [
'sin', 'cos', 'exp', 'tan', 'atan', 'log',
'sqrt', 'cosh', 'sinh', 'tanh', 'floor',
'acos', 'asin', 'acosh', 'asinh', 'atanh',
'Abs', 'And', 'Or'
]
interval_functions_different = {
'Min': 'imin',
'Max': 'imax',
'ceiling': 'ceil',
}
###
# mpmath, etc
###
#TODO
###
# Create the final ordered tuples of dictionaries
###
# For strings
def get_dict_str(self):
dict_str = dict(self.builtin_not_functions)
if self.use_np:
dict_str.update(self.numpy_not_functions)
if self.use_python_math:
dict_str.update(self.math_not_functions)
if self.use_python_cmath:
dict_str.update(self.cmath_not_functions)
if self.use_interval:
dict_str.update(self.interval_not_functions)
return dict_str
# For functions
def get_dict_fun(self):
dict_fun = dict(self.builtin_functions_different)
if self.use_np:
for s in self.numpy_functions_same:
dict_fun[s] = 'np.' + s
for k, v in self.numpy_functions_different.items():
dict_fun[k] = 'np.' + v
if self.use_python_math:
for s in self.math_functions_same:
dict_fun[s] = 'math.' + s
for k, v in self.math_functions_different.items():
dict_fun[k] = 'math.' + v
if self.use_python_cmath:
for s in self.cmath_functions_same:
dict_fun[s] = 'cmath.' + s
for k, v in self.cmath_functions_different.items():
dict_fun[k] = 'cmath.' + v
if self.use_interval:
for s in self.interval_functions_same:
dict_fun[s] = 'imath.' + s
for k, v in self.interval_functions_different.items():
dict_fun[k] = 'imath.' + v
return dict_fun
##############################################################################
# The translator functions, tree parsers, etc.
##############################################################################
def str2tree(self, exprstr):
"""Converts an expression string to a tree.
Functions are represented by ('func_name(', tree_of_arguments).
Other expressions are (head_string, mid_tree, tail_str).
Expressions that do not contain functions are directly returned.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy import Integral, sin
>>> from sympy.plotting.experimental_lambdify import Lambdifier
>>> str2tree = Lambdifier([x], x).str2tree
>>> str2tree(str(Integral(x, (x, 1, y))))
('', ('Integral(', 'x, (x, 1, y)'), ')')
>>> str2tree(str(x+y))
'x + y'
>>> str2tree(str(x+y*sin(z)+1))
('x + y*', ('sin(', 'z'), ') + 1')
>>> str2tree('sin(y*(y + 1.1) + (sin(y)))')
('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')')
"""
#matches the first 'function_name('
first_par = re.search(r'(\w+\()', exprstr)
if first_par is None:
return exprstr
else:
start = first_par.start()
end = first_par.end()
head = exprstr[:start]
func = exprstr[start:end]
tail = exprstr[end:]
count = 0
for i, c in enumerate(tail):
if c == '(':
count += 1
elif c == ')':
count -= 1
if count == -1:
break
func_tail = self.str2tree(tail[:i])
tail = self.str2tree(tail[i:])
return (head, (func, func_tail), tail)
@classmethod
def tree2str(cls, tree):
"""Converts a tree to string without translations.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy import Integral, sin
>>> from sympy.plotting.experimental_lambdify import Lambdifier
>>> str2tree = Lambdifier([x], x).str2tree
>>> tree2str = Lambdifier([x], x).tree2str
>>> tree2str(str2tree(str(x+y*sin(z)+1)))
'x + y*sin(z) + 1'
"""
if isinstance(tree, string_types):
return tree
else:
return ''.join(map(cls.tree2str, tree))
def tree2str_translate(self, tree):
"""Converts a tree to string with translations.
Function names are translated by translate_func.
Other strings are translated by translate_str.
"""
if isinstance(tree, string_types):
return self.translate_str(tree)
elif isinstance(tree, tuple) and len(tree) == 2:
return self.translate_func(tree[0][:-1], tree[1])
else:
return ''.join([self.tree2str_translate(t) for t in tree])
def translate_str(self, estr):
"""Translate substrings of estr using in order the dictionaries in
dict_tuple_str."""
for pattern, repl in self.dict_str.items():
estr = re.sub(pattern, repl, estr)
return estr
def translate_func(self, func_name, argtree):
"""Translate function names and the tree of arguments.
If the function name is not in the dictionaries of dict_tuple_fun then the
function is surrounded by a float((...).evalf()).
The use of float is necessary as np.<function>(sympy.Float(..)) raises an
error."""
if func_name in self.dict_fun:
new_name = self.dict_fun[func_name]
argstr = self.tree2str_translate(argtree)
return new_name + '(' + argstr
elif func_name in ['Eq', 'Ne']:
op = {'Eq': '==', 'Ne': '!='}
return "(lambda x, y: x {} y)({}".format(op[func_name], self.tree2str_translate(argtree))
else:
template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s'
if self.float_wrap_evalf:
template = 'float(%s)' % template
elif self.complex_wrap_evalf:
template = 'complex(%s)' % template
# Wrapping should only happen on the outermost expression, which
# is the only thing we know will be a number.
float_wrap_evalf = self.float_wrap_evalf
complex_wrap_evalf = self.complex_wrap_evalf
self.float_wrap_evalf = False
self.complex_wrap_evalf = False
ret = template % (func_name, self.tree2str_translate(argtree))
self.float_wrap_evalf = float_wrap_evalf
self.complex_wrap_evalf = complex_wrap_evalf
return ret
##############################################################################
# The namespace constructors
##############################################################################
@classmethod
def sympy_expression_namespace(cls, expr):
"""Traverses the (func, args) tree of an expression and creates a sympy
namespace. All other modules are imported only as a module name. That way
the namespace is not polluted and rests quite small. It probably causes much
more variable lookups and so it takes more time, but there are no tests on
that for the moment."""
if expr is None:
return {}
else:
funcname = str(expr.func)
# XXX Workaround
# Here we add an ugly workaround because str(func(x))
# is not always the same as str(func). Eg
# >>> str(Integral(x))
# "Integral(x)"
# >>> str(Integral)
# "<class 'sympy.integrals.integrals.Integral'>"
# >>> str(sqrt(x))
# "sqrt(x)"
# >>> str(sqrt)
# "<function sqrt at 0x3d92de8>"
# >>> str(sin(x))
# "sin(x)"
# >>> str(sin)
# "sin"
# Either one of those can be used but not all at the same time.
# The code considers the sin example as the right one.
regexlist = [
r'<class \'sympy[\w.]*?.([\w]*)\'>$',
# the example Integral
r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt
]
for r in regexlist:
m = re.match(r, funcname)
if m is not None:
funcname = m.groups()[0]
# End of the workaround
# XXX debug: print funcname
args_dict = {}
for a in expr.args:
if (isinstance(a, Symbol) or
isinstance(a, NumberSymbol) or
a in [I, zoo, oo]):
continue
else:
args_dict.update(cls.sympy_expression_namespace(a))
args_dict.update({funcname: expr.func})
return args_dict
@staticmethod
def sympy_atoms_namespace(expr):
"""For no real reason this function is separated from
sympy_expression_namespace. It can be moved to it."""
atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo)
d = {}
for a in atoms:
# XXX debug: print 'atom:' + str(a)
d[str(a)] = a
return d
|
acdc65da1d1bf6de1b8e839e5d05e3f249f4f5d57b7f1acabb4a39a68d7fedd1 | from __future__ import unicode_literals
from sympy import (EmptySet, FiniteSet, S, Symbol, Interval, exp, erf, sqrt,
symbols, simplify, Eq, cos, And, Tuple, integrate, oo, sin, Sum, Basic,
DiracDelta, Lambda, log, pi, exp, log, FallingFactorial, Rational)
from sympy.stats import (Die, Normal, Exponential, FiniteRV, P, E, H, variance, covariance,
skewness, density, given, independent, dependent, where, pspace,
random_symbols, sample, Geometric, factorial_moment, Binomial, Hypergeometric,
DiscreteUniform, Poisson, characteristic_function, moment_generating_function, sample_iter)
from sympy.stats.rv import (IndependentProductPSpace, rs_swap, Density, NamedArgsMixin,
RandomSymbol, sample_iter, PSpace)
from sympy.utilities.pytest import raises, XFAIL
from sympy.core.compatibility import range
from sympy.core.numbers import comp
from sympy.abc import x
from sympy.stats import Normal, DiscreteUniform, Poisson, characteristic_function, moment_generating_function, sample_iter
from sympy.stats.frv_types import BernoulliDistribution
def test_where():
X, Y = Die('X'), Die('Y')
Z = Normal('Z', 0, 1)
assert where(Z**2 <= 1).set == Interval(-1, 1)
assert where(Z**2 <= 1).as_boolean() == Interval(-1, 1).as_relational(Z.symbol)
assert where(And(X > Y, Y > 4)).as_boolean() == And(
Eq(X.symbol, 6), Eq(Y.symbol, 5))
assert len(where(X < 3).set) == 2
assert 1 in where(X < 3).set
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
XX = given(X, And(X**2 <= 1, X >= 0))
assert XX.pspace.domain.set == Interval(0, 1)
assert XX.pspace.domain.as_boolean() == \
And(0 <= X.symbol, X.symbol**2 <= 1, -oo < X.symbol, X.symbol < oo)
with raises(TypeError):
XX = given(X, X + 3)
def test_random_symbols():
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
assert set(random_symbols(2*X + 1)) == set((X,))
assert set(random_symbols(2*X + Y)) == set((X, Y))
assert set(random_symbols(2*X + Y.symbol)) == set((X,))
assert set(random_symbols(2)) == set()
def test_characteristic_function():
# Imports I from sympy
from sympy import I
X = Normal('X',0,1)
Y = DiscreteUniform('Y', [1,2,7])
Z = Poisson('Z', 2)
t = symbols('_t')
P = Lambda(t, exp(-t**2/2))
Q = Lambda(t, exp(7*t*I)/3 + exp(2*t*I)/3 + exp(t*I)/3)
R = Lambda(t, exp(2 * exp(t*I) - 2))
assert characteristic_function(X) == P
assert characteristic_function(Y) == Q
assert characteristic_function(Z) == R
def test_moment_generating_function():
X = Normal('X',0,1)
Y = DiscreteUniform('Y', [1,2,7])
Z = Poisson('Z', 2)
t = symbols('_t')
P = Lambda(t, exp(t**2/2))
Q = Lambda(t, (exp(7*t)/3 + exp(2*t)/3 + exp(t)/3))
R = Lambda(t, exp(2 * exp(t) - 2))
assert moment_generating_function(X) == P
assert moment_generating_function(Y) == Q
assert moment_generating_function(Z) == R
def test_sample_iter():
X = Normal('X',0,1)
Y = DiscreteUniform('Y', [1,2,7])
Z = Poisson('Z', 2)
expr = X**2 + 3
iterator = sample_iter(expr)
expr2 = Y**2 + 5*Y + 4
iterator2 = sample_iter(expr2)
expr3 = Z**3 + 4
iterator3 = sample_iter(expr3)
def is_iterator(obj):
if (
hasattr(obj, '__iter__') and
(hasattr(obj, 'next') or
hasattr(obj, '__next__')) and
callable(obj.__iter__) and
obj.__iter__() is obj
):
return True
else:
return False
assert is_iterator(iterator)
assert is_iterator(iterator2)
assert is_iterator(iterator3)
def test_pspace():
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
x = Symbol('x')
raises(ValueError, lambda: pspace(5 + 3))
raises(ValueError, lambda: pspace(x < 1))
assert pspace(X) == X.pspace
assert pspace(2*X + 1) == X.pspace
assert pspace(2*X + Y) == IndependentProductPSpace(Y.pspace, X.pspace)
def test_rs_swap():
X = Normal('x', 0, 1)
Y = Exponential('y', 1)
XX = Normal('x', 0, 2)
YY = Normal('y', 0, 3)
expr = 2*X + Y
assert expr.subs(rs_swap((X, Y), (YY, XX))) == 2*XX + YY
def test_RandomSymbol():
X = Normal('x', 0, 1)
Y = Normal('x', 0, 2)
assert X.symbol == Y.symbol
assert X != Y
assert X.name == X.symbol.name
X = Normal('lambda', 0, 1) # make sure we can use protected terms
X = Normal('Lambda', 0, 1) # make sure we can use SymPy terms
def test_RandomSymbol_diff():
X = Normal('x', 0, 1)
assert (2*X).diff(X)
def test_random_symbol_no_pspace():
x = RandomSymbol(Symbol('x'))
assert x.pspace == PSpace()
def test_overlap():
X = Normal('x', 0, 1)
Y = Normal('x', 0, 2)
raises(ValueError, lambda: P(X > Y))
def test_IndependentProductPSpace():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
px = X.pspace
py = Y.pspace
assert pspace(X + Y) == IndependentProductPSpace(px, py)
assert pspace(X + Y) == IndependentProductPSpace(py, px)
def test_E():
assert E(5) == 5
def test_H():
X = Normal('X', 0, 1)
D = Die('D', sides = 4)
G = Geometric('G', 0.5)
assert H(X, X > 0) == -log(2)/2 + S.Half + log(pi)/2
assert H(D, D > 2) == log(2)
assert comp(H(G).evalf().round(2), 1.39)
def test_Sample():
X = Die('X', 6)
Y = Normal('Y', 0, 1)
z = Symbol('z')
assert sample(X) in [1, 2, 3, 4, 5, 6]
assert sample(X + Y).is_Float
P(X + Y > 0, Y < 0, numsamples=10).is_number
assert E(X + Y, numsamples=10).is_number
assert variance(X + Y, numsamples=10).is_number
raises(ValueError, lambda: P(Y > z, numsamples=5))
assert P(sin(Y) <= 1, numsamples=10) == 1
assert P(sin(Y) <= 1, cos(Y) < 1, numsamples=10) == 1
# Make sure this doesn't raise an error
E(Sum(1/z**Y, (z, 1, oo)), Y > 2, numsamples=3)
assert all(i in range(1, 7) for i in density(X, numsamples=10))
assert all(i in range(4, 7) for i in density(X, X>3, numsamples=10))
def test_given():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
A = given(X, True)
B = given(X, Y > 2)
assert X == A == B
def test_factorial_moment():
X = Poisson('X', 2)
Y = Binomial('Y', 2, S.Half)
Z = Hypergeometric('Z', 4, 2, 2)
assert factorial_moment(X, 2) == 4
assert factorial_moment(Y, 2) == S.Half
assert factorial_moment(Z, 2) == Rational(1, 3)
x, y, z, l = symbols('x y z l')
Y = Binomial('Y', 2, y)
Z = Hypergeometric('Z', 10, 2, 3)
assert factorial_moment(Y, l) == y**2*FallingFactorial(
2, l) + 2*y*(1 - y)*FallingFactorial(1, l) + (1 - y)**2*\
FallingFactorial(0, l)
assert factorial_moment(Z, l) == 7*FallingFactorial(0, l)/\
15 + 7*FallingFactorial(1, l)/15 + FallingFactorial(2, l)/15
def test_dependence():
X, Y = Die('X'), Die('Y')
assert independent(X, 2*Y)
assert not dependent(X, 2*Y)
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
assert independent(X, Y)
assert dependent(X, 2*X)
# Create a dependency
XX, YY = given(Tuple(X, Y), Eq(X + Y, 3))
assert dependent(XX, YY)
def test_dependent_finite():
X, Y = Die('X'), Die('Y')
# Dependence testing requires symbolic conditions which currently break
# finite random variables
assert dependent(X, Y + X)
XX, YY = given(Tuple(X, Y), X + Y > 5) # Create a dependency
assert dependent(XX, YY)
def test_normality():
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
x = Symbol('x', real=True, finite=True)
z = Symbol('z', real=True, finite=True)
dens = density(X - Y, Eq(X + Y, z))
assert integrate(dens(x), (x, -oo, oo)) == 1
def test_Density():
X = Die('X', 6)
d = Density(X)
assert d.doit() == density(X)
def test_NamedArgsMixin():
class Foo(Basic, NamedArgsMixin):
_argnames = 'foo', 'bar'
a = Foo(1, 2)
assert a.foo == 1
assert a.bar == 2
raises(AttributeError, lambda: a.baz)
class Bar(Basic, NamedArgsMixin):
pass
raises(AttributeError, lambda: Bar(1, 2).foo)
def test_density_constant():
assert density(3)(2) == 0
assert density(3)(3) == DiracDelta(0)
def test_real():
x = Normal('x', 0, 1)
assert x.is_real
def test_issue_10052():
X = Exponential('X', 3)
assert P(X < oo) == 1
assert P(X > oo) == 0
assert P(X < 2, X > oo) == 0
assert P(X < oo, X > oo) == 0
assert P(X < oo, X > 2) == 1
assert P(X < 3, X == 2) == 0
raises(ValueError, lambda: P(1))
raises(ValueError, lambda: P(X < 1, 2))
def test_issue_11934():
density = {0: .5, 1: .5}
X = FiniteRV('X', density)
assert E(X) == 0.5
assert P( X>= 2) == 0
def test_issue_8129():
X = Exponential('X', 4)
assert P(X >= X) == 1
assert P(X > X) == 0
assert P(X > X+1) == 0
def test_issue_12237():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
U = P(X > 0, X)
V = P(Y < 0, X)
W = P(X + Y > 0, X)
assert W == P(X + Y > 0, X)
assert U == BernoulliDistribution(S.Half, S.Zero, S.One)
assert V == S.Half
|
706d11cfda355e244caaeed28cd8ba873c9e0a5ae8dcae3cc7688c170eca8f3a | from sympy import (FiniteSet, S, Symbol, sqrt, nan, beta, Rational, symbols,
simplify, Eq, cos, And, Tuple, Or, Dict, sympify, binomial,
cancel, exp, I, Piecewise, Sum, Dummy)
from sympy.core.compatibility import range
from sympy.external import import_module
from sympy.matrices import Matrix
from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial, BetaBinomial,
Hypergeometric, Rademacher, P, E, variance, covariance, skewness,
sample, density, where, FiniteRV, pspace, cdf, correlation, moment,
cmoment, smoment, characteristic_function, moment_generating_function,
quantile, kurtosis)
from sympy.stats.frv_types import DieDistribution, BinomialDistribution, \
HypergeometricDistribution
from sympy.stats.rv import Density
from sympy.utilities.pytest import raises, skip
def BayesTest(A, B):
assert P(A, B) == P(And(A, B)) / P(B)
assert P(A, B) == P(B, A) * P(A) / P(B)
def test_discreteuniform():
# Symbolic
a, b, c, t = symbols('a b c t')
X = DiscreteUniform('X', [a, b, c])
assert E(X) == (a + b + c)/3
assert simplify(variance(X)
- ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0
assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3')
Y = DiscreteUniform('Y', range(-5, 5))
# Numeric
assert E(Y) == S('-1/2')
assert variance(Y) == S('33/4')
for x in range(-5, 5):
assert P(Eq(Y, x)) == S('1/10')
assert P(Y <= x) == S(x + 6)/10
assert P(Y >= x) == S(5 - x)/10
assert dict(density(Die('D', 6)).items()) == \
dict(density(DiscreteUniform('U', range(1, 7))).items())
assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3
assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3
def test_dice():
# TODO: Make iid method!
X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
a, b, t, p = symbols('a b t p')
assert E(X) == 3 + S.Half
assert variance(X) == Rational(35, 12)
assert E(X + Y) == 7
assert E(X + X) == 7
assert E(a*X + b) == a*E(X) + b
assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
assert cmoment(X, 0) == 1
assert cmoment(4*X, 3) == 64*cmoment(X, 3)
assert covariance(X, Y) is S.Zero
assert covariance(X, X + Y) == variance(X)
assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half
assert correlation(X, Y) == 0
assert correlation(X, Y) == correlation(Y, X)
assert smoment(X + Y, 3) == skewness(X + Y)
assert smoment(X + Y, 4) == kurtosis(X + Y)
assert smoment(X, 0) == 1
assert P(X > 3) == S.Half
assert P(2*X > 6) == S.Half
assert P(X > Y) == Rational(5, 12)
assert P(Eq(X, Y)) == P(Eq(X, 1))
assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
assert E(X + Y, Eq(X, Y)) == E(2*X)
assert moment(X, 0) == 1
assert moment(5*X, 2) == 25*moment(X, 2)
assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\
(S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\
(S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1))
assert P(X > 3, X > 3) is S.One
assert P(X > Y, Eq(Y, 6)) is S.Zero
assert P(Eq(X + Y, 12)) == Rational(1, 36)
assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6)
assert density(X + Y) == density(Y + Z) != density(X + X)
d = density(2*X + Y**Z)
assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational(1, 216) and S(3130) not in d
assert pspace(X).domain.as_boolean() == Or(
*[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6
assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6
# Bayes test for die
BayesTest(X > 3, X + Y < 5)
BayesTest(Eq(X - Y, Z), Z > Y)
BayesTest(X > 3, X > 2)
# arg test for die
raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides.
raises(ValueError, lambda: Die('X', 0))
raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides.
# symbolic test for die
n, k = symbols('n, k', positive=True)
D = Die('D', n)
dens = density(D).dict
assert dens == Density(DieDistribution(n))
assert set(dens.subs(n, 4).doit().keys()) == set([1, 2, 3, 4])
assert set(dens.subs(n, 4).doit().values()) == set([Rational(1, 4)])
k = Dummy('k', integer=True)
assert E(D).dummy_eq(
Sum(Piecewise((k/n, k <= n), (0, True)), (k, 1, n)))
assert variance(D).subs(n, 6).doit() == Rational(35, 12)
ki = Dummy('ki')
cumuf = cdf(D)(k)
assert cumuf.dummy_eq(
Sum(Piecewise((1/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k)))
assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3)
t = Dummy('t')
cf = characteristic_function(D)(t)
assert cf.dummy_eq(
Sum(Piecewise((exp(ki*I*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
assert cf.subs(n, 3).doit() == exp(3*I*t)/3 + exp(2*I*t)/3 + exp(I*t)/3
mgf = moment_generating_function(D)(t)
assert mgf.dummy_eq(
Sum(Piecewise((exp(ki*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
assert mgf.subs(n, 3).doit() == exp(3*t)/3 + exp(2*t)/3 + exp(t)/3
def test_given():
X = Die('X', 6)
assert density(X, X > 5) == {S(6): S.One}
assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6)
assert sample(X, X > 5) == 6
def test_domains():
X, Y = Die('x', 6), Die('y', 6)
x, y = X.symbol, Y.symbol
# Domains
d = where(X > Y)
assert d.condition == (x > y)
d = where(And(X > Y, Y > 3))
assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6),
Eq(y, 5)), And(Eq(x, 6), Eq(y, 4)))
assert len(d.elements) == 3
assert len(pspace(X + Y).domain.elements) == 36
Z = Die('x', 4)
raises(ValueError, lambda: P(X > Z)) # Two domains with same internal symbol
assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert X.pspace.domain.dict == FiniteSet(
*[Dict({X.symbol: i}) for i in range(1, 7)])
assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j})
for i in range(1, 7) for j in range(1, 7) if i > j])
def test_bernoulli():
p, a, b, t = symbols('p a b t')
X = Bernoulli('B', p, a, b)
assert E(X) == a*p + b*(-p + 1)
assert density(X)[a] == p
assert density(X)[b] == 1 - p
assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)
X = Bernoulli('B', p, 1, 0)
z = Symbol("z")
assert E(X) == p
assert simplify(variance(X)) == p*(1 - p)
assert E(a*X + b) == a*E(X) + b
assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1))
raises(ValueError, lambda: Bernoulli('B', 1.5))
raises(ValueError, lambda: Bernoulli('B', -0.5))
def test_cdf():
D = Die('D', 6)
o = S.One
assert cdf(
D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o})
def test_coins():
C, D = Coin('C'), Coin('D')
H, T = symbols('H, T')
assert P(Eq(C, D)) == S.Half
assert density(Tuple(C, D)) == {(H, H): Rational(1, 4), (H, T): Rational(1, 4),
(T, H): Rational(1, 4), (T, T): Rational(1, 4)}
assert dict(density(C).items()) == {H: S.Half, T: S.Half}
F = Coin('F', Rational(1, 10))
assert P(Eq(F, H)) == Rational(1, 10)
d = pspace(C).domain
assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T))
raises(ValueError, lambda: P(C > D)) # Can't intelligently compare H to T
def test_binomial_verify_parameters():
raises(ValueError, lambda: Binomial('b', .2, .5))
raises(ValueError, lambda: Binomial('b', 3, 1.5))
def test_binomial_numeric():
nvals = range(5)
pvals = [0, Rational(1, 4), S.Half, Rational(3, 4), 1]
for n in nvals:
for p in pvals:
X = Binomial('X', n, p)
assert E(X) == n*p
assert variance(X) == n*p*(1 - p)
if n > 0 and 0 < p < 1:
assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p))
assert kurtosis(X) == 3 + (1 - 6*p*(1 - p))/(n*p*(1 - p))
for k in range(n + 1):
assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k)
def test_binomial_quantile():
X = Binomial('X', 50, S.Half)
assert quantile(X)(0.95) == S(31)
X = Binomial('X', 5, S.Half)
p = Symbol("p", positive=True)
assert quantile(X)(p) == Piecewise((nan, p > S.One), (S.Zero, p <= Rational(1, 32)),\
(S.One, p <= Rational(3, 16)), (S(2), p <= S.Half), (S(3), p <= Rational(13, 16)),\
(S(4), p <= Rational(31, 32)), (S(5), p <= S.One))
def test_binomial_symbolic():
n = 2
p = symbols('p', positive=True)
X = Binomial('X', n, p)
t = Symbol('t')
assert simplify(E(X)) == n*p == simplify(moment(X, 1))
assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2))
assert cancel((skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p)))) == 0
assert cancel((kurtosis(X)) - (3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)))) == 0
assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2
assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2
# Test ability to change success/failure winnings
H, T = symbols('H T')
Y = Binomial('Y', n, p, succ=H, fail=T)
assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0
# test symbolic dimensions
n = symbols('n')
B = Binomial('B', n, p)
raises(NotImplementedError, lambda: P(B > 2))
assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0))
assert set(density(B).dict.subs(n, 4).doit().keys()) == \
set([S.Zero, S.One, S(2), S(3), S(4)])
assert set(density(B).dict.subs(n, 4).doit().values()) == \
set([(1 - p)**4, 4*p*(1 - p)**3, 6*p**2*(1 - p)**2, 4*p**3*(1 - p), p**4])
k = Dummy('k', integer=True)
assert E(B > 2).dummy_eq(
Sum(Piecewise((k*p**k*(1 - p)**(-k + n)*binomial(n, k), (k >= 0)
& (k <= n) & (k > 2)), (0, True)), (k, 0, n)))
def test_beta_binomial():
# verify parameters
raises(ValueError, lambda: BetaBinomial('b', .2, 1, 2))
raises(ValueError, lambda: BetaBinomial('b', 2, -1, 2))
raises(ValueError, lambda: BetaBinomial('b', 2, 1, -2))
assert BetaBinomial('b', 2, 1, 1)
# test numeric values
nvals = range(1,5)
alphavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
betavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
for n in nvals:
for a in alphavals:
for b in betavals:
X = BetaBinomial('X', n, a, b)
assert E(X) == moment(X, 1)
assert variance(X) == cmoment(X, 2)
# test symbolic
n, a, b = symbols('a b n')
assert BetaBinomial('x', n, a, b)
n = 2 # Because we're using for loops, can't do symbolic n
a, b = symbols('a b', positive=True)
X = BetaBinomial('X', n, a, b)
t = Symbol('t')
assert E(X).expand() == moment(X, 1).expand()
assert variance(X).expand() == cmoment(X, 2).expand()
assert skewness(X) == smoment(X, 3)
assert characteristic_function(X)(t) == exp(2*I*t)*beta(a + 2, b)/beta(a, b) +\
2*exp(I*t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)
assert moment_generating_function(X)(t) == exp(2*t)*beta(a + 2, b)/beta(a, b) +\
2*exp(t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)
def test_hypergeometric_numeric():
for N in range(1, 5):
for m in range(0, N + 1):
for n in range(1, N + 1):
X = Hypergeometric('X', N, m, n)
N, m, n = map(sympify, (N, m, n))
assert sum(density(X).values()) == 1
assert E(X) == n * m / N
if N > 1:
assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1)
# Only test for skewness when defined
if N > 2 and 0 < m < N and n < N:
assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n)
/ (sqrt(n*m*(N - m)*(N - n))*(N - 2)))
def test_hypergeometric_symbolic():
N, m, n = symbols('N, m, n')
H = Hypergeometric('H', N, m, n)
dens = density(H).dict
expec = E(H > 2)
assert dens == Density(HypergeometricDistribution(N, m, n))
assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n))
assert set(dens.subs({N: 3, m: 2, n: 1}).doit().keys()) == set([S.Zero, S.One])
assert set(dens.subs({N: 3, m: 2, n: 1}).doit().values()) == set([Rational(1, 3), Rational(2, 3)])
k = Dummy('k', integer=True)
assert expec.dummy_eq(
Sum(Piecewise((k*binomial(m, k)*binomial(N - m, -k + n)
/binomial(N, n), k > 2), (0, True)), (k, 0, n)))
def test_rademacher():
X = Rademacher('X')
t = Symbol('t')
assert E(X) == 0
assert variance(X) == 1
assert density(X)[-1] == S.Half
assert density(X)[1] == S.Half
assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2
assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2
def test_FiniteRV():
F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)})
p = Symbol("p", positive=True)
assert dict(density(F).items()) == {S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4)}
assert P(F >= 2) == S.Half
assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\
(S(2), p <= Rational(3, 4)),(S(3), True))
assert pspace(F).domain.as_boolean() == Or(
*[Eq(F.symbol, i) for i in [1, 2, 3]])
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half}))
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: Rational(-1, 2), 3: S.One}))
raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\
4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}))
def test_density_call():
from sympy.abc import p
x = Bernoulli('x', p)
d = density(x)
assert d(0) == 1 - p
assert d(S.Zero) == 1 - p
assert d(5) == 0
assert 0 in d
assert 5 not in d
assert d(S.Zero) == d[S.Zero]
def test_DieDistribution():
from sympy.abc import x
X = DieDistribution(6)
assert X.pmf(S.Half) is S.Zero
assert X.pmf(x).subs({x: 1}).doit() == Rational(1, 6)
assert X.pmf(x).subs({x: 7}).doit() == 0
assert X.pmf(x).subs({x: -1}).doit() == 0
assert X.pmf(x).subs({x: Rational(1, 3)}).doit() == 0
raises(ValueError, lambda: X.pmf(Matrix([0, 0])))
raises(ValueError, lambda: X.pmf(x**2 - 1))
def test_FinitePSpace():
X = Die('X', 6)
space = pspace(X)
assert space.density == DieDistribution(6)
def test_symbolic_conditions():
B = Bernoulli('B', Rational(1, 4))
D = Die('D', 4)
b, n = symbols('b, n')
Y = P(Eq(B, b))
Z = E(D > n)
assert Y == \
Piecewise((Rational(1, 4), Eq(b, 1)), (0, True)) + \
Piecewise((Rational(3, 4), Eq(b, 0)), (0, True))
assert Z == \
Piecewise((Rational(1, 4), n < 1), (0, True)) + Piecewise((S.Half, n < 2), (0, True)) + \
Piecewise((Rational(3, 4), n < 3), (0, True)) + Piecewise((S.One, n < 4), (0, True))
def test_sampling_methods():
distribs_random = [DiscreteUniform("D", list(range(5)))]
distribs_scipy = [Hypergeometric("H", 1, 1, 1)]
distribs_pymc3 = [BetaBinomial("B", 1, 1, 1)]
size = 5
for X in distribs_random:
sam = X.pspace.distribution._sample_random(size)
for i in range(size):
assert sam[i] in X.pspace.domain.set
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for _sample_scipy.')
else:
for X in distribs_scipy:
sam = X.pspace.distribution._sample_scipy(size)
for i in range(size):
assert sam[i] in X.pspace.domain.set
pymc3 = import_module('pymc3')
if not pymc3:
skip('PyMC3 not installed. Abort tests for _sample_pymc3.')
else:
for X in distribs_pymc3:
sam = X.pspace.distribution._sample_pymc3(size)
for i in range(size):
assert sam[i] in X.pspace.domain.set
|
1377243deaaef7c8ff8fed0571623d4a940959de57980bf30b378150f4e92ca8 | from sympy import (symbols, pi, oo, S, exp, sqrt, besselk, Indexed, Sum, simplify,
Rational, factorial, gamma, Piecewise, Eq, Product,
IndexedBase, RisingFactorial)
from sympy.core.numbers import comp
from sympy.integrals.integrals import integrate
from sympy.matrices import Matrix, MatrixSymbol
from sympy.stats import density
from sympy.stats.crv_types import Normal
from sympy.stats.joint_rv import marginal_distribution
from sympy.stats.joint_rv_types import JointRV, MultivariateNormalDistribution
from sympy.utilities.pytest import raises, XFAIL
x, y, z, a, b = symbols('x y z a b')
def test_Normal():
m = Normal('A', [1, 2], [[1, 0], [0, 1]])
assert density(m)(1, 2) == 1/(2*pi)
raises (ValueError, lambda:m[2])
raises (ValueError,\
lambda: Normal('M',[1, 2], [[0, 0], [0, 1]]))
n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]]))
assert density(m)(x, y) == density(p)(x, y)
assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi)
assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1
N = Normal('N', [1, 2], [[x, 0], [0, y]])
assert density(N)(0, 0) == exp(-2/y - 1/(2*x))/(2*pi*sqrt(x*y))
raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]]))
# symbolic
n = symbols('n', natural=True)
mu = MatrixSymbol('mu', n, 1)
sigma = MatrixSymbol('sigma', n, n)
X = Normal('X', mu, sigma)
assert density(X) == MultivariateNormalDistribution(mu, sigma)
# Below tests should work after issue #17267 is resolved
# assert E(X) == mu
# assert variance(X) == sigma
def test_MultivariateTDist():
from sympy.stats.joint_rv_types import MultivariateT
t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
assert(density(t1))(1, 1) == 1/(8*pi)
assert integrate(density(t1)(x, y), (x, -oo, oo), \
(y, -oo, oo)).evalf() == 1
raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1))
t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1)
assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y))
def test_multivariate_laplace():
from sympy.stats.crv_types import Laplace
raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]]))
L = Laplace('L', [1, 0], [[1, 0], [0, 1]])
assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi
L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]])
assert density(L1)(0, 1) == \
exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y))
def test_NormalGamma():
from sympy.stats.joint_rv_types import NormalGamma
from sympy import gamma
ng = NormalGamma('G', 1, 2, 3, 4)
assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi)
raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1))
assert marginal_distribution(ng, 0)(1) == \
3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4)))
assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128
def test_GeneralizedMultivariateLogGammaDistribution():
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega as GMVLGO
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma as GMVLG
h = S.Half
omega = Matrix([[1, h, h, h],
[h, 1, h, h],
[h, h, 1, h],
[h, h, h, 1]])
v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4])
y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True)
delta = symbols('d', positive=True)
G = GMVLGO('G', omega, v, l, mu)
Gd = GMVLG('Gd', delta, v, l, mu)
dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 "
"+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/"
"(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))")
assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend
den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*"
"exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - "
"exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64")
assert str(density(G)(y_1, y_2, y_3, y_4)) == den
marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])"
"/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp("
"-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*24**(-n)*(-4 + 2**(2/3)*5**(1/3"
"))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(gamma(n + 1)"
"*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]"
", -oo, oo))/5308416")
assert str(marginal_distribution(G, G[0])(y_1)) == marg
omega_f1 = Matrix([[1, h, h]])
omega_f2 = Matrix([[1, h, h, h],
[h, 1, 2, h],
[h, h, 1, h],
[h, h, h, 1]])
omega_f3 = Matrix([[6, h, h, h],
[h, 1, 2, h],
[h, h, 1, h],
[h, h, h, 1]])
v_f = symbols("v_f", positive=False, real=True)
l_f = [1, 2, v_f, 4]
m_f = [v_f, 2, 3, 4]
omega_f4 = Matrix([[1, h, h, h, h],
[h, 1, h, h, h],
[h, h, 1, h, h],
[h, h, h, 1, h],
[h, h, h, h, 1]])
l_f1 = [1, 2, 3, 4, 5]
omega_f5 = Matrix([[1]])
mu_f5 = l_f5 = [1]
raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu))
raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu))
raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu))
raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu))
raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu))
raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f))
raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu))
raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu))
raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5))
raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu))
def test_MultivariateBeta():
from sympy.stats.joint_rv_types import MultivariateBeta
from sympy import gamma
a1, a2 = symbols('a1, a2', positive=True)
a1_f, a2_f = symbols('a1, a2', positive=False, real=True)
mb = MultivariateBeta('B', [a1, a2])
mb_c = MultivariateBeta('C', a1, a2)
assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\
(gamma(a1)*gamma(a2))
assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\
(a2*gamma(a1)*gamma(a2))
raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2]))
raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f]))
raises(ValueError, lambda: MultivariateBeta('b3', [0, 0]))
raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f]))
def test_MultivariateEwens():
from sympy.stats.joint_rv_types import MultivariateEwens
n, theta, i = symbols('n theta i', positive=True)
# tests for integer dimensions
theta_f = symbols('t_f', negative=True)
a = symbols('a_1:4', positive = True, integer = True)
ed = MultivariateEwens('E', 3, theta)
assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])*
theta**a[0]*theta**a[1]*theta**a[2]/
(theta*(theta + 1)*(theta + 2)*
factorial(a[0])*factorial(a[1])*
factorial(a[2])), Eq(a[0] + 2*a[1] +
3*a[2], 3)), (0, True))
assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])*
theta**a[1]/((theta + 1)*
(theta + 2)*factorial(a[1])),
Eq(2*a[1] + 1, 3)), (0, True))
raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f))
# tests for symbolic dimensions
eds = MultivariateEwens('E', n, theta)
a = IndexedBase('a')
j, k = symbols('j, k')
den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/
factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n),
Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True))
assert density(eds)(a).dummy_eq(den)
def test_Multinomial():
from sympy.stats.joint_rv_types import Multinomial
n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True)
p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True)
p1_f, n_f = symbols('p1_f, n_f', negative=True)
M = Multinomial('M', n, [p1, p2, p3, p4])
C = Multinomial('C', 3, p1, p2, p3)
f = factorial
assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4*
f(n)/(f(x1)*f(x2)*f(x3)*f(x4)),
Eq(n, x1 + x2 + x3 + x4)), (0, True))
assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\
3*p1*p2**2 +\
6*p1*p2*p3 +\
3*p1*p3**2
raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f]))
raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4]))
raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1))
def test_NegativeMultinomial():
from sympy.stats.joint_rv_types import NegativeMultinomial
k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True)
p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True)
p1_f = symbols('p1_f', negative=True)
N = NegativeMultinomial('N', 4, [p1, p2, p3, p4])
C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3)
g = gamma
f = factorial
assert simplify(density(N)(x1, x2, x3, x4) -
p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 +
x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero
assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01)
raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f]))
raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4))
def test_JointPSpace_marginal_distribution():
from sympy.stats.joint_rv_types import MultivariateT
from sympy import polar_lift
T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
assert marginal_distribution(T, T[1])(x) == sqrt(2)*(x**2 + 2)/(
8*polar_lift(x**2/2 + 1)**Rational(5, 2))
assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1
t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3)
assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01)
def test_JointRV():
from sympy.stats.joint_rv import JointDistributionHandmade
x1, x2 = (Indexed('x', i) for i in (1, 2))
pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi)
X = JointRV('x', pdf)
assert density(X)(1, 2) == exp(-2)/(2*pi)
assert isinstance(X.pspace.distribution, JointDistributionHandmade)
assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi))
def test_expectation():
from sympy import simplify
from sympy.stats import E
m = Normal('A', [x, y], [[1, 0], [0, 1]])
assert simplify(E(m[1])) == y
@XFAIL
def test_joint_vector_expectation():
from sympy.stats import E
m = Normal('A', [x, y], [[1, 0], [0, 1]])
assert E(m) == (x, y)
|
b4d5bc4e7ebdb60ae1bfbd4b43cca9960a395ea158bf4b5a3c4584f09b2bb91c | from sympy import symbols, Mul, sin, Integral, oo, Eq, Sum, sqrt, pi, exp
from sympy.core.expr import unchanged
from sympy.stats import (Normal, Poisson, variance, Covariance, Variance,
Probability, Expectation)
from sympy.utilities.pytest import raises
from sympy.stats.rv import probability, expectation
def test_literal_probability():
X = Normal('X', 2, 3)
Y = Normal('Y', 3, 4)
Z = Poisson('Z', 4)
W = Poisson('W', 3)
x = symbols('x', real=True)
y, w, z = symbols('y, w, z')
assert Probability(X > 0).evaluate_integral() == probability(X > 0)
assert Probability(X > x).evaluate_integral() == probability(X > x)
assert Probability(X > 0).rewrite(Integral).doit() == probability(X > 0)
assert Probability(X > x).rewrite(Integral).doit() == probability(X > x)
assert Expectation(X).evaluate_integral() == expectation(X)
assert Expectation(X).rewrite(Integral).doit() == expectation(X)
assert Expectation(X**2).evaluate_integral() == expectation(X**2)
assert Expectation(x*X).args == (x*X,)
assert Expectation(x*X).doit() == x*Expectation(X)
assert Expectation(2*X + 3*Y + z*X*Y).doit() == 2*Expectation(X) + 3*Expectation(Y) + z*Expectation(X*Y)
assert Expectation(2*X + 3*Y + z*X*Y).args == (2*X + 3*Y + z*X*Y,)
assert Expectation(sin(X)) == Expectation(sin(X)).doit()
assert Expectation(2*x*sin(X)*Y + y*X**2 + z*X*Y).doit() == 2*x*Expectation(sin(X)*Y) + y*Expectation(X**2) + z*Expectation(X*Y)
assert Variance(w).args == (w,)
assert Variance(w).doit() == 0
assert Variance(X).evaluate_integral() == Variance(X).rewrite(Integral).doit() == variance(X)
assert Variance(X + z).args == (X + z,)
assert Variance(X + z).doit() == Variance(X)
assert Variance(X*Y).args == (Mul(X, Y),)
assert type(Variance(X*Y)) == Variance
assert Variance(z*X).doit() == z**2*Variance(X)
assert Variance(X + Y).doit() == Variance(X) + Variance(Y) + 2*Covariance(X, Y)
assert Variance(X + Y + Z + W).doit() == (Variance(X) + Variance(Y) + Variance(Z) + Variance(W) +
2 * Covariance(X, Y) + 2 * Covariance(X, Z) + 2 * Covariance(X, W) +
2 * Covariance(Y, Z) + 2 * Covariance(Y, W) + 2 * Covariance(W, Z))
assert Variance(X**2).evaluate_integral() == variance(X**2)
assert unchanged(Variance, X**2)
assert Variance(x*X**2).doit() == x**2*Variance(X**2)
assert Variance(sin(X)).args == (sin(X),)
assert Variance(sin(X)).doit() == Variance(sin(X))
assert Variance(x*sin(X)).doit() == x**2*Variance(sin(X))
assert Covariance(w, z).args == (w, z)
assert Covariance(w, z).doit() == 0
assert Covariance(X, w).doit() == 0
assert Covariance(w, X).doit() == 0
assert Covariance(X, Y).args == (X, Y)
assert type(Covariance(X, Y)) == Covariance
assert Covariance(z*X + 3, Y).doit() == z*Covariance(X, Y)
assert Covariance(X, X).args == (X, X)
assert Covariance(X, X).doit() == Variance(X)
assert Covariance(z*X + 3, w*Y + 4).doit() == w*z*Covariance(X,Y)
assert Covariance(X, Y) == Covariance(Y, X)
assert Covariance(X + Y, Z + W).doit() == Covariance(W, X) + Covariance(W, Y) + Covariance(X, Z) + Covariance(Y, Z)
assert Covariance(x*X + y*Y, z*Z + w*W).doit() == (x*w*Covariance(W, X) + w*y*Covariance(W, Y) +
x*z*Covariance(X, Z) + y*z*Covariance(Y, Z))
assert Covariance(x*X**2 + y*sin(Y), z*Y*Z**2 + w*W).doit() == (w*x*Covariance(W, X**2) + w*y*Covariance(sin(Y), W) +
x*z*Covariance(Y*Z**2, X**2) + y*z*Covariance(Y*Z**2, sin(Y)))
assert Covariance(X, X**2).doit() == Covariance(X, X**2)
assert Covariance(X, sin(X)).doit() == Covariance(sin(X), X)
assert Covariance(X**2, sin(X)*Y).doit() == Covariance(sin(X)*Y, X**2)
assert Covariance(w, X).evaluate_integral() == 0
def test_probability_rewrite():
X = Normal('X', 2, 3)
Y = Normal('Y', 3, 4)
Z = Poisson('Z', 4)
W = Poisson('W', 3)
x, y, w, z = symbols('x, y, w, z')
assert Variance(w).rewrite(Expectation) == 0
assert Variance(X).rewrite(Expectation) == Expectation(X ** 2) - Expectation(X) ** 2
assert Variance(X, condition=Y).rewrite(Expectation) == Expectation(X ** 2, Y) - Expectation(X, Y) ** 2
assert Variance(X, Y) != Expectation(X**2) - Expectation(X)**2
assert Variance(X + z).rewrite(Expectation) == Expectation((X + z) ** 2) - Expectation(X + z) ** 2
assert Variance(X * Y).rewrite(Expectation) == Expectation(X ** 2 * Y ** 2) - Expectation(X * Y) ** 2
assert Covariance(w, X).rewrite(Expectation) == -w*Expectation(X) + Expectation(w*X)
assert Covariance(X, Y).rewrite(Expectation) == Expectation(X*Y) - Expectation(X)*Expectation(Y)
assert Covariance(X, Y, condition=W).rewrite(Expectation) == Expectation(X * Y, W) - Expectation(X, W) * Expectation(Y, W)
w, x, z = symbols("W, x, z")
px = Probability(Eq(X, x))
pz = Probability(Eq(Z, z))
assert Expectation(X).rewrite(Probability) == Integral(x*px, (x, -oo, oo))
assert Expectation(Z).rewrite(Probability) == Sum(z*pz, (z, 0, oo))
assert Variance(X).rewrite(Probability) == Integral(x**2*px, (x, -oo, oo)) - Integral(x*px, (x, -oo, oo))**2
assert Variance(Z).rewrite(Probability) == Sum(z**2*pz, (z, 0, oo)) - Sum(z*pz, (z, 0, oo))**2
assert Covariance(w, X).rewrite(Probability) == \
-w*Integral(x*Probability(Eq(X, x)), (x, -oo, oo)) + Integral(w*x*Probability(Eq(X, x)), (x, -oo, oo))
# To test rewrite as sum function
assert Variance(X).rewrite(Sum) == Variance(X).rewrite(Integral)
assert Expectation(X).rewrite(Sum) == Expectation(X).rewrite(Integral)
assert Covariance(w, X).rewrite(Sum) == 0
assert Covariance(w, X).rewrite(Integral) == 0
assert Variance(X, condition=Y).rewrite(Probability) == Integral(x**2*Probability(Eq(X, x), Y), (x, -oo, oo)) - \
Integral(x*Probability(Eq(X, x), Y), (x, -oo, oo))**2
|
2bf89c1fc69ae76bb30faedcefba1a074e13278e06de0c5d5eeca727d0a8ffef | from sympy import (S, Symbol, Sum, I, lambdify, re, im, log, simplify, sqrt,
zeta, pi, besseli, Dummy, oo, Piecewise, Rational, erf, beta,
floor)
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.exponential import exp
from sympy.logic.boolalg import Or
from sympy.sets.fancysets import Range
from sympy.stats import (P, E, variance, density, characteristic_function,
where, moment_generating_function, skewness, cdf)
from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution,
Poisson, Geometric, Logarithmic, NegativeBinomial, Skellam,
YuleSimon, Zeta)
from sympy.stats.rv import sample
from sympy.utilities.pytest import slow, nocache_fail
x = Symbol('x')
def test_PoissonDistribution():
l = 3
p = PoissonDistribution(l)
assert abs(p.cdf(10).evalf() - 1) < .001
assert p.expectation(x, x) == l
assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l
def test_Poisson():
l = 3
x = Poisson('x', l)
assert E(x) == l
assert variance(x) == l
assert density(x) == PoissonDistribution(l)
assert isinstance(E(x, evaluate=False), Sum)
assert isinstance(E(2*x, evaluate=False), Sum)
def test_GeometricDistribution():
p = S.One / 5
d = GeometricDistribution(p)
assert d.expectation(x, x) == 1/p
assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2
assert abs(d.cdf(20000).evalf() - 1) < .001
def test_Logarithmic():
p = S.Half
x = Logarithmic('x', p)
assert E(x) == -p / ((1 - p) * log(1 - p))
assert variance(x) == -1/log(2)**2 + 2/log(2)
assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2)
assert isinstance(E(x, evaluate=False), Sum)
@nocache_fail
def test_negative_binomial():
r = 5
p = S.One / 3
x = NegativeBinomial('x', r, p)
assert E(x) == p*r / (1-p)
# This hangs when run with the cache disabled:
assert variance(x) == p*r / (1-p)**2
assert E(x**5 + 2*x + 3) == Rational(9207, 4)
assert isinstance(E(x, evaluate=False), Sum)
def test_skellam():
mu1 = Symbol('mu1')
mu2 = Symbol('mu2')
z = Symbol('z')
X = Skellam('x', mu1, mu2)
assert density(X)(z) == (mu1/mu2)**(z/2) * \
exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2))
assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 *
sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2))
assert variance(X).expand() == mu1 + mu2
assert E(X) == mu1 - mu2
assert characteristic_function(X)(z) == exp(
mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z))
assert moment_generating_function(X)(z) == exp(
mu1*exp(z) - mu1 - mu2 + mu2*exp(-z))
def test_yule_simon():
from sympy import S
rho = S(3)
x = YuleSimon('x', rho)
assert simplify(E(x)) == rho / (rho - 1)
assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2))
assert isinstance(E(x, evaluate=False), Sum)
# To test the cdf function
assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True))
def test_zeta():
s = S(5)
x = Zeta('x', s)
assert E(x) == zeta(s-1) / zeta(s)
assert simplify(variance(x)) == (
zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2
@slow
def test_sample_discrete():
X, Y, Z = Geometric('X', S.Half), Poisson('Y', 4), Poisson('Z', 1000)
W = Poisson('W', Rational(1, 100))
assert sample(X) in X.pspace.domain.set
assert sample(Y) in Y.pspace.domain.set
assert sample(Z) in Z.pspace.domain.set
assert sample(W) in W.pspace.domain.set
def test_discrete_probability():
X = Geometric('X', Rational(1, 5))
Y = Poisson('Y', 4)
G = Geometric('e', x)
assert P(Eq(X, 3)) == Rational(16, 125)
assert P(X < 3) == Rational(9, 25)
assert P(X > 3) == Rational(64, 125)
assert P(X >= 3) == Rational(16, 25)
assert P(X <= 3) == Rational(61, 125)
assert P(Ne(X, 3)) == Rational(109, 125)
assert P(Eq(Y, 3)) == 32*exp(-4)/3
assert P(Y < 3) == 13*exp(-4)
assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(Y <= 3) == 71*exp(-4)/3
assert P(Ne(Y, 3)).equals(
13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(X < S.Infinity) is S.One
assert P(X > S.Infinity) is S.Zero
assert P(G < 3) == x*(2-x)
assert P(Eq(G, 3)) == x*(-x + 1)**2
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = S('t')
x = S('x')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [
support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf)
test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf)
test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf)
test_cf(Poisson('p', 5), 0, mpmath.inf)
test_cf(YuleSimon('y', 5), 1, mpmath.inf)
test_cf(Zeta('z', 5), 1, mpmath.inf)
def test_moment_generating_functions():
t = S('t')
geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t)
assert geometric_mgf.diff(t).subs(t, 0) == 2
logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t)
assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2)
negative_binomial_mgf = moment_generating_function(
NegativeBinomial('n', 5, Rational(1, 3)))(t)
assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2)
poisson_mgf = moment_generating_function(Poisson('p', 5))(t)
assert poisson_mgf.diff(t).subs(t, 0) == 5
skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t)
assert skellam_mgf.diff(t).subs(
t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2))
yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t)
assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2)
zeta_mgf = moment_generating_function(Zeta('z', 5))(t)
assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))
def test_Or():
X = Geometric('X', S.Half)
P(Or(X < 3, X > 4)) == Rational(13, 16)
P(Or(X > 2, X > 1)) == P(X > 1)
P(Or(X >= 3, X < 3)) == 1
def test_where():
X = Geometric('X', Rational(1, 5))
Y = Poisson('Y', 4)
assert where(X**2 > 4).set == Range(3, S.Infinity, 1)
assert where(X**2 >= 4).set == Range(2, S.Infinity, 1)
assert where(Y**2 < 9).set == Range(0, 3, 1)
assert where(Y**2 <= 9).set == Range(0, 4, 1)
def test_conditional():
X = Geometric('X', Rational(2, 3))
Y = Poisson('Y', 3)
assert P(X > 2, X > 3) == 1
assert P(X > 3, X > 2) == Rational(1, 3)
assert P(Y > 2, Y < 2) == 0
assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2
assert P(Eq(Y, 3), Eq(Y, 2)) == 0
assert P(X < 2, Eq(X, 2)) == 0
assert P(X > 2, Eq(X, 3)) == 1
def test_product_spaces():
X1 = Geometric('X1', S.Half)
X2 = Geometric('X2', Rational(1, 3))
#assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\
# + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))"""
n = Dummy('n')
assert P(X1 + X2 < 3, evaluate=False).dummy_eq(Sum(Piecewise((2**(-n)/4,
n + 2 >= 1), (0, True)), (n, -oo, -1))/3)
#assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\
# """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))"""
assert P(X1 + X2 > 3).dummy_eq(Sum(Piecewise((2**(X2 - n - 2)*(Rational(2, 3))**(X2 - 1)/6,
-X2 + n + 3 >= 1), (0, True)),
(X2, 1, oo), (n, 1, oo)))
# assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\
# """X2 <= 2), (0, True)), (X2, 1, oo))"""
assert P(Eq(X1 + X2, 3)) == Rational(1, 12)
|
77c99d628e614c6d2bb4012e92d15ed584cd0562a89ba8c9ddbe435feb39c393 | from sympy import (sqrt, exp, Trace, pi, S, Integral, MatrixSymbol, Lambda,
Dummy, Product, Abs, IndexedBase, Matrix, I, Rational)
from sympy.stats import (GaussianUnitaryEnsemble as GUE, density,
GaussianOrthogonalEnsemble as GOE,
GaussianSymplecticEnsemble as GSE,
joint_eigen_distribution,
CircularUnitaryEnsemble as CUE,
CircularOrthogonalEnsemble as COE,
CircularSymplecticEnsemble as CSE,
JointEigenDistribution,
level_spacing_distribution,
Normal, Beta)
from sympy.stats.joint_rv import JointDistributionHandmade
from sympy.stats.rv import RandomMatrixSymbol, Density
from sympy.stats.random_matrix_models import GaussianEnsemble
from sympy.utilities.pytest import raises
def test_GaussianEnsemble():
G = GaussianEnsemble('G', 3)
assert density(G) == Density(G)
raises(ValueError, lambda: GaussianEnsemble('G', 3.5))
def test_GaussianUnitaryEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
G = GUE('U', 3)
assert density(G)(H) == sqrt(2)*exp(-3*Trace(H**2)/2)/(4*pi**Rational(9, 2))
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
27*sqrt(6)*exp(-3*(l[1]**2)/2 - 3*(l[2]**2)/2 - 3*(l[3]**2)/2)*
Product(Abs(l[i] - l[j])**2, (j, i + 1, 3), (i, 1, 2))/(16*pi**Rational(3, 2))))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, 32*s**2*exp(-4*s**2/pi)/pi**2))
def test_GaussianOrthogonalEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
_H = MatrixSymbol('_H', 3, 3)
G = GOE('O', 3)
assert density(G)(H) == exp(-3*Trace(H**2)/4)/Integral(exp(-3*Trace(_H**2)/4), _H)
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
9*sqrt(2)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)*
Product(Abs(l[i] - l[j]), (j, i + 1, 3), (i, 1, 2))/(32*pi)))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, s*pi*exp(-s**2*pi/4)/2))
def test_GaussianSymplecticEnsemble():
H = RandomMatrixSymbol('H', 3, 3)
_H = MatrixSymbol('_H', 3, 3)
G = GSE('O', 3)
assert density(G)(H) == exp(-3*Trace(H**2))/Integral(exp(-3*Trace(_H**2)), _H)
i, j = (Dummy('i', integer=True, positive=True),
Dummy('j', integer=True, positive=True))
l = IndexedBase('l')
assert joint_eigen_distribution(G).dummy_eq(
Lambda((l[1], l[2], l[3]),
162*sqrt(3)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)*
Product(Abs(l[i] - l[j])**4, (j, i + 1, 3), (i, 1, 2))/(5*pi**Rational(3, 2))))
s = Dummy('s')
assert level_spacing_distribution(G).dummy_eq(Lambda(s, S(262144)*s**4*exp(-64*s**2/(9*pi))/(729*pi**3)))
def test_CircularUnitaryEnsemble():
CU = CUE('U', 3)
j, k = (Dummy('j', integer=True, positive=True),
Dummy('k', integer=True, positive=True))
t = IndexedBase('t')
assert joint_eigen_distribution(CU).dummy_eq(
Lambda((t[1], t[2], t[3]),
Product(Abs(exp(I*t[j]) - exp(I*t[k]))**2,
(j, k + 1, 3), (k, 1, 2))/(48*pi**3))
)
def test_CircularOrthogonalEnsemble():
CO = COE('U', 3)
j, k = (Dummy('j', integer=True, positive=True),
Dummy('k', integer=True, positive=True))
t = IndexedBase('t')
assert joint_eigen_distribution(CO).dummy_eq(
Lambda((t[1], t[2], t[3]),
Product(Abs(exp(I*t[j]) - exp(I*t[k])),
(j, k + 1, 3), (k, 1, 2))/(48*pi**2))
)
def test_CircularSymplecticEnsemble():
CS = CSE('U', 3)
j, k = (Dummy('j', integer=True, positive=True),
Dummy('k', integer=True, positive=True))
t = IndexedBase('t')
assert joint_eigen_distribution(CS).dummy_eq(
Lambda((t[1], t[2], t[3]),
Product(Abs(exp(I*t[j]) - exp(I*t[k]))**4,
(j, k + 1, 3), (k, 1, 2))/(720*pi**3))
)
def test_JointEigenDistribution():
A = Matrix([[Normal('A00', 0, 1), Normal('A01', 1, 1)],
[Beta('A10', 1, 1), Beta('A11', 1, 1)]])
JointEigenDistribution(A) == \
JointDistributionHandmade(-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)/2 +
A[0, 0]/2 + A[1, 1]/2, sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)/2 + A[0, 0]/2 + A[1, 1]/2)
raises(ValueError, lambda: JointEigenDistribution(Matrix([[1, 0], [2, 1]])))
|
b0caea813522ad337c327e31cb7dbdb7415536d91e44bd412caee78dac3992f8 | from sympy import E as e
from sympy import (Symbol, Abs, exp, expint, S, pi, simplify, Interval, erf, erfc, Ne,
EulerGamma, Eq, log, lowergamma, uppergamma, symbols, sqrt, And,
gamma, beta, Piecewise, Integral, sin, cos, tan, sinh, cosh,
besseli, floor, expand_func, Rational, I, re,
im, lambdify, hyper, diff, Or, Mul, sign, Dummy, Sum,
factorial, binomial, N, atan, erfi, besselj)
from sympy.core.compatibility import range
from sympy.external import import_module
from sympy.functions.special.error_functions import erfinv
from sympy.functions.special.hyper import meijerg
from sympy.sets.sets import Intersection, FiniteSet
from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis,
given, pspace, cdf, characteristic_function, moment_generating_function,
ContinuousRV, sample, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime,
Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian,
Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma,
GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic,
LogLogistic, LogNormal, Maxwell, Nakagami, Normal, GaussianInverse,
Pareto, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT,
Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull,
WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile)
from sympy.stats.crv_types import (NormalDistribution, GumbelDistribution, GompertzDistribution, LaplaceDistribution,
ParetoDistribution, RaisedCosineDistribution, BeniniDistribution, BetaDistribution,
CauchyDistribution, GammaInverseDistribution, LogNormalDistribution, StudentTDistribution,
QuadraticUDistribution, WignerSemicircleDistribution, ChiDistribution, ReciprocalDistribution)
from sympy.stats.joint_rv import JointPSpace
from sympy.utilities.pytest import raises, XFAIL, slow, skip
from sympy.utilities.randtest import verify_numerically as tn
oo = S.Infinity
x, y, z = map(Symbol, 'xyz')
def test_single_normal():
mu = Symbol('mu', real=True)
sigma = Symbol('sigma', positive=True)
X = Normal('x', 0, 1)
Y = X*sigma + mu
assert E(Y) == mu
assert variance(Y) == sigma**2
pdf = density(Y)
x = Symbol('x', real=True)
assert (pdf(x) ==
2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma))
assert P(X**2 < 1) == erf(2**S.Half/2)
assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1))))
assert E(X, Eq(X, mu)) == mu
def test_conditional_1d():
X = Normal('x', 0, 1)
Y = given(X, X >= 0)
z = Symbol('z')
assert density(Y)(z) == 2 * density(X)(z)
assert Y.pspace.domain.set == Interval(0, oo)
assert E(Y) == sqrt(2) / sqrt(pi)
assert E(X**2) == E(Y**2)
def test_ContinuousDomain():
X = Normal('x', 0, 1)
assert where(X**2 <= 1).set == Interval(-1, 1)
assert where(X**2 <= 1).symbol == X.symbol
where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
raises(ValueError, lambda: where(sin(X) > 1))
Y = given(X, X >= 0)
assert Y.pspace.domain.set == Interval(0, oo)
@slow
def test_multiple_normal():
X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
p = Symbol("p", positive=True)
assert E(X + Y) == 0
assert variance(X + Y) == 2
assert variance(X + X) == 4
assert covariance(X, Y) == 0
assert covariance(2*X + Y, -X) == -2*variance(X)
assert skewness(X) == 0
assert skewness(X + Y) == 0
assert kurtosis(X) == 3
assert kurtosis(X+Y) == 3
assert correlation(X, Y) == 0
assert correlation(X, X + Y) == correlation(X, X - Y)
assert moment(X, 2) == 1
assert cmoment(X, 3) == 0
assert moment(X + Y, 4) == 12
assert cmoment(X, 2) == variance(X)
assert smoment(X*X, 2) == 1
assert smoment(X + Y, 3) == skewness(X + Y)
assert smoment(X + Y, 4) == kurtosis(X + Y)
assert E(X, Eq(X + Y, 0)) == 0
assert variance(X, Eq(X + Y, 0)) == S.Half
assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)
def test_symbolic():
mu1, mu2 = symbols('mu1 mu2', real=True)
s1, s2 = symbols('sigma1 sigma2', positive=True)
rate = Symbol('lambda', positive=True)
X = Normal('x', mu1, s1)
Y = Normal('y', mu2, s2)
Z = Exponential('z', rate)
a, b, c = symbols('a b c', real=True)
assert E(X) == mu1
assert E(X + Y) == mu1 + mu2
assert E(a*X + b) == a*E(X) + b
assert variance(X) == s1**2
assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y)
assert E(Z) == 1/rate
assert E(a*Z + b) == a*E(Z) + b
assert E(X + a*Z + b) == mu1 + a/rate + b
def test_cdf():
X = Normal('x', 0, 1)
d = cdf(X)
assert P(X < 1) == d(1).rewrite(erfc)
assert d(0) == S.Half
d = cdf(X, X > 0) # given X>0
assert d(0) == 0
Y = Exponential('y', 10)
d = cdf(Y)
assert d(-5) == 0
assert P(Y > 3) == 1 - d(3)
raises(ValueError, lambda: cdf(X + Y))
Z = Exponential('z', 1)
f = cdf(Z)
assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))
def test_characteristic_function():
X = Uniform('x', 0, 1)
cf = characteristic_function(X)
assert cf(1) == -I*(-1 + exp(I))
Y = Normal('y', 1, 1)
cf = characteristic_function(Y)
assert cf(0) == 1
assert cf(1) == exp(I - S.Half)
Z = Exponential('z', 5)
cf = characteristic_function(Z)
assert cf(0) == 1
assert cf(1).expand() == Rational(25, 26) + I*Rational(5, 26)
X = GaussianInverse('x', 1, 1)
cf = characteristic_function(X)
assert cf(0) == 1
assert cf(1) == exp(1 - sqrt(1 - 2*I))
X = ExGaussian('x', 0, 1, 1)
cf = characteristic_function(X)
assert cf(0) == 1
assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2
L = Levy('x', 0, 1)
cf = characteristic_function(L)
assert cf(0) == 1
assert cf(1) == exp(-sqrt(2)*sqrt(-I))
def test_moment_generating_function():
t = symbols('t', positive=True)
# Symbolic tests
a, b, c = symbols('a b c')
mgf = moment_generating_function(Beta('x', a, b))(t)
assert mgf == hyper((a,), (a + b,), t)
mgf = moment_generating_function(Chi('x', a))(t)
assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
hyper((a/2,), (S.Half,), t**2/2)
mgf = moment_generating_function(ChiSquared('x', a))(t)
assert mgf == (1 - 2*t)**(-a/2)
mgf = moment_generating_function(Erlang('x', a, b))(t)
assert mgf == (1 - t/b)**(-a)
mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c)
mgf = moment_generating_function(Exponential('x', a))(t)
assert mgf == a/(a - t)
mgf = moment_generating_function(Gamma('x', a, b))(t)
assert mgf == (-b*t + 1)**(-a)
mgf = moment_generating_function(Gumbel('x', a, b))(t)
assert mgf == exp(b*t)*gamma(-a*t + 1)
mgf = moment_generating_function(Gompertz('x', a, b))(t)
assert mgf == b*exp(b)*expint(t/a, b)
mgf = moment_generating_function(Laplace('x', a, b))(t)
assert mgf == exp(a*t)/(-b**2*t**2 + 1)
mgf = moment_generating_function(Logistic('x', a, b))(t)
assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1)
mgf = moment_generating_function(Normal('x', a, b))(t)
assert mgf == exp(a*t + b**2*t**2/2)
mgf = moment_generating_function(Pareto('x', a, b))(t)
assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t)
mgf = moment_generating_function(QuadraticU('x', a, b))(t)
assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
"3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")
mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2))
mgf = moment_generating_function(Rayleigh('x', a))(t)
assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
*exp(a**2*t**2/2)/2 + 1
mgf = moment_generating_function(Triangular('x', a, b, c))(t)
assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
"2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")
mgf = moment_generating_function(Uniform('x', a, b))(t)
assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b))
mgf = moment_generating_function(UniformSum('x', a))(t)
assert mgf == ((exp(t) - 1)/t)**a
mgf = moment_generating_function(WignerSemicircle('x', a))(t)
assert mgf == 2*besseli(1, a*t)/(a*t)
# Numeric tests
mgf = moment_generating_function(Beta('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2
mgf = moment_generating_function(Chi('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half
)/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,),
(Rational(5, 2),), S.Half)/(3*sqrt(pi))
mgf = moment_generating_function(ChiSquared('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == I
mgf = moment_generating_function(Erlang('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
assert mgf.diff(t).subs(t, 2) == -exp(2)
mgf = moment_generating_function(Exponential('x', 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Gamma('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == EulerGamma + 1
mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)),
((0, 0, 0), ()), 1)
mgf = moment_generating_function(Laplace('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Logistic('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == beta(1, 1)
mgf = moment_generating_function(Normal('x', 0, 1))(t)
assert mgf.diff(t).subs(t, 1) == exp(S.Half)
mgf = moment_generating_function(Pareto('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == expint(1, 0)
mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2)
mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
(1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)
mgf = moment_generating_function(Rayleigh('x', 1))(t)
assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2
mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
assert mgf.diff(t).subs(t, 1) == -e + exp(3)
mgf = moment_generating_function(Uniform('x', 0, 1))(t)
assert mgf.diff(t).subs(t, 1) == 1
mgf = moment_generating_function(UniformSum('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == 1
mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
besseli(0, 1)
def test_sample_continuous():
Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
assert sample(Z) in Z.pspace.domain.set
sym, val = list(Z.pspace.sample().items())[0]
assert sym == Z and val in Interval(0, oo)
assert density(Z)(-1) == 0
def test_ContinuousRV():
pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
# X and Y should be equivalent
X = ContinuousRV(x, pdf)
Y = Normal('y', 0, 1)
assert variance(X) == variance(Y)
assert P(X > 0) == P(Y > 0)
def test_arcsin():
from sympy import asin
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = Arcsin('x', a, b)
assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
assert cdf(X)(x) == Piecewise((0, a > x),
(2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
(1, True))
def test_benini():
alpha = Symbol("alpha", positive=True)
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", positive=True)
X = Benini('x', alpha, beta, sigma)
assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x)
*exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2))
alpha = Symbol("alpha", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
alpha = Symbol("alpha", positive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
def test_beta():
a, b = symbols('alpha beta', positive=True)
B = Beta('x', a, b)
assert pspace(B).domain.set == Interval(0, 1)
assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x)
assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b)
assert simplify(E(B)) == a / (a + b)
assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)
# Full symbolic solution is too much, test with numeric version
a, b = 1, 2
B = Beta('x', a, b)
assert expand_func(E(B)) == a / S(a + b)
assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
def test_beta_noncentral():
a, b = symbols('a b', positive=True)
c = Symbol('c', nonnegative=True)
_k = Dummy('k')
X = BetaNoncentral('x', a, b, c)
assert pspace(X).domain.set == Interval(0, 1)
dens = density(X)
z = Symbol('z')
res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/
(beta(_k + a, b)*factorial(_k)), (_k, 0, oo))
assert dens(z).dummy_eq(res)
# BetaCentral should not raise if the assumptions
# on the symbols can not be determined
a, b, c = symbols('a b c')
assert BetaNoncentral('x', a, b, c)
a = Symbol('a', positive=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
a = Symbol('a', positive=True)
b = Symbol('b', positive=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
a = Symbol('a', positive=True)
b = Symbol('b', positive=True)
c = Symbol('c', nonnegative=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
def test_betaprime():
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", positive=True)
X = BetaPrime('x', alpha, betap)
assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)
alpha = Symbol("alpha", nonpositive=True)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", nonpositive=True)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
def test_cauchy():
x0 = Symbol("x0")
gamma = Symbol("gamma", positive=True)
t = Symbol('t')
p = Symbol("p", positive=True)
X = Cauchy('x', x0, gamma)
# Tests the characteristic function
assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0)
assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0
gamma = Symbol("gamma", nonpositive=True)
raises(ValueError, lambda: Cauchy('x', x0, gamma))
def test_chi():
from sympy import I
k = Symbol("k", integer=True)
X = Chi('x', k)
assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
# Tests the characteristic function
assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
(S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2)
# Tests the moment generating function
assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
(S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: Chi('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: Chi('x', k))
def test_chi_noncentral():
k = Symbol("k", integer=True)
l = Symbol("l")
X = ChiNoncentral("x", k, l)
assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", nonpositive=True)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=False)
l = Symbol("l", positive=True)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
def test_chi_squared():
k = Symbol("k", integer=True)
X = ChiSquared('x', k)
# Tests the characteristic function
assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2))
assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
assert E(X) == k
assert variance(X) == 2*k
X = ChiSquared('x', 15)
assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiSquared('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: ChiSquared('x', k))
def test_dagum():
p = Symbol("p", positive=True)
b = Symbol("b", positive=True)
a = Symbol("a", positive=True)
X = Dagum('x', p, a, b)
assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
(0, True))
p = Symbol("p", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
p = Symbol("p", positive=True)
b = Symbol("b", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
b = Symbol("b", positive=True)
a = Symbol("a", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
def test_erlang():
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", positive=True)
X = Erlang("x", k, l)
assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
(0, True))
def test_exgaussian():
m, z = symbols("m, z")
s, l = symbols("s, l", positive=True)
X = ExGaussian("x", m, s, l)
assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\
erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2
# Note: actual_output simplifies to expected_output.
# Ideally cdf(X)(z) would return expected_output
# expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half
u = l*(z - m)
v = l*s
GaussianCDF1 = cdf(Normal('x', 0, v))(u)
GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
assert cdf(X)(z) == actual_output
# assert simplify(actual_output) == expected_output
assert variance(X).expand() == s**2 + l**(-2)
assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l *
sqrt(s**2 + l**(-2)))
def test_exponential():
rate = Symbol('lambda', positive=True)
X = Exponential('x', rate)
p = Symbol("p", positive=True, real=True,finite=True)
assert E(X) == 1/rate
assert variance(X) == 1/rate**2
assert skewness(X) == 2
assert skewness(X) == smoment(X, 3)
assert kurtosis(X) == 9
assert kurtosis(X) == smoment(X, 4)
assert smoment(2*X, 4) == smoment(X, 4)
assert moment(X, 3) == 3*2*1/rate**3
assert P(X > 0) is S.One
assert P(X > 1) == exp(-rate)
assert P(X > 10) == exp(-10*rate)
assert quantile(X)(p) == -log(1-p)/rate
assert where(X <= 1).set == Interval(0, 1)
def test_exponential_power():
mu = Symbol('mu')
z = Symbol('z')
alpha = Symbol('alpha', positive=True)
beta = Symbol('beta', positive=True)
X = ExponentialPower('x', mu, alpha, beta)
assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha)
** beta)/(2*alpha*gamma(1/beta))
assert cdf(X)(z) == S.Half + lowergamma(1/beta,
(Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\
(2*gamma(1/beta))
def test_f_distribution():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FDistribution("x", d1, d2)
assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
/(x*beta(d1/2, d2/2)))
d1 = Symbol("d1", nonpositive=True)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", nonpositive=True)
raises(ValueError, lambda: FDistribution('x', d1, d2))
d2 = Symbol("d2", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d2))
def test_fisher_z():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FisherZ("x", d1, d2)
assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
**(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))
def test_frechet():
a = Symbol("a", positive=True)
s = Symbol("s", positive=True)
m = Symbol("m", real=True)
X = Frechet("x", a, s=s, m=m)
assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))
def test_gamma():
k = Symbol("k", positive=True)
theta = Symbol("theta", positive=True)
X = Gamma('x', k, theta)
# Tests characteristic function
assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k))
assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
assert cdf(X, meijerg=True)(z) == Piecewise(
(-k*lowergamma(k, 0)/gamma(k + 1) +
k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
(0, True))
# assert simplify(variance(X)) == k*theta**2 # handled numerically below
assert E(X) == moment(X, 1)
k, theta = symbols('k theta', positive=True)
X = Gamma('x', k, theta)
assert E(X) == k*theta
assert variance(X) == k*theta**2
assert skewness(X).expand() == 2/sqrt(k)
assert kurtosis(X).expand() == 3 + 6/k
def test_gamma_inverse():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = GammaInverse("x", a, b)
assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
def test_sampling_gamma_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of gamma inverse.')
X = GammaInverse("x", 1, 1)
assert sample(X) in X.pspace.domain.set
def test_gompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = Gompertz("x", b, eta)
assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_gumbel():
beta = Symbol("beta", positive=True)
mu = Symbol("mu")
x = Symbol("x")
y = Symbol("y")
X = Gumbel("x", beta, mu)
Y = Gumbel("y", beta, mu, minimum=True)
assert density(X)(x).expand() == \
exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta
assert density(Y)(y).expand() == \
exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta
assert cdf(X)(x).expand() == \
exp(-exp(mu/beta)*exp(-x/beta))
def test_kumaraswamy():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = Kumaraswamy("x", a, b)
assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
assert cdf(X)(x) == Piecewise((0, x < 0),
(-(-x**a + 1)**b + 1, x <= 1),
(1, True))
def test_laplace():
mu = Symbol("mu")
b = Symbol("b", positive=True)
X = Laplace('x', mu, b)
#Tests characteristic_function
assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1))
assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
(-exp((mu - x)/b)/2 + 1, True))
def test_levy():
mu = Symbol("mu", real=True)
c = Symbol("c", positive=True)
X = Levy('x', mu, c)
assert X.pspace.domain.set == Interval(mu, oo)
assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half))
assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu))))
mu = Symbol("mu", real=False)
raises(ValueError, lambda: Levy('x',mu,c))
c = Symbol("c", nonpositive=True)
raises(ValueError, lambda: Levy('x',mu,c))
mu = Symbol("mu", real=True)
raises(ValueError, lambda: Levy('x',mu,c))
def test_logistic():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
p = Symbol("p", positive=True)
X = Logistic('x', mu, s)
#Tests characteristics_function
assert characteristic_function(X)(x) == \
(Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True)))
assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
assert quantile(X)(p) == mu - s*log(-S.One + 1/p)
def test_loglogistic():
a, b = symbols('a b')
assert LogLogistic('x', a, b)
a = Symbol('a', negative=True)
b = Symbol('b', positive=True)
raises(ValueError, lambda: LogLogistic('x', a, b))
a = Symbol('a', positive=True)
b = Symbol('b', negative=True)
raises(ValueError, lambda: LogLogistic('x', a, b))
a, b, z, p = symbols('a b z p', positive=True)
X = LogLogistic('x', a, b)
assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2)
assert cdf(X)(z) == 1/(1 + (z/a)**(-b))
assert quantile(X)(p) == a*(p/(1 - p))**(1/b)
# Expectation
assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
b = symbols('b', prime=True) # b > 1
X = LogLogistic('x', a, b)
assert E(X) == pi*a/(b*sin(pi/b))
def test_lognormal():
mean = Symbol('mu', real=True)
std = Symbol('sigma', positive=True)
X = LogNormal('x', mean, std)
# The sympy integrator can't do this too well
#assert E(X) == exp(mean+std**2/2)
#assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
# Right now, only density function and sampling works
for i in range(3):
X = LogNormal('x', i, 1)
assert sample(X) in X.pspace.domain.set
# The sympy integrator can't do this too well
#assert E(X) ==
mu = Symbol("mu", real=True)
sigma = Symbol("sigma", positive=True)
X = LogNormal('x', mu, sigma)
assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
/(2*sigma**2))/(2*x*sqrt(pi)*sigma))
# Tests cdf
assert cdf(X)(x) == Piecewise(
(erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2
+ S(1)/2, x > 0), (0, True))
X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
def test_maxwell():
a = Symbol("a", positive=True)
X = Maxwell('x', a)
assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
(sqrt(pi)*a**3))
assert E(X) == 2*sqrt(2)*a/sqrt(pi)
assert variance(X) == -8*a**2/pi + 3*a**2
assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
assert diff(cdf(X)(x), x) == density(X)(x)
def test_nakagami():
mu = Symbol("mu", positive=True)
omega = Symbol("omega", positive=True)
X = Nakagami('x', mu, omega)
assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
*exp(-x**2*mu/omega)/gamma(mu))
assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
*gamma(mu + S.Half)/gamma(mu + 1))
assert simplify(variance(X)) == (
omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1)))
assert cdf(X)(x) == Piecewise(
(lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
(0, True))
def test_gaussian_inverse():
# test for symbolic parameters
a, b = symbols('a b')
assert GaussianInverse('x', a, b)
# Inverse Gaussian distribution is also known as Wald distribution
# `GaussianInverse` can also be referred by the name `Wald`
a, b, z = symbols('a b z')
X = Wald('x', a, b)
assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
a, b = symbols('a b', positive=True)
z = Symbol('z', positive=True)
X = GaussianInverse('x', a, b)
assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
assert E(X) == a
assert variance(X).expand() == a**3/b
assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\
erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half
a = symbols('a', nonpositive=True)
raises(ValueError, lambda: GaussianInverse('x', a, b))
a = symbols('a', positive=True)
b = symbols('b', nonpositive=True)
raises(ValueError, lambda: GaussianInverse('x', a, b))
def test_sampling_gaussian_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of Gaussian inverse.')
X = GaussianInverse("x", 1, 1)
assert sample(X) in X.pspace.domain.set
def test_pareto():
xm, beta = symbols('xm beta', positive=True)
alpha = beta + 5
X = Pareto('x', xm, alpha)
dens = density(X)
#Tests cdf function
assert cdf(X)(x) == \
Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True))
#Tests characteristic_function
assert characteristic_function(X)(x) == \
((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm))
assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
assert simplify(E(X)) == alpha*xm/(alpha-1)
# computation of taylor series for MGF still too slow
#assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))
def test_pareto_numeric():
xm, beta = 3, 2
alpha = beta + 5
X = Pareto('x', xm, alpha)
assert E(X) == alpha*xm/S(alpha - 1)
assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2)))
# Skewness tests too slow. Try shortcutting function?
def test_raised_cosine():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
X = RaisedCosine("x", mu, s)
#Tests characteristics_function
assert characteristic_function(X)(x) == \
Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True))
assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
And(x <= mu + s, mu - s <= x)), (0, True)))
def test_rayleigh():
sigma = Symbol("sigma", positive=True)
X = Rayleigh('x', sigma)
#Tests characteristic_function
assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1)
assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_reciprocal():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = Reciprocal('x', a, b)
assert density(X)(x) == 1/(x*(-log(a) + log(b)))
assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
X = Reciprocal('x', 5, 30)
assert E(X) == 25/(log(30) - log(5))
assert P(X < 4) == S.Zero
assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
a = symbols('a', nonpositive=True)
raises(ValueError, lambda: Reciprocal('x', a, b))
a = symbols('a', positive=True)
b = symbols('b', positive=True)
raises(ValueError, lambda: Reciprocal('x', a + b, a))
def test_shiftedgompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = ShiftedGompertz("x", b, eta)
assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
def test_studentt():
nu = Symbol("nu", positive=True)
X = StudentT('x', nu)
assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2))
assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half),
(Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
def test_trapezoidal():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
c = Symbol("c", real=True)
d = Symbol("d", real=True)
X = Trapezoidal('x', a, b, c, d)
assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
(2/(-a - b + c + d), (b <= x) & (x < c)),
((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
(0, True))
X = Trapezoidal('x', 0, 1, 2, 3)
assert E(X) == Rational(3, 2)
assert variance(X) == Rational(5, 12)
assert P(X < 2) == Rational(3, 4)
def test_triangular():
a = Symbol("a")
b = Symbol("b")
c = Symbol("c")
X = Triangular('x', a, b, c)
assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), "
"(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))")
#Tests moment_generating_function
assert moment_generating_function(X)(x).expand() == \
((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand()
def test_quadratic_u():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = QuadraticU("x", a, b)
Y = QuadraticU("x", 1, 2)
# Tests _moment_generating_function
assert moment_generating_function(Y)(1) == -15*exp(2) + 27*exp(1)
assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2
assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
And(x <= b, a <= x)), (0, True)))
def test_uniform():
l = Symbol('l', real=True)
w = Symbol('w', positive=True)
X = Uniform('x', l, l + w)
assert E(X) == l + w/2
assert variance(X).expand() == w**2/12
# With numbers all is well
X = Uniform('x', 3, 5)
assert P(X < 3) == 0 and P(X > 5) == 0
assert P(X < 4) == P(X > 4) == S.Half
z = Symbol('z')
p = density(X)(z)
assert p.subs(z, 3.7) == S.Half
assert p.subs(z, -1) == 0
assert p.subs(z, 6) == 0
c = cdf(X)
assert c(2) == 0 and c(3) == 0
assert c(Rational(7, 2)) == Rational(1, 4)
assert c(5) == 1 and c(6) == 1
@XFAIL
def test_uniform_P():
""" This stopped working because SingleContinuousPSpace.compute_density no
longer calls integrate on a DiracDelta but rather just solves directly.
integrate used to call UniformDistribution.expectation which special-cased
subsed out the Min and Max terms that Uniform produces
I decided to regress on this class for general cleanliness (and I suspect
speed) of the algorithm.
"""
l = Symbol('l', real=True)
w = Symbol('w', positive=True)
X = Uniform('x', l, l + w)
assert P(X < l) == 0 and P(X > l + w) == 0
def test_uniformsum():
n = Symbol("n", integer=True)
_k = Dummy("k")
x = Symbol("x")
X = UniformSum('x', n)
res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)
assert density(X)(x).dummy_eq(res)
#Tests set functions
assert X.pspace.domain.set == Interval(0, n)
#Tests the characteristic_function
assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n
#Tests the moment_generating_function
assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n
def test_von_mises():
mu = Symbol("mu")
k = Symbol("k", positive=True)
X = VonMises("x", mu, k)
assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))
def test_weibull():
a, b = symbols('a b', positive=True)
# FIXME: simplify(E(X)) seems to hang without extended_positive=True
# On a Linux machine this had a rapid memory leak...
# a, b = symbols('a b', positive=True)
X = Weibull('x', a, b)
assert E(X).expand() == a * gamma(1 + 1/b)
assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand()
assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2)
assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\
6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2
def test_weibull_numeric():
# Test for integers and rationals
a = 1
bvals = [S.Half, 1, Rational(3, 2), 5]
for b in bvals:
X = Weibull('x', a, b)
assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
assert simplify(variance(X)) == simplify(
a**2 * gamma(1 + 2/S(b)) - E(X)**2)
# Not testing Skew... it's slow with int/frac values > 3/2
def test_wignersemicircle():
R = Symbol("R", positive=True)
X = WignerSemicircle('x', R)
assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
assert E(X) == 0
#Tests ChiNoncentralDistribution
assert characteristic_function(X)(x) == \
Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True))
def test_prefab_sampling():
N = Normal('X', 0, 1)
L = LogNormal('L', 0, 1)
E = Exponential('Ex', 1)
P = Pareto('P', 1, 3)
W = Weibull('W', 1, 1)
U = Uniform('U', 0, 1)
B = Beta('B', 2, 5)
G = Gamma('G', 1, 3)
variables = [N, L, E, P, W, U, B, G]
niter = 10
for var in variables:
for i in range(niter):
assert sample(var) in var.pspace.domain.set
def test_input_value_assertions():
a, b = symbols('a b')
p, q = symbols('p q', positive=True)
m, n = symbols('m n', positive=False, real=True)
raises(ValueError, lambda: Normal('x', 3, 0))
raises(ValueError, lambda: Normal('x', m, n))
Normal('X', a, p) # No error raised
raises(ValueError, lambda: Exponential('x', m))
Exponential('Ex', p) # No error raised
for fn in [Pareto, Weibull, Beta, Gamma]:
raises(ValueError, lambda: fn('x', m, p))
raises(ValueError, lambda: fn('x', p, n))
fn('x', p, q) # No error raised
def test_unevaluated():
X = Normal('x', 0, 1)
assert str(E(X, evaluate=False)) == ("Integral(sqrt(2)*x*exp(-x**2/2)/"
"(2*sqrt(pi)), (x, -oo, oo))")
assert str(E(X + 1, evaluate=False)) == ("Integral(sqrt(2)*x*exp(-x**2/2)/"
"(2*sqrt(pi)), (x, -oo, oo)) + 1")
assert str(P(X > 0, evaluate=False)) == ("Integral(sqrt(2)*exp(-_z**2/2)/"
"(2*sqrt(pi)), (_z, 0, oo))")
assert P(X > 0, X**2 < 1, evaluate=False) == S.Half
def test_probability_unevaluated():
T = Normal('T', 30, 3)
assert type(P(T > 33, evaluate=False)) == Integral
def test_density_unevaluated():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 2)
assert isinstance(density(X+Y, evaluate=False)(z), Integral)
def test_NormalDistribution():
nd = NormalDistribution(0, 1)
x = Symbol('x')
assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half
assert isinstance(nd.sample(), float) or nd.sample().is_Number
assert nd.expectation(1, x) == 1
assert nd.expectation(x, x) == 0
assert nd.expectation(x**2, x) == 1
def test_random_parameters():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert density(meas, evaluate=False)(z)
assert isinstance(pspace(meas), JointPSpace)
#assert density(meas, evaluate=False)(z) == Integral(mu.pspace.pdf *
# meas.pspace.pdf, (mu.symbol, -oo, oo)).subs(meas.symbol, z)
def test_random_parameters_given():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)
def test_conjugate_priors():
mu = Normal('mu', 2, 3)
x = Normal('x', mu, 1)
assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
Mul)
def test_difficult_univariate():
""" Since using solve in place of deltaintegrate we're able to perform
substantially more complex density computations on single continuous random
variables """
x = Normal('x', 0, 1)
assert density(x**3)
assert density(exp(x**2))
assert density(log(x))
def test_issue_10003():
X = Exponential('x', 3)
G = Gamma('g', 1, 2)
assert P(X < -1) is S.Zero
assert P(G < -1) is S.Zero
@slow
def test_precomputed_cdf():
x = symbols("x", real=True)
mu = symbols("mu", real=True)
sigma, xm, alpha = symbols("sigma xm alpha", positive=True)
n = symbols("n", integer=True, positive=True)
distribs = [
Normal("X", mu, sigma),
Pareto("P", xm, alpha),
ChiSquared("C", n),
Exponential("E", sigma),
# LogNormal("L", mu, sigma),
]
for X in distribs:
compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
compdiff = simplify(compdiff.rewrite(erfc))
assert compdiff == 0
@slow
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = Symbol('t')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Beta('b', 1, 2), 0, 1)
test_cf(Chi('c', 3), 0, mpmath.inf)
test_cf(ChiSquared('c', 2), 0, mpmath.inf)
test_cf(Exponential('e', 6), 0, mpmath.inf)
test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
test_cf(RaisedCosine('r', 3, 1), 2, 4)
test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
test_cf(Uniform('u', -1, 1), -1, 1)
test_cf(WignerSemicircle('w', 3), -3, 3)
def test_long_precomputed_cdf():
x = symbols("x", real=True)
distribs = [
Arcsin("A", -5, 9),
Dagum("D", 4, 10, 3),
Erlang("E", 14, 5),
Frechet("F", 2, 6, -3),
Gamma("G", 2, 7),
GammaInverse("GI", 3, 5),
Kumaraswamy("K", 6, 8),
Laplace("LA", -5, 4),
Logistic("L", -6, 7),
Nakagami("N", 2, 7),
StudentT("S", 4)
]
for distr in distribs:
for _ in range(5):
assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)
US = UniformSum("US", 5)
pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1)
cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1)
assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
def test_issue_13324():
X = Uniform('X', 0, 1)
assert E(X, X > S.Half) == Rational(3, 4)
assert E(X, X > 0) == S.Half
def test_FiniteSet_prob():
E = Exponential('E', 3)
N = Normal('N', 5, 7)
assert P(Eq(E, 1)) is S.Zero
assert P(Eq(N, 2)) is S.Zero
assert P(Eq(N, x)) is S.Zero
def test_prob_neq():
E = Exponential('E', 4)
X = ChiSquared('X', 4)
assert P(Ne(E, 2)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 5)) == 1
assert P(Ne(E, x)) == 1
def test_union():
N = Normal('N', 3, 2)
assert simplify(P(N**2 - N > 2)) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
assert simplify(P(N**2 - 4 > 0)) == \
-erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
def test_Or():
N = Normal('N', 0, 1)
assert simplify(P(Or(N > 2, N < 1))) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2)
assert P(Or(N < 0, N < 1)) == P(N < 1)
assert P(Or(N > 0, N < 0)) == 1
def test_conditional_eq():
E = Exponential('E', 1)
assert P(Eq(E, 1), Eq(E, 1)) == 1
assert P(Eq(E, 1), Eq(E, 2)) == 0
assert P(E > 1, Eq(E, 2)) == 1
assert P(E < 1, Eq(E, 2)) == 0
|
3f6710f094c4170bddf69d7199a323de6dcdcf5773e1e6dd9d7b98413dc90cf4 | from sympy import Mul, S, Pow, Symbol, summation, Dict, factorial as fac
from sympy.core.evalf import bitcount
from sympy.core.numbers import Integer, Rational
from sympy.core.compatibility import long, range
from sympy.ntheory import (totient,
factorint, primefactors, divisors, nextprime,
primerange, pollard_rho, perfect_power, multiplicity,
trailing, divisor_count, primorial, pollard_pm1, divisor_sigma,
factorrat, reduced_totient)
from sympy.ntheory.factor_ import (smoothness, smoothness_p, proper_divisors,
antidivisors, antidivisor_count, core, digits, udivisors, udivisor_sigma,
udivisor_count, proper_divisor_count, primenu, primeomega, small_trailing,
mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
is_deficient, is_amicable)
from sympy.ntheory.generate import cycle_length
from sympy.ntheory.multinomial import (
multinomial_coefficients, multinomial_coefficients_iterator)
from sympy.ntheory.bbp_pi import pi_hex_digits
from sympy.ntheory.modular import crt, crt1, crt2, solve_congruence
from sympy.utilities.pytest import raises
from sympy.utilities.iterables import capture
def fac_multiplicity(n, p):
"""Return the power of the prime number p in the
factorization of n!"""
if p > n:
return 0
if p > n//2:
return 1
q, m = n, 0
while q >= p:
q //= p
m += q
return m
def multiproduct(seq=(), start=1):
"""
Return the product of a sequence of factors with multiplicities,
times the value of the parameter ``start``. The input may be a
sequence of (factor, exponent) pairs or a dict of such pairs.
>>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4
279936
"""
if not seq:
return start
if isinstance(seq, dict):
seq = iter(seq.items())
units = start
multi = []
for base, exp in seq:
if not exp:
continue
elif exp == 1:
units *= base
else:
if exp % 2:
units *= base
multi.append((base, exp//2))
return units * multiproduct(multi)**2
def test_trailing_bitcount():
assert trailing(0) == 0
assert trailing(1) == 0
assert trailing(-1) == 0
assert trailing(2) == 1
assert trailing(7) == 0
assert trailing(-7) == 0
for i in range(100):
assert trailing((1 << i)) == i
assert trailing((1 << i) * 31337) == i
assert trailing((1 << 1000001)) == 1000001
assert trailing((1 << 273956)*7**37) == 273956
# issue 12709
big = small_trailing[-1]*2
assert trailing(-big) == trailing(big)
assert bitcount(-big) == bitcount(big)
def test_multiplicity():
for b in range(2, 20):
for i in range(100):
assert multiplicity(b, b**i) == i
assert multiplicity(b, (b**i) * 23) == i
assert multiplicity(b, (b**i) * 1000249) == i
# Should be fast
assert multiplicity(10, 10**10023) == 10023
# Should exit quickly
assert multiplicity(10**10, 10**10) == 1
# Should raise errors for bad input
raises(ValueError, lambda: multiplicity(1, 1))
raises(ValueError, lambda: multiplicity(1, 2))
raises(ValueError, lambda: multiplicity(1.3, 2))
raises(ValueError, lambda: multiplicity(2, 0))
raises(ValueError, lambda: multiplicity(1.3, 0))
# handles Rationals
assert multiplicity(10, Rational(30, 7)) == 1
assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1
assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2
assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1
assert multiplicity(3, Rational(1, 9)) == -2
def test_perfect_power():
raises(ValueError, lambda: perfect_power(0))
raises(ValueError, lambda: perfect_power(Rational(25, 4)))
assert perfect_power(1) is False
assert perfect_power(2) is False
assert perfect_power(3) is False
assert perfect_power(4) == (2, 2)
assert perfect_power(14) is False
assert perfect_power(25) == (5, 2)
assert perfect_power(22) is False
assert perfect_power(22, [2]) is False
assert perfect_power(137**(3*5*13)) == (137, 3*5*13)
assert perfect_power(137**(3*5*13) + 1) is False
assert perfect_power(137**(3*5*13) - 1) is False
assert perfect_power(103005006004**7) == (103005006004, 7)
assert perfect_power(103005006004**7 + 1) is False
assert perfect_power(103005006004**7 - 1) is False
assert perfect_power(103005006004**12) == (103005006004, 12)
assert perfect_power(103005006004**12 + 1) is False
assert perfect_power(103005006004**12 - 1) is False
assert perfect_power(2**10007) == (2, 10007)
assert perfect_power(2**10007 + 1) is False
assert perfect_power(2**10007 - 1) is False
assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60)
assert perfect_power((9**99 + 1)**60 + 1) is False
assert perfect_power((9**99 + 1)**60 - 1) is False
assert perfect_power((10**40000)**2, big=False) == (10**40000, 2)
assert perfect_power(10**100000) == (10, 100000)
assert perfect_power(10**100001) == (10, 100001)
assert perfect_power(13**4, [3, 5]) is False
assert perfect_power(3**4, [3, 10], factor=0) is False
assert perfect_power(3**3*5**3) == (15, 3)
assert perfect_power(2**3*5**5) is False
assert perfect_power(2*13**4) is False
assert perfect_power(2**5*3**3) is False
t = 2**24
for d in divisors(24):
m = perfect_power(t*3**d)
assert m and m[1] == d or d == 1
m = perfect_power(t*3**d, big=False)
assert m and m[1] == 2 or d == 1 or d == 3, (d, m)
def test_factorint():
assert primefactors(123456) == [2, 3, 643]
assert factorint(0) == {0: 1}
assert factorint(1) == {}
assert factorint(-1) == {-1: 1}
assert factorint(-2) == {-1: 1, 2: 1}
assert factorint(-16) == {-1: 1, 2: 4}
assert factorint(2) == {2: 1}
assert factorint(126) == {2: 1, 3: 2, 7: 1}
assert factorint(123456) == {2: 6, 3: 1, 643: 1}
assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1}
assert factorint(64015937) == {7993: 1, 8009: 1}
assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1}
#issue 17676
assert factorint(28300421052393658575) == {3: 1, 5: 2, 11: 2, 43: 1, 2063: 2, 4127: 1, 4129: 1}
assert factorint(2063**2 * 4127**1 * 4129**1) == {2063: 2, 4127: 1, 4129: 1}
assert factorint(2347**2 * 7039**1 * 7043**1) == {2347: 2, 7039: 1, 7043: 1}
assert factorint(0, multiple=True) == [0]
assert factorint(1, multiple=True) == []
assert factorint(-1, multiple=True) == [-1]
assert factorint(-2, multiple=True) == [-1, 2]
assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2]
assert factorint(2, multiple=True) == [2]
assert factorint(24, multiple=True) == [2, 2, 2, 3]
assert factorint(126, multiple=True) == [2, 3, 3, 7]
assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643]
assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337]
assert factorint(64015937, multiple=True) == [7993, 8009]
assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721]
assert factorint(fac(1, evaluate=False)) == {}
assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1}
assert factorint(fac(15, evaluate=False)) == \
{2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1}
assert factorint(fac(20, evaluate=False)) == \
{2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1}
assert factorint(fac(23, evaluate=False)) == \
{2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1}
assert multiproduct(factorint(fac(200))) == fac(200)
assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200)
for b, e in factorint(fac(150)).items():
assert e == fac_multiplicity(150, b)
for b, e in factorint(fac(150, evaluate=False)).items():
assert e == fac_multiplicity(150, b)
assert factorint(103005006059**7) == {103005006059: 7}
assert factorint(31337**191) == {31337: 191}
assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \
{2: 1000, 3: 500, 257: 127, 383: 60}
assert len(factorint(fac(10000))) == 1229
assert len(factorint(fac(10000, evaluate=False))) == 1229
assert factorint(12932983746293756928584532764589230) == \
{2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1}
assert factorint(727719592270351) == {727719592270351: 1}
assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1)
for n in range(60000):
assert multiproduct(factorint(n)) == n
assert pollard_rho(2**64 + 1, seed=1) == 274177
assert pollard_rho(19, seed=1) is None
assert factorint(3, limit=2) == {3: 1}
assert factorint(12345) == {3: 1, 5: 1, 823: 1}
assert factorint(
12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit
assert factorint(1, limit=1) == {}
assert factorint(0, 3) == {0: 1}
assert factorint(12, limit=1) == {12: 1}
assert factorint(30, limit=2) == {2: 1, 15: 1}
assert factorint(16, limit=2) == {2: 4}
assert factorint(124, limit=3) == {2: 2, 31: 1}
assert factorint(4*31**2, limit=3) == {2: 2, 31: 2}
p1 = nextprime(2**32)
p2 = nextprime(2**16)
p3 = nextprime(p2)
assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1}
assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1}
assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1}
assert factorint(primorial(17) + 1, use_pm1=0) == \
{long(19026377261): 1, 3467: 1, 277: 1, 105229: 1}
# when prime b is closer than approx sqrt(8*p) to prime p then they are
# "close" and have a trivial factorization
a = nextprime(2**2**8) # 78 digits
b = nextprime(a + 2**2**4)
assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1))
raises(ValueError, lambda: pollard_rho(4))
raises(ValueError, lambda: pollard_pm1(3))
raises(ValueError, lambda: pollard_pm1(10, B=2))
# verbose coverage
n = nextprime(2**16)*nextprime(2**17)*nextprime(1901)
assert 'with primes' in capture(lambda: factorint(n, verbose=1))
capture(lambda: factorint(nextprime(2**16)*1012, verbose=1))
n = nextprime(2**17)
capture(lambda: factorint(n**3, verbose=1)) # perfect power termination
capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg
# exceed 1st
n = nextprime(2**17)
n *= nextprime(n)
assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1))
n *= nextprime(n)
assert len(factorint(n)) == 3
assert len(factorint(n, limit=p1)) == 3
n *= nextprime(2*n)
# exceed 2nd
assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1))
assert capture(
lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2
# non-prime pm1 result
n = nextprime(8069)
n *= nextprime(2*n)*nextprime(2*n, 2)
capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result
# factor fermat composite
p1 = nextprime(2**17)
p2 = nextprime(2*p1)
assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6}
# Test for non integer input
raises(ValueError, lambda: factorint(4.5))
# test dict/Dict input
sans = '2**10*3**3'
n = {4: 2, 12: 3}
assert str(factorint(n)) == sans
assert str(factorint(Dict(n))) == sans
def test_divisors_and_divisor_count():
assert divisors(-1) == [1]
assert divisors(0) == []
assert divisors(1) == [1]
assert divisors(2) == [1, 2]
assert divisors(3) == [1, 3]
assert divisors(17) == [1, 17]
assert divisors(10) == [1, 2, 5, 10]
assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100]
assert divisors(101) == [1, 101]
assert divisor_count(0) == 0
assert divisor_count(-1) == 1
assert divisor_count(1) == 1
assert divisor_count(6) == 4
assert divisor_count(12) == 6
assert divisor_count(180, 3) == divisor_count(180//3)
assert divisor_count(2*3*5, 7) == 0
def test_proper_divisors_and_proper_divisor_count():
assert proper_divisors(-1) == []
assert proper_divisors(0) == []
assert proper_divisors(1) == []
assert proper_divisors(2) == [1]
assert proper_divisors(3) == [1]
assert proper_divisors(17) == [1]
assert proper_divisors(10) == [1, 2, 5]
assert proper_divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50]
assert proper_divisors(1000000007) == [1]
assert proper_divisor_count(0) == 0
assert proper_divisor_count(-1) == 0
assert proper_divisor_count(1) == 0
assert proper_divisor_count(36) == 8
assert proper_divisor_count(2*3*5) == 7
def test_udivisors_and_udivisor_count():
assert udivisors(-1) == [1]
assert udivisors(0) == []
assert udivisors(1) == [1]
assert udivisors(2) == [1, 2]
assert udivisors(3) == [1, 3]
assert udivisors(17) == [1, 17]
assert udivisors(10) == [1, 2, 5, 10]
assert udivisors(100) == [1, 4, 25, 100]
assert udivisors(101) == [1, 101]
assert udivisors(1000) == [1, 8, 125, 1000]
assert udivisor_count(0) == 0
assert udivisor_count(-1) == 1
assert udivisor_count(1) == 1
assert udivisor_count(6) == 4
assert udivisor_count(12) == 4
assert udivisor_count(180) == 8
assert udivisor_count(2*3*5*7) == 16
def test_issue_6981():
S = set(divisors(4)).union(set(divisors(Integer(2))))
assert S == {1,2,4}
def test_totient():
assert [totient(k) for k in range(1, 12)] == \
[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
assert totient(5005) == 2880
assert totient(5006) == 2502
assert totient(5009) == 5008
assert totient(2**100) == 2**99
raises(ValueError, lambda: totient(30.1))
raises(ValueError, lambda: totient(20.001))
m = Symbol("m", integer=True)
assert totient(m)
assert totient(m).subs(m, 3**10) == 3**10 - 3**9
assert summation(totient(m), (m, 1, 11)) == 42
n = Symbol("n", integer=True, positive=True)
assert totient(n).is_integer
x=Symbol("x", integer=False)
raises(ValueError, lambda: totient(x))
y=Symbol("y", positive=False)
raises(ValueError, lambda: totient(y))
z=Symbol("z", positive=True, integer=True)
raises(ValueError, lambda: totient(2**(-z)))
def test_reduced_totient():
assert [reduced_totient(k) for k in range(1, 16)] == \
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4]
assert reduced_totient(5005) == 60
assert reduced_totient(5006) == 2502
assert reduced_totient(5009) == 5008
assert reduced_totient(2**100) == 2**98
m = Symbol("m", integer=True)
assert reduced_totient(m)
assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9
assert summation(reduced_totient(m), (m, 1, 16)) == 68
n = Symbol("n", integer=True, positive=True)
assert reduced_totient(n).is_integer
def test_divisor_sigma():
assert [divisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12]
assert [divisor_sigma(k, 2) for k in range(1, 12)] == \
[1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122]
assert divisor_sigma(23450) == 50592
assert divisor_sigma(23450, 0) == 24
assert divisor_sigma(23450, 1) == 50592
assert divisor_sigma(23450, 2) == 730747500
assert divisor_sigma(23450, 3) == 14666785333344
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert divisor_sigma(m)
assert divisor_sigma(m, k)
assert divisor_sigma(m).subs(m, 3**10) == 88573
assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597
assert summation(divisor_sigma(m), (m, 1, 11)) == 99
def test_udivisor_sigma():
assert [udivisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12]
assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \
[1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332]
assert udivisor_sigma(23450) == 42432
assert udivisor_sigma(23450, 0) == 16
assert udivisor_sigma(23450, 1) == 42432
assert udivisor_sigma(23450, 2) == 702685000
assert udivisor_sigma(23450, 4) == 321426961814978248
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert udivisor_sigma(m)
assert udivisor_sigma(m, k)
assert udivisor_sigma(m).subs(m, 4**9) == 262145
assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737
assert summation(udivisor_sigma(m), (m, 2, 15)) == 169
def test_issue_4356():
assert factorint(1030903) == {53: 2, 367: 1}
def test_divisors():
assert divisors(28) == [1, 2, 4, 7, 14, 28]
assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105]
assert divisors(0) == []
def test_divisor_count():
assert divisor_count(0) == 0
assert divisor_count(6) == 4
def test_proper_divisors():
assert proper_divisors(-1) == []
assert proper_divisors(28) == [1, 2, 4, 7, 14]
assert [x for x in proper_divisors(3*5*7, True)] == [1, 3, 5, 15, 7, 21, 35]
def test_proper_divisor_count():
assert proper_divisor_count(6) == 3
assert proper_divisor_count(108) == 11
def test_antidivisors():
assert antidivisors(-1) == []
assert antidivisors(-3) == [2]
assert antidivisors(14) == [3, 4, 9]
assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158]
assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230]
assert antidivisors(393216) == [262144]
assert sorted(x for x in antidivisors(3*5*7, 1)) == \
[2, 6, 10, 11, 14, 19, 30, 42, 70]
assert antidivisors(1) == []
def test_antidivisor_count():
assert antidivisor_count(0) == 0
assert antidivisor_count(-1) == 0
assert antidivisor_count(-4) == 1
assert antidivisor_count(20) == 3
assert antidivisor_count(25) == 5
assert antidivisor_count(38) == 7
assert antidivisor_count(180) == 6
assert antidivisor_count(2*3*5) == 3
def test_smoothness_and_smoothness_p():
assert smoothness(1) == (1, 1)
assert smoothness(2**4*3**2) == (3, 16)
assert smoothness_p(10431, m=1) == \
(1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
assert smoothness_p(10431) == \
(-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
assert smoothness_p(10431, power=1) == \
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
assert smoothness_p(21477639576571, visual=1) == \
'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \
'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931'
def test_visual_factorint():
assert factorint(1, visual=1) == 1
forty2 = factorint(42, visual=True)
assert type(forty2) == Mul
assert str(forty2) == '2**1*3**1*7**1'
assert factorint(1, visual=True) is S.One
no = dict(evaluate=False)
assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no),
Pow(3, 2, **no),
Pow(7, 2, **no), **no)
assert -1 in factorint(-42, visual=True).args
def test_factorrat():
assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1'
assert str(factorrat(Rational(1, 1), visual=True)) == '1'
assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)'
assert str(factorrat(Rational(25, 14), visual=True)) == '5**2/(2*7)'
assert str(factorrat(S(-25)/14/9, visual=True)) == '-5**2/(2*3**2*7)'
assert factorrat(S(12)/1, multiple=True) == [2, 2, 3]
assert factorrat(Rational(1, 1), multiple=True) == []
assert factorrat(S(25)/14, multiple=True) == [Rational(1, 7), S.Half, 5, 5]
assert factorrat(Rational(25, 14), multiple=True) == [Rational(1, 7), S.Half, 5, 5]
assert factorrat(Rational(12, 1), multiple=True) == [2, 2, 3]
assert factorrat(S(-25)/14/9, multiple=True) == \
[-1, Rational(1, 7), Rational(1, 3), Rational(1, 3), S.Half, 5, 5]
def test_visual_io():
sm = smoothness_p
fi = factorint
# with smoothness_p
n = 124
d = fi(n)
m = fi(d, visual=True)
t = sm(n)
s = sm(t)
for th in [d, s, t, n, m]:
assert sm(th, visual=True) == s
assert sm(th, visual=1) == s
for th in [d, s, t, n, m]:
assert sm(th, visual=False) == t
assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t]
assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t]
# with factorint
for th in [d, m, n]:
assert fi(th, visual=True) == m
assert fi(th, visual=1) == m
for th in [d, m, n]:
assert fi(th, visual=False) == d
assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d]
assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d]
# test reevaluation
no = dict(evaluate=False)
assert sm({4: 2}, visual=False) == sm(16)
assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == sm(2**10)
assert fi({4: 2}, visual=False) == fi(16)
assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == fi(2**10)
def test_core():
assert core(35**13, 10) == 42875
assert core(210**2) == 1
assert core(7776, 3) == 36
assert core(10**27, 22) == 10**5
assert core(537824) == 14
assert core(1, 6) == 1
def test_digits():
assert all([digits(n, 2)[1:] == [int(d) for d in format(n, 'b')]
for n in range(20)])
assert all([digits(n, 8)[1:] == [int(d) for d in format(n, 'o')]
for n in range(20)])
assert all([digits(n, 16)[1:] == [int(d, 16) for d in format(n, 'x')]
for n in range(20)])
assert digits(2345, 34) == [34, 2, 0, 33]
assert digits(384753, 71) == [71, 1, 5, 23, 4]
assert digits(93409) == [10, 9, 3, 4, 0, 9]
assert digits(-92838, 11) == [-11, 6, 3, 8, 2, 9]
def test_primenu():
assert primenu(2) == 1
assert primenu(2 * 3) == 2
assert primenu(2 * 3 * 5) == 3
assert primenu(3 * 25) == primenu(3) + primenu(25)
assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primenu(fac(50)) == 15
assert primenu(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primenu(n)
assert primenu(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primenu(n), (n, 2, 30)) == 43
def test_primeomega():
assert primeomega(2) == 1
assert primeomega(2 * 2) == 2
assert primeomega(2 * 2 * 3) == 3
assert primeomega(3 * 25) == primeomega(3) + primeomega(25)
assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primeomega(fac(50)) == 108
assert primeomega(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primeomega(n)
assert primeomega(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primeomega(n), (n, 2, 30)) == 59
def test_mersenne_prime_exponent():
assert mersenne_prime_exponent(1) == 2
assert mersenne_prime_exponent(4) == 7
assert mersenne_prime_exponent(10) == 89
assert mersenne_prime_exponent(25) == 21701
raises(ValueError, lambda: mersenne_prime_exponent(52))
raises(ValueError, lambda: mersenne_prime_exponent(0))
def test_is_perfect():
assert is_perfect(6) is True
assert is_perfect(15) is False
assert is_perfect(28) is True
assert is_perfect(400) is False
assert is_perfect(496) is True
assert is_perfect(8128) is True
assert is_perfect(10000) is False
def test_is_mersenne_prime():
assert is_mersenne_prime(10) is False
assert is_mersenne_prime(127) is True
assert is_mersenne_prime(511) is False
assert is_mersenne_prime(131071) is True
assert is_mersenne_prime(2147483647) is True
def test_is_abundant():
assert is_abundant(10) is False
assert is_abundant(12) is True
assert is_abundant(18) is True
assert is_abundant(21) is False
assert is_abundant(945) is True
def test_is_deficient():
assert is_deficient(10) is True
assert is_deficient(22) is True
assert is_deficient(56) is False
assert is_deficient(20) is False
assert is_deficient(36) is False
def test_is_amicable():
assert is_amicable(173, 129) is False
assert is_amicable(220, 284) is True
assert is_amicable(8756, 8756) is False
|
89e260d655a45869549ed67a12e45637216aea92f0486d5812b4a15b35d69df0 | from collections import defaultdict
from sympy import S, Symbol, Tuple
from sympy.core.compatibility import range
from sympy.ntheory import n_order, is_primitive_root, is_quad_residue, \
legendre_symbol, jacobi_symbol, totient, primerange, sqrt_mod, \
primitive_root, quadratic_residues, is_nthpow_residue, nthroot_mod, \
sqrt_mod_iter, mobius, discrete_log
from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter, \
_discrete_log_trial_mul, _discrete_log_shanks_steps, \
_discrete_log_pollard_rho, _discrete_log_pohlig_hellman
from sympy.polys.domains import ZZ
from sympy.utilities.pytest import raises
def test_residue():
assert n_order(2, 13) == 12
assert [n_order(a, 7) for a in range(1, 7)] == \
[1, 3, 6, 3, 6, 2]
assert n_order(5, 17) == 16
assert n_order(17, 11) == n_order(6, 11)
assert n_order(101, 119) == 6
assert n_order(11, (10**50 + 151)**2) == 10000000000000000000000000000000000000000000000030100000000000000000000000000000000000000000000022650
raises(ValueError, lambda: n_order(6, 9))
assert is_primitive_root(2, 7) is False
assert is_primitive_root(3, 8) is False
assert is_primitive_root(11, 14) is False
assert is_primitive_root(12, 17) == is_primitive_root(29, 17)
raises(ValueError, lambda: is_primitive_root(3, 6))
assert [primitive_root(i) for i in range(2, 31)] == [1, 2, 3, 2, 5, 3, \
None, 2, 3, 2, None, 2, 3, None, None, 3, 5, 2, None, None, 7, 5, \
None, 2, 7, 2, None, 2, None]
for p in primerange(3, 100):
it = _primitive_root_prime_iter(p)
assert len(list(it)) == totient(totient(p))
assert primitive_root(97) == 5
assert primitive_root(97**2) == 5
assert primitive_root(40487) == 5
# note that primitive_root(40487) + 40487 = 40492 is a primitive root
# of 40487**2, but it is not the smallest
assert primitive_root(40487**2) == 10
assert primitive_root(82) == 7
p = 10**50 + 151
assert primitive_root(p) == 11
assert primitive_root(2*p) == 11
assert primitive_root(p**2) == 11
raises(ValueError, lambda: primitive_root(-3))
assert is_quad_residue(3, 7) is False
assert is_quad_residue(10, 13) is True
assert is_quad_residue(12364, 139) == is_quad_residue(12364 % 139, 139)
assert is_quad_residue(207, 251) is True
assert is_quad_residue(0, 1) is True
assert is_quad_residue(1, 1) is True
assert is_quad_residue(0, 2) == is_quad_residue(1, 2) is True
assert is_quad_residue(1, 4) is True
assert is_quad_residue(2, 27) is False
assert is_quad_residue(13122380800, 13604889600) is True
assert [j for j in range(14) if is_quad_residue(j, 14)] == \
[0, 1, 2, 4, 7, 8, 9, 11]
raises(ValueError, lambda: is_quad_residue(1.1, 2))
raises(ValueError, lambda: is_quad_residue(2, 0))
assert quadratic_residues(S.One) == [0]
assert quadratic_residues(1) == [0]
assert quadratic_residues(12) == [0, 1, 4, 9]
assert quadratic_residues(12) == [0, 1, 4, 9]
assert quadratic_residues(13) == [0, 1, 3, 4, 9, 10, 12]
assert [len(quadratic_residues(i)) for i in range(1, 20)] == \
[1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, 4, 9, 8, 10]
assert list(sqrt_mod_iter(6, 2)) == [0]
assert sqrt_mod(3, 13) == 4
assert sqrt_mod(3, -13) == 4
assert sqrt_mod(6, 23) == 11
assert sqrt_mod(345, 690) == 345
for p in range(3, 100):
d = defaultdict(list)
for i in range(p):
d[pow(i, 2, p)].append(i)
for i in range(1, p):
it = sqrt_mod_iter(i, p)
v = sqrt_mod(i, p, True)
if v:
v = sorted(v)
assert d[i] == v
else:
assert not d[i]
assert sqrt_mod(9, 27, True) == [3, 6, 12, 15, 21, 24]
assert sqrt_mod(9, 81, True) == [3, 24, 30, 51, 57, 78]
assert sqrt_mod(9, 3**5, True) == [3, 78, 84, 159, 165, 240]
assert sqrt_mod(81, 3**4, True) == [0, 9, 18, 27, 36, 45, 54, 63, 72]
assert sqrt_mod(81, 3**5, True) == [9, 18, 36, 45, 63, 72, 90, 99, 117,\
126, 144, 153, 171, 180, 198, 207, 225, 234]
assert sqrt_mod(81, 3**6, True) == [9, 72, 90, 153, 171, 234, 252, 315,\
333, 396, 414, 477, 495, 558, 576, 639, 657, 720]
assert sqrt_mod(81, 3**7, True) == [9, 234, 252, 477, 495, 720, 738, 963,\
981, 1206, 1224, 1449, 1467, 1692, 1710, 1935, 1953, 2178]
for a, p in [(26214400, 32768000000), (26214400, 16384000000),
(262144, 1048576), (87169610025, 163443018796875),
(22315420166400, 167365651248000000)]:
assert pow(sqrt_mod(a, p), 2, p) == a
n = 70
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+2)
it = sqrt_mod_iter(a, p)
for i in range(10):
assert pow(next(it), 2, p) == a
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+3)
it = sqrt_mod_iter(a, p)
for i in range(2):
assert pow(next(it), 2, p) == a
n = 100
a, p = 5**2*3**n*2**n, 5**6*3**(n+1)*2**(n+1)
it = sqrt_mod_iter(a, p)
for i in range(2):
assert pow(next(it), 2, p) == a
assert type(next(sqrt_mod_iter(9, 27))) is int
assert type(next(sqrt_mod_iter(9, 27, ZZ))) is type(ZZ(1))
assert type(next(sqrt_mod_iter(1, 7, ZZ))) is type(ZZ(1))
assert is_nthpow_residue(2, 1, 5)
#issue 10816
assert is_nthpow_residue(1, 0, 1) is False
assert is_nthpow_residue(1, 0, 2) is True
assert is_nthpow_residue(3, 0, 2) is False
assert is_nthpow_residue(0, 1, 8) is True
assert is_nthpow_residue(2, 3, 2) is True
