hash
stringlengths
64
64
content
stringlengths
0
1.51M
338ccea6e05538a9b5853580f34a945659c0d3960c3e13a7e13ae84776b88821
from sympy import ratsimpmodprime, ratsimp, Rational, sqrt, pi, log, erf, GF from sympy.abc import x, y, z, t, a, b, c, d, e def test_ratsimp(): f, g = 1/x + 1/y, (x + y)/(x*y) assert f != g and ratsimp(f) == g f, g = 1/(1 + 1/x), 1 - 1/(x + 1) assert f != g and ratsimp(f) == g f, g = x/(x + y) + y/(x + y), 1 assert f != g and ratsimp(f) == g f, g = -x - y - y**2/(x + y) + x**2/(x + y), -2*y assert f != g and ratsimp(f) == g f = (a*c*x*y + a*c*z - b*d*x*y - b*d*z - b*t*x*y - b*t*x - b*t*z + e*x)/(x*y + z) G = [a*c - b*d - b*t + (-b*t*x + e*x)/(x*y + z), a*c - b*d - b*t - ( b*t*x - e*x)/(x*y + z)] assert f != g and ratsimp(f) in G A = sqrt(pi) B = log(erf(x) - 1) C = log(erf(x) + 1) D = 8 - 8*erf(x) f = A*B/D - A*C/D + A*C*erf(x)/D - A*B*erf(x)/D + 2*A/D assert ratsimp(f) == A*B/8 - A*C/8 - A/(4*erf(x) - 4) def test_ratsimpmodprime(): a = y**5 + x + y b = x - y F = [x*y**5 - x - y] assert ratsimpmodprime(a/b, F, x, y, order='lex') == \ (x**2 + x*y + x + y) / (x**2 - x*y) a = x + y**2 - 2 b = x + y**2 - y - 1 F = [x*y - 1] assert ratsimpmodprime(a/b, F, x, y, order='lex') == \ (1 + y - x)/(y - x) a = 5*x**3 + 21*x**2 + 4*x*y + 23*x + 12*y + 15 b = 7*x**3 - y*x**2 + 31*x**2 + 2*x*y + 15*y + 37*x + 21 F = [x**2 + y**2 - 1] assert ratsimpmodprime(a/b, F, x, y, order='lex') == \ (1 + 5*y - 5*x)/(8*y - 6*x) a = x*y - x - 2*y + 4 b = x + y**2 - 2*y F = [x - 2, y - 3] assert ratsimpmodprime(a/b, F, x, y, order='lex') == \ Rational(2, 5) # Test a bug where denominators would be dropped assert ratsimpmodprime(x, [y - 2*x], order='lex') == \ y/2 a = (x**5 + 2*x**4 + 2*x**3 + 2*x**2 + x + 2/x + x**(-2)) assert ratsimpmodprime(a, [x + 1], domain=GF(2)) == 1 assert ratsimpmodprime(a, [x + 1], domain=GF(3)) == -1
9949dc600a75823424ac5ed25302a8925e138850be8512bc015ea53a2617df9b
from sympy.categories import (Object, Morphism, IdentityMorphism, NamedMorphism, CompositeMorphism, Diagram, Category) from sympy.categories.baseclasses import Class from sympy.utilities.pytest import raises from sympy import FiniteSet, EmptySet, Dict, Tuple def test_morphisms(): A = Object("A") B = Object("B") C = Object("C") D = Object("D") # Test the base morphism. f = NamedMorphism(A, B, "f") assert f.domain == A assert f.codomain == B assert f == NamedMorphism(A, B, "f") # Test identities. id_A = IdentityMorphism(A) id_B = IdentityMorphism(B) assert id_A.domain == A assert id_A.codomain == A assert id_A == IdentityMorphism(A) assert id_A != id_B # Test named morphisms. g = NamedMorphism(B, C, "g") assert g.name == "g" assert g != f assert g == NamedMorphism(B, C, "g") assert g != NamedMorphism(B, C, "f") # Test composite morphisms. assert f == CompositeMorphism(f) k = g.compose(f) assert k.domain == A assert k.codomain == C assert k.components == Tuple(f, g) assert g * f == k assert CompositeMorphism(f, g) == k assert CompositeMorphism(g * f) == g * f # Test the associativity of composition. h = NamedMorphism(C, D, "h") p = h * g u = h * g * f assert h * k == u assert p * f == u assert CompositeMorphism(f, g, h) == u # Test flattening. u2 = u.flatten("u") assert isinstance(u2, NamedMorphism) assert u2.name == "u" assert u2.domain == A assert u2.codomain == D # Test identities. assert f * id_A == f assert id_B * f == f assert id_A * id_A == id_A assert CompositeMorphism(id_A) == id_A # Test bad compositions. raises(ValueError, lambda: f * g) raises(TypeError, lambda: f.compose(None)) raises(TypeError, lambda: id_A.compose(None)) raises(TypeError, lambda: f * None) raises(TypeError, lambda: id_A * None) raises(TypeError, lambda: CompositeMorphism(f, None, 1)) raises(ValueError, lambda: NamedMorphism(A, B, "")) raises(NotImplementedError, lambda: Morphism(A, B)) def test_diagram(): A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") id_A = IdentityMorphism(A) id_B = IdentityMorphism(B) empty = EmptySet # Test the addition of identities. d1 = Diagram([f]) assert d1.objects == FiniteSet(A, B) assert d1.hom(A, B) == (FiniteSet(f), empty) assert d1.hom(A, A) == (FiniteSet(id_A), empty) assert d1.hom(B, B) == (FiniteSet(id_B), empty) assert d1 == Diagram([id_A, f]) assert d1 == Diagram([f, f]) # Test the addition of composites. d2 = Diagram([f, g]) homAC = d2.hom(A, C)[0] assert d2.objects == FiniteSet(A, B, C) assert g * f in d2.premises.keys() assert homAC == FiniteSet(g * f) # Test equality, inequality and hash. d11 = Diagram([f]) assert d1 == d11 assert d1 != d2 assert hash(d1) == hash(d11) d11 = Diagram({f: "unique"}) assert d1 != d11 # Make sure that (re-)adding composites (with new properties) # works as expected. d = Diagram([f, g], {g * f: "unique"}) assert d.conclusions == Dict({g * f: FiniteSet("unique")}) # Check the hom-sets when there are premises and conclusions. assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f)) d = Diagram([f, g], [g * f]) assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f)) # Check how the properties of composite morphisms are computed. d = Diagram({f: ["unique", "isomorphism"], g: "unique"}) assert d.premises[g * f] == FiniteSet("unique") # Check that conclusion morphisms with new objects are not allowed. d = Diagram([f], [g]) assert d.conclusions == Dict({}) # Test an empty diagram. d = Diagram() assert d.premises == Dict({}) assert d.conclusions == Dict({}) assert d.objects == empty # Check a SymPy Dict object. d = Diagram(Dict({f: FiniteSet("unique", "isomorphism"), g: "unique"})) assert d.premises[g * f] == FiniteSet("unique") # Check the addition of components of composite morphisms. d = Diagram([g * f]) assert f in d.premises assert g in d.premises # Check subdiagrams. d = Diagram([f, g], {g * f: "unique"}) d1 = Diagram([f]) assert d.is_subdiagram(d1) assert not d1.is_subdiagram(d) d = Diagram([NamedMorphism(B, A, "f'")]) assert not d.is_subdiagram(d1) assert not d1.is_subdiagram(d) d1 = Diagram([f, g], {g * f: ["unique", "something"]}) assert not d.is_subdiagram(d1) assert not d1.is_subdiagram(d) d = Diagram({f: "blooh"}) d1 = Diagram({f: "bleeh"}) assert not d.is_subdiagram(d1) assert not d1.is_subdiagram(d) d = Diagram([f, g], {f: "unique", g * f: "veryunique"}) d1 = d.subdiagram_from_objects(FiniteSet(A, B)) assert d1 == Diagram([f], {f: "unique"}) raises(ValueError, lambda: d.subdiagram_from_objects(FiniteSet(A, Object("D")))) raises(ValueError, lambda: Diagram({IdentityMorphism(A): "unique"})) def test_category(): A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d1 = Diagram([f, g]) d2 = Diagram([f]) objects = d1.objects | d2.objects K = Category("K", objects, commutative_diagrams=[d1, d2]) assert K.name == "K" assert K.objects == Class(objects) assert K.commutative_diagrams == FiniteSet(d1, d2) raises(ValueError, lambda: Category(""))
55ebef8f4fb16fd92bc997f954ac5c2a0406b7673276c02ac55b736175ad666b
from sympy import symbols, re, im, I, Abs, Symbol, \ cos, sin, sqrt, conjugate, log, acos, E, pi, \ Matrix, diff, integrate, trigsimp, S, Rational from sympy.algebras.quaternion import Quaternion from sympy.utilities.pytest import raises w, x, y, z = symbols('w:z') phi = symbols('phi') def test_quaternion_construction(): q = Quaternion(w, x, y, z) assert q + q == Quaternion(2*w, 2*x, 2*y, 2*z) q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), pi*Rational(2, 3)) assert q2 == Quaternion(S.Half, S.Half, S.Half, S.Half) M = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]]) q3 = trigsimp(Quaternion.from_rotation_matrix(M)) assert q3 == Quaternion(sqrt(2)*sqrt(cos(phi) + 1)/2, 0, 0, sqrt(-2*cos(phi) + 2)/2) nc = Symbol('nc', commutative=False) raises(ValueError, lambda: Quaternion(w, x, nc, z)) def test_quaternion_complex_real_addition(): a = symbols("a", complex=True) b = symbols("b", real=True) # This symbol is not complex: c = symbols("c", commutative=False) q = Quaternion(w, x, y, z) assert a + q == Quaternion(w + re(a), x + im(a), y, z) assert 1 + q == Quaternion(1 + w, x, y, z) assert I + q == Quaternion(w, 1 + x, y, z) assert b + q == Quaternion(w + b, x, y, z) raises(ValueError, lambda: c + q) raises(ValueError, lambda: q * c) raises(ValueError, lambda: c * q) assert -q == Quaternion(-w, -x, -y, -z) q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) q2 = Quaternion(1, 4, 7, 8) assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I) assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8) assert q1 * (2 + 3*I) == \ Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I)) assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5) q1 = Quaternion(1, 2, 3, 4) q0 = Quaternion(0, 0, 0, 0) assert q1 + q0 == q1 assert q1 - q0 == q1 assert q1 - q1 == q0 def test_quaternion_functions(): q = Quaternion(w, x, y, z) q1 = Quaternion(1, 2, 3, 4) q0 = Quaternion(0, 0, 0, 0) assert conjugate(q) == Quaternion(w, -x, -y, -z) assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2) assert q.normalize() == Quaternion(w, x, y, z) / sqrt(w**2 + x**2 + y**2 + z**2) assert q.inverse() == Quaternion(w, -x, -y, -z) / (w**2 + x**2 + y**2 + z**2) assert q.inverse() == q.pow(-1) raises(ValueError, lambda: q0.inverse()) assert q.pow(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z) assert q**(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z) assert q1.pow(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225)) assert q1**(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225)) assert q1.pow(-0.5) == NotImplemented raises(TypeError, lambda: q1**(-0.5)) assert q1.exp() == \ Quaternion(E * cos(sqrt(29)), 2 * sqrt(29) * E * sin(sqrt(29)) / 29, 3 * sqrt(29) * E * sin(sqrt(29)) / 29, 4 * sqrt(29) * E * sin(sqrt(29)) / 29) assert q1._ln() == \ Quaternion(log(sqrt(30)), 2 * sqrt(29) * acos(sqrt(30)/30) / 29, 3 * sqrt(29) * acos(sqrt(30)/30) / 29, 4 * sqrt(29) * acos(sqrt(30)/30) / 29) assert q1.pow_cos_sin(2) == \ Quaternion(30 * cos(2 * acos(sqrt(30)/30)), 60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29, 90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29, 120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29) assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1) assert integrate(Quaternion(x, x, x, x), x) == \ Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2) assert Quaternion.rotate_point((1, 1, 1), q1) == (S.One / 5, 1, S(7) / 5) n = Symbol('n') raises(TypeError, lambda: q1**n) n = Symbol('n', integer=True) raises(TypeError, lambda: q1**n) def test_quaternion_conversions(): q1 = Quaternion(1, 2, 3, 4) assert q1.to_axis_angle() == ((2 * sqrt(29)/29, 3 * sqrt(29)/29, 4 * sqrt(29)/29), 2 * acos(sqrt(30)/30)) assert q1.to_rotation_matrix() == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15)], [Rational(2, 3), Rational(-1, 3), Rational(2, 3)], [Rational(1, 3), Rational(14, 15), Rational(2, 15)]]) assert q1.to_rotation_matrix((1, 1, 1)) == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15), Rational(4, 5)], [Rational(2, 3), Rational(-1, 3), Rational(2, 3), S.Zero], [Rational(1, 3), Rational(14, 15), Rational(2, 15), Rational(-2, 5)], [S.Zero, S.Zero, S.Zero, S.One]]) theta = symbols("theta", real=True) q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2)) assert trigsimp(q2.to_rotation_matrix()) == Matrix([ [cos(theta), -sin(theta), 0], [sin(theta), cos(theta), 0], [0, 0, 1]]) assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))), 2*acos(cos(theta/2))) assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([ [cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1], [sin(theta), cos(theta), 0, -sin(theta) - cos(theta) + 1], [0, 0, 1, 0], [0, 0, 0, 1]]) def test_quaternion_rotation_iss1593(): """ There was a sign mistake in the definition, of the rotation matrix. This tests that particular sign mistake. See issue 1593 for reference. See wikipedia https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix for the correct definition """ q = Quaternion(cos(phi/2), sin(phi/2), 0, 0) assert(trigsimp(q.to_rotation_matrix()) == Matrix([ [1, 0, 0], [0, cos(phi), -sin(phi)], [0, sin(phi), cos(phi)]])) def test_quaternion_multiplication(): q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) q2 = Quaternion(1, 2, 3, 5) q3 = Quaternion(1, 1, 1, y) assert Quaternion._generic_mul(4, 1) == 4 assert Quaternion._generic_mul(4, q1) == Quaternion(12 + 16*I, 8 + 20*I, 0, 28 + 32*I) assert q2.mul(2) == Quaternion(2, 4, 6, 10) assert q2.mul(q3) == Quaternion(-5*y - 4, 3*y - 2, 9 - 2*y, y + 4) assert q2.mul(q3) == q2*q3 z = symbols('z', complex=True) z_quat = Quaternion(re(z), im(z), 0, 0) q = Quaternion(*symbols('q:4', real=True)) assert z * q == z_quat * q assert q * z == q * z_quat
35e426d9b75002d3c433f5fa81e37f86c8ea7f98cf500f5fb612ec5c4ef03b93
from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r, R3_c, R3_s from sympy.diffgeom import (Commutator, Differential, TensorProduct, WedgeProduct, BaseCovarDerivativeOp, CovarDerivativeOp, LieDerivative, covariant_order, contravariant_order, twoform_to_matrix, metric_to_Christoffel_1st, metric_to_Christoffel_2nd, metric_to_Riemann_components, metric_to_Ricci_components, intcurve_diffequ, intcurve_series) from sympy.core import Symbol, symbols from sympy.simplify import trigsimp, simplify from sympy.functions import sqrt, atan2, sin from sympy.matrices import Matrix from sympy.utilities.pytest import raises, nocache_fail TP = TensorProduct def test_R2(): x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True) point_r = R2_r.point([x0, y0]) point_p = R2_p.point([r0, theta0]) # r**2 = x**2 + y**2 assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0 assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p) ) == 0 assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2*r0 # polar->rect->polar == Id a, b = symbols('a b', positive=True) m = Matrix([[a], [b]]) #TODO assert m == R2_r.coord_tuple_transform_to(R2_p, R2_p.coord_tuple_transform_to(R2_r, [a, b])).applyfunc(simplify) assert m == R2_p.coord_tuple_transform_to( R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify) def test_R3(): a, b, c = symbols('a b c', positive=True) m = Matrix([[a], [b], [c]]) assert m == R3_c.coord_tuple_transform_to( R3_r, R3_r.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) #TODO assert m == R3_r.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) assert m == R3_s.coord_tuple_transform_to( R3_r, R3_r.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_r.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) assert m == R3_s.coord_tuple_transform_to( R3_c, R3_c.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_c.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) def test_point(): x, y = symbols('x, y') p = R2_r.point([x, y]) #TODO assert p.free_symbols() == set([x, y]) assert p.coords(R2_r) == p.coords() == Matrix([x, y]) assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)]) def test_commutator(): assert Commutator(R2.e_x, R2.e_y) == 0 assert Commutator(R2.x*R2.e_x, R2.x*R2.e_x) == 0 assert Commutator(R2.x*R2.e_x, R2.x*R2.e_y) == R2.x*R2.e_y c = Commutator(R2.e_x, R2.e_r) assert c(R2.x) == R2.y*(R2.x**2 + R2.y**2)**(-1)*sin(R2.theta) def test_differential(): xdy = R2.x*R2.dy dxdy = Differential(xdy) assert xdy.rcall(None) == xdy assert dxdy(R2.e_x, R2.e_y) == 1 assert dxdy(R2.e_x, R2.x*R2.e_y) == R2.x assert Differential(dxdy) == 0 def test_products(): assert TensorProduct( R2.dx, R2.dy)(R2.e_x, R2.e_y) == R2.dx(R2.e_x)*R2.dy(R2.e_y) == 1 assert TensorProduct(R2.dx, R2.dy)(None, R2.e_y) == R2.dx assert TensorProduct(R2.dx, R2.dy)(R2.e_x, None) == R2.dy assert TensorProduct(R2.dx, R2.dy)(R2.e_x) == R2.dy assert TensorProduct(R2.x, R2.dx) == R2.x*R2.dx assert TensorProduct( R2.e_x, R2.e_y)(R2.x, R2.y) == R2.e_x(R2.x) * R2.e_y(R2.y) == 1 assert TensorProduct(R2.e_x, R2.e_y)(None, R2.y) == R2.e_x assert TensorProduct(R2.e_x, R2.e_y)(R2.x, None) == R2.e_y assert TensorProduct(R2.e_x, R2.e_y)(R2.x) == R2.e_y assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x assert TensorProduct( R2.dx, R2.e_y)(R2.e_x, R2.y) == R2.dx(R2.e_x) * R2.e_y(R2.y) == 1 assert TensorProduct(R2.dx, R2.e_y)(None, R2.y) == R2.dx assert TensorProduct(R2.dx, R2.e_y)(R2.e_x, None) == R2.e_y assert TensorProduct(R2.dx, R2.e_y)(R2.e_x) == R2.e_y assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x assert TensorProduct( R2.e_x, R2.dy)(R2.x, R2.e_y) == R2.e_x(R2.x) * R2.dy(R2.e_y) == 1 assert TensorProduct(R2.e_x, R2.dy)(None, R2.e_y) == R2.e_x assert TensorProduct(R2.e_x, R2.dy)(R2.x, None) == R2.dy assert TensorProduct(R2.e_x, R2.dy)(R2.x) == R2.dy assert TensorProduct(R2.e_y,R2.e_x)(R2.x**2 + R2.y**2,R2.x**2 + R2.y**2) == 4*R2.x*R2.y assert WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) == 1 assert WedgeProduct(R2.e_x, R2.e_y)(R2.x, R2.y) == 1 def test_lie_derivative(): assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0 assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1 assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0 assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r) assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1 assert LieDerivative( R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0 @nocache_fail def test_covar_deriv(): ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) cvd = BaseCovarDerivativeOp(R2_r, 0, ch) assert cvd(R2.x) == 1 # This line fails if the cache is disabled: assert cvd(R2.x*R2.e_x) == R2.e_x cvd = CovarDerivativeOp(R2.x*R2.e_x, ch) assert cvd(R2.x) == R2.x assert cvd(R2.x*R2.e_x) == R2.x*R2.e_x def test_intcurve_diffequ(): t = symbols('t') start_point = R2_r.point([1, 0]) vector_field = -R2.y*R2.e_x + R2.x*R2.e_y equations, init_cond = intcurve_diffequ(vector_field, t, start_point) assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) assert str( equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' def test_helpers_and_coordinate_dependent(): one_form = R2.dr + R2.dx two_form = Differential(R2.x*R2.dr + R2.r*R2.dx) three_form = Differential( R2.y*two_form) + Differential(R2.x*Differential(R2.r*R2.dr)) metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy) metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr) misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr misform_b = R2.dr**4 misform_c = R2.dx*R2.dy twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy) twoform_not_TP = WedgeProduct(R2.dx, R2.dy) one_vector = R2.e_x + R2.e_y two_vector = TensorProduct(R2.e_x, R2.e_y) three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x) two_wp = WedgeProduct(R2.e_x,R2.e_y) assert covariant_order(one_form) == 1 assert covariant_order(two_form) == 2 assert covariant_order(three_form) == 3 assert covariant_order(two_form + metric) == 2 assert covariant_order(two_form + metric_ambig) == 2 assert covariant_order(two_form + twoform_not_sym) == 2 assert covariant_order(two_form + twoform_not_TP) == 2 assert contravariant_order(one_vector) == 1 assert contravariant_order(two_vector) == 2 assert contravariant_order(three_vector) == 3 assert contravariant_order(two_vector + two_wp) == 2 raises(ValueError, lambda: covariant_order(misform_a)) raises(ValueError, lambda: covariant_order(misform_b)) raises(ValueError, lambda: covariant_order(misform_c)) assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]]) assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]]) assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]]) raises(ValueError, lambda: twoform_to_matrix(one_form)) raises(ValueError, lambda: twoform_to_matrix(three_form)) raises(ValueError, lambda: twoform_to_matrix(metric_ambig)) raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym)) raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym)) raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym)) raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym)) def test_correct_arguments(): raises(ValueError, lambda: R2.e_x(R2.e_x)) raises(ValueError, lambda: R2.e_x(R2.dx)) raises(ValueError, lambda: Commutator(R2.e_x, R2.x)) raises(ValueError, lambda: Commutator(R2.dx, R2.e_x)) raises(ValueError, lambda: Differential(Differential(R2.e_x))) raises(ValueError, lambda: R2.dx(R2.x)) raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx)) raises(ValueError, lambda: LieDerivative(R2.x, R2.dx)) raises(ValueError, lambda: CovarDerivativeOp(R2.dx, [])) raises(ValueError, lambda: CovarDerivativeOp(R2.x, [])) a = Symbol('a') raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: contravariant_order(R2.e_x*R2.e_y)) raises(ValueError, lambda: covariant_order(R2.dx*R2.dy)) def test_simplify(): x, y = R2_r.coord_functions() dx, dy = R2_r.base_oneforms() ex, ey = R2_r.base_vectors() assert simplify(x) == x assert simplify(x*y) == x*y assert simplify(dx*dy) == dx*dy assert simplify(ex*ey) == ex*ey assert ((1-x)*dx)/(1-x)**2 == dx/(1-x)
d8f0392801cd1dc28523af8bee8a03e133fbcb7e64865e50b3e19140955da042
import os from sympy import Symbol, symbols from sympy.codegen.ast import ( Assignment, Print, Declaration, FunctionDefinition, Return, real, FunctionCall, Variable, Element, integer ) from sympy.codegen.fnodes import ( allocatable, ArrayConstructor, isign, dsign, cmplx, kind, literal_dp, Program, Module, use, Subroutine, dimension, assumed_extent, ImpliedDoLoop, intent_out, size, Do, SubroutineCall, sum_, array, bind_C ) from sympy.codegen.futils import render_as_module from sympy.core.expr import unchanged from sympy.core.compatibility import PY3 from sympy.external import import_module from sympy.printing.fcode import fcode from sympy.utilities._compilation import has_fortran, compile_run_strings, compile_link_import_strings from sympy.utilities._compilation.util import TemporaryDirectory, may_xfail from sympy.utilities.pytest import skip cython = import_module('cython') np = import_module('numpy') def test_size(): x = Symbol('x', real=True) sx = size(x) assert fcode(sx, source_format='free') == 'size(x)' @may_xfail def test_size_assumed_shape(): if not has_fortran(): skip("No fortran compiler found.") a = Symbol('a', real=True) body = [Return((sum_(a**2)/size(a))**.5)] arr = array(a, dim=[':'], intent='in') fd = FunctionDefinition(real, 'rms', [arr], body) render_as_module([fd], 'mod_rms') (stdout, stderr), info = compile_run_strings([ ('rms.f90', render_as_module([fd], 'mod_rms')), ('main.f90', ( 'program myprog\n' 'use mod_rms, only: rms\n' 'real*8, dimension(4), parameter :: x = [4, 2, 2, 2]\n' 'print *, dsqrt(7d0) - rms(x)\n' 'end program\n' )) ], clean=True) assert '0.00000' in stdout assert stderr == '' assert info['exit_status'] == os.EX_OK @may_xfail def test_ImpliedDoLoop(): if not has_fortran(): skip("No fortran compiler found.") a, i = symbols('a i', integer=True) idl = ImpliedDoLoop(i**3, i, -3, 3, 2) ac = ArrayConstructor([-28, idl, 28]) a = array(a, dim=[':'], attrs=[allocatable]) prog = Program('idlprog', [ a.as_Declaration(), Assignment(a, ac), Print([a]) ]) fsrc = fcode(prog, standard=2003, source_format='free') (stdout, stderr), info = compile_run_strings([('main.f90', fsrc)], clean=True) for numstr in '-28 -27 -1 1 27 28'.split(): assert numstr in stdout assert stderr == '' assert info['exit_status'] == os.EX_OK @may_xfail def test_Program(): x = Symbol('x', real=True) vx = Variable.deduced(x, 42) decl = Declaration(vx) prnt = Print([x, x+1]) prog = Program('foo', [decl, prnt]) if not has_fortran(): skip("No fortran compiler found.") (stdout, stderr), info = compile_run_strings([('main.f90', fcode(prog, standard=90))], clean=True) assert '42' in stdout assert '43' in stdout assert stderr == '' assert info['exit_status'] == os.EX_OK @may_xfail def test_Module(): x = Symbol('x', real=True) v_x = Variable.deduced(x) sq = FunctionDefinition(real, 'sqr', [v_x], [Return(x**2)]) mod_sq = Module('mod_sq', [], [sq]) sq_call = FunctionCall('sqr', [42.]) prg_sq = Program('foobar', [ use('mod_sq', only=['sqr']), Print(['"Square of 42 = "', sq_call]) ]) if not has_fortran(): skip("No fortran compiler found.") (stdout, stderr), info = compile_run_strings([ ('mod_sq.f90', fcode(mod_sq, standard=90)), ('main.f90', fcode(prg_sq, standard=90)) ], clean=True) assert '42' in stdout assert str(42**2) in stdout assert stderr == '' @may_xfail def test_Subroutine(): # Code to generate the subroutine in the example from # http://www.fortran90.org/src/best-practices.html#arrays r = Symbol('r', real=True) i = Symbol('i', integer=True) v_r = Variable.deduced(r, attrs=(dimension(assumed_extent), intent_out)) v_i = Variable.deduced(i) v_n = Variable('n', integer) do_loop = Do([ Assignment(Element(r, [i]), literal_dp(1)/i**2) ], i, 1, v_n) sub = Subroutine("f", [v_r], [ Declaration(v_n), Declaration(v_i), Assignment(v_n, size(r)), do_loop ]) x = Symbol('x', real=True) v_x3 = Variable.deduced(x, attrs=[dimension(3)]) mod = Module('mymod', definitions=[sub]) prog = Program('foo', [ use(mod, only=[sub]), Declaration(v_x3), SubroutineCall(sub, [v_x3]), Print([sum_(v_x3), v_x3]) ]) if not has_fortran(): skip("No fortran compiler found.") (stdout, stderr), info = compile_run_strings([ ('a.f90', fcode(mod, standard=90)), ('b.f90', fcode(prog, standard=90)) ], clean=True) ref = [1.0/i**2 for i in range(1, 4)] assert str(sum(ref))[:-3] in stdout for _ in ref: assert str(_)[:-3] in stdout assert stderr == '' def test_isign(): x = Symbol('x', integer=True) assert unchanged(isign, 1, x) assert fcode(isign(1, x), standard=95, source_format='free') == 'isign(1, x)' def test_dsign(): x = Symbol('x') assert unchanged(dsign, 1, x) assert fcode(dsign(literal_dp(1), x), standard=95, source_format='free') == 'dsign(1d0, x)' def test_cmplx(): x = Symbol('x') assert unchanged(cmplx, 1, x) def test_kind(): x = Symbol('x') assert unchanged(kind, x) def test_literal_dp(): assert fcode(literal_dp(0), source_format='free') == '0d0' @may_xfail def test_bind_C(): if not has_fortran(): skip("No fortran compiler found.") if not cython: skip("Cython not found.") if not np: skip("NumPy not found.") a = Symbol('a', real=True) s = Symbol('s', integer=True) body = [Return((sum_(a**2)/s)**.5)] arr = array(a, dim=[s], intent='in') fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')]) f_mod = render_as_module([fd], 'mod_rms') with TemporaryDirectory() as folder: mod, info = compile_link_import_strings([ ('rms.f90', f_mod), ('_rms.pyx', ( "#cython: language_level={}\n".format("3" if PY3 else "2") + "cdef extern double rms(double*, int*)\n" "def py_rms(double[::1] x):\n" " cdef int s = x.size\n" " return rms(&x[0], &s)\n")) ], build_dir=folder) assert abs(mod.py_rms(np.array([2., 4., 2., 2.])) - 7**0.5) < 1e-14
0bb98c362cb38cffdc1164c8103cc705deb15928d57d357d718f6a4e4af26c07
from __future__ import (absolute_import, print_function) import math from sympy import symbols, exp from sympy.codegen.rewriting import optimize from sympy.codegen.approximations import SumApprox, SeriesApprox def test_SumApprox_trivial(): x = symbols('x') expr1 = 1 + x sum_approx = SumApprox(bounds={x: (-1e-20, 1e-20)}, reltol=1e-16) apx1 = optimize(expr1, [sum_approx]) assert apx1 - 1 == 0 def test_SumApprox_monotone_terms(): x, y, z = symbols('x y z') expr1 = exp(z)*(x**2 + y**2 + 1) bnds1 = {x: (0, 1e-3), y: (100, 1000)} sum_approx_m2 = SumApprox(bounds=bnds1, reltol=1e-2) sum_approx_m5 = SumApprox(bounds=bnds1, reltol=1e-5) sum_approx_m11 = SumApprox(bounds=bnds1, reltol=1e-11) assert (optimize(expr1, [sum_approx_m2])/exp(z) - (y**2)).simplify() == 0 assert (optimize(expr1, [sum_approx_m5])/exp(z) - (y**2 + 1)).simplify() == 0 assert (optimize(expr1, [sum_approx_m11])/exp(z) - (y**2 + 1 + x**2)).simplify() == 0 def test_SeriesApprox_trivial(): x, z = symbols('x z') for factor in [1, exp(z)]: x = symbols('x') expr1 = exp(x)*factor bnds1 = {x: (-1, 1)} series_approx_50 = SeriesApprox(bounds=bnds1, reltol=0.50) series_approx_10 = SeriesApprox(bounds=bnds1, reltol=0.10) series_approx_05 = SeriesApprox(bounds=bnds1, reltol=0.05) c = (bnds1[x][1] + bnds1[x][0])/2 # 0.0 f0 = math.exp(c) # 1.0 ref_50 = f0 + x + x**2/2 ref_10 = f0 + x + x**2/2 + x**3/6 ref_05 = f0 + x + x**2/2 + x**3/6 + x**4/24 res_50 = optimize(expr1, [series_approx_50]) res_10 = optimize(expr1, [series_approx_10]) res_05 = optimize(expr1, [series_approx_05]) assert (res_50/factor - ref_50).simplify() == 0 assert (res_10/factor - ref_10).simplify() == 0 assert (res_05/factor - ref_05).simplify() == 0 max_ord3 = SeriesApprox(bounds=bnds1, reltol=0.05, max_order=3) assert optimize(expr1, [max_ord3]) == expr1
0db880768bea3b12ecc0305c7d3f754c0362c7a7d7efb51cab8e854763118281
import math from sympy import ( Float, Idx, IndexedBase, Integer, Matrix, MatrixSymbol, Range, sin, symbols, Symbol, Tuple, Lt, nan, oo ) from sympy.core.relational import StrictLessThan from sympy.utilities.pytest import raises from sympy.codegen.ast import ( Assignment, Attribute, aug_assign, CodeBlock, For, Type, Variable, Pointer, Declaration, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment, value_const, pointer_const, integer, real, complex_, int8, uint8, float16 as f16, float32 as f32, float64 as f64, float80 as f80, float128 as f128, complex64 as c64, complex128 as c128, While, Scope, String, Print, QuotedString, FunctionPrototype, FunctionDefinition, Return, FunctionCall, untyped, IntBaseType, intc, Node, none, NoneToken, Token, Comment ) x, y, z, t, x0, x1, x2, a, b = symbols("x, y, z, t, x0, x1, x2, a, b") n = symbols("n", integer=True) A = MatrixSymbol('A', 3, 1) mat = Matrix([1, 2, 3]) B = IndexedBase('B') i = Idx("i", n) A22 = MatrixSymbol('A22',2,2) B22 = MatrixSymbol('B22',2,2) def test_Assignment(): # Here we just do things to show they don't error Assignment(x, y) Assignment(x, 0) Assignment(A, mat) Assignment(A[1,0], 0) Assignment(A[1,0], x) Assignment(B[i], x) Assignment(B[i], 0) a = Assignment(x, y) assert a.func(*a.args) == a assert a.op == ':=' # Here we test things to show that they error # Matrix to scalar raises(ValueError, lambda: Assignment(B[i], A)) raises(ValueError, lambda: Assignment(B[i], mat)) raises(ValueError, lambda: Assignment(x, mat)) raises(ValueError, lambda: Assignment(x, A)) raises(ValueError, lambda: Assignment(A[1,0], mat)) # Scalar to matrix raises(ValueError, lambda: Assignment(A, x)) raises(ValueError, lambda: Assignment(A, 0)) # Non-atomic lhs raises(TypeError, lambda: Assignment(mat, A)) raises(TypeError, lambda: Assignment(0, x)) raises(TypeError, lambda: Assignment(x*x, 1)) raises(TypeError, lambda: Assignment(A + A, mat)) raises(TypeError, lambda: Assignment(B, 0)) def test_AugAssign(): # Here we just do things to show they don't error aug_assign(x, '+', y) aug_assign(x, '+', 0) aug_assign(A, '+', mat) aug_assign(A[1, 0], '+', 0) aug_assign(A[1, 0], '+', x) aug_assign(B[i], '+', x) aug_assign(B[i], '+', 0) # Check creation via aug_assign vs constructor for binop, cls in [ ('+', AddAugmentedAssignment), ('-', SubAugmentedAssignment), ('*', MulAugmentedAssignment), ('/', DivAugmentedAssignment), ('%', ModAugmentedAssignment), ]: a = aug_assign(x, binop, y) b = cls(x, y) assert a.func(*a.args) == a == b assert a.binop == binop assert a.op == binop + '=' # Here we test things to show that they error # Matrix to scalar raises(ValueError, lambda: aug_assign(B[i], '+', A)) raises(ValueError, lambda: aug_assign(B[i], '+', mat)) raises(ValueError, lambda: aug_assign(x, '+', mat)) raises(ValueError, lambda: aug_assign(x, '+', A)) raises(ValueError, lambda: aug_assign(A[1, 0], '+', mat)) # Scalar to matrix raises(ValueError, lambda: aug_assign(A, '+', x)) raises(ValueError, lambda: aug_assign(A, '+', 0)) # Non-atomic lhs raises(TypeError, lambda: aug_assign(mat, '+', A)) raises(TypeError, lambda: aug_assign(0, '+', x)) raises(TypeError, lambda: aug_assign(x * x, '+', 1)) raises(TypeError, lambda: aug_assign(A + A, '+', mat)) raises(TypeError, lambda: aug_assign(B, '+', 0)) def test_Assignment_printing(): assignment_classes = [ Assignment, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment, ] pairs = [ (x, 2 * y + 2), (B[i], x), (A22, B22), (A[0, 0], x), ] for cls in assignment_classes: for lhs, rhs in pairs: a = cls(lhs, rhs) assert repr(a) == '%s(%s, %s)' % (cls.__name__, repr(lhs), repr(rhs)) def test_CodeBlock(): c = CodeBlock(Assignment(x, 1), Assignment(y, x + 1)) assert c.func(*c.args) == c assert c.left_hand_sides == Tuple(x, y) assert c.right_hand_sides == Tuple(1, x + 1) def test_CodeBlock_topological_sort(): assignments = [ Assignment(x, y + z), Assignment(z, 1), Assignment(t, x), Assignment(y, 2), ] ordered_assignments = [ # Note that the unrelated z=1 and y=2 are kept in that order Assignment(z, 1), Assignment(y, 2), Assignment(x, y + z), Assignment(t, x), ] c1 = CodeBlock.topological_sort(assignments) assert c1 == CodeBlock(*ordered_assignments) # Cycle invalid_assignments = [ Assignment(x, y + z), Assignment(z, 1), Assignment(y, x), Assignment(y, 2), ] raises(ValueError, lambda: CodeBlock.topological_sort(invalid_assignments)) # Free symbols free_assignments = [ Assignment(x, y + z), Assignment(z, a * b), Assignment(t, x), Assignment(y, b + 3), ] free_assignments_ordered = [ Assignment(z, a * b), Assignment(y, b + 3), Assignment(x, y + z), Assignment(t, x), ] c2 = CodeBlock.topological_sort(free_assignments) assert c2 == CodeBlock(*free_assignments_ordered) def test_CodeBlock_free_symbols(): c1 = CodeBlock( Assignment(x, y + z), Assignment(z, 1), Assignment(t, x), Assignment(y, 2), ) assert c1.free_symbols == set() c2 = CodeBlock( Assignment(x, y + z), Assignment(z, a * b), Assignment(t, x), Assignment(y, b + 3), ) assert c2.free_symbols == {a, b} def test_CodeBlock_cse(): c1 = CodeBlock( Assignment(y, 1), Assignment(x, sin(y)), Assignment(z, sin(y)), Assignment(t, x*z), ) assert c1.cse() == CodeBlock( Assignment(y, 1), Assignment(x0, sin(y)), Assignment(x, x0), Assignment(z, x0), Assignment(t, x*z), ) # Multiple assignments to same symbol not supported raises(NotImplementedError, lambda: CodeBlock( Assignment(x, 1), Assignment(y, 1), Assignment(y, 2) ).cse()) # Check auto-generated symbols do not collide with existing ones c2 = CodeBlock( Assignment(x0, sin(y) + 1), Assignment(x1, 2 * sin(y)), Assignment(z, x * y), ) assert c2.cse() == CodeBlock( Assignment(x2, sin(y)), Assignment(x0, x2 + 1), Assignment(x1, 2 * x2), Assignment(z, x * y), ) def test_CodeBlock_cse__issue_14118(): # see https://github.com/sympy/sympy/issues/14118 c = CodeBlock( Assignment(A22, Matrix([[x, sin(y)],[3, 4]])), Assignment(B22, Matrix([[sin(y), 2*sin(y)], [sin(y)**2, 7]])) ) assert c.cse() == CodeBlock( Assignment(x0, sin(y)), Assignment(A22, Matrix([[x, x0],[3, 4]])), Assignment(B22, Matrix([[x0, 2*x0], [x0**2, 7]])) ) def test_For(): f = For(n, Range(0, 3), (Assignment(A[n, 0], x + n), aug_assign(x, '+', y))) f = For(n, (1, 2, 3, 4, 5), (Assignment(A[n, 0], x + n),)) assert f.func(*f.args) == f raises(TypeError, lambda: For(n, x, (x + y,))) def test_none(): assert none.is_Atom assert none == none class Foo(Token): pass foo = Foo() assert foo != none assert none == None assert none == NoneToken() assert none.func(*none.args) == none def test_String(): st = String('foobar') assert st.is_Atom assert st == String('foobar') assert st.text == 'foobar' assert st.func(**st.kwargs()) == st class Signifier(String): pass si = Signifier('foobar') assert si != st assert si.text == st.text s = String('foo') assert str(s) == 'foo' assert repr(s) == "String('foo')" def test_Comment(): c = Comment('foobar') assert c.text == 'foobar' assert str(c) == 'foobar' def test_Node(): n = Node() assert n == Node() assert n.func(*n.args) == n def test_Type(): t = Type('MyType') assert len(t.args) == 1 assert t.name == String('MyType') assert str(t) == 'MyType' assert repr(t) == "Type(String('MyType'))" assert Type(t) == t assert t.func(*t.args) == t t1 = Type('t1') t2 = Type('t2') assert t1 != t2 assert t1 == t1 and t2 == t2 t1b = Type('t1') assert t1 == t1b assert t2 != t1b def test_Type__from_expr(): assert Type.from_expr(i) == integer u = symbols('u', real=True) assert Type.from_expr(u) == real assert Type.from_expr(n) == integer assert Type.from_expr(3) == integer assert Type.from_expr(3.0) == real assert Type.from_expr(3+1j) == complex_ raises(ValueError, lambda: Type.from_expr(sum)) def test_Type__cast_check__integers(): # Rounding raises(ValueError, lambda: integer.cast_check(3.5)) assert integer.cast_check('3') == 3 assert integer.cast_check(Float('3.0000000000000000000')) == 3 assert integer.cast_check(Float('3.0000000000000000001')) == 3 # unintuitive maybe? # Range assert int8.cast_check(127.0) == 127 raises(ValueError, lambda: int8.cast_check(128)) assert int8.cast_check(-128) == -128 raises(ValueError, lambda: int8.cast_check(-129)) assert uint8.cast_check(0) == 0 assert uint8.cast_check(128) == 128 raises(ValueError, lambda: uint8.cast_check(256.0)) raises(ValueError, lambda: uint8.cast_check(-1)) def test_Attribute(): noexcept = Attribute('noexcept') assert noexcept == Attribute('noexcept') alignas16 = Attribute('alignas', [16]) alignas32 = Attribute('alignas', [32]) assert alignas16 != alignas32 assert alignas16.func(*alignas16.args) == alignas16 def test_Variable(): v = Variable(x, type=real) assert v == Variable(v) assert v == Variable('x', type=real) assert v.symbol == x assert v.type == real assert value_const not in v.attrs assert v.func(*v.args) == v assert str(v) == 'Variable(x, type=real)' w = Variable(y, f32, attrs={value_const}) assert w.symbol == y assert w.type == f32 assert value_const in w.attrs assert w.func(*w.args) == w v_n = Variable(n, type=Type.from_expr(n)) assert v_n.type == integer assert v_n.func(*v_n.args) == v_n v_i = Variable(i, type=Type.from_expr(n)) assert v_i.type == integer assert v_i != v_n a_i = Variable.deduced(i) assert a_i.type == integer assert Variable.deduced(Symbol('x', real=True)).type == real assert a_i.func(*a_i.args) == a_i v_n2 = Variable.deduced(n, value=3.5, cast_check=False) assert v_n2.func(*v_n2.args) == v_n2 assert abs(v_n2.value - 3.5) < 1e-15 raises(ValueError, lambda: Variable.deduced(n, value=3.5, cast_check=True)) v_n3 = Variable.deduced(n) assert v_n3.type == integer assert str(v_n3) == 'Variable(n, type=integer)' assert Variable.deduced(z, value=3).type == integer assert Variable.deduced(z, value=3.0).type == real assert Variable.deduced(z, value=3.0+1j).type == complex_ def test_Pointer(): p = Pointer(x) assert p.symbol == x assert p.type == untyped assert value_const not in p.attrs assert pointer_const not in p.attrs assert p.func(*p.args) == p u = symbols('u', real=True) pu = Pointer(u, type=Type.from_expr(u), attrs={value_const, pointer_const}) assert pu.symbol is u assert pu.type == real assert value_const in pu.attrs assert pointer_const in pu.attrs assert pu.func(*pu.args) == pu i = symbols('i', integer=True) deref = pu[i] assert deref.indices == (i,) def test_Declaration(): u = symbols('u', real=True) vu = Variable(u, type=Type.from_expr(u)) assert Declaration(vu).variable.type == real vn = Variable(n, type=Type.from_expr(n)) assert Declaration(vn).variable.type == integer lt = StrictLessThan(vu, vn) assert isinstance(lt, StrictLessThan) vuc = Variable(u, Type.from_expr(u), value=3.0, attrs={value_const}) assert value_const in vuc.attrs assert pointer_const not in vuc.attrs decl = Declaration(vuc) assert decl.variable == vuc assert isinstance(decl.variable.value, Float) assert decl.variable.value == 3.0 assert decl.func(*decl.args) == decl assert vuc.as_Declaration() == decl assert vuc.as_Declaration(value=None, attrs=None) == Declaration(vu) vy = Variable(y, type=integer, value=3) decl2 = Declaration(vy) assert decl2.variable == vy assert decl2.variable.value == Integer(3) vi = Variable(i, type=Type.from_expr(i), value=3.0) decl3 = Declaration(vi) assert decl3.variable.type == integer assert decl3.variable.value == 3.0 raises(ValueError, lambda: Declaration(vi, 42)) def test_IntBaseType(): assert intc.name == String('intc') assert intc.args == (intc.name,) assert str(IntBaseType('a').name) == 'a' def test_FloatType(): assert f16.dig == 3 assert f32.dig == 6 assert f64.dig == 15 assert f80.dig == 18 assert f128.dig == 33 assert f16.decimal_dig == 5 assert f32.decimal_dig == 9 assert f64.decimal_dig == 17 assert f80.decimal_dig == 21 assert f128.decimal_dig == 36 assert f16.max_exponent == 16 assert f32.max_exponent == 128 assert f64.max_exponent == 1024 assert f80.max_exponent == 16384 assert f128.max_exponent == 16384 assert f16.min_exponent == -13 assert f32.min_exponent == -125 assert f64.min_exponent == -1021 assert f80.min_exponent == -16381 assert f128.min_exponent == -16381 assert abs(f16.eps / Float('0.00097656', precision=16) - 1) < 0.1*10**-f16.dig assert abs(f32.eps / Float('1.1920929e-07', precision=32) - 1) < 0.1*10**-f32.dig assert abs(f64.eps / Float('2.2204460492503131e-16', precision=64) - 1) < 0.1*10**-f64.dig assert abs(f80.eps / Float('1.08420217248550443401e-19', precision=80) - 1) < 0.1*10**-f80.dig assert abs(f128.eps / Float(' 1.92592994438723585305597794258492732e-34', precision=128) - 1) < 0.1*10**-f128.dig assert abs(f16.max / Float('65504', precision=16) - 1) < .1*10**-f16.dig assert abs(f32.max / Float('3.40282347e+38', precision=32) - 1) < 0.1*10**-f32.dig assert abs(f64.max / Float('1.79769313486231571e+308', precision=64) - 1) < 0.1*10**-f64.dig # cf. np.finfo(np.float64).max assert abs(f80.max / Float('1.18973149535723176502e+4932', precision=80) - 1) < 0.1*10**-f80.dig assert abs(f128.max / Float('1.18973149535723176508575932662800702e+4932', precision=128) - 1) < 0.1*10**-f128.dig # cf. np.finfo(np.float32).tiny assert abs(f16.tiny / Float('6.1035e-05', precision=16) - 1) < 0.1*10**-f16.dig assert abs(f32.tiny / Float('1.17549435e-38', precision=32) - 1) < 0.1*10**-f32.dig assert abs(f64.tiny / Float('2.22507385850720138e-308', precision=64) - 1) < 0.1*10**-f64.dig assert abs(f80.tiny / Float('3.36210314311209350626e-4932', precision=80) - 1) < 0.1*10**-f80.dig assert abs(f128.tiny / Float('3.3621031431120935062626778173217526e-4932', precision=128) - 1) < 0.1*10**-f128.dig assert f64.cast_check(0.5) == 0.5 assert abs(f64.cast_check(3.7) - 3.7) < 3e-17 assert isinstance(f64.cast_check(3), (Float, float)) assert f64.cast_nocheck(oo) == float('inf') assert f64.cast_nocheck(-oo) == float('-inf') assert f64.cast_nocheck(float(oo)) == float('inf') assert f64.cast_nocheck(float(-oo)) == float('-inf') assert math.isnan(f64.cast_nocheck(nan)) assert f32 != f64 assert f64 == f64.func(*f64.args) def test_Type__cast_check__floating_point(): raises(ValueError, lambda: f32.cast_check(123.45678949)) raises(ValueError, lambda: f32.cast_check(12.345678949)) raises(ValueError, lambda: f32.cast_check(1.2345678949)) raises(ValueError, lambda: f32.cast_check(.12345678949)) assert abs(123.456789049 - f32.cast_check(123.456789049) - 4.9e-8) < 1e-8 assert abs(0.12345678904 - f32.cast_check(0.12345678904) - 4e-11) < 1e-11 dcm21 = Float('0.123456789012345670499') # 21 decimals assert abs(dcm21 - f64.cast_check(dcm21) - 4.99e-19) < 1e-19 f80.cast_check(Float('0.12345678901234567890103', precision=88)) raises(ValueError, lambda: f80.cast_check(Float('0.12345678901234567890149', precision=88))) v10 = 12345.67894 raises(ValueError, lambda: f32.cast_check(v10)) assert abs(Float(str(v10), precision=64+8) - f64.cast_check(v10)) < v10*1e-16 assert abs(f32.cast_check(2147483647) - 2147483650) < 1 def test_Type__cast_check__complex_floating_point(): val9_11 = 123.456789049 + 0.123456789049j raises(ValueError, lambda: c64.cast_check(.12345678949 + .12345678949j)) assert abs(val9_11 - c64.cast_check(val9_11) - 4.9e-8) < 1e-8 dcm21 = Float('0.123456789012345670499') + 1e-20j # 21 decimals assert abs(dcm21 - c128.cast_check(dcm21) - 4.99e-19) < 1e-19 v19 = Float('0.1234567890123456749') + 1j*Float('0.1234567890123456749') raises(ValueError, lambda: c128.cast_check(v19)) def test_While(): xpp = AddAugmentedAssignment(x, 1) whl1 = While(x < 2, [xpp]) assert whl1.condition.args[0] == x assert whl1.condition.args[1] == 2 assert whl1.condition == Lt(x, 2, evaluate=False) assert whl1.body.args == (xpp,) assert whl1.func(*whl1.args) == whl1 cblk = CodeBlock(AddAugmentedAssignment(x, 1)) whl2 = While(x < 2, cblk) assert whl1 == whl2 assert whl1 != While(x < 3, [xpp]) def test_Scope(): assign = Assignment(x, y) incr = AddAugmentedAssignment(x, 1) scp = Scope([assign, incr]) cblk = CodeBlock(assign, incr) assert scp.body == cblk assert scp == Scope(cblk) assert scp != Scope([incr, assign]) assert scp.func(*scp.args) == scp def test_Print(): fmt = "%d %.3f" ps = Print([n, x], fmt) assert str(ps.format_string) == fmt assert ps.print_args == Tuple(n, x) assert ps.args == (Tuple(n, x), QuotedString(fmt), none) assert ps == Print((n, x), fmt) assert ps != Print([x, n], fmt) assert ps.func(*ps.args) == ps ps2 = Print([n, x]) assert ps2 == Print([n, x]) assert ps2 != ps assert ps2.format_string == None def test_FunctionPrototype_and_FunctionDefinition(): vx = Variable(x, type=real) vn = Variable(n, type=integer) fp1 = FunctionPrototype(real, 'power', [vx, vn]) assert fp1.return_type == real assert fp1.name == String('power') assert fp1.parameters == Tuple(vx, vn) assert fp1 == FunctionPrototype(real, 'power', [vx, vn]) assert fp1 != FunctionPrototype(real, 'power', [vn, vx]) assert fp1.func(*fp1.args) == fp1 body = [Assignment(x, x**n), Return(x)] fd1 = FunctionDefinition(real, 'power', [vx, vn], body) assert fd1.return_type == real assert str(fd1.name) == 'power' assert fd1.parameters == Tuple(vx, vn) assert fd1.body == CodeBlock(*body) assert fd1 == FunctionDefinition(real, 'power', [vx, vn], body) assert fd1 != FunctionDefinition(real, 'power', [vx, vn], body[::-1]) assert fd1.func(*fd1.args) == fd1 fp2 = FunctionPrototype.from_FunctionDefinition(fd1) assert fp2 == fp1 fd2 = FunctionDefinition.from_FunctionPrototype(fp1, body) assert fd2 == fd1 def test_Return(): rs = Return(x) assert rs.args == (x,) assert rs == Return(x) assert rs != Return(y) assert rs.func(*rs.args) == rs def test_FunctionCall(): fc = FunctionCall('power', (x, 3)) assert fc.function_args[0] == x assert fc.function_args[1] == 3 assert len(fc.function_args) == 2 assert isinstance(fc.function_args[1], Integer) assert fc == FunctionCall('power', (x, 3)) assert fc != FunctionCall('power', (3, x)) assert fc != FunctionCall('Power', (x, 3)) assert fc.func(*fc.args) == fc fc2 = FunctionCall('fma', [2, 3, 4]) assert len(fc2.function_args) == 3 assert fc2.function_args[0] == 2 assert fc2.function_args[1] == 3 assert fc2.function_args[2] == 4 assert str(fc2) in ( # not sure if QuotedString is a better default... 'FunctionCall(fma, function_args=(2, 3, 4))', 'FunctionCall("fma", function_args=(2, 3, 4))', ) def test_ast_replace(): x = Variable('x', real) y = Variable('y', real) n = Variable('n', integer) pwer = FunctionDefinition(real, 'pwer', [x, n], [pow(x.symbol, n.symbol)]) pname = pwer.name pcall = FunctionCall('pwer', [y, 3]) tree1 = CodeBlock(pwer, pcall) assert str(tree1.args[0].name) == 'pwer' assert str(tree1.args[1].name) == 'pwer' for a, b in zip(tree1, [pwer, pcall]): assert a == b tree2 = tree1.replace(pname, String('power')) assert str(tree1.args[0].name) == 'pwer' assert str(tree1.args[1].name) == 'pwer' assert str(tree2.args[0].name) == 'power' assert str(tree2.args[1].name) == 'power'
fb195d8039b4a5f49a4561865eb228927ff3ebcc4874a998a985b99a1d1bd32b
from sympy import symbols, IndexedBase, Identity, cos from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayDiagonal, CodegenArrayPermuteDims, CodegenArrayElementwiseAdd, _codegen_array_parse, _recognize_matrix_expression, _RecognizeMatOp, _RecognizeMatMulLines, _unfold_recognized_expr, parse_indexed_expression, recognize_matrix_expression, _parse_matrix_expression) from sympy import MatrixSymbol, Sum from sympy.combinatorics import Permutation from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions.matexpr import MatrixElement from sympy.matrices import Trace, MatAdd, MatMul, Transpose from sympy.utilities.pytest import raises A, B = symbols("A B", cls=IndexedBase) i, j, k, l, m, n = symbols("i j k l m n") M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) P = MatrixSymbol("P", k, k) Q = MatrixSymbol("Q", k, k) def test_codegen_array_contraction_construction(): cg = CodegenArrayContraction(A) assert cg == A s = Sum(A[i]*B[i], (i, 0, 3)) cg = parse_indexed_expression(s) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 0)) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1)) expr = M*N result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] assert parse_indexed_expression(elem) == result expr = M*N*M result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, M), (1, 2), (3, 4)) assert CodegenArrayContraction.from_MatMul(expr) == result elem = expr[i, j] result = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) cg = parse_indexed_expression(elem) cg = cg.sort_args_by_name() assert cg == result def test_codegen_array_contraction_indices_types(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (0, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (1, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)] cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (2, 0)], [(1, 0), (2, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 4), (2, 5)] def test_codegen_array_recognize_matrix_mul_lines(): cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1)) assert recognize_matrix_expression(cg) == Trace(M) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3)) assert recognize_matrix_expression(cg) == Trace(M)*Trace(N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(M*N) cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3)) assert recognize_matrix_expression(cg) == Trace(M*N.T) cg = parse_indexed_expression((M*N*P)[i,j]) assert recognize_matrix_expression(cg) == M*N*P cg = CodegenArrayContraction.from_MatMul(M*N*P) assert recognize_matrix_expression(cg) == M*N*P cg = parse_indexed_expression((M*N.T*P)[i,j]) assert recognize_matrix_expression(cg) == M*N.T*P cg = CodegenArrayContraction.from_MatMul(M*N.T*P) assert recognize_matrix_expression(cg) == M*N.T*P cg = CodegenArrayContraction(CodegenArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6)) assert recognize_matrix_expression(cg) == [M*N, P*Q] expr = -2*M*N elem = expr[i, j] cg = parse_indexed_expression(elem) assert recognize_matrix_expression(cg) == -2*M*N def test_codegen_array_flatten(): # Flatten nested CodegenArrayTensorProduct objects: expr1 = CodegenArrayTensorProduct(M, N) expr2 = CodegenArrayTensorProduct(P, Q) expr = CodegenArrayTensorProduct(expr1, expr2) assert expr == CodegenArrayTensorProduct(M, N, P, Q) assert expr.args == (M, N, P, Q) # Flatten mixed CodegenArrayTensorProduct and CodegenArrayContraction objects: cg1 = CodegenArrayContraction(expr1, (1, 2)) cg2 = CodegenArrayContraction(expr2, (0, 3)) expr = CodegenArrayTensorProduct(cg1, cg2) assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7)) expr = CodegenArrayTensorProduct(M, cg1) assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (3, 4)) # Flatten nested CodegenArrayContraction objects: cgnested = CodegenArrayContraction(cg1, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2)) cgnested = CodegenArrayContraction(CodegenArrayTensorProduct(cg1, cg2), (0, 3)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7)) cg3 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4)) cgnested = CodegenArrayContraction(cg3, (0, 3), (1, 2)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6)) cg4 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7)) cgnested = CodegenArrayContraction(cg4, (0, 1), (2, 3)) assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6)) cg = CodegenArrayDiagonal(cg4) assert cg == cg4 assert isinstance(cg, type(cg4)) # Flatten nested CodegenArrayDiagonal objects: cg1 = CodegenArrayDiagonal(expr1, (1, 2)) cg2 = CodegenArrayDiagonal(expr2, (0, 3)) cg3 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4)) cg4 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7)) cgnested = CodegenArrayDiagonal(cg1, (0, 1)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2), (0, 3)) cgnested = CodegenArrayDiagonal(cg3, (1, 2)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6)) cgnested = CodegenArrayDiagonal(cg4, (1, 2)) assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4)) def test_codegen_array_parse(): expr = M[i, j] assert _codegen_array_parse(expr) == (M, (i, j)) expr = M[i, j]*N[k, l] assert _codegen_array_parse(expr) == (CodegenArrayTensorProduct(M, N), (i, j, k, l)) expr = M[i, j]*N[j, k] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k, j)) expr = Sum(M[i, j]*N[j, k], (j, 0, k-1)) assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k)) expr = M[i, j] + N[i, j] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, N), (i, j)) expr = M[i, j] + N[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(N, Permutation([1,0]))), (i, j)) expr = M[i, j] + M[j, i] assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, Permutation([1,0]))), (i, j)) expr = (M*N*P)[i, j] assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j)) expr = expr.function # Disregard summation in previous expression ret1, ret2 = _codegen_array_parse(expr) assert ret1 == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)) assert str(ret2) == "(i, j, _i_1, _i_2)" expr = KroneckerDelta(i, j)*M[i, k] assert _codegen_array_parse(expr) == (M, ({i, j}, k)) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l] assert _codegen_array_parse(expr) == (M, ({i, j, k}, l)) expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, k}))) expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd( CodegenArrayTensorProduct(M, N), CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, m, k}))) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n) assert _codegen_array_parse(expr) == (M, ({i,j,k,m,n}, 0)) expr = M[i, i] assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(M, (0, 1)), (i,)) def test_codegen_array_diagonal(): cg = CodegenArrayDiagonal(M, (1, 0)) assert cg == CodegenArrayDiagonal(M, (0, 1)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (4, 1), (2, 0)) assert cg == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 4), (0, 2)) def test_codegen_recognize_matrix_expression(): expr = CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, [1, 0])) rec = _recognize_matrix_expression(expr) assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [M])]) assert _unfold_recognized_expr(rec) == M + Transpose(M) expr = M[i,j] + N[i,j] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [M, N]) assert _unfold_recognized_expr(rec) == M + N expr = M[i,j] + N[j,i] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [N])]) assert _unfold_recognized_expr(rec) == M + N.T expr = M[i,j]*N[k,l] + N[i,j]*M[k,l] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [_RecognizeMatMulLines([M, N]), _RecognizeMatMulLines([N, M])]) #assert _unfold_recognized_expr(rec) == TensorProduct(M, N) + TensorProduct(N, M) maybe? expr = (M*N*P)[i, j] p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatMulLines([_RecognizeMatOp(MatMul, [M, N, P])]) assert _unfold_recognized_expr(rec) == M*N*P expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1)) p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatMul, [M, N, P]) assert _unfold_recognized_expr(rec) == M*N*P expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1)) p1, p2 = _codegen_array_parse(expr) rec = _recognize_matrix_expression(p1) assert rec == _RecognizeMatOp(MatAdd, [ _RecognizeMatOp(MatMul, [M, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), N]), _RecognizeMatOp(MatMul, [N, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), M]) ]) assert _unfold_recognized_expr(rec) == M*(P + P.T)*N + N*(P + P.T)*M def test_codegen_array_shape(): expr = CodegenArrayTensorProduct(M, N, P, Q) assert expr.shape == (k, k, k, k, k, k, k, k) Z = MatrixSymbol("Z", m, n) expr = CodegenArrayTensorProduct(M, Z) assert expr.shape == (k, k, m, n) expr2 = CodegenArrayContraction(expr, (0, 1)) assert expr2.shape == (m, n) expr2 = CodegenArrayDiagonal(expr, (0, 1)) assert expr2.shape == (m, n, k) exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0]) assert exprp.shape == (m, k, n, k) expr3 = CodegenArrayTensorProduct(N, Z) expr2 = CodegenArrayElementwiseAdd(expr, expr3) assert expr2.shape == (k, k, m, n) # Contraction along axes with discordant