assert is_nthpow_residue(2, 3, 9) is False
assert is_nthpow_residue(3, 5, 30) is True
assert is_nthpow_residue(21, 11, 20) is True
assert is_nthpow_residue(7, 10, 20) is False
assert is_nthpow_residue(5, 10, 20) is True
assert is_nthpow_residue(3, 10, 48) is False
assert is_nthpow_residue(1, 10, 40) is True
assert is_nthpow_residue(3, 10, 24) is False
assert is_nthpow_residue(1, 10, 24) is True
assert is_nthpow_residue(3, 10, 24) is False
assert is_nthpow_residue(2, 10, 48) is False
assert is_nthpow_residue(81, 3, 972) is False
assert is_nthpow_residue(243, 5, 5103) is True
assert is_nthpow_residue(243, 3, 1240029) is False
x = set([pow(i, 56, 1024) for i in range(1024)])
assert set([a for a in range(1024) if is_nthpow_residue(a, 56, 1024)]) == x
x = set([ pow(i, 256, 2048) for i in range(2048)])
assert set([a for a in range(2048) if is_nthpow_residue(a, 256, 2048)]) == x
x = set([ pow(i, 11, 324000) for i in range(1000)])
assert [ is_nthpow_residue(a, 11, 324000) for a in x]
x = set([ pow(i, 17, 22217575536) for i in range(1000)])
assert [ is_nthpow_residue(a, 17, 22217575536) for a in x]
assert is_nthpow_residue(676, 3, 5364)
assert is_nthpow_residue(9, 12, 36)
assert is_nthpow_residue(32, 10, 41)
assert is_nthpow_residue(4, 2, 64)
assert is_nthpow_residue(31, 4, 41)
assert not is_nthpow_residue(2, 2, 5)
assert is_nthpow_residue(8547, 12, 10007)
assert nthroot_mod(29, 31, 74) == 31
assert nthroot_mod(*Tuple(29, 31, 74)) == 31
assert nthroot_mod(1801, 11, 2663) == 44
for a, q, p in [(51922, 2, 203017), (43, 3, 109), (1801, 11, 2663),
(26118163, 1303, 33333347), (1499, 7, 2663), (595, 6, 2663),
(1714, 12, 2663), (28477, 9, 33343)]:
r = nthroot_mod(a, q, p)
assert pow(r, q, p) == a
assert nthroot_mod(11, 3, 109) is None
raises(NotImplementedError, lambda: nthroot_mod(16, 5, 36))
raises(NotImplementedError, lambda: nthroot_mod(9, 16, 36))
for p in primerange(5, 100):
qv = range(3, p, 4)
for q in qv:
d = defaultdict(list)
for i in range(p):
d[pow(i, q, p)].append(i)
for a in range(1, p - 1):
res = nthroot_mod(a, q, p, True)
if d[a]:
assert d[a] == res
else:
assert res is None
assert legendre_symbol(5, 11) == 1
assert legendre_symbol(25, 41) == 1
assert legendre_symbol(67, 101) == -1
assert legendre_symbol(0, 13) == 0
assert legendre_symbol(9, 3) == 0
raises(ValueError, lambda: legendre_symbol(2, 4))
assert jacobi_symbol(25, 41) == 1
assert jacobi_symbol(-23, 83) == -1
assert jacobi_symbol(3, 9) == 0
assert jacobi_symbol(42, 97) == -1
assert jacobi_symbol(3, 5) == -1
assert jacobi_symbol(7, 9) == 1
assert jacobi_symbol(0, 3) == 0
assert jacobi_symbol(0, 1) == 1
assert jacobi_symbol(2, 1) == 1
assert jacobi_symbol(1, 3) == 1
raises(ValueError, lambda: jacobi_symbol(3, 8))
assert mobius(13*7) == 1
assert mobius(1) == 1
assert mobius(13*7*5) == -1
assert mobius(13**2) == 0
raises(ValueError, lambda: mobius(-3))
p = Symbol('p', integer=True, positive=True, prime=True)
x = Symbol('x', positive=True)
i = Symbol('i', integer=True)
assert mobius(p) == -1
raises(TypeError, lambda: mobius(x))
raises(ValueError, lambda: mobius(i))
assert _discrete_log_trial_mul(587, 2**7, 2) == 7
assert _discrete_log_trial_mul(941, 7**18, 7) == 18
assert _discrete_log_trial_mul(389, 3**81, 3) == 81
assert _discrete_log_trial_mul(191, 19**123, 19) == 123
assert _discrete_log_shanks_steps(442879, 7**2, 7) == 2
assert _discrete_log_shanks_steps(874323, 5**19, 5) == 19
assert _discrete_log_shanks_steps(6876342, 7**71, 7) == 71
assert _discrete_log_shanks_steps(2456747, 3**321, 3) == 321
assert _discrete_log_pollard_rho(6013199, 2**6, 2, rseed=0) == 6
assert _discrete_log_pollard_rho(6138719, 2**19, 2, rseed=0) == 19
assert _discrete_log_pollard_rho(36721943, 2**40, 2, rseed=0) == 40
assert _discrete_log_pollard_rho(24567899, 3**333, 3, rseed=0) == 333
raises(ValueError, lambda: _discrete_log_pollard_rho(11, 7, 31, rseed=0))
raises(ValueError, lambda: _discrete_log_pollard_rho(227, 3**7, 5, rseed=0))
assert _discrete_log_pohlig_hellman(98376431, 11**9, 11) == 9
assert _discrete_log_pohlig_hellman(78723213, 11**31, 11) == 31
assert _discrete_log_pohlig_hellman(32942478, 11**98, 11) == 98
assert _discrete_log_pohlig_hellman(14789363, 11**444, 11) == 444
assert discrete_log(587, 2**9, 2) == 9
assert discrete_log(2456747, 3**51, 3) == 51
assert discrete_log(32942478, 11**127, 11) == 127
assert discrete_log(432751500361, 7**324, 7) == 324
args = 5779, 3528, 6215
assert discrete_log(*args) == 687
assert discrete_log(*Tuple(*args)) == 687
|
61a6e0c80719b6d73ce0116bf7cab28164ed0ab99ce2fa7bea8dbe9035b1c57c | from sympy import Sieve, sieve, Symbol, S, limit, I, zoo, nan, Rational
from sympy.core.compatibility import range
from sympy.ntheory import isprime, totient, mobius, randprime, nextprime, prevprime, \
primerange, primepi, prime, primorial, composite, compositepi, reduced_totient
from sympy.ntheory.generate import cycle_length
from sympy.ntheory.primetest import mr
from sympy.utilities.pytest import raises
def test_prime():
assert prime(1) == 2
assert prime(2) == 3
assert prime(5) == 11
assert prime(11) == 31
assert prime(57) == 269
assert prime(296) == 1949
assert prime(559) == 4051
assert prime(3000) == 27449
assert prime(4096) == 38873
assert prime(9096) == 94321
assert prime(25023) == 287341
raises(ValueError, lambda: prime(0))
sieve.extend(3000)
assert prime(401) == 2749
def test_primepi():
assert primepi(-1) == 0
assert primepi(1) == 0
assert primepi(2) == 1
assert primepi(Rational(7, 2)) == 2
assert primepi(3.5) == 2
assert primepi(5) == 3
assert primepi(11) == 5
assert primepi(57) == 16
assert primepi(296) == 62
assert primepi(559) == 102
assert primepi(3000) == 430
assert primepi(4096) == 564
assert primepi(9096) == 1128
assert primepi(25023) == 2763
assert primepi(10**8) == 5761455
assert primepi(253425253) == 13856396
assert primepi(8769575643) == 401464322
sieve.extend(3000)
assert primepi(2000) == 303
n = Symbol('n')
assert primepi(n).subs(n, 2) == 1
r = Symbol('r', real=True)
assert primepi(r).subs(r, 2) == 1
assert primepi(S.Infinity) is S.Infinity
assert primepi(S.NegativeInfinity) == 0
assert limit(primepi(n), n, 100) == 25
raises(ValueError, lambda: primepi(I))
raises(ValueError, lambda: primepi(1 + I))
raises(ValueError, lambda: primepi(zoo))
raises(ValueError, lambda: primepi(nan))
def test_composite():
from sympy.ntheory.generate import sieve
sieve._reset()
assert composite(1) == 4
assert composite(2) == 6
assert composite(5) == 10
assert composite(11) == 20
assert composite(41) == 58
assert composite(57) == 80
assert composite(296) == 370
assert composite(559) == 684
assert composite(3000) == 3488
assert composite(4096) == 4736
assert composite(9096) == 10368
assert composite(25023) == 28088
sieve.extend(3000)
assert composite(1957) == 2300
assert composite(2568) == 2998
raises(ValueError, lambda: composite(0))
def test_compositepi():
assert compositepi(1) == 0
assert compositepi(2) == 0
assert compositepi(5) == 1
assert compositepi(11) == 5
assert compositepi(57) == 40
assert compositepi(296) == 233
assert compositepi(559) == 456
assert compositepi(3000) == 2569
assert compositepi(4096) == 3531
assert compositepi(9096) == 7967
assert compositepi(25023) == 22259
assert compositepi(10**8) == 94238544
assert compositepi(253425253) == 239568856
assert compositepi(8769575643) == 8368111320
sieve.extend(3000)
assert compositepi(2321) == 1976
def test_generate():
from sympy.ntheory.generate import sieve
sieve._reset()
assert nextprime(-4) == 2
assert nextprime(2) == 3
assert nextprime(5) == 7
assert nextprime(12) == 13
assert prevprime(3) == 2
assert prevprime(7) == 5
assert prevprime(13) == 11
assert prevprime(19) == 17
assert prevprime(20) == 19
sieve.extend_to_no(9)
assert sieve._list[-1] == 23
assert sieve._list[-1] < 31
assert 31 in sieve
assert nextprime(90) == 97
assert nextprime(10**40) == (10**40 + 121)
assert prevprime(97) == 89
assert prevprime(10**40) == (10**40 - 17)
assert list(sieve.primerange(10, 1)) == []
assert list(sieve.primerange(5, 9)) == [5, 7]
sieve._reset(prime=True)
assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]
assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
sieve._reset(totient=True)
assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
assert list(sieve.totientrange(0, 1)) == []
assert list(sieve.totientrange(1, 2)) == [1]
assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
sieve._reset(mobius=True)
assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
assert list(sieve.mobiusrange(0, 1)) == []
assert list(sieve.mobiusrange(1, 2)) == [1]
assert list(primerange(10, 1)) == []
assert list(primerange(2, 7)) == [2, 3, 5]
assert list(primerange(2, 10)) == [2, 3, 5, 7]
assert list(primerange(1050, 1100)) == [1051, 1061,
1063, 1069, 1087, 1091, 1093, 1097]
s = Sieve()
for i in range(30, 2350, 376):
for j in range(2, 5096, 1139):
A = list(s.primerange(i, i + j))
B = list(primerange(i, i + j))
assert A == B
s = Sieve()
assert s[10] == 29
assert nextprime(2, 2) == 5
raises(ValueError, lambda: totient(0))
raises(ValueError, lambda: reduced_totient(0))
raises(ValueError, lambda: primorial(0))
assert mr(1, [2]) is False
func = lambda i: (i**2 + 1) % 51
assert next(cycle_length(func, 4)) == (6, 2)
assert list(cycle_length(func, 4, values=True)) == \
[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
assert next(cycle_length(func, 4, nmax=5)) == (5, None)
assert list(cycle_length(func, 4, nmax=5, values=True)) == \
[17, 35, 2, 5, 26]
sieve.extend(3000)
assert nextprime(2968) == 2969
assert prevprime(2930) == 2927
raises(ValueError, lambda: prevprime(1))
def test_randprime():
assert randprime(10, 1) is None
assert randprime(2, 3) == 2
assert randprime(1, 3) == 2
assert randprime(3, 5) == 3
raises(ValueError, lambda: randprime(20, 22))
for a in [100, 300, 500, 250000]:
for b in [100, 300, 500, 250000]:
p = randprime(a, a + b)
assert a <= p < (a + b) and isprime(p)
def test_primorial():
assert primorial(1) == 2
assert primorial(1, nth=0) == 1
assert primorial(2) == 6
assert primorial(2, nth=0) == 2
assert primorial(4, nth=0) == 6
def test_search():
assert 2 in sieve
assert 2.1 not in sieve
assert 1 not in sieve
assert 2**1000 not in sieve
raises(ValueError, lambda: sieve.search(1))
def test_sieve_slice():
assert sieve[5] == 11
assert list(sieve[5:10]) == [sieve[x] for x in range(5, 10)]
assert list(sieve[5:10:2]) == [sieve[x] for x in range(5, 10, 2)]
assert list(sieve[1:5]) == [2, 3, 5, 7]
raises(IndexError, lambda: sieve[:5])
raises(IndexError, lambda: sieve[0])
raises(IndexError, lambda: sieve[0:5])
def test_sieve_iter():
values = []
for value in sieve:
if value > 7:
break
values.append(value)
assert values == list(sieve[1:5])
def test_sieve_repr():
assert "sieve" in repr(sieve)
assert "prime" in repr(sieve)
|
64c9c759f971546d73e4eb677c5f82afe6ce14638ee003f5a716da59e00aadba | from sympy.core.compatibility import range
from sympy import symbols, FiniteSet
from sympy.combinatorics.polyhedron import (Polyhedron,
tetrahedron, cube as square, octahedron, dodecahedron, icosahedron,
cube_faces)
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.utilities.pytest import raises
rmul = Permutation.rmul
def test_polyhedron():
raises(ValueError, lambda: Polyhedron(list('ab'),
pgroup=[Permutation([0])]))
pgroup = [Permutation([[0, 7, 2, 5], [6, 1, 4, 3]]),
Permutation([[0, 7, 1, 6], [5, 2, 4, 3]]),
Permutation([[3, 6, 0, 5], [4, 1, 7, 2]]),
Permutation([[7, 4, 5], [1, 3, 0], [2], [6]]),
Permutation([[1, 3, 2], [7, 6, 5], [4], [0]]),
Permutation([[4, 7, 6], [2, 0, 3], [1], [5]]),
Permutation([[1, 2, 0], [4, 5, 6], [3], [7]]),
Permutation([[4, 2], [0, 6], [3, 7], [1, 5]]),
Permutation([[3, 5], [7, 1], [2, 6], [0, 4]]),
Permutation([[2, 5], [1, 6], [0, 4], [3, 7]]),
Permutation([[4, 3], [7, 0], [5, 1], [6, 2]]),
Permutation([[4, 1], [0, 5], [6, 2], [7, 3]]),
Permutation([[7, 2], [3, 6], [0, 4], [1, 5]]),
Permutation([0, 1, 2, 3, 4, 5, 6, 7])]
corners = tuple(symbols('A:H'))
faces = cube_faces
cube = Polyhedron(corners, faces, pgroup)
assert cube.edges == FiniteSet(*(
(0, 1), (6, 7), (1, 2), (5, 6), (0, 3), (2, 3),
(4, 7), (4, 5), (3, 7), (1, 5), (0, 4), (2, 6)))
for i in range(3): # add 180 degree face rotations
cube.rotate(cube.pgroup[i]**2)
assert cube.corners == corners
for i in range(3, 7): # add 240 degree axial corner rotations
cube.rotate(cube.pgroup[i]**2)
assert cube.corners == corners
cube.rotate(1)
raises(ValueError, lambda: cube.rotate(Permutation([0, 1])))
assert cube.corners != corners
assert cube.array_form == [7, 6, 4, 5, 3, 2, 0, 1]
assert cube.cyclic_form == [[0, 7, 1, 6], [2, 4, 3, 5]]
cube.reset()
assert cube.corners == corners
def check(h, size, rpt, target):
assert len(h.faces) + len(h.vertices) - len(h.edges) == 2
assert h.size == size
got = set()
for p in h.pgroup:
# make sure it restores original
P = h.copy()
hit = P.corners
for i in range(rpt):
P.rotate(p)
if P.corners == hit:
break
else:
print('error in permutation', p.array_form)
for i in range(rpt):
P.rotate(p)
got.add(tuple(P.corners))
c = P.corners
f = [[c[i] for i in f] for f in P.faces]
assert h.faces == Polyhedron(c, f).faces
assert len(got) == target
assert PermutationGroup([Permutation(g) for g in got]).is_group
for h, size, rpt, target in zip(
(tetrahedron, square, octahedron, dodecahedron, icosahedron),
(4, 8, 6, 20, 12),
(3, 4, 4, 5, 5),
(12, 24, 24, 60, 60)):
check(h, size, rpt, target)
def test_pgroups():
from sympy.combinatorics.polyhedron import (tetrahedron, cube, octahedron,
dodecahedron, icosahedron, tetrahedron_faces, cube_faces,
octahedron_faces, dodecahedron_faces, icosahedron_faces)
from sympy.combinatorics.polyhedron import _pgroup_calcs
(tetrahedron2, cube2, octahedron2, dodecahedron2, icosahedron2,
tetrahedron_faces2, cube_faces2, octahedron_faces2,
dodecahedron_faces2, icosahedron_faces2) = _pgroup_calcs()
assert tetrahedron == tetrahedron2
assert cube == cube2
assert octahedron == octahedron2
assert dodecahedron == dodecahedron2
assert icosahedron == icosahedron2
assert sorted(map(sorted, tetrahedron_faces)) == sorted(map(sorted, tetrahedron_faces2))
assert sorted(cube_faces) == sorted(cube_faces2)
assert sorted(octahedron_faces) == sorted(octahedron_faces2)
assert sorted(dodecahedron_faces) == sorted(dodecahedron_faces2)
assert sorted(icosahedron_faces) == sorted(icosahedron_faces2)
|
1c58fb03123436e78240f1b3b70ee1dde4aa0400a30083ee930c496a068e99d1 | from sympy.core.compatibility import range
from sympy.combinatorics.perm_groups import (PermutationGroup,
_orbit_transversal)
from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup,\
DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup
from sympy.combinatorics.permutations import Permutation
from sympy.utilities.pytest import skip, XFAIL
from sympy.combinatorics.generators import rubik_cube_generators
from sympy.combinatorics.polyhedron import tetrahedron as Tetra, cube
from sympy.combinatorics.testutil import _verify_bsgs, _verify_centralizer,\
_verify_normal_closure
from sympy.utilities.pytest import slow
from sympy.combinatorics.homomorphisms import is_isomorphic
rmul = Permutation.rmul
def test_has():
a = Permutation([1, 0])
G = PermutationGroup([a])
assert G.is_abelian
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert not G.is_abelian
G = PermutationGroup([a])
assert G.has(a)
assert not G.has(b)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([0, 2, 1, 3, 4])
assert PermutationGroup(a, b).degree == \
PermutationGroup(a, b).degree == 6
def test_generate():
a = Permutation([1, 0])
g = list(PermutationGroup([a]).generate())
assert g == [Permutation([0, 1]), Permutation([1, 0])]
assert len(list(PermutationGroup(Permutation((0, 1))).generate())) == 1
g = PermutationGroup([a]).generate(method='dimino')
assert list(g) == [Permutation([0, 1]), Permutation([1, 0])]
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
g = G.generate()
v1 = [p.array_form for p in list(g)]
v1.sort()
assert v1 == [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0,
1], [2, 1, 0]]
v2 = list(G.generate(method='dimino', af=True))
assert v1 == sorted(v2)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b]).generate(af=True)
assert len(list(g)) == 360
def test_order():
a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9])
b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0])
g = PermutationGroup([a, b])
assert g.order() == 1814400
assert PermutationGroup().order() == 1
def test_equality():
p_1 = Permutation(0, 1, 3)
p_2 = Permutation(0, 2, 3)
p_3 = Permutation(0, 1, 2)
p_4 = Permutation(0, 1, 3)
g_1 = PermutationGroup(p_1, p_2)
g_2 = PermutationGroup(p_3, p_4)
g_3 = PermutationGroup(p_2, p_1)
assert g_1 == g_2
assert g_1.generators != g_2.generators
assert g_1 == g_3
def test_stabilizer():
S = SymmetricGroup(2)
H = S.stabilizer(0)
assert H.generators == [Permutation(1)]
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
G = PermutationGroup([a, b])
G0 = G.stabilizer(0)
assert G0.order() == 60
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 6
G2_1 = G2.stabilizer(1)
v = list(G2_1.generate(af=True))
assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]]
gens = (
(1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
(0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14,
15, 16, 7, 17, 18),
(0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19))
gens = [Permutation(p) for p in gens]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 181440
S = SymmetricGroup(3)
assert [G.order() for G in S.basic_stabilizers] == [6, 2]
def test_center():
# the center of the dihedral group D_n is of order 2 for even n
for i in (4, 6, 10):
D = DihedralGroup(i)
assert (D.center()).order() == 2
# the center of the dihedral group D_n is of order 1 for odd n>2
for i in (3, 5, 7):
D = DihedralGroup(i)
assert (D.center()).order() == 1
# the center of an abelian group is the group itself
for i in (2, 3, 5):
for j in (1, 5, 7):
for k in (1, 1, 11):
G = AbelianGroup(i, j, k)
assert G.center().is_subgroup(G)
# the center of a nonabelian simple group is trivial
for i in(1, 5, 9):
A = AlternatingGroup(i)
assert (A.center()).order() == 1
# brute-force verifications
D = DihedralGroup(5)
A = AlternatingGroup(3)
C = CyclicGroup(4)
G.is_subgroup(D*A*C)
assert _verify_centralizer(G, G)
def test_centralizer():
# the centralizer of the trivial group is the entire group
S = SymmetricGroup(2)
assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
A = AlternatingGroup(5)
assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
# a centralizer in the trivial group is the trivial group itself
triv = PermutationGroup([Permutation([0, 1, 2, 3])])
D = DihedralGroup(4)
assert triv.centralizer(D).is_subgroup(triv)
# brute-force verifications for centralizers of groups
for i in (4, 5, 6):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
D = DihedralGroup(i)
for gp in (S, A, C, D):
for gp2 in (S, A, C, D):
if not gp2.is_subgroup(gp):
assert _verify_centralizer(gp, gp2)
# verify the centralizer for all elements of several groups
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_centralizer(S, element)
A = AlternatingGroup(5)
elements = list(A.generate_dimino())
for element in elements:
assert _verify_centralizer(A, element)
D = DihedralGroup(7)
elements = list(D.generate_dimino())
for element in elements:
assert _verify_centralizer(D, element)
# verify centralizers of small groups within small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp.degree == gp2.degree:
assert _verify_centralizer(gp, gp2)
def test_coset_rank():
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
i = 0
for h in G.generate(af=True):
rk = G.coset_rank(h)
assert rk == i
h1 = G.coset_unrank(rk, af=True)
assert h == h1
i += 1
assert G.coset_unrank(48) == None
assert G.coset_unrank(G.coset_rank(gens[0])) == gens[0]
def test_coset_factor():
a = Permutation([0, 2, 1])
G = PermutationGroup([a])
c = Permutation([2, 1, 0])
assert not G.coset_factor(c)
assert G.coset_rank(c) is None
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b])
assert g.order() == 360
d = Permutation([1, 0, 2, 3, 4, 5])
assert not g.coset_factor(d.array_form)
assert not g.contains(d)
assert Permutation(2) in G
c = Permutation([1, 0, 2, 3, 5, 4])
v = g.coset_factor(c, True)
tr = g.basic_transversals
p = Permutation.rmul(*[tr[i][v[i]] for i in range(len(g.base))])
assert p == c
v = g.coset_factor(c)
p = Permutation.rmul(*v)
assert p == c
assert g.contains(c)
G = PermutationGroup([Permutation([2, 1, 0])])
p = Permutation([1, 0, 2])
assert G.coset_factor(p) == []
def test_orbits():
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
g = PermutationGroup([a, b])
assert g.orbit(0) == {0, 1, 2}
assert g.orbits() == [{0, 1, 2}]
assert g.is_transitive() and g.is_transitive(strict=False)
assert g.orbit_transversal(0) == \
[Permutation(
[0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])]
assert g.orbit_transversal(0, True) == \
[(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])),
(1, Permutation([1, 2, 0]))]
G = DihedralGroup(6)
transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True)
for i, t in transversal:
slp = slps[i]
w = G.identity
for s in slp:
w = G.generators[s]*w
assert w == t
a = Permutation(list(range(1, 100)) + [0])
G = PermutationGroup([a])
assert [min(o) for o in G.orbits()] == [0]
G = PermutationGroup(rubik_cube_generators())
assert [min(o) for o in G.orbits()] == [0, 1]
assert not G.is_transitive() and not G.is_transitive(strict=False)
G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)])
assert not G.is_transitive() and G.is_transitive(strict=False)
assert PermutationGroup(
Permutation(3)).is_transitive(strict=False) is False
def test_is_normal():
gens_s5 = [Permutation(p) for p in [[1, 2, 3, 4, 0], [2, 1, 4, 0, 3]]]
G1 = PermutationGroup(gens_s5)
assert G1.order() == 120
gens_a5 = [Permutation(p) for p in [[1, 0, 3, 2, 4], [2, 1, 4, 3, 0]]]
G2 = PermutationGroup(gens_a5)
assert G2.order() == 60
assert G2.is_normal(G1)
gens3 = [Permutation(p) for p in [[2, 1, 3, 0, 4], [1, 2, 0, 3, 4]]]
G3 = PermutationGroup(gens3)
assert not G3.is_normal(G1)
assert G3.order() == 12
G4 = G1.normal_closure(G3.generators)
assert G4.order() == 60
gens5 = [Permutation(p) for p in [[1, 2, 3, 0, 4], [1, 2, 0, 3, 4]]]
G5 = PermutationGroup(gens5)
assert G5.order() == 24
G6 = G1.normal_closure(G5.generators)
assert G6.order() == 120
assert G1.is_subgroup(G6)
assert not G1.is_subgroup(G4)
assert G2.is_subgroup(G4)
I5 = PermutationGroup(Permutation(4))
assert I5.is_normal(G5)
assert I5.is_normal(G6, strict=False)
p1 = Permutation([1, 0, 2, 3, 4])
p2 = Permutation([0, 1, 2, 4, 3])
p3 = Permutation([3, 4, 2, 1, 0])
id_ = Permutation([0, 1, 2, 3, 4])
H = PermutationGroup([p1, p3])
H_n1 = PermutationGroup([p1, p2])
H_n2_1 = PermutationGroup(p1)
H_n2_2 = PermutationGroup(p2)
H_id = PermutationGroup(id_)
assert H_n1.is_normal(H)
assert H_n2_1.is_normal(H_n1)
assert H_n2_2.is_normal(H_n1)
assert H_id.is_normal(H_n2_1)
assert H_id.is_normal(H_n1)
assert H_id.is_normal(H)
assert not H_n2_1.is_normal(H)
assert not H_n2_2.is_normal(H)
def test_eq():
a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [
1, 2, 0, 3, 4, 5]]
a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]]
g = Permutation([1, 2, 3, 4, 5, 0])
G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]]
assert G1.order() == G2.order() == G3.order() == 6
assert G1.is_subgroup(G2)
assert not G1.is_subgroup(G3)
G4 = PermutationGroup([Permutation([0, 1])])
assert not G1.is_subgroup(G4)
assert G4.is_subgroup(G1, 0)
assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g))
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0)
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
def test_derived_subgroup():
a = Permutation([1, 0, 2, 4, 3])
b = Permutation([0, 1, 3, 2, 4])
G = PermutationGroup([a, b])
C = G.derived_subgroup()
assert C.order() == 3
assert C.is_normal(G)
assert C.is_subgroup(G, 0)
assert not G.is_subgroup(C, 0)
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
C = G.derived_subgroup()
assert C.order() == 12
def test_is_solvable():
a = Permutation([1, 2, 0])
b = Permutation([1, 0, 2])
G = PermutationGroup([a, b])
assert G.is_solvable
G = PermutationGroup([a])
assert G.is_solvable
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert not G.is_solvable
P = SymmetricGroup(10)
S = P.sylow_subgroup(3)
assert S.is_solvable
def test_rubik1():
gens = rubik_cube_generators()
gens1 = [gens[-1]] + [p**2 for p in gens[1:]]
G1 = PermutationGroup(gens1)
assert G1.order() == 19508428800
gens2 = [p**2 for p in gens]
G2 = PermutationGroup(gens2)
assert G2.order() == 663552
assert G2.is_subgroup(G1, 0)
C1 = G1.derived_subgroup()
assert C1.order() == 4877107200
assert C1.is_subgroup(G1, 0)
assert not G2.is_subgroup(C1, 0)
G = RubikGroup(2)
assert G.order() == 3674160
@XFAIL
def test_rubik():
skip('takes too much time')
G = PermutationGroup(rubik_cube_generators())
assert G.order() == 43252003274489856000
G1 = PermutationGroup(G[:3])
assert G1.order() == 170659735142400
assert not G1.is_normal(G)
G2 = G.normal_closure(G1.generators)
assert G2.is_subgroup(G)
def test_direct_product():
C = CyclicGroup(4)
D = DihedralGroup(4)
G = C*C*C
assert G.order() == 64
assert G.degree == 12
assert len(G.orbits()) == 3
assert G.is_abelian is True
H = D*C
assert H.order() == 32
assert H.is_abelian is False
def test_orbit_rep():
G = DihedralGroup(6)
assert G.orbit_rep(1, 3) in [Permutation([2, 3, 4, 5, 0, 1]),
Permutation([4, 3, 2, 1, 0, 5])]
H = CyclicGroup(4)*G
assert H.orbit_rep(1, 5) is False
def test_schreier_vector():
G = CyclicGroup(50)
v = [0]*50
v[23] = -1
assert G.schreier_vector(23) == v
H = DihedralGroup(8)
assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0]
L = SymmetricGroup(4)
assert L.schreier_vector(1) == [1, -1, 0, 0]
def test_random_pr():
D = DihedralGroup(6)
r = 11
n = 3
_random_prec_n = {}
_random_prec_n[0] = {'s': 7, 't': 3, 'x': 2, 'e': -1}
_random_prec_n[1] = {'s': 5, 't': 5, 'x': 1, 'e': -1}
_random_prec_n[2] = {'s': 3, 't': 4, 'x': 2, 'e': 1}
D._random_pr_init(r, n, _random_prec_n=_random_prec_n)
assert D._random_gens[11] == [0, 1, 2, 3, 4, 5]
_random_prec = {'s': 2, 't': 9, 'x': 1, 'e': -1}
assert D.random_pr(_random_prec=_random_prec) == \
Permutation([0, 5, 4, 3, 2, 1])
def test_is_alt_sym():
G = DihedralGroup(10)
assert G.is_alt_sym() is False
assert G._eval_is_alt_sym_naive() is False
assert G._eval_is_alt_sym_naive(only_alt=True) is False
assert G._eval_is_alt_sym_naive(only_sym=True) is False
S = SymmetricGroup(10)
assert S._eval_is_alt_sym_naive() is True
assert S._eval_is_alt_sym_naive(only_alt=True) is False
assert S._eval_is_alt_sym_naive(only_sym=True) is True
N_eps = 10
_random_prec = {'N_eps': N_eps,
0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])}
assert S.is_alt_sym(_random_prec=_random_prec) is True
A = AlternatingGroup(10)
assert A._eval_is_alt_sym_naive() is True
assert A._eval_is_alt_sym_naive(only_alt=True) is True
assert A._eval_is_alt_sym_naive(only_sym=True) is False
_random_prec = {'N_eps': N_eps,
0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])}
assert A.is_alt_sym(_random_prec=_random_prec) is False
G = PermutationGroup(
Permutation(1, 3, size=8)(0, 2, 4, 6),
Permutation(5, 7, size=8)(0, 2, 4, 6))
assert G.is_alt_sym() is False
# Tests for monte-carlo c_n parameter setting, and which guarantees
# to give False.
G = DihedralGroup(10)
assert G._eval_is_alt_sym_monte_carlo() is False
G = DihedralGroup(20)
assert G._eval_is_alt_sym_monte_carlo() is False
# A dry-running test to check if it looks up for the updated cache.
G = DihedralGroup(6)
G.is_alt_sym()
assert G.is_alt_sym() == False
def test_minimal_block():
D = DihedralGroup(6)
block_system = D.minimal_block([0, 3])
for i in range(3):
assert block_system[i] == block_system[i + 3]
S = SymmetricGroup(6)
assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0]
assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0]
P1 = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
P2 = PermutationGroup(Permutation(0, 1, 2, 3, 4, 5), Permutation(1, 5)(2, 4))
assert P1.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
assert P2.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
def test_minimal_blocks():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
assert P.minimal_blocks() == [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
P = SymmetricGroup(5)
assert P.minimal_blocks() == [[0]*5]
P = PermutationGroup(Permutation(0, 3))
assert P.minimal_blocks() == False
def test_max_div():
S = SymmetricGroup(10)
assert S.max_div == 5
def test_is_primitive():
S = SymmetricGroup(5)
assert S.is_primitive() is True
C = CyclicGroup(7)
assert C.is_primitive() is True
a = Permutation(0, 1, 2, size=6)
b = Permutation(3, 4, 5, size=6)
G = PermutationGroup(a, b)
assert G.is_primitive() is False
def test_random_stab():
S = SymmetricGroup(5)
_random_el = Permutation([1, 3, 2, 0, 4])
_random_prec = {'rand': _random_el}
g = S.random_stab(2, _random_prec=_random_prec)
assert g == Permutation([1, 3, 2, 0, 4])
h = S.random_stab(1)
assert h(1) == 1
def test_transitivity_degree():
perm = Permutation([1, 2, 0])
C = PermutationGroup([perm])
assert C.transitivity_degree == 1
gen1 = Permutation([1, 2, 0, 3, 4])
gen2 = Permutation([1, 2, 3, 4, 0])
# alternating group of degree 5
Alt = PermutationGroup([gen1, gen2])
assert Alt.transitivity_degree == 3
def test_schreier_sims_random():
assert sorted(Tetra.pgroup.base) == [0, 1]
S = SymmetricGroup(3)
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]),
Permutation([0, 2, 1])]
assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens)
D = DihedralGroup(3)
_random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]),
Permutation([1, 0, 2])]}
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]),
Permutation([0, 2, 1])]
assert D.schreier_sims_random([], D.generators, 2,
_random_prec=_random_prec) == (base, strong_gens)
def test_baseswap():
S = SymmetricGroup(4)
S.schreier_sims()
base = S.base
strong_gens = S.strong_gens
assert base == [0, 1, 2]
deterministic = S.baseswap(base, strong_gens, 1, randomized=False)
randomized = S.baseswap(base, strong_gens, 1)
assert deterministic[0] == [0, 2, 1]
assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True
assert randomized[0] == [0, 2, 1]
assert _verify_bsgs(S, randomized[0], randomized[1]) is True
def test_schreier_sims_incremental():
identity = Permutation([0, 1, 2, 3, 4])
TrivialGroup = PermutationGroup([identity])
base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
S = SymmetricGroup(5)
base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(S, base, strong_gens) is True
D = DihedralGroup(2)
base, strong_gens = D.schreier_sims_incremental(base=[1])
assert _verify_bsgs(D, base, strong_gens) is True
A = AlternatingGroup(7)
gens = A.generators[:]
gen0 = gens[0]
gen1 = gens[1]
gen1 = rmul(gen1, ~gen0)
gen0 = rmul(gen0, gen1)
gen1 = rmul(gen0, gen1)
base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
assert _verify_bsgs(A, base, strong_gens) is True
C = CyclicGroup(11)
gen = C.generators[0]
base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
assert _verify_bsgs(C, base, strong_gens) is True
def _subgroup_search(i, j, k):
prop_true = lambda x: True
prop_fix_points = lambda x: [x(point) for point in points] == points
prop_comm_g = lambda x: rmul(x, g) == rmul(g, x)
prop_even = lambda x: x.is_even
for i in range(i, j, k):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
Sym = S.subgroup_search(prop_true)
assert Sym.is_subgroup(S)
Alt = S.subgroup_search(prop_even)
assert Alt.is_subgroup(A)
Sym = S.subgroup_search(prop_true, init_subgroup=C)
assert Sym.is_subgroup(S)
points = [7]
assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points))
points = [3, 4]
assert S.stabilizer(3).stabilizer(4).is_subgroup(
S.subgroup_search(prop_fix_points))
points = [3, 5]
fix35 = A.subgroup_search(prop_fix_points)
points = [5]
fix5 = A.subgroup_search(prop_fix_points)
assert A.subgroup_search(prop_fix_points, init_subgroup=fix35
).is_subgroup(fix5)
base, strong_gens = A.schreier_sims_incremental()
g = A.generators[0]
comm_g = \
A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens)
assert _verify_bsgs(comm_g, base, comm_g.generators) is True
assert [prop_comm_g(gen) is True for gen in comm_g.generators]
def test_subgroup_search():
_subgroup_search(10, 15, 2)
@XFAIL
def test_subgroup_search2():
skip('takes too much time')
_subgroup_search(16, 17, 1)
def test_normal_closure():
# the normal closure of the trivial group is trivial
S = SymmetricGroup(3)
identity = Permutation([0, 1, 2])
closure = S.normal_closure(identity)
assert closure.is_trivial
# the normal closure of the entire group is the entire group
A = AlternatingGroup(4)
assert A.normal_closure(A).is_subgroup(A)
# brute-force verifications for subgroups
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
C = CyclicGroup(i)
for gp in (A, D, C):
assert _verify_normal_closure(S, gp)
# brute-force verifications for all elements of a group
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_normal_closure(S, element)
# small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
assert _verify_normal_closure(gp, gp2)
def test_derived_series():
# the derived series of the trivial group consists only of the trivial group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.derived_series()[0].is_subgroup(triv)
# the derived series for a simple group consists only of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.derived_series()[0].is_subgroup(A)
# the derived series for S_4 is S_4 > A_4 > K_4 > triv
S = SymmetricGroup(4)
series = S.derived_series()
assert series[1].is_subgroup(AlternatingGroup(4))
assert series[2].is_subgroup(DihedralGroup(2))
assert series[3].is_trivial
def test_lower_central_series():
# the lower central series of the trivial group consists of the trivial
# group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.lower_central_series()[0].is_subgroup(triv)
# the lower central series of a simple group consists of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.lower_central_series()[0].is_subgroup(A)
# GAP-verified example
S = SymmetricGroup(6)
series = S.lower_central_series()
assert len(series) == 2
assert series[1].is_subgroup(AlternatingGroup(6))
def test_commutator():
# the commutator of the trivial group and the trivial group is trivial
S = SymmetricGroup(3)
triv = PermutationGroup([Permutation([0, 1, 2])])
assert S.commutator(triv, triv).is_subgroup(triv)
# the commutator of the trivial group and any other group is again trivial
A = AlternatingGroup(3)
assert S.commutator(triv, A).is_subgroup(triv)
# the commutator is commutative
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
assert S.commutator(A, D).is_subgroup(S.commutator(D, A))
# the commutator of an abelian group is trivial
S = SymmetricGroup(7)
A1 = AbelianGroup(2, 5)
A2 = AbelianGroup(3, 4)
triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])])
assert S.commutator(A1, A1).is_subgroup(triv)
assert S.commutator(A2, A2).is_subgroup(triv)
# examples calculated by hand
S = SymmetricGroup(3)
A = AlternatingGroup(3)
assert S.commutator(A, S).is_subgroup(A)
def test_is_nilpotent():
# every abelian group is nilpotent
for i in (1, 2, 3):
C = CyclicGroup(i)
Ab = AbelianGroup(i, i + 2)
assert C.is_nilpotent
assert Ab.is_nilpotent
Ab = AbelianGroup(5, 7, 10)
assert Ab.is_nilpotent
# A_5 is not solvable and thus not nilpotent
assert AlternatingGroup(5).is_nilpotent is False
def test_is_trivial():
for i in range(5):
triv = PermutationGroup([Permutation(list(range(i)))])
assert triv.is_trivial
def test_pointwise_stabilizer():
S = SymmetricGroup(2)
stab = S.pointwise_stabilizer([0])
assert stab.generators == [Permutation(1)]
S = SymmetricGroup(5)
points = []
stab = S
for point in (2, 0, 3, 4, 1):
stab = stab.stabilizer(point)
points.append(point)
assert S.pointwise_stabilizer(points).is_subgroup(stab)
def test_make_perm():
assert cube.pgroup.make_perm(5, seed=list(range(5))) == \
Permutation([4, 7, 6, 5, 0, 3, 2, 1])
assert cube.pgroup.make_perm(7, seed=list(range(7))) == \
Permutation([6, 7, 3, 2, 5, 4, 0, 1])
def test_elements():
from sympy.sets.sets import FiniteSet
p = Permutation(2, 3)
assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)}
assert FiniteSet(*PermutationGroup(p).elements) \
== FiniteSet(Permutation(2, 3), Permutation(3))
def test_is_group():
assert PermutationGroup(Permutation(1,2), Permutation(2,4)).is_group == True
assert SymmetricGroup(4).is_group == True
def test_PermutationGroup():
assert PermutationGroup() == PermutationGroup(Permutation())
assert (PermutationGroup() == 0) is False
def test_coset_transvesal():
G = AlternatingGroup(5)
H = PermutationGroup(Permutation(0,1,2),Permutation(1,2)(3,4))
assert G.coset_transversal(H) == \
[Permutation(4), Permutation(2, 3, 4), Permutation(2, 4, 3),
Permutation(1, 2, 4), Permutation(4)(1, 2, 3), Permutation(1, 3)(2, 4),
Permutation(0, 1, 2, 3, 4), Permutation(0, 1, 2, 4, 3),
Permutation(0, 1, 3, 2, 4), Permutation(0, 2, 4, 1, 3)]
def test_coset_table():
G = PermutationGroup(Permutation(0,1,2,3), Permutation(0,1,2),
Permutation(0,4,2,7), Permutation(5,6), Permutation(0,7));
H = PermutationGroup(Permutation(0,1,2,3), Permutation(0,7))
assert G.coset_table(H) == \
[[0, 0, 0, 0, 1, 2, 3, 3, 0, 0], [4, 5, 2, 5, 6, 0, 7, 7, 1, 1],
[5, 4, 5, 1, 0, 6, 8, 8, 6, 6], [3, 3, 3, 3, 7, 8, 0, 0, 3, 3],
[2, 1, 4, 4, 4, 4, 9, 9, 4, 4], [1, 2, 1, 2, 5, 5, 10, 10, 5, 5],
[6, 6, 6, 6, 2, 1, 11, 11, 2, 2], [9, 10, 8, 10, 11, 3, 1, 1, 7, 7],
[10, 9, 10, 7, 3, 11, 2, 2, 11, 11], [8, 7, 9, 9, 9, 9, 4, 4, 9, 9],
[7, 8, 7, 8, 10, 10, 5, 5, 10, 10], [11, 11, 11, 11, 8, 7, 6, 6, 8, 8]]
def test_subgroup():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert H.is_subgroup(G)
def test_generator_product():
G = SymmetricGroup(5)
p = Permutation(0, 2, 3)(1, 4)
gens = G.generator_product(p)
assert all(g in G.strong_gens for g in gens)
w = G.identity
for g in gens:
w = g*w
assert w == p
def test_sylow_subgroup():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
S = P.sylow_subgroup(2)
assert S.order() == 4
P = DihedralGroup(12)
S = P.sylow_subgroup(3)
assert S.order() == 3
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 2))
S = P.sylow_subgroup(3)
assert S.order() == 9
S = P.sylow_subgroup(2)
assert S.order() == 8
P = SymmetricGroup(10)
S = P.sylow_subgroup(2)
assert S.order() == 256
S = P.sylow_subgroup(3)
assert S.order() == 81
S = P.sylow_subgroup(5)
assert S.order() == 25
# the length of the lower central series
# of a p-Sylow subgroup of Sym(n) grows with
# the highest exponent exp of p such
# that n >= p**exp
exp = 1
length = 0
for i in range(2, 9):
P = SymmetricGroup(i)
S = P.sylow_subgroup(2)
ls = S.lower_central_series()
if i // 2**exp > 0:
# length increases with exponent
assert len(ls) > length
length = len(ls)
exp += 1
else:
assert len(ls) == length
G = SymmetricGroup(100)
S = G.sylow_subgroup(3)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 3 > 0
G = AlternatingGroup(100)
S = G.sylow_subgroup(2)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 2 > 0
@slow
def test_presentation():
def _test(P):
G = P.presentation()
return G.order() == P.order()
def _strong_test(P):
G = P.strong_presentation()
chk = len(G.generators) == len(P.strong_gens)
return chk and G.order() == P.order()
P = PermutationGroup(Permutation(0,1,5,2)(3,7,4,6), Permutation(0,3,5,4)(1,6,2,7))
assert _test(P)
P = AlternatingGroup(5)
assert _test(P)
P = SymmetricGroup(5)
assert _test(P)
P = PermutationGroup([Permutation(0,3,1,2), Permutation(3)(0,1), Permutation(0,1)(2,3)])
assert _strong_test(P)
P = DihedralGroup(6)
assert _strong_test(P)
a = Permutation(0,1)(2,3)
b = Permutation(0,2)(3,1)
c = Permutation(4,5)
P = PermutationGroup(c, a, b)
assert _strong_test(P)
def test_polycyclic():
a = Permutation([0, 1, 2])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert G.is_polycyclic == True
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert G.is_polycyclic == False
def test_elementary():
a = Permutation([1, 5, 2, 0, 3, 6, 4])
G = PermutationGroup([a])
assert G.is_elementary(7) == False
a = Permutation(0, 1)(2, 3)
b = Permutation(0, 2)(3, 1)
G = PermutationGroup([a, b])
assert G.is_elementary(2) == True
c = Permutation(4, 5, 6)
G = PermutationGroup([a, b, c])
assert G.is_elementary(2) == False
G = SymmetricGroup(4).sylow_subgroup(2)
assert G.is_elementary(2) == False
H = AlternatingGroup(4).sylow_subgroup(2)
assert H.is_elementary(2) == True
def test_perfect():
G = AlternatingGroup(3)
assert G.is_perfect == False
G = AlternatingGroup(5)
assert G.is_perfect == True
def test_index():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert G.index(H) == 4
def test_cyclic():
G = SymmetricGroup(2)
assert G.is_cyclic
G = AbelianGroup(3, 7)
assert G.is_cyclic
G = AbelianGroup(7, 7)
assert not G.is_cyclic
G = AlternatingGroup(3)
assert G.is_cyclic
G = AlternatingGroup(4)
assert not G.is_cyclic
# Order less than 6
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 1))
assert G.is_cyclic
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3)
)
assert G.is_cyclic
G = PermutationGroup(
Permutation(3),
Permutation(0, 1)(2, 3),
Permutation(0, 2)(1, 3),
Permutation(0, 3)(1, 2)
)
assert G.is_cyclic is False
# Order 15
G = PermutationGroup(
Permutation(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
Permutation(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13)
)
assert G.is_cyclic
# Distinct prime orders
assert PermutationGroup._distinct_primes_lemma([3, 5]) is True
assert PermutationGroup._distinct_primes_lemma([5, 7]) is True
assert PermutationGroup._distinct_primes_lemma([2, 3]) is None
assert PermutationGroup._distinct_primes_lemma([3, 5, 7]) is None
assert PermutationGroup._distinct_primes_lemma([5, 7, 13]) is True
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3))
assert G.is_cyclic
assert G._is_abelian
def test_abelian_invariants():
G = AbelianGroup(2, 3, 4)
assert G.abelian_invariants() == [2, 3, 4]
G=PermutationGroup([Permutation(1, 2, 3, 4), Permutation(1, 2), Permutation(5, 6)])
assert G.abelian_invariants() == [2, 2]
G = AlternatingGroup(7)
assert G.abelian_invariants() == []
G = AlternatingGroup(4)
assert G.abelian_invariants() == [3]
G = DihedralGroup(4)
assert G.abelian_invariants() == [2, 2]
G = PermutationGroup([Permutation(1, 2, 3, 4, 5, 6, 7)])
assert G.abelian_invariants() == [7]
G = DihedralGroup(12)
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3]
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3))
assert G.abelian_invariants() == [3]
G = PermutationGroup([Permutation(0, 1), Permutation(0, 2, 4, 6)(1, 3, 5, 7)])
assert G.abelian_invariants() == [2, 4]
G = SymmetricGroup(30)
S = G.sylow_subgroup(2)
assert S.abelian_invariants() == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3, 3, 3, 3]
S = G.sylow_subgroup(5)
assert S.abelian_invariants() == [5, 5, 5]
def test_composition_series():
a = Permutation(1, 2, 3)
b = Permutation(1, 2)
G = PermutationGroup([a, b])
comp_series = G.composition_series()
assert comp_series == G.derived_series()
# The first group in the composition series is always the group itself and
# the last group in the series is the trivial group.
S = SymmetricGroup(4)
assert S.composition_series()[0] == S
assert len(S.composition_series()) == 5
A = AlternatingGroup(4)
assert A.composition_series()[0] == A
assert len(A.composition_series()) == 4
# the composition series for C_8 is C_8 > C_4 > C_2 > triv
G = CyclicGroup(8)
series = G.composition_series()
assert is_isomorphic(series[1], CyclicGroup(4))
assert is_isomorphic(series[2], CyclicGroup(2))
assert series[3].is_trivial
def test_is_symmetric():
a = Permutation(0, 1, 2)
b = Permutation(0, 1, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 2, 1)
b = Permutation(1, 2, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 1, 2, 3)
b = Permutation(0, 3)(1, 2)
assert PermutationGroup(a, b).is_symmetric == False
|
3461c857da4e13e5ffca0c8ded045502607b78c54dab96c459edd403aa27558f | from sympy.combinatorics.fp_groups import FpGroup
from sympy.combinatorics.coset_table import (CosetTable,
coset_enumeration_r, coset_enumeration_c)
from sympy.combinatorics.coset_table import modified_coset_enumeration_r
from sympy.combinatorics.free_groups import free_group
from sympy.utilities.pytest import slow
"""
References
==========
[1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
[2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
"Implementation and Analysis of the Todd-Coxeter Algorithm"
"""
def test_scan_1():
# Example 5.1 from [1]
F, x, y = free_group("x, y")
f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
c = CosetTable(f, [x])
c.scan_and_fill(0, x)
assert c.table == [[0, 0, None, None]]
assert c.p == [0]
assert c.n == 1
assert c.omega == [0]
c.scan_and_fill(0, x**3)
assert c.table == [[0, 0, None, None]]
assert c.p == [0]
assert c.n == 1
assert c.omega == [0]
c.scan_and_fill(0, y**3)
assert c.table == [[0, 0, 1, 2], [None, None, 2, 0], [None, None, 0, 1]]
assert c.p == [0, 1, 2]
assert c.n == 3
assert c.omega == [0, 1, 2]
c.scan_and_fill(0, x**-1*y**-1*x*y)
assert c.table == [[0, 0, 1, 2], [None, None, 2, 0], [2, 2, 0, 1]]
assert c.p == [0, 1, 2]
assert c.n == 3
assert c.omega == [0, 1, 2]
c.scan_and_fill(1, x**3)
assert c.table == [[0, 0, 1, 2], [3, 4, 2, 0], [2, 2, 0, 1], \
[4, 1, None, None], [1, 3, None, None]]
assert c.p == [0, 1, 2, 3, 4]
assert c.n == 5
assert c.omega == [0, 1, 2, 3, 4]
c.scan_and_fill(1, y**3)
assert c.table == [[0, 0, 1, 2], [3, 4, 2, 0], [2, 2, 0, 1], \
[4, 1, None, None], [1, 3, None, None]]
assert c.p == [0, 1, 2, 3, 4]
assert c.n == 5
assert c.omega == [0, 1, 2, 3, 4]
c.scan_and_fill(1, x**-1*y**-1*x*y)
assert c.table == [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], \
[None, 1, None, None], [1, 3, None, None]]
assert c.p == [0, 1, 2, 1, 1]
assert c.n == 3
assert c.omega == [0, 1, 2]
# Example 5.2 from [1]
f = FpGroup(F, [x**2, y**3, (x*y)**3])
c = CosetTable(f, [x*y])
c.scan_and_fill(0, x*y)
assert c.table == [[1, None, None, 1], [None, 0, 0, None]]
assert c.p == [0, 1]
assert c.n == 2
assert c.omega == [0, 1]
c.scan_and_fill(0, x**2)
assert c.table == [[1, 1, None, 1], [0, 0, 0, None]]
assert c.p == [0, 1]
assert c.n == 2
assert c.omega == [0, 1]
c.scan_and_fill(0, y**3)
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
assert c.p == [0, 1, 2]
assert c.n == 3
assert c.omega == [0, 1, 2]
c.scan_and_fill(0, (x*y)**3)
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
assert c.p == [0, 1, 2]
assert c.n == 3
assert c.omega == [0, 1, 2]
c.scan_and_fill(1, x**2)
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
assert c.p == [0, 1, 2]
assert c.n == 3
assert c.omega == [0, 1, 2]
c.scan_and_fill(1, y**3)
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
assert c.p == [0, 1, 2]
assert c.n == 3
assert c.omega == [0, 1, 2]
c.scan_and_fill(1, (x*y)**3)
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [3, 4, 1, 0], [None, 2, 4, None], [2, None, None, 3]]
assert c.p == [0, 1, 2, 3, 4]
assert c.n == 5
assert c.omega == [0, 1, 2, 3, 4]
c.scan_and_fill(2, x**2)
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [3, 3, 1, 0], [2, 2, 3, 3], [2, None, None, 3]]
assert c.p == [0, 1, 2, 3, 3]
assert c.n == 4
assert c.omega == [0, 1, 2, 3]
@slow
def test_coset_enumeration():