dimensions: raises(ValueError, lambda: CodegenArrayContraction(expr, (1, 2))) # Also diagonal needs the same dimensions: raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1, 2))) def test_codegen_array_parse_out_of_bounds(): expr = Sum(M[i, i], (i, 0, 4)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, i], (i, 0, k)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, i], (i, 1, k-1)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, 4)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, k)) raises(ValueError, lambda: parse_indexed_expression(expr)) expr = Sum(M[i, j]*N[j,m], (j, 1, k-1)) raises(ValueError, lambda: parse_indexed_expression(expr)) def test_codegen_permutedims_sink(): cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == [M, N.T] cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) assert recognize_matrix_expression(sunk) == [M.T, N.T] cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0])) assert recognize_matrix_expression(sunk) == [N.T, M.T] cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), [1, 0]) sunk = cg.nest_permutation() assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]), (1, 2)) cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2]) sunk = cg.nest_permutation() assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0])) cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0]) sunk = cg.nest_permutation() assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4)) def test_parsing_of_matrix_expressions(): expr = M*N assert _parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) expr = Transpose(M) assert _parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0]) expr = M*Transpose(N) assert _parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])), (1, 2)) def test_special_matrices(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) expr = a.T*b elem = expr[0, 0] cg = parse_indexed_expression(elem) assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(a, b), (0, 2)) assert recognize_matrix_expression(cg) == a.T*b def test_push_indices_up_and_down(): indices = list(range(10)) contraction_indices = [(0, 6), (2, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5) assert CodegenArrayDiagonal._push_indices_down(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, 7, 9, 10, 11) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, None, 6, None, 7) contraction_indices = [(1, 2), (7, 8)] assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13) assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5) assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13) assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, None, 2, 3, 4, 5, 6, None, 7) def test_recognize_diagonalized_vectors(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) X = MatrixSymbol("X", k, k) x = MatrixSymbol("x", k, 1) I1 = Identity(1) I = Identity(k) # Check matrix recognition over trivial dimensions: cg = CodegenArrayTensorProduct(a, b) assert recognize_matrix_expression(cg) == a*b.T cg = CodegenArrayTensorProduct(I1, a, b) assert recognize_matrix_expression(cg) == a*I1*b.T # Recognize trace inside a tensor product: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C), (0, 3), (1, 2)) assert recognize_matrix_expression(cg) == Trace(A*B)*C # Transform diagonal operator to contraction: cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (1, 2)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, b), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(a), b), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(a)*b cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (0, 2)) assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, I1), (0, 2), (3, 5)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), I1), (0, 2)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, A, B), (1, 2), (5, 6)) assert cg.transform_to_product() == CodegenArrayDiagonal(CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), A, B), (1, 2)), (3, 4)) cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I1), (1, 2)) assert isinstance(cg, CodegenArrayDiagonal) assert cg.diagonal_indices == ((1, 2),) assert recognize_matrix_expression(cg) == x cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I), (0, 2)) assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(x), I), (0, 2)) assert recognize_matrix_expression(cg).doit() == DiagMatrix(x) cg = CodegenArrayDiagonal(x, (1,)) assert cg == x # Ignore identity matrices with contractions: cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == Trace(A)*I cg = CodegenArrayContraction(CodegenArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg).doit() == Trace(A)*I # Add DiagMatrix when required: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2)) assert cg.split_multiple_contractions() == cg assert recognize_matrix_expression(cg) == A*a cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4)) assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b), DiagMatrix(a), B), (0, 2), (3, 4), (5, 7), (6, 9)) assert recognize_matrix_expression(cg).doit() == A.T*DiagMatrix(a)*DiagMatrix(b)*DiagMatrix(a)*B.T cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2, 4)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4)) assert recognize_matrix_expression(cg).doit() == Identity(1) cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9)) assert recognize_matrix_expression(cg.split_multiple_contractions()).doit() == A cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), C, DiagMatrix(a), B), (1, 2), (3, 4), (5, 6), (7, 8)) assert recognize_matrix_expression(cg) == A*DiagMatrix(a)*C*DiagMatrix(a)*B cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2), (3, 8), (5, 6), (7, 9)) assert recognize_matrix_expression(cg) == MatMul(a, I1, (a.T*b).applyfunc(cos), Transpose(I1), b.T) cg = CodegenArrayContraction(CodegenArrayTensorProduct(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) assert cg.split_multiple_contractions() == CodegenArrayContraction( CodegenArrayTensorProduct(A.T, DiagMatrix(a), b, b.T, (A*X*b).applyfunc(cos)), (1, 2), (3, 8), (5, 6, 9)) # assert recognize_matrix_expression(cg) # Check no overlap of lines: cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7)) assert cg.split_multiple_contractions() == cg cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3)) assert cg.split_multiple_contractions() == cg
f339f2719a47bf951d63d736a82dbf3764c01915707488e55387b4998e4cde00
from __future__ import (absolute_import, print_function) import sympy as sp from sympy.core.compatibility import exec_, PY3 from sympy.codegen.ast import Assignment from sympy.codegen.algorithms import newtons_method, newtons_method_function from sympy.codegen.fnodes import bind_C from sympy.codegen.futils import render_as_module as f_module from sympy.codegen.pyutils import render_as_module as py_module from sympy.external import import_module from sympy.printing.ccode import ccode from sympy.utilities._compilation import compile_link_import_strings, has_c, has_fortran from sympy.utilities._compilation.util import TemporaryDirectory, may_xfail from sympy.utilities.pytest import skip, raises cython = import_module('cython') wurlitzer = import_module('wurlitzer') def test_newtons_method(): x, dx, atol = sp.symbols('x dx atol') expr = sp.cos(x) - x**3 algo = newtons_method(expr, x, atol, dx) assert algo.has(Assignment(dx, -expr/expr.diff(x))) @may_xfail def test_newtons_method_function__ccode(): x = sp.Symbol('x', real=True) expr = sp.cos(x) - x**3 func = newtons_method_function(expr, x) if not cython: skip("cython not installed.") if not has_c(): skip("No C compiler found.") compile_kw = dict(std='c99') with TemporaryDirectory() as folder: mod, info = compile_link_import_strings([ ('newton.c', ('#include <math.h>\n' '#include <stdio.h>\n') + ccode(func)), ('_newton.pyx', ("#cython: language_level={}\n".format("3" if PY3 else "2") + "cdef extern double newton(double)\n" "def py_newton(x):\n" " return newton(x)\n")) ], build_dir=folder, compile_kwargs=compile_kw) assert abs(mod.py_newton(0.5) - 0.865474033102) < 1e-12 @may_xfail def test_newtons_method_function__fcode(): x = sp.Symbol('x', real=True) expr = sp.cos(x) - x**3 func = newtons_method_function(expr, x, attrs=[bind_C(name='newton')]) if not cython: skip("cython not installed.") if not has_fortran(): skip("No Fortran compiler found.") f_mod = f_module([func], 'mod_newton') with TemporaryDirectory() as folder: mod, info = compile_link_import_strings([ ('newton.f90', f_mod), ('_newton.pyx', ("#cython: language_level={}\n".format("3" if PY3 else "2") + "cdef extern double newton(double*)\n" "def py_newton(double x):\n" " return newton(&x)\n")) ], build_dir=folder) assert abs(mod.py_newton(0.5) - 0.865474033102) < 1e-12 def test_newtons_method_function__pycode(): x = sp.Symbol('x', real=True) expr = sp.cos(x) - x**3 func = newtons_method_function(expr, x) py_mod = py_module(func) namespace = {} exec_(py_mod, namespace, namespace) res = eval('newton(0.5)', namespace) assert abs(res - 0.865474033102) < 1e-12 @may_xfail def test_newtons_method_function__ccode_parameters(): args = x, A, k, p = sp.symbols('x A k p') expr = A*sp.cos(k*x) - p*x**3 raises(ValueError, lambda: newtons_method_function(expr, x)) use_wurlitzer = wurlitzer func = newtons_method_function(expr, x, args, debug=use_wurlitzer) if not has_c(): skip("No C compiler found.") if not cython: skip("cython not installed.") compile_kw = dict(std='c99') with TemporaryDirectory() as folder: mod, info = compile_link_import_strings([ ('newton_par.c', ('#include <math.h>\n' '#include <stdio.h>\n') + ccode(func)), ('_newton_par.pyx', ("#cython: language_level={}\n".format("3" if PY3 else "2") + "cdef extern double newton(double, double, double, double)\n" "def py_newton(x, A=1, k=1, p=1):\n" " return newton(x, A, k, p)\n")) ], compile_kwargs=compile_kw, build_dir=folder) if use_wurlitzer: with wurlitzer.pipes() as (out, err): result = mod.py_newton(0.5) else: result = mod.py_newton(0.5) assert abs(result - 0.865474033102) < 1e-12 if not use_wurlitzer: skip("C-level output only tested when package 'wurlitzer' is available.") out, err = out.read(), err.read() assert err == '' assert out == """\ x= 0.5 d_x= 0.61214 x= 1.1121 d_x= -0.20247 x= 0.90967 d_x= -0.042409 x= 0.86726 d_x= -0.0017867 x= 0.86548 d_x= -3.1022e-06 x= 0.86547 d_x= -9.3421e-12 x= 0.86547 d_x= 3.6902e-17 """ # try to run tests with LC_ALL=C if this assertion fails
a3c774ef95c6f145d987f05cd60198c1452fcc40f84896f79d25cba7458c899c
# This file contains tests that exercise multiple AST nodes from sympy.core.compatibility import PY3 from sympy.external import import_module from sympy.printing.ccode import ccode from sympy.utilities._compilation import compile_link_import_strings, has_c from sympy.utilities._compilation.util import TemporaryDirectory, may_xfail from sympy.utilities.pytest import skip from sympy.codegen.ast import ( FunctionDefinition, FunctionPrototype, Variable, Pointer, real, Assignment, integer, CodeBlock, While ) from sympy.codegen.cnodes import void, PreIncrement from sympy.codegen.cutils import render_as_source_file cython = import_module('cython') np = import_module('numpy') def _mk_func1(): declars = n, inp, out = Variable('n', integer), Pointer('inp', real), Pointer('out', real) i = Variable('i', integer) whl = While(i<n, [Assignment(out[i], inp[i]), PreIncrement(i)]) body = CodeBlock(i.as_Declaration(value=0), whl) return FunctionDefinition(void, 'our_test_function', declars, body) def _render_compile_import(funcdef, build_dir): code_str = render_as_source_file(funcdef, settings=dict(contract=False)) declar = ccode(FunctionPrototype.from_FunctionDefinition(funcdef)) return compile_link_import_strings([ ('our_test_func.c', code_str), ('_our_test_func.pyx', ("#cython: language_level={}\n".format("3" if PY3 else "2") + "cdef extern {declar}\n" "def _{fname}({typ}[:] inp, {typ}[:] out):\n" " {fname}(inp.size, &inp[0], &out[0])").format( declar=declar, fname=funcdef.name, typ='double' )) ], build_dir=build_dir) @may_xfail def test_copying_function(): if not np: skip("numpy not installed.") if not has_c(): skip("No C compiler found.") if not cython: skip("Cython not found.") info = None with TemporaryDirectory() as folder: mod, info = _render_compile_import(_mk_func1(), build_dir=folder) inp = np.arange(10.0) out = np.empty_like(inp) mod._our_test_function(inp, out) assert np.allclose(inp, out)
7e4ebc674f32eee2ae76e762366f62c2e2fbe1131157c1f4a6b75e41566fef77
from .common import (AskHandler, CommonHandler, AskCommutativeHandler, TautologicalHandler, test_closed_group) __all__ = [ 'AskHandler', 'CommonHandler', 'AskCommutativeHandler', 'TautologicalHandler', 'test_closed_group' ]
9385b58d527daf7b489159b647114ede96159fdff3e0cf36ddba9ce7227ec499
""" This module contains query handlers responsible for calculus queries: infinitesimal, finite, etc. """ from __future__ import print_function, division from sympy.logic.boolalg import conjuncts from sympy.assumptions import Q, ask from sympy.assumptions.handlers import CommonHandler class AskFiniteHandler(CommonHandler): """ Handler for key 'finite'. Test that an expression is bounded respect to all its variables. Examples of usage: >>> from sympy import Symbol, Q >>> from sympy.assumptions.handlers.calculus import AskFiniteHandler >>> from sympy.abc import x >>> a = AskFiniteHandler() >>> a.Symbol(x, Q.positive(x)) is None True >>> a.Symbol(x, Q.finite(x)) True """ @staticmethod def Symbol(expr, assumptions): """ Handles Symbol. Examples ======== >>> from sympy import Symbol, Q >>> from sympy.assumptions.handlers.calculus import AskFiniteHandler >>> from sympy.abc import x >>> a = AskFiniteHandler() >>> a.Symbol(x, Q.positive(x)) is None True >>> a.Symbol(x, Q.finite(x)) True """ if expr.is_finite is not None: return expr.is_finite if Q.finite(expr) in conjuncts(assumptions): return True return None @staticmethod def Add(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +-------+-----+-----------+-----------+ | | | | | | | B | U | ? | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'|'-'|'x'|'+'|'-'|'x'| | | | | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | B | B | U | ? | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'| | U | ? | ? | U | ? | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | | | | | U |'-'| | ? | U | ? | ? | U | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | |'x'| | ? | ? | | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | ? | | | ? | | | | | | +-------+-----+-----------+---+---+---+ * 'B' = Bounded * 'U' = Unbounded * '?' = unknown boundedness * '+' = positive sign * '-' = negative sign * 'x' = sign unknown | * All Bounded -> True * 1 Unbounded and the rest Bounded -> False * >1 Unbounded, all with same known sign -> False * Any Unknown and unknown sign -> None * Else -> None When the signs are not the same you can have an undefined result as in oo - oo, hence 'bounded' is also undefined. """ sign = -1 # sign of unknown or infinite result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue s = ask(Q.positive(arg), assumptions) # if there has been more than one sign or if the sign of this arg # is None and Bounded is None or there was already # an unknown sign, return None if sign != -1 and s != sign or \ s is None and (s == _bounded or s == sign): return None else: sign = s # once False, do not change if result is not False: result = _bounded return result @staticmethod def Mul(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +---+---+---+--------+ | | | | | | | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | | | | s | /s | | | | | | | +---+---+---+---+----+ | | | | | | B | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | U | | U | U | ? | | | | | | | +---+---+---+---+----+ | | | | | | ? | | | ? | | | | | | +---+---+---+---+----+ * B = Bounded * U = Unbounded * ? = unknown boundedness * s = signed (hence nonzero) * /s = not signed """ result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue elif _bounded is None: if result is None: return None if ask(Q.nonzero(arg), assumptions) is None: return None if result is not False: result = None else: result = False return result @staticmethod def Pow(expr, assumptions): """ Unbounded ** NonZero -> Unbounded Bounded ** Bounded -> Bounded Abs()<=1 ** Positive -> Bounded Abs()>=1 ** Negative -> Bounded Otherwise unknown """ base_bounded = ask(Q.finite(expr.base), assumptions) exp_bounded = ask(Q.finite(expr.exp), assumptions) if base_bounded is None and exp_bounded is None: # Common Case return None if base_bounded is False and ask(Q.nonzero(expr.exp), assumptions): return False if base_bounded and exp_bounded: return True if (abs(expr.base) <= 1) == True and ask(Q.positive(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and ask(Q.negative(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and exp_bounded is False: return False return None @staticmethod def log(expr, assumptions): return ask(Q.finite(expr.args[0]), assumptions) exp = log cos, sin, Number, Pi, Exp1, GoldenRatio, TribonacciConstant, ImaginaryUnit, sign = \ [staticmethod(CommonHandler.AlwaysTrue)]*9 Infinity, NegativeInfinity = [staticmethod(CommonHandler.AlwaysFalse)]*2
6f3db0a531da8c07d4354ff4172d1804cad41ca63df54d0d0f5f5908672ccbfe
""" This module contains query handlers responsible for calculus queries: infinitesimal, bounded, etc. """ from __future__ import print_function, division from sympy.logic.boolalg import conjuncts from sympy.assumptions import Q, ask from sympy.assumptions.handlers import CommonHandler, test_closed_group from sympy.matrices.expressions import MatMul, MatrixExpr from sympy.core.logic import fuzzy_and from sympy.utilities.iterables import sift from sympy.core import Basic from functools import partial def _Factorization(predicate, expr, assumptions): if predicate in expr.predicates: return True class AskSquareHandler(CommonHandler): """ Handler for key 'square' """ @staticmethod def MatrixExpr(expr, assumptions): return expr.shape[0] == expr.shape[1] class AskSymmetricHandler(CommonHandler): """ Handler for key 'symmetric' """ @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if all(ask(Q.symmetric(arg), assumptions) for arg in mmul.args): return True # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T: if len(mmul.args) == 2: return True return ask(Q.symmetric(MatMul(*mmul.args[1:-1])), assumptions) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.symmetric(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): return all(ask(Q.symmetric(arg), assumptions) for arg in expr.args) @staticmethod def MatrixSymbol(expr, assumptions): if not expr.is_square: return False # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if Q.symmetric(expr) in conjuncts(assumptions): return True @staticmethod def ZeroMatrix(expr, assumptions): return ask(Q.square(expr), assumptions) @staticmethod def Transpose(expr, assumptions): return ask(Q.symmetric(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): # TODO: implement sathandlers system for the matrices. # Now it duplicates the general fact: Implies(Q.diagonal, Q.symmetric). if ask(Q.diagonal(expr), assumptions): return True if not expr.on_diag: return None else: return ask(Q.symmetric(expr.parent), assumptions) Identity = staticmethod(CommonHandler.AlwaysTrue) class AskInvertibleHandler(CommonHandler): """ Handler for key 'invertible' """ @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if all(ask(Q.invertible(arg), assumptions) for arg in mmul.args): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None if exp.is_negative == False: return ask(Q.invertible(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): return None @staticmethod def MatrixSymbol(expr, assumptions): if not expr.is_square: return False if Q.invertible(expr) in conjuncts(assumptions): return True Identity, Inverse = [staticmethod(CommonHandler.AlwaysTrue)]*2 ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def Transpose(expr, assumptions): return ask(Q.invertible(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.invertible(expr.parent), assumptions) class AskOrthogonalHandler(CommonHandler): """ Handler for key 'orthogonal' """ predicate = Q.orthogonal @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.orthogonal(arg), assumptions) for arg in mmul.args) and factor == 1): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp: return ask(Q.orthogonal(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): if (len(expr.args) == 1 and ask(Q.orthogonal(expr.args[0]), assumptions)): return True @staticmethod def MatrixSymbol(expr, assumptions): if (not expr.is_square or ask(Q.invertible(expr), assumptions) is False): return False if Q.orthogonal(expr) in conjuncts(assumptions): return True Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def Transpose(expr, assumptions): return ask(Q.orthogonal(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.orthogonal(expr.parent), assumptions) Factorization = staticmethod(partial(_Factorization, Q.orthogonal)) class AskUnitaryHandler(CommonHandler): """ Handler for key 'unitary' """ predicate = Q.unitary @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.unitary(arg), assumptions) for arg in mmul.args) and abs(factor) == 1): return True if any(ask(Q.invertible(arg), assumptions) is False for arg in mmul.args): return False @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp: return ask(Q.unitary(base), assumptions) return None @staticmethod def MatrixSymbol(expr, assumptions): if (not expr.is_square or ask(Q.invertible(expr), assumptions) is False): return False if Q.unitary(expr) in conjuncts(assumptions): return True @staticmethod def Transpose(expr, assumptions): return ask(Q.unitary(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.unitary(expr.parent), assumptions) @staticmethod def DFT(expr, assumptions): return True Factorization = staticmethod(partial(_Factorization, Q.unitary)) Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) class AskFullRankHandler(CommonHandler): """ Handler for key 'fullrank' """ @staticmethod def MatMul(expr, assumptions): if all(ask(Q.fullrank(arg), assumptions) for arg in expr.args): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if int_exp and ask(~Q.negative(exp), assumptions): return ask(Q.fullrank(base), assumptions) return None Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def Transpose(expr, assumptions): return ask(Q.fullrank(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if ask(Q.orthogonal(expr.parent), assumptions): return True class AskPositiveDefiniteHandler(CommonHandler): """ Handler for key 'positive_definite' """ @staticmethod def MatMul(expr, assumptions): factor, mmul = expr.as_coeff_mmul() if (all(ask(Q.positive_definite(arg), assumptions) for arg in mmul.args) and factor > 0): return True if (len(mmul.args) >= 2 and mmul.args[0] == mmul.args[-1].T and ask(Q.fullrank(mmul.args[0]), assumptions)): return ask(Q.positive_definite( MatMul(*mmul.args[1:-1])), assumptions) @staticmethod def MatPow(expr, assumptions): # a power of a positive definite matrix is positive definite if ask(Q.positive_definite(expr.args[0]), assumptions): return True @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.positive_definite(arg), assumptions) for arg in expr.args): return True @staticmethod def MatrixSymbol(expr, assumptions): if not expr.is_square: return False if Q.positive_definite(expr) in conjuncts(assumptions): return True Identity = staticmethod(CommonHandler.AlwaysTrue) ZeroMatrix = staticmethod(CommonHandler.AlwaysFalse) @staticmethod def Transpose(expr, assumptions): return ask(Q.positive_definite(expr.arg), assumptions) Inverse = Transpose @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.positive_definite(expr.parent), assumptions) class AskUpperTriangularHandler(CommonHandler): """ Handler for key 'upper_triangular' """ @staticmethod def MatMul(expr, assumptions): factor, matrices = expr.as_coeff_matrices() if all(ask(Q.upper_triangular(m), assumptions) for m in matrices): return True @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.upper_triangular(arg), assumptions) for arg in expr.args): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.upper_triangular(base), assumptions) return None @staticmethod def MatrixSymbol(expr, assumptions): if Q.upper_triangular(expr) in conjuncts(assumptions): return True Identity, ZeroMatrix = [staticmethod(CommonHandler.AlwaysTrue)]*2 @staticmethod def Transpose(expr, assumptions): return ask(Q.lower_triangular(expr.arg), assumptions) @staticmethod def Inverse(expr, assumptions): return ask(Q.upper_triangular(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.upper_triangular(expr.parent), assumptions) Factorization = staticmethod(partial(_Factorization, Q.upper_triangular)) class AskLowerTriangularHandler(CommonHandler): """ Handler for key 'lower_triangular' """ @staticmethod def MatMul(expr, assumptions): factor, matrices = expr.as_coeff_matrices() if all(ask(Q.lower_triangular(m), assumptions) for m in matrices): return True @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.lower_triangular(arg), assumptions) for arg in expr.args): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.lower_triangular(base), assumptions) return None @staticmethod def MatrixSymbol(expr, assumptions): if Q.lower_triangular(expr) in conjuncts(assumptions): return True Identity, ZeroMatrix = [staticmethod(CommonHandler.AlwaysTrue)]*2 @staticmethod def Transpose(expr, assumptions): return ask(Q.upper_triangular(expr.arg), assumptions) @staticmethod def Inverse(expr, assumptions): return ask(Q.lower_triangular(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if not expr.on_diag: return None else: return ask(Q.lower_triangular(expr.parent), assumptions) Factorization = staticmethod(partial(_Factorization, Q.lower_triangular)) class AskDiagonalHandler(CommonHandler): """ Handler for key 'diagonal' """ @staticmethod def _is_empty_or_1x1(expr): return expr.shape == (0, 0) or expr.shape == (1, 1) @staticmethod def MatMul(expr, assumptions): if AskDiagonalHandler._is_empty_or_1x1(expr): return True factor, matrices = expr.as_coeff_matrices() if all(ask(Q.diagonal(m), assumptions) for m in matrices): return True @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.diagonal(base), assumptions) return None @staticmethod def MatAdd(expr, assumptions): if all(ask(Q.diagonal(arg), assumptions) for arg in expr.args): return True @staticmethod def MatrixSymbol(expr, assumptions): if AskDiagonalHandler._is_empty_or_1x1(expr): return True if Q.diagonal(expr) in conjuncts(assumptions): return True Identity, ZeroMatrix = [staticmethod(CommonHandler.AlwaysTrue)]*2 @staticmethod def Transpose(expr, assumptions): return ask(Q.diagonal(expr.arg), assumptions) @staticmethod def Inverse(expr, assumptions): return ask(Q.diagonal(expr.arg), assumptions) @staticmethod def MatrixSlice(expr, assumptions): if AskDiagonalHandler._is_empty_or_1x1(expr): return True if not expr.on_diag: return None else: return ask(Q.diagonal(expr.parent), assumptions) @staticmethod def DiagonalMatrix(expr, assumptions): return True @staticmethod def DiagMatrix(expr, assumptions): return True @staticmethod def Identity(expr, assumptions): return True Factorization = staticmethod(partial(_Factorization, Q.diagonal)) def BM_elements(predicate, expr, assumptions): """ Block Matrix elements """ return all(ask(predicate(b), assumptions) for b in expr.blocks) def MS_elements(predicate, expr, assumptions): """ Matrix Slice elements """ return ask(predicate(expr.parent), assumptions) def MatMul_elements(matrix_predicate, scalar_predicate, expr, assumptions): d = sift(expr.args, lambda x: isinstance(x, MatrixExpr)) factors, matrices = d[False], d[True] return fuzzy_and([ test_closed_group(Basic(*factors), assumptions, scalar_predicate), test_closed_group(Basic(*matrices), assumptions, matrix_predicate)]) class AskIntegerElementsHandler(CommonHandler): @staticmethod def MatAdd(expr, assumptions): return test_closed_group(expr, assumptions, Q.integer_elements) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None if exp.is_negative == False: return ask(Q.integer_elements(base), assumptions) return None HadamardProduct, Determinant, Trace, Transpose = [MatAdd]*4 ZeroMatrix, Identity = [staticmethod(CommonHandler.AlwaysTrue)]*2 MatMul = staticmethod(partial(MatMul_elements, Q.integer_elements, Q.integer)) MatrixSlice = staticmethod(partial(MS_elements, Q.integer_elements)) BlockMatrix = staticmethod(partial(BM_elements, Q.integer_elements)) class AskRealElementsHandler(CommonHandler): @staticmethod def MatAdd(expr, assumptions): return test_closed_group(expr, assumptions, Q.real_elements) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.real_elements(base), assumptions) return None HadamardProduct, Determinant, Trace, Transpose, \ Factorization = [MatAdd]*5 MatMul = staticmethod(partial(MatMul_elements, Q.real_elements, Q.real)) MatrixSlice = staticmethod(partial(MS_elements, Q.real_elements)) BlockMatrix = staticmethod(partial(BM_elements, Q.real_elements)) class AskComplexElementsHandler(CommonHandler): @staticmethod def MatAdd(expr, assumptions): return test_closed_group(expr, assumptions, Q.complex_elements) @staticmethod def MatPow(expr, assumptions): # only for integer powers base, exp = expr.args int_exp = ask(Q.integer(exp), assumptions) if not int_exp: return None non_negative = ask(~Q.negative(exp), assumptions) if (non_negative or non_negative == False and ask(Q.invertible(base), assumptions)): return ask(Q.complex_elements(base), assumptions) return None HadamardProduct, Determinant, Trace, Transpose, Inverse, \ Factorization = [MatAdd]*6 MatMul = staticmethod(partial(MatMul_elements, Q.complex_elements, Q.complex)) MatrixSlice = staticmethod(partial(MS_elements, Q.complex_elements)) BlockMatrix = staticmethod(partial(BM_elements, Q.complex_elements)) DFT = staticmethod(CommonHandler.AlwaysTrue)
edb54176e45493e7eca033bcad0de05b56e2f1465c010a48bd0d5759588fbf2b
from sympy import (Abs, exp, Expr, I, pi, Q, Rational, refine, S, sqrt, atan, atan2, nan, Symbol, re, im, sign) from sympy.abc import w, x, y, z from sympy.core.relational import Eq, Ne from sympy.functions.elementary.piecewise import Piecewise from sympy.utilities.pytest import slow from sympy.core import S def test_Abs(): assert refine(Abs(x), Q.positive(x)) == x assert refine(1 + Abs(x), Q.positive(x)) == 1 + x assert refine(Abs(x), Q.negative(x)) == -x assert refine(1 + Abs(x), Q.negative(x)) == 1 - x assert refine(Abs(x**2)) != x**2 assert refine(Abs(x**2), Q.real(x)) == x**2 def test_pow1(): assert refine((-1)**x, Q.even(x)) == 1 assert refine((-1)**x, Q.odd(x)) == -1 assert refine((-2)**x, Q.even(x)) == 2**x # nested powers assert refine(sqrt(x**2)) != Abs(x) assert refine(sqrt(x**2), Q.complex(x)) != Abs(x) assert refine(sqrt(x**2), Q.real(x)) == Abs(x) assert refine(sqrt(x**2), Q.positive(x)) == x assert refine((x**3)**Rational(1, 3)) != x assert refine((x**3)**Rational(1, 3), Q.real(x)) != x assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x) assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x) # powers of (-1) assert refine((-1)**(x + y), Q.even(x)) == (-1)**y assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1) assert refine((-1)**(x + 3)) == (-1)**(x + 1) # continuation assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1) assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1) def test_pow2(): assert refine((-1)**((-1)**x/2 - 7*S.Half), Q.integer(x)) == (-1)**(x + 1) assert refine((-1)**((-1)**x/2 - 9*S.Half), Q.integer(x)) == (-1)**x # powers of Abs assert refine(Abs(x)**2, Q.real(x)) == x**2 assert refine(Abs(x)**3, Q.real(x)) == Abs(x)**3 assert refine(Abs(x)**2) == Abs(x)**2 def test_exp(): x = Symbol('x', integer=True) assert refine(exp(pi*I*2*x)) == 1 assert refine(exp(pi*I*2*(x + S.Half))) == -1 assert refine(exp(pi*I*2*(x + Rational(1, 4)))) == I assert refine(exp(pi*I*2*(x + Rational(3, 4)))) == -I def test_Relational(): assert not refine(x < 0, ~Q.is_true(x < 0)) assert refine(x < 0, Q.is_true(x < 0)) assert refine(x < 0, Q.is_true(0 > x)) == True assert refine(x < 0, Q.is_true(y < 0)) == (x < 0) assert not refine(x <= 0, ~Q.is_true(x <= 0)) assert refine(x <= 0, Q.is_true(x <= 0)) assert refine(x <= 0, Q.is_true(0 >= x)) == True assert refine(x <= 0, Q.is_true(y <= 0)) == (x <= 0) assert not refine(x > 0, ~Q.is_true(x > 0)) assert refine(x > 0, Q.is_true(x > 0)) assert refine(x > 0, Q.is_true(0 < x)) == True assert refine(x > 0, Q.is_true(y > 0)) == (x > 0) assert not refine(x >= 0, ~Q.is_true(x >= 0)) assert refine(x >= 0, Q.is_true(x >= 0)) assert refine(x >= 0, Q.is_true(0 <= x)) == True assert refine(x >= 0, Q.is_true(y >= 0)) == (x >= 0) assert not refine(Eq(x, 0), ~Q.is_true(Eq(x, 0))) assert refine(Eq(x, 0), Q.is_true(Eq(x, 0))) assert refine(Eq(x, 0), Q.is_true(Eq(0, x))) == True assert refine(Eq(x, 0), Q.is_true(Eq(y, 0))) == Eq(x, 0) assert not refine(Ne(x, 0), ~Q.is_true(Ne(x, 0))) assert refine(Ne(x, 0), Q.is_true(Ne(0, x))) == True assert refine(Ne(x, 0), Q.is_true(Ne(x, 0))) assert refine(Ne(x, 0), Q.is_true(Ne(y, 0))) == (Ne(x, 0)) def test_Piecewise(): assert refine(Piecewise((1, x < 0), (3, True)), Q.is_true(x < 0)) == 1 assert refine(Piecewise((1, x < 0), (3, True)), ~Q.is_true(x < 0)) == 3 assert refine(Piecewise((1, x < 0), (3, True)), Q.is_true(y < 0)) == \ Piecewise((1, x < 0), (3, True)) assert refine(Piecewise((1, x > 0), (3, True)), Q.is_true(x > 0)) == 1 assert refine(Piecewise((1, x > 0), (3, True)), ~Q.is_true(x > 0)) == 3 assert refine(Piecewise((1, x > 0), (3, True)), Q.is_true(y > 0)) == \ Piecewise((1, x > 0), (3, True)) assert refine(Piecewise((1, x <= 0), (3, True)), Q.is_true(x <= 0)) == 1 assert refine(Piecewise((1, x <= 0), (3, True)), ~Q.is_true(x <= 0)) == 3 assert refine(Piecewise((1, x <= 0), (3, True)), Q.is_true(y <= 0)) == \ Piecewise((1, x <= 0), (3, True)) assert refine(Piecewise((1, x >= 0), (3, True)), Q.is_true(x >= 0)) == 1 assert refine(Piecewise((1, x >= 0), (3, True)), ~Q.is_true(x >= 0)) == 3 assert refine(Piecewise((1, x >= 0), (3, True)), Q.is_true(y >= 0)) == \ Piecewise((1, x >= 0), (3, True)) assert refine(Piecewise((1, Eq(x, 0)), (3, True)), Q.is_true(Eq(x, 0)))\ == 1 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), Q.is_true(Eq(0, x)))\ == 1 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~Q.is_true(Eq(x, 0)))\ == 3 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~Q.is_true(Eq(0, x)))\ == 3 assert refine(Piecewise((1, Eq(x, 0)), (3, True)), Q.is_true(Eq(y, 0)))\ == Piecewise((1, Eq(x, 0)), (3, True)) assert refine(Piecewise((1, Ne(x, 0)), (3, True)), Q.is_true(Ne(x, 0)))\ == 1 assert refine(Piecewise((1, Ne(x, 0)), (3, True)), ~Q.is_true(Ne(x, 0)))\ == 3 assert refine(Piecewise((1, Ne(x, 0)), (3, True)), Q.is_true(Ne(y, 0)))\ == Piecewise((1, Ne(x, 0)), (3, True)) def test_atan2(): assert refine(atan2(y, x), Q.real(y) & Q.positive(x)) == atan(y/x) assert refine(atan2(y, x), Q.negative(y) & Q.positive(x)) == atan(y/x) assert refine(atan2(y, x), Q.negative(y) & Q.negative(x)) == atan(y/x) - pi assert refine(atan2(y, x), Q.positive(y) & Q.negative(x)) == atan(y/x) + pi assert refine(atan2(y, x), Q.zero(y) & Q.negative(x)) == pi assert refine(atan2(y, x), Q.positive(y) & Q.zero(x)) == pi/2 assert refine(atan2(y, x), Q.negative(y) & Q.zero(x)) == -pi/2 assert refine(atan2(y, x), Q.zero(y) & Q.zero(x)) is nan def test_re(): assert refine(re(x), Q.real(x)) == x assert refine(re(x), Q.imaginary(x)) is S.Zero assert refine(re(x+y), Q.real(x) & Q.real(y)) == x + y assert refine(re(x+y), Q.real(x) & Q.imaginary(y)) == x assert refine(re(x*y), Q.real(x) & Q.real(y)) == x * y assert refine(re(x*y), Q.real(x) & Q.imaginary(y)) == 0 assert refine(re(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) == x * y * z def test_im(): assert refine(im(x), Q.imaginary(x)) == -I*x assert refine(im(x), Q.real(x)) is S.Zero assert refine(im(x+y), Q.imaginary(x) & Q.imaginary(y)) == -I*x - I*y assert refine(im(x+y), Q.real(x) & Q.imaginary(y)) == -I*y assert refine(im(x*y), Q.imaginary(x) & Q.real(y)) == -I*x*y assert refine(im(x*y), Q.imaginary(x) & Q.imaginary(y)) == 0 assert refine(im(1/x), Q.imaginary(x)) == -I/x assert refine(im(x*y*z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) == -I*x*y*z def test_complex(): assert refine(re(1/(x + I*y)), Q.real(x) & Q.real(y)) == \ x/(x**2 + y**2) assert refine(im(1/(x + I*y)), Q.real(x) & Q.real(y)) == \ -y/(x**2 + y**2) assert refine(re((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y) & Q.real(z)) == w*y - x*z assert refine(im((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y) & Q.real(z)) == w*z + x*y def test_sign(): x = Symbol('x', real = True) assert refine(sign(x), Q.positive(x)) == 1 assert refine(sign(x), Q.negative(x)) == -1 assert refine(sign(x), Q.zero(x)) == 0 assert refine(sign(x), True) == sign(x) assert refine(sign(Abs(x)), Q.nonzero(x)) == 1 x = Symbol('x', imaginary=True) assert refine(sign(x), Q.positive(im(x))) == S.ImaginaryUnit assert refine(sign(x), Q.negative(im(x))) == -S.ImaginaryUnit assert refine(sign(x), True) == sign(x) x = Symbol('x', complex=True) assert refine(sign(x), Q.zero(x)) == 0 def test_func_args(): class MyClass(Expr): # A class with nontrivial .func def __init__(self, *args): self.my_member = "" @property def func(self): def my_func(*args): obj = MyClass(*args) obj.my_member = self.my_member return obj return my_func x = MyClass() x.my_member = "A very important value" assert x.my_member == refine(x).my_member def test_eval_refine(): from sympy.core.expr import Expr class MockExpr(Expr): def _eval_refine(self, assumptions): return True mock_obj = MockExpr() assert refine(mock_obj) def test_refine_issue_12724(): expr1 = refine(Abs(x * y), Q.positive(x)) expr2 = refine(Abs(x * y * z), Q.positive(x)) assert expr1 == x * Abs(y) assert expr2 == x * Abs(y * z) y1 = Symbol('y1', real = True) expr3 = refine(Abs(x * y1**2 * z), Q.positive(x)) assert expr3 == x * y1**2 * Abs(z)