# this test function contains the combined tests for the two strategies
# i.e. HLT and Felsch strategies.
# Example 5.1 from [1]
F, x, y = free_group("x, y")
f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
C_r = coset_enumeration_r(f, [x])
C_r.compress(); C_r.standardize()
C_c = coset_enumeration_c(f, [x])
C_c.compress(); C_c.standardize()
table1 = [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
assert C_r.table == table1
assert C_c.table == table1
# E1 from [2] Pg. 474
F, r, s, t = free_group("r, s, t")
E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
C_r = coset_enumeration_r(E1, [])
C_r.compress()
C_c = coset_enumeration_c(E1, [])
C_c.compress()
table2 = [[0, 0, 0, 0, 0, 0]]
assert C_r.table == table2
# test for issue #11449
assert C_c.table == table2
# Cox group from [2] Pg. 474
F, a, b = free_group("a, b")
Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
C_r = coset_enumeration_r(Cox, [a])
C_r.compress(); C_r.standardize()
C_c = coset_enumeration_c(Cox, [a])
C_c.compress(); C_c.standardize()
table3 = [[0, 0, 1, 2],
[2, 3, 4, 0],
[5, 1, 0, 6],
[1, 7, 8, 9],
[9, 10, 11, 1],
[12, 2, 9, 13],
[14, 9, 2, 11],
[3, 12, 15, 16],
[16, 17, 18, 3],
[6, 4, 3, 5],
[4, 19, 20, 21],
[21, 22, 6, 4],
[7, 5, 23, 24],
[25, 23, 5, 18],
[19, 6, 22, 26],
[24, 27, 28, 7],
[29, 8, 7, 30],
[8, 31, 32, 33],
[33, 34, 13, 8],
[10, 14, 35, 35],
[35, 36, 37, 10],
[30, 11, 10, 29],
[11, 38, 39, 14],
[13, 39, 38, 12],
[40, 15, 12, 41],
[42, 13, 34, 43],
[44, 35, 14, 45],
[15, 46, 47, 34],
[34, 48, 49, 15],
[50, 16, 21, 51],
[52, 21, 16, 49],
[17, 50, 53, 54],
[54, 55, 56, 17],
[41, 18, 17, 40],
[18, 28, 27, 25],
[26, 20, 19, 19],
[20, 57, 58, 59],
[59, 60, 51, 20],
[22, 52, 61, 23],
[23, 62, 63, 22],
[64, 24, 33, 65],
[48, 33, 24, 61],
[62, 25, 54, 66],
[67, 54, 25, 68],
[57, 26, 59, 69],
[70, 59, 26, 63],
[27, 64, 71, 72],
[72, 73, 68, 27],
[28, 41, 74, 75],
[75, 76, 30, 28],
[31, 29, 77, 78],
[79, 77, 29, 37],
[38, 30, 76, 80],
[78, 81, 82, 31],
[43, 32, 31, 42],
[32, 83, 84, 85],
[85, 86, 65, 32],
[36, 44, 87, 88],
[88, 89, 90, 36],
[45, 37, 36, 44],
[37, 82, 81, 79],
[80, 74, 41, 38],
[39, 42, 91, 92],
[92, 93, 45, 39],
[46, 40, 94, 95],
[96, 94, 40, 56],
[97, 91, 42, 82],
[83, 43, 98, 99],
[100, 98, 43, 47],
[101, 87, 44, 90],
[82, 45, 93, 97],
[95, 102, 103, 46],
[104, 47, 46, 105],
[47, 106, 107, 100],
[61, 108, 109, 48],
[105, 49, 48, 104],
[49, 110, 111, 52],
[51, 111, 110, 50],
[112, 53, 50, 113],
[114, 51, 60, 115],
[116, 61, 52, 117],
[53, 118, 119, 60],
[60, 70, 66, 53],
[55, 67, 120, 121],
[121, 122, 123, 55],
[113, 56, 55, 112],
[56, 103, 102, 96],
[69, 124, 125, 57],
[115, 58, 57, 114],
[58, 126, 127, 128],
[128, 128, 69, 58],
[66, 129, 130, 62],
[117, 63, 62, 116],
[63, 125, 124, 70],
[65, 109, 108, 64],
[131, 71, 64, 132],
[133, 65, 86, 134],
[135, 66, 70, 136],
[68, 130, 129, 67],
[137, 120, 67, 138],
[132, 68, 73, 131],
[139, 69, 128, 140],
[71, 141, 142, 86],
[86, 143, 144, 71],
[145, 72, 75, 146],
[147, 75, 72, 144],
[73, 145, 148, 120],
[120, 149, 150, 73],
[74, 151, 152, 94],
[94, 153, 146, 74],
[76, 147, 154, 77],
[77, 155, 156, 76],
[157, 78, 85, 158],
[143, 85, 78, 154],
[155, 79, 88, 159],
[160, 88, 79, 161],
[151, 80, 92, 162],
[163, 92, 80, 156],
[81, 157, 164, 165],
[165, 166, 161, 81],
[99, 107, 106, 83],
[134, 84, 83, 133],
[84, 167, 168, 169],
[169, 170, 158, 84],
[87, 171, 172, 93],
[93, 163, 159, 87],
[89, 160, 173, 174],
[174, 175, 176, 89],
[90, 90, 89, 101],
[91, 177, 178, 98],
[98, 179, 162, 91],
[180, 95, 100, 181],
[179, 100, 95, 152],
[153, 96, 121, 148],
[182, 121, 96, 183],
[177, 97, 165, 184],
[185, 165, 97, 172],
[186, 99, 169, 187],
[188, 169, 99, 178],
[171, 101, 174, 189],
[190, 174, 101, 176],
[102, 180, 191, 192],
[192, 193, 183, 102],
[103, 113, 194, 195],
[195, 196, 105, 103],
[106, 104, 197, 198],
[199, 197, 104, 109],
[110, 105, 196, 200],
[198, 201, 133, 106],
[107, 186, 202, 203],
[203, 204, 181, 107],
[108, 116, 205, 206],
[206, 207, 132, 108],
[109, 133, 201, 199],
[200, 194, 113, 110],
[111, 114, 208, 209],
[209, 210, 117, 111],
[118, 112, 211, 212],
[213, 211, 112, 123],
[214, 208, 114, 125],
[126, 115, 215, 216],
[217, 215, 115, 119],
[218, 205, 116, 130],
[125, 117, 210, 214],
[212, 219, 220, 118],
[136, 119, 118, 135],
[119, 221, 222, 217],
[122, 182, 223, 224],
[224, 225, 226, 122],
[138, 123, 122, 137],
[123, 220, 219, 213],
[124, 139, 227, 228],
[228, 229, 136, 124],
[216, 222, 221, 126],
[140, 127, 126, 139],
[127, 230, 231, 232],
[232, 233, 140, 127],
[129, 135, 234, 235],
[235, 236, 138, 129],
[130, 132, 207, 218],
[141, 131, 237, 238],
[239, 237, 131, 150],
[167, 134, 240, 241],
[242, 240, 134, 142],
[243, 234, 135, 220],
[221, 136, 229, 244],
[149, 137, 245, 246],
[247, 245, 137, 226],
[220, 138, 236, 243],
[244, 227, 139, 221],
[230, 140, 233, 248],
[238, 249, 250, 141],
[251, 142, 141, 252],
[142, 253, 254, 242],
[154, 255, 256, 143],
[252, 144, 143, 251],
[144, 257, 258, 147],
[146, 258, 257, 145],
[259, 148, 145, 260],
[261, 146, 153, 262],
[263, 154, 147, 264],
[148, 265, 266, 153],
[246, 267, 268, 149],
[260, 150, 149, 259],
[150, 250, 249, 239],
[162, 269, 270, 151],
[262, 152, 151, 261],
[152, 271, 272, 179],
[159, 273, 274, 155],
[264, 156, 155, 263],
[156, 270, 269, 163],
[158, 256, 255, 157],
[275, 164, 157, 276],
[277, 158, 170, 278],
[279, 159, 163, 280],
[161, 274, 273, 160],
[281, 173, 160, 282],
[276, 161, 166, 275],
[283, 162, 179, 284],
[164, 285, 286, 170],
[170, 188, 184, 164],
[166, 185, 189, 173],
[173, 287, 288, 166],
[241, 254, 253, 167],
[278, 168, 167, 277],
[168, 289, 290, 291],
[291, 292, 187, 168],
[189, 293, 294, 171],
[280, 172, 171, 279],
[172, 295, 296, 185],
[175, 190, 297, 297],
[297, 298, 299, 175],
[282, 176, 175, 281],
[176, 294, 293, 190],
[184, 296, 295, 177],
[284, 178, 177, 283],
[178, 300, 301, 188],
[181, 272, 271, 180],
[302, 191, 180, 303],
[304, 181, 204, 305],
[183, 266, 265, 182],
[306, 223, 182, 307],
[303, 183, 193, 302],
[308, 184, 188, 309],
[310, 189, 185, 311],
[187, 301, 300, 186],
[305, 202, 186, 304],
[312, 187, 292, 313],
[314, 297, 190, 315],
[191, 316, 317, 204],
[204, 318, 319, 191],
[320, 192, 195, 321],
[322, 195, 192, 319],
[193, 320, 323, 223],
[223, 324, 325, 193],
[194, 326, 327, 211],
[211, 328, 321, 194],
[196, 322, 329, 197],
[197, 330, 331, 196],
[332, 198, 203, 333],
[318, 203, 198, 329],
[330, 199, 206, 334],
[335, 206, 199, 336],
[326, 200, 209, 337],
[338, 209, 200, 331],
[201, 332, 339, 240],
[240, 340, 336, 201],
[202, 341, 342, 292],
[292, 343, 333, 202],
[205, 344, 345, 210],
[210, 338, 334, 205],
[207, 335, 346, 237],
[237, 347, 348, 207],
[208, 349, 350, 215],
[215, 351, 337, 208],
[352, 212, 217, 353],
[351, 217, 212, 327],
[328, 213, 224, 323],
[354, 224, 213, 355],
[349, 214, 228, 356],
[357, 228, 214, 345],
[358, 216, 232, 359],
[360, 232, 216, 350],
[344, 218, 235, 361],
[362, 235, 218, 348],
[219, 352, 363, 364],
[364, 365, 355, 219],
[222, 358, 366, 367],
[367, 368, 353, 222],
[225, 354, 369, 370],
[370, 371, 372, 225],
[307, 226, 225, 306],
[226, 268, 267, 247],
[227, 373, 374, 233],
[233, 360, 356, 227],
[229, 357, 361, 234],
[234, 375, 376, 229],
[248, 231, 230, 230],
[231, 377, 378, 379],
[379, 380, 359, 231],
[236, 362, 381, 245],
[245, 382, 383, 236],
[384, 238, 242, 385],
[340, 242, 238, 346],
[347, 239, 246, 381],
[386, 246, 239, 387],
[388, 241, 291, 389],
[343, 291, 241, 339],
[375, 243, 364, 390],
[391, 364, 243, 383],
[373, 244, 367, 392],
[393, 367, 244, 376],
[382, 247, 370, 394],
[395, 370, 247, 396],
[377, 248, 379, 397],
[398, 379, 248, 374],
[249, 384, 399, 400],
[400, 401, 387, 249],
[250, 260, 402, 403],
[403, 404, 252, 250],
[253, 251, 405, 406],
[407, 405, 251, 256],
[257, 252, 404, 408],
[406, 409, 277, 253],
[254, 388, 410, 411],
[411, 412, 385, 254],
[255, 263, 413, 414],
[414, 415, 276, 255],
[256, 277, 409, 407],
[408, 402, 260, 257],
[258, 261, 416, 417],
[417, 418, 264, 258],
[265, 259, 419, 420],
[421, 419, 259, 268],
[422, 416, 261, 270],
[271, 262, 423, 424],
[425, 423, 262, 266],
[426, 413, 263, 274],
[270, 264, 418, 422],
[420, 427, 307, 265],
[266, 303, 428, 425],
[267, 386, 429, 430],
[430, 431, 396, 267],
[268, 307, 427, 421],
[269, 283, 432, 433],
[433, 434, 280, 269],
[424, 428, 303, 271],
[272, 304, 435, 436],
[436, 437, 284, 272],
[273, 279, 438, 439],
[439, 440, 282, 273],
[274, 276, 415, 426],
[285, 275, 441, 442],
[443, 441, 275, 288],
[289, 278, 444, 445],
[446, 444, 278, 286],
[447, 438, 279, 294],
[295, 280, 434, 448],
[287, 281, 449, 450],
[451, 449, 281, 299],
[294, 282, 440, 447],
[448, 432, 283, 295],
[300, 284, 437, 452],
[442, 453, 454, 285],
[309, 286, 285, 308],
[286, 455, 456, 446],
[450, 457, 458, 287],
[311, 288, 287, 310],
[288, 454, 453, 443],
[445, 456, 455, 289],
[313, 290, 289, 312],
[290, 459, 460, 461],
[461, 462, 389, 290],
[293, 310, 463, 464],
[464, 465, 315, 293],
[296, 308, 466, 467],
[467, 468, 311, 296],
[298, 314, 469, 470],
[470, 471, 472, 298],
[315, 299, 298, 314],
[299, 458, 457, 451],
[452, 435, 304, 300],
[301, 312, 473, 474],
[474, 475, 309, 301],
[316, 302, 476, 477],
[478, 476, 302, 325],
[341, 305, 479, 480],
[481, 479, 305, 317],
[324, 306, 482, 483],
[484, 482, 306, 372],
[485, 466, 308, 454],
[455, 309, 475, 486],
[487, 463, 310, 458],
[454, 311, 468, 485],
[486, 473, 312, 455],
[459, 313, 488, 489],
[490, 488, 313, 342],
[491, 469, 314, 472],
[458, 315, 465, 487],
[477, 492, 485, 316],
[463, 317, 316, 468],
[317, 487, 493, 481],
[329, 447, 464, 318],
[468, 319, 318, 463],
[319, 467, 448, 322],
[321, 448, 467, 320],
[475, 323, 320, 466],
[432, 321, 328, 437],
[438, 329, 322, 434],
[323, 474, 452, 328],
[483, 494, 486, 324],
[466, 325, 324, 475],
[325, 485, 492, 478],
[337, 422, 433, 326],
[437, 327, 326, 432],
[327, 436, 424, 351],
[334, 426, 439, 330],
[434, 331, 330, 438],
[331, 433, 422, 338],
[333, 464, 447, 332],
[449, 339, 332, 440],
[465, 333, 343, 469],
[413, 334, 338, 418],
[336, 439, 426, 335],
[441, 346, 335, 415],
[440, 336, 340, 449],
[416, 337, 351, 423],
[339, 451, 470, 343],
[346, 443, 450, 340],
[480, 493, 487, 341],
[469, 342, 341, 465],
[342, 491, 495, 490],
[361, 407, 414, 344],
[418, 345, 344, 413],
[345, 417, 408, 357],
[381, 446, 442, 347],
[415, 348, 347, 441],
[348, 414, 407, 362],
[356, 408, 417, 349],
[423, 350, 349, 416],
[350, 425, 420, 360],
[353, 424, 436, 352],
[479, 363, 352, 435],
[428, 353, 368, 476],
[355, 452, 474, 354],
[488, 369, 354, 473],
[435, 355, 365, 479],
[402, 356, 360, 419],
[405, 361, 357, 404],
[359, 420, 425, 358],
[476, 366, 358, 428],
[427, 359, 380, 482],
[444, 381, 362, 409],
[363, 481, 477, 368],
[368, 393, 390, 363],
[365, 391, 394, 369],
[369, 490, 480, 365],
[366, 478, 483, 380],
[380, 398, 392, 366],
[371, 395, 496, 497],
[497, 498, 489, 371],
[473, 372, 371, 488],
[372, 486, 494, 484],
[392, 400, 403, 373],
[419, 374, 373, 402],
[374, 421, 430, 398],
[390, 411, 406, 375],
[404, 376, 375, 405],
[376, 403, 400, 393],
[397, 430, 421, 377],
[482, 378, 377, 427],
[378, 484, 497, 499],
[499, 499, 397, 378],
[394, 461, 445, 382],
[409, 383, 382, 444],
[383, 406, 411, 391],
[385, 450, 443, 384],
[492, 399, 384, 453],
[457, 385, 412, 493],
[387, 442, 446, 386],
[494, 429, 386, 456],
[453, 387, 401, 492],
[389, 470, 451, 388],
[493, 410, 388, 457],
[471, 389, 462, 495],
[412, 390, 393, 399],
[462, 394, 391, 410],
[401, 392, 398, 429],
[396, 445, 461, 395],
[498, 496, 395, 460],
[456, 396, 431, 494],
[431, 397, 499, 496],
[399, 477, 481, 412],
[429, 483, 478, 401],
[410, 480, 490, 462],
[496, 497, 484, 431],
[489, 495, 491, 459],
[495, 460, 459, 471],
[460, 489, 498, 498],
[472, 472, 471, 491]]
C_r.table == table3
C_c.table == table3
# Group denoted by B2,4 from [2] Pg. 474
F, a, b = free_group("a, b")
B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
(a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
C_r = coset_enumeration_r(B_2_4, [a])
C_c = coset_enumeration_c(B_2_4, [a])
index_r = 0
for i in range(len(C_r.p)):
if C_r.p[i] == i:
index_r += 1
assert index_r == 1024
index_c = 0
for i in range(len(C_c.p)):
if C_c.p[i] == i:
index_c += 1
assert index_c == 1024
# trivial Macdonald group G(2,2) from [2] Pg. 480
M = FpGroup(F, [b**-1*a**-1*b*a*b**-1*a*b*a**-2, a**-1*b**-1*a*b*a**-1*b*a*b**-2])
C_r = coset_enumeration_r(M, [a])
C_r.compress(); C_r.standardize()
C_c = coset_enumeration_c(M, [a])
C_c.compress(); C_c.standardize()
table4 = [[0, 0, 0, 0]]
assert C_r.table == table4
assert C_c.table == table4
def test_look_ahead():
# Section 3.2 [Test Example] Example (d) from [2]
F, a, b, c = free_group("a, b, c")
f = FpGroup(F, [a**11, b**5, c**4, (a*c)**3, b**2*c**-1*b**-1*c, a**4*b**-1*a**-1*b])
H = [c, b, c**2]
table0 = [[1, 2, 0, 0, 0, 0],
[3, 0, 4, 5, 6, 7],
[0, 8, 9, 10, 11, 12],
[5, 1, 10, 13, 14, 15],
[16, 5, 16, 1, 17, 18],
[4, 3, 1, 8, 19, 20],
[12, 21, 22, 23, 24, 1],
[25, 26, 27, 28, 1, 24],
[2, 10, 5, 16, 22, 28],
[10, 13, 13, 2, 29, 30]]
CosetTable.max_stack_size = 10
C_c = coset_enumeration_c(f, H)
C_c.compress(); C_c.standardize()
assert C_c.table[: 10] == table0
def test_modified_methods():
'''
Tests for modified coset table methods.
Example 5.7 from [1] Holt, D., Eick, B., O'Brien
"Handbook of Computational Group Theory".
'''
F, x, y = free_group("x, y")
f = FpGroup(F, [x**3, y**5, (x*y)**2])
H = [x*y, x**-1*y**-1*x*y*x]
C = CosetTable(f, H)
C.modified_define(0, x)
identity = C._grp.identity
a_0 = C._grp.generators[0]
a_1 = C._grp.generators[1]
assert C.P == [[identity, None, None, None],
[None, identity, None, None]]
assert C.table == [[1, None, None, None],
[None, 0, None, None]]
C.modified_define(1, x)
assert C.table == [[1, None, None, None],
[2, 0, None, None],
[None, 1, None, None]]
assert C.P == [[identity, None, None, None],
[identity, identity, None, None],
[None, identity, None, None]]
C.modified_scan(0, x**3, C._grp.identity, fill=False)
assert C.P == [[identity, identity, None, None],
[identity, identity, None, None],
[identity, identity, None, None]]
assert C.table == [[1, 2, None, None],
[2, 0, None, None],
[0, 1, None, None]]
C.modified_scan(0, x*y, C._grp.generators[0], fill=False)
assert C.P == [[identity, identity, None, a_0**-1],
[identity, identity, a_0, None],
[identity, identity, None, None]]
assert C.table == [[1, 2, None, 1],
[2, 0, 0, None],
[0, 1, None, None]]
C.modified_define(2, y**-1)
assert C.table == [[1, 2, None, 1],
[2, 0, 0, None],
[0, 1, None, 3],
[None, None, 2, None]]
assert C.P == [[identity, identity, None, a_0**-1],
[identity, identity, a_0, None],
[identity, identity, None, identity],
[None, None, identity, None]]
C.modified_scan(0, x**-1*y**-1*x*y*x, C._grp.generators[1])
assert C.table == [[1, 2, None, 1],
[2, 0, 0, None],
[0, 1, None, 3],
[3, 3, 2, None]]
assert C.P == [[identity, identity, None, a_0**-1],
[identity, identity, a_0, None],
[identity, identity, None, identity],
[a_1, a_1**-1, identity, None]]
C.modified_scan(2, (x*y)**2, C._grp.identity)
assert C.table == [[1, 2, 3, 1],
[2, 0, 0, None],
[0, 1, None, 3],
[3, 3, 2, 0]]
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
[identity, identity, a_0, None],
[identity, identity, None, identity],
[a_1, a_1**-1, identity, a_1]]
C.modified_define(2, y)
assert C.table == [[1, 2, 3, 1],
[2, 0, 0, None],
[0, 1, 4, 3],
[3, 3, 2, 0],
[None, None, None, 2]]
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
[identity, identity, a_0, None],
[identity, identity, identity, identity],
[a_1, a_1**-1, identity, a_1],
[None, None, None, identity]]
C.modified_scan(0, y**5, C._grp.identity)
assert C.table == [[1, 2, 3, 1], [2, 0, 0, 4], [0, 1, 4, 3], [3, 3, 2, 0], [None, None, 1, 2]]
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
[identity, identity, a_0, a_0*a_1**-1],
[identity, identity, identity, identity],
[a_1, a_1**-1, identity, a_1],
[None, None, a_1*a_0**-1, identity]]
C.modified_scan(1, (x*y)**2, C._grp.identity)
assert C.table == [[1, 2, 3, 1],
[2, 0, 0, 4],
[0, 1, 4, 3],
[3, 3, 2, 0],
[4, 4, 1, 2]]
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
[identity, identity, a_0, a_0*a_1**-1],
[identity, identity, identity, identity],
[a_1, a_1**-1, identity, a_1],
[a_0*a_1**-1, a_1*a_0**-1, a_1*a_0**-1, identity]]
# Modified coset enumeration test
f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
C = coset_enumeration_r(f, [x])
C_m = modified_coset_enumeration_r(f, [x])
assert C_m.table == C.table
|
24f5f6e8de318c249df27e209db44a159c9c29e37a75635c03ae25711e975f2a | from itertools import permutations
from sympy.core.compatibility import range
from sympy.core.expr import unchanged
from sympy.core.numbers import Integer
from sympy.core.relational import Eq
from sympy.core.symbol import Symbol
from sympy.core.singleton import S
from sympy.combinatorics.permutations import \
Permutation, _af_parity, _af_rmul, _af_rmuln, AppliedPermutation, Cycle
from sympy.printing import sstr, srepr, pretty, latex
from sympy.utilities.pytest import raises, SymPyDeprecationWarning, \
warns_deprecated_sympy
rmul = Permutation.rmul
a = Symbol('a', integer=True)
def test_Permutation():
# don't auto fill 0
raises(ValueError, lambda: Permutation([1]))
p = Permutation([0, 1, 2, 3])
# call as bijective
assert [p(i) for i in range(p.size)] == list(p)
# call as operator
assert p(list(range(p.size))) == list(p)
# call as function
assert list(p(1, 2)) == [0, 2, 1, 3]
raises(TypeError, lambda: p(-1))
raises(TypeError, lambda: p(5))
# conversion to list
assert list(p) == list(range(4))
assert Permutation(size=4) == Permutation(3)
assert Permutation(Permutation(3), size=5) == Permutation(4)
# cycle form with size
assert Permutation([[1, 2]], size=4) == Permutation([[1, 2], [0], [3]])
# random generation
assert Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
p = Permutation([2, 5, 1, 6, 3, 0, 4])
q = Permutation([[1], [0, 3, 5, 6, 2, 4]])
assert len({p, p}) == 1
r = Permutation([1, 3, 2, 0, 4, 6, 5])
ans = Permutation(_af_rmuln(*[w.array_form for w in (p, q, r)])).array_form
assert rmul(p, q, r).array_form == ans
# make sure no other permutation of p, q, r could have given
# that answer
for a, b, c in permutations((p, q, r)):
if (a, b, c) == (p, q, r):
continue
assert rmul(a, b, c).array_form != ans
assert p.support() == list(range(7))
assert q.support() == [0, 2, 3, 4, 5, 6]
assert Permutation(p.cyclic_form).array_form == p.array_form
assert p.cardinality == 5040
assert q.cardinality == 5040
assert q.cycles == 2
assert rmul(q, p) == Permutation([4, 6, 1, 2, 5, 3, 0])
assert rmul(p, q) == Permutation([6, 5, 3, 0, 2, 4, 1])
assert _af_rmul(p.array_form, q.array_form) == \
[6, 5, 3, 0, 2, 4, 1]
assert rmul(Permutation([[1, 2, 3], [0, 4]]),
Permutation([[1, 2, 4], [0], [3]])).cyclic_form == \
[[0, 4, 2], [1, 3]]
assert q.array_form == [3, 1, 4, 5, 0, 6, 2]
assert q.cyclic_form == [[0, 3, 5, 6, 2, 4]]
assert q.full_cyclic_form == [[0, 3, 5, 6, 2, 4], [1]]
assert p.cyclic_form == [[0, 2, 1, 5], [3, 6, 4]]
t = p.transpositions()
assert t == [(0, 5), (0, 1), (0, 2), (3, 4), (3, 6)]
assert Permutation.rmul(*[Permutation(Cycle(*ti)) for ti in (t)])
assert Permutation([1, 0]).transpositions() == [(0, 1)]
assert p**13 == p
assert q**0 == Permutation(list(range(q.size)))
assert q**-2 == ~q**2
assert q**2 == Permutation([5, 1, 0, 6, 3, 2, 4])
assert q**3 == q**2*q
assert q**4 == q**2*q**2
a = Permutation(1, 3)
b = Permutation(2, 0, 3)
I = Permutation(3)
assert ~a == a**-1
assert a*~a == I
assert a*b**-1 == a*~b
ans = Permutation(0, 5, 3, 1, 6)(2, 4)
assert (p + q.rank()).rank() == ans.rank()
assert (p + q.rank())._rank == ans.rank()
assert (q + p.rank()).rank() == ans.rank()
raises(TypeError, lambda: p + Permutation(list(range(10))))
assert (p - q.rank()).rank() == Permutation(0, 6, 3, 1, 2, 5, 4).rank()
assert p.rank() - q.rank() < 0 # for coverage: make sure mod is used
assert (q - p.rank()).rank() == Permutation(1, 4, 6, 2)(3, 5).rank()
assert p*q == Permutation(_af_rmuln(*[list(w) for w in (q, p)]))
assert p*Permutation([]) == p
assert Permutation([])*p == p
assert p*Permutation([[0, 1]]) == Permutation([2, 5, 0, 6, 3, 1, 4])
assert Permutation([[0, 1]])*p == Permutation([5, 2, 1, 6, 3, 0, 4])
pq = p ^ q
assert pq == Permutation([5, 6, 0, 4, 1, 2, 3])
assert pq == rmul(q, p, ~q)
qp = q ^ p
assert qp == Permutation([4, 3, 6, 2, 1, 5, 0])
assert qp == rmul(p, q, ~p)
raises(ValueError, lambda: p ^ Permutation([]))
assert p.commutator(q) == Permutation(0, 1, 3, 4, 6, 5, 2)
assert q.commutator(p) == Permutation(0, 2, 5, 6, 4, 3, 1)
assert p.commutator(q) == ~q.commutator(p)
raises(ValueError, lambda: p.commutator(Permutation([])))
assert len(p.atoms()) == 7
assert q.atoms() == {0, 1, 2, 3, 4, 5, 6}
assert p.inversion_vector() == [2, 4, 1, 3, 1, 0]
assert q.inversion_vector() == [3, 1, 2, 2, 0, 1]
assert Permutation.from_inversion_vector(p.inversion_vector()) == p
assert Permutation.from_inversion_vector(q.inversion_vector()).array_form\
== q.array_form
raises(ValueError, lambda: Permutation.from_inversion_vector([0, 2]))
assert Permutation([i for i in range(500, -1, -1)]).inversions() == 125250
s = Permutation([0, 4, 1, 3, 2])
assert s.parity() == 0
_ = s.cyclic_form # needed to create a value for _cyclic_form
assert len(s._cyclic_form) != s.size and s.parity() == 0
assert not s.is_odd
assert s.is_even
assert Permutation([0, 1, 4, 3, 2]).parity() == 1
assert _af_parity([0, 4, 1, 3, 2]) == 0
assert _af_parity([0, 1, 4, 3, 2]) == 1
s = Permutation([0])
assert s.is_Singleton
assert Permutation([]).is_Empty
r = Permutation([3, 2, 1, 0])
assert (r**2).is_Identity
assert rmul(~p, p).is_Identity
assert (~p)**13 == Permutation([5, 2, 0, 4, 6, 1, 3])
assert ~(r**2).is_Identity
assert p.max() == 6
assert p.min() == 0
q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
assert q.max() == 4
assert q.min() == 0
p = Permutation([1, 5, 2, 0, 3, 6, 4])
q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
assert p.ascents() == [0, 3, 4]
assert q.ascents() == [1, 2, 4]
assert r.ascents() == []
assert p.descents() == [1, 2, 5]
assert q.descents() == [0, 3, 5]
assert Permutation(r.descents()).is_Identity
assert p.inversions() == 7
# test the merge-sort with a longer permutation
big = list(p) + list(range(p.max() + 1, p.max() + 130))
assert Permutation(big).inversions() == 7
assert p.signature() == -1
assert q.inversions() == 11
assert q.signature() == -1
assert rmul(p, ~p).inversions() == 0
assert rmul(p, ~p).signature() == 1
assert p.order() == 6
assert q.order() == 10
assert (p**(p.order())).is_Identity
assert p.length() == 6
assert q.length() == 7
assert r.length() == 4
assert p.runs() == [[1, 5], [2], [0, 3, 6], [4]]
assert q.runs() == [[4], [2, 3, 5], [0, 6], [1]]
assert r.runs() == [[3], [2], [1], [0]]
assert p.index() == 8
assert q.index() == 8
assert r.index() == 3
assert p.get_precedence_distance(q) == q.get_precedence_distance(p)
assert p.get_adjacency_distance(q) == p.get_adjacency_distance(q)
assert p.get_positional_distance(q) == p.get_positional_distance(q)
p = Permutation([0, 1, 2, 3])
q = Permutation([3, 2, 1, 0])
assert p.get_precedence_distance(q) == 6
assert p.get_adjacency_distance(q) == 3
assert p.get_positional_distance(q) == 8
p = Permutation([0, 3, 1, 2, 4])
q = Permutation.josephus(4, 5, 2)
assert p.get_adjacency_distance(q) == 3
raises(ValueError, lambda: p.get_adjacency_distance(Permutation([])))
raises(ValueError, lambda: p.get_positional_distance(Permutation([])))
raises(ValueError, lambda: p.get_precedence_distance(Permutation([])))
a = [Permutation.unrank_nonlex(4, i) for i in range(5)]
iden = Permutation([0, 1, 2, 3])
for i in range(5):
for j in range(i + 1, 5):
assert a[i].commutes_with(a[j]) == \
(rmul(a[i], a[j]) == rmul(a[j], a[i]))
if a[i].commutes_with(a[j]):
assert a[i].commutator(a[j]) == iden
assert a[j].commutator(a[i]) == iden
a = Permutation(3)
b = Permutation(0, 6, 3)(1, 2)
assert a.cycle_structure == {1: 4}
assert b.cycle_structure == {2: 1, 3: 1, 1: 2}
def test_Permutation_subclassing():
# Subclass that adds permutation application on iterables
class CustomPermutation(Permutation):
def __call__(self, *i):
try:
return super(CustomPermutation, self).__call__(*i)
except TypeError:
pass
try:
perm_obj = i[0]
return [self._array_form[j] for j in perm_obj]
except Exception:
raise TypeError('unrecognized argument')
def __eq__(self, other):
if isinstance(other, Permutation):
return self._hashable_content() == other._hashable_content()
else:
return super(CustomPermutation, self).__eq__(other)
def __hash__(self):
return super(CustomPermutation, self).__hash__()
p = CustomPermutation([1, 2, 3, 0])
q = Permutation([1, 2, 3, 0])
assert p == q
raises(TypeError, lambda: q([1, 2]))
assert [2, 3] == p([1, 2])
assert type(p * q) == CustomPermutation
assert type(q * p) == Permutation # True because q.__mul__(p) is called!
# Run all tests for the Permutation class also on the subclass
def wrapped_test_Permutation():
# Monkeypatch the class definition in the globals
globals()['__Perm'] = globals()['Permutation']
globals()['Permutation'] = CustomPermutation
test_Permutation()
globals()['Permutation'] = globals()['__Perm'] # Restore
del globals()['__Perm']
wrapped_test_Permutation()
def test_josephus():
assert Permutation.josephus(4, 6, 1) == Permutation([3, 1, 0, 2, 5, 4])
assert Permutation.josephus(1, 5, 1).is_Identity
def test_ranking():
assert Permutation.unrank_lex(5, 10).rank() == 10
p = Permutation.unrank_lex(15, 225)
assert p.rank() == 225
p1 = p.next_lex()
assert p1.rank() == 226
assert Permutation.unrank_lex(15, 225).rank() == 225
assert Permutation.unrank_lex(10, 0).is_Identity
p = Permutation.unrank_lex(4, 23)
assert p.rank() == 23
assert p.array_form == [3, 2, 1, 0]
assert p.next_lex() is None
p = Permutation([1, 5, 2, 0, 3, 6, 4])
q = Permutation([[1, 2, 3, 5, 6], [0, 4]])
a = [Permutation.unrank_trotterjohnson(4, i).array_form for i in range(5)]
assert a == [[0, 1, 2, 3], [0, 1, 3, 2], [0, 3, 1, 2], [3, 0, 1,
2], [3, 0, 2, 1] ]
assert [Permutation(pa).rank_trotterjohnson() for pa in a] == list(range(5))
assert Permutation([0, 1, 2, 3]).next_trotterjohnson() == \
Permutation([0, 1, 3, 2])
assert q.rank_trotterjohnson() == 2283
assert p.rank_trotterjohnson() == 3389
assert Permutation([1, 0]).rank_trotterjohnson() == 1
a = Permutation(list(range(3)))
b = a
l = []
tj = []
for i in range(6):
l.append(a)
tj.append(b)
a = a.next_lex()
b = b.next_trotterjohnson()
assert a == b is None
assert {tuple(a) for a in l} == {tuple(a) for a in tj}
p = Permutation([2, 5, 1, 6, 3, 0, 4])
q = Permutation([[6], [5], [0, 1, 2, 3, 4]])
assert p.rank() == 1964
assert q.rank() == 870
assert Permutation([]).rank_nonlex() == 0
prank = p.rank_nonlex()
assert prank == 1600
assert Permutation.unrank_nonlex(7, 1600) == p
qrank = q.rank_nonlex()
assert qrank == 41
assert Permutation.unrank_nonlex(7, 41) == Permutation(q.array_form)
a = [Permutation.unrank_nonlex(4, i).array_form for i in range(24)]
assert a == [
[1, 2, 3, 0], [3, 2, 0, 1], [1, 3, 0, 2], [1, 2, 0, 3], [2, 3, 1, 0],
[2, 0, 3, 1], [3, 0, 1, 2], [2, 0, 1, 3], [1, 3, 2, 0], [3, 0, 2, 1],
[1, 0, 3, 2], [1, 0, 2, 3], [2, 1, 3, 0], [2, 3, 0, 1], [3, 1, 0, 2],
[2, 1, 0, 3], [3, 2, 1, 0], [0, 2, 3, 1], [0, 3, 1, 2], [0, 2, 1, 3],
[3, 1, 2, 0], [0, 3, 2, 1], [0, 1, 3, 2], [0, 1, 2, 3]]
N = 10
p1 = Permutation(a[0])
for i in range(1, N+1):
p1 = p1*Permutation(a[i])
p2 = Permutation.rmul_with_af(*[Permutation(h) for h in a[N::-1]])
assert p1 == p2
ok = []
p = Permutation([1, 0])
for i in range(3):
ok.append(p.array_form)
p = p.next_nonlex()
if p is None:
ok.append(None)
break
assert ok == [[1, 0], [0, 1], None]
assert Permutation([3, 2, 0, 1]).next_nonlex() == Permutation([1, 3, 0, 2])
assert [Permutation(pa).rank_nonlex() for pa in a] == list(range(24))
def test_mul():
a, b = [0, 2, 1, 3], [0, 1, 3, 2]
assert _af_rmul(a, b) == [0, 2, 3, 1]
assert _af_rmuln(a, b, list(range(4))) == [0, 2, 3, 1]
assert rmul(Permutation(a), Permutation(b)).array_form == [0, 2, 3, 1]
a = Permutation([0, 2, 1, 3])
b = (0, 1, 3, 2)
c = (3, 1, 2, 0)
assert Permutation.rmul(a, b, c) == Permutation([1, 2, 3, 0])
assert Permutation.rmul(a, c) == Permutation([3, 2, 1, 0])
raises(TypeError, lambda: Permutation.rmul(b, c))
n = 6
m = 8
a = [Permutation.unrank_nonlex(n, i).array_form for i in range(m)]
h = list(range(n))
for i in range(m):
h = _af_rmul(h, a[i])
h2 = _af_rmuln(*a[:i + 1])
assert h == h2
def test_args():
p = Permutation([(0, 3, 1, 2), (4, 5)])
assert p._cyclic_form is None
assert Permutation(p) == p
assert p.cyclic_form == [[0, 3, 1, 2], [4, 5]]
assert p._array_form == [3, 2, 0, 1, 5, 4]
p = Permutation((0, 3, 1, 2))
assert p._cyclic_form is None
assert p._array_form == [0, 3, 1, 2]
assert Permutation([0]) == Permutation((0, ))
assert Permutation([[0], [1]]) == Permutation(((0, ), (1, ))) == \
Permutation(((0, ), [1]))
assert Permutation([[1, 2]]) == Permutation([0, 2, 1])
assert Permutation([[1], [4, 2]]) == Permutation([0, 1, 4, 3, 2])
assert Permutation([[1], [4, 2]], size=1) == Permutation([0, 1, 4, 3, 2])
assert Permutation(
[[1], [4, 2]], size=6) == Permutation([0, 1, 4, 3, 2, 5])
assert Permutation([[0, 1], [0, 2]]) == Permutation(0, 1, 2)
assert Permutation([], size=3) == Permutation([0, 1, 2])
assert Permutation(3).list(5) == [0, 1, 2, 3, 4]
assert Permutation(3).list(-1) == []
assert Permutation(5)(1, 2).list(-1) == [0, 2, 1]
assert Permutation(5)(1, 2).list() == [0, 2, 1, 3, 4, 5]
raises(ValueError, lambda: Permutation([1, 2], [0]))
# enclosing brackets needed
raises(ValueError, lambda: Permutation([[1, 2], 0]))
# enclosing brackets needed on 0
raises(ValueError, lambda: Permutation([1, 1, 0]))
raises(ValueError, lambda: Permutation([4, 5], size=10)) # where are 0-3?
# but this is ok because cycles imply that only those listed moved
assert Permutation(4, 5) == Permutation([0, 1, 2, 3, 5, 4])
def test_Cycle():
assert str(Cycle()) == '()'
assert Cycle(Cycle(1,2)) == Cycle(1, 2)
assert Cycle(1,2).copy() == Cycle(1,2)
assert list(Cycle(1, 3, 2)) == [0, 3, 1, 2]
assert Cycle(1, 2)(2, 3) == Cycle(1, 3, 2)
assert Cycle(1, 2)(2, 3)(4, 5) == Cycle(1, 3, 2)(4, 5)
assert Permutation(Cycle(1, 2)(2, 1, 0, 3)).cyclic_form, Cycle(0, 2, 1)
raises(ValueError, lambda: Cycle().list())
assert Cycle(1, 2).list() == [0, 2, 1]
assert Cycle(1, 2).list(4) == [0, 2, 1, 3]
assert Cycle(3).list(2) == [0, 1]
assert Cycle(3).list(6) == [0, 1, 2, 3, 4, 5]
assert Permutation(Cycle(1, 2), size=4) == \
Permutation([0, 2, 1, 3])
assert str(Cycle(1, 2)(4, 5)) == '(1 2)(4 5)'
assert str(Cycle(1, 2)) == '(1 2)'
assert Cycle(Permutation(list(range(3)))) == Cycle()
assert Cycle(1, 2).list() == [0, 2, 1]
assert Cycle(1, 2).list(4) == [0, 2, 1, 3]
assert Cycle().size == 0
raises(ValueError, lambda: Cycle((1, 2)))
raises(ValueError, lambda: Cycle(1, 2, 1))
raises(TypeError, lambda: Cycle(1, 2)*{})
raises(ValueError, lambda: Cycle(4)[a])
raises(ValueError, lambda: Cycle(2, -4, 3))
# check round-trip
p = Permutation([[1, 2], [4, 3]], size=5)
assert Permutation(Cycle(p)) == p
def test_from_sequence():
assert Permutation.from_sequence('SymPy') == Permutation(4)(0, 1, 3)
assert Permutation.from_sequence('SymPy', key=lambda x: x.lower()) == \
Permutation(4)(0, 2)(1, 3)
def test_resize():
p = Permutation(0, 1, 2)
assert p.resize(5) == Permutation(0, 1, 2, size=5)
assert p.resize(4) == Permutation(0, 1, 2, size=4)
assert p.resize(3) == p
raises(ValueError, lambda: p.resize(2))
p = Permutation(0, 1, 2)(3, 4)(5, 6)
assert p.resize(3) == Permutation(0, 1, 2)
raises(ValueError, lambda: p.resize(4))
def test_printing_cyclic():
p1 = Permutation([0, 2, 1])
assert repr(p1) == 'Permutation(1, 2)'
assert str(p1) == '(1 2)'
p2 = Permutation()
assert repr(p2) == 'Permutation()'
assert str(p2) == '()'
p3 = Permutation([1, 2, 0, 3])
assert repr(p3) == 'Permutation(3)(0, 1, 2)'
def test_printing_non_cyclic():
from sympy.printing import sstr, srepr
p1 = Permutation([0, 1, 2, 3, 4, 5])
assert srepr(p1, perm_cyclic=False) == 'Permutation([], size=6)'
assert sstr(p1, perm_cyclic=False) == 'Permutation([], size=6)'
p2 = Permutation([0, 1, 2])
assert srepr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])'
assert sstr(p2, perm_cyclic=False) == 'Permutation([0, 1, 2])'
p3 = Permutation([0, 2, 1])
assert srepr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])'
assert sstr(p3, perm_cyclic=False) == 'Permutation([0, 2, 1])'
p4 = Permutation([0, 1, 3, 2, 4, 5, 6, 7])
assert srepr(p4, perm_cyclic=False) == 'Permutation([0, 1, 3, 2], size=8)'
def test_deprecated_print_cyclic():
p = Permutation(0, 1, 2)
try:
Permutation.print_cyclic = True
with warns_deprecated_sympy():
assert sstr(p) == '(0 1 2)'
with warns_deprecated_sympy():
assert srepr(p) == 'Permutation(0, 1, 2)'
with warns_deprecated_sympy():
assert pretty(p) == '(0 1 2)'
with warns_deprecated_sympy():
assert latex(p) == r'\left( 0\; 1\; 2\right)'
Permutation.print_cyclic = False
with warns_deprecated_sympy():
assert sstr(p) == 'Permutation([1, 2, 0])'
with warns_deprecated_sympy():
assert srepr(p) == 'Permutation([1, 2, 0])'
with warns_deprecated_sympy():
assert pretty(p, use_unicode=False) == '/0 1 2\\\n\\1 2 0/'
with warns_deprecated_sympy():
assert latex(p) == \
r'\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}'
finally:
Permutation.print_cyclic = None
def test_permutation_equality():
a = Permutation(0, 1, 2)
b = Permutation(0, 1, 2)
assert Eq(a, b) is S.true
c = Permutation(0, 2, 1)
assert Eq(a, c) is S.false
d = Permutation(0, 1, 2, size=4)
assert unchanged(Eq, a, d)
e = Permutation(0, 2, 1, size=4)
assert unchanged(Eq, a, e)
i = Permutation()
assert unchanged(Eq, i, 0)
assert unchanged(Eq, 0, i)
def test_issue_17661():
c1 = Cycle(1,2)
c2 = Cycle(1,2)
assert c1 == c2
assert repr(c1) == 'Cycle(1, 2)'
assert c1 == c2
def test_permutation_apply():
x = Symbol('x')
p = Permutation(0, 1, 2)
assert p.apply(0) == 1
assert isinstance(p.apply(0), Integer)
assert p.apply(x) == AppliedPermutation(p, x)
assert AppliedPermutation(p, x).subs(x, 0) == 1
x = Symbol('x', integer=False)
raises(NotImplementedError, lambda: p.apply(x))
x = Symbol('x', negative=True)
raises(NotImplementedError, lambda: p.apply(x))
def test_AppliedPermutation():
x = Symbol('x')
p = Permutation(0, 1, 2)
raises(ValueError, lambda: AppliedPermutation((0, 1, 2), x))
assert AppliedPermutation(p, 1, evaluate=True) == 2
assert AppliedPermutation(p, 1, evaluate=False).__class__ == \
AppliedPermutation
|
9955836fe01810a0bc861facdc6abfaf773f18e999b406332b76d99996d0554d | from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
def test_pc_presentation():
Groups = [SymmetricGroup(3), SymmetricGroup(4), SymmetricGroup(9).sylow_subgroup(3),
SymmetricGroup(9).sylow_subgroup(2), SymmetricGroup(8).sylow_subgroup(2)]
S = SymmetricGroup(125).sylow_subgroup(5)
G = S.derived_series()[2]
Groups.append(G)
G = SymmetricGroup(25).sylow_subgroup(5)
Groups.append(G)
S = SymmetricGroup(11**2).sylow_subgroup(11)
G = S.derived_series()[2]
Groups.append(G)
for G in Groups:
PcGroup = G.polycyclic_group()
collector = PcGroup.collector
pc_presentation = collector.pc_presentation
pcgs = PcGroup.pcgs
free_group = collector.free_group
free_to_perm = {}
for s, g in zip(free_group.symbols, pcgs):
free_to_perm[s] = g
for k, v in pc_presentation.items():
k_array = k.array_form
if v != ():
v_array = v.array_form
lhs = Permutation()
for gen in k_array:
s = gen[0]
e = gen[1]
lhs = lhs*free_to_perm[s]**e
if v == ():
assert lhs.is_identity
continue
rhs = Permutation()
for gen in v_array:
s = gen[0]
e = gen[1]
rhs = rhs*free_to_perm[s]**e
assert lhs == rhs
def test_exponent_vector():
Groups = [SymmetricGroup(3), SymmetricGroup(4), SymmetricGroup(9).sylow_subgroup(3),
SymmetricGroup(9).sylow_subgroup(2), SymmetricGroup(8).sylow_subgroup(2)]
for G in Groups:
PcGroup = G.polycyclic_group()
collector = PcGroup.collector
pcgs = PcGroup.pcgs
# free_group = collector.free_group
for gen in G.generators:
exp = collector.exponent_vector(gen)
g = Permutation()
for i in range(len(exp)):
g = g*pcgs[i]**exp[i] if exp[i] else g
assert g == gen
def test_induced_pcgs():
G = SymmetricGroup(9).sylow_subgroup(3)
PcGroup = G.polycyclic_group()
collector = PcGroup.collector
gens = [G[0], G[1]]
ipcgs = collector.induced_pcgs(gens)
order = [gen.order() for gen in ipcgs]
assert order == [3, 3]
G = SymmetricGroup(20).sylow_subgroup(2)
PcGroup = G.polycyclic_group()
collector = PcGroup.collector
gens = [G[0], G[1], G[2], G[3]]
ipcgs = collector.induced_pcgs(gens)
order = [gen.order() for gen in ipcgs]
assert order ==[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
|
b17e46badd6e8eb5ab9c38e0a9bed1d9afd415e78e812e74b44e7e85a79bfa28 | # This testfile tests SymPy <-> Sage compatibility
#
# Execute this test inside Sage, e.g. with:
# sage -python bin/test sympy/external/tests/test_sage.py
#
# This file can be tested by Sage itself by:
# sage -t sympy/external/tests/test_sage.py
# and if all tests pass, it should be copied (verbatim) to Sage, so that it is
# automatically doctested by Sage. Note that this second method imports the
# version of SymPy in Sage, whereas the -python method imports the local version
# of SymPy (both use the local version of the tests, however).
#
# Don't test any SymPy features here. Just pure interaction with Sage.
# Always write regular SymPy tests for anything, that can be tested in pure
# Python (without Sage). Here we test everything, that a user may need when
# using SymPy with Sage.
from sympy.external import import_module
sage = import_module('sage.all', __import__kwargs={'fromlist': ['all']})
if not sage:
#bin/test will not execute any tests now
disabled = True
import sympy
from sympy.utilities.pytest import XFAIL
def is_trivially_equal(lhs, rhs):
"""
True if lhs and rhs are trivially equal.
Use this for comparison of Sage expressions. Otherwise you
may start the whole proof machinery which may not exist at
the time of testing.
"""
assert (lhs - rhs).is_trivial_zero()
def check_expression(expr, var_symbols, only_from_sympy=False):
"""
Does eval(expr) both in Sage and SymPy and does other checks.
"""
# evaluate the expression in the context of Sage:
if var_symbols:
sage.var(var_symbols)
a = globals().copy()
# safety checks...
a.update(sage.__dict__)
assert "sin" in a
is_different = False
try:
e_sage = eval(expr, a)
assert not isinstance(e_sage, sympy.Basic)
except (NameError, TypeError):
is_different = True
pass
# evaluate the expression in the context of SymPy:
if var_symbols:
sympy.var(var_symbols)
b = globals().copy()
b.update(sympy.__dict__)
assert "sin" in b
b.update(sympy.__dict__)
e_sympy = eval(expr, b)
assert isinstance(e_sympy, sympy.Basic)
# Sympy func may have specific _sage_ method
if is_different:
_sage_method = getattr(e_sympy.func, "_sage_")
e_sage = _sage_method(sympy.S(e_sympy))
# Do the actual checks:
if not only_from_sympy:
assert sympy.S(e_sage) == e_sympy
is_trivially_equal(e_sage, sage.SR(e_sympy))
def test_basics():
check_expression("x", "x")
check_expression("x**2", "x")
check_expression("x**2+y**3", "x y")
check_expression("1/(x+y)**2-x**3/4", "x y")
def test_complex():
check_expression("I", "")
check_expression("23+I*4", "x")
@XFAIL
def test_complex_fail():
# Sage doesn't properly implement _sympy_ on I
check_expression("I*y", "y")
check_expression("x+I*y", "x y")
def test_integer():
check_expression("4*x", "x")
check_expression("-4*x", "x")
def test_real():
check_expression("1.123*x", "x")
check_expression("-18.22*x", "x")
def test_E():
assert sympy.sympify(sage.e) == sympy.E
is_trivially_equal(sage.e, sage.SR(sympy.E))
def test_pi():
assert sympy.sympify(sage.pi) == sympy.pi
is_trivially_equal(sage.pi, sage.SR(sympy.pi))
def test_euler_gamma():
assert sympy.sympify(sage.euler_gamma) == sympy.EulerGamma
is_trivially_equal(sage.euler_gamma, sage.SR(sympy.EulerGamma))
def test_oo():
assert sympy.sympify(sage.oo) == sympy.oo
assert sage.oo == sage.SR(sympy.oo).pyobject()
assert sympy.sympify(-sage.oo) == -sympy.oo
assert -sage.oo == sage.SR(-sympy.oo).pyobject()
#assert sympy.sympify(sage.UnsignedInfinityRing.gen()) == sympy.zoo
#assert sage.UnsignedInfinityRing.gen() == sage.SR(sympy.zoo)
def test_NaN():
assert sympy.sympify(sage.NaN) == sympy.nan
is_trivially_equal(sage.NaN, sage.SR(sympy.nan))
def test_Catalan():
assert sympy.sympify(sage.catalan) == sympy.Catalan
is_trivially_equal(sage.catalan, sage.SR(sympy.Catalan))
def test_GoldenRation():
assert sympy.sympify(sage.golden_ratio) == sympy.GoldenRatio
is_trivially_equal(sage.golden_ratio, sage.SR(sympy.GoldenRatio))
def test_functions():
# Test at least one Function without own _sage_ method
assert not "_sage_" in sympy.factorial.__dict__
check_expression("factorial(x)", "x")
check_expression("sin(x)", "x")
check_expression("cos(x)", "x")
check_expression("tan(x)", "x")
check_expression("cot(x)", "x")
check_expression("asin(x)", "x")
check_expression("acos(x)", "x")
check_expression("atan(x)", "x")
check_expression("atan2(y, x)", "x, y")
check_expression("acot(x)", "x")
check_expression("sinh(x)", "x")
check_expression("cosh(x)", "x")
check_expression("tanh(x)", "x")
check_expression("coth(x)", "x")
check_expression("asinh(x)", "x")
check_expression("acosh(x)", "x")
check_expression("atanh(x)", "x")
check_expression("acoth(x)", "x")
check_expression("exp(x)", "x")
check_expression("gamma(x)", "x")
check_expression("log(x)", "x")
check_expression("re(x)", "x")
check_expression("im(x)", "x")
check_expression("sign(x)", "x")
check_expression("abs(x)", "x")
check_expression("arg(x)", "x")
check_expression("conjugate(x)", "x")
# The following tests differently named functions
check_expression("besselj(y, x)", "x, y")
check_expression("bessely(y, x)", "x, y")
check_expression("besseli(y, x)", "x, y")
check_expression("besselk(y, x)", "x, y")
check_expression("DiracDelta(x)", "x")
check_expression("KroneckerDelta(x, y)", "x, y")
check_expression("expint(y, x)", "x, y")
check_expression("Si(x)", "x")
check_expression("Ci(x)", "x")
check_expression("Shi(x)", "x")
check_expression("Chi(x)", "x")
check_expression("loggamma(x)", "x")
check_expression("Ynm(n,m,x,y)", "n, m, x, y")
check_expression("hyper((n,m),(m,n),x)", "n, m, x")
check_expression("uppergamma(y, x)", "x, y")
def test_issue_4023():
sage.var("a x")
log = sage.log
i = sympy.integrate(log(x)/a, (x, a, a + 1))
i2 = sympy.simplify(i)
s = sage.SR(i2)
is_trivially_equal(s, -log(a) + log(a + 1) + log(a + 1)/a - 1/a)
def test_integral():
#test Sympy-->Sage
check_expression("Integral(x, (x,))", "x", only_from_sympy=True)
check_expression("Integral(x, (x, 0, 1))", "x", only_from_sympy=True)
check_expression("Integral(x*y, (x,), (y, ))", "x,y", only_from_sympy=True)
check_expression("Integral(x*y, (x,), (y, 0, 1))", "x,y", only_from_sympy=True)
check_expression("Integral(x*y, (x, 0, 1), (y,))", "x,y", only_from_sympy=True)
check_expression("Integral(x*y, (x, 0, 1), (y, 0, 1))", "x,y", only_from_sympy=True)
check_expression("Integral(x*y*z, (x, 0, 1), (y, 0, 1), (z, 0, 1))", "x,y,z", only_from_sympy=True)
@XFAIL
def test_integral_failing():
# Note: sage may attempt to turn this into Integral(x, (x, x, 0))
check_expression("Integral(x, (x, 0))", "x", only_from_sympy=True)
check_expression("Integral(x*y, (x,), (y, 0))", "x,y", only_from_sympy=True)
check_expression("Integral(x*y, (x, 0, 1), (y, 0))", "x,y", only_from_sympy=True)
def test_undefined_function():
f = sympy.Function('f')
sf = sage.function('f')
x = sympy.symbols('x')
sx = sage.var('x')
is_trivially_equal(sf(sx), f(x)._sage_())
assert f(x) == sympy.sympify(sf(sx))
assert sf == f._sage_()
#assert bool(f == sympy.sympify(sf))
def test_abstract_function():
from sage.symbolic.expression import Expression
x,y = sympy.symbols('x y')
f = sympy.Function('f')
expr = f(x,y)
sexpr = expr._sage_()
assert isinstance(sexpr,Expression), "converted expression %r is not sage expression" % sexpr
# This test has to be uncommented in the future: it depends on the sage ticket #22802 (https://trac.sagemath.org/ticket/22802)
# invexpr = sexpr._sympy_()
# assert invexpr == expr, "inverse coversion %r is not correct " % invexpr
# This string contains Sage doctests, that execute all the functions above.
# When you add a new function, please add it here as well.
"""
TESTS::
sage: from sympy.external.tests.test_sage import *
sage: test_basics()
sage: test_basics()
sage: test_complex()
sage: test_integer()
sage: test_real()
sage: test_E()
sage: test_pi()
sage: test_euler_gamma()
sage: test_oo()
sage: test_NaN()
sage: test_Catalan()
sage: test_GoldenRation()
sage: test_functions()
sage: test_issue_4023()
sage: test_integral()
sage: test_undefined_function()
sage: test_abstract_function()
Sage has no symbolic Lucas function at the moment::
sage: check_expression("lucas(x)", "x")
Traceback (most recent call last):
...
AttributeError...
"""
|
a211411f35779ddca3ac7ccb42698f5a96f9d546d43d3f4d31b12429b298faa3 | import sympy
import tempfile
import os
from sympy import symbols, Eq, Mod
from sympy.external import import_module
from sympy.tensor import IndexedBase, Idx
from sympy.utilities.autowrap import autowrap, ufuncify, CodeWrapError
from sympy.utilities.pytest import skip
numpy = import_module('numpy', min_module_version='1.6.1')
Cython = import_module('Cython', min_module_version='0.15.1')
f2py = import_module('numpy.f2py', __import__kwargs={'fromlist': ['f2py']})
f2pyworks = False
if f2py:
try:
autowrap(symbols('x'), 'f95', 'f2py')
except (CodeWrapError, ImportError, OSError):
f2pyworks = False
else:
f2pyworks = True
a, b, c = symbols('a b c')
n, m, d = symbols('n m d', integer=True)
A, B, C = symbols('A B C', cls=IndexedBase)
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', d)
def has_module(module):
"""
Return True if module exists, otherwise run skip().
module should be a string.
"""
# To give a string of the module name to skip(), this function takes a
# string. So we don't waste time running import_module() more than once,
# just map the three modules tested here in this dict.
modnames = {'numpy': numpy, 'Cython': Cython, 'f2py': f2py}
if modnames[module]:
if module == 'f2py' and not f2pyworks:
skip("Couldn't run f2py.")
return True
skip("Couldn't import %s." % module)
#
# test runners used by several language-backend combinations
#
def runtest_autowrap_twice(language, backend):
f = autowrap((((a + b)/c)**5).expand(), language, backend)
g = autowrap((((a + b)/c)**4).expand(), language, backend)
# check that autowrap updates the module name. Else, g gives the same as f
assert f(1, -2, 1) == -1.0
assert g(1, -2, 1) == 1.0
def runtest_autowrap_trace(language, backend):
has_module('numpy')
trace = autowrap(A[i, i], language, backend)
assert trace(numpy.eye(100)) == 100
def runtest_autowrap_matrix_vector(language, backend):
has_module('numpy')
x, y = symbols('x y', cls=IndexedBase)
expr = Eq(y[i], A[i, j]*x[j])
mv = autowrap(expr, language, backend)
# compare with numpy's dot product
M = numpy.random.rand(10, 20)
x = numpy.random.rand(20)
y = numpy.dot(M, x)
assert numpy.sum(numpy.abs(y - mv(M, x))) < 1e-13
def runtest_autowrap_matrix_matrix(language, backend):
has_module('numpy')
expr = Eq(C[i, j], A[i, k]*B[k, j])
matmat = autowrap(expr, language, backend)
# compare with numpy's dot product
M1 = numpy.random.rand(10, 20)
M2 = numpy.random.rand(20, 15)
M3 = numpy.dot(M1, M2)
assert numpy.sum(numpy.abs(M3 - matmat(M1, M2))) < 1e-13
def runtest_ufuncify(language, backend):
has_module('numpy')
a, b, c = symbols('a b c')
fabc = ufuncify([a, b, c], a*b + c, backend=backend)
facb = ufuncify([a, c, b], a*b + c, backend=backend)
grid = numpy.linspace(-2, 2, 50)
b = numpy.linspace(-5, 4, 50)
c = numpy.linspace(-1, 1, 50)
expected = grid*b + c
numpy.testing.assert_allclose(fabc(grid, b, c), expected)
numpy.testing.assert_allclose(facb(grid, c, b), expected)
def runtest_issue_10274(language, backend):
expr = (a - b + c)**(13)
tmp = tempfile.mkdtemp()
f = autowrap(expr, language, backend, tempdir=tmp,
helpers=('helper', a - b + c, (a, b, c)))
assert f(1, 1, 1) == 1
for file in os.listdir(tmp):
if file.startswith("wrapped_code_") and file.endswith(".c"):
fil = open(tmp + '/' + file)
lines = fil.readlines()
assert lines[0] == "/******************************************************************************\n"
assert "Code generated with sympy " + sympy.__version__ in lines[1]
assert lines[2:] == [
" * *\n",
" * See http://www.sympy.org/ for more information. *\n",
" * *\n",
" * This file is part of 'autowrap' *\n",
" ******************************************************************************/\n",
"#include " + '"' + file[:-1]+ 'h"' + "\n",
"#include <math.h>\n",
"\n",
"double helper(double a, double b, double c) {\n",
"\n",
" double helper_result;\n",
" helper_result = a - b + c;\n",
" return helper_result;\n",
"\n",
"}\n",
"\n",
"double autofunc(double a, double b, double c) {\n",
"\n",
" double autofunc_result;\n",
" autofunc_result = pow(helper(a, b, c), 13);\n",
" return autofunc_result;\n",
"\n",
"}\n",
]
def runtest_issue_15337(language, backend):
has_module('numpy')
# NOTE : autowrap was originally designed to only accept an iterable for
# the kwarg "helpers", but in issue 10274 the user mistakenly thought that
# if there was only a single helper it did not need to be passed via an
# iterable that wrapped the helper tuple. There were no tests for this
# behavior so when the code was changed to accept a single tuple it broke
# the original behavior. These tests below ensure that both now work.
a, b, c, d, e = symbols('a, b, c, d, e')
expr = (a - b + c - d + e)**13
exp_res = (1. - 2. + 3. - 4. + 5.)**13
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
helpers=('f1', a - b + c, (a, b, c)))
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
helpers=(('f1', a - b, (a, b)), ('f2', c - d, (c, d))))
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
def test_issue_15230():
has_module('f2py')
x, y = symbols('x, y')
expr = Mod(x, 3.0) - Mod(y, -2.0)
f = autowrap(expr, args=[x, y], language='F95')
exp_res = float(expr.xreplace({x: 3.5, y: 2.7}).evalf())
assert abs(f(3.5, 2.7) - exp_res) < 1e-14
x, y = symbols('x, y', integer=True)
expr = Mod(x, 3) - Mod(y, -2)
f = autowrap(expr, args=[x, y], language='F95')
assert f(3, 2) == expr.xreplace({x: 3, y: 2})
#
# tests of language-backend combinations
#
# f2py
def test_wrap_twice_f95_f2py():
has_module('f2py')
runtest_autowrap_twice('f95', 'f2py')
def test_autowrap_trace_f95_f2py():
has_module('f2py')
runtest_autowrap_trace('f95', 'f2py')
def test_autowrap_matrix_vector_f95_f2py():
has_module('f2py')
runtest_autowrap_matrix_vector('f95', 'f2py')
def test_autowrap_matrix_matrix_f95_f2py():
has_module('f2py')
runtest_autowrap_matrix_matrix('f95', 'f2py')
def test_ufuncify_f95_f2py():
has_module('f2py')
runtest_ufuncify('f95', 'f2py')
def test_issue_15337_f95_f2py():
has_module('f2py')
runtest_issue_15337('f95', 'f2py')
# Cython
def test_wrap_twice_c_cython():
has_module('Cython')
runtest_autowrap_twice('C', 'cython')
def test_autowrap_trace_C_Cython():
has_module('Cython')
runtest_autowrap_trace('C99', 'cython')
def test_autowrap_matrix_vector_C_cython():
has_module('Cython')
runtest_autowrap_matrix_vector('C99', 'cython')
def test_autowrap_matrix_matrix_C_cython():
has_module('Cython')
runtest_autowrap_matrix_matrix('C99', 'cython')
def test_ufuncify_C_Cython():
has_module('Cython')
runtest_ufuncify('C99', 'cython')
def test_issue_10274_C_cython():
has_module('Cython')
runtest_issue_10274('C89', 'cython')
def test_issue_15337_C_cython():
has_module('Cython')
runtest_issue_15337('C89', 'cython')
def test_autowrap_custom_printer():
has_module('Cython')
from sympy import pi
from sympy.utilities.codegen import C99CodeGen
from sympy.printing.ccode import C99CodePrinter
class PiPrinter(C99CodePrinter):
def _print_Pi(self, expr):
return "S_PI"
printer = PiPrinter()
gen = C99CodeGen(printer=printer)
gen.preprocessor_statements.append('#include "shortpi.h"')
expr = pi * a
expected = (
'#include "%s"\n'
'#include <math.h>\n'
'#include "shortpi.h"\n'
'\n'
'double autofunc(double a) {\n'
'\n'
' double autofunc_result;\n'
' autofunc_result = S_PI*a;\n'
' return autofunc_result;\n'
'\n'
'}\n'
)
tmpdir = tempfile.mkdtemp()
# write a trivial header file to use in the generated code
open(os.path.join(tmpdir, 'shortpi.h'), 'w').write('#define S_PI 3.14')
func = autowrap(expr, backend='cython', tempdir=tmpdir, code_gen=gen)
assert func(4.2) == 3.14 * 4.2
# check that the generated code is correct
for filename in os.listdir(tmpdir):
if filename.startswith('wrapped_code') and filename.endswith('.c'):
with open(os.path.join(tmpdir, filename)) as f:
lines = f.readlines()
expected = expected % filename.replace('.c', '.h')
assert ''.join(lines[7:]) == expected
# Numpy
def test_ufuncify_numpy():
# This test doesn't use Cython, but if Cython works, then there is a valid
# C compiler, which is needed.
has_module('Cython')
runtest_ufuncify('C99', 'numpy')
|
9f044e2c1f867594d4ac748f4c724089b0567089031c971f617f5cc03a00e092 | # This testfile tests SymPy <-> NumPy compatibility
# Don't test any SymPy features here. Just pure interaction with NumPy.
# Always write regular SymPy tests for anything, that can be tested in pure
# Python (without numpy). Here we test everything, that a user may need when
# using SymPy with NumPy
from distutils.version import LooseVersion
from sympy.external import import_module
numpy = import_module('numpy')
if numpy:
array, matrix, ndarray = numpy.array, numpy.matrix, numpy.ndarray
else:
#bin/test will not execute any tests now
disabled = True
from sympy import (Rational, Symbol, list2numpy, matrix2numpy, sin, Float,
Matrix, lambdify, symarray, symbols, Integer)
import sympy
import mpmath
from sympy.abc import x, y, z
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.utilities.pytest import raises
# first, systematically check, that all operations are implemented and don't
# raise an exception
def test_systematic_basic():
def s(sympy_object, numpy_array):
sympy_object + numpy_array
numpy_array + sympy_object
sympy_object - numpy_array
numpy_array - sympy_object
sympy_object * numpy_array
numpy_array * sympy_object
sympy_object / numpy_array
numpy_array / sympy_object
sympy_object ** numpy_array
numpy_array ** sympy_object
x = Symbol("x")
y = Symbol("y")
sympy_objs = [
Rational(2, 3),
Float("1.3"),
x,
y,
pow(x, y)*y,
Integer(5),
Float(5.5),
]
numpy_objs = [
array([1]),
array([3, 8, -1]),
array([x, x**2, Rational(5)]),
array([x/y*sin(y), 5, Rational(5)]),
]
for x in sympy_objs:
for y in numpy_objs:
s(x, y)
# now some random tests, that test particular problems and that also
# check that the results of the operations are correct
def test_basics():
one = Rational(1)
zero = Rational(0)
assert array(1) == array(one)
assert array([one]) == array([one])
assert array([x]) == array([x])
assert array(x) == array(Symbol("x"))
assert array(one + x) == array(1 + x)
X = array([one, zero, zero])
assert (X == array([one, zero, zero])).all()
assert (X == array([one, 0, 0])).all()
def test_arrays():
one = Rational(1)
zero = Rational(0)
X = array([one, zero, zero])
Y = one*X
X = array([Symbol("a") + Rational(1, 2)])
Y = X + X
assert Y == array([1 + 2*Symbol("a")])
Y = Y + 1
assert Y == array([2 + 2*Symbol("a")])
Y = X - X
assert Y == array([0])
def test_conversion1():
a = list2numpy([x**2, x])
#looks like an array?
assert isinstance(a, ndarray)
assert a[0] == x**2
assert a[1] == x
assert len(a) == 2
#yes, it's the array
def test_conversion2():
a = 2*list2numpy([x**2, x])
b = list2numpy([2*x**2, 2*x])
assert (a == b).all()
one = Rational(1)
zero = Rational(0)
X = list2numpy([one, zero, zero])
Y = one*X
X = list2numpy([Symbol("a") + Rational(1, 2)])
Y = X + X
assert Y == array([1 + 2*Symbol("a")])
Y = Y + 1
assert Y == array([2 + 2*Symbol("a")])
Y = X - X
assert Y == array([0])
def test_list2numpy():
assert (array([x**2, x]) == list2numpy([x**2, x])).all()
def test_Matrix1():
m = Matrix([[x, x**2], [5, 2/x]])
assert (array(m.subs(x, 2)) == array([[2, 4], [5, 1]])).all()
m = Matrix([[sin(x), x**2], [5, 2/x]])
assert (array(m.subs(x, 2)) == array([[sin(2), 4], [5, 1]])).all()
def test_Matrix2():
m = Matrix([[x, x**2], [5, 2/x]])
assert (matrix(m.subs(x, 2)) == matrix([[2, 4], [5, 1]])).all()
m = Matrix([[sin(x), x**2], [5, 2/x]])
assert (matrix(m.subs(x, 2)) == matrix([[sin(2), 4], [5, 1]])).all()
def test_Matrix3():
a = array([[2, 4], [5, 1]])
assert Matrix(a) == Matrix([[2, 4], [5, 1]])
assert Matrix(a) != Matrix([[2, 4], [5, 2]])
a = array([[sin(2), 4], [5, 1]])
assert Matrix(a) == Matrix([[sin(2), 4], [5, 1]])
assert Matrix(a) != Matrix([[sin(0), 4], [5, 1]])
def test_Matrix4():
a = matrix([[2, 4], [5, 1]])
assert Matrix(a) == Matrix([[2, 4], [5, 1]])
assert Matrix(a) != Matrix([[2, 4], [5, 2]])
a = matrix([[sin(2), 4], [5, 1]])
assert Matrix(a) == Matrix([[sin(2), 4], [5, 1]])
assert Matrix(a) != Matrix([[sin(0), 4], [5, 1]])
def test_Matrix_sum():
M = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
m = matrix([[2, 3, 4], [x, 5, 6], [x, y, z**2]])
assert M + m == Matrix([[3, 5, 7], [2*x, y + 5, x + 6], [2*y + x, y - 50, z*x + z**2]])
assert m + M == Matrix([[3, 5, 7], [2*x, y + 5, x + 6], [2*y + x, y - 50, z*x + z**2]])
assert M + m == M.add(m)
def test_Matrix_mul():
M = Matrix([[1, 2, 3], [x, y, x]])
m = matrix([[2, 4], [x, 6], [x, z**2]])
assert M*m == Matrix([
[ 2 + 5*x, 16 + 3*z**2],
[2*x + x*y + x**2, 4*x + 6*y + x*z**2],
])
assert m*M == Matrix([
[ 2 + 4*x, 4 + 4*y, 6 + 4*x],
[ 7*x, 2*x + 6*y, 9*x],
[x + x*z**2, 2*x + y*z**2, 3*x + x*z**2],
])
a = array([2])
assert a[0] * M == 2 * M
assert M * a[0] == 2 * M
def test_Matrix_array():
class matarray(object):
def __array__(self):
from numpy import array
return array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
matarr = matarray()
assert Matrix(matarr) == Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def test_matrix2numpy():
a = matrix2numpy(Matrix([[1, x**2], [3*sin(x), 0]]))
assert isinstance(a, ndarray)
assert a.shape == (2, 2)
assert a[0, 0] == 1
assert a[0, 1] == x**2
assert a[1, 0] == 3*sin(x)
assert a[1, 1] == 0
def test_matrix2numpy_conversion():
a = Matrix([[1, 2, sin(x)], [x**2, x, Rational(1, 2)]])
b = array([[1, 2, sin(x)], [x**2, x, Rational(1, 2)]])
assert (matrix2numpy(a) == b).all()
assert matrix2numpy(a).dtype == numpy.dtype('object')
c = matrix2numpy(Matrix([[1, 2], [10, 20]]), dtype='int8')
d = matrix2numpy(Matrix([[1, 2], [10, 20]]), dtype='float64')
assert c.dtype == numpy.dtype('int8')
assert d.dtype == numpy.dtype('float64')
def test_issue_3728():
assert (Rational(1, 2)*array([2*x, 0]) == array([x, 0])).all()
assert (Rational(1, 2) + array(
[2*x, 0]) == array([2*x + Rational(1, 2), Rational(1, 2)])).all()
assert (Float("0.5")*array([2*x, 0]) == array([Float("1.0")*x, 0])).all()
assert (Float("0.5") + array(
[2*x, 0]) == array([2*x + Float("0.5"), Float("0.5")])).all()
@conserve_mpmath_dps
def test_lambdify():
mpmath.mp.dps = 16
sin02 = mpmath.mpf("0.198669330795061215459412627")
f = lambdify(x, sin(x), "numpy")
prec = 1e-15
assert -prec < f(0.2) - sin02 < prec
# if this succeeds, it can't be a numpy function
if LooseVersion(numpy.__version__) >= LooseVersion('1.17'):
with raises(TypeError):
f(x)
else:
with raises(AttributeError):
f(x)
def test_lambdify_matrix():
f = lambdify(x, Matrix([[x, 2*x], [1, 2]]), [{'ImmutableMatrix': numpy.array}, "numpy"])
assert (f(1) == array([[1, 2], [1, 2]])).all()
def test_lambdify_matrix_multi_input():
M = sympy.Matrix([[x**2, x*y, x*z],
[y*x, y**2, y*z],
[z*x, z*y, z**2]])
f = lambdify((x, y, z), M, [{'ImmutableMatrix': numpy.array}, "numpy"])
xh, yh, zh = 1.0, 2.0, 3.0
expected = array([[xh**2, xh*yh, xh*zh],
[yh*xh, yh**2, yh*zh],
[zh*xh, zh*yh, zh**2]])
actual = f(xh, yh, zh)
assert numpy.allclose(actual, expected)
def test_lambdify_matrix_vec_input():
X = sympy.DeferredVector('X')
M = Matrix([
[X[0]**2, X[0]*X[1], X[0]*X[2]],
[X[1]*X[0], X[1]**2, X[1]*X[2]],
[X[2]*X[0], X[2]*X[1], X[2]**2]])
f = lambdify(X, M, [{'ImmutableMatrix': numpy.array}, "numpy"])
Xh = array([1.0, 2.0, 3.0])
expected = array([[Xh[0]**2, Xh[0]*Xh[1], Xh[0]*Xh[2]],
[Xh[1]*Xh[0], Xh[1]**2, Xh[1]*Xh[2]],
[Xh[2]*Xh[0], Xh[2]*Xh[1], Xh[2]**2]])
actual = f(Xh)
assert numpy.allclose(actual, expected)
def test_lambdify_transl():
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
for sym, mat in NUMPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert mat in numpy.__dict__
def test_symarray():
"""Test creation of numpy arrays of sympy symbols."""
import numpy as np
import numpy.testing as npt
syms = symbols('_0,_1,_2')
s1 = symarray("", 3)
s2 = symarray("", 3)
npt.assert_array_equal(s1, np.array(syms, dtype=object))
assert s1[0] == s2[0]
a = symarray('a', 3)
b = symarray('b', 3)
assert not(a[0] == b[0])
asyms = symbols('a_0,a_1,a_2')
npt.assert_array_equal(a, np.array(asyms, dtype=object))
# Multidimensional checks
a2d = symarray('a', (2, 3))
assert a2d.shape == (2, 3)
a00, a12 = symbols('a_0_0,a_1_2')
assert a2d[0, 0] == a00
assert a2d[1, 2] == a12
a3d = symarray('a', (2, 3, 2))
assert a3d.shape == (2, 3, 2)
a000, a120, a121 = symbols('a_0_0_0,a_1_2_0,a_1_2_1')
assert a3d[0, 0, 0] == a000
assert a3d[1, 2, 0] == a120
assert a3d[1, 2, 1] == a121
def test_vectorize():
assert (numpy.vectorize(
sin)([1, 2, 3]) == numpy.array([sin(1), sin(2), sin(3)])).all()
|
8e5cf3d35b607dccc60b7794e461fea72e2c876435d76f3016fe45e433faed8e | from sympy import (S, Tuple, symbols, Interval, EmptySequence, oo, SeqPer,
SeqFormula, sequence, SeqAdd, SeqMul, Indexed, Idx, sqrt,
fibonacci, tribonacci, sin, cos, exp, Rational)
from sympy.series.sequences import SeqExpr, SeqExprOp
from sympy.utilities.pytest import raises, slow
x, y, z = symbols('x y z')
n, m = symbols('n m')
def test_EmptySequence():
assert S.EmptySequence is EmptySequence
assert S.EmptySequence.interval is S.EmptySet
assert S.EmptySequence.length is S.Zero
assert list(S.EmptySequence) == []
def test_SeqExpr():
s = SeqExpr((1, n, y), (x, 0, 10))
assert isinstance(s, SeqExpr)
assert s.gen == (1, n, y)
assert s.interval == Interval(0, 10)
assert s.start == 0
assert s.stop == 10
assert s.length == 11
assert s.variables == (x,)
assert SeqExpr((1, 2, 3), (x, 0, oo)).length is oo
def test_SeqPer():
s = SeqPer((1, n, 3), (x, 0, 5))
assert isinstance(s, SeqPer)
assert s.periodical == Tuple(1, n, 3)
assert s.period == 3
assert s.coeff(3) == 1
assert s.free_symbols == {n}
assert list(s) == [1, n, 3, 1, n, 3]
assert s[:] == [1, n, 3, 1, n, 3]
assert SeqPer((1, n, 3), (x, -oo, 0))[0:6] == [1, n, 3, 1, n, 3]
raises(ValueError, lambda: SeqPer((1, 2, 3), (0, 1, 2)))
raises(ValueError, lambda: SeqPer((1, 2, 3), (x, -oo, oo)))
raises(ValueError, lambda: SeqPer(n**2, (0, oo)))
assert SeqPer((n, n**2, n**3), (m, 0, oo))[:6] == \
[n, n**2, n**3, n, n**2, n**3]
assert SeqPer((n, n**2, n**3), (n, 0, oo))[:6] == [0, 1, 8, 3, 16, 125]
assert SeqPer((n, m), (n, 0, oo))[:6] == [0, m, 2, m, 4, m]
def test_SeqFormula():
s = SeqFormula(n**2, (n, 0, 5))
assert isinstance(s, SeqFormula)
assert s.formula == n**2
assert s.coeff(3) == 9
assert list(s) == [i**2 for i in range(6)]
assert s[:] == [i**2 for i in range(6)]
assert SeqFormula(n**2, (n, -oo, 0))[0:6] == [i**2 for i in range(6)]
assert SeqFormula(n**2, (0, oo)) == SeqFormula(n**2, (n, 0, oo))
assert SeqFormula(n**2, (0, m)).subs(m, x) == SeqFormula(n**2, (0, x))
assert SeqFormula(m*n**2, (n, 0, oo)).subs(m, x) == \
SeqFormula(x*n**2, (n, 0, oo))
raises(ValueError, lambda: SeqFormula(n**2, (0, 1, 2)))
raises(ValueError, lambda: SeqFormula(n**2, (n, -oo, oo)))
raises(ValueError, lambda: SeqFormula(m*n**2, (0, oo)))
seq = SeqFormula(x*(y**2 + z), (z, 1, 100))
assert seq.expand() == SeqFormula(x*y**2 + x*z, (z, 1, 100))
seq = SeqFormula(sin(x*(y**2 + z)),(z, 1, 100))
assert seq.expand(trig=True) == SeqFormula(sin(x*y**2)*cos(x*z) + sin(x*z)*cos(x*y**2), (z, 1, 100))
assert seq.expand() == SeqFormula(sin(x*y**2 + x*z), (z, 1, 100))
assert seq.expand(trig=False) == SeqFormula(sin(x*y**2 + x*z), (z, 1, 100))
seq = SeqFormula(exp(x*(y**2 + z)), (z, 1, 100))
assert seq.expand() == SeqFormula(exp(x*y**2)*exp(x*z), (z, 1, 100))
assert seq.expand(power_exp=False) == SeqFormula(exp(x*y**2 + x*z), (z, 1, 100))
assert seq.expand(mul=False, power_exp=False) == SeqFormula(exp(x*(y**2 + z)), (z, 1, 100))
def test_sequence():
form = SeqFormula(n**2, (n, 0, 5))
per = SeqPer((1, 2, 3), (n, 0, 5))
inter = SeqFormula(n**2)
assert sequence(n**2, (n, 0, 5)) == form
assert sequence((1, 2, 3), (n, 0, 5)) == per
assert sequence(n**2) == inter
def test_SeqExprOp():
form = SeqFormula(n**2, (n, 0, 10))
per = SeqPer((1, 2, 3), (m, 5, 10))
s = SeqExprOp(form, per)
assert s.gen == (n**2, (1, 2, 3))
assert s.interval == Interval(5, 10)
assert s.start == 5
assert s.stop == 10
assert s.length == 6
assert s.variables == (n, m)
def test_SeqAdd():
per = SeqPer((1, 2, 3), (n, 0, oo))
form = SeqFormula(n**2)
per_bou = SeqPer((1, 2), (n, 1, 5))
form_bou = SeqFormula(n**2, (6, 10))
form_bou2 = SeqFormula(n**2, (1, 5))
assert SeqAdd() == S.EmptySequence
assert SeqAdd(S.EmptySequence) == S.EmptySequence
assert SeqAdd(per) == per
assert SeqAdd(per, S.EmptySequence) == per
assert SeqAdd(per_bou, form_bou) == S.EmptySequence
s = SeqAdd(per_bou, form_bou2, evaluate=False)
assert s.args == (form_bou2, per_bou)
assert s[:] == [2, 6, 10, 18, 26]
assert list(s) == [2, 6, 10, 18, 26]
assert isinstance(SeqAdd(per, per_bou, evaluate=False), SeqAdd)
s1 = SeqAdd(per, per_bou)
assert isinstance(s1, SeqPer)
assert s1 == SeqPer((2, 4, 4, 3, 3, 5), (n, 1, 5))
s2 = SeqAdd(form, form_bou)
assert isinstance(s2, SeqFormula)
assert s2 == SeqFormula(2*n**2, (6, 10))
assert SeqAdd(form, form_bou, per) == \
SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
assert SeqAdd(form, SeqAdd(form_bou, per)) == \
SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
assert SeqAdd(per, SeqAdd(form, form_bou), evaluate=False) == \
SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
assert SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqPer((1, 2), (m, 0, oo))) == \
SeqPer((2, 4), (n, 0, oo))
def test_SeqMul():
per = SeqPer((1, 2, 3), (n, 0, oo))
form = SeqFormula(n**2)
per_bou = SeqPer((1, 2), (n, 1, 5))
form_bou = SeqFormula(n**2, (n, 6, 10))
form_bou2 = SeqFormula(n**2, (1, 5))
assert SeqMul() == S.EmptySequence
assert SeqMul(S.EmptySequence) == S.EmptySequence
assert SeqMul(per) == per
assert SeqMul(per, S.EmptySequence) == S.EmptySequence
assert SeqMul(per_bou, form_bou) == S.EmptySequence
s = SeqMul(per_bou, form_bou2, evaluate=False)
assert s.args == (form_bou2, per_bou)
assert s[:] == [1, 8, 9, 32, 25]
assert list(s) == [1, 8, 9, 32, 25]
assert isinstance(SeqMul(per, per_bou, evaluate=False), SeqMul)
s1 = SeqMul(per, per_bou)
assert isinstance(s1, SeqPer)
assert s1 == SeqPer((1, 4, 3, 2, 2, 6), (n, 1, 5))
s2 = SeqMul(form, form_bou)
assert isinstance(s2, SeqFormula)
assert s2 == SeqFormula(n**4, (6, 10))
assert SeqMul(form, form_bou, per) == \
SeqMul(per, SeqFormula(n**4, (6, 10)))
assert SeqMul(form, SeqMul(form_bou, per)) == \
SeqMul(per, SeqFormula(n**4, (6, 10)))
assert SeqMul(per, SeqMul(form, form_bou2,
evaluate=False), evaluate=False) == \
SeqMul(form, per, form_bou2, evaluate=False)
assert SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqPer((1, 2), (n, 0, oo))) == \
SeqPer((1, 4), (n, 0, oo))
def test_add():
per = SeqPer((1, 2), (n, 0, oo))
form = SeqFormula(n**2)
assert per + (SeqPer((2, 3))) == SeqPer((3, 5), (n, 0, oo))
assert form + SeqFormula(n**3) == SeqFormula(n**2 + n**3)
assert per + form == SeqAdd(per, form)
raises(TypeError, lambda: per + n)
raises(TypeError, lambda: n + per)
def test_sub():
per = SeqPer((1, 2), (n, 0, oo))
form = SeqFormula(n**2)
assert per - (SeqPer((2, 3))) == SeqPer((-1, -1), (n, 0, oo))
assert form - (SeqFormula(n**3)) == SeqFormula(n**2 - n**3)
assert per - form == SeqAdd(per, -form)
raises(TypeError, lambda: per - n)
raises(TypeError, lambda: n - per)
def test_mul__coeff_mul():
assert SeqPer((1, 2), (n, 0, oo)).coeff_mul(2) == SeqPer((2, 4), (n, 0, oo))
assert SeqFormula(n**2).coeff_mul(2) == SeqFormula(2*n**2)
assert S.EmptySequence.coeff_mul(100) == S.EmptySequence
assert SeqPer((1, 2), (n, 0, oo)) * (SeqPer((2, 3))) == \
SeqPer((2, 6), (n, 0, oo))
assert SeqFormula(n**2) * SeqFormula(n**3) == SeqFormula(n**5)
assert S.EmptySequence * SeqFormula(n**2) == S.EmptySequence
assert SeqFormula(n**2) * S.EmptySequence == S.EmptySequence
raises(TypeError, lambda: sequence(n**2) * n)
raises(TypeError, lambda: n * sequence(n**2))
def test_neg():
assert -SeqPer((1, -2), (n, 0, oo)) == SeqPer((-1, 2), (n, 0, oo))
assert -SeqFormula(n**2) == SeqFormula(-n**2)
def test_operations():
per = SeqPer((1, 2), (n, 0, oo))
per2 = SeqPer((2, 4), (n, 0, oo))
form = SeqFormula(n**2)
form2 = SeqFormula(n**3)
assert per + form + form2 == SeqAdd(per, form, form2)
assert per + form - form2 == SeqAdd(per, form, -form2)
assert per + form - S.EmptySequence == SeqAdd(per, form)
assert per + per2 + form == SeqAdd(SeqPer((3, 6), (n, 0, oo)), form)
assert S.EmptySequence - per == -per
assert form + form == SeqFormula(2*n**2)
assert per * form * form2 == SeqMul(per, form, form2)
assert form * form == SeqFormula(n**4)
assert form * -form == SeqFormula(-n**4)
assert form * (per + form2) == SeqMul(form, SeqAdd(per, form2))
assert form * (per + per) == SeqMul(form, per2)
assert form.coeff_mul(m) == SeqFormula(m*n**2, (n, 0, oo))
assert per.coeff_mul(m) == SeqPer((m, 2*m), (n, 0, oo))
def test_Idx_limits():
i = symbols('i', cls=Idx)
r = Indexed('r', i)
assert SeqFormula(r, (i, 0, 5))[:] == [r.subs(i, j) for j in range(6)]
assert SeqPer((1, 2), (i, 0, 5))[:] == [1, 2, 1, 2, 1, 2]
@slow
def test_find_linear_recurrence():
assert sequence((0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55), \
(n, 0, 10)).find_linear_recurrence(11) == [1, 1]
assert sequence((1, 2, 4, 7, 28, 128, 582, 2745, 13021, 61699, 292521, \
1387138), (n, 0, 11)).find_linear_recurrence(12) == [5, -2, 6, -11]
assert sequence(x*n**3+y*n, (n, 0, oo)).find_linear_recurrence(10) \
== [4, -6, 4, -1]
assert sequence(x**n, (n,0,20)).find_linear_recurrence(21) == [x]
assert sequence((1,2,3)).find_linear_recurrence(10, 5) == [0, 0, 1]
assert sequence(((1 + sqrt(5))/2)**n + \
(-(1 + sqrt(5))/2)**(-n)).find_linear_recurrence(10) == [1, 1]
assert sequence(x*((1 + sqrt(5))/2)**n + y*(-(1 + sqrt(5))/2)**(-n), \
(n,0,oo)).find_linear_recurrence(10) == [1, 1]
assert sequence((1,2,3,4,6),(n, 0, 4)).find_linear_recurrence(5) == []
assert sequence((2,3,4,5,6,79),(n, 0, 5)).find_linear_recurrence(6,gfvar=x) \
== ([], None)
assert sequence((2,3,4,5,8,30),(n, 0, 5)).find_linear_recurrence(6,gfvar=x) \
== ([Rational(19, 2), -20, Rational(27, 2)], (-31*x**2 + 32*x - 4)/(27*x**3 - 40*x**2 + 19*x -2))
assert sequence(fibonacci(n)).find_linear_recurrence(30,gfvar=x) \
== ([1, 1], -x/(x**2 + x - 1))
assert sequence(tribonacci(n)).find_linear_recurrence(30,gfvar=x) \
== ([1, 1, 1], -x/(x**3 + x**2 + x - 1))
|
698863d0bb2051b55699430c761d075865b2dfadc20f62303a41da444fccdc11 | from itertools import product as cartes
from sympy import (
limit, exp, oo, log, sqrt, Limit, sin, floor, cos, ceiling,
atan, gamma, Symbol, S, pi, Integral, Rational, I,
tan, cot, integrate, Sum, sign, Function, subfactorial, symbols,
binomial, simplify, frac, Float, sec, zoo, fresnelc, fresnels,
acos, erfi, LambertW, factorial, Ei, EulerGamma)
from sympy.calculus.util import AccumBounds
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.series.limits import heuristics
from sympy.series.order import Order
from sympy.utilities.pytest import XFAIL, raises, nocache_fail
from sympy.abc import x, y, z, k
n = Symbol('n', integer=True, positive=True)
def test_basic1():
assert limit(x, x, oo) is oo
assert limit(x, x, -oo) is -oo
assert limit(-x, x, oo) is -oo
assert limit(x**2, x, -oo) is oo
assert limit(-x**2, x, oo) is -oo
assert limit(x*log(x), x, 0, dir="+") == 0
assert limit(1/x, x, oo) == 0
assert limit(exp(x), x, oo) is oo
assert limit(-exp(x), x, oo) is -oo
assert limit(exp(x)/x, x, oo) is oo
assert limit(1/x - exp(-x), x, oo) == 0
assert limit(x + 1/x, x, oo) is oo
assert limit(x - x**2, x, oo) is -oo
assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1
assert limit((1 + x)**oo, x, 0) is oo
assert limit((1 + x)**oo, x, 0, dir='-') == 0
assert limit((1 + x + y)**oo, x, 0, dir='-') == (1 + y)**(oo)
assert limit(y/x/log(x), x, 0) == -oo*sign(y)
assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo
assert limit(gamma(1/x + 3), x, oo) == 2
assert limit(S.NaN, x, -oo) is S.NaN
assert limit(Order(2)*x, x, S.NaN) is S.NaN
assert limit(1/(x - 1), x, 1, dir="+") is oo
assert limit(1/(x - 1), x, 1, dir="-") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="-") is oo
assert limit(1/sin(x), x, pi, dir="+") is -oo
assert limit(1/sin(x), x, pi, dir="-") is oo
assert limit(1/cos(x), x, pi/2, dir="+") is -oo
assert limit(1/cos(x), x, pi/2, dir="-") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo
# test bi-directional limits
assert limit(sin(x)/x, x, 0, dir="+-") == 1
assert limit(x**2, x, 0, dir="+-") == 0
assert limit(1/x**2, x, 0, dir="+-") is oo
# test failing bi-directional limits
raises(ValueError, lambda: limit(1/x, x, 0, dir="+-"))
# approaching 0
# from dir="+"
assert limit(1 + 1/x, x, 0) is oo
# from dir='-'
# Add
assert limit(1 + 1/x, x, 0, dir='-') is -oo
# Pow
assert limit(x**(-2), x, 0, dir='-') is oo
assert limit(x**(-3), x, 0, dir='-') is -oo
assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I
assert limit(x**2, x, 0, dir='-') == 0
assert limit(sqrt(x), x, 0, dir='-') == 0
assert limit(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi))
assert limit((1 + cos(x))**oo, x, 0) is oo
def test_basic2():
assert limit(x**x, x, 0, dir="+") == 1
assert limit((exp(x) - 1)/x, x, 0) == 1
assert limit(1 + 1/x, x, oo) == 1
assert limit(-exp(1/x), x, oo) == -1
assert limit(x + exp(-x), x, oo) is oo
assert limit(x + exp(-x**2), x, oo) is oo
assert limit(x + exp(-exp(x)), x, oo) is oo
assert limit(13 + 1/x - exp(-x), x, oo) == 13
def test_basic3():
assert limit(1/x, x, 0, dir="+") is oo
assert limit(1/x, x, 0, dir="-") is -oo
def test_basic4():
assert limit(2*x + y*x, x, 0) == 0
assert limit(2*x + y*x, x, 1) == 2 + y
assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0
assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9
def test_basic5():
class my(Function):
@classmethod
def eval(cls, arg):
if arg is S.Infinity:
return S.NaN
assert limit(my(x), x, oo) == Limit(my(x), x, oo)
def test_issue_3885():
assert limit(x*y + x*z, z, 2) == x*y + 2*x
def test_Limit():
assert Limit(sin(x)/x, x, 0) != 1
assert Limit(sin(x)/x, x, 0).doit() == 1
assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-'))
def test_floor():
assert limit(floor(x), x, -2, "+") == -2
assert limit(floor(x), x, -2, "-") == -3
assert limit(floor(x), x, -1, "+") == -1
assert limit(floor(x), x, -1, "-") == -2
assert limit(floor(x), x, 0, "+") == 0
assert limit(floor(x), x, 0, "-") == -1
assert limit(floor(x), x, 1, "+") == 1
assert limit(floor(x), x, 1, "-") == 0
assert limit(floor(x), x, 2, "+") == 2
assert limit(floor(x), x, 2, "-") == 1
assert limit(floor(x), x, 248, "+") == 248
assert limit(floor(x), x, 248, "-") == 247
def test_floor_requires_robust_assumptions():
assert limit(floor(sin(x)), x, 0, "+") == 0
assert limit(floor(sin(x)), x, 0, "-") == -1
assert limit(floor(cos(x)), x, 0, "+") == 0
assert limit(floor(cos(x)), x, 0, "-") == 0
assert limit(floor(5 + sin(x)), x, 0, "+") == 5
assert limit(floor(5 + sin(x)), x, 0, "-") == 4
assert limit(floor(5 + cos(x)), x, 0, "+") == 5
assert limit(floor(5 + cos(x)), x, 0, "-") == 5
def test_ceiling():
assert limit(ceiling(x), x, -2, "+") == -1
assert limit(ceiling(x), x, -2, "-") == -2
assert limit(ceiling(x), x, -1, "+") == 0
assert limit(ceiling(x), x, -1, "-") == -1
assert limit(ceiling(x), x, 0, "+") == 1
assert limit(ceiling(x), x, 0, "-") == 0
assert limit(ceiling(x), x, 1, "+") == 2
assert limit(ceiling(x), x, 1, "-") == 1
assert limit(ceiling(x), x, 2, "+") == 3
assert limit(ceiling(x), x, 2, "-") == 2
assert limit(ceiling(x), x, 248, "+") == 249
assert limit(ceiling(x), x, 248, "-") == 248
def test_ceiling_requires_robust_assumptions():
assert limit(ceiling(sin(x)), x, 0, "+") == 1
assert limit(ceiling(sin(x)), x, 0, "-") == 0
assert limit(ceiling(cos(x)), x, 0, "+") == 1
assert limit(ceiling(cos(x)), x, 0, "-") == 1
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6
def test_atan():
x = Symbol("x", real=True)
assert limit(atan(x)*sin(1/x), x, 0) == 0
assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2
def test_abs():
assert limit(abs(x), x, 0) == 0
assert limit(abs(sin(x)), x, 0) == 0
assert limit(abs(cos(x)), x, 0) == 1
assert limit(abs(sin(x + 1)), x, 0) == sin(1)
def test_heuristic():
x = Symbol("x", real=True)
assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1)
assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2)
def test_issue_3871():
z = Symbol("z", positive=True)
f = -1/z*exp(-z*x)
assert limit(f, x, oo) == 0
assert f.limit(x, oo) == 0
def test_exponential():
n = Symbol('n')
x = Symbol('x', real=True)
assert limit((1 + x/n)**n, n, oo) == exp(x)
assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2)
assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2)
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2)
assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1
assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3'))
@XFAIL
def test_exponential2():
n = Symbol('n')
assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x)
def test_doit():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
assert l.doit() is oo
def test_AccumBounds():
assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2)
assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3)
# not the exact bound
assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2)
# test for issue #9934
t1 = Mul(S.Half, 1/(-1 + cos(1)), Add(AccumBounds(-3, 1), cos(1)))
assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1
t2 = Mul(S.Half, Add(AccumBounds(-2, 2), sin(1)), 1/(-cos(1) + 1))
assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2
assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo)
assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo)
# Possible improvement: AccumBounds(0, 1)
@XFAIL
def test_doit2():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
# limit() breaks on the contained Integral.
assert l.doit(deep=False) == l
def test_issue_3792():
assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half)
assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1))
assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1)
def test_issue_4090():
assert limit(1/(x + 3), x, 2) == Rational(1, 5)
assert limit(1/(x + pi), x, 2) == S.One/(2 + pi)
assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7
assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi)
def test_issue_4547():
assert limit(cot(x), x, 0, dir='+') is oo
assert limit(cot(x), x, pi/2, dir='+') == 0
def test_issue_5164():
assert limit(x**0.5, x, oo) == oo**0.5 is oo
assert limit(x**0.5, x, 16) == S(16)**0.5
assert limit(x**0.5, x, 0) == 0
assert limit(x**(-0.5), x, oo) == 0
assert limit(x**(-0.5), x, 4) == S(4)**(-0.5)
def test_issue_5183():
# using list(...) so py.test can recalculate values
tests = list(cartes([x, -x],
[-1, 1],
[2, 3, S.Half, Rational(2, 3)],
['-', '+']))
results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo,
0, 0, 0, 0, 0, 0, 0, 0,
oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3),
0, 0, 0, 0, 0, 0, 0, 0)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
y, s, e, d = args
eq = y**(s*e)
try:
assert limit(eq, x, 0, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, d, limit(eq, x, 0, dir=d))
else:
assert None
def test_issue_5184():
assert limit(sin(x)/x, x, oo) == 0
assert limit(atan(x), x, oo) == pi/2
assert limit(gamma(x), x, oo) is oo
assert limit(cos(x)/x, x, oo) == 0
assert limit(gamma(x), x, S.Half) == sqrt(pi)
r = Symbol('r', real=True)
assert limit(r*sin(1/r), r, 0) == 0
def test_issue_5229():
assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0
def test_issue_4546():
# using list(...) so py.test can recalculate values
tests = list(cartes([cot, tan],
[-pi/2, 0, pi/2, pi, pi*Rational(3, 2)],
['-', '+']))
results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0,
oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
f, l, d = args
eq = f(x)
try:
assert limit(eq, x, l, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, l, d, limit(eq, x, l, dir=d))
else:
assert None
def test_issue_3934():
assert limit((1 + x**log(3))**(1/x), x, 0) == 1
assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5
def test_calculate_series():
# needs gruntz calculate_series to go to n = 32
assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1
# needs gruntz calculate_series to go to n = 128
assert limit(x**101.1/(1 + x**101.1), x, oo) == 1
def test_issue_5955():
assert limit((x**16)/(1 + x**16), x, oo) == 1
assert limit((x**100)/(1 + x**100), x, oo) == 1
assert limit((x**1885)/(1 + x**1885), x, oo) == 1
assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1
def test_newissue():
assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1
def test_extended_real_line():
assert limit(x - oo, x, oo) is -oo
assert limit(oo - x, x, -oo) is oo
assert limit(x**2/(x - 5) - oo, x, oo) is -oo
assert limit(1/(x + sin(x)) - oo, x, 0) is -oo
assert limit(oo/x, x, oo) is oo
assert limit(x - oo + 1/x, x, oo) is -oo
assert limit(x - oo + 1/x, x, 0) is -oo
@XFAIL
def test_order_oo():
x = Symbol('x', positive=True)
assert Order(x)*oo != Order(1, x)
assert limit(oo/(x**2 - 4), x, oo) is oo
def test_issue_5436():
raises(NotImplementedError, lambda: limit(exp(x*y), x, oo))
raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo))
def test_Limit_dir():
raises(TypeError, lambda: Limit(x, x, 0, dir=0))
raises(ValueError, lambda: Limit(x, x, 0, dir='0'))
def test_polynomial():
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1
def test_rational():
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z)
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z)
def test_issue_5740():
assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z)
def test_issue_6366():
n = Symbol('n', integer=True, positive=True)
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
assert limit(r, x, 1).simplify() == n/2
def test_factorial():
from sympy import factorial, E
f = factorial(x)
assert limit(f, x, oo) is oo
assert limit(x/f, x, oo) == 0
# see Stirling's approximation:
# https://en.wikipedia.org/wiki/Stirling's_approximation
assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1
assert limit(f, x, -oo) == factorial(-oo)
assert limit(f, x, x**2) == factorial(x**2)
assert limit(f, x, -x**2) == factorial(-x**2)
def test_issue_6560():
e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) +
35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1)))
assert limit(e, y, oo) == (5*x**3 + 3*x**2 - 3*x - 1)/4
def test_issue_5172():
n = Symbol('n')
r = Symbol('r', positive=True)
c = Symbol('c')
p = Symbol('p', positive=True)
m = Symbol('m', negative=True)
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c +
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
expr = expr.subs(c, c + 1)
raises(NotImplementedError, lambda: limit(expr, n, oo))
assert limit(expr.subs(c, m), n, oo) == 1
assert limit(expr.subs(c, p), n, oo).simplify() == \
(2**(p + 1) + r - 1)/(r + 1)**(p + 1)
def test_issue_7088():
a = Symbol('a')
assert limit(sqrt(x/(x + a)), x, oo) == 1
def test_issue_6364():
a = Symbol('a')
e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2)
assert limit(e, z, 0).simplify() == 2/cos(2*a)
def test_issue_4099():
a = Symbol('a')
assert limit(a/x, x, 0) == oo*sign(a)
assert limit(-a/x, x, 0) == -oo*sign(a)
assert limit(-a*x, x, oo) == -oo*sign(a)
assert limit(a*x, x, oo) == oo*sign(a)
def test_issue_4503():
dx = Symbol('dx')
assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \
exp(x)/(2*sqrt(exp(x) + 1))
def test_issue_8730():
assert limit(subfactorial(x), x, oo) is oo
def test_issue_10801():
# make sure limits work with binomial
assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi
def test_issue_9205():
x, y, a = symbols('x, y, a')
assert Limit(x, x, a).free_symbols == {a}
assert Limit(x, x, a, '-').free_symbols == {a}
assert Limit(x + y, x + y, a).free_symbols == {a}
assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a}
def test_issue_11879():
assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1)
def test_limit_with_Float():
k = symbols("k")
assert limit(1.0 ** k, k, oo) == 1
assert limit(0.3*1.0**k, k, oo) == Float(0.3)
def test_issue_10610():
assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3)
def test_issue_6599():
assert limit((n + cos(n))/n, n, oo) == 1
def test_issue_12555():
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo
def test_issue_13332():
assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) *
(6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36)
def test_issue_12564():
assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo
assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, oo) is oo
assert limit(((x + sin(x))**2).expand(), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, -oo) is oo
assert limit(((x + sin(x))**2).expand(), x, -oo) is oo
def test_issue_14456():
raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit())
raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit())
def test_issue_14411():
assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo
def test_issue_14574():
assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0
def test_issue_10102():
assert limit(fresnels(x), x, oo) == S.Half
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half
assert limit(5*fresnels(x), x, oo) == Rational(5, 2)
assert limit(fresnelc(x), x, oo) == S.Half
assert limit(fresnels(x), x, -oo) == Rational(-1, 2)
assert limit(4*fresnelc(x), x, -oo) == -2
def test_issue_14377():
raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo))
def test_issue_15984():
assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-').doit() == 0
@nocache_fail
def test_issue_13575():
# This fails with infinite recursion when run without the cache:
result = limit(acos(erfi(x)), x, 1)
assert isinstance(result, Add)
re, im = result.evalf().as_real_imag()
assert abs(re) < 1e-12
assert abs(im - 1.08633774961570) < 1e-12
def test_issue_17325():
assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1
assert Limit(x**2, x, 0, dir="+-").doit() == 0
assert Limit(1/x**2, x, 0, dir="+-").doit() is oo
raises(ValueError, lambda: Limit(1/x, x, 0, dir="+-").doit())
def test_issue_10978():
assert LambertW(x).limit(x, 0) == 0
@XFAIL
def test_issue_14313_comment():
assert limit(floor(n/2), n, oo) is oo
@XFAIL
def test_issue_15323():
d = ((1 - 1/x)**x).diff(x)
assert limit(d, x, 1, dir='+') == 1
def test_issue_12571():
assert limit(-LambertW(-log(x))/log(x), x, 1) == 1
def test_issue_14590():
assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1)
def test_issue_17431():
assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) *
(n + 2) * factorial(n) / (n + 1), n, oo) == 0
assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1))
, n, oo) == 0
assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0
def test_issue_17671():
assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma
|
6e327ab887794cb17c01d3fa83d317d490fe48d83619afb660428c6f91f55ddb | from sympy import sqrt, root, Symbol, sqrtdenest, Integral, cos, Rational, I
from sympy.simplify.sqrtdenest import _subsets as subsets
from sympy.simplify.sqrtdenest import _sqrt_match
from sympy.utilities.pytest import slow
r2, r3, r5, r6, r7, r10, r15, r29 = [sqrt(x) for x in [2, 3, 5, 6, 7, 10,
15, 29]]
def test_sqrtdenest():
d = {sqrt(5 + 2 * r6): r2 + r3,
sqrt(5. + 2 * r6): sqrt(5. + 2 * r6),
sqrt(5. + 4*sqrt(5 + 2 * r6)): sqrt(5.0 + 4*r2 + 4*r3),
sqrt(r2): sqrt(r2),
sqrt(5 + r7): sqrt(5 + r7),
sqrt(3 + sqrt(5 + 2*r7)):
3*r2*(5 + 2*r7)**Rational(1, 4)/(2*sqrt(6 + 3*r7)) +
r2*sqrt(6 + 3*r7)/(2*(5 + 2*r7)**Rational(1, 4)),
sqrt(3 + 2*r3): 3**Rational(3, 4)*(r6/2 + 3*r2/2)/3}
for i in d:
assert sqrtdenest(i) == d[i]
def test_sqrtdenest2():
assert sqrtdenest(sqrt(16 - 2*r29 + 2*sqrt(55 - 10*r29))) == \
r5 + sqrt(11 - 2*r29)
e = sqrt(-r5 + sqrt(-2*r29 + 2*sqrt(-10*r29 + 55) + 16))
assert sqrtdenest(e) == root(-2*r29 + 11, 4)
r = sqrt(1 + r7)
assert sqrtdenest(sqrt(1 + r)) == sqrt(1 + r)
e = sqrt(((1 + sqrt(1 + 2*sqrt(3 + r2 + r5)))**2).expand())
assert sqrtdenest(e) == 1 + sqrt(1 + 2*sqrt(r2 + r5 + 3))
assert sqrtdenest(sqrt(5*r3 + 6*r2)) == \
sqrt(2)*root(3, 4) + root(3, 4)**3
assert sqrtdenest(sqrt(((1 + r5 + sqrt(1 + r3))**2).expand())) == \
1 + r5 + sqrt(1 + r3)
assert sqrtdenest(sqrt(((1 + r5 + r7 + sqrt(1 + r3))**2).expand())) == \
1 + sqrt(1 + r3) + r5 + r7
e = sqrt(((1 + cos(2) + cos(3) + sqrt(1 + r3))**2).expand())
assert sqrtdenest(e) == cos(3) + cos(2) + 1 + sqrt(1 + r3)
e = sqrt(-2*r10 + 2*r2*sqrt(-2*r10 + 11) + 14)
assert sqrtdenest(e) == sqrt(-2*r10 - 2*r2 + 4*r5 + 14)
# check that the result is not more complicated than the input
z = sqrt(-2*r29 + cos(2) + 2*sqrt(-10*r29 + 55) + 16)
assert sqrtdenest(z) == z
assert sqrtdenest(sqrt(r6 + sqrt(15))) == sqrt(r6 + sqrt(15))
z = sqrt(15 - 2*sqrt(31) + 2*sqrt(55 - 10*r29))
assert sqrtdenest(z) == z
def test_sqrtdenest_rec():
assert sqrtdenest(sqrt(-4*sqrt(14) - 2*r6 + 4*sqrt(21) + 33)) == \
-r2 + r3 + 2*r7
assert sqrtdenest(sqrt(-28*r7 - 14*r5 + 4*sqrt(35) + 82)) == \
-7 + r5 + 2*r7
assert sqrtdenest(sqrt(6*r2/11 + 2*sqrt(22)/11 + 6*sqrt(11)/11 + 2)) == \
sqrt(11)*(r2 + 3 + sqrt(11))/11
assert sqrtdenest(sqrt(468*r3 + 3024*r2 + 2912*r6 + 19735)) == \
9*r3 + 26 + 56*r6
z = sqrt(-490*r3 - 98*sqrt(115) - 98*sqrt(345) - 2107)
assert sqrtdenest(z) == sqrt(-1)*(7*r5 + 7*r15 + 7*sqrt(23))
z = sqrt(-4*sqrt(14) - 2*r6 + 4*sqrt(21) + 34)
assert sqrtdenest(z) == z
assert sqrtdenest(sqrt(-8*r2 - 2*r5 + 18)) == -r10 + 1 + r2 + r5
assert sqrtdenest(sqrt(8*r2 + 2*r5 - 18)) == \
sqrt(-1)*(-r10 + 1 + r2 + r5)
assert sqrtdenest(sqrt(8*r2/3 + 14*r5/3 + Rational(154, 9))) == \
-r10/3 + r2 + r5 + 3
assert sqrtdenest(sqrt(sqrt(2*r6 + 5) + sqrt(2*r7 + 8))) == \
sqrt(1 + r2 + r3 + r7)
assert sqrtdenest(sqrt(4*r15 + 8*r5 + 12*r3 + 24)) == 1 + r3 + r5 + r15
w = 1 + r2 + r3 + r5 + r7
assert sqrtdenest(sqrt((w**2).expand())) == w
z = sqrt((w**2).expand() + 1)
assert sqrtdenest(z) == z
z = sqrt(2*r10 + 6*r2 + 4*r5 + 12 + 10*r15 + 30*r3)
assert sqrtdenest(z) == z
def test_issue_6241():
z = sqrt( -320 + 32*sqrt(5) + 64*r15)
assert sqrtdenest(z) == z
def test_sqrtdenest3():
z = sqrt(13 - 2*r10 + 2*r2*sqrt(-2*r10 + 11))
assert sqrtdenest(z) == -1 + r2 + r10
assert sqrtdenest(z, max_iter=1) == -1 + sqrt(2) + sqrt(10)
z = sqrt(sqrt(r2 + 2) + 2)
assert sqrtdenest(z) == z
assert sqrtdenest(sqrt(-2*r10 + 4*r2*sqrt(-2*r10 + 11) + 20)) == \
sqrt(-2*r10 - 4*r2 + 8*r5 + 20)
assert sqrtdenest(sqrt((112 + 70*r2) + (46 + 34*r2)*r5)) == \
r10 + 5 + 4*r2 + 3*r5
z = sqrt(5 + sqrt(2*r6 + 5)*sqrt(-2*r29 + 2*sqrt(-10*r29 + 55) + 16))
r = sqrt(-2*r29 + 11)
assert sqrtdenest(z) == sqrt(r2*r + r3*r + r10 + r15 + 5)
@slow
def test_sqrtdenest3_slow():
# Slow because of the equals, not the sqrtdenest
# Using == does not work as 7*(sqrt(-2*r29 + 11) + r5) is expanded
# automatically
n = sqrt(2*r6/7 + 2*r7/7 + 2*sqrt(42)/7 + 2)
d = sqrt(16 - 2*r29 + 2*sqrt(55 - 10*r29))
assert sqrtdenest(n/d).equals(
r7*(1 + r6 + r7)/(7*(sqrt(-2*r29 + 11) + r5)))
def test_sqrtdenest4():
# see Denest_en.pdf in https://github.com/sympy/sympy/issues/3192
z = sqrt(8 - r2*sqrt(5 - r5) - sqrt(3)*(1 + r5))
z1 = sqrtdenest(z)
c = sqrt(-r5 + 5)
z1 = ((-r15*c - r3*c + c + r5*c - r6 - r2 + r10 + sqrt(30))/4).expand()
assert sqrtdenest(z) == z1
z = sqrt(2*r2*sqrt(r2 + 2) + 5*r2 + 4*sqrt(r2 + 2) + 8)
assert sqrtdenest(z) == r2 + sqrt(r2 + 2) + 2
w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
z = sqrt((w**2).expand())
assert sqrtdenest(z) == w.expand()
def test_sqrt_symbolic_denest():
x = Symbol('x')
z = sqrt(((1 + sqrt(sqrt(2 + x) + 3))**2).expand())
assert sqrtdenest(z) == sqrt((1 + sqrt(sqrt(2 + x) + 3))**2)
z = sqrt(((1 + sqrt(sqrt(2 + cos(1)) + 3))**2).expand())
assert sqrtdenest(z) == 1 + sqrt(sqrt(2 + cos(1)) + 3)
z = ((1 + cos(2))**4 + 1).expand()
assert sqrtdenest(z) == z
z = sqrt(((1 + sqrt(sqrt(2 + cos(3*x)) + 3))**2 + 1).expand())
assert sqrtdenest(z) == z
c = cos(3)
c2 = c**2
assert sqrtdenest(sqrt(2*sqrt(1 + r3)*c + c2 + 1 + r3*c2)) == \
-1 - sqrt(1 + r3)*c
ra = sqrt(1 + r3)
z = sqrt(20*ra*sqrt(3 + 3*r3) + 12*r3*ra*sqrt(3 + 3*r3) + 64*r3 + 112)
assert sqrtdenest(z) == z
def test_issue_5857():
from sympy.abc import x, y
z = sqrt(1/(4*r3 + 7) + 1)
ans = (r2 + r6)/(r3 + 2)
assert sqrtdenest(z) == ans
assert sqrtdenest(1 + z) == 1 + ans
assert sqrtdenest(Integral(z + 1, (x, 1, 2))) == \
Integral(1 + ans, (x, 1, 2))
assert sqrtdenest(x + sqrt(y)) == x + sqrt(y)
ans = (r2 + r6)/(r3 + 2)
assert sqrtdenest(z) == ans
assert sqrtdenest(1 + z) == 1 + ans
assert sqrtdenest(Integral(z + 1, (x, 1, 2))) == \
Integral(1 + ans, (x, 1, 2))
assert sqrtdenest(x + sqrt(y)) == x + sqrt(y)
def test_subsets():
assert subsets(1) == [[1]]
assert subsets(4) == [
[1, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 0], [1, 0, 1, 0],
[0, 1, 1, 0], [1, 1, 1, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1],
[1, 1, 0, 1], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1]]
def test_issue_5653():
assert sqrtdenest(
sqrt(2 + sqrt(2 + sqrt(2)))) == sqrt(2 + sqrt(2 + sqrt(2)))
def test_issue_12420():
assert sqrtdenest((3 - sqrt(2)*sqrt(4 + 3*I) + 3*I)/2) == I
e = 3 - sqrt(2)*sqrt(4 + I) + 3*I
assert sqrtdenest(e) == e
def test_sqrt_ratcomb():
assert sqrtdenest(sqrt(1 + r3) + sqrt(3 + 3*r3) - sqrt(10 + 6*r3)) == 0
def test_issue_18041():
e = -sqrt(-2 + 2*sqrt(3)*I)
assert sqrtdenest(e) == -1 - sqrt(3)*I
|
0c4e41e805931a3ad95ef3c4570ee661177f380516dabe048489218547beded8 | from sympy import (
Add, Mul, S, Symbol, cos, cot, pi, I, sin, sqrt, tan, root, csc, sec,
powsimp, symbols, sinh, cosh, tanh, coth, sech, csch, Dummy, Rational)
from sympy.simplify.fu import (
L, TR1, TR10, TR10i, TR11, TR12, TR12i, TR13, TR14, TR15, TR16,
TR111, TR2, TR2i, TR3, TR5, TR6, TR7, TR8, TR9, TRmorrie, _TR56 as T,
TRpower, hyper_as_trig, fu, process_common_addends, trig_split,
as_f_sign_1)
from sympy.utilities.randtest import verify_numerically
from sympy.core.compatibility import range
from sympy.abc import a, b, c, x, y, z
def test_TR1():