702bc9eedf5a88df647b1af1d1b9b9aa069343cfa47dadeed017e9645c254be4
from sympy import Q, ask, Symbol, DiagMatrix, DiagonalMatrix from sympy.matrices.expressions import (MatrixSymbol, Identity, ZeroMatrix, Trace, MatrixSlice, Determinant) from sympy.matrices.expressions.factorizations import LofLU from sympy.utilities.pytest import XFAIL X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 3) Z = MatrixSymbol('Z', 2, 2) A1x1 = MatrixSymbol('A1x1', 1, 1) B1x1 = MatrixSymbol('B1x1', 1, 1) C0x0 = MatrixSymbol('C0x0', 0, 0) V1 = MatrixSymbol('V1', 2, 1) V2 = MatrixSymbol('V2', 2, 1) def test_square(): assert ask(Q.square(X)) assert not ask(Q.square(Y)) assert ask(Q.square(Y*Y.T)) def test_invertible(): assert ask(Q.invertible(X), Q.invertible(X)) assert ask(Q.invertible(Y)) is False assert ask(Q.invertible(X*Y), Q.invertible(X)) is False assert ask(Q.invertible(X*Z), Q.invertible(X)) is None assert ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) is True assert ask(Q.invertible(X.T)) is None assert ask(Q.invertible(X.T), Q.invertible(X)) is True assert ask(Q.invertible(X.I)) is True assert ask(Q.invertible(Identity(3))) is True assert ask(Q.invertible(ZeroMatrix(3, 3))) is False assert ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) def test_singular(): assert ask(Q.singular(X)) is None assert ask(Q.singular(X), Q.invertible(X)) is False assert ask(Q.singular(X), ~Q.invertible(X)) is True @XFAIL def test_invertible_fullrank(): assert ask(Q.invertible(X), Q.fullrank(X)) is True def test_symmetric(): assert ask(Q.symmetric(X), Q.symmetric(X)) assert ask(Q.symmetric(X*Z), Q.symmetric(X)) is None assert ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) is True assert ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) is True assert ask(Q.symmetric(Y)) is False assert ask(Q.symmetric(Y*Y.T)) is True assert ask(Q.symmetric(Y.T*X*Y)) is None assert ask(Q.symmetric(Y.T*X*Y), Q.symmetric(X)) is True assert ask(Q.symmetric(X**10), Q.symmetric(X)) is True assert ask(Q.symmetric(A1x1)) is True assert ask(Q.symmetric(A1x1 + B1x1)) is True assert ask(Q.symmetric(A1x1 * B1x1)) is True assert ask(Q.symmetric(V1.T*V1)) is True assert ask(Q.symmetric(V1.T*(V1 + V2))) is True assert ask(Q.symmetric(V1.T*(V1 + V2) + A1x1)) is True assert ask(Q.symmetric(MatrixSlice(Y, (0, 1), (1, 2)))) is True def _test_orthogonal_unitary(predicate): assert ask(predicate(X), predicate(X)) assert ask(predicate(X.T), predicate(X)) is True assert ask(predicate(X.I), predicate(X)) is True assert ask(predicate(X**2), predicate(X)) assert ask(predicate(Y)) is False assert ask(predicate(X)) is None assert ask(predicate(X), ~Q.invertible(X)) is False assert ask(predicate(X*Z*X), predicate(X) & predicate(Z)) is True assert ask(predicate(Identity(3))) is True assert ask(predicate(ZeroMatrix(3, 3))) is False assert ask(Q.invertible(X), predicate(X)) assert not ask(predicate(X + Z), predicate(X) & predicate(Z)) def test_orthogonal(): _test_orthogonal_unitary(Q.orthogonal) def test_unitary(): _test_orthogonal_unitary(Q.unitary) assert ask(Q.unitary(X), Q.orthogonal(X)) def test_fullrank(): assert ask(Q.fullrank(X), Q.fullrank(X)) assert ask(Q.fullrank(X**2), Q.fullrank(X)) assert ask(Q.fullrank(X.T), Q.fullrank(X)) is True assert ask(Q.fullrank(X)) is None assert ask(Q.fullrank(Y)) is None assert ask(Q.fullrank(X*Z), Q.fullrank(X) & Q.fullrank(Z)) is True assert ask(Q.fullrank(Identity(3))) is True assert ask(Q.fullrank(ZeroMatrix(3, 3))) is False assert ask(Q.invertible(X), ~Q.fullrank(X)) == False def test_positive_definite(): assert ask(Q.positive_definite(X), Q.positive_definite(X)) assert ask(Q.positive_definite(X.T), Q.positive_definite(X)) is True assert ask(Q.positive_definite(X.I), Q.positive_definite(X)) is True assert ask(Q.positive_definite(Y)) is False assert ask(Q.positive_definite(X)) is None assert ask(Q.positive_definite(X**3), Q.positive_definite(X)) assert ask(Q.positive_definite(X*Z*X), Q.positive_definite(X) & Q.positive_definite(Z)) is True assert ask(Q.positive_definite(X), Q.orthogonal(X)) assert ask(Q.positive_definite(Y.T*X*Y), Q.positive_definite(X) & Q.fullrank(Y)) is True assert not ask(Q.positive_definite(Y.T*X*Y), Q.positive_definite(X)) assert ask(Q.positive_definite(Identity(3))) is True assert ask(Q.positive_definite(ZeroMatrix(3, 3))) is False assert ask(Q.positive_definite(X + Z), Q.positive_definite(X) & Q.positive_definite(Z)) is True assert not ask(Q.positive_definite(-X), Q.positive_definite(X)) assert ask(Q.positive(X[1, 1]), Q.positive_definite(X)) def test_triangular(): assert ask(Q.upper_triangular(X + Z.T + Identity(2)), Q.upper_triangular(X) & Q.lower_triangular(Z)) is True assert ask(Q.upper_triangular(X*Z.T), Q.upper_triangular(X) & Q.lower_triangular(Z)) is True assert ask(Q.lower_triangular(Identity(3))) is True assert ask(Q.lower_triangular(ZeroMatrix(3, 3))) is True assert ask(Q.triangular(X), Q.unit_triangular(X)) assert ask(Q.upper_triangular(X**3), Q.upper_triangular(X)) assert ask(Q.lower_triangular(X**3), Q.lower_triangular(X)) def test_diagonal(): assert ask(Q.diagonal(X + Z.T + Identity(2)), Q.diagonal(X) & Q.diagonal(Z)) is True assert ask(Q.diagonal(ZeroMatrix(3, 3))) assert ask(Q.lower_triangular(X) & Q.upper_triangular(X), Q.diagonal(X)) assert ask(Q.diagonal(X), Q.lower_triangular(X) & Q.upper_triangular(X)) assert ask(Q.symmetric(X), Q.diagonal(X)) assert ask(Q.triangular(X), Q.diagonal(X)) assert ask(Q.diagonal(C0x0)) assert ask(Q.diagonal(A1x1)) assert ask(Q.diagonal(A1x1 + B1x1)) assert ask(Q.diagonal(A1x1*B1x1)) assert ask(Q.diagonal(V1.T*V2)) assert ask(Q.diagonal(V1.T*(X + Z)*V1)) assert ask(Q.diagonal(MatrixSlice(Y, (0, 1), (1, 2)))) is True assert ask(Q.diagonal(V1.T*(V1 + V2))) is True assert ask(Q.diagonal(X**3), Q.diagonal(X)) assert ask(Q.diagonal(Identity(3))) assert ask(Q.diagonal(DiagMatrix(V1))) assert ask(Q.diagonal(DiagonalMatrix(X))) def test_non_atoms(): assert ask(Q.real(Trace(X)), Q.positive(Trace(X))) @XFAIL def test_non_trivial_implies(): X = MatrixSymbol('X', 3, 3) Y = MatrixSymbol('Y', 3, 3) assert ask(Q.lower_triangular(X+Y), Q.lower_triangular(X) & Q.lower_triangular(Y)) is True assert ask(Q.triangular(X), Q.lower_triangular(X)) is True assert ask(Q.triangular(X+Y), Q.lower_triangular(X) & Q.lower_triangular(Y)) is True def test_MatrixSlice(): X = MatrixSymbol('X', 4, 4) B = MatrixSlice(X, (1, 3), (1, 3)) C = MatrixSlice(X, (0, 3), (1, 3)) assert ask(Q.symmetric(B), Q.symmetric(X)) assert ask(Q.invertible(B), Q.invertible(X)) assert ask(Q.diagonal(B), Q.diagonal(X)) assert ask(Q.orthogonal(B), Q.orthogonal(X)) assert ask(Q.upper_triangular(B), Q.upper_triangular(X)) assert not ask(Q.symmetric(C), Q.symmetric(X)) assert not ask(Q.invertible(C), Q.invertible(X)) assert not ask(Q.diagonal(C), Q.diagonal(X)) assert not ask(Q.orthogonal(C), Q.orthogonal(X)) assert not ask(Q.upper_triangular(C), Q.upper_triangular(X)) def test_det_trace_positive(): X = MatrixSymbol('X', 4, 4) assert ask(Q.positive(Trace(X)), Q.positive_definite(X)) assert ask(Q.positive(Determinant(X)), Q.positive_definite(X)) def test_field_assumptions(): X = MatrixSymbol('X', 4, 4) Y = MatrixSymbol('Y', 4, 4) assert ask(Q.real_elements(X), Q.real_elements(X)) assert not ask(Q.integer_elements(X), Q.real_elements(X)) assert ask(Q.complex_elements(X), Q.real_elements(X)) assert ask(Q.complex_elements(X**2), Q.real_elements(X)) assert ask(Q.real_elements(X**2), Q.integer_elements(X)) assert ask(Q.real_elements(X+Y), Q.real_elements(X)) is None assert ask(Q.real_elements(X+Y), Q.real_elements(X) & Q.real_elements(Y)) from sympy.matrices.expressions.hadamard import HadamardProduct assert ask(Q.real_elements(HadamardProduct(X, Y)), Q.real_elements(X) & Q.real_elements(Y)) assert ask(Q.complex_elements(X+Y), Q.real_elements(X) & Q.complex_elements(Y)) assert ask(Q.real_elements(X.T), Q.real_elements(X)) assert ask(Q.real_elements(X.I), Q.real_elements(X) & Q.invertible(X)) assert ask(Q.real_elements(Trace(X)), Q.real_elements(X)) assert ask(Q.integer_elements(Determinant(X)), Q.integer_elements(X)) assert not ask(Q.integer_elements(X.I), Q.integer_elements(X)) alpha = Symbol('alpha') assert ask(Q.real_elements(alpha*X), Q.real_elements(X) & Q.real(alpha)) assert ask(Q.real_elements(LofLU(X)), Q.real_elements(X)) e = Symbol('e', integer=True, negative=True) assert ask(Q.real_elements(X**e), Q.real_elements(X) & Q.invertible(X)) assert ask(Q.real_elements(X**e), Q.real_elements(X)) is None def test_matrix_element_sets(): X = MatrixSymbol('X', 4, 4) assert ask(Q.real(X[1, 2]), Q.real_elements(X)) assert ask(Q.integer(X[1, 2]), Q.integer_elements(X)) assert ask(Q.complex(X[1, 2]), Q.complex_elements(X)) assert ask(Q.integer_elements(Identity(3))) assert ask(Q.integer_elements(ZeroMatrix(3, 3))) from sympy.matrices.expressions.fourier import DFT assert ask(Q.complex_elements(DFT(3))) def test_matrix_element_sets_slices_blocks(): from sympy.matrices.expressions import BlockMatrix X = MatrixSymbol('X', 4, 4) assert ask(Q.integer_elements(X[:, 3]), Q.integer_elements(X)) assert ask(Q.integer_elements(BlockMatrix([[X], [X]])), Q.integer_elements(X)) def test_matrix_element_sets_determinant_trace(): assert ask(Q.integer(Determinant(X)), Q.integer_elements(X)) assert ask(Q.integer(Trace(X)), Q.integer_elements(X))
f7c0b0a467420e73ffee972a51ec05337d2b265d2911e9f28ec854dfbd620813
from sympy.abc import t, w, x, y, z, n, k, m, p, i from sympy.assumptions import (ask, AssumptionsContext, Q, register_handler, remove_handler) from sympy.assumptions.assume import global_assumptions from sympy.assumptions.ask import compute_known_facts, single_fact_lookup from sympy.assumptions.handlers import AskHandler from sympy.core.add import Add from sympy.core.numbers import (I, Integer, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.power import Pow from sympy.core.symbol import symbols from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (Abs, im, re, sign) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import ( acos, acot, asin, atan, cos, cot, sin, tan) from sympy.logic.boolalg import Equivalent, Implies, Xor, And, to_cnf from sympy.matrices import Matrix, SparseMatrix from sympy.utilities.pytest import XFAIL, slow, raises, warns_deprecated_sympy from sympy.assumptions.assume import assuming import math def test_int_1(): z = 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_11(): z = 11 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is True assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_12(): z = 12 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is True assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_float_1(): z = 1.0 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 7.2123 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False # test for issue #12168 assert ask(Q.rational(math.pi)) is None def test_zero_0(): z = Integer(0) assert ask(Q.nonzero(z)) is False assert ask(Q.zero(z)) is True assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_negativeone(): z = Integer(-1) assert ask(Q.nonzero(z)) is True assert ask(Q.zero(z)) is False assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is True assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_infinity(): assert ask(Q.commutative(oo)) is True assert ask(Q.integer(oo)) is False assert ask(Q.rational(oo)) is False assert ask(Q.algebraic(oo)) is False assert ask(Q.real(oo)) is False assert ask(Q.extended_real(oo)) is True assert ask(Q.complex(oo)) is False assert ask(Q.irrational(oo)) is False assert ask(Q.imaginary(oo)) is False assert ask(Q.positive(oo)) is False #assert ask(Q.extended_positive(oo)) is True assert ask(Q.negative(oo)) is False assert ask(Q.even(oo)) is False assert ask(Q.odd(oo)) is False assert ask(Q.finite(oo)) is False assert ask(Q.prime(oo)) is False assert ask(Q.composite(oo)) is False assert ask(Q.hermitian(oo)) is False assert ask(Q.antihermitian(oo)) is False def test_neg_infinity(): mm = S.NegativeInfinity assert ask(Q.commutative(mm)) is True assert ask(Q.integer(mm)) is False assert ask(Q.rational(mm)) is False assert ask(Q.algebraic(mm)) is False assert ask(Q.real(mm)) is False assert ask(Q.extended_real(mm)) is True assert ask(Q.complex(mm)) is False assert ask(Q.irrational(mm)) is False assert ask(Q.imaginary(mm)) is False assert ask(Q.positive(mm)) is False assert ask(Q.negative(mm)) is False #assert ask(Q.extended_negative(mm)) is True assert ask(Q.even(mm)) is False assert ask(Q.odd(mm)) is False assert ask(Q.finite(mm)) is False assert ask(Q.prime(mm)) is False assert ask(Q.composite(mm)) is False assert ask(Q.hermitian(mm)) is False assert ask(Q.antihermitian(mm)) is False def test_nan(): nan = S.NaN assert ask(Q.commutative(nan)) is True assert ask(Q.integer(nan)) is False assert ask(Q.rational(nan)) is False assert ask(Q.algebraic(nan)) is False assert ask(Q.real(nan)) is False assert ask(Q.extended_real(nan)) is False assert ask(Q.complex(nan)) is False assert ask(Q.irrational(nan)) is False assert ask(Q.imaginary(nan)) is False assert ask(Q.positive(nan)) is False assert ask(Q.nonzero(nan)) is True assert ask(Q.zero(nan)) is False assert ask(Q.even(nan)) is False assert ask(Q.odd(nan)) is False assert ask(Q.finite(nan)) is False assert ask(Q.prime(nan)) is False assert ask(Q.composite(nan)) is False assert ask(Q.hermitian(nan)) is False assert ask(Q.antihermitian(nan)) is False def test_Rational_number(): r = Rational(3, 4) assert ask(Q.commutative(r)) is True assert ask(Q.integer(r)) is False assert ask(Q.rational(r)) is True assert ask(Q.real(r)) is True assert ask(Q.complex(r)) is True assert ask(Q.irrational(r)) is False assert ask(Q.imaginary(r)) is False assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False assert ask(Q.even(r)) is False assert ask(Q.odd(r)) is False assert ask(Q.finite(r)) is True assert ask(Q.prime(r)) is False assert ask(Q.composite(r)) is False assert ask(Q.hermitian(r)) is True assert ask(Q.antihermitian(r)) is False r = Rational(1, 4) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(5, 4) assert ask(Q.negative(r)) is False assert ask(Q.positive(r)) is True r = Rational(5, 3) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(-3, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-1, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-5, 4) assert ask(Q.negative(r)) is True assert ask(Q.positive(r)) is False r = Rational(-5, 3) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True def test_sqrt_2(): z = sqrt(2) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_pi(): z = S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi + 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 2*S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = (1 + S.Pi) ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_E(): z = S.Exp1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_GoldenRatio(): z = S.GoldenRatio assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_TribonacciConstant(): z = S.TribonacciConstant assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_I(): z = I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is True assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is True z = 1 + I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I*(1 + I) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (3*I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (1+I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(I+3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (I)**(I+2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (3)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(0) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True def test_bounded(): x, y, z = symbols('x,y,z') assert ask(Q.finite(x)) is None assert ask(Q.finite(x), Q.finite(x)) is True assert ask(Q.finite(x), Q.finite(y)) is None assert ask(Q.finite(x), Q.complex(x)) is None assert ask(Q.finite(x + 1)) is None assert ask(Q.finite(x + 1), Q.finite(x)) is True a = x + y x, y = a.args # B + B assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is True # B + U assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # B + ? assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(x) & ~Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.positive(x) & ~Q.positive(y)) is None # U + U assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # U + ? assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(x)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False assert ask( Q.finite(a), ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is None assert ask( Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False # ? + ? assert ask(Q.finite(a),) is None assert ask(Q.finite(a), Q.positive(x)) is None assert ask(Q.finite(a), Q.positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.positive(y)) is None assert ask(Q.finite(a), ~Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), ~Q.positive(x) & ~Q.positive(y)) is None x, y, z = symbols('x,y,z') a = x + y + z x, y, z = a.args assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x)) is None assert ask( Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative(y)) is None assert ask( Q.finite(a), Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(z)) is None assert ask( Q.finite(a), Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x)) is None assert ask( Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is False assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x)) is None assert ask( Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.negative(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(z)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None assert ask( Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x)) is None assert ask( Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is False assert ask( Q.finite(a), Q.negative(x) & Q.negative(y) & Q.negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative(y)) is None assert ask( Q.finite(a), Q.negative(x) & Q.negative(y) & Q.positive(z)) is None assert ask(Q.finite(a), Q.negative(x)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive(z)) is None