assert TR1(2*csc(x) + sec(x)) == 1/cos(x) + 2/sin(x)
def test_TR2():
assert TR2(tan(x)) == sin(x)/cos(x)
assert TR2(cot(x)) == cos(x)/sin(x)
assert TR2(tan(tan(x) - sin(x)/cos(x))) == 0
def test_TR2i():
# just a reminder that ratios of powers only simplify if both
# numerator and denominator satisfy the condition that each
# has a positive base or an integer exponent; e.g. the following,
# at y=-1, x=1/2 gives sqrt(2)*I != -sqrt(2)*I
assert powsimp(2**x/y**x) != (2/y)**x
assert TR2i(sin(x)/cos(x)) == tan(x)
assert TR2i(sin(x)*sin(y)/cos(x)) == tan(x)*sin(y)
assert TR2i(1/(sin(x)/cos(x))) == 1/tan(x)
assert TR2i(1/(sin(x)*sin(y)/cos(x))) == 1/tan(x)/sin(y)
assert TR2i(sin(x)/2/(cos(x) + 1)) == sin(x)/(cos(x) + 1)/2
assert TR2i(sin(x)/2/(cos(x) + 1), half=True) == tan(x/2)/2
assert TR2i(sin(1)/(cos(1) + 1), half=True) == tan(S.Half)
assert TR2i(sin(2)/(cos(2) + 1), half=True) == tan(1)
assert TR2i(sin(4)/(cos(4) + 1), half=True) == tan(2)
assert TR2i(sin(5)/(cos(5) + 1), half=True) == tan(5*S.Half)
assert TR2i((cos(1) + 1)/sin(1), half=True) == 1/tan(S.Half)
assert TR2i((cos(2) + 1)/sin(2), half=True) == 1/tan(1)
assert TR2i((cos(4) + 1)/sin(4), half=True) == 1/tan(2)
assert TR2i((cos(5) + 1)/sin(5), half=True) == 1/tan(5*S.Half)
assert TR2i((cos(1) + 1)**(-a)*sin(1)**a, half=True) == tan(S.Half)**a
assert TR2i((cos(2) + 1)**(-a)*sin(2)**a, half=True) == tan(1)**a
assert TR2i((cos(4) + 1)**(-a)*sin(4)**a, half=True) == (cos(4) + 1)**(-a)*sin(4)**a
assert TR2i((cos(5) + 1)**(-a)*sin(5)**a, half=True) == (cos(5) + 1)**(-a)*sin(5)**a
assert TR2i((cos(1) + 1)**a*sin(1)**(-a), half=True) == tan(S.Half)**(-a)
assert TR2i((cos(2) + 1)**a*sin(2)**(-a), half=True) == tan(1)**(-a)
assert TR2i((cos(4) + 1)**a*sin(4)**(-a), half=True) == (cos(4) + 1)**a*sin(4)**(-a)
assert TR2i((cos(5) + 1)**a*sin(5)**(-a), half=True) == (cos(5) + 1)**a*sin(5)**(-a)
i = symbols('i', integer=True)
assert TR2i(((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**(-i)
assert TR2i(1/((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**i
def test_TR3():
assert TR3(cos(y - x*(y - x))) == cos(x*(x - y) + y)
assert cos(pi/2 + x) == -sin(x)
assert cos(30*pi/2 + x) == -cos(x)
for f in (cos, sin, tan, cot, csc, sec):
i = f(pi*Rational(3, 7))
j = TR3(i)
assert verify_numerically(i, j) and i.func != j.func
def test__TR56():
h = lambda x: 1 - x
assert T(sin(x)**3, sin, cos, h, 4, False) == sin(x)**3
assert T(sin(x)**10, sin, cos, h, 4, False) == sin(x)**10
assert T(sin(x)**6, sin, cos, h, 6, False) == (-cos(x)**2 + 1)**3
assert T(sin(x)**6, sin, cos, h, 6, True) == sin(x)**6
assert T(sin(x)**8, sin, cos, h, 10, True) == (-cos(x)**2 + 1)**4
# issue 17137
assert T(sin(x)**I, sin, cos, h, 4, True) == sin(x)**I
assert T(sin(x)**(2*I + 1), sin, cos, h, 4, True) == sin(x)**(2*I + 1)
def test_TR5():
assert TR5(sin(x)**2) == -cos(x)**2 + 1
assert TR5(sin(x)**-2) == sin(x)**(-2)
assert TR5(sin(x)**4) == (-cos(x)**2 + 1)**2
def test_TR6():
assert TR6(cos(x)**2) == -sin(x)**2 + 1
assert TR6(cos(x)**-2) == cos(x)**(-2)
assert TR6(cos(x)**4) == (-sin(x)**2 + 1)**2
def test_TR7():
assert TR7(cos(x)**2) == cos(2*x)/2 + S.Half
assert TR7(cos(x)**2 + 1) == cos(2*x)/2 + Rational(3, 2)
def test_TR8():
assert TR8(cos(2)*cos(3)) == cos(5)/2 + cos(1)/2
assert TR8(cos(2)*sin(3)) == sin(5)/2 + sin(1)/2
assert TR8(sin(2)*sin(3)) == -cos(5)/2 + cos(1)/2
assert TR8(sin(1)*sin(2)*sin(3)) == sin(4)/4 - sin(6)/4 + sin(2)/4
assert TR8(cos(2)*cos(3)*cos(4)*cos(5)) == \
cos(4)/4 + cos(10)/8 + cos(2)/8 + cos(8)/8 + cos(14)/8 + \
cos(6)/8 + Rational(1, 8)
assert TR8(cos(2)*cos(3)*cos(4)*cos(5)*cos(6)) == \
cos(10)/8 + cos(4)/8 + 3*cos(2)/16 + cos(16)/16 + cos(8)/8 + \
cos(14)/16 + cos(20)/16 + cos(12)/16 + Rational(1, 16) + cos(6)/8
assert TR8(sin(pi*Rational(3, 7))**2*cos(pi*Rational(3, 7))**2/(16*sin(pi/7)**2)) == Rational(1, 64)
def test_TR9():
a = S.Half
b = 3*a
assert TR9(a) == a
assert TR9(cos(1) + cos(2)) == 2*cos(a)*cos(b)
assert TR9(cos(1) - cos(2)) == 2*sin(a)*sin(b)
assert TR9(sin(1) - sin(2)) == -2*sin(a)*cos(b)
assert TR9(sin(1) + sin(2)) == 2*sin(b)*cos(a)
assert TR9(cos(1) + 2*sin(1) + 2*sin(2)) == cos(1) + 4*sin(b)*cos(a)
assert TR9(cos(4) + cos(2) + 2*cos(1)*cos(3)) == 4*cos(1)*cos(3)
assert TR9((cos(4) + cos(2))/cos(3)/2 + cos(3)) == 2*cos(1)*cos(2)
assert TR9(cos(3) + cos(4) + cos(5) + cos(6)) == \
4*cos(S.Half)*cos(1)*cos(Rational(9, 2))
assert TR9(cos(3) + cos(3)*cos(2)) == cos(3) + cos(2)*cos(3)
assert TR9(-cos(y) + cos(x*y)) == -2*sin(x*y/2 - y/2)*sin(x*y/2 + y/2)
assert TR9(-sin(y) + sin(x*y)) == 2*sin(x*y/2 - y/2)*cos(x*y/2 + y/2)
c = cos(x)
s = sin(x)
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
for a in ((c, s), (s, c), (cos(x), cos(x*y)), (sin(x), sin(x*y))):
args = zip(si, a)
ex = Add(*[Mul(*ai) for ai in args])
t = TR9(ex)
assert not (a[0].func == a[1].func and (
not verify_numerically(ex, t.expand(trig=True)) or t.is_Add)
or a[1].func != a[0].func and ex != t)
def test_TR10():
assert TR10(cos(a + b)) == -sin(a)*sin(b) + cos(a)*cos(b)
assert TR10(sin(a + b)) == sin(a)*cos(b) + sin(b)*cos(a)
assert TR10(sin(a + b + c)) == \
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
(sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
assert TR10(cos(a + b + c)) == \
(-sin(a)*sin(b) + cos(a)*cos(b))*cos(c) - \
(sin(a)*cos(b) + sin(b)*cos(a))*sin(c)
def test_TR10i():
assert TR10i(cos(1)*cos(3) + sin(1)*sin(3)) == cos(2)
assert TR10i(cos(1)*cos(3) - sin(1)*sin(3)) == cos(4)
assert TR10i(cos(1)*sin(3) - sin(1)*cos(3)) == sin(2)
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3)) == sin(4)
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + 7) == sin(4) + 7
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3)) == cos(3) + sin(4)
assert TR10i(2*cos(1)*sin(3) + 2*sin(1)*cos(3) + cos(3)) == \
2*sin(4) + cos(3)
assert TR10i(cos(2)*cos(3) + sin(2)*(cos(1)*sin(2) + cos(2)*sin(1))) == \
cos(1)
eq = (cos(2)*cos(3) + sin(2)*(
cos(1)*sin(2) + cos(2)*sin(1)))*cos(5) + sin(1)*sin(5)
assert TR10i(eq) == TR10i(eq.expand()) == cos(4)
assert TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x) == \
2*sqrt(2)*x*sin(x + pi/6)
assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
cos(x)/sqrt(6)/3 + sin(x)/sqrt(2)/3) == 4*sqrt(6)*sin(x + pi/6)/9
assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
cos(y)/sqrt(6)/3 + sin(y)/sqrt(2)/3) == \
sqrt(6)*sin(x + pi/6)/3 + sqrt(6)*sin(y + pi/6)/9
assert TR10i(cos(x) + sqrt(3)*sin(x) + 2*sqrt(3)*cos(x + pi/6)) == 4*cos(x)
assert TR10i(cos(x) + sqrt(3)*sin(x) +
2*sqrt(3)*cos(x + pi/6) + 4*sin(x)) == 4*sqrt(2)*sin(x + pi/4)
assert TR10i(cos(2)*sin(3) + sin(2)*cos(4)) == \
sin(2)*cos(4) + sin(3)*cos(2)
A = Symbol('A', commutative=False)
assert TR10i(sqrt(2)*cos(x)*A + sqrt(6)*sin(x)*A) == \
2*sqrt(2)*sin(x + pi/6)*A
c = cos(x)
s = sin(x)
h = sin(y)
r = cos(y)
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
for argsi in ((c*r, s*h), (c*h, s*r)): # explicit 2-args
args = zip(si, argsi)
ex = Add(*[Mul(*ai) for ai in args])
t = TR10i(ex)
assert not (ex - t.expand(trig=True) or t.is_Add)
c = cos(x)
s = sin(x)
h = sin(pi/6)
r = cos(pi/6)
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
for argsi in ((c*r, s*h), (c*h, s*r)): # induced
args = zip(si, argsi)
ex = Add(*[Mul(*ai) for ai in args])
t = TR10i(ex)
assert not (ex - t.expand(trig=True) or t.is_Add)
def test_TR11():
assert TR11(sin(2*x)) == 2*sin(x)*cos(x)
assert TR11(sin(4*x)) == 4*((-sin(x)**2 + cos(x)**2)*sin(x)*cos(x))
assert TR11(sin(x*Rational(4, 3))) == \
4*((-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3))
assert TR11(cos(2*x)) == -sin(x)**2 + cos(x)**2
assert TR11(cos(4*x)) == \
(-sin(x)**2 + cos(x)**2)**2 - 4*sin(x)**2*cos(x)**2
assert TR11(cos(2)) == cos(2)
assert TR11(cos(pi*Rational(3, 7)), pi*Rational(2, 7)) == -cos(pi*Rational(2, 7))**2 + sin(pi*Rational(2, 7))**2
assert TR11(cos(4), 2) == -sin(2)**2 + cos(2)**2
assert TR11(cos(6), 2) == cos(6)
assert TR11(sin(x)/cos(x/2), x/2) == 2*sin(x/2)
def test_TR12():
assert TR12(tan(x + y)) == (tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
assert TR12(tan(x + y + z)) ==\
(tan(z) + (tan(x) + tan(y))/(-tan(x)*tan(y) + 1))/(
1 - (tan(x) + tan(y))*tan(z)/(-tan(x)*tan(y) + 1))
assert TR12(tan(x*y)) == tan(x*y)
def test_TR13():
assert TR13(tan(3)*tan(2)) == -tan(2)/tan(5) - tan(3)/tan(5) + 1
assert TR13(cot(3)*cot(2)) == 1 + cot(3)*cot(5) + cot(2)*cot(5)
assert TR13(tan(1)*tan(2)*tan(3)) == \
(-tan(2)/tan(5) - tan(3)/tan(5) + 1)*tan(1)
assert TR13(tan(1)*tan(2)*cot(3)) == \
(-tan(2)/tan(3) + 1 - tan(1)/tan(3))*cot(3)
def test_L():
assert L(cos(x) + sin(x)) == 2
def test_fu():
assert fu(sin(50)**2 + cos(50)**2 + sin(pi/6)) == Rational(3, 2)
assert fu(sqrt(6)*cos(x) + sqrt(2)*sin(x)) == 2*sqrt(2)*sin(x + pi/3)
eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
assert fu(eq) == cos(x)**4 - 2*cos(y)**2 + 2
assert fu(S.Half - cos(2*x)/2) == sin(x)**2
assert fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b))) == \
sqrt(2)*sin(a + b + pi/4)
assert fu(sqrt(3)*cos(x)/2 + sin(x)/2) == sin(x + pi/3)
assert fu(1 - sin(2*x)**2/4 - sin(y)**2 - cos(x)**4) == \
-cos(x)**2 + cos(y)**2
assert fu(cos(pi*Rational(4, 9))) == sin(pi/18)
assert fu(cos(pi/9)*cos(pi*Rational(2, 9))*cos(pi*Rational(3, 9))*cos(pi*Rational(4, 9))) == Rational(1, 16)
assert fu(
tan(pi*Rational(7, 18)) + tan(pi*Rational(5, 18)) - sqrt(3)*tan(pi*Rational(5, 18))*tan(pi*Rational(7, 18))) == \
-sqrt(3)
assert fu(tan(1)*tan(2)) == tan(1)*tan(2)
expr = Mul(*[cos(2**i) for i in range(10)])
assert fu(expr) == sin(1024)/(1024*sin(1))
# issue #18059:
assert fu(cos(x) + sqrt(sin(x)**2)) == cos(x) + sqrt(sin(x)**2)
def test_objective():
assert fu(sin(x)/cos(x), measure=lambda x: x.count_ops()) == \
tan(x)
assert fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) == \
sin(x)/cos(x)
def test_process_common_addends():
# this tests that the args are not evaluated as they are given to do
# and that key2 works when key1 is False
do = lambda x: Add(*[i**(i%2) for i in x.args])
process_common_addends(Add(*[1, 2, 3, 4], evaluate=False), do,
key2=lambda x: x%2, key1=False) == 1**1 + 3**1 + 2**0 + 4**0
def test_trig_split():
assert trig_split(cos(x), cos(y)) == (1, 1, 1, x, y, True)
assert trig_split(2*cos(x), -2*cos(y)) == (2, 1, -1, x, y, True)
assert trig_split(cos(x)*sin(y), cos(y)*sin(y)) == \
(sin(y), 1, 1, x, y, True)
assert trig_split(cos(x), -sqrt(3)*sin(x), two=True) == \
(2, 1, -1, x, pi/6, False)
assert trig_split(cos(x), sin(x), two=True) == \
(sqrt(2), 1, 1, x, pi/4, False)
assert trig_split(cos(x), -sin(x), two=True) == \
(sqrt(2), 1, -1, x, pi/4, False)
assert trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True) == \
(2*sqrt(2), 1, -1, x, pi/6, False)
assert trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True) == \
(-2*sqrt(2), 1, 1, x, pi/3, False)
assert trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True) == \
(sqrt(6)/3, 1, 1, x, pi/6, False)
assert trig_split(-sqrt(6)*cos(x)*sin(y),
-sqrt(2)*sin(x)*sin(y), two=True) == \
(-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)
assert trig_split(cos(x), sin(x)) is None
assert trig_split(cos(x), sin(z)) is None
assert trig_split(2*cos(x), -sin(x)) is None
assert trig_split(cos(x), -sqrt(3)*sin(x)) is None
assert trig_split(cos(x)*cos(y), sin(x)*sin(z)) is None
assert trig_split(cos(x)*cos(y), sin(x)*sin(y)) is None
assert trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True) is \
None
assert trig_split(sqrt(3)*sqrt(x), cos(3), two=True) is None
assert trig_split(sqrt(3)*root(x, 3), sin(3)*cos(2), two=True) is None
assert trig_split(cos(5)*cos(6), cos(7)*sin(5), two=True) is None
def test_TRmorrie():
assert TRmorrie(7*Mul(*[cos(i) for i in range(10)])) == \
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
assert TRmorrie(x) == x
assert TRmorrie(2*x) == 2*x
e = cos(pi/7)*cos(pi*Rational(2, 7))*cos(pi*Rational(4, 7))
assert TR8(TRmorrie(e)) == Rational(-1, 8)
e = Mul(*[cos(2**i*pi/17) for i in range(1, 17)])
assert TR8(TR3(TRmorrie(e))) == Rational(1, 65536)
# issue 17063
eq = cos(x)/cos(x/2)
assert TRmorrie(eq) == eq
def test_TRpower():
assert TRpower(1/sin(x)**2) == 1/sin(x)**2
assert TRpower(cos(x)**3*sin(x/2)**4) == \
(3*cos(x)/4 + cos(3*x)/4)*(-cos(x)/2 + cos(2*x)/8 + Rational(3, 8))
for k in range(2, 8):
assert verify_numerically(sin(x)**k, TRpower(sin(x)**k))
assert verify_numerically(cos(x)**k, TRpower(cos(x)**k))
def test_hyper_as_trig():
from sympy.simplify.fu import _osborne as o, _osbornei as i, TR12
eq = sinh(x)**2 + cosh(x)**2
t, f = hyper_as_trig(eq)
assert f(fu(t)) == cosh(2*x)
e, f = hyper_as_trig(tanh(x + y))
assert f(TR12(e)) == (tanh(x) + tanh(y))/(tanh(x)*tanh(y) + 1)
d = Dummy()
assert o(sinh(x), d) == I*sin(x*d)
assert o(tanh(x), d) == I*tan(x*d)
assert o(coth(x), d) == cot(x*d)/I
assert o(cosh(x), d) == cos(x*d)
assert o(sech(x), d) == sec(x*d)
assert o(csch(x), d) == csc(x*d)/I
for func in (sinh, cosh, tanh, coth, sech, csch):
h = func(pi)
assert i(o(h, d), d) == h
# /!\ the _osborne functions are not meant to work
# in the o(i(trig, d), d) direction so we just check
# that they work as they are supposed to work
assert i(cos(x*y + z), y) == cosh(x + z*I)
assert i(sin(x*y + z), y) == sinh(x + z*I)/I
assert i(tan(x*y + z), y) == tanh(x + z*I)/I
assert i(cot(x*y + z), y) == coth(x + z*I)*I
assert i(sec(x*y + z), y) == sech(x + z*I)
assert i(csc(x*y + z), y) == csch(x + z*I)*I
def test_TR12i():
ta, tb, tc = [tan(i) for i in (a, b, c)]
assert TR12i((ta + tb)/(-ta*tb + 1)) == tan(a + b)
assert TR12i((ta + tb)/(ta*tb - 1)) == -tan(a + b)
assert TR12i((-ta - tb)/(ta*tb - 1)) == tan(a + b)
eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
assert TR12i(eq.expand()) == \
-3*tan(a + b)*tan(a + c)/(tan(a) + tan(b) - 1)/2
assert TR12i(tan(x)/sin(x)) == tan(x)/sin(x)
eq = (ta + cos(2))/(-ta*tb + 1)
assert TR12i(eq) == eq
eq = (ta + tb + 2)**2/(-ta*tb + 1)
assert TR12i(eq) == eq
eq = ta/(-ta*tb + 1)
assert TR12i(eq) == eq
eq = (((ta + tb)*(a + 1)).expand())**2/(ta*tb - 1)
assert TR12i(eq) == -(a + 1)**2*tan(a + b)
def test_TR14():
eq = (cos(x) - 1)*(cos(x) + 1)
ans = -sin(x)**2
assert TR14(eq) == ans
assert TR14(1/eq) == 1/ans
assert TR14((cos(x) - 1)**2*(cos(x) + 1)**2) == ans**2
assert TR14((cos(x) - 1)**2*(cos(x) + 1)**3) == ans**2*(cos(x) + 1)
assert TR14((cos(x) - 1)**3*(cos(x) + 1)**2) == ans**2*(cos(x) - 1)
eq = (cos(x) - 1)**y*(cos(x) + 1)**y
assert TR14(eq) == eq
eq = (cos(x) - 2)**y*(cos(x) + 1)
assert TR14(eq) == eq
eq = (tan(x) - 2)**2*(cos(x) + 1)
assert TR14(eq) == eq
i = symbols('i', integer=True)
assert TR14((cos(x) - 1)**i*(cos(x) + 1)**i) == ans**i
assert TR14((sin(x) - 1)**i*(sin(x) + 1)**i) == (-cos(x)**2)**i
# could use extraction in this case
eq = (cos(x) - 1)**(i + 1)*(cos(x) + 1)**i
assert TR14(eq) in [(cos(x) - 1)*ans**i, eq]
assert TR14((sin(x) - 1)*(sin(x) + 1)) == -cos(x)**2
p1 = (cos(x) + 1)*(cos(x) - 1)
p2 = (cos(y) - 1)*2*(cos(y) + 1)
p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
assert TR14(p1*p2*p3*(x - 1)) == -18*((x - 1)*sin(x)**2*sin(y)**4)
def test_TR15_16_17():
assert TR15(1 - 1/sin(x)**2) == -cot(x)**2
assert TR16(1 - 1/cos(x)**2) == -tan(x)**2
assert TR111(1 - 1/tan(x)**2) == 1 - cot(x)**2
def test_as_f_sign_1():
assert as_f_sign_1(x + 1) == (1, x, 1)
assert as_f_sign_1(x - 1) == (1, x, -1)
assert as_f_sign_1(-x + 1) == (-1, x, -1)
assert as_f_sign_1(-x - 1) == (-1, x, 1)
assert as_f_sign_1(2*x + 2) == (2, x, 1)
assert as_f_sign_1(x*y - y) == (y, x, -1)
assert as_f_sign_1(-x*y + y) == (-y, x, -1)
|
c0e68d9ac3990cb6778a9693c3d51f09bc9aa1dbe811f66a68a4305d1f25b81a | from sympy import (
symbols, sin, simplify, cos, trigsimp, tan, exptrigsimp,sinh,
cosh, diff, cot, Subs, exp, tanh, S, integrate, I,Matrix,
Symbol, coth, pi, log, count_ops, sqrt, E, expand, Piecewise , Rational
)
from sympy.core.compatibility import long
from sympy.utilities.pytest import XFAIL
from sympy.abc import x, y
def test_trigsimp1():
x, y = symbols('x,y')
assert trigsimp(1 - sin(x)**2) == cos(x)**2
assert trigsimp(1 - cos(x)**2) == sin(x)**2
assert trigsimp(sin(x)**2 + cos(x)**2) == 1
assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2
assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2
assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1
assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2
assert trigsimp(1/sin(x)**2 - 1) == 1/tan(x)**2
assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1
assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5
assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) == 3*cos(x)/2 + Rational(7, 2)
assert trigsimp(sin(x)/cos(x)) == tan(x)
assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x)
assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3
assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2
assert trigsimp(cot(x)/cos(x)) == 1/sin(x)
assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y)
assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x)
assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y)
assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y)
assert trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y))) == \
sin(y)/(-sin(y)*tan(x) + cos(y)) # -tan(y)/(tan(x)*tan(y) - 1)
assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y)
assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x)
assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y)
assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y)
assert trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y))) == \
sinh(y)/(sinh(y)*tanh(x) + cosh(y))
assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1
e = 2*sin(x)**2 + 2*cos(x)**2
assert trigsimp(log(e)) == log(2)
def test_trigsimp1a():
assert trigsimp(sin(2)**2*cos(3)*exp(2)/cos(2)**2) == tan(2)**2*cos(3)*exp(2)
assert trigsimp(tan(2)**2*cos(3)*exp(2)*cos(2)**2) == sin(2)**2*cos(3)*exp(2)
assert trigsimp(cot(2)*cos(3)*exp(2)*sin(2)) == cos(3)*exp(2)*cos(2)
assert trigsimp(tan(2)*cos(3)*exp(2)/sin(2)) == cos(3)*exp(2)/cos(2)
assert trigsimp(cot(2)*cos(3)*exp(2)/cos(2)) == cos(3)*exp(2)/sin(2)
assert trigsimp(cot(2)*cos(3)*exp(2)*tan(2)) == cos(3)*exp(2)
assert trigsimp(sinh(2)*cos(3)*exp(2)/cosh(2)) == tanh(2)*cos(3)*exp(2)
assert trigsimp(tanh(2)*cos(3)*exp(2)*cosh(2)) == sinh(2)*cos(3)*exp(2)
assert trigsimp(coth(2)*cos(3)*exp(2)*sinh(2)) == cosh(2)*cos(3)*exp(2)
assert trigsimp(tanh(2)*cos(3)*exp(2)/sinh(2)) == cos(3)*exp(2)/cosh(2)
assert trigsimp(coth(2)*cos(3)*exp(2)/cosh(2)) == cos(3)*exp(2)/sinh(2)
assert trigsimp(coth(2)*cos(3)*exp(2)*tanh(2)) == cos(3)*exp(2)
def test_trigsimp2():
x, y = symbols('x,y')
assert trigsimp(cos(x)**2*sin(y)**2 + cos(x)**2*cos(y)**2 + sin(x)**2,
recursive=True) == 1
assert trigsimp(sin(x)**2*sin(y)**2 + sin(x)**2*cos(y)**2 + cos(x)**2,
recursive=True) == 1
assert trigsimp(
Subs(x, x, sin(y)**2 + cos(y)**2)) == Subs(x, x, 1)
def test_issue_4373():
x = Symbol("x")
assert abs(trigsimp(2.0*sin(x)**2 + 2.0*cos(x)**2) - 2.0) < 1e-10
def test_trigsimp3():
x, y = symbols('x,y')
assert trigsimp(sin(x)/cos(x)) == tan(x)
assert trigsimp(sin(x)**2/cos(x)**2) == tan(x)**2
assert trigsimp(sin(x)**3/cos(x)**3) == tan(x)**3
assert trigsimp(sin(x)**10/cos(x)**10) == tan(x)**10
assert trigsimp(cos(x)/sin(x)) == 1/tan(x)
assert trigsimp(cos(x)**2/sin(x)**2) == 1/tan(x)**2
assert trigsimp(cos(x)**10/sin(x)**10) == 1/tan(x)**10
assert trigsimp(tan(x)) == trigsimp(sin(x)/cos(x))
def test_issue_4661():
a, x, y = symbols('a x y')
eq = -4*sin(x)**4 + 4*cos(x)**4 - 8*cos(x)**2
assert trigsimp(eq) == -4
n = sin(x)**6 + 4*sin(x)**4*cos(x)**2 + 5*sin(x)**2*cos(x)**4 + 2*cos(x)**6
d = -sin(x)**2 - 2*cos(x)**2
assert simplify(n/d) == -1
assert trigsimp(-2*cos(x)**2 + cos(x)**4 - sin(x)**4) == -1
eq = (- sin(x)**3/4)*cos(x) + (cos(x)**3/4)*sin(x) - sin(2*x)*cos(2*x)/8
assert trigsimp(eq) == 0
def test_issue_4494():
a, b = symbols('a b')
eq = sin(a)**2*sin(b)**2 + cos(a)**2*cos(b)**2*tan(a)**2 + cos(a)**2
assert trigsimp(eq) == 1
def test_issue_5948():
a, x, y = symbols('a x y')
assert trigsimp(diff(integrate(cos(x)/sin(x)**7, x), x)) == \
cos(x)/sin(x)**7
def test_issue_4775():
a, x, y = symbols('a x y')
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)) == sin(x + y)
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)+3) == sin(x + y) + 3
def test_issue_4280():
a, x, y = symbols('a x y')
assert trigsimp(cos(x)**2 + cos(y)**2*sin(x)**2 + sin(y)**2*sin(x)**2) == 1
assert trigsimp(a**2*sin(x)**2 + a**2*cos(y)**2*cos(x)**2 + a**2*cos(x)**2*sin(y)**2) == a**2
assert trigsimp(a**2*cos(y)**2*sin(x)**2 + a**2*sin(y)**2*sin(x)**2) == a**2*sin(x)**2
def test_issue_3210():
eqs = (sin(2)*cos(3) + sin(3)*cos(2),
-sin(2)*sin(3) + cos(2)*cos(3),
sin(2)*cos(3) - sin(3)*cos(2),
sin(2)*sin(3) + cos(2)*cos(3),
sin(2)*sin(3) + cos(2)*cos(3) + cos(2),
sinh(2)*cosh(3) + sinh(3)*cosh(2),
sinh(2)*sinh(3) + cosh(2)*cosh(3),
)
assert [trigsimp(e) for e in eqs] == [
sin(5),
cos(5),
-sin(1),
cos(1),
cos(1) + cos(2),
sinh(5),
cosh(5),
]
def test_trigsimp_issues():
a, x, y = symbols('a x y')
# issue 4625 - factor_terms works, too
assert trigsimp(sin(x)**3 + cos(x)**2*sin(x)) == sin(x)
# issue 5948
assert trigsimp(diff(integrate(cos(x)/sin(x)**3, x), x)) == \
cos(x)/sin(x)**3
assert trigsimp(diff(integrate(sin(x)/cos(x)**3, x), x)) == \
sin(x)/cos(x)**3
# check integer exponents
e = sin(x)**y/cos(x)**y
assert trigsimp(e) == e
assert trigsimp(e.subs(y, 2)) == tan(x)**2
assert trigsimp(e.subs(x, 1)) == tan(1)**y
# check for multiple patterns
assert (cos(x)**2/sin(x)**2*cos(y)**2/sin(y)**2).trigsimp() == \
1/tan(x)**2/tan(y)**2
assert trigsimp(cos(x)/sin(x)*cos(x+y)/sin(x+y)) == \
1/(tan(x)*tan(x + y))
eq = cos(2)*(cos(3) + 1)**2/(cos(3) - 1)**2
assert trigsimp(eq) == eq.factor() # factor makes denom (-1 + cos(3))**2
assert trigsimp(cos(2)*(cos(3) + 1)**2*(cos(3) - 1)**2) == \
cos(2)*sin(3)**4
# issue 6789; this generates an expression that formerly caused
# trigsimp to hang
assert cot(x).equals(tan(x)) is False
# nan or the unchanged expression is ok, but not sin(1)
z = cos(x)**2 + sin(x)**2 - 1
z1 = tan(x)**2 - 1/cot(x)**2
n = (1 + z1/z)
assert trigsimp(sin(n)) != sin(1)
eq = x*(n - 1) - x*n
assert trigsimp(eq) is S.NaN
assert trigsimp(eq, recursive=True) is S.NaN
assert trigsimp(1).is_Integer
assert trigsimp(-sin(x)**4 - 2*sin(x)**2*cos(x)**2 - cos(x)**4) == -1
def test_trigsimp_issue_2515():
x = Symbol('x')
assert trigsimp(x*cos(x)*tan(x)) == x*sin(x)
assert trigsimp(-sin(x) + cos(x)*tan(x)) == 0
def test_trigsimp_issue_3826():
assert trigsimp(tan(2*x).expand(trig=True)) == tan(2*x)
def test_trigsimp_issue_4032():
n = Symbol('n', integer=True, positive=True)
assert trigsimp(2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2) == \
2**(n/2)*cos(pi*n/4)/2 + 2**n/4
def test_trigsimp_issue_7761():
assert trigsimp(cosh(pi/4)) == cosh(pi/4)
def test_trigsimp_noncommutative():
x, y = symbols('x,y')
A, B = symbols('A,B', commutative=False)
assert trigsimp(A - A*sin(x)**2) == A*cos(x)**2
assert trigsimp(A - A*cos(x)**2) == A*sin(x)**2
assert trigsimp(A*sin(x)**2 + A*cos(x)**2) == A
assert trigsimp(A + A*tan(x)**2) == A/cos(x)**2
assert trigsimp(A/cos(x)**2 - A) == A*tan(x)**2
assert trigsimp(A/cos(x)**2 - A*tan(x)**2) == A
assert trigsimp(A + A*cot(x)**2) == A/sin(x)**2
assert trigsimp(A/sin(x)**2 - A) == A/tan(x)**2
assert trigsimp(A/sin(x)**2 - A*cot(x)**2) == A
assert trigsimp(y*A*cos(x)**2 + y*A*sin(x)**2) == y*A
assert trigsimp(A*sin(x)/cos(x)) == A*tan(x)
assert trigsimp(A*tan(x)*cos(x)) == A*sin(x)
assert trigsimp(A*cot(x)**3*sin(x)**3) == A*cos(x)**3
assert trigsimp(y*A*tan(x)**2/sin(x)**2) == y*A/cos(x)**2
assert trigsimp(A*cot(x)/cos(x)) == A/sin(x)
assert trigsimp(A*sin(x + y) + A*sin(x - y)) == 2*A*sin(x)*cos(y)
assert trigsimp(A*sin(x + y) - A*sin(x - y)) == 2*A*sin(y)*cos(x)
assert trigsimp(A*cos(x + y) + A*cos(x - y)) == 2*A*cos(x)*cos(y)
assert trigsimp(A*cos(x + y) - A*cos(x - y)) == -2*A*sin(x)*sin(y)
assert trigsimp(A*sinh(x + y) + A*sinh(x - y)) == 2*A*sinh(x)*cosh(y)
assert trigsimp(A*sinh(x + y) - A*sinh(x - y)) == 2*A*sinh(y)*cosh(x)
assert trigsimp(A*cosh(x + y) + A*cosh(x - y)) == 2*A*cosh(x)*cosh(y)
assert trigsimp(A*cosh(x + y) - A*cosh(x - y)) == 2*A*sinh(x)*sinh(y)
assert trigsimp(A*cos(0.12345)**2 + A*sin(0.12345)**2) == 1.0*A
def test_hyperbolic_simp():
x, y = symbols('x,y')
assert trigsimp(sinh(x)**2 + 1) == cosh(x)**2
assert trigsimp(cosh(x)**2 - 1) == sinh(x)**2
assert trigsimp(cosh(x)**2 - sinh(x)**2) == 1
assert trigsimp(1 - tanh(x)**2) == 1/cosh(x)**2
assert trigsimp(1 - 1/cosh(x)**2) == tanh(x)**2
assert trigsimp(tanh(x)**2 + 1/cosh(x)**2) == 1
assert trigsimp(coth(x)**2 - 1) == 1/sinh(x)**2
assert trigsimp(1/sinh(x)**2 + 1) == 1/tanh(x)**2
assert trigsimp(coth(x)**2 - 1/sinh(x)**2) == 1
assert trigsimp(5*cosh(x)**2 - 5*sinh(x)**2) == 5
assert trigsimp(5*cosh(x/2)**2 - 2*sinh(x/2)**2) == 3*cosh(x)/2 + Rational(7, 2)
assert trigsimp(sinh(x)/cosh(x)) == tanh(x)
assert trigsimp(tanh(x)) == trigsimp(sinh(x)/cosh(x))
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
assert trigsimp(2*tanh(x)*cosh(x)) == 2*sinh(x)
assert trigsimp(coth(x)**3*sinh(x)**3) == cosh(x)**3
assert trigsimp(y*tanh(x)**2/sinh(x)**2) == y/cosh(x)**2
assert trigsimp(coth(x)/cosh(x)) == 1/sinh(x)
for a in (pi/6*I, pi/4*I, pi/3*I):
assert trigsimp(sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x + a)
assert trigsimp(-sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x - a)
e = 2*cosh(x)**2 - 2*sinh(x)**2
assert trigsimp(log(e)) == log(2)
assert trigsimp(cosh(x)**2*cosh(y)**2 - cosh(x)**2*sinh(y)**2 - sinh(x)**2,
recursive=True) == 1
assert trigsimp(sinh(x)**2*sinh(y)**2 - sinh(x)**2*cosh(y)**2 + cosh(x)**2,
recursive=True) == 1
assert abs(trigsimp(2.0*cosh(x)**2 - 2.0*sinh(x)**2) - 2.0) < 1e-10
assert trigsimp(sinh(x)**2/cosh(x)**2) == tanh(x)**2
assert trigsimp(sinh(x)**3/cosh(x)**3) == tanh(x)**3
assert trigsimp(sinh(x)**10/cosh(x)**10) == tanh(x)**10
assert trigsimp(cosh(x)**3/sinh(x)**3) == 1/tanh(x)**3
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
assert trigsimp(cosh(x)**2/sinh(x)**2) == 1/tanh(x)**2
assert trigsimp(cosh(x)**10/sinh(x)**10) == 1/tanh(x)**10
assert trigsimp(x*cosh(x)*tanh(x)) == x*sinh(x)
assert trigsimp(-sinh(x) + cosh(x)*tanh(x)) == 0
assert tan(x) != 1/cot(x) # cot doesn't auto-simplify
assert trigsimp(tan(x) - 1/cot(x)) == 0
assert trigsimp(3*tanh(x)**7 - 2/coth(x)**7) == tanh(x)**7
def test_trigsimp_groebner():
from sympy.simplify.trigsimp import trigsimp_groebner
c = cos(x)
s = sin(x)
ex = (4*s*c + 12*s + 5*c**3 + 21*c**2 + 23*c + 15)/(
-s*c**2 + 2*s*c + 15*s + 7*c**3 + 31*c**2 + 37*c + 21)
resnum = (5*s - 5*c + 1)
resdenom = (8*s - 6*c)
results = [resnum/resdenom, (-resnum)/(-resdenom)]
assert trigsimp_groebner(ex) in results
assert trigsimp_groebner(s/c, hints=[tan]) == tan(x)
assert trigsimp_groebner(c*s) == c*s
assert trigsimp((-s + 1)/c + c/(-s + 1),
method='groebner') == 2/c
assert trigsimp((-s + 1)/c + c/(-s + 1),
method='groebner', polynomial=True) == 2/c
# Test quick=False works
assert trigsimp_groebner(ex, hints=[2]) in results
assert trigsimp_groebner(ex, hints=[long(2)]) in results
# test "I"
assert trigsimp_groebner(sin(I*x)/cos(I*x), hints=[tanh]) == I*tanh(x)
# test hyperbolic / sums
assert trigsimp_groebner((tanh(x)+tanh(y))/(1+tanh(x)*tanh(y)),
hints=[(tanh, x, y)]) == tanh(x + y)
def test_issue_2827_trigsimp_methods():
measure1 = lambda expr: len(str(expr))
measure2 = lambda expr: -count_ops(expr)
# Return the most complicated result
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
ans = Matrix([1])
M = Matrix([expr])
assert trigsimp(M, method='fu', measure=measure1) == ans
assert trigsimp(M, method='fu', measure=measure2) != ans
# all methods should work with Basic expressions even if they
# aren't Expr
M = Matrix.eye(1)
assert all(trigsimp(M, method=m) == M for m in
'fu matching groebner old'.split())
# watch for E in exptrigsimp, not only exp()
eq = 1/sqrt(E) + E
assert exptrigsimp(eq) == eq
def test_issue_15129_trigsimp_methods():
t1 = Matrix([sin(Rational(1, 50)), cos(Rational(1, 50)), 0])
t2 = Matrix([sin(Rational(1, 25)), cos(Rational(1, 25)), 0])
t3 = Matrix([cos(Rational(1, 25)), sin(Rational(1, 25)), 0])
r1 = t1.dot(t2)
r2 = t1.dot(t3)
assert trigsimp(r1) == cos(Rational(1, 50))
assert trigsimp(r2) == sin(Rational(3, 50))
def test_exptrigsimp():
def valid(a, b):
from sympy.utilities.randtest import verify_numerically as tn
if not (tn(a, b) and a == b):
return False
return True
assert exptrigsimp(exp(x) + exp(-x)) == 2*cosh(x)
assert exptrigsimp(exp(x) - exp(-x)) == 2*sinh(x)
assert exptrigsimp((2*exp(x)-2*exp(-x))/(exp(x)+exp(-x))) == 2*tanh(x)
assert exptrigsimp((2*exp(2*x)-2)/(exp(2*x)+1)) == 2*tanh(x)
e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
cosh(x) - sinh(x), cosh(x) + sinh(x)]
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
assert all(valid(i, j) for i, j in zip(
[exptrigsimp(ei) for ei in e], ok))
ue = [cos(x) + sin(x), cos(x) - sin(x),
cosh(x) + I*sinh(x), cosh(x) - I*sinh(x)]
assert [exptrigsimp(ei) == ei for ei in ue]
res = []
ok = [y*tanh(1), 1/(y*tanh(1)), I*y*tan(1), -I/(y*tan(1)),
y*tanh(x), 1/(y*tanh(x)), I*y*tan(x), -I/(y*tan(x)),
y*tanh(1 + I), 1/(y*tanh(1 + I))]
for a in (1, I, x, I*x, 1 + I):
w = exp(a)
eq = y*(w - 1/w)/(w + 1/w)
res.append(simplify(eq))
res.append(simplify(1/eq))
assert all(valid(i, j) for i, j in zip(res, ok))
for a in range(1, 3):
w = exp(a)
e = w + 1/w
s = simplify(e)
assert s == exptrigsimp(e)
assert valid(s, 2*cosh(a))
e = w - 1/w
s = simplify(e)
assert s == exptrigsimp(e)
assert valid(s, 2*sinh(a))
def test_exptrigsimp_noncommutative():
a,b = symbols('a b', commutative=False)
x = Symbol('x', commutative=True)
assert exp(a + x) == exptrigsimp(exp(a)*exp(x))
p = exp(a)*exp(b) - exp(b)*exp(a)
assert p == exptrigsimp(p) != 0
def test_powsimp_on_numbers():
assert 2**(Rational(1, 3) - 2) == 2**Rational(1, 3)/4
@XFAIL
def test_issue_6811_fail():
# from doc/src/modules/physics/mechanics/examples.rst, the current `eq`
# at Line 576 (in different variables) was formerly the equivalent and
# shorter expression given below...it would be nice to get the short one
# back again
xp, y, x, z = symbols('xp, y, x, z')
eq = 4*(-19*sin(x)*y + 5*sin(3*x)*y + 15*cos(2*x)*z - 21*z)*xp/(9*cos(x) - 5*cos(3*x))
assert trigsimp(eq) == -2*(2*cos(x)*tan(x)*y + 3*z)*xp/cos(x)
def test_Piecewise():
e1 = x*(x + y) - y*(x + y)
e2 = sin(x)**2 + cos(x)**2
e3 = expand((x + y)*y/x)
# s1 = simplify(e1)
s2 = simplify(e2)
# s3 = simplify(e3)
# trigsimp tries not to touch non-trig containing args
assert trigsimp(Piecewise((e1, e3 < e2), (e3, True))) == \
Piecewise((e1, e3 < s2), (e3, True))
def test_trigsimp_old():
x, y = symbols('x,y')
assert trigsimp(1 - sin(x)**2, old=True) == cos(x)**2
assert trigsimp(1 - cos(x)**2, old=True) == sin(x)**2
assert trigsimp(sin(x)**2 + cos(x)**2, old=True) == 1
assert trigsimp(1 + tan(x)**2, old=True) == 1/cos(x)**2
assert trigsimp(1/cos(x)**2 - 1, old=True) == tan(x)**2
assert trigsimp(1/cos(x)**2 - tan(x)**2, old=True) == 1
assert trigsimp(1 + cot(x)**2, old=True) == 1/sin(x)**2
assert trigsimp(1/sin(x)**2 - cot(x)**2, old=True) == 1
assert trigsimp(5*cos(x)**2 + 5*sin(x)**2, old=True) == 5
assert trigsimp(sin(x)/cos(x), old=True) == tan(x)
assert trigsimp(2*tan(x)*cos(x), old=True) == 2*sin(x)
assert trigsimp(cot(x)**3*sin(x)**3, old=True) == cos(x)**3
assert trigsimp(y*tan(x)**2/sin(x)**2, old=True) == y/cos(x)**2
assert trigsimp(cot(x)/cos(x), old=True) == 1/sin(x)
assert trigsimp(sin(x + y) + sin(x - y), old=True) == 2*sin(x)*cos(y)
assert trigsimp(sin(x + y) - sin(x - y), old=True) == 2*sin(y)*cos(x)
assert trigsimp(cos(x + y) + cos(x - y), old=True) == 2*cos(x)*cos(y)
assert trigsimp(cos(x + y) - cos(x - y), old=True) == -2*sin(x)*sin(y)
assert trigsimp(sinh(x + y) + sinh(x - y), old=True) == 2*sinh(x)*cosh(y)
assert trigsimp(sinh(x + y) - sinh(x - y), old=True) == 2*sinh(y)*cosh(x)
assert trigsimp(cosh(x + y) + cosh(x - y), old=True) == 2*cosh(x)*cosh(y)
assert trigsimp(cosh(x + y) - cosh(x - y), old=True) == 2*sinh(x)*sinh(y)
assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2, old=True) == 1
assert trigsimp(sin(x)/cos(x), old=True, method='combined') == tan(x)
assert trigsimp(sin(x)/cos(x), old=True, method='groebner') == sin(x)/cos(x)
assert trigsimp(sin(x)/cos(x), old=True, method='groebner', hints=[tan]) == tan(x)
assert trigsimp(1-sin(sin(x)**2+cos(x)**2)**2, old=True, deep=True) == cos(1)**2
|
08ad020edf72cca14da5777f1f7ffaef07cbaf4ee88d6b02ad35c1ee95827ed4 | from sympy import (
sqrt, Derivative, symbols, collect, Function, factor, Wild, S,
collect_const, log, fraction, I, cos, Add, O,sin, rcollect,
Mul, radsimp, diff, root, Symbol, Rational, exp, Abs)
from sympy.core.expr import unchanged
from sympy.core.mul import _unevaluated_Mul as umul
from sympy.simplify.radsimp import (_unevaluated_Add,
collect_sqrt, fraction_expand, collect_abs)
from sympy.utilities.pytest import raises
from sympy.abc import x, y, z, a, b, c, d
def test_radsimp():
r2 = sqrt(2)
r3 = sqrt(3)
r5 = sqrt(5)
r7 = sqrt(7)
assert fraction(radsimp(1/r2)) == (sqrt(2), 2)
assert radsimp(1/(1 + r2)) == \
-1 + sqrt(2)
assert radsimp(1/(r2 + r3)) == \
-sqrt(2) + sqrt(3)
assert fraction(radsimp(1/(1 + r2 + r3))) == \
(-sqrt(6) + sqrt(2) + 2, 4)
assert fraction(radsimp(1/(r2 + r3 + r5))) == \
(-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12)
assert fraction(radsimp(1/(1 + r2 + r3 + r5))) == (
(-34*sqrt(10) - 26*sqrt(15) - 55*sqrt(3) - 61*sqrt(2) + 14*sqrt(30) +
93 + 46*sqrt(6) + 53*sqrt(5), 71))
assert fraction(radsimp(1/(r2 + r3 + r5 + r7))) == (
(-50*sqrt(42) - 133*sqrt(5) - 34*sqrt(70) - 145*sqrt(3) + 22*sqrt(105)
+ 185*sqrt(2) + 62*sqrt(30) + 135*sqrt(7), 215))
z = radsimp(1/(1 + r2/3 + r3/5 + r5 + r7))
assert len((3616791619821680643598*z).args) == 16
assert radsimp(1/z) == 1/z
assert radsimp(1/z, max_terms=20).expand() == 1 + r2/3 + r3/5 + r5 + r7
assert radsimp(1/(r2*3)) == \
sqrt(2)/6
assert radsimp(1/(r2*a + r3 + r5 + r7)) == (
(8*sqrt(2)*a**7 - 8*sqrt(7)*a**6 - 8*sqrt(5)*a**6 - 8*sqrt(3)*a**6 -
180*sqrt(2)*a**5 + 8*sqrt(30)*a**5 + 8*sqrt(42)*a**5 + 8*sqrt(70)*a**5
- 24*sqrt(105)*a**4 + 84*sqrt(3)*a**4 + 100*sqrt(5)*a**4 +
116*sqrt(7)*a**4 - 72*sqrt(70)*a**3 - 40*sqrt(42)*a**3 -
8*sqrt(30)*a**3 + 782*sqrt(2)*a**3 - 462*sqrt(3)*a**2 -
302*sqrt(7)*a**2 - 254*sqrt(5)*a**2 + 120*sqrt(105)*a**2 -
795*sqrt(2)*a - 62*sqrt(30)*a + 82*sqrt(42)*a + 98*sqrt(70)*a -
118*sqrt(105) + 59*sqrt(7) + 295*sqrt(5) + 531*sqrt(3))/(16*a**8 -
480*a**6 + 3128*a**4 - 6360*a**2 + 3481))
assert radsimp(1/(r2*a + r2*b + r3 + r7)) == (
(sqrt(2)*a*(a + b)**2 - 5*sqrt(2)*a + sqrt(42)*a + sqrt(2)*b*(a +
b)**2 - 5*sqrt(2)*b + sqrt(42)*b - sqrt(7)*(a + b)**2 - sqrt(3)*(a +
b)**2 - 2*sqrt(3) + 2*sqrt(7))/(2*a**4 + 8*a**3*b + 12*a**2*b**2 -
20*a**2 + 8*a*b**3 - 40*a*b + 2*b**4 - 20*b**2 + 8))
assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \
sqrt(2)/(2*a + 2*b + 2*c + 2*d)
assert radsimp(1/(1 + r2*a + r2*b + r2*c + r2*d)) == (
(sqrt(2)*a + sqrt(2)*b + sqrt(2)*c + sqrt(2)*d - 1)/(2*a**2 + 4*a*b +
4*a*c + 4*a*d + 2*b**2 + 4*b*c + 4*b*d + 2*c**2 + 4*c*d + 2*d**2 - 1))
assert radsimp((y**2 - x)/(y - sqrt(x))) == \
sqrt(x) + y
assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \
-(sqrt(x) + y)
assert radsimp(1/(1 - I + a*I)) == \
(-I*a + 1 + I)/(a**2 - 2*a + 2)
assert radsimp(1/((-x + y)*(x - sqrt(y)))) == \
(-x - sqrt(y))/((x - y)*(x**2 - y))
e = (3 + 3*sqrt(2))*x*(3*x - 3*sqrt(y))
assert radsimp(e) == x*(3 + 3*sqrt(2))*(3*x - 3*sqrt(y))
assert radsimp(1/e) == (
(-9*x + 9*sqrt(2)*x - 9*sqrt(y) + 9*sqrt(2)*sqrt(y))/(9*x*(9*x**2 -
9*y)))
assert radsimp(1 + 1/(1 + sqrt(3))) == \
Mul(S.Half, -1 + sqrt(3), evaluate=False) + 1
A = symbols("A", commutative=False)
assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == \
x**2 + sqrt(2)*x**2 - sqrt(2)*x*A
assert radsimp(1/sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3)
assert radsimp(1/sqrt(5 + 2 * sqrt(6))**3) == -(-sqrt(3) + sqrt(2))**3
# issue 6532
assert fraction(radsimp(1/sqrt(x))) == (sqrt(x), x)
assert fraction(radsimp(1/sqrt(2*x + 3))) == (sqrt(2*x + 3), 2*x + 3)
assert fraction(radsimp(1/sqrt(2*(x + 3)))) == (sqrt(2*x + 6), 2*x + 6)
# issue 5994
e = S('-(2 + 2*sqrt(2) + 4*2**(1/4))/'
'(1 + 2**(3/4) + 3*2**(1/4) + 3*sqrt(2))')
assert radsimp(e).expand() == -2*2**Rational(3, 4) - 2*2**Rational(1, 4) + 2 + 2*sqrt(2)
# issue 5986 (modifications to radimp didn't initially recognize this so
# the test is included here)
assert radsimp(1/(-sqrt(5)/2 - S.Half + (-sqrt(5)/2 - S.Half)**2)) == 1
# from issue 5934
eq = (
(-240*sqrt(2)*sqrt(sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) -
360*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) -
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) +
120*sqrt(2)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5) +
120*sqrt(10)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5))/(-36000 -
7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) +
24*sqrt(10)*sqrt(-sqrt(5) + 5))**2))
assert radsimp(eq) is S.NaN # it's 0/0
# work with normal form
e = 1/sqrt(sqrt(7)/7 + 2*sqrt(2) + 3*sqrt(3) + 5*sqrt(5)) + 3
assert radsimp(e) == (
-sqrt(sqrt(7) + 14*sqrt(2) + 21*sqrt(3) +
35*sqrt(5))*(-11654899*sqrt(35) - 1577436*sqrt(210) - 1278438*sqrt(15)
- 1346996*sqrt(10) + 1635060*sqrt(6) + 5709765 + 7539830*sqrt(14) +
8291415*sqrt(21))/1300423175 + 3)
# obey power rules
base = sqrt(3) - sqrt(2)
assert radsimp(1/base**3) == (sqrt(3) + sqrt(2))**3
assert radsimp(1/(-base)**3) == -(sqrt(2) + sqrt(3))**3
assert radsimp(1/(-base)**x) == (-base)**(-x)
assert radsimp(1/base**x) == (sqrt(2) + sqrt(3))**x
assert radsimp(root(1/(-1 - sqrt(2)), -x)) == (-1)**(-1/x)*(1 + sqrt(2))**(1/x)
# recurse
e = cos(1/(1 + sqrt(2)))
assert radsimp(e) == cos(-sqrt(2) + 1)
assert radsimp(e/2) == cos(-sqrt(2) + 1)/2
assert radsimp(1/e) == 1/cos(-sqrt(2) + 1)
assert radsimp(2/e) == 2/cos(-sqrt(2) + 1)
assert fraction(radsimp(e/sqrt(x))) == (sqrt(x)*cos(-sqrt(2)+1), x)
# test that symbolic denominators are not processed
r = 1 + sqrt(2)
assert radsimp(x/r, symbolic=False) == -x*(-sqrt(2) + 1)
assert radsimp(x/(y + r), symbolic=False) == x/(y + 1 + sqrt(2))
assert radsimp(x/(y + r)/r, symbolic=False) == \
-x*(-sqrt(2) + 1)/(y + 1 + sqrt(2))
# issue 7408
eq = sqrt(x)/sqrt(y)
assert radsimp(eq) == umul(sqrt(x), sqrt(y), 1/y)
assert radsimp(eq, symbolic=False) == eq
# issue 7498
assert radsimp(sqrt(x)/sqrt(y)**3) == umul(sqrt(x), sqrt(y**3), 1/y**3)
# for coverage
eq = sqrt(x)/y**2
assert radsimp(eq) == eq
def test_radsimp_issue_3214():
c, p = symbols('c p', positive=True)
s = sqrt(c**2 - p**2)
b = (c + I*p - s)/(c + I*p + s)
assert radsimp(b) == -I*(c + I*p - sqrt(c**2 - p**2))**2/(2*c*p)
def test_collect_1():
"""Collect with respect to a Symbol"""
x, y, z, n = symbols('x,y,z,n')
assert collect(1, x) == 1
assert collect( x + y*x, x ) == x * (1 + y)
assert collect( x + x**2, x ) == x + x**2
assert collect( x**2 + y*x**2, x ) == (x**2)*(1 + y)
assert collect( x**2 + y*x, x ) == x*y + x**2
assert collect( 2*x**2 + y*x**2 + 3*x*y, [x] ) == x**2*(2 + y) + 3*x*y
assert collect( 2*x**2 + y*x**2 + 3*x*y, [y] ) == 2*x**2 + y*(x**2 + 3*x)
assert collect( ((1 + y + x)**4).expand(), x) == ((1 + y)**4).expand() + \
x*(4*(1 + y)**3).expand() + x**2*(6*(1 + y)**2).expand() + \
x**3*(4*(1 + y)).expand() + x**4
# symbols can be given as any iterable
expr = x + y
assert collect(expr, expr.free_symbols) == expr
def test_collect_2():
"""Collect with respect to a sum"""
a, b, x = symbols('a,b,x')
assert collect(a*(cos(x) + sin(x)) + b*(cos(x) + sin(x)),
sin(x) + cos(x)) == (a + b)*(cos(x) + sin(x))
def test_collect_3():
"""Collect with respect to a product"""
a, b, c = symbols('a,b,c')
f = Function('f')
x, y, z, n = symbols('x,y,z,n')
assert collect(-x/8 + x*y, -x) == x*(y - Rational(1, 8))
assert collect( 1 + x*(y**2), x*y ) == 1 + x*(y**2)
assert collect( x*y + a*x*y, x*y) == x*y*(1 + a)
assert collect( 1 + x*y + a*x*y, x*y) == 1 + x*y*(1 + a)
assert collect(a*x*f(x) + b*(x*f(x)), x*f(x)) == x*(a + b)*f(x)
assert collect(a*x*log(x) + b*(x*log(x)), x*log(x)) == x*(a + b)*log(x)
assert collect(a*x**2*log(x)**2 + b*(x*log(x))**2, x*log(x)) == \
x**2*log(x)**2*(a + b)
# with respect to a product of three symbols
assert collect(y*x*z + a*x*y*z, x*y*z) == (1 + a)*x*y*z
def test_collect_4():
"""Collect with respect to a power"""
a, b, c, x = symbols('a,b,c,x')
assert collect(a*x**c + b*x**c, x**c) == x**c*(a + b)
# issue 6096: 2 stays with c (unless c is integer or x is positive0
assert collect(a*x**(2*c) + b*x**(2*c), x**c) == x**(2*c)*(a + b)
def test_collect_5():
"""Collect with respect to a tuple"""
a, x, y, z, n = symbols('a,x,y,z,n')
assert collect(x**2*y**4 + z*(x*y**2)**2 + z + a*z, [x*y**2, z]) in [
z*(1 + a + x**2*y**4) + x**2*y**4,
z*(1 + a) + x**2*y**4*(1 + z) ]
assert collect((1 + (x + y) + (x + y)**2).expand(),
[x, y]) == 1 + y + x*(1 + 2*y) + x**2 + y**2
def test_collect_D():
D = Derivative
f = Function('f')
x, a, b = symbols('x,a,b')
fx = D(f(x), x)
fxx = D(f(x), x, x)
assert collect(a*fx + b*fx, fx) == (a + b)*fx
assert collect(a*D(fx, x) + b*D(fx, x), fx) == (a + b)*D(fx, x)
assert collect(a*fxx + b*fxx, fx) == (a + b)*D(fx, x)
# issue 4784
assert collect(5*f(x) + 3*fx, fx) == 5*f(x) + 3*fx
assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x)) == \
(x*f(x) + f(x))*D(f(x), x) + f(x)
assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x), exact=True) == \
(x*f(x) + f(x))*D(f(x), x) + f(x)
assert collect(1/f(x) + 1/f(x)*diff(f(x), x) + x*diff(f(x), x)/f(x), f(x).diff(x), exact=True) == \
(1/f(x) + x/f(x))*D(f(x), x) + 1/f(x)
e = (1 + x*fx + fx)/f(x)
assert collect(e.expand(), fx) == fx*(x/f(x) + 1/f(x)) + 1/f(x)
def test_collect_func():
f = ((x + a + 1)**3).expand()
assert collect(f, x) == a**3 + 3*a**2 + 3*a + x**3 + x**2*(3*a + 3) + \
x*(3*a**2 + 6*a + 3) + 1
assert collect(f, x, factor) == x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + \
(a + 1)**3
assert collect(f, x, evaluate=False) == {
S.One: a**3 + 3*a**2 + 3*a + 1,
x: 3*a**2 + 6*a + 3, x**2: 3*a + 3,
x**3: 1
}
assert collect(f, x, factor, evaluate=False) == {
S.One: (a + 1)**3, x: 3*(a + 1)**2,
x**2: umul(S(3), a + 1), x**3: 1}
def test_collect_order():
a, b, x, t = symbols('a,b,x,t')
assert collect(t + t*x + t*x**2 + O(x**3), t) == t*(1 + x + x**2 + O(x**3))
assert collect(t + t*x + x**2 + O(x**3), t) == \
t*(1 + x + O(x**3)) + x**2 + O(x**3)
f = a*x + b*x + c*x**2 + d*x**2 + O(x**3)
g = x*(a + b) + x**2*(c + d) + O(x**3)
assert collect(f, x) == g
assert collect(f, x, distribute_order_term=False) == g
f = sin(a + b).series(b, 0, 10)
assert collect(f, [sin(a), cos(a)]) == \
sin(a)*cos(b).series(b, 0, 10) + cos(a)*sin(b).series(b, 0, 10)
assert collect(f, [sin(a), cos(a)], distribute_order_term=False) == \
sin(a)*cos(b).series(b, 0, 10).removeO() + \
cos(a)*sin(b).series(b, 0, 10).removeO() + O(b**10)
def test_rcollect():
assert rcollect((x**2*y + x*y + x + y)/(x + y), y) == \
(x + y*(1 + x + x**2))/(x + y)
assert rcollect(sqrt(-((x + 1)*(y + 1))), z) == sqrt(-((x + 1)*(y + 1)))
def test_collect_D_0():
D = Derivative
f = Function('f')
x, a, b = symbols('x,a,b')
fxx = D(f(x), x, x)
assert collect(a*fxx + b*fxx, fxx) == (a + b)*fxx
def test_collect_Wild():
"""Collect with respect to functions with Wild argument"""
a, b, x, y = symbols('a b x y')
f = Function('f')
w1 = Wild('.1')
w2 = Wild('.2')
assert collect(f(x) + a*f(x), f(w1)) == (1 + a)*f(x)
assert collect(f(x, y) + a*f(x, y), f(w1)) == f(x, y) + a*f(x, y)
assert collect(f(x, y) + a*f(x, y), f(w1, w2)) == (1 + a)*f(x, y)
assert collect(f(x, y) + a*f(x, y), f(w1, w1)) == f(x, y) + a*f(x, y)
assert collect(f(x, x) + a*f(x, x), f(w1, w1)) == (1 + a)*f(x, x)
assert collect(a*(x + 1)**y + (x + 1)**y, w1**y) == (1 + a)*(x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, w1**b) == \
a*(x + 1)**y + (x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, (x + 1)**w2) == \
(1 + a)*(x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, w1**w2) == (1 + a)*(x + 1)**y
def test_collect_const():
# coverage not provided by above tests
assert collect_const(2*sqrt(3) + 4*a*sqrt(5)) == \
2*(2*sqrt(5)*a + sqrt(3)) # let the primitive reabsorb
assert collect_const(2*sqrt(3) + 4*a*sqrt(5), sqrt(3)) == \
2*sqrt(3) + 4*a*sqrt(5)
assert collect_const(sqrt(2)*(1 + sqrt(2)) + sqrt(3) + x*sqrt(2)) == \
sqrt(2)*(x + 1 + sqrt(2)) + sqrt(3)
# issue 5290
assert collect_const(2*x + 2*y + 1, 2) == \
collect_const(2*x + 2*y + 1) == \
Add(S.One, Mul(2, x + y, evaluate=False), evaluate=False)
assert collect_const(-y - z) == Mul(-1, y + z, evaluate=False)
assert collect_const(2*x - 2*y - 2*z, 2) == \
Mul(2, x - y - z, evaluate=False)
assert collect_const(2*x - 2*y - 2*z, -2) == \
_unevaluated_Add(2*x, Mul(-2, y + z, evaluate=False))
# this is why the content_primitive is used
eq = (sqrt(15 + 5*sqrt(2))*x + sqrt(3 + sqrt(2))*y)*2
assert collect_sqrt(eq + 2) == \
2*sqrt(sqrt(2) + 3)*(sqrt(5)*x + y) + 2
# issue 16296
assert collect_const(a + b + x/2 + y/2) == a + b + Mul(S.Half, x + y, evaluate=False)
def test_issue_13143():
f = Function('f')
fx = f(x).diff(x)
e = f(x) + fx + f(x)*fx
# collect function before derivative
assert collect(e, Wild('w')) == f(x)*(fx + 1) + fx
e = f(x) + f(x)*fx + x*fx*f(x)
assert collect(e, fx) == (x*f(x) + f(x))*fx + f(x)
assert collect(e, f(x)) == (x*fx + fx + 1)*f(x)
e = f(x) + fx + f(x)*fx
assert collect(e, [f(x), fx]) == f(x)*(1 + fx) + fx
assert collect(e, [fx, f(x)]) == fx*(1 + f(x)) + f(x)
def test_issue_6097():
assert collect(a*y**(2.0*x) + b*y**(2.0*x), y**x) == y**(2.0*x)*(a + b)
assert collect(a*2**(2.0*x) + b*2**(2.0*x), 2**x) == 2**(2.0*x)*(a + b)
def test_fraction_expand():
eq = (x + y)*y/x
assert eq.expand(frac=True) == fraction_expand(eq) == (x*y + y**2)/x
assert eq.expand() == y + y**2/x
def test_fraction():
x, y, z = map(Symbol, 'xyz')
A = Symbol('A', commutative=False)
assert fraction(S.Half) == (1, 2)
assert fraction(x) == (x, 1)
assert fraction(1/x) == (1, x)
assert fraction(x/y) == (x, y)
assert fraction(x/2) == (x, 2)
assert fraction(x*y/z) == (x*y, z)
assert fraction(x/(y*z)) == (x, y*z)
assert fraction(1/y**2) == (1, y**2)
assert fraction(x/y**2) == (x, y**2)
assert fraction((x**2 + 1)/y) == (x**2 + 1, y)
assert fraction(x*(y + 1)/y**7) == (x*(y + 1), y**7)
assert fraction(exp(-x), exact=True) == (exp(-x), 1)
assert fraction((1/(x + y))/2, exact=True) == (1, Mul(2,(x + y), evaluate=False))
assert fraction(x*A/y) == (x*A, y)
assert fraction(x*A**-1/y) == (x*A**-1, y)
n = symbols('n', negative=True)
assert fraction(exp(n)) == (1, exp(-n))
assert fraction(exp(-n)) == (exp(-n), 1)
p = symbols('p', positive=True)
assert fraction(exp(-p)*log(p), exact=True) == (exp(-p)*log(p), 1)
def test_issue_5615():
aA, Re, a, b, D = symbols('aA Re a b D')
e = ((D**3*a + b*aA**3)/Re).expand()
assert collect(e, [aA**3/Re, a]) == e
def test_issue_5933():
from sympy import Polygon, RegularPolygon, denom
x = Polygon(*RegularPolygon((0, 0), 1, 5).vertices).centroid.x
assert abs(denom(x).n()) > 1e-12
assert abs(denom(radsimp(x))) > 1e-12 # in case simplify didn't handle it
def test_issue_14608():
a, b = symbols('a b', commutative=False)
x, y = symbols('x y')
raises(AttributeError, lambda: collect(a*b + b*a, a))
assert collect(x*y + y*(x+1), a) == x*y + y*(x+1)
assert collect(x*y + y*(x+1) + a*b + b*a, y) == y*(2*x + 1) + a*b + b*a
def test_collect_abs():
s = abs(x) + abs(y)
assert collect_abs(s) == s
assert unchanged(Mul, abs(x), abs(y))
ans = Abs(x*y)
assert isinstance(ans, Abs)
assert collect_abs(abs(x)*abs(y)) == ans
assert collect_abs(1 + exp(abs(x)*abs(y))) == 1 + exp(ans)
# See https://github.com/sympy/sympy/issues/12910
p = Symbol('p', positive=True)
assert collect_abs(p/abs(1-p)).is_commutative is True
|
0063fe11416f120df236e383a7ad693c32e8ebdf1c2d9fb5cf2aa4dc22256ab2 | from sympy import (
symbols, powsimp, MatrixSymbol, sqrt, pi, Mul, gamma, Function,
S, I, exp, simplify, sin, E, log, hyper, Symbol, Dummy, powdenest, root,
Rational, oo, signsimp)
from sympy.abc import x, y, z, a, b
def test_powsimp():
x, y, z, n = symbols('x,y,z,n')
f = Function('f')
assert powsimp( 4**x * 2**(-x) * 2**(-x) ) == 1
assert powsimp( (-4)**x * (-2)**(-x) * 2**(-x) ) == 1
assert powsimp(
f(4**x * 2**(-x) * 2**(-x)) ) == f(4**x * 2**(-x) * 2**(-x))
assert powsimp( f(4**x * 2**(-x) * 2**(-x)), deep=True ) == f(1)
assert exp(x)*exp(y) == exp(x)*exp(y)
assert powsimp(exp(x)*exp(y)) == exp(x + y)
assert powsimp(exp(x)*exp(y)*2**x*2**y) == (2*E)**(x + y)
assert powsimp(exp(x)*exp(y)*2**x*2**y, combine='exp') == \
exp(x + y)*2**(x + y)
assert powsimp(exp(x)*exp(y)*exp(2)*sin(x) + sin(y) + 2**x*2**y) == \
exp(2 + x + y)*sin(x) + sin(y) + 2**(x + y)
assert powsimp(sin(exp(x)*exp(y))) == sin(exp(x)*exp(y))
assert powsimp(sin(exp(x)*exp(y)), deep=True) == sin(exp(x + y))
assert powsimp(x**2*x**y) == x**(2 + y)