assert ask( Q.finite(a), Q.negative(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(a)) is None assert ask(Q.finite(a), Q.positive(z)) is None assert ask(Q.finite(a), Q.positive(y) & Q.positive(z)) is None assert ask( Q.finite(a), Q.positive(x) & Q.positive(y) & Q.positive(z)) is None assert ask(Q.finite(2*x)) is None assert ask(Q.finite(2*x), Q.finite(x)) is True x, y, z = symbols('x,y,z') a = x*y x, y = a.args assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a)) is None a = x*y*z x, y, z = a.args assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask( Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask( Q.finite(a), ~Q.finite(x) & Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), ~Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is None assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask( Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z) & Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is None assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z) & Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is False x, y, z = symbols('x,y,z') assert ask(Q.finite(x**2)) is None assert ask(Q.finite(2**x)) is None assert ask(Q.finite(2**x), Q.finite(x)) is True assert ask(Q.finite(x**x)) is None assert ask(Q.finite(S.Half ** x)) is None assert ask(Q.finite(S.Half ** x), Q.positive(x)) is True assert ask(Q.finite(S.Half ** x), Q.negative(x)) is None assert ask(Q.finite(2**x), Q.negative(x)) is True assert ask(Q.finite(sqrt(x))) is None assert ask(Q.finite(2**x), ~Q.finite(x)) is False assert ask(Q.finite(x**2), ~Q.finite(x)) is False # sign function assert ask(Q.finite(sign(x))) is True assert ask(Q.finite(sign(x)), ~Q.finite(x)) is True # exponential functions assert ask(Q.finite(log(x))) is None assert ask(Q.finite(log(x)), Q.finite(x)) is True assert ask(Q.finite(exp(x))) is None assert ask(Q.finite(exp(x)), Q.finite(x)) is True assert ask(Q.finite(exp(2))) is True # trigonometric functions assert ask(Q.finite(sin(x))) is True assert ask(Q.finite(sin(x)), ~Q.finite(x)) is True assert ask(Q.finite(cos(x))) is True assert ask(Q.finite(cos(x)), ~Q.finite(x)) is True assert ask(Q.finite(2*sin(x))) is True assert ask(Q.finite(sin(x)**2)) is True assert ask(Q.finite(cos(x)**2)) is True assert ask(Q.finite(cos(x) + sin(x))) is True @XFAIL def test_bounded_xfail(): """We need to support relations in ask for this to work""" assert ask(Q.finite(sin(x)**x)) is True assert ask(Q.finite(cos(x)**x)) is True def test_commutative(): """By default objects are Q.commutative that is why it returns True for both key=True and key=False""" assert ask(Q.commutative(x)) is True assert ask(Q.commutative(x), ~Q.commutative(x)) is False assert ask(Q.commutative(x), Q.complex(x)) is True assert ask(Q.commutative(x), Q.imaginary(x)) is True assert ask(Q.commutative(x), Q.real(x)) is True assert ask(Q.commutative(x), Q.positive(x)) is True assert ask(Q.commutative(x), ~Q.commutative(y)) is True assert ask(Q.commutative(2*x)) is True assert ask(Q.commutative(2*x), ~Q.commutative(x)) is False assert ask(Q.commutative(x + 1)) is True assert ask(Q.commutative(x + 1), ~Q.commutative(x)) is False assert ask(Q.commutative(x**2)) is True assert ask(Q.commutative(x**2), ~Q.commutative(x)) is False assert ask(Q.commutative(log(x))) is True def test_complex(): assert ask(Q.complex(x)) is None assert ask(Q.complex(x), Q.complex(x)) is True assert ask(Q.complex(x), Q.complex(y)) is None assert ask(Q.complex(x), ~Q.complex(x)) is False assert ask(Q.complex(x), Q.real(x)) is True assert ask(Q.complex(x), ~Q.real(x)) is None assert ask(Q.complex(x), Q.rational(x)) is True assert ask(Q.complex(x), Q.irrational(x)) is True assert ask(Q.complex(x), Q.positive(x)) is True assert ask(Q.complex(x), Q.imaginary(x)) is True assert ask(Q.complex(x), Q.algebraic(x)) is True # a+b assert ask(Q.complex(x + 1), Q.complex(x)) is True assert ask(Q.complex(x + 1), Q.real(x)) is True assert ask(Q.complex(x + 1), Q.rational(x)) is True assert ask(Q.complex(x + 1), Q.irrational(x)) is True assert ask(Q.complex(x + 1), Q.imaginary(x)) is True assert ask(Q.complex(x + 1), Q.integer(x)) is True assert ask(Q.complex(x + 1), Q.even(x)) is True assert ask(Q.complex(x + 1), Q.odd(x)) is True assert ask(Q.complex(x + y), Q.complex(x) & Q.complex(y)) is True assert ask(Q.complex(x + y), Q.real(x) & Q.imaginary(y)) is True # a*x +b assert ask(Q.complex(2*x + 1), Q.complex(x)) is True assert ask(Q.complex(2*x + 1), Q.real(x)) is True assert ask(Q.complex(2*x + 1), Q.positive(x)) is True assert ask(Q.complex(2*x + 1), Q.rational(x)) is True assert ask(Q.complex(2*x + 1), Q.irrational(x)) is True assert ask(Q.complex(2*x + 1), Q.imaginary(x)) is True assert ask(Q.complex(2*x + 1), Q.integer(x)) is True assert ask(Q.complex(2*x + 1), Q.even(x)) is True assert ask(Q.complex(2*x + 1), Q.odd(x)) is True # x**2 assert ask(Q.complex(x**2), Q.complex(x)) is True assert ask(Q.complex(x**2), Q.real(x)) is True assert ask(Q.complex(x**2), Q.positive(x)) is True assert ask(Q.complex(x**2), Q.rational(x)) is True assert ask(Q.complex(x**2), Q.irrational(x)) is True assert ask(Q.complex(x**2), Q.imaginary(x)) is True assert ask(Q.complex(x**2), Q.integer(x)) is True assert ask(Q.complex(x**2), Q.even(x)) is True assert ask(Q.complex(x**2), Q.odd(x)) is True # 2**x assert ask(Q.complex(2**x), Q.complex(x)) is True assert ask(Q.complex(2**x), Q.real(x)) is True assert ask(Q.complex(2**x), Q.positive(x)) is True assert ask(Q.complex(2**x), Q.rational(x)) is True assert ask(Q.complex(2**x), Q.irrational(x)) is True assert ask(Q.complex(2**x), Q.imaginary(x)) is True assert ask(Q.complex(2**x), Q.integer(x)) is True assert ask(Q.complex(2**x), Q.even(x)) is True assert ask(Q.complex(2**x), Q.odd(x)) is True assert ask(Q.complex(x**y), Q.complex(x) & Q.complex(y)) is True # trigonometric expressions assert ask(Q.complex(sin(x))) is True assert ask(Q.complex(sin(2*x + 1))) is True assert ask(Q.complex(cos(x))) is True assert ask(Q.complex(cos(2*x + 1))) is True # exponential assert ask(Q.complex(exp(x))) is True assert ask(Q.complex(exp(x))) is True # Q.complexes assert ask(Q.complex(Abs(x))) is True assert ask(Q.complex(re(x))) is True assert ask(Q.complex(im(x))) is True def test_even_query(): assert ask(Q.even(x)) is None assert ask(Q.even(x), Q.integer(x)) is None assert ask(Q.even(x), ~Q.integer(x)) is False assert ask(Q.even(x), Q.rational(x)) is None assert ask(Q.even(x), Q.positive(x)) is None assert ask(Q.even(2*x)) is None assert ask(Q.even(2*x), Q.integer(x)) is True assert ask(Q.even(2*x), Q.even(x)) is True assert ask(Q.even(2*x), Q.irrational(x)) is False assert ask(Q.even(2*x), Q.odd(x)) is True assert ask(Q.even(2*x), ~Q.integer(x)) is None assert ask(Q.even(3*x), Q.integer(x)) is None assert ask(Q.even(3*x), Q.even(x)) is True assert ask(Q.even(3*x), Q.odd(x)) is False assert ask(Q.even(x + 1), Q.odd(x)) is True assert ask(Q.even(x + 1), Q.even(x)) is False assert ask(Q.even(x + 2), Q.odd(x)) is False assert ask(Q.even(x + 2), Q.even(x)) is True assert ask(Q.even(7 - x), Q.odd(x)) is True assert ask(Q.even(7 + x), Q.odd(x)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.even(y)) is False assert ask(Q.even(x + y), Q.even(x) & Q.even(y)) is True assert ask(Q.even(2*x + 1), Q.integer(x)) is False assert ask(Q.even(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.even(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.even(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is True assert ask(Q.even(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.even(Abs(x)), Q.even(x)) is True assert ask(Q.even(Abs(x)), ~Q.even(x)) is None assert ask(Q.even(re(x)), Q.even(x)) is True assert ask(Q.even(re(x)), ~Q.even(x)) is None assert ask(Q.even(im(x)), Q.even(x)) is True assert ask(Q.even(im(x)), Q.real(x)) is True assert ask(Q.even((-1)**n), Q.integer(n)) is False assert ask(Q.even(k**2), Q.even(k)) is True assert ask(Q.even(n**2), Q.odd(n)) is False assert ask(Q.even(2**k), Q.even(k)) is None assert ask(Q.even(x**2)) is None assert ask(Q.even(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is False assert ask(Q.even(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.even(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.even(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(k**x), Q.even(k)) is None assert ask(Q.even(n**x), Q.odd(n)) is None assert ask(Q.even(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.even(x*x), Q.integer(x)) is None assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.odd(y)) is True assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True assert ask(Q.even(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True def test_evenness_in_ternary_integer_product_with_even(): assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_extended_real(): assert ask(Q.extended_real(x), Q.positive(x)) is True assert ask(Q.extended_real(-x), Q.positive(x)) is True assert ask(Q.extended_real(-x), Q.negative(x)) is True assert ask(Q.extended_real(x + S.Infinity), Q.real(x)) is True def test_rational(): assert ask(Q.rational(x), Q.integer(x)) is True assert ask(Q.rational(x), Q.irrational(x)) is False assert ask(Q.rational(x), Q.real(x)) is None assert ask(Q.rational(x), Q.positive(x)) is None assert ask(Q.rational(x), Q.negative(x)) is None assert ask(Q.rational(x), Q.nonzero(x)) is None assert ask(Q.rational(x), ~Q.algebraic(x)) is False assert ask(Q.rational(2*x), Q.rational(x)) is True assert ask(Q.rational(2*x), Q.integer(x)) is True assert ask(Q.rational(2*x), Q.even(x)) is True assert ask(Q.rational(2*x), Q.odd(x)) is True assert ask(Q.rational(2*x), Q.irrational(x)) is False assert ask(Q.rational(x/2), Q.rational(x)) is True assert ask(Q.rational(x/2), Q.integer(x)) is True assert ask(Q.rational(x/2), Q.even(x)) is True assert ask(Q.rational(x/2), Q.odd(x)) is True assert ask(Q.rational(x/2), Q.irrational(x)) is False assert ask(Q.rational(1/x), Q.rational(x)) is True assert ask(Q.rational(1/x), Q.integer(x)) is True assert ask(Q.rational(1/x), Q.even(x)) is True assert ask(Q.rational(1/x), Q.odd(x)) is True assert ask(Q.rational(1/x), Q.irrational(x)) is False assert ask(Q.rational(2/x), Q.rational(x)) is True assert ask(Q.rational(2/x), Q.integer(x)) is True assert ask(Q.rational(2/x), Q.even(x)) is True assert ask(Q.rational(2/x), Q.odd(x)) is True assert ask(Q.rational(2/x), Q.irrational(x)) is False assert ask(Q.rational(x), ~Q.algebraic(x)) is False # with multiple symbols assert ask(Q.rational(x*y), Q.irrational(x) & Q.irrational(y)) is None assert ask(Q.rational(y/x), Q.rational(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.integer(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.even(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.odd(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.irrational(x) & Q.rational(y)) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.rational(f(7))) is False assert ask(Q.rational(f(7, evaluate=False))) is False assert ask(Q.rational(f(0, evaluate=False))) is True assert ask(Q.rational(f(x)), Q.rational(x)) is None assert ask(Q.rational(f(x)), Q.rational(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.rational(g(7))) is False assert ask(Q.rational(g(7, evaluate=False))) is False assert ask(Q.rational(g(1, evaluate=False))) is True assert ask(Q.rational(g(x)), Q.rational(x)) is None assert ask(Q.rational(g(x)), Q.rational(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.rational(h(7))) is False assert ask(Q.rational(h(7, evaluate=False))) is False assert ask(Q.rational(h(x)), Q.rational(x)) is False def test_hermitian(): assert ask(Q.hermitian(x)) is None assert ask(Q.hermitian(x), Q.antihermitian(x)) is False assert ask(Q.hermitian(x), Q.imaginary(x)) is False assert ask(Q.hermitian(x), Q.prime(x)) is True assert ask(Q.hermitian(x), Q.real(x)) is True assert ask(Q.hermitian(x + 1), Q.antihermitian(x)) is False assert ask(Q.hermitian(x + 1), Q.complex(x)) is None assert ask(Q.hermitian(x + 1), Q.hermitian(x)) is True assert ask(Q.hermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.hermitian(x + 1), Q.real(x)) is True assert ask(Q.hermitian(x + I), Q.antihermitian(x)) is None assert ask(Q.hermitian(x + I), Q.complex(x)) is None assert ask(Q.hermitian(x + I), Q.hermitian(x)) is False assert ask(Q.hermitian(x + I), Q.imaginary(x)) is None assert ask(Q.hermitian(x + I), Q.real(x)) is False assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.real(y)) is False assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.hermitian(y)) is True assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.real(y)) is True assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.hermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.real(x) & Q.real(y)) is True assert ask(Q.hermitian(I*x), Q.antihermitian(x)) is True assert ask(Q.hermitian(I*x), Q.complex(x)) is None assert ask(Q.hermitian(I*x), Q.hermitian(x)) is False assert ask(Q.hermitian(I*x), Q.imaginary(x)) is True assert ask(Q.hermitian(I*x), Q.real(x)) is False assert ask(Q.hermitian(x*y), Q.hermitian(x) & Q.real(y)) is True assert ask( Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.hermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x)) is None assert ask(Q.antihermitian(x), Q.real(x)) is False assert ask(Q.antihermitian(x), Q.prime(x)) is False assert ask(Q.antihermitian(x + 1), Q.antihermitian(x)) is False assert ask(Q.antihermitian(x + 1), Q.complex(x)) is None assert ask(Q.antihermitian(x + 1), Q.hermitian(x)) is None assert ask(Q.antihermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.antihermitian(x + 1), Q.real(x)) is False assert ask(Q.antihermitian(x + I), Q.antihermitian(x)) is True assert ask(Q.antihermitian(x + I), Q.complex(x)) is None assert ask(Q.antihermitian(x + I), Q.hermitian(x)) is False assert ask(Q.antihermitian(x + I), Q.imaginary(x)) is True assert ask(Q.antihermitian(x + I), Q.real(x)) is False assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y) ) is True assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.antihermitian(x) & Q.real(y) ) is False assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.hermitian(y) ) is None assert ask( Q.antihermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.real(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.antihermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.real(x) & Q.real(y)) is False assert ask(Q.antihermitian(I*x), Q.real(x)) is True assert ask(Q.antihermitian(I*x), Q.antihermitian(x)) is False assert ask(Q.antihermitian(I*x), Q.complex(x)) is None assert ask(Q.antihermitian(x*y), Q.antihermitian(x) & Q.real(y)) is True assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.antihermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is True def test_imaginary(): assert ask(Q.imaginary(x)) is None assert ask(Q.imaginary(x), Q.real(x)) is False assert ask(Q.imaginary(x), Q.prime(x)) is False assert ask(Q.imaginary(x + 1), Q.real(x)) is False assert ask(Q.imaginary(x + 1), Q.imaginary(x)) is False assert ask(Q.imaginary(x + I), Q.real(x)) is False assert ask(Q.imaginary(x + I), Q.imaginary(x)) is True assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.complex(x) & Q.real(y)) is None assert ask( Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.imaginary(I*x), Q.real(x)) is True assert ask(Q.imaginary(I*x), Q.imaginary(x)) is False assert ask(Q.imaginary(I*x), Q.complex(x)) is None assert ask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True assert ask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(I**x), Q.negative(x)) is None assert ask(Q.imaginary(I**x), Q.positive(x)) is None assert ask(Q.imaginary(I**x), Q.even(x)) is False assert ask(Q.imaginary(I**x), Q.odd(x)) is True assert ask(Q.imaginary(I**x), Q.imaginary(x)) is False assert ask(Q.imaginary((2*I)**x), Q.imaginary(x)) is False assert ask(Q.imaginary(x**0), Q.imaginary(x)) is False assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(y) & Q.integer(x)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.odd(y)) is True assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.even(y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.integer(y)) is False assert ask(Q.imaginary(x**y), Q.positive(x) & Q.real(y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y) & ~Q.rational(y)) is False assert ask(Q.imaginary(x**y), Q.integer(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & Q.integer(2*y)) is True assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & Q.integer(2*y)) is None # logarithm assert ask(Q.imaginary(log(I))) is True assert ask(Q.imaginary(log(2*I))) is False assert ask(Q.imaginary(log(I + 1))) is False assert ask(Q.imaginary(log(x)), Q.complex(x)) is None assert ask(Q.imaginary(log(x)), Q.imaginary(x)) is None assert ask(Q.imaginary(log(x)), Q.positive(x)) is False assert ask(Q.imaginary(log(exp(x))), Q.complex(x)) is None assert ask(Q.imaginary(log(exp(x))), Q.imaginary(x)) is None # zoo/I/a+I*b assert ask(Q.imaginary(log(exp(I)))) is True # exponential assert ask(Q.imaginary(exp(x)**x), Q.imaginary(x)) is False eq = Pow(exp(pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.even(x)) is False eq = Pow(exp(pi*I*x/2, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.odd(x)) is True assert ask(Q.imaginary(exp(3*I*pi*x)**x), Q.integer(x)) is False assert ask(Q.imaginary(exp(2*pi*I, evaluate=False))) is False assert ask(Q.imaginary(exp(pi*I/2, evaluate=False))) is True # issue 7886 assert ask(Q.imaginary(Pow(x, Rational(1, 4))), Q.real(x) & Q.negative(x)) is False def test_integer(): assert ask(Q.integer(x)) is None assert ask(Q.integer(x), Q.integer(x)) is True assert ask(Q.integer(x), ~Q.integer(x)) is False assert ask(Q.integer(x), ~Q.real(x)) is False assert ask(Q.integer(x), ~Q.positive(x)) is None assert ask(Q.integer(x), Q.even(x) | Q.odd(x)) is True assert ask(Q.integer(2*x), Q.integer(x)) is True assert ask(Q.integer(2*x), Q.even(x)) is True assert ask(Q.integer(2*x), Q.prime(x)) is True assert ask(Q.integer(2*x), Q.rational(x)) is None assert ask(Q.integer(2*x), Q.real(x)) is None assert ask(Q.integer(sqrt(2)*x), Q.integer(x)) is False assert ask(Q.integer(sqrt(2)*x), Q.irrational(x)) is None assert ask(Q.integer(x/2), Q.odd(x)) is False assert ask(Q.integer(x/2), Q.even(x)) is True assert ask(Q.integer(x/3), Q.odd(x)) is None assert ask(Q.integer(x/3), Q.even(x)) is None def test_negative(): assert ask(Q.negative(x), Q.negative(x)) is True assert ask(Q.negative(x), Q.positive(x)) is False assert ask(Q.negative(x), ~Q.real(x)) is False assert ask(Q.negative(x), Q.prime(x)) is False assert ask(Q.negative(x), ~Q.prime(x)) is None assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(-x), ~Q.positive(x)) is