# This should remain factored, because 'exp' with deep=True is supposed
# to act like old automatic exponent combining.
assert powsimp((1 + E*exp(E))*exp(-E), combine='exp', deep=True) == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), deep=True) == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E)) == (1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), combine='exp') == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), combine='base') == \
(1 + E*exp(E))*exp(-E)
x, y = symbols('x,y', nonnegative=True)
n = Symbol('n', real=True)
assert powsimp(y**n * (y/x)**(-n)) == x**n
assert powsimp(x**(x**(x*y)*y**(x*y))*y**(x**(x*y)*y**(x*y)), deep=True) \
== (x*y)**(x*y)**(x*y)
assert powsimp(2**(2**(2*x)*x), deep=False) == 2**(2**(2*x)*x)
assert powsimp(2**(2**(2*x)*x), deep=True) == 2**(x*4**x)
assert powsimp(
exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
exp(-x + exp(-x)*exp(-x*log(x)))
assert powsimp(
exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
exp(-x + exp(-x)*exp(-x*log(x)))
assert powsimp((x + y)/(3*z), deep=False, combine='exp') == (x + y)/(3*z)
assert powsimp((x/3 + y/3)/z, deep=True, combine='exp') == (x/3 + y/3)/z
assert powsimp(exp(x)/(1 + exp(x)*exp(y)), deep=True) == \
exp(x)/(1 + exp(x + y))
assert powsimp(x*y**(z**x*z**y), deep=True) == x*y**(z**(x + y))
assert powsimp((z**x*z**y)**x, deep=True) == (z**(x + y))**x
assert powsimp(x*(z**x*z**y)**x, deep=True) == x*(z**(x + y))**x
p = symbols('p', positive=True)
assert powsimp((1/x)**log(2)/x) == (1/x)**(1 + log(2))
assert powsimp((1/p)**log(2)/p) == p**(-1 - log(2))
# coefficient of exponent can only be simplified for positive bases
assert powsimp(2**(2*x)) == 4**x
assert powsimp((-1)**(2*x)) == (-1)**(2*x)
i = symbols('i', integer=True)
assert powsimp((-1)**(2*i)) == 1
assert powsimp((-1)**(-x)) != (-1)**x # could be 1/((-1)**x), but is not
# force=True overrides assumptions
assert powsimp((-1)**(2*x), force=True) == 1
# rational exponents allow combining of negative terms
w, n, m = symbols('w n m', negative=True)
e = i/a # not a rational exponent if `a` is unknown
ex = w**e*n**e*m**e
assert powsimp(ex) == m**(i/a)*n**(i/a)*w**(i/a)
e = i/3
ex = w**e*n**e*m**e
assert powsimp(ex) == (-1)**i*(-m*n*w)**(i/3)
e = (3 + i)/i
ex = w**e*n**e*m**e
assert powsimp(ex) == (-1)**(3*e)*(-m*n*w)**e
eq = x**(a*Rational(2, 3))
# eq != (x**a)**(2/3) (try x = -1 and a = 3 to see)
assert powsimp(eq).exp == eq.exp == a*Rational(2, 3)
# powdenest goes the other direction
assert powsimp(2**(2*x)) == 4**x
assert powsimp(exp(p/2)) == exp(p/2)
# issue 6368
eq = Mul(*[sqrt(Dummy(imaginary=True)) for i in range(3)])
assert powsimp(eq) == eq and eq.is_Mul
assert all(powsimp(e) == e for e in (sqrt(x**a), sqrt(x**2)))
# issue 8836
assert str( powsimp(exp(I*pi/3)*root(-1,3)) ) == '(-1)**(2/3)'
# issue 9183
assert powsimp(-0.1**x) == -0.1**x
# issue 10095
assert powsimp((1/(2*E))**oo) == (exp(-1)/2)**oo
# PR 13131
eq = sin(2*x)**2*sin(2.0*x)**2
assert powsimp(eq) == eq
# issue 14615
assert powsimp(x**2*y**3*(x*y**2)**Rational(3, 2)
) == x*y*(x*y**2)**Rational(5, 2)
def test_powsimp_negated_base():
assert powsimp((-x + y)/sqrt(x - y)) == -sqrt(x - y)
assert powsimp((-x + y)*(-z + y)/sqrt(x - y)/sqrt(z - y)) == sqrt(x - y)*sqrt(z - y)
p = symbols('p', positive=True)
reps = {p: 2, a: S.Half}
assert powsimp((-p)**a/p**a).subs(reps) == ((-1)**a).subs(reps)
assert powsimp((-p)**a*p**a).subs(reps) == ((-p**2)**a).subs(reps)
n = symbols('n', negative=True)
reps = {p: -2, a: S.Half}
assert powsimp((-n)**a/n**a).subs(reps) == (-1)**(-a).subs(a, S.Half)
assert powsimp((-n)**a*n**a).subs(reps) == ((-n**2)**a).subs(reps)
# if x is 0 then the lhs is 0**a*oo**a which is not (-1)**a
eq = (-x)**a/x**a
assert powsimp(eq) == eq
def test_powsimp_nc():
x, y, z = symbols('x,y,z')
A, B, C = symbols('A B C', commutative=False)
assert powsimp(A**x*A**y, combine='all') == A**(x + y)
assert powsimp(A**x*A**y, combine='base') == A**x*A**y
assert powsimp(A**x*A**y, combine='exp') == A**(x + y)
assert powsimp(A**x*B**x, combine='all') == A**x*B**x
assert powsimp(A**x*B**x, combine='base') == A**x*B**x
assert powsimp(A**x*B**x, combine='exp') == A**x*B**x
assert powsimp(B**x*A**x, combine='all') == B**x*A**x
assert powsimp(B**x*A**x, combine='base') == B**x*A**x
assert powsimp(B**x*A**x, combine='exp') == B**x*A**x
assert powsimp(A**x*A**y*A**z, combine='all') == A**(x + y + z)
assert powsimp(A**x*A**y*A**z, combine='base') == A**x*A**y*A**z
assert powsimp(A**x*A**y*A**z, combine='exp') == A**(x + y + z)
assert powsimp(A**x*B**x*C**x, combine='all') == A**x*B**x*C**x
assert powsimp(A**x*B**x*C**x, combine='base') == A**x*B**x*C**x
assert powsimp(A**x*B**x*C**x, combine='exp') == A**x*B**x*C**x
assert powsimp(B**x*A**x*C**x, combine='all') == B**x*A**x*C**x
assert powsimp(B**x*A**x*C**x, combine='base') == B**x*A**x*C**x
assert powsimp(B**x*A**x*C**x, combine='exp') == B**x*A**x*C**x
def test_issue_6440():
assert powsimp(16*2**a*8**b) == 2**(a + 3*b + 4)
def test_powdenest():
from sympy import powdenest
from sympy.abc import x, y, z, a, b
p, q = symbols('p q', positive=True)
i, j = symbols('i,j', integer=True)
assert powdenest(x) == x
assert powdenest(x + 2*(x**(a*Rational(2, 3)))**(3*x)) == (x + 2*(x**(a*Rational(2, 3)))**(3*x))
assert powdenest((exp(a*Rational(2, 3)))**(3*x)) # -X-> (exp(a/3))**(6*x)
assert powdenest((x**(a*Rational(2, 3)))**(3*x)) == ((x**(a*Rational(2, 3)))**(3*x))
assert powdenest(exp(3*x*log(2))) == 2**(3*x)
assert powdenest(sqrt(p**2)) == p
eq = p**(2*i)*q**(4*i)
assert powdenest(eq) == (p*q**2)**(2*i)
# -X-> (x**x)**i*(x**x)**j == x**(x*(i + j))
assert powdenest((x**x)**(i + j))
assert powdenest(exp(3*y*log(x))) == x**(3*y)
assert powdenest(exp(y*(log(a) + log(b)))) == (a*b)**y
assert powdenest(exp(3*(log(a) + log(b)))) == a**3*b**3
assert powdenest(((x**(2*i))**(3*y))**x) == ((x**(2*i))**(3*y))**x
assert powdenest(((x**(2*i))**(3*y))**x, force=True) == x**(6*i*x*y)
assert powdenest(((x**(a*Rational(2, 3)))**(3*y/i))**x) == \
(((x**(a*Rational(2, 3)))**(3*y/i))**x)
assert powdenest((x**(2*i)*y**(4*i))**z, force=True) == (x*y**2)**(2*i*z)
assert powdenest((p**(2*i)*q**(4*i))**j) == (p*q**2)**(2*i*j)
e = ((p**(2*a))**(3*y))**x
assert powdenest(e) == e
e = ((x**2*y**4)**a)**(x*y)
assert powdenest(e) == e
e = (((x**2*y**4)**a)**(x*y))**3
assert powdenest(e) == ((x**2*y**4)**a)**(3*x*y)
assert powdenest((((x**2*y**4)**a)**(x*y)), force=True) == \
(x*y**2)**(2*a*x*y)
assert powdenest((((x**2*y**4)**a)**(x*y))**3, force=True) == \
(x*y**2)**(6*a*x*y)
assert powdenest((x**2*y**6)**i) != (x*y**3)**(2*i)
x, y = symbols('x,y', positive=True)
assert powdenest((x**2*y**6)**i) == (x*y**3)**(2*i)
assert powdenest((x**(i*Rational(2, 3))*y**(i/2))**(2*i)) == (x**Rational(4, 3)*y)**(i**2)
assert powdenest(sqrt(x**(2*i)*y**(6*i))) == (x*y**3)**i
assert powdenest(4**x) == 2**(2*x)
assert powdenest((4**x)**y) == 2**(2*x*y)
assert powdenest(4**x*y) == 2**(2*x)*y
def test_powdenest_polar():
x, y, z = symbols('x y z', polar=True)
a, b, c = symbols('a b c')
assert powdenest((x*y*z)**a) == x**a*y**a*z**a
assert powdenest((x**a*y**b)**c) == x**(a*c)*y**(b*c)
assert powdenest(((x**a)**b*y**c)**c) == x**(a*b*c)*y**(c**2)
def test_issue_5805():
arg = ((gamma(x)*hyper((), (), x))*pi)**2
assert powdenest(arg) == (pi*gamma(x)*hyper((), (), x))**2
assert arg.is_positive is None
def test_issue_9324_powsimp_on_matrix_symbol():
M = MatrixSymbol('M', 10, 10)
expr = powsimp(M, deep=True)
assert expr == M
assert expr.args[0] == Symbol('M')
def test_issue_6367():
z = -5*sqrt(2)/(2*sqrt(2*sqrt(29) + 29)) + sqrt(-sqrt(29)/29 + S.Half)
assert Mul(*[powsimp(a) for a in Mul.make_args(z.normal())]) == 0
assert powsimp(z.normal()) == 0
assert simplify(z) == 0
assert powsimp(sqrt(2 + sqrt(3))*sqrt(2 - sqrt(3)) + 1) == 2
assert powsimp(z) != 0
def test_powsimp_polar():
from sympy import polar_lift, exp_polar
x, y, z = symbols('x y z')
p, q, r = symbols('p q r', polar=True)
assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
assert powsimp(p**x * q**x) == (p*q)**x
assert p**x * (1/p)**x == 1
assert (1/p)**x == p**(-x)
assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
(p*exp_polar(1))**(x + y)
assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
exp_polar(x + y)*p**(x + y)
assert powsimp(
exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
== p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
sin(exp_polar(x)*exp_polar(y))
assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
sin(exp_polar(x + y))
def test_issue_5728():
b = x*sqrt(y)
a = sqrt(b)
c = sqrt(sqrt(x)*y)
assert powsimp(a*b) == sqrt(b)**3
assert powsimp(a*b**2*sqrt(y)) == sqrt(y)*a**5
assert powsimp(a*x**2*c**3*y) == c**3*a**5
assert powsimp(a*x*c**3*y**2) == c**7*a
assert powsimp(x*c**3*y**2) == c**7
assert powsimp(x*c**3*y) == x*y*c**3
assert powsimp(sqrt(x)*c**3*y) == c**5
assert powsimp(sqrt(x)*a**3*sqrt(y)) == sqrt(x)*sqrt(y)*a**3
assert powsimp(Mul(sqrt(x)*c**3*sqrt(y), y, evaluate=False)) == \
sqrt(x)*sqrt(y)**3*c**3
assert powsimp(a**2*a*x**2*y) == a**7
# symbolic powers work, too
b = x**y*y
a = b*sqrt(b)
assert a.is_Mul is True
assert powsimp(a) == sqrt(b)**3
# as does exp
a = x*exp(y*Rational(2, 3))
assert powsimp(a*sqrt(a)) == sqrt(a)**3
assert powsimp(a**2*sqrt(a)) == sqrt(a)**5
assert powsimp(a**2*sqrt(sqrt(a))) == sqrt(sqrt(a))**9
def test_issue_from_PR1599():
n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
assert (powsimp(sqrt(n1)*sqrt(n2)*sqrt(n3)) ==
-I*sqrt(-n1)*sqrt(-n2)*sqrt(-n3))
assert (powsimp(root(n1, 3)*root(n2, 3)*root(n3, 3)*root(n4, 3)) ==
-(-1)**Rational(1, 3)*
(-n1)**Rational(1, 3)*(-n2)**Rational(1, 3)*(-n3)**Rational(1, 3)*(-n4)**Rational(1, 3))
def test_issue_10195():
a = Symbol('a', integer=True)
l = Symbol('l', even=True, nonzero=True)
n = Symbol('n', odd=True)
e_x = (-1)**(n/2 - S.Half) - (-1)**(n*Rational(3, 2) - S.Half)
assert powsimp((-1)**(l/2)) == I**l
assert powsimp((-1)**(n/2)) == I**n
assert powsimp((-1)**(n*Rational(3, 2))) == -I**n
assert powsimp(e_x) == (-1)**(n/2 - S.Half) + (-1)**(n*Rational(3, 2) +
S.Half)
assert powsimp((-1)**(a*Rational(3, 2))) == (-I)**a
def test_issue_15709():
assert powsimp(3**x*Rational(2, 3)) == 2*3**(x-1)
assert powsimp(2*3**x/3) == 2*3**(x-1)
def test_issue_11981():
x, y = symbols('x y', commutative=False)
assert powsimp((x*y)**2 * (y*x)**2) == (x*y)**2 * (y*x)**2
def test_issue_17524():
a = symbols("a", real=True)
e = (-1 - a**2)*sqrt(1 + a**2)
assert signsimp(powsimp(e)) == signsimp(e) == -(a**2 + 1)**(S(3)/2)
|
232a6abb1381b6d1c3456befb72cb67b07ef0c7aec05c658a6a760d62c674e6c | from random import randrange
from sympy.simplify.hyperexpand import (ShiftA, ShiftB, UnShiftA, UnShiftB,
MeijerShiftA, MeijerShiftB, MeijerShiftC, MeijerShiftD,
MeijerUnShiftA, MeijerUnShiftB, MeijerUnShiftC,
MeijerUnShiftD,
ReduceOrder, reduce_order, apply_operators,
devise_plan, make_derivative_operator, Formula,
hyperexpand, Hyper_Function, G_Function,
reduce_order_meijer,
build_hypergeometric_formula)
from sympy import hyper, I, S, meijerg, Piecewise, Tuple, Sum, binomial, Expr
from sympy.abc import z, a, b, c
from sympy.utilities.pytest import XFAIL, raises, slow, ON_TRAVIS, skip
from sympy.utilities.randtest import verify_numerically as tn
from sympy.core.compatibility import range
from sympy import (cos, sin, log, exp, asin, lowergamma, atanh, besseli,
gamma, sqrt, pi, erf, exp_polar, Rational)
def test_branch_bug():
assert hyperexpand(hyper((Rational(-1, 3), S.Half), (Rational(2, 3), Rational(3, 2)), -z)) == \
-z**S('1/3')*lowergamma(exp_polar(I*pi)/3, z)/5 \
+ sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
2*z**S('2/3')*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(
Rational(2, 3), z)/z**S('2/3'))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
def test_hyperexpand():
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
# Volume 1, section 6.2
assert hyperexpand(hyper([], [], z)) == exp(z)
assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z)
assert hyperexpand(hyper([], [S.Half], -z**2/4)) == cos(z)
assert hyperexpand(z*hyper([], [S('3/2')], -z**2/4)) == sin(z)
assert hyperexpand(hyper([S('1/2'), S('1/2')], [S('3/2')], z**2)*z) \
== asin(z)
assert isinstance(Sum(binomial(2, z)*z**2, (z, 0, a)).doit(), Expr)
def can_do(ap, bq, numerical=True, div=1, lowerplane=False):
from sympy import exp_polar, exp
r = hyperexpand(hyper(ap, bq, z))
if r.has(hyper):
return False
if not numerical:
return True
repl = {}
randsyms = r.free_symbols - {z}
while randsyms:
# Only randomly generated parameters are checked.
for n, ai in enumerate(randsyms):
repl[ai] = randcplx(n)/div
if not any([b.is_Integer and b <= 0 for b in Tuple(*bq).subs(repl)]):
break
[a, b, c, d] = [2, -1, 3, 1]
if lowerplane:
[a, b, c, d] = [2, -2, 3, -1]
return tn(
hyper(ap, bq, z).subs(repl),
r.replace(exp_polar, exp).subs(repl),
z, a=a, b=b, c=c, d=d)
def test_roach():
# Kelly B. Roach. Meijer G Function Representations.
# Section "Gallery"
assert can_do([S.Half], [Rational(9, 2)])
assert can_do([], [1, Rational(5, 2), 4])
assert can_do([Rational(-1, 2), 1, 2], [3, 4])
assert can_do([Rational(1, 3)], [Rational(-2, 3), Rational(-1, 2), S.Half, 1])
assert can_do([Rational(-3, 2), Rational(-1, 2)], [Rational(-5, 2), 1])
assert can_do([Rational(-3, 2), ], [Rational(-1, 2), S.Half]) # shine-integral
assert can_do([Rational(-3, 2), Rational(-1, 2)], [2]) # elliptic integrals
@XFAIL
def test_roach_fail():
assert can_do([Rational(-1, 2), 1], [Rational(1, 4), S.Half, Rational(3, 4)]) # PFDD
assert can_do([Rational(3, 2)], [Rational(5, 2), 5]) # struve function
assert can_do([Rational(-1, 2), S.Half, 1], [Rational(3, 2), Rational(5, 2)]) # polylog, pfdd
assert can_do([1, 2, 3], [S.Half, 4]) # XXX ?
assert can_do([S.Half], [Rational(-1, 3), Rational(-1, 2), Rational(-2, 3)]) # PFDD ?
# For the long table tests, see end of file
def test_polynomial():
from sympy import oo
assert hyperexpand(hyper([], [-1], z)) is oo
assert hyperexpand(hyper([-2], [-1], z)) is oo
assert hyperexpand(hyper([0, 0], [-1], z)) == 1
assert can_do([-5, -2, randcplx(), randcplx()], [-10, randcplx()])
assert hyperexpand(hyper((-1, 1), (-2,), z)) == 1 + z/2
def test_hyperexpand_bases():
assert hyperexpand(hyper([2], [a], z)) == \
a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z)* \
lowergamma(a - 1, z) - 1
# TODO [a+1, aRational(-1, 2)], [2*a]
assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
assert hyperexpand(hyper([S.Half, 2], [Rational(3, 2)], z)) == \
-1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2
assert hyperexpand(hyper([S.Half, S.Half], [Rational(5, 2)], z)) == \
(-3*z + 3)/4/(z*sqrt(-z + 1)) \
+ (6*z - 3)*asin(sqrt(z))/(4*z**Rational(3, 2))
assert hyperexpand(hyper([1, 2], [Rational(3, 2)], z)) == -1/(2*z - 2) \
- asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1))
assert hyperexpand(hyper([Rational(-1, 2) - 1, 1, 2], [S.Half, 3], z)) == \
sqrt(z)*(z*Rational(6, 7) - Rational(6, 5))*atanh(sqrt(z)) \
+ (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2)
assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == \
-4*log(sqrt(-z + 1)/2 + S.Half)/z
# TODO hyperexpand(hyper([a], [2*a + 1], z))
# TODO [S.Half, a], [Rational(3, 2), a+1]
assert hyperexpand(hyper([2], [b, 1], z)) == \
z**(-b/2 + S.Half)*besseli(b - 1, 2*sqrt(z))*gamma(b) \
+ z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b)
# TODO [a], [a - S.Half, 2*a]
def test_hyperexpand_parametric():
assert hyperexpand(hyper([a, S.Half + a], [S.Half], z)) \
== (1 + sqrt(z))**(-2*a)/2 + (1 - sqrt(z))**(-2*a)/2
assert hyperexpand(hyper([a, Rational(-1, 2) + a], [2*a], z)) \
== 2**(2*a - 1)*((-z + 1)**S.Half + 1)**(-2*a + 1)
def test_shifted_sum():
from sympy import simplify
assert simplify(hyperexpand(z**4*hyper([2], [3, S('3/2')], -z**2))) \
== z*sin(2*z) + (-z**2 + S.Half)*cos(2*z) - S.Half
def _randrat():
""" Steer clear of integers. """
return S(randrange(25) + 10)/50
def randcplx(offset=-1):
""" Polys is not good with real coefficients. """
return _randrat() + I*_randrat() + I*(1 + offset)
@slow
def test_formulae():
from sympy.simplify.hyperexpand import FormulaCollection
formulae = FormulaCollection().formulae
for formula in formulae:
h = formula.func(formula.z)
rep = {}
for n, sym in enumerate(formula.symbols):
rep[sym] = randcplx(n)
# NOTE hyperexpand returns truly branched functions. We know we are
# on the main sheet, but numerical evaluation can still go wrong
# (e.g. if exp_polar cannot be evalf'd).
# Just replace all exp_polar by exp, this usually works.
# first test if the closed-form is actually correct
h = h.subs(rep)
closed_form = formula.closed_form.subs(rep).rewrite('nonrepsmall')
z = formula.z
assert tn(h, closed_form.replace(exp_polar, exp), z)
# now test the computed matrix
cl = (formula.C * formula.B)[0].subs(rep).rewrite('nonrepsmall')
assert tn(closed_form.replace(
exp_polar, exp), cl.replace(exp_polar, exp), z)
deriv1 = z*formula.B.applyfunc(lambda t: t.rewrite(
'nonrepsmall')).diff(z)
deriv2 = formula.M * formula.B
for d1, d2 in zip(deriv1, deriv2):
assert tn(d1.subs(rep).replace(exp_polar, exp),
d2.subs(rep).rewrite('nonrepsmall').replace(exp_polar, exp), z)
def test_meijerg_formulae():
from sympy.simplify.hyperexpand import MeijerFormulaCollection
formulae = MeijerFormulaCollection().formulae
for sig in formulae:
for formula in formulae[sig]:
g = meijerg(formula.func.an, formula.func.ap,
formula.func.bm, formula.func.bq,
formula.z)
rep = {}
for sym in formula.symbols:
rep[sym] = randcplx()
# first test if the closed-form is actually correct
g = g.subs(rep)
closed_form = formula.closed_form.subs(rep)
z = formula.z
assert tn(g, closed_form, z)
# now test the computed matrix
cl = (formula.C * formula.B)[0].subs(rep)
assert tn(closed_form, cl, z)
deriv1 = z*formula.B.diff(z)
deriv2 = formula.M * formula.B
for d1, d2 in zip(deriv1, deriv2):
assert tn(d1.subs(rep), d2.subs(rep), z)
def op(f):
return z*f.diff(z)
def test_plan():
assert devise_plan(Hyper_Function([0], ()),
Hyper_Function([0], ()), z) == []
with raises(ValueError):
devise_plan(Hyper_Function([1], ()), Hyper_Function((), ()), z)
with raises(ValueError):
devise_plan(Hyper_Function([2], [1]), Hyper_Function([2], [2]), z)
with raises(ValueError):
devise_plan(Hyper_Function([2], []), Hyper_Function([S("1/2")], []), z)
# We cannot use pi/(10000 + n) because polys is insanely slow.
a1, a2, b1 = (randcplx(n) for n in range(3))
b1 += 2*I
h = hyper([a1, a2], [b1], z)
h2 = hyper((a1 + 1, a2), [b1], z)
assert tn(apply_operators(h,
devise_plan(Hyper_Function((a1 + 1, a2), [b1]),
Hyper_Function((a1, a2), [b1]), z), op),
h2, z)
h2 = hyper((a1 + 1, a2 - 1), [b1], z)
assert tn(apply_operators(h,
devise_plan(Hyper_Function((a1 + 1, a2 - 1), [b1]),
Hyper_Function((a1, a2), [b1]), z), op),
h2, z)
def test_plan_derivatives():
a1, a2, a3 = 1, 2, S('1/2')
b1, b2 = 3, S('5/2')
h = Hyper_Function((a1, a2, a3), (b1, b2))
h2 = Hyper_Function((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1))
ops = devise_plan(h2, h, z)
f = Formula(h, z, h(z), [])
deriv = make_derivative_operator(f.M, z)
assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z)
h2 = Hyper_Function((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1))
ops = devise_plan(h2, h, z)
assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z)
def test_reduction_operators():
a1, a2, b1 = (randcplx(n) for n in range(3))
h = hyper([a1], [b1], z)
assert ReduceOrder(2, 0) is None
assert ReduceOrder(2, -1) is None
assert ReduceOrder(1, S('1/2')) is None
h2 = hyper((a1, a2), (b1, a2), z)
assert tn(ReduceOrder(a2, a2).apply(h, op), h2, z)
h2 = hyper((a1, a2 + 1), (b1, a2), z)
assert tn(ReduceOrder(a2 + 1, a2).apply(h, op), h2, z)
h2 = hyper((a2 + 4, a1), (b1, a2), z)
assert tn(ReduceOrder(a2 + 4, a2).apply(h, op), h2, z)
# test several step order reduction
ap = (a2 + 4, a1, b1 + 1)
bq = (a2, b1, b1)
func, ops = reduce_order(Hyper_Function(ap, bq))
assert func.ap == (a1,)
assert func.bq == (b1,)
assert tn(apply_operators(h, ops, op), hyper(ap, bq, z), z)
def test_shift_operators():
a1, a2, b1, b2, b3 = (randcplx(n) for n in range(5))
h = hyper((a1, a2), (b1, b2, b3), z)
raises(ValueError, lambda: ShiftA(0))
raises(ValueError, lambda: ShiftB(1))
assert tn(ShiftA(a1).apply(h, op), hyper((a1 + 1, a2), (b1, b2, b3), z), z)
assert tn(ShiftA(a2).apply(h, op), hyper((a1, a2 + 1), (b1, b2, b3), z), z)
assert tn(ShiftB(b1).apply(h, op), hyper((a1, a2), (b1 - 1, b2, b3), z), z)
assert tn(ShiftB(b2).apply(h, op), hyper((a1, a2), (b1, b2 - 1, b3), z), z)
assert tn(ShiftB(b3).apply(h, op), hyper((a1, a2), (b1, b2, b3 - 1), z), z)
def test_ushift_operators():
a1, a2, b1, b2, b3 = (randcplx(n) for n in range(5))
h = hyper((a1, a2), (b1, b2, b3), z)
raises(ValueError, lambda: UnShiftA((1,), (), 0, z))
raises(ValueError, lambda: UnShiftB((), (-1,), 0, z))
raises(ValueError, lambda: UnShiftA((1,), (0, -1, 1), 0, z))
raises(ValueError, lambda: UnShiftB((0, 1), (1,), 0, z))
s = UnShiftA((a1, a2), (b1, b2, b3), 0, z)
assert tn(s.apply(h, op), hyper((a1 - 1, a2), (b1, b2, b3), z), z)
s = UnShiftA((a1, a2), (b1, b2, b3), 1, z)
assert tn(s.apply(h, op), hyper((a1, a2 - 1), (b1, b2, b3), z), z)
s = UnShiftB((a1, a2), (b1, b2, b3), 0, z)
assert tn(s.apply(h, op), hyper((a1, a2), (b1 + 1, b2, b3), z), z)
s = UnShiftB((a1, a2), (b1, b2, b3), 1, z)
assert tn(s.apply(h, op), hyper((a1, a2), (b1, b2 + 1, b3), z), z)
s = UnShiftB((a1, a2), (b1, b2, b3), 2, z)
assert tn(s.apply(h, op), hyper((a1, a2), (b1, b2, b3 + 1), z), z)
def can_do_meijer(a1, a2, b1, b2, numeric=True):
"""
This helper function tries to hyperexpand() the meijer g-function
corresponding to the parameters a1, a2, b1, b2.
It returns False if this expansion still contains g-functions.
If numeric is True, it also tests the so-obtained formula numerically
(at random values) and returns False if the test fails.
Else it returns True.
"""
from sympy import unpolarify, expand
r = hyperexpand(meijerg(a1, a2, b1, b2, z))
if r.has(meijerg):
return False
# NOTE hyperexpand() returns a truly branched function, whereas numerical
# evaluation only works on the main branch. Since we are evaluating on
# the main branch, this should not be a problem, but expressions like
# exp_polar(I*pi/2*x)**a are evaluated incorrectly. We thus have to get
# rid of them. The expand heuristically does this...
r = unpolarify(expand(r, force=True, power_base=True, power_exp=False,
mul=False, log=False, multinomial=False, basic=False))
if not numeric:
return True
repl = {}
for n, ai in enumerate(meijerg(a1, a2, b1, b2, z).free_symbols - {z}):
repl[ai] = randcplx(n)
return tn(meijerg(a1, a2, b1, b2, z).subs(repl), r.subs(repl), z)
@slow
def test_meijerg_expand():
from sympy import gammasimp, simplify
# from mpmath docs
assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z)
assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \
log(z + 1)
assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \
z/(z + 1)
assert hyperexpand(meijerg([[], []], [[S.Half], [0]], (z/2)**2)) \
== sin(z)/sqrt(pi)
assert hyperexpand(meijerg([[], []], [[0], [S.Half]], (z/2)**2)) \
== cos(z)/sqrt(pi)
assert can_do_meijer([], [a], [a - 1, a - S.Half], [])
assert can_do_meijer([], [], [a/2], [-a/2], False) # branches...
assert can_do_meijer([a], [b], [a], [b, a - 1])
# wikipedia
assert hyperexpand(meijerg([1], [], [], [0], z)) == \
Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
(meijerg([1], [], [], [0], z), True))
assert hyperexpand(meijerg([], [1], [0], [], z)) == \
Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
(meijerg([], [1], [0], [], z), True))
# The Special Functions and their Approximations
assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + S.Half])
assert can_do_meijer(
[], [], [a], [b], False) # branches only agree for small z
assert can_do_meijer([], [S.Half], [a], [-a])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, a + S.Half], [b, b + S.Half])
assert can_do_meijer([], [], [a, -a], [0, S.Half], False) # dito
assert can_do_meijer([], [], [a, a + S.Half, b, b + S.Half], [])
assert can_do_meijer([S.Half], [], [0], [a, -a])
assert can_do_meijer([S.Half], [], [a], [0, -a], False) # dito
assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False)
assert can_do_meijer([], [a + S.Half], [a + b, a - b, a], [], False)
assert can_do_meijer([a + S.Half], [], [b, 2*a - b, a], [], False)
# This for example is actually zero.
assert can_do_meijer([], [], [], [a, b])
# Testing a bug:
assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
Piecewise((0, abs(z) < 1),
(z/2 - 1/(2*z), abs(1/z) < 1),
(meijerg([0, 2], [], [], [-1, 1], z), True))
# Test that the simplest possible answer is returned:
assert gammasimp(simplify(hyperexpand(
meijerg([1], [1 - a], [-a/2, -a/2 + S.Half], [], 1/z)))) == \
-2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a
# Test that hyper is returned
assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper(
(a,), (a + 1, a + 1), z*exp_polar(I*pi))*z**a*gamma(a)/gamma(a + 1)**2
# Test place option
f = meijerg(((0, 1), ()), ((S.Half,), (0,)), z**2)
assert hyperexpand(f) == sqrt(pi)/sqrt(1 + z**(-2))
assert hyperexpand(f, place=0) == sqrt(pi)*z/sqrt(z**2 + 1)
def test_meijerg_lookup():
from sympy import uppergamma, Si, Ci
assert hyperexpand(meijerg([a], [], [b, a], [], z)) == \
z**b*exp(z)*gamma(-a + b + 1)*uppergamma(a - b, z)
assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == \
exp(z)*uppergamma(0, z)
assert can_do_meijer([a], [], [b, a + 1], [])
assert can_do_meijer([a], [], [b + 2, a], [])
assert can_do_meijer([a], [], [b - 2, a], [])
assert hyperexpand(meijerg([a], [], [a, a, a - S.Half], [], z)) == \
-sqrt(pi)*z**(a - S.Half)*(2*cos(2*sqrt(z))*(Si(2*sqrt(z)) - pi/2)
- 2*sin(2*sqrt(z))*Ci(2*sqrt(z))) == \
hyperexpand(meijerg([a], [], [a, a - S.Half, a], [], z)) == \
hyperexpand(meijerg([a], [], [a - S.Half, a, a], [], z))
assert can_do_meijer([a - 1], [], [a + 2, a - Rational(3, 2), a + 1], [])
@XFAIL
def test_meijerg_expand_fail():
# These basically test hyper([], [1/2 - a, 1/2 + 1, 1/2], z),
# which is *very* messy. But since the meijer g actually yields a
# sum of bessel functions, things can sometimes be simplified a lot and
# are then put into tables...
assert can_do_meijer([], [], [a + S.Half], [a, a - b/2, a + b/2])
assert can_do_meijer([], [], [0, S.Half], [a, -a])
assert can_do_meijer([], [], [3*a - S.Half, a, -a - S.Half], [a - S.Half])
assert can_do_meijer([], [], [0, a - S.Half, -a - S.Half], [S.Half])
assert can_do_meijer([], [], [a, b + S.Half, b], [2*b - a])
assert can_do_meijer([], [], [a, b + S.Half, b, 2*b - a])
assert can_do_meijer([S.Half], [], [-a, a], [0])
@slow
def test_meijerg():
# carefully set up the parameters.
# NOTE: this used to fail sometimes. I believe it is fixed, but if you
# hit an inexplicable test failure here, please let me know the seed.
a1, a2 = (randcplx(n) - 5*I - n*I for n in range(2))
b1, b2 = (randcplx(n) + 5*I + n*I for n in range(2))
b3, b4, b5, a3, a4, a5 = (randcplx() for n in range(6))
g = meijerg([a1], [a3, a4], [b1], [b3, b4], z)
assert ReduceOrder.meijer_minus(3, 4) is None
assert ReduceOrder.meijer_plus(4, 3) is None
g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2], z)
assert tn(ReduceOrder.meijer_plus(a2, a2).apply(g, op), g2, z)
g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2 + 1], z)
assert tn(ReduceOrder.meijer_plus(a2, a2 + 1).apply(g, op), g2, z)
g2 = meijerg([a1, a2 - 1], [a3, a4], [b1], [b3, b4, a2 + 2], z)
assert tn(ReduceOrder.meijer_plus(a2 - 1, a2 + 2).apply(g, op), g2, z)
g2 = meijerg([a1], [a3, a4, b2 - 1], [b1, b2 + 2], [b3, b4], z)
assert tn(ReduceOrder.meijer_minus(
b2 + 2, b2 - 1).apply(g, op), g2, z, tol=1e-6)
# test several-step reduction
an = [a1, a2]
bq = [b3, b4, a2 + 1]
ap = [a3, a4, b2 - 1]
bm = [b1, b2 + 1]
niq, ops = reduce_order_meijer(G_Function(an, ap, bm, bq))
assert niq.an == (a1,)
assert set(niq.ap) == {a3, a4}
assert niq.bm == (b1,)
assert set(niq.bq) == {b3, b4}
assert tn(apply_operators(g, ops, op), meijerg(an, ap, bm, bq, z), z)
def test_meijerg_shift_operators():
# carefully set up the parameters. XXX this still fails sometimes
a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 = (randcplx(n) for n in range(10))
g = meijerg([a1], [a3, a4], [b1], [b3, b4], z)
assert tn(MeijerShiftA(b1).apply(g, op),
meijerg([a1], [a3, a4], [b1 + 1], [b3, b4], z), z)
assert tn(MeijerShiftB(a1).apply(g, op),
meijerg([a1 - 1], [a3, a4], [b1], [b3, b4], z), z)
assert tn(MeijerShiftC(b3).apply(g, op),
meijerg([a1], [a3, a4], [b1], [b3 + 1, b4], z), z)
assert tn(MeijerShiftD(a3).apply(g, op),
meijerg([a1], [a3 - 1, a4], [b1], [b3, b4], z), z)
s = MeijerUnShiftA([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1], [a3, a4], [b1 - 1], [b3, b4], z), z)
s = MeijerUnShiftC([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1], [a3, a4], [b1], [b3 - 1, b4], z), z)
s = MeijerUnShiftB([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1 + 1], [a3, a4], [b1], [b3, b4], z), z)
s = MeijerUnShiftD([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1], [a3 + 1, a4], [b1], [b3, b4], z), z)
@slow
def test_meijerg_confluence():
def t(m, a, b):
from sympy import sympify, Piecewise
a, b = sympify([a, b])
m_ = m
m = hyperexpand(m)
if not m == Piecewise((a, abs(z) < 1), (b, abs(1/z) < 1), (m_, True)):
return False
if not (m.args[0].args[0] == a and m.args[1].args[0] == b):
return False
z0 = randcplx()/10
if abs(m.subs(z, z0).n() - a.subs(z, z0).n()).n() > 1e-10:
return False
if abs(m.subs(z, 1/z0).n() - b.subs(z, 1/z0).n()).n() > 1e-10:
return False
return True
assert t(meijerg([], [1, 1], [0, 0], [], z), -log(z), 0)
assert t(meijerg(
[], [3, 1], [0, 0], [], z), -z**2/4 + z - log(z)/2 - Rational(3, 4), 0)
assert t(meijerg([], [3, 1], [-1, 0], [], z),
z**2/12 - z/2 + log(z)/2 + Rational(1, 4) + 1/(6*z), 0)
assert t(meijerg([], [1, 1, 1, 1], [0, 0, 0, 0], [], z), -log(z)**3/6, 0)
assert t(meijerg([1, 1], [], [], [0, 0], z), 0, -log(1/z))
assert t(meijerg([1, 1], [2, 2], [1, 1], [0, 0], z),
-z*log(z) + 2*z, -log(1/z) + 2)
assert t(meijerg([S.Half], [1, 1], [0, 0], [Rational(3, 2)], z), log(z)/2 - 1, 0)
def u(an, ap, bm, bq):
m = meijerg(an, ap, bm, bq, z)
m2 = hyperexpand(m, allow_hyper=True)
if m2.has(meijerg) and not (m2.is_Piecewise and len(m2.args) == 3):
return False
return tn(m, m2, z)
assert u([], [1], [0, 0], [])
assert u([1, 1], [], [], [0])
assert u([1, 1], [2, 2, 5], [1, 1, 6], [0, 0])
assert u([1, 1], [2, 2, 5], [1, 1, 6], [0])
def test_meijerg_with_Floats():
# see issue #10681
from sympy import RR
f = meijerg(((3.0, 1), ()), ((Rational(3, 2),), (0,)), z)
a = -2.3632718012073
g = a*z**Rational(3, 2)*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),), z*exp_polar(I*pi))
assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12)
def test_lerchphi():
from sympy import gammasimp, exp_polar, polylog, log, lerchphi
assert hyperexpand(hyper([1, a], [a + 1], z)/a) == lerchphi(z, 1, a)
assert hyperexpand(
hyper([1, a, a], [a + 1, a + 1], z)/a**2) == lerchphi(z, 2, a)
assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
lerchphi(z, 3, a)
assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \
lerchphi(z, 10, a)
assert gammasimp(hyperexpand(meijerg([0, 1 - a], [], [0],
[-a], exp_polar(-I*pi)*z))) == lerchphi(z, 1, a)
assert gammasimp(hyperexpand(meijerg([0, 1 - a, 1 - a], [], [0],
[-a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 2, a)
assert gammasimp(hyperexpand(meijerg([0, 1 - a, 1 - a, 1 - a], [], [0],
[-a, -a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 3, a)
assert hyperexpand(z*hyper([1, 1], [2], z)) == -log(1 + -z)
assert hyperexpand(z*hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
assert hyperexpand(z*hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)
assert hyperexpand(hyper([1, a, 1 + S.Half], [a + 1, S.Half], z)) == \
-2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)
# Now numerical tests. These make sure reductions etc are carried out
# correctly
# a rational function (polylog at negative integer order)
assert can_do([2, 2, 2], [1, 1])
# NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
# reduction of order for polylog
assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)
# reduction of order for lerchphi
# XXX lerchphi in mpmath is flaky
assert can_do(
[1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False)
# test a bug
from sympy import Abs
assert hyperexpand(hyper([S.Half, S.Half, S.Half, 1],
[Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \
Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, S.Half))
def test_partial_simp():
# First test that hypergeometric function formulae work.
a, b, c, d, e = (randcplx() for _ in range(5))
for func in [Hyper_Function([a, b, c], [d, e]),
Hyper_Function([], [a, b, c, d, e])]:
f = build_hypergeometric_formula(func)
z = f.z
assert f.closed_form == func(z)
deriv1 = f.B.diff(z)*z
deriv2 = f.M*f.B
for func1, func2 in zip(deriv1, deriv2):
assert tn(func1, func2, z)
# Now test that formulae are partially simplified.
from sympy.abc import a, b, z
assert hyperexpand(hyper([3, a], [1, b], z)) == \
(-a*b/2 + a*z/2 + 2*a)*hyper([a + 1], [b], z) \
+ (a*b/2 - 2*a + 1)*hyper([a], [b], z)
assert tn(
hyperexpand(hyper([3, d], [1, e], z)), hyper([3, d], [1, e], z), z)
assert hyperexpand(hyper([3], [1, a, b], z)) == \
hyper((), (a, b), z) \
+ z*hyper((), (a + 1, b), z)/(2*a) \
- z*(b - 4)*hyper((), (a + 1, b + 1), z)/(2*a*b)
assert tn(
hyperexpand(hyper([3], [1, d, e], z)), hyper([3], [1, d, e], z), z)
def test_hyperexpand_special():
assert hyperexpand(hyper([a, b], [c], 1)) == \
gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
assert hyperexpand(hyper([a, b], [1 + a - b], -1)) == \
gamma(1 + a/2)*gamma(1 + a - b)/gamma(1 + a)/gamma(1 + a/2 - b)
assert hyperexpand(hyper([a, b], [1 + b - a], -1)) == \
gamma(1 + b/2)*gamma(1 + b - a)/gamma(1 + b)/gamma(1 + b/2 - a)
assert hyperexpand(meijerg([1 - z - a/2], [1 - z + a/2], [b/2], [-b/2], 1)) == \
gamma(1 - 2*z)*gamma(z + a/2 + b/2)/gamma(1 - z + a/2 - b/2) \
/gamma(1 - z - a/2 + b/2)/gamma(1 - z + a/2 + b/2)
assert hyperexpand(hyper([a], [b], 0)) == 1
assert hyper([a], [b], 0) != 0
def test_Mod1_behavior():
from sympy import Symbol, simplify, lowergamma
n = Symbol('n', integer=True)
# Note: this should not hang.
assert simplify(hyperexpand(meijerg([1], [], [n + 1], [0], z))) == \
lowergamma(n + 1, z)
@slow
def test_prudnikov_misc():
assert can_do([1, (3 + I)/2, (3 - I)/2], [Rational(3, 2), 2])
assert can_do([S.Half, a - 1], [Rational(3, 2), a + 1], lowerplane=True)
assert can_do([], [b + 1])
assert can_do([a], [a - 1, b + 1])
assert can_do([a], [a - S.Half, 2*a])
assert can_do([a], [a - S.Half, 2*a + 1])
assert can_do([a], [a - S.Half, 2*a - 1])
assert can_do([a], [a + S.Half, 2*a])
assert can_do([a], [a + S.Half, 2*a + 1])
assert can_do([a], [a + S.Half, 2*a - 1])
assert can_do([S.Half], [b, 2 - b])
assert can_do([S.Half], [b, 3 - b])
assert can_do([1], [2, b])
assert can_do([a, a + S.Half], [2*a, b, 2*a - b + 1])
assert can_do([a, a + S.Half], [S.Half, 2*a, 2*a + S.Half])
assert can_do([a], [a + 1], lowerplane=True) # lowergamma
def test_prudnikov_1():
# A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
# Integrals and Series: More Special Functions, Vol. 3,.
# Gordon and Breach Science Publisher
# 7.3.1
assert can_do([a, -a], [S.Half])
assert can_do([a, 1 - a], [S.Half])
assert can_do([a, 1 - a], [Rational(3, 2)])
assert can_do([a, 2 - a], [S.Half])
assert can_do([a, 2 - a], [Rational(3, 2)])
assert can_do([a, 2 - a], [Rational(3, 2)])
assert can_do([a, a + S.Half], [2*a - 1])
assert can_do([a, a + S.Half], [2*a])
assert can_do([a, a + S.Half], [2*a + 1])
assert can_do([a, a + S.Half], [S.Half])
assert can_do([a, a + S.Half], [Rational(3, 2)])
assert can_do([a, a/2 + 1], [a/2])
assert can_do([1, b], [2])
assert can_do([1, b], [b + 1], numerical=False) # Lerch Phi
# NOTE: branches are complicated for |z| > 1
assert can_do([a], [2*a])
assert can_do([a], [2*a + 1])
assert can_do([a], [2*a - 1])
@slow
def test_prudnikov_2():
h = S.Half
assert can_do([-h, -h], [h])
assert can_do([-h, h], [3*h])
assert can_do([-h, h], [5*h])
assert can_do([-h, h], [7*h])
assert can_do([-h, 1], [h])
for p in [-h, h]:
for n in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]:
for m in [-h, h, 3*h, 5*h, 7*h]:
assert can_do([p, n], [m])
for n in [1, 2, 3, 4]:
for m in [1, 2, 3, 4]:
assert can_do([p, n], [m])
@slow
def test_prudnikov_3():
if ON_TRAVIS:
# See https://github.com/sympy/sympy/pull/12795
skip("Too slow for travis.")
h = S.Half
assert can_do([Rational(1, 4), Rational(3, 4)], [h])
assert can_do([Rational(1, 4), Rational(3, 4)], [3*h])
assert can_do([Rational(1, 3), Rational(2, 3)], [3*h])
assert can_do([Rational(3, 4), Rational(5, 4)], [h])
assert can_do([Rational(3, 4), Rational(5, 4)], [3*h])
for p in [1, 2, 3, 4]:
for n in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4, 9*h]:
for m in [1, 3*h, 2, 5*h, 3, 7*h, 4]:
assert can_do([p, m], [n])
@slow
def test_prudnikov_4():
h = S.Half
for p in [3*h, 5*h, 7*h]:
for n in [-h, h, 3*h, 5*h, 7*h]:
for m in [3*h, 2, 5*h, 3, 7*h, 4]:
assert can_do([p, m], [n])
for n in [1, 2, 3, 4]:
for m in [2, 3, 4]:
assert can_do([p, m], [n])
@slow
def test_prudnikov_5():
h = S.Half
for p in [1, 2, 3]:
for q in range(p, 4):
for r in [1, 2, 3]:
for s in range(r, 4):
assert can_do([-h, p, q], [r, s])
for p in [h, 1, 3*h, 2, 5*h, 3]:
for q in [h, 3*h, 5*h]:
for r in [h, 3*h, 5*h]:
for s in [h, 3*h, 5*h]:
if s <= q and s <= r:
assert can_do([-h, p, q], [r, s])
for p in [h, 1, 3*h, 2, 5*h, 3]:
for q in [1, 2, 3]:
for r in [h, 3*h, 5*h]:
for s in [1, 2, 3]:
assert can_do([-h, p, q], [r, s])
@slow
def test_prudnikov_6():
h = S.Half
for m in [3*h, 5*h]:
for n in [1, 2, 3]:
for q in [h, 1, 2]:
for p in [1, 2, 3]:
assert can_do([h, q, p], [m, n])
for q in [1, 2, 3]:
for p in [3*h, 5*h]:
assert can_do([h, q, p], [m, n])
for q in [1, 2]:
for p in [1, 2, 3]:
for m in [1, 2, 3]:
for n in [1, 2, 3]:
assert can_do([h, q, p], [m, n])
assert can_do([h, h, 5*h], [3*h, 3*h])
assert can_do([h, 1, 5*h], [3*h, 3*h])
assert can_do([h, 2, 2], [1, 3])
# pages 435 to 457 contain more PFDD and stuff like this
@slow
def test_prudnikov_7():
assert can_do([3], [6])
h = S.Half
for n in [h, 3*h, 5*h, 7*h]:
assert can_do([-h], [n])
for m in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]: # HERE
for n in [-h, h, 3*h, 5*h, 7*h, 1, 2, 3, 4]:
assert can_do([m], [n])
@slow
def test_prudnikov_8():
h = S.Half
# 7.12.2
for ai in [1, 2, 3]:
for bi in [1, 2, 3]:
for ci in range(1, ai + 1):
for di in [h, 1, 3*h, 2, 5*h, 3]:
assert can_do([ai, bi], [ci, di])
for bi in [3*h, 5*h]:
for ci in [h, 1, 3*h, 2, 5*h, 3]:
for di in [1, 2, 3]:
assert can_do([ai, bi], [ci, di])
for ai in [-h, h, 3*h, 5*h]:
for bi in [1, 2, 3]:
for ci in [h, 1, 3*h, 2, 5*h, 3]:
for di in [1, 2, 3]:
assert can_do([ai, bi], [ci, di])
for bi in [h, 3*h, 5*h]:
for ci in [h, 3*h, 5*h, 3]:
for di in [h, 1, 3*h, 2, 5*h, 3]:
if ci <= bi:
assert can_do([ai, bi], [ci, di])
def test_prudnikov_9():
# 7.13.1 [we have a general formula ... so this is a bit pointless]
for i in range(9):
assert can_do([], [(S(i) + 1)/2])
for i in range(5):
assert can_do([], [-(2*S(i) + 1)/2])
@slow
def test_prudnikov_10():
# 7.14.2
h = S.Half
for p in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]:
for m in [1, 2, 3, 4]:
for n in range(m, 5):
assert can_do([p], [m, n])
for p in [1, 2, 3, 4]:
for n in [h, 3*h, 5*h, 7*h]:
for m in [1, 2, 3, 4]:
assert can_do([p], [n, m])
for p in [3*h, 5*h, 7*h]:
for m in [h, 1, 2, 5*h, 3, 7*h, 4]:
assert can_do([p], [h, m])
assert can_do([p], [3*h, m])
for m in [h, 1, 2, 5*h, 3, 7*h, 4]:
assert can_do([7*h], [5*h, m])
assert can_do([Rational(-1, 2)], [S.Half, S.Half]) # shine-integral shi
def test_prudnikov_11():
# 7.15
assert can_do([a, a + S.Half], [2*a, b, 2*a - b])
assert can_do([a, a + S.Half], [Rational(3, 2), 2*a, 2*a - S.Half])
assert can_do([Rational(1, 4), Rational(3, 4)], [S.Half, S.Half, 1])
assert can_do([Rational(5, 4), Rational(3, 4)], [Rational(3, 2), S.Half, 2])
assert can_do([Rational(5, 4), Rational(3, 4)], [Rational(3, 2), Rational(3, 2), 1])
assert can_do([Rational(5, 4), Rational(7, 4)], [Rational(3, 2), Rational(5, 2), 2])
assert can_do([1, 1], [Rational(3, 2), 2, 2]) # cosh-integral chi
def test_prudnikov_12():
# 7.16
assert can_do(
[], [a, a + S.Half, 2*a], False) # branches only agree for some z!
assert can_do([], [a, a + S.Half, 2*a + 1], False) # dito
assert can_do([], [S.Half, a, a + S.Half])
assert can_do([], [Rational(3, 2), a, a + S.Half])
assert can_do([], [Rational(1, 4), S.Half, Rational(3, 4)])
assert can_do([], [S.Half, S.Half, 1])
assert can_do([], [S.Half, Rational(3, 2), 1])
assert can_do([], [Rational(3, 4), Rational(3, 2), Rational(5, 4)])
assert can_do([], [1, 1, Rational(3, 2)])
assert can_do([], [1, 2, Rational(3, 2)])
assert can_do([], [1, Rational(3, 2), Rational(3, 2)])
assert can_do([], [Rational(5, 4), Rational(3, 2), Rational(7, 4)])
assert can_do([], [2, Rational(3, 2), Rational(3, 2)])
@slow
def test_prudnikov_2F1():
h = S.Half
# Elliptic integrals
for p in [-h, h]:
for m in [h, 3*h, 5*h, 7*h]:
for n in [1, 2, 3, 4]:
assert can_do([p, m], [n])
@XFAIL
def test_prudnikov_fail_2F1():
assert can_do([a, b], [b + 1]) # incomplete beta function
assert can_do([-1, b], [c]) # Poly. also -2, -3 etc
# TODO polys
# Legendre functions:
assert can_do([a, b], [a + b + S.Half])
assert can_do([a, b], [a + b - S.Half])
assert can_do([a, b], [a + b + Rational(3, 2)])
assert can_do([a, b], [(a + b + 1)/2])
assert can_do([a, b], [(a + b)/2 + 1])
assert can_do([a, b], [a - b + 1])
assert can_do([a, b], [a - b + 2])
assert can_do([a, b], [2*b])
assert can_do([a, b], [S.Half])
assert can_do([a, b], [Rational(3, 2)])
assert can_do([a, 1 - a], [c])
assert can_do([a, 2 - a], [c])
assert can_do([a, 3 - a], [c])
assert can_do([a, a + S.Half], [c])
assert can_do([1, b], [c])
assert can_do([1, b], [Rational(3, 2)])
assert can_do([Rational(1, 4), Rational(3, 4)], [1])
# PFDD
o = S.One
assert can_do([o/8, 1], [o/8*9])
assert can_do([o/6, 1], [o/6*7])
assert can_do([o/6, 1], [o/6*13])
assert can_do([o/5, 1], [o/5*6])
assert can_do([o/5, 1], [o/5*11])
assert can_do([o/4, 1], [o/4*5])
assert can_do([o/4, 1], [o/4*9])
assert can_do([o/3, 1], [o/3*4])
assert can_do([o/3, 1], [o/3*7])
assert can_do([o/8*3, 1], [o/8*11])
assert can_do([o/5*2, 1], [o/5*7])
assert can_do([o/5*2, 1], [o/5*12])
assert can_do([o/5*3, 1], [o/5*8])
assert can_do([o/5*3, 1], [o/5*13])
assert can_do([o/8*5, 1], [o/8*13])
assert can_do([o/4*3, 1], [o/4*7])
assert can_do([o/4*3, 1], [o/4*11])
assert can_do([o/3*2, 1], [o/3*5])
assert can_do([o/3*2, 1], [o/3*8])
assert can_do([o/5*4, 1], [o/5*9])
assert can_do([o/5*4, 1], [o/5*14])
assert can_do([o/6*5, 1], [o/6*11])
assert can_do([o/6*5, 1], [o/6*17])
assert can_do([o/8*7, 1], [o/8*15])
@XFAIL
def test_prudnikov_fail_3F2():
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(1, 3), Rational(2, 3)])
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(2, 3), Rational(4, 3)])
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(4, 3), Rational(5, 3)])
# page 421
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [a*Rational(3, 2), (3*a + 1)/2])
# pages 422 ...
assert can_do([Rational(-1, 2), S.Half, S.Half], [1, 1]) # elliptic integrals
assert can_do([Rational(-1, 2), S.Half, 1], [Rational(3, 2), Rational(3, 2)])
# TODO LOTS more
# PFDD
assert can_do([Rational(1, 8), Rational(3, 8), 1], [Rational(9, 8), Rational(11, 8)])
assert can_do([Rational(1, 8), Rational(5, 8), 1], [Rational(9, 8), Rational(13, 8)])
assert can_do([Rational(1, 8), Rational(7, 8), 1], [Rational(9, 8), Rational(15, 8)])
assert can_do([Rational(1, 6), Rational(1, 3), 1], [Rational(7, 6), Rational(4, 3)])
assert can_do([Rational(1, 6), Rational(2, 3), 1], [Rational(7, 6), Rational(5, 3)])
assert can_do([Rational(1, 6), Rational(2, 3), 1], [Rational(5, 3), Rational(13, 6)])
assert can_do([S.Half, 1, 1], [Rational(1, 4), Rational(3, 4)])
# LOTS more
@XFAIL
def test_prudnikov_fail_other():
# 7.11.2
# 7.12.1
assert can_do([1, a], [b, 1 - 2*a + b]) # ???
# 7.14.2
assert can_do([Rational(-1, 2)], [S.Half, 1]) # struve
assert can_do([1], [S.Half, S.Half]) # struve
assert can_do([Rational(1, 4)], [S.Half, Rational(5, 4)]) # PFDD
assert can_do([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)]) # PFDD
assert can_do([1], [Rational(1, 4), Rational(3, 4)]) # PFDD
assert can_do([1], [Rational(3, 4), Rational(5, 4)]) # PFDD
assert can_do([1], [Rational(5, 4), Rational(7, 4)]) # PFDD
# TODO LOTS more
# 7.15.2
assert can_do([S.Half, 1], [Rational(3, 4), Rational(5, 4), Rational(3, 2)]) # PFDD
assert can_do([S.Half, 1], [Rational(7, 4), Rational(5, 4), Rational(3, 2)]) # PFDD
# 7.16.1
assert can_do([], [Rational(1, 3), S(2/3)]) # PFDD
assert can_do([], [Rational(2, 3), S(4/3)]) # PFDD
assert can_do([], [Rational(5, 3), S(4/3)]) # PFDD
# XXX this does not *evaluate* right??
assert can_do([], [a, a + S.Half, 2*a - 1])
def test_bug():
h = hyper([-1, 1], [z], -1)
assert hyperexpand(h) == (z + 1)/z
def test_omgissue_203():
h = hyper((-5, -3, -4), (-6, -6), 1)
assert hyperexpand(h) == Rational(1, 30)
h = hyper((-6, -7, -5), (-6, -6), 1)
assert hyperexpand(h) == Rational(-1, 6)
|
cb8da2b7721748a096e78f4dd1d41a86a3403251e89b5a62dbbd2fb015af4115 | from sympy import (
Abs, acos, Add, asin, atan, Basic, binomial, besselsimp,
cos, cosh, count_ops, csch, diff, E,
Eq, erf, exp, exp_polar, expand, expand_multinomial, factor,
factorial, Float, Function, gamma, GoldenRatio, hyper,
hypersimp, I, Integral, integrate, KroneckerDelta, log, logcombine, Lt,
Matrix, MatrixSymbol, Mul, nsimplify, oo, pi, Piecewise, posify, rad,
Rational, S, separatevars, signsimp, simplify, sign, sin,
sinc, sinh, solve, sqrt, Sum, Symbol, symbols, sympify, tan,
zoo)
from sympy.core.mul import _keep_coeff
from sympy.core.expr import unchanged
from sympy.simplify.simplify import nthroot, inversecombine
from sympy.utilities.pytest import XFAIL, slow
from sympy.core.compatibility import range
from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i
def test_issue_7263():
assert abs((simplify(30.8**2 - 82.5**2 * sin(rad(11.6))**2)).evalf() - \
673.447451402970) < 1e-12
@XFAIL
def test_factorial_simplify():
# There are more tests in test_factorials.py. These are just to
# ensure that simplify() calls factorial_simplify correctly
from sympy.specfun.factorials import factorial
x = Symbol('x')
assert simplify(factorial(x)/x) == factorial(x - 1)
assert simplify(factorial(factorial(x))) == factorial(factorial(x))
def test_simplify_expr():
x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A')
f = Function('f')
assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I])
e = 1/x + 1/y
assert e != (x + y)/(x*y)
assert simplify(e) == (x + y)/(x*y)
e = A**2*s**4/(4*pi*k*m**3)
assert simplify(e) == e
e = (4 + 4*x - 2*(2 + 2*x))/(2 + 2*x)
assert simplify(e) == 0
e = (-4*x*y**2 - 2*y**3 - 2*x**2*y)/(x + y)**2
assert simplify(e) == -2*y
e = -x - y - (x + y)**(-1)*y**2 + (x + y)**(-1)*x**2
assert simplify(e) == -2*y
e = (x + x*y)/x
assert simplify(e) == 1 + y
e = (f(x) + y*f(x))/f(x)
assert simplify(e) == 1 + y
e = (2 * (1/n - cos(n * pi)/n))/pi
assert simplify(e) == (-cos(pi*n) + 1)/(pi*n)*2
e = integrate(1/(x**3 + 1), x).diff(x)
assert simplify(e) == 1/(x**3 + 1)
e = integrate(x/(x**2 + 3*x + 1), x).diff(x)
assert simplify(e) == x/(x**2 + 3*x + 1)
f = Symbol('f')
A = Matrix([[2*k - m*w**2, -k], [-k, k - m*w**2]]).inv()
assert simplify((A*Matrix([0, f]))[1]) == \
-f*(2*k - m*w**2)/(k**2 - (k - m*w**2)*(2*k - m*w**2))
f = -x + y/(z + t) + z*x/(z + t) + z*a/(z + t) + t*x/(z + t)
assert simplify(f) == (y + a*z)/(z + t)
# issue 10347
expr = -x*(y**2 - 1)*(2*y**2*(x**2 - 1)/(a*(x**2 - y**2)**2) + (x**2 - 1)
/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2
+ y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 +
y**2 - 1)*sin(z)/(a*(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*
(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(x**2 - 1) + sqrt(
(-x**2 + 1)*(y**2 - 1))*(x*(-x*y**2 + x)/sqrt(-x**2*y**2 + x**2 + y**2 -
1) + sqrt(-x**2*y**2 + x**2 + y**2 - 1))*sin(z))/(a*sqrt((-x**2 + 1)*(
y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*
(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2
*y**2 + x**2 + y**2 - 1)*cos(z)/(x**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 -
1))*(-x*y**2 + x)*cos(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt((-x**2
+ 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z))/(a*sqrt((-x**2
+ 1)*(y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(
z)/(a*(x**2 - y**2)) - y*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y*sqrt(-x**2*
y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt(
-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) + (x*y*sqrt((
-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(y**2 -
1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*sin(z)/sqrt(-x**2*y**2
+ x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sin(
z)/(a*(x**2 - y**2)) + y*(x**2 - 1)*(-2*x*y*(x**2 - 1)/(a*(x**2 - y**2)
**2) + 2*x*y/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + y*(x**2 - 1)*(y**2 -
1)*(-x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)*(y**2
- 1)) + 2*x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)
**2) + (x*y*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 -
1)*cos(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*cos(
z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1)
)*(x**2 - y**2)))*cos(z)/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)
) - x*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(
z)**2/(a**2*(x**2 - 1)*(x**2 - y**2)*(y**2 - 1)) - x*sqrt((-x**2 + 1)*(
y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)**2/(a**2*(x**2 - 1)*(
x**2 - y**2)*(y**2 - 1))
assert simplify(expr) == 2*x/(a**2*(x**2 - y**2))
#issue 17631
assert simplify('((-1/2)*Boole(True)*Boole(False)-1)*Boole(True)') == \
Mul(sympify('(2 + Boole(True)*Boole(False))'), sympify('-Boole(True)/2'))
A, B = symbols('A,B', commutative=False)
assert simplify(A*B - B*A) == A*B - B*A
assert simplify(A/(1 + y/x)) == x*A/(x + y)
assert simplify(A*(1/x + 1/y)) == A/x + A/y #(x + y)*A/(x*y)
assert simplify(log(2) + log(3)) == log(6)
assert simplify(log(2*x) - log(2)) == log(x)
assert simplify(hyper([], [], x)) == exp(x)
def test_issue_3557():
f_1 = x*a + y*b + z*c - 1
f_2 = x*d + y*e + z*f - 1
f_3 = x*g + y*h + z*i - 1
solutions = solve([f_1, f_2, f_3], x, y, z, simplify=False)
assert simplify(solutions[y]) == \
(a*i + c*d + f*g - a*f - c*g - d*i)/ \
(a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g)
def test_simplify_other():
assert simplify(sin(x)**2 + cos(x)**2) == 1
assert simplify(gamma(x + 1)/gamma(x)) == x
assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x
assert simplify(
Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1)
nc = symbols('nc', commutative=False)
assert simplify(x + x*nc) == x*(1 + nc)
# issue 6123
# f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2)
# ans = integrate(f, (k, -oo, oo), conds='none')
ans = I*(-pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))*erf(x*exp(I*pi*Rational(-3, 4))/
(2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))/
(2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \
(-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t))
assert simplify(ans) == -(-1)**Rational(3, 4)*sqrt(pi)/sqrt(t)
# issue 6370
assert simplify(2**(2 + x)/4) == 2**x
def test_simplify_complex():
cosAsExp = cos(x)._eval_rewrite_as_exp(x)
tanAsExp = tan(x)._eval_rewrite_as_exp(x)
assert simplify(cosAsExp*tanAsExp) == sin(x) # issue 4341
# issue 10124
assert simplify(exp(Matrix([[0, -1], [1, 0]]))) == Matrix([[cos(1),
-sin(1)], [sin(1), cos(1)]])
def test_simplify_ratio():
# roots of x**3-3*x+5
roots = ['(1/2 - sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3) + 1/((1/2 - '
'sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3))',
'1/((1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)) + '
'(1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)',
'-(sqrt(21)/2 + 5/2)**(1/3) - 1/(sqrt(21)/2 + 5/2)**(1/3)']
for r in roots:
r = S(r)
assert count_ops(simplify(r, ratio=1)) <= count_ops(r)
# If ratio=oo, simplify() is always applied:
assert simplify(r, ratio=oo) is not r
def test_simplify_measure():
measure1 = lambda expr: len(str(expr))
measure2 = lambda expr: -count_ops(expr)
# Return the most complicated result
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
assert measure1(simplify(expr, measure=measure1)) <= measure1(expr)
assert measure2(simplify(expr, measure=measure2)) <= measure2(expr)
expr2 = Eq(sin(x)**2 + cos(x)**2, 1)
assert measure1(simplify(expr2, measure=measure1)) <= measure1(expr2)
assert measure2(simplify(expr2, measure=measure2)) <= measure2(expr2)
def test_simplify_rational():
expr = 2**x*2.**y
assert simplify(expr, rational = True) == 2**(x+y)
assert simplify(expr, rational = None) == 2.0**(x+y)
assert simplify(expr, rational = False) == expr
def test_simplify_issue_1308():
assert simplify(exp(Rational(-1, 2)) + exp(Rational(-3, 2))) == \
(1 + E)*exp(Rational(-3, 2))
def test_issue_5652():
assert simplify(E + exp(-E)) == exp(-E) + E
n = symbols('n', commutative=False)
assert simplify(n + n**(-n)) == n + n**(-n)
def test_simplify_fail1():
x = Symbol('x')
y = Symbol('y')
e = (x + y)**2/(-4*x*y**2 - 2*y**3 - 2*x**2*y)
assert simplify(e) == 1 / (-2*y)
def test_nthroot():
assert nthroot(90 + 34*sqrt(7), 3) == sqrt(7) + 3
q = 1 + sqrt(2) - 2*sqrt(3) + sqrt(6) + sqrt(7)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(41 + 29*sqrt(2), 5) == 1 + sqrt(2)
assert nthroot(-41 - 29*sqrt(2), 5) == -1 - sqrt(2)
expr = 1320*sqrt(10) + 4216 + 2576*sqrt(6) + 1640*sqrt(15)
assert nthroot(expr, 5) == 1 + sqrt(6) + sqrt(15)
q = 1 + sqrt(2) + sqrt(3) + sqrt(5)
assert expand_multinomial(nthroot(expand_multinomial(q**5), 5)) == q
q = 1 + sqrt(2) + 7*sqrt(6) + 2*sqrt(10)
assert nthroot(expand_multinomial(q**5), 5, 8) == q
q = 1 + sqrt(2) - 2*sqrt(3) + 1171*sqrt(6)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(expand_multinomial(q**6), 6) == q
def test_nthroot1():
q = 1 + sqrt(2) + sqrt(3) + S.One/10**20
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
q = 1 + sqrt(2) + sqrt(3) + S.One/10**30
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
def test_separatevars():
x, y, z, n = symbols('x,y,z,n')
assert separatevars(2*n*x*z + 2*x*y*z) == 2*x*z*(n + y)
assert separatevars(x*z + x*y*z) == x*z*(1 + y)
assert separatevars(pi*x*z + pi*x*y*z) == pi*x*z*(1 + y)
assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \
x*(sin(y) + y**2)*sin(x)
assert separatevars(x*exp(x + y) + x*exp(x)) == x*(1 + exp(y))*exp(x)
assert separatevars((x*(y + 1))**z).is_Pow # != x**z*(1 + y)**z
assert separatevars(1 + x + y + x*y) == (x + 1)*(y + 1)
assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \
y*exp(x/cos(n))*exp(-z/cos(n))/pi
assert separatevars((x + y)*(x - y) + y**2 + 2*x + 1) == (x + 1)**2
# issue 4858
p = Symbol('p', positive=True)
assert separatevars(sqrt(p**2 + x*p**2)) == p*sqrt(1 + x)
assert separatevars(sqrt(y*(p**2 + x*p**2))) == p*sqrt(y*(1 + x))
assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \
p*sqrt(y)*sqrt(1 + x)
# issue 4865
assert separatevars(sqrt(x*y)).is_Pow
assert separatevars(sqrt(x*y), force=True) == sqrt(x)*sqrt(y)
# issue 4957
# any type sequence for symbols is fine
assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \
{'coeff': 1, x: 2*x + 2, y: y}
# separable
assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \
{'coeff': y, x: 2*x + 2}
assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \
{'coeff': y*(2*x + 2)}
# not separable
assert separatevars(3, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=()) is None
assert separatevars(2*x + y, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=None) == {'coeff': 2*x + y}
# issue 4808
n, m = symbols('n,m', commutative=False)
assert separatevars(m + n*m) == (1 + n)*m
assert separatevars(x + x*n) == x*(1 + n)
# issue 4910
f = Function('f')
assert separatevars(f(x) + x*f(x)) == f(x) + x*f(x)
# a noncommutable object present
eq = x*(1 + hyper((), (), y*z))
assert separatevars(eq) == eq
s = separatevars(abs(x*y))
assert s == abs(x)*abs(y) and s.is_Mul
z = cos(1)**2 + sin(1)**2 - 1
a = abs(x*z)
s = separatevars(a)
assert not a.is_Mul and s.is_Mul and s == abs(x)*abs(z)
s = separatevars(abs(x*y*z))
assert s == abs(x)*abs(y)*abs(z)
# abs(x+y)/abs(z) would be better but we test this here to
# see that it doesn't raise
assert separatevars(abs((x+y)/z)) == abs((x+y)/z)
def test_separatevars_advanced_factor():
x, y, z = symbols('x,y,z')
assert separatevars(1 + log(x)*log(y) + log(x) + log(y)) == \
(log(x) + 1)*(log(y) + 1)
assert separatevars(1 + x - log(z) - x*log(z) - exp(y)*log(z) -
x*exp(y)*log(z) + x*exp(y) + exp(y)) == \
-((x + 1)*(log(z) - 1)*(exp(y) + 1))
x, y = symbols('x,y', positive=True)
assert separatevars(1 + log(x**log(y)) + log(x*y)) == \
(log(x) + 1)*(log(y) + 1)
def test_hypersimp():
n, k = symbols('n,k', integer=True)
assert hypersimp(factorial(k), k) == k + 1
assert hypersimp(factorial(k**2), k) is None
assert hypersimp(1/factorial(k), k) == 1/(k + 1)
assert hypersimp(2**k/factorial(k)**2, k) == 2/(k + 1)**2
assert hypersimp(binomial(n, k), k) == (n - k)/(k + 1)
assert hypersimp(binomial(n + 1, k), k) == (n - k + 1)/(k + 1)
term = (4*k + 1)*factorial(k)/factorial(2*k + 1)
assert hypersimp(term, k) == S.Half*((4*k + 5)/(3 + 14*k + 8*k**2))
term = 1/((2*k - 1)*factorial(2*k + 1))
assert hypersimp(term, k) == (k - S.Half)/((k + 1)*(2*k + 1)*(2*k + 3))
term = binomial(n, k)*(-1)**k/factorial(k)
assert hypersimp(term, k) == (k - n)/(k + 1)**2
def test_nsimplify():
x = Symbol("x")
assert nsimplify(0) == 0
assert nsimplify(-1) == -1
assert nsimplify(1) == 1
assert nsimplify(1 + x) == 1 + x
assert nsimplify(2.7) == Rational(27, 10)
assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2
assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2
assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2
assert nsimplify(exp(pi*I*Rational(5, 3), evaluate=False)) == \
sympify('1/2 - sqrt(3)*I/2')
assert nsimplify(sin(pi*Rational(3, 5), evaluate=False)) == \
sympify('sqrt(sqrt(5)/8 + 5/8)')
assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
sqrt(pi) + sqrt(pi)/2*I
assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17')
assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504)
assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
2**Rational(1, 3)
assert nsimplify(x + .5, rational=True) == S.Half + x
assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x
assert nsimplify(log(3).n(), rational=True) == \
sympify('109861228866811/100000000000000')
assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8
assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
-pi/4 - log(2) + Rational(7, 4)
assert nsimplify(x/7.0) == x/7
assert nsimplify(pi/1e2) == pi/100
assert nsimplify(pi/1e2, rational=False) == pi/100.0
assert nsimplify(pi/1e-7) == 10000000*pi
assert not nsimplify(
factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float)
e = x**0.0
assert e.is_Pow and nsimplify(x**0.0) == 1
assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3)
assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3)
assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
assert nsimplify(-203.1) == Rational(-2031, 10)
assert nsimplify(.2, tolerance=0) == Rational(1, 5)
assert nsimplify(-.2, tolerance=0) == Rational(-1, 5)
assert nsimplify(.2222, tolerance=0) == Rational(1111, 5000)
assert nsimplify(-.2222, tolerance=0) == Rational(-1111, 5000)
# issue 7211, PR 4112
assert nsimplify(S(2e-8)) == Rational(1, 50000000)
# issue 7322 direct test
assert nsimplify(1e-42, rational=True) != 0
# issue 10336
inf = Float('inf')
infs = (-oo, oo, inf, -inf)
for zi in infs:
ans = sign(zi)*oo
assert nsimplify(zi) == ans
assert nsimplify(zi + x) == x + ans
assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333)
# Make sure nsimplify on expressions uses full precision
assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x
def test_issue_9448():
tmp = sympify("1/(1 - (-1)**(2/3) - (-1)**(1/3)) + 1/(1 + (-1)**(2/3) + (-1)**(1/3))")
assert nsimplify(tmp) == S.Half
def test_extract_minus_sign():
x = Symbol("x")
y = Symbol("y")
a = Symbol("a")
b = Symbol("b")
assert simplify(-x/-y) == x/y
assert simplify(-x/y) == -x/y
assert simplify(x/y) == x/y
assert simplify(x/-y) == -x/y
assert simplify(-x/0) == zoo*x
assert simplify(Rational(-5, 0)) is zoo
assert simplify(-a*x/(-y - b)) == a*x/(b + y)
def test_diff():
x = Symbol("x")
y = Symbol("y")
f = Function("f")
g = Function("g")
assert simplify(g(x).diff(x)*f(x).diff(x) - f(x).diff(x)*g(x).diff(x)) == 0
assert simplify(2*f(x)*f(x).diff(x) - diff(f(x)**2, x)) == 0
assert simplify(diff(1/f(x), x) + f(x).diff(x)/f(x)**2) == 0
assert simplify(f(x).diff(x, y) - f(x).diff(y, x)) == 0
def test_logcombine_1():
x, y = symbols("x,y")
a = Symbol("a")
z, w = symbols("z,w", positive=True)
b = Symbol("b", real=True)
assert logcombine(log(x) + 2*log(y)) == log(x) + 2*log(y)
assert logcombine(log(x) + 2*log(y), force=True) == log(x*y**2)
assert logcombine(a*log(w) + log(z)) == a*log(w) + log(z)
assert logcombine(b*log(z) + b*log(x)) == log(z**b) + b*log(x)
assert logcombine(b*log(z) - log(w)) == log(z**b/w)
assert logcombine(log(x)*log(z)) == log(x)*log(z)
assert logcombine(log(w)*log(x)) == log(w)*log(x)
assert logcombine(cos(-2*log(z) + b*log(w))) in [cos(log(w**b/z**2)),
cos(log(z**2/w**b))]
assert logcombine(log(log(x) - log(y)) - log(z), force=True) == \
log(log(x/y)/z)
assert logcombine((2 + I)*log(x), force=True) == (2 + I)*log(x)
assert logcombine((x**2 + log(x) - log(y))/(x*y), force=True) == \
(x**2 + log(x/y))/(x*y)
# the following could also give log(z*x**log(y**2)), what we
# are testing is that a canonical result is obtained
assert logcombine(log(x)*2*log(y) + log(z), force=True) == \
log(z*y**log(x**2))
assert logcombine((x*y + sqrt(x**4 + y**4) + log(x) - log(y))/(pi*x**Rational(2, 3)*
sqrt(y)**3), force=True) == (
x*y + sqrt(x**4 + y**4) + log(x/y))/(pi*x**Rational(2, 3)*y**Rational(3, 2))
assert logcombine(gamma(-log(x/y))*acos(-log(x/y)), force=True) == \
acos(-log(x/y))*gamma(-log(x/y))
assert logcombine(2*log(z)*log(w)*log(x) + log(z) + log(w)) == \
log(z**log(w**2))*log(x) + log(w*z)
assert logcombine(3*log(w) + 3*log(z)) == log(w**3*z**3)
assert logcombine(x*(y + 1) + log(2) + log(3)) == x*(y + 1) + log(6)
assert logcombine((x + y)*log(w) + (-x - y)*log(3)) == (x + y)*log(w/3)
# a single unknown can combine
assert logcombine(log(x) + log(2)) == log(2*x)
eq = log(abs(x)) + log(abs(y))
assert logcombine(eq) == eq
reps = {x: 0, y: 0}
assert log(abs(x)*abs(y)).subs(reps) != eq.subs(reps)
def test_logcombine_complex_coeff():
i = Integral((sin(x**2) + cos(x**3))/x, x)
assert logcombine(i, force=True) == i
assert logcombine(i + 2*log(x), force=True) == \
i + log(x**2)
def test_issue_5950():
x, y = symbols("x,y", positive=True)
assert logcombine(log(3) - log(2)) == log(Rational(3,2), evaluate=False)
assert logcombine(log(x) - log(y)) == log(x/y)
assert logcombine(log(Rational(3,2), evaluate=False) - log(2)) == \
log(Rational(3,4), evaluate=False)
def test_posify():
from sympy.abc import x
assert str(posify(
x +
Symbol('p', positive=True) +
Symbol('n', negative=True))) == '(_x + n + p, {_x: x})'
eq, rep = posify(1/x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})'
x = symbols('x')
p = symbols('p', positive=True)
n = symbols('n', negative=True)
orig = [x, n, p]
modified, reps = posify(orig)
assert str(modified) == '[_x, n, p]'
assert [w.subs(reps) for w in modified] == orig
assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \
'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))'
assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \
'Sum(_x**(-n), (n, 1, 3))'
# issue 16438
k = Symbol('k', finite=True)
eq, rep = posify(k)
assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False,
'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True,
'nonnegative': True, 'negative': False, 'complex': True, 'finite': True,
'infinite': False, 'extended_real':True, 'extended_negative': False,
'extended_nonnegative': True, 'extended_nonpositive': False,
'extended_nonzero': True, 'extended_positive': True}
def test_issue_4194():
# simplify should call cancel
from sympy.abc import x, y
f = Function('f')
assert simplify((4*x + 6*f(y))/(2*x + 3*f(y))) == 2
@XFAIL
def test_simplify_float_vs_integer():
# Test for issue 4473:
# https://github.com/sympy/sympy/issues/4473
assert simplify(x**2.0 - x**2) == 0
assert simplify(x**2 - x**2.0) == 0
def test_as_content_primitive():
assert (x/2 + y).as_content_primitive() == (S.Half, x + 2*y)
assert (x/2 + y).as_content_primitive(clear=False) == (S.One, x/2 + y)
assert (y*(x/2 + y)).as_content_primitive() == (S.Half, y*(x + 2*y))
assert (y*(x/2 + y)).as_content_primitive(clear=False) == (S.One, y*(x/2 + y))
# although the _as_content_primitive methods do not alter the underlying structure,
# the as_content_primitive function will touch up the expression and join
# bases that would otherwise have not been joined.
assert ((x*(2 + 2*x)*(3*x + 3)**2)).as_content_primitive() == \
(18, x*(x + 1)**3)
assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(2, x + 3*y*(y + 1) + 1)
assert ((2 + 6*x)**2).as_content_primitive() == \
(4, (3*x + 1)**2)
assert ((2 + 6*x)**(2*y)).as_content_primitive() == \
(1, (_keep_coeff(S(2), (3*x + 1)))**(2*y))
assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(1, 10*x + 6*y*(y + 1) + 5)
assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() == \
(11, x*(y + 1))
assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \
(121, x**2*(y + 1)**2)
assert (y**2).as_content_primitive() == \
(1, y**2)
assert (S.Infinity).as_content_primitive() == (1, oo)
eq = x**(2 + y)
assert (eq).as_content_primitive() == (1, eq)
assert (S.Half**(2 + x)).as_content_primitive() == (Rational(1, 4), 2**-x)
assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
(Rational(1, 4), (Rational(-1, 2))**x)
assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
(Rational(1, 4), Rational(-1, 2)**x)
assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2))
assert (3**((1 + y)/2)).as_content_primitive() == \
(1, 3**(Mul(S.Half, 1 + y, evaluate=False)))
assert (5**Rational(3, 4)).as_content_primitive() == (1, 5**Rational(3, 4))
assert (5**Rational(7, 4)).as_content_primitive() == (5, 5**Rational(3, 4))
assert Add(z*Rational(5, 7), 0.5*x, y*Rational(3, 2), evaluate=False).as_content_primitive() == \
(Rational(1, 14), 7.0*x + 21*y + 10*z)
assert (2**Rational(3, 4) + 2**Rational(1, 4)*sqrt(3)).as_content_primitive(radical=True) == \
(1, 2**Rational(1, 4)*(sqrt(2) + sqrt(3)))
def test_signsimp():
e = x*(-x + 1) + x*(x - 1)
assert signsimp(Eq(e, 0)) is S.true
assert Abs(x - 1) == Abs(1 - x)
assert signsimp(y - x) == y - x
assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)
def test_besselsimp():
from sympy import besselj, besseli, cosh, cosine_transform, bessely
assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
besselj(y, z)
assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
besselj(a, 2*sqrt(x))
assert besselsimp(sqrt(2)*sqrt(pi)*x**Rational(1, 4)*exp(I*pi/4)*exp(-I*pi*a/2) *
besseli(Rational(-1, 2), sqrt(x)*exp_polar(I*pi/2)) *
besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
besselj(a, sqrt(x)) * cos(sqrt(x))
assert besselsimp(besseli(Rational(-1, 2), z)) == \
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
exp(-I*pi*a/2)*besselj(a, z)
assert cosine_transform(1/t*sin(a/t), t, y) == \
sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
assert besselsimp(x**2*(a*(-2*besselj(5*I, x) + besselj(-2 + 5*I, x) +
besselj(2 + 5*I, x)) + b*(-2*bessely(5*I, x) + bessely(-2 + 5*I, x) +
bessely(2 + 5*I, x)))/4 + x*(a*(besselj(-1 + 5*I, x)/2 - besselj(1 + 5*I, x)/2)
+ b*(bessely(-1 + 5*I, x)/2 - bessely(1 + 5*I, x)/2)) + (x**2 + 25)*(a*besselj(5*I, x)
+ b*bessely(5*I, x))) == 0
assert besselsimp(81*x**2*(a*(besselj(Rational(-5, 3), 9*x) - 2*besselj(Rational(1, 3), 9*x) + besselj(Rational(7, 3), 9*x))
+ b*(bessely(Rational(-5, 3), 9*x) - 2*bessely(Rational(1, 3), 9*x) + bessely(Rational(7, 3), 9*x)))/4 + x*(a*(9*besselj(Rational(-2, 3), 9*x)/2
- 9*besselj(Rational(4, 3), 9*x)/2) + b*(9*bessely(Rational(-2, 3), 9*x)/2 - 9*bessely(Rational(4, 3), 9*x)/2)) +
(81*x**2 - Rational(1, 9))*(a*besselj(Rational(1, 3), 9*x) + b*bessely(Rational(1, 3), 9*x))) == 0
assert besselsimp(besselj(a-1,x) + besselj(a+1, x) - 2*a*besselj(a, x)/x) == 0
assert besselsimp(besselj(a-1,x) + besselj(a+1, x) + besselj(a, x)) == (2*a + x)*besselj(a, x)/x
assert besselsimp(x**2* besselj(a,x) + x**3*besselj(a+1, x) + besselj(a+2, x)) == \
2*a*x*besselj(a + 1, x) + x**3*besselj(a + 1, x) - x**2*besselj(a + 2, x) + 2*x*besselj(a + 1, x) + besselj(a + 2, x)
def test_Piecewise():
e1 = x*(x + y) - y*(x + y)
e2 = sin(x)**2 + cos(x)**2
e3 = expand((x + y)*y/x)
s1 = simplify(e1)
s2 = simplify(e2)
s3 = simplify(e3)
assert simplify(Piecewise((e1, x < e2), (e3, True))) == \
Piecewise((s1, x < s2), (s3, True))
def test_polymorphism():
class A(Basic):
def _eval_simplify(x, **kwargs):
return S.One
a = A(5, 2)
assert simplify(a) == 1
def test_issue_from_PR1599():
n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
assert simplify(I*sqrt(n1)) == -sqrt(-n1)
def test_issue_6811():
eq = (x + 2*y)*(2*x + 2)
assert simplify(eq) == (x + 1)*(x + 2*y)*2
# reject the 2-arg Mul -- these are a headache for test writing
assert simplify(eq.expand()) == \
2*x**2 + 4*x*y + 2*x + 4*y
def test_issue_6920():
e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
cosh(x) - sinh(x), cosh(x) + sinh(x)]
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
# wrap in f to show that the change happens wherever ei occurs
f = Function('f')
assert [simplify(f(ei)).args[0] for ei in e] == ok
def test_issue_7001():
from sympy.abc import r, R
assert simplify(-(r*Piecewise((pi*Rational(4, 3), r <= R),
(-8*pi*R**3/(3*r**3), True)) + 2*Piecewise((pi*r*Rational(4, 3), r <= R),
(4*pi*R**3/(3*r**2), True)))/(4*pi*r)) == \
Piecewise((-1, r <= R), (0, True))
def test_inequality_no_auto_simplify():
# no simplify on creation but can be simplified
lhs = cos(x)**2 + sin(x)**2
rhs = 2
e = Lt(lhs, rhs, evaluate=False)
assert e is not S.true
assert simplify(e)
def test_issue_9398():
from sympy import Number, cancel
assert cancel(1e-14) != 0
assert cancel(1e-14*I) != 0
assert simplify(1e-14) != 0
assert simplify(1e-14*I) != 0
assert (I*Number(1.)*Number(10)**Number(-14)).simplify() != 0
assert cancel(1e-20) != 0
assert cancel(1e-20*I) != 0
assert simplify(1e-20) != 0
assert simplify(1e-20*I) != 0
assert cancel(1e-100) != 0
assert cancel(1e-100*I) != 0
assert simplify(1e-100) != 0
assert simplify(1e-100*I) != 0
f = Float("1e-1000")
assert cancel(f) != 0
assert cancel(f*I) != 0
assert simplify(f) != 0
assert simplify(f*I) != 0
def test_issue_9324_simplify():
M = MatrixSymbol('M', 10, 10)
e = M[0, 0] + M[5, 4] + 1304
assert simplify(e) == e
def test_issue_13474():
x = Symbol('x')
assert simplify(x + csch(sinc(1))) == x + csch(sinc(1))
def test_simplify_function_inverse():
# "inverse" attribute does not guarantee that f(g(x)) is x
# so this simplification should not happen automatically.
# See issue #12140
x, y = symbols('x, y')
g = Function('g')
class f(Function):
def inverse(self, argindex=1):
return g
assert simplify(f(g(x))) == f(g(x))
assert inversecombine(f(g(x))) == x
assert simplify(f(g(x)), inverse=True) == x
assert simplify(f(g(sin(x)**2 + cos(x)**2)), inverse=True) == 1
assert simplify(f(g(x, y)), inverse=True) == f(g(x, y))
assert unchanged(asin, sin(x))
assert simplify(asin(sin(x))) == asin(sin(x))
assert simplify(2*asin(sin(3*x)), inverse=True) == 6*x
assert simplify(log(exp(x))) == log(exp(x))
assert simplify(log(exp(x)), inverse=True) == x
assert simplify(log(exp(x), 2), inverse=True) == x/log(2)
assert simplify(log(exp(x), 2, evaluate=False), inverse=True) == x/log(2)
def test_clear_coefficients():
from sympy.simplify.simplify import clear_coefficients
assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), Rational(1, 6))
assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + Rational(1, 6))
assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
assert clear_coefficients(S(3), x) == (0, x - 3)
assert clear_coefficients(S.Infinity, x) == (S.Infinity, x)
assert clear_coefficients(-S.Pi, x) == (S.Pi, -x)
assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6)
def test_nc_simplify():
from sympy.simplify.simplify import nc_simplify
from sympy.matrices.expressions import MatPow, Identity
from sympy.core import Pow
from functools import reduce
a, b, c, d = symbols('a b c d', commutative = False)
x = Symbol('x')
A = MatrixSymbol("A", x, x)
B = MatrixSymbol("B", x, x)
C = MatrixSymbol("C", x, x)
D = MatrixSymbol("D", x, x)
subst = {a: A, b: B, c: C, d:D}
funcs = {Add: lambda x,y: x+y, Mul: lambda x,y: x*y }
def _to_matrix(expr):
if expr in subst:
return subst[expr]
if isinstance(expr, Pow):
return MatPow(_to_matrix(expr.args[0]), expr.args[1])
elif isinstance(expr, (Add, Mul)):
return reduce(funcs[expr.func],[_to_matrix(a) for a in expr.args])
else:
return expr*Identity(x)
def _check(expr, simplified, deep=True, matrix=True):
assert nc_simplify(expr, deep=deep) == simplified
assert expand(expr) == expand(simplified)
if matrix:
m_simp = _to_matrix(simplified).doit(inv_expand=False)
assert nc_simplify(_to_matrix(expr), deep=deep) == m_simp
_check(a*b*a*b*a*b*c*(a*b)**3*c, ((a*b)**3*c)**2)
_check(a*b*(a*b)**-2*a*b, 1)
_check(a**2*b*a*b*a*b*(a*b)**-1, a*(a*b)**2, matrix=False)
_check(b*a*b**2*a*b**2*a*b**2, b*(a*b**2)**3)
_check(a*b*a**2*b*a**2*b*a**3, (a*b*a)**3*a**2)
_check(a**2*b*a**4*b*a**4*b*a**2, (a**2*b*a**2)**3)
_check(a**3*b*a**4*b*a**4*b*a, a**3*(b*a**4)**3*a**-3)
_check(a*b*a*b + a*b*c*x*a*b*c, (a*b)**2 + x*(a*b*c)**2)
_check(a*b*a*b*c*a*b*a*b*c, ((a*b)**2*c)**2)
_check(b**-1*a**-1*(a*b)**2, a*b)
_check(a**-1*b*c**-1, (c*b**-1*a)**-1)
expr = a**3*b*a**4*b*a**4*b*a**2*b*a**2*(b*a**2)**2*b*a**2*b*a**2
for _ in range(10):
expr *= a*b
_check(expr, a**3*(b*a**4)**2*(b*a**2)**6*(a*b)**10)
_check((a*b*a*b)**2, (a*b*a*b)**2, deep=False)
_check(a*b*(c*d)**2, a*b*(c*d)**2)
expr = b**-1*(a**-1*b**-1 - a**-1*c*b**-1)**-1*a**-1
assert nc_simplify(expr) == (1-c)**-1
# commutative expressions should be returned without an error
assert nc_simplify(2*x**2) == 2*x**2
def test_issue_15965():
A = Sum(z*x**y, (x, 1, a))
anew = z*Sum(x**y, (x, 1, a))
B = Integral(x*y, x)
bdo = x**2*y/2
assert simplify(A + B) == anew + bdo
assert simplify(A) == anew
assert simplify(B) == bdo
assert simplify(B, doit=False) == y*Integral(x, x)
def test_issue_17137():
assert simplify(cos(x)**I) == cos(x)**I
assert simplify(cos(x)**(2 + 3*I)) == cos(x)**(2 + 3*I)
def test_issue_7971():
z = Integral(x, (x, 1, 1))
assert z != 0
assert simplify(z) is S.Zero
@slow
def test_issue_17141_slow():
# Should not give RecursionError
assert simplify((2**acos(I+1)**2).rewrite('log')) == 2**((pi + 2*I*log(-1 +
sqrt(1 - 2*I) + I))**2/4)
def test_issue_17141():
# Check that there is no RecursionError
assert simplify(x**(1 / acos(I))) == x**(2/(pi - 2*I*log(1 + sqrt(2))))
assert simplify(acos(-I)**2*acos(I)**2) == \
log(1 + sqrt(2))**4 + pi**2*log(1 + sqrt(2))**2/2 + pi**4/16
assert simplify(2**acos(I)**2) == 2**((pi - 2*I*log(1 + sqrt(2)))**2/4)
p = 2**acos(I+1)**2
assert simplify(p) == p
def test_simplify_kroneckerdelta():
i, j = symbols("i j")
K = KroneckerDelta
assert simplify(K(i, j)) == K(i, j)
assert simplify(K(0, j)) == K(0, j)
assert simplify(K(i, 0)) == K(i, 0)
assert simplify(K(0, j).rewrite(Piecewise) * K(1, j)) == 0
assert simplify(K(1, i) + Piecewise((1, Eq(j, 2)), (0, True))) == K(1, i) + K(2, j)
# issue 17214
assert simplify(K(0, j) * K(1, j)) == 0
n = Symbol('n', integer=True)
assert simplify(K(0, n) * K(1, n)) == 0
M = Matrix(4, 4, lambda i, j: K(j - i, n) if i <= j else 0)
assert simplify(M**2) == Matrix([[K(0, n), 0, K(1, n), 0],
[0, K(0, n), 0, K(1, n)],
[0, 0, K(0, n), 0],
[0, 0, 0, K(0, n)]])
def test_issue_17292():
assert simplify(abs(x)/abs(x**2)) == 1/abs(x)
# this is bigger than the issue: check that deep processing works
assert simplify(5*abs((x**2 - 1)/(x - 1))) == 5*Abs(x + 1)
|
8946ab5694a5f1e58ac36bd7f29b1fb311ba9142a0679f243bdc1c9b08eb8c60 | from functools import reduce
import itertools
from operator import add
from sympy import (
Add, Mul, Pow, Symbol, exp, sqrt, symbols, sympify, cse,
Matrix, S, cos, sin, Eq, Function, Tuple, CRootOf,
IndexedBase, Idx, Piecewise, O
)
from sympy.core.function import count_ops
from sympy.simplify.cse_opts import sub_pre, sub_post
from sympy.functions.special.hyper import meijerg
from sympy.simplify import cse_main, cse_opts
from sympy.utilities.iterables import subsets
from sympy.utilities.pytest import XFAIL, raises
from sympy.matrices import (MutableDenseMatrix, MutableSparseMatrix,
ImmutableDenseMatrix, ImmutableSparseMatrix)
from sympy.matrices.expressions import MatrixSymbol
from sympy.core.compatibility import range
w, x, y, z = symbols('w,x,y,z')
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = symbols('x:13')
def test_numbered_symbols():
ns = cse_main.numbered_symbols(prefix='y')
assert list(itertools.islice(
ns, 0, 10)) == [Symbol('y%s' % i) for i in range(0, 10)]
ns = cse_main.numbered_symbols(prefix='y')
assert list(itertools.islice(
ns, 10, 20)) == [Symbol('y%s' % i) for i in range(10, 20)]
ns = cse_main.numbered_symbols()
assert list(itertools.islice(
ns, 0, 10)) == [Symbol('x%s' % i) for i in range(0, 10)]
# Dummy "optimization" functions for testing.
def opt1(expr):
return expr + y
def opt2(expr):
return expr*z
def test_preprocess_for_cse():
assert cse_main.preprocess_for_cse(x, [(opt1, None)]) == x + y
assert cse_main.preprocess_for_cse(x, [(None, opt1)]) == x
assert cse_main.preprocess_for_cse(x, [(None, None)]) == x
assert cse_main.preprocess_for_cse(x, [(opt1, opt2)]) == x + y
assert cse_main.preprocess_for_cse(
x, [(opt1, None), (opt2, None)]) == (x + y)*z
def test_postprocess_for_cse():
assert cse_main.postprocess_for_cse(x, [(opt1, None)]) == x
assert cse_main.postprocess_for_cse(x, [(None, opt1)]) == x + y
assert cse_main.postprocess_for_cse(x, [(None, None)]) == x
assert cse_main.postprocess_for_cse(x, [(opt1, opt2)]) == x*z
# Note the reverse order of application.
assert cse_main.postprocess_for_cse(
x, [(None, opt1), (None, opt2)]) == x*z + y
def test_cse_single():
# Simple substitution.
e = Add(Pow(x + y, 2), sqrt(x + y))
substs, reduced = cse([e])
assert substs == [(x0, x + y)]
assert reduced == [sqrt(x0) + x0**2]
subst42, (red42,) = cse([42]) # issue_15082
assert len(subst42) == 0 and red42 == 42
subst_half, (red_half,) = cse([0.5])
assert len(subst_half) == 0 and red_half == 0.5
def test_cse_single2():
# Simple substitution, test for being able to pass the expression directly
e = Add(Pow(x + y, 2), sqrt(x + y))
substs, reduced = cse(e)
assert substs == [(x0, x + y)]
assert reduced == [sqrt(x0) + x0**2]
substs, reduced = cse(Matrix([[1]]))
assert isinstance(reduced[0], Matrix)
subst42, (red42,) = cse(42) # issue 15082
assert len(subst42) == 0 and red42 == 42
subst_half, (red_half,) = cse(0.5) # issue 15082
assert len(subst_half) == 0 and red_half == 0.5
def test_cse_not_possible():
# No substitution possible.
e = Add(x, y)
substs, reduced = cse([e])
assert substs == []
assert reduced == [x + y]
# issue 6329
eq = (meijerg((1, 2), (y, 4), (5,), [], x) +
meijerg((1, 3), (y, 4), (5,), [], x))
assert cse(eq) == ([], [eq])
def test_nested_substitution():
# Substitution within a substitution.
e = Add(Pow(w*x + y, 2), sqrt(w*x + y))
substs, reduced = cse([e])
assert substs == [(x0, w*x + y)]
assert reduced == [sqrt(x0) + x0**2]
def test_subtraction_opt():
# Make sure subtraction is optimized.
e = (x - y)*(z - y) + exp((x - y)*(z - y))
substs, reduced = cse(
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
assert substs == [(x0, (x - y)*(y - z))]
assert reduced == [-x0 + exp(-x0)]
e = -(x - y)*(z - y) + exp(-(x - y)*(z - y))
substs, reduced = cse(
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
assert substs == [(x0, (x - y)*(y - z))]
assert reduced == [x0 + exp(x0)]
# issue 4077
n = -1 + 1/x
e = n/x/(-n)**2 - 1/n/x
assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \
([], [0])
def test_multiple_expressions():
e1 = (x + y)*z
e2 = (x + y)*w
substs, reduced = cse([e1, e2])
assert substs == [(x0, x + y)]
assert reduced == [x0*z, x0*w]
l = [w*x*y + z, w*y]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == rsubsts
assert reduced == [z + x*x0, x0]
l = [w*x*y, w*x*y + z, w*y]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == rsubsts
assert reduced == [x1, x1 + z, x0]
l = [(x - z)*(y - z), x - z, y - z]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == [(x0, -z), (x1, x + x0), (x2, x0 + y)]
assert rsubsts == [(x0, -z), (x1, x0 + y), (x2, x + x0)]
assert reduced == [x1*x2, x1, x2]
l = [w*y + w + x + y + z, w*x*y]
assert cse(l) == ([(x0, w*y)], [w + x + x0 + y + z, x*x0])
assert cse([x + y, x + y + z]) == ([(x0, x + y)], [x0, z + x0])
assert cse([x + y, x + z]) == ([], [x + y, x + z])
assert cse([x*y, z + x*y, x*y*z + 3]) == \
([(x0, x*y)], [x0, z + x0, 3 + x0*z])
@XFAIL # CSE of non-commutative Mul terms is disabled
def test_non_commutative_cse():
A, B, C = symbols('A B C', commutative=False)
l = [A*B*C, A*C]
assert cse(l) == ([], l)
l = [A*B*C, A*B]
assert cse(l) == ([(x0, A*B)], [x0*C, x0])
# Test if CSE of non-commutative Mul terms is disabled
def test_bypass_non_commutatives():
A, B, C = symbols('A B C', commutative=False)
l = [A*B*C, A*C]
assert cse(l) == ([], l)
l = [A*B*C, A*B]
assert cse(l) == ([], l)
l = [B*C, A*B*C]
assert cse(l) == ([], l)
@XFAIL # CSE fails when replacing non-commutative sub-expressions
def test_non_commutative_order():
A, B, C = symbols('A B C', commutative=False)
x0 = symbols('x0', commutative=False)
l = [B+C, A*(B+C)]
assert cse(l) == ([(x0, B+C)], [x0, A*x0])
@XFAIL # Worked in gh-11232, but was reverted due to performance considerations
def test_issue_10228():
assert cse([x*y**2 + x*y]) == ([(x0, x*y)], [x0*y + x0])
assert cse([x + y, 2*x + y]) == ([(x0, x + y)], [x0, x + x0])
assert cse((w + 2*x + y + z, w + x + 1)) == (
[(x0, w + x)], [x0 + x + y + z, x0 + 1])
assert cse(((w + x + y + z)*(w - x))/(w + x)) == (
[(x0, w + x)], [(x0 + y + z)*(w - x)/x0])
a, b, c, d, f, g, j, m = symbols('a, b, c, d, f, g, j, m')
exprs = (d*g**2*j*m, 4*a*f*g*m, a*b*c*f**2)
assert cse(exprs) == (
[(x0, g*m), (x1, a*f)], [d*g*j*x0, 4*x0*x1, b*c*f*x1]
)
@XFAIL
def test_powers():
assert cse(x*y**2 + x*y) == ([(x0, x*y)], [x0*y + x0])
def test_issue_4498():
assert cse(w/(x - y) + z/(y - x), optimizations='basic') == \
([], [(w - z)/(x - y)])
def test_issue_4020():
assert cse(x**5 + x**4 + x**3 + x**2, optimizations='basic') \
== ([(x0, x**2)], [x0*(x**3 + x + x0 + 1)])
def test_issue_4203():
assert cse(sin(x**x)/x**x) == ([(x0, x**x)], [sin(x0)/x0])
def test_issue_6263():
e = Eq(x*(-x + 1) + x*(x - 1), 0)
assert cse(e, optimizations='basic') == ([], [True])
def test_dont_cse_tuples():
from sympy import Subs
f = Function("f")
g = Function("g")
name_val, (expr,) = cse(
Subs(f(x, y), (x, y), (0, 1))
+ Subs(g(x, y), (x, y), (0, 1)))
assert name_val == []
assert expr == (Subs(f(x, y), (x, y), (0, 1))
+ Subs(g(x, y), (x, y), (0, 1)))
name_val, (expr,) = cse(
Subs(f(x, y), (x, y), (0, x + y))
+ Subs(g(x, y), (x, y), (0, x + y)))
assert name_val == [(x0, x + y)]
assert expr == Subs(f(x, y), (x, y), (0, x0)) + \
Subs(g(x, y), (x, y), (0, x0))
def test_pow_invpow():
assert cse(1/x**2 + x**2) == \
([(x0, x**2)], [x0 + 1/x0])
assert cse(x**2 + (1 + 1/x**2)/x**2) == \
([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)])
assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \
([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1])
assert cse(cos(1/x**2) + sin(1/x**2)) == \
([(x0, x**(-2))], [sin(x0) + cos(x0)])
assert cse(cos(x**2) + sin(x**2)) == \
([(x0, x**2)], [sin(x0) + cos(x0)])
assert cse(y/(2 + x**2) + z/x**2/y) == \
([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)])
assert cse(exp(x**2) + x**2*cos(1/x**2)) == \
([(x0, x**2)], [x0*cos(1/x0) + exp(x0)])
assert cse((1 + 1/x**2)/x**2) == \
([(x0, x**(-2))], [x0*(x0 + 1)])
assert cse(x**(2*y) + x**(-2*y)) == \
([(x0, x**(2*y))], [x0 + 1/x0])
def test_postprocess():
eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
assert cse([eq, Eq(x, z + 1), z - 2, (z + 1)*(x + 1)],
postprocess=cse_main.cse_separate) == \
[[(x0, y + 1), (x2, z + 1), (x, x2), (x1, x + 1)],
[x1 + exp(x1/x0) + cos(x0), z - 2, x1*x2]]
def test_issue_4499():
# previously, this gave 16 constants
from sympy.abc import a, b
B = Function('B')
G = Function('G')
t = Tuple(*
(a, a + S.Half, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a -
b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1),
sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b,
sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1,
sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1),
(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1,
sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S.Half, z/2, -b + 1, -2*a + b,
-2*a))
c = cse(t)
ans = (
[(x0, 2*a), (x1, -b), (x2, x0 + x1), (x3, x2 + 1), (x4, sqrt(z)), (x5,
B(b - 1, x4)), (x6, -x0), (x7, (x4/2)**(x6 + 1)*G(b)*G(x3)), (x8,
x7*B(x2, x4)), (x9, B(b, x4)), (x10, x7*B(x3, x4))],
[(a, a + S.Half, x0, b, x3, x5*x8, x4*x8*x9, x10*x4*x5, x10*x9,
1, 0, S.Half, z/2, x1 + 1, b + x6, x6)])
assert ans == c
def test_issue_6169():
r = CRootOf(x**6 - 4*x**5 - 2, 1)
assert cse(r) == ([], [r])
# and a check that the right thing is done with the new
# mechanism
assert sub_post(sub_pre((-x - y)*z - x - y)) == -z*(x + y) - x - y
def test_cse_Indexed():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
i = Idx('i', len_y-1)
expr1 = (y[i+1]-y[i])/(x[i+1]-x[i])
expr2 = 1/(x[i+1]-x[i])
replacements, reduced_exprs = cse([expr1, expr2])
assert len(replacements) > 0
def test_cse_MatrixSymbol():
# MatrixSymbols have non-Basic args, so make sure that works
A = MatrixSymbol("A", 3, 3)
assert cse(A) == ([], [A])
n = symbols('n', integer=True)
B = MatrixSymbol("B", n, n)
assert cse(B) == ([], [B])
def test_cse_MatrixExpr():
from sympy import MatrixSymbol
A = MatrixSymbol('A', 3, 3)
y = MatrixSymbol('y', 3, 1)
expr1 = (A.T*A).I * A * y
expr2 = (A.T*A) * A * y
replacements, reduced_exprs = cse([expr1, expr2])
assert len(replacements) > 0
replacements, reduced_exprs = cse([expr1 + expr2, expr1])
assert replacements
replacements, reduced_exprs = cse([A**2, A + A**2])
assert replacements
def test_Piecewise():
f = Piecewise((-z + x*y, Eq(y, 0)), (-z - x*y, True))
ans = cse(f)
actual_ans = ([(x0, -z), (x1, x*y)],
[Piecewise((x0 + x1, Eq(y, 0)), (x0 - x1, True))])
assert ans == actual_ans
def test_ignore_order_terms():
eq = exp(x).series(x,0,3) + sin(y+x**3) - 1
assert cse(eq) == ([], [sin(x**3 + y) + x + x**2/2 + O(x**3)])
def test_name_conflict():
z1 = x0 + y
z2 = x2 + x3
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
substs, reduced = cse(l)
assert [e.subs(reversed(substs)) for e in reduced] == l
def test_name_conflict_cust_symbols():
z1 = x0 + y
z2 = x2 + x3
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
substs, reduced = cse(l, symbols("x:10"))
assert [e.subs(reversed(substs)) for e in reduced] == l
def test_symbols_exhausted_error():
l = cos(x+y)+x+y+cos(w+y)+sin(w+y)
sym = [x, y, z]
with raises(ValueError):
cse(l, symbols=sym)
def test_issue_7840():
# daveknippers' example
C393 = sympify( \
'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \
C391 > 2.35), (C392, True)), True))'
)
C391 = sympify( \
'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))'
)
C393 = C393.subs('C391',C391)
# simple substitution
sub = {}
sub['C390'] = 0.703451854
sub['C392'] = 1.01417794
ss_answer = C393.subs(sub)
# cse
substitutions,new_eqn = cse(C393)
for pair in substitutions:
sub[pair[0].name] = pair[1].subs(sub)
cse_answer = new_eqn[0].subs(sub)
# both methods should be the same
assert ss_answer == cse_answer
# GitRay's example
expr = sympify(
"Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \
(Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \
Symbol('threshold'))), (Symbol('ON'), true)), Equality(Symbol('mode'), \
Symbol('AUTO'))), (Symbol('OFF'), true)), true))"
)
substitutions, new_eqn = cse(expr)
# this Piecewise should be exactly the same
assert new_eqn[0] == expr
# there should not be any replacements
assert len(substitutions) < 1
def test_issue_8891():
for cls in (MutableDenseMatrix, MutableSparseMatrix,
ImmutableDenseMatrix, ImmutableSparseMatrix):
m = cls(2, 2, [x + y, 0, 0, 0])
res = cse([x + y, m])
ans = ([(x0, x + y)], [x0, cls([[x0, 0], [0, 0]])])
assert res == ans
assert isinstance(res[1][-1], cls)
def test_issue_11230():
# a specific test that always failed
a, b, f, k, l, i = symbols('a b f k l i')
p = [a*b*f*k*l, a*i*k**2*l, f*i*k**2*l]
R, C = cse(p)
assert not any(i.is_Mul for a in C for i in a.args)
# random tests for the issue
from random import choice
from sympy.core.function import expand_mul
s = symbols('a:m')
# 35 Mul tests, none of which should ever fail
ex = [Mul(*[choice(s) for i in range(5)]) for i in range(7)]
for p in subsets(ex, 3):
p = list(p)
R, C = cse(p)
assert not any(i.is_Mul for a in C for i in a.args)
for ri in reversed(R):
for i in range(len(C)):
C[i] = C[i].subs(*ri)
assert p == C
# 35 Add tests, none of which should ever fail
ex = [Add(*[choice(s[:7]) for i in range(5)]) for i in range(7)]
for p in subsets(ex, 3):
p = list(p)
R, C = cse(p)
assert not any(i.is_Add for a in C for i in a.args)
for ri in reversed(R):
for i in range(len(C)):
C[i] = C[i].subs(*ri)
# use expand_mul to handle cases like this:
# p = [a + 2*b + 2*e, 2*b + c + 2*e, b + 2*c + 2*g]
# x0 = 2*(b + e) is identified giving a rebuilt p that
# is now `[a + 2*(b + e), c + 2*(b + e), b + 2*c + 2*g]`
assert p == [expand_mul(i) for i in C]
@XFAIL
def test_issue_11577():
def check(eq):
r, c = cse(eq)
assert eq.count_ops() >= \
len(r) + sum([i[1].count_ops() for i in r]) + \
count_ops(c)
eq = x**5*y**2 + x**5*y + x**5
assert cse(eq) == (
[(x0, x**4), (x1, x*y)], [x**5 + x0*x1*y + x0*x1])
# ([(x0, x**5*y)], [x0*y + x0 + x**5]) or
# ([(x0, x**5)], [x0*y**2 + x0*y + x0])
check(eq)
eq = x**2/(y + 1)**2 + x/(y + 1)
assert cse(eq) == (
[(x0, y + 1)], [x**2/x0**2 + x/x0])
# ([(x0, x/(y + 1))], [x0**2 + x0])
check(eq)
def test_hollow_rejection():
eq = [x + 3, x + 4]
assert cse(eq) == ([], eq)
def test_cse_ignore():
exprs = [exp(y)*(3*y + 3*sqrt(x+1)), exp(y)*(5*y + 5*sqrt(x+1))]
subst1, red1 = cse(exprs)
assert any(y in sub.free_symbols for _, sub in subst1), "cse failed to identify any term with y"
subst2, red2 = cse(exprs, ignore=(y,)) # y is not allowed in substitutions
assert not any(y in sub.free_symbols for _, sub in subst2), "Sub-expressions containing y must be ignored"
assert any(sub - sqrt(x + 1) == 0 for _, sub in subst2), "cse failed to identify sqrt(x + 1) as sub-expression"
def test_cse_ignore_issue_15002():
l = [
w*exp(x)*exp(-z),
exp(y)*exp(x)*exp(-z)
]
substs, reduced = cse(l, ignore=(x,))
rl = [e.subs(reversed(substs)) for e in reduced]
assert rl == l
def test_cse__performance():
nexprs, nterms = 3, 20
x = symbols('x:%d' % nterms)
exprs = [
reduce(add, [x[j]*(-1)**(i+j) for j in range(nterms)])
for i in range(nexprs)
]
assert (exprs[0] + exprs[1]).simplify() == 0
subst, red = cse(exprs)
assert len(subst) > 0, "exprs[0] == -exprs[2], i.e. a CSE"
for i, e in enumerate(red):
assert (e.subs(reversed(subst)) - exprs[i]).simplify() == 0
def test_issue_12070():
exprs = [x + y, 2 + x + y, x + y + z, 3 + x + y + z]
subst, red = cse(exprs)
assert 6 >= (len(subst) + sum([v.count_ops() for k, v in subst]) +
count_ops(red))
def test_issue_13000():
eq = x/(-4*x**2 + y**2)
cse_eq = cse(eq)[1][0]
assert cse_eq == eq
def test_unevaluated_mul():
eq = Mul(x + y, x + y, evaluate=False)
assert cse(eq) == ([(x0, x + y)], [x0**2])
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.