None assert ask(Q.negative(-x), Q.negative(x)) is False assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(x - 1), Q.negative(x)) is True assert ask(Q.negative(x + y)) is None assert ask(Q.negative(x + y), Q.negative(x)) is None assert ask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.negative(x + y), Q.negative(x) & Q.nonpositive(y)) is True assert ask(Q.negative(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.negative(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.negative(-I + I*(cos(2)**2 + sin(2)**2))) is None assert ask(Q.negative(x**2)) is None assert ask(Q.negative(x**2), Q.real(x)) is False assert ask(Q.negative(x**1.4), Q.real(x)) is None assert ask(Q.negative(x**I), Q.positive(x)) is None assert ask(Q.negative(x*y)) is None assert ask(Q.negative(x*y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.negative(x*y), Q.positive(x) & Q.negative(y)) is True assert ask(Q.negative(x*y), Q.complex(x) & Q.complex(y)) is None assert ask(Q.negative(x**y)) is None assert ask(Q.negative(x**y), Q.negative(x) & Q.even(y)) is False assert ask(Q.negative(x**y), Q.negative(x) & Q.odd(y)) is True assert ask(Q.negative(x**y), Q.positive(x) & Q.integer(y)) is False assert ask(Q.negative(Abs(x))) is False def test_nonzero(): assert ask(Q.nonzero(x)) is None assert ask(Q.nonzero(x), Q.real(x)) is None assert ask(Q.nonzero(x), Q.positive(x)) is True assert ask(Q.nonzero(x), Q.negative(x)) is True assert ask(Q.nonzero(x), Q.negative(x) | Q.positive(x)) is True assert ask(Q.nonzero(x + y)) is None assert ask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.nonzero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.nonzero(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.nonzero(2*x)) is None assert ask(Q.nonzero(2*x), Q.positive(x)) is True assert ask(Q.nonzero(2*x), Q.negative(x)) is True assert ask(Q.nonzero(x*y), Q.nonzero(x)) is None assert ask(Q.nonzero(x*y), Q.nonzero(x) & Q.nonzero(y)) is True assert ask(Q.nonzero(x**y), Q.nonzero(x)) is True assert ask(Q.nonzero(Abs(x))) is None assert ask(Q.nonzero(Abs(x)), Q.nonzero(x)) is True assert ask(Q.nonzero(log(exp(2*I)))) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.nonzero(cos(1)**2 + sin(1)**2 - 1)) is None def test_zero(): assert ask(Q.zero(x)) is None assert ask(Q.zero(x), Q.real(x)) is None assert ask(Q.zero(x), Q.positive(x)) is False assert ask(Q.zero(x), Q.negative(x)) is False assert ask(Q.zero(x), Q.negative(x) | Q.positive(x)) is False assert ask(Q.zero(x), Q.nonnegative(x) & Q.nonpositive(x)) is True assert ask(Q.zero(x + y)) is None assert ask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.zero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.zero(x + y), Q.negative(x) & Q.negative(y)) is False assert ask(Q.zero(2*x)) is None assert ask(Q.zero(2*x), Q.positive(x)) is False assert ask(Q.zero(2*x), Q.negative(x)) is False assert ask(Q.zero(x*y), Q.nonzero(x)) is None assert ask(Q.zero(Abs(x))) is None assert ask(Q.zero(Abs(x)), Q.zero(x)) is True assert ask(Q.integer(x), Q.zero(x)) is True assert ask(Q.even(x), Q.zero(x)) is True assert ask(Q.odd(x), Q.zero(x)) is False assert ask(Q.zero(x), Q.even(x)) is None assert ask(Q.zero(x), Q.odd(x)) is False assert ask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True def test_odd_query(): assert ask(Q.odd(x)) is None assert ask(Q.odd(x), Q.odd(x)) is True assert ask(Q.odd(x), Q.integer(x)) is None assert ask(Q.odd(x), ~Q.integer(x)) is False assert ask(Q.odd(x), Q.rational(x)) is None assert ask(Q.odd(x), Q.positive(x)) is None assert ask(Q.odd(-x), Q.odd(x)) is True assert ask(Q.odd(2*x)) is None assert ask(Q.odd(2*x), Q.integer(x)) is False assert ask(Q.odd(2*x), Q.odd(x)) is False assert ask(Q.odd(2*x), Q.irrational(x)) is False assert ask(Q.odd(2*x), ~Q.integer(x)) is None assert ask(Q.odd(3*x), Q.integer(x)) is None assert ask(Q.odd(x/3), Q.odd(x)) is None assert ask(Q.odd(x/3), Q.even(x)) is None assert ask(Q.odd(x + 1), Q.even(x)) is True assert ask(Q.odd(x + 2), Q.even(x)) is False assert ask(Q.odd(x + 2), Q.odd(x)) is True assert ask(Q.odd(3 - x), Q.odd(x)) is False assert ask(Q.odd(3 - x), Q.even(x)) is True assert ask(Q.odd(3 + x), Q.odd(x)) is False assert ask(Q.odd(3 + x), Q.even(x)) is True assert ask(Q.odd(x + y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y), Q.odd(x) & Q.even(y)) is True assert ask(Q.odd(x - y), Q.even(x) & Q.odd(y)) is True assert ask(Q.odd(x - y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is False assert ask(Q.odd(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.odd(2*x + 1), Q.integer(x)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.odd(y)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.even(y)) is False assert ask(Q.odd(2*x + y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*y), Q.odd(x) & Q.even(y)) is False assert ask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.odd(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.odd(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.odd(Abs(x)), Q.odd(x)) is True assert ask(Q.odd((-1)**n), Q.integer(n)) is True assert ask(Q.odd(k**2), Q.even(k)) is False assert ask(Q.odd(n**2), Q.odd(n)) is True assert ask(Q.odd(3**k), Q.even(k)) is None assert ask(Q.odd(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is True assert ask(Q.odd(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.odd(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.odd(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(k**x), Q.even(k)) is None assert ask(Q.odd(n**x), Q.odd(n)) is None assert ask(Q.odd(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*x), Q.integer(x)) is None assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.odd(y)) is False assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False assert ask(Q.odd(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False def test_oddness_in_ternary_integer_product_with_even(): assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_prime(): assert ask(Q.prime(x), Q.prime(x)) is True assert ask(Q.prime(x), ~Q.prime(x)) is False assert ask(Q.prime(x), Q.integer(x)) is None assert ask(Q.prime(x), ~Q.integer(x)) is False assert ask(Q.prime(2*x), Q.integer(x)) is None assert ask(Q.prime(x*y)) is None assert ask(Q.prime(x*y), Q.prime(x)) is None assert ask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.prime(4*x), Q.integer(x)) is False assert ask(Q.prime(4*x)) is None assert ask(Q.prime(x**2), Q.integer(x)) is False assert ask(Q.prime(x**2), Q.prime(x)) is False assert ask(Q.prime(x**y), Q.integer(x) & Q.integer(y)) is False def test_positive(): assert ask(Q.positive(x), Q.positive(x)) is True assert ask(Q.positive(x), Q.negative(x)) is False assert ask(Q.positive(x), Q.nonzero(x)) is None assert ask(Q.positive(-x), Q.positive(x)) is False assert ask(Q.positive(-x), Q.negative(x)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.nonnegative(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.positive(x + y), Q.positive(x) & Q.imaginary(y)) is False assert ask(Q.positive(2*x), Q.positive(x)) is True assumptions = Q.positive(x) & Q.negative(y) & Q.negative(z) & Q.positive(w) assert ask(Q.positive(x*y*z)) is None assert ask(Q.positive(x*y*z), assumptions) is True assert ask(Q.positive(-x*y*z), assumptions) is False assert ask(Q.positive(x**I), Q.positive(x)) is None assert ask(Q.positive(x**2), Q.positive(x)) is True assert ask(Q.positive(x**2), Q.negative(x)) is True assert ask(Q.positive(x**3), Q.negative(x)) is False assert ask(Q.positive(1/(1 + x**2)), Q.real(x)) is True assert ask(Q.positive(2**I)) is False assert ask(Q.positive(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.positive(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.positive(-I + I*(cos(2)**2 + sin(2)**2))) is None #exponential assert ask(Q.positive(exp(x)), Q.real(x)) is True assert ask(~Q.negative(exp(x)), Q.real(x)) is True assert ask(Q.positive(x + exp(x)), Q.real(x)) is None assert ask(Q.positive(exp(x)), Q.imaginary(x)) is None assert ask(Q.positive(exp(2*pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.negative(exp(pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.even(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.odd(x)) is False assert ask(Q.positive(exp(x*pi*I)), Q.real(x)) is None # logarithm assert ask(Q.positive(log(x)), Q.imaginary(x)) is False assert ask(Q.positive(log(x)), Q.negative(x)) is False assert ask(Q.positive(log(x)), Q.positive(x)) is None assert ask(Q.positive(log(x + 2)), Q.positive(x)) is True # factorial assert ask(Q.positive(factorial(x)), Q.integer(x) & Q.positive(x)) assert ask(Q.positive(factorial(x)), Q.integer(x)) is None #absolute value assert ask(Q.positive(Abs(x))) is None # Abs(0) = 0 assert ask(Q.positive(Abs(x)), Q.positive(x)) is True def test_nonpositive(): assert ask(Q.nonpositive(-1)) assert ask(Q.nonpositive(0)) assert ask(Q.nonpositive(1)) is False assert ask(~Q.positive(x), Q.nonpositive(x)) assert ask(Q.nonpositive(x), Q.positive(x)) is False assert ask(Q.nonpositive(sqrt(-1))) is False assert ask(Q.nonpositive(x), Q.imaginary(x)) is False def test_nonnegative(): assert ask(Q.nonnegative(-1)) is False assert ask(Q.nonnegative(0)) assert ask(Q.nonnegative(1)) assert ask(~Q.negative(x), Q.nonnegative(x)) assert ask(Q.nonnegative(x), Q.negative(x)) is False assert ask(Q.nonnegative(sqrt(-1))) is False assert ask(Q.nonnegative(x), Q.imaginary(x)) is False def test_real_basic(): assert ask(Q.real(x)) is None assert ask(Q.real(x), Q.real(x)) is True assert ask(Q.real(x), Q.nonzero(x)) is True assert ask(Q.real(x), Q.positive(x)) is True assert ask(Q.real(x), Q.negative(x)) is True assert ask(Q.real(x), Q.integer(x)) is True assert ask(Q.real(x), Q.even(x)) is True assert ask(Q.real(x), Q.prime(x)) is True assert ask(Q.real(x/sqrt(2)), Q.real(x)) is True assert ask(Q.real(x/sqrt(-2)), Q.real(x)) is False assert ask(Q.real(x + 1), Q.real(x)) is True assert ask(Q.real(x + I), Q.real(x)) is False assert ask(Q.real(x + I), Q.complex(x)) is None assert ask(Q.real(2*x), Q.real(x)) is True assert ask(Q.real(I*x), Q.real(x)) is False assert ask(Q.real(I*x), Q.imaginary(x)) is True assert ask(Q.real(I*x), Q.complex(x)) is None def test_real_pow(): assert ask(Q.real(x**2), Q.real(x)) is True assert ask(Q.real(sqrt(x)), Q.negative(x)) is False assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.imaginary(x) & Q.imaginary(y)) is None # I**I or (2*I)**I assert ask(Q.real(x**y), Q.imaginary(x) & Q.real(y)) is None # I**1 or I**0 assert ask(Q.real(x**y), Q.real(x) & Q.imaginary(y)) is None # could be exp(2*pi*I) or 2**I assert ask(Q.real(x**0), Q.imaginary(x)) is True assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.rational(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.odd(y)) is False assert ask(Q.real(x**y), Q.imaginary(x) & Q.even(y)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.rational(y/z) & Q.even(z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.rational(y/z) & Q.even(z) & Q.negative(x)) is False assert ask(Q.real(x**(y/z)), Q.real(x) & Q.integer(y/z)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.negative(x)) is False assert ask(Q.real((-I)**i), Q.imaginary(i)) is True assert ask(Q.real(I**i), Q.imaginary(i)) is True assert ask(Q.real(i**i), Q.imaginary(i)) is None # i might be 2*I assert ask(Q.real(x**i), Q.imaginary(i)) is None # x could be 0 assert ask(Q.real(x**(I*pi/log(x))), Q.real(x)) is True def test_real_functions(): # trigonometric functions assert ask(Q.real(sin(x))) is None assert ask(Q.real(cos(x))) is None assert ask(Q.real(sin(x)), Q.real(x)) is True assert ask(Q.real(cos(x)), Q.real(x)) is True # exponential function assert ask(Q.real(exp(x))) is None assert ask(Q.real(exp(x)), Q.real(x)) is True assert ask(Q.real(x + exp(x)), Q.real(x)) is True assert ask(Q.real(exp(2*pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I/2, evaluate=False))) is False # logarithm assert ask(Q.real(log(I))) is False assert ask(Q.real(log(2*I))) is False assert ask(Q.real(log(I + 1))) is False assert ask(Q.real(log(x)), Q.complex(x)) is None assert ask(Q.real(log(x)), Q.imaginary(x)) is False assert ask(Q.real(log(exp(x))), Q.imaginary(x)) is None # exp(2*pi*I) is 1, log(exp(pi*I)) is pi*I (disregarding periodicity) assert ask(Q.real(log(exp(x))), Q.complex(x)) is None eq = Pow(exp(2*pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.real(eq), Q.integer(x)) is True assert ask(Q.real(exp(x)**x), Q.imaginary(x)) is True assert ask(Q.real(exp(x)**x), Q.complex(x)) is None # Q.complexes assert ask(Q.real(re(x))) is True assert ask(Q.real(im(x))) is True def test_matrix(): # hermitian assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 - I, 3, I], [4, -I, 1]]))) == True assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 + I, 3, I], [4, -I, 1]]))) == False z = symbols('z', complex=True) assert ask(Q.hermitian(Matrix([[2, 2 + I, z], [2 - I, 3, I], [4, -I, 1]]))) == None assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))))) == True assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, I, 0), (-5, 0, 11))))) == False assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, z, 0), (-5, 0, 11))))) == None def test_algebraic(): assert ask(Q.algebraic(x)) is None assert ask(Q.algebraic(I)) is True assert ask(Q.algebraic(2*I)) is True assert ask(Q.algebraic(I/3)) is True assert ask(Q.algebraic(sqrt(7))) is True assert ask(Q.algebraic(2*sqrt(7))) is True assert ask(Q.algebraic(sqrt(7)/3)) is True assert ask(Q.algebraic(I*sqrt(3))) is True assert ask(Q.algebraic(sqrt(1 + I*sqrt(3)))) is True assert ask(Q.algebraic((1 + I*sqrt(3)**Rational(17, 31)))) is True assert ask(Q.algebraic((1 + I*sqrt(3)**(17/pi)))) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.algebraic(f(7))) is False assert ask(Q.algebraic(f(7, evaluate=False))) is False assert ask(Q.algebraic(f(0, evaluate=False))) is True assert ask(Q.algebraic(f(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(f(x)), Q.algebraic(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.algebraic(g(7))) is False assert ask(Q.algebraic(g(7, evaluate=False))) is False assert ask(Q.algebraic(g(1, evaluate=False))) is True assert ask(Q.algebraic(g(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(g(x)), Q.algebraic(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.algebraic(h(7))) is False assert ask(Q.algebraic(h(7, evaluate=False))) is False assert ask(Q.algebraic(h(x)), Q.algebraic(x)) is False assert ask(Q.algebraic(sqrt(sin(7)))) is False assert ask(Q.algebraic(sqrt(y + I*sqrt(7)))) is None assert ask(Q.algebraic(2.47)) is True assert ask(Q.algebraic(x), Q.transcendental(x)) is False assert ask(Q.transcendental(x), Q.algebraic(x)) is False def test_global(): """Test ask with global assumptions""" assert ask(Q.integer(x)) is None global_assumptions.add(Q.integer(x)) assert ask(Q.integer(x)) is True global_assumptions.clear() assert ask(Q.integer(x)) is None def test_custom_context(): """Test ask with custom assumptions context""" assert ask(Q.integer(x)) is None local_context = AssumptionsContext() local_context.add(Q.integer(x)) assert ask(Q.integer(x), context=local_context) is True assert ask(Q.integer(x)) is None def test_functions_in_assumptions(): assert ask(Q.negative(x), Q.real(x) >> Q.positive(x)) is False assert ask(Q.negative(x), Equivalent(Q.real(x), Q.positive(x))) is False assert ask(Q.negative(x), Xor(Q.real(x), Q.negative(x))) is False def test_composite_ask(): assert ask(Q.negative(x) & Q.integer(x), assumptions=Q.real(x) >> Q.positive(x)) is False def test_composite_proposition(): assert ask(True) is True assert ask(False) is False assert ask(~Q.negative(x), Q.positive(x)) is True assert ask(~Q.real(x), Q.commutative(x)) is None assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False assert ask(Q.negative(x) & Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True assert ask(Q.real(x) | Q.integer(x)) is None assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False assert ask(Implies( Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True assert ask(Equivalent(Q.integer(x), Q.even(x))) is None assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.real(x) | Q.integer(x)) is True def test_tautology(): assert ask(Q.real(x) | ~Q.real(x)) is True assert ask(Q.real(x) & ~Q.real(x)) is False def test_composite_assumptions(): assert ask(Q.real(x), Q.real(x) & Q.real(y)) is True assert ask(Q.positive(x), Q.positive(x) | Q.positive(y)) is None assert ask(Q.positive(x), Q.real(x) >> Q.positive(y)) is None assert ask(Q.real(x), ~(Q.real(x) >> Q.real(y))) is True def test_incompatible_resolutors(): class Prime2AskHandler(AskHandler): @staticmethod def Number(expr, assumptions): return True register_handler('prime', Prime2AskHandler) raises(ValueError, lambda: ask(Q.prime(4))) remove_handler('prime', Prime2AskHandler) class InconclusiveHandler(AskHandler): @staticmethod def Number(expr, assumptions): return None register_handler('prime', InconclusiveHandler) assert ask(Q.prime(3)) is True remove_handler('prime', InconclusiveHandler) def test_key_extensibility(): """test that you can add keys to the ask system at runtime""" # make sure the key is not defined raises(AttributeError, lambda: ask(Q.my_key(x))) class MyAskHandler(AskHandler): @staticmethod def Symbol(expr, assumptions): return True register_handler('my_key', MyAskHandler) assert ask(Q.my_key(x)) is True assert ask(Q.my_key(x + 1)) is None remove_handler('my_key', MyAskHandler) del Q.my_key raises(AttributeError, lambda: ask(Q.my_key(x))) def test_type_extensibility(): """test that new types can be added to the ask system at runtime We create a custom type MyType, and override ask Q.prime=True with handler MyAskHandler for this type TODO: test incompatible resolutors """ from sympy.core import Basic class MyType(Basic): pass class MyAskHandler(AskHandler): @staticmethod def MyType(expr, assumptions): return True a = MyType() register_handler(Q.prime, MyAskHandler) assert ask(Q.prime(a)) is True def test_single_fact_lookup(): known_facts = And(Implies(Q.integer, Q.rational), Implies(Q.rational, Q.real), Implies(Q.real, Q.complex)) known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex} known_facts_cnf = to_cnf(known_facts) mapping = single_fact_lookup(known_facts_keys, known_facts_cnf) assert mapping[Q.rational] == {Q.real, Q.rational, Q.complex} def test_compute_known_facts(): known_facts = And(Implies(Q.integer, Q.rational), Implies(Q.rational, Q.real), Implies(Q.real, Q.complex)) known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex} compute_known_facts(known_facts, known_facts_keys) @slow def test_known_facts_consistent(): """"Test that ask_generated.py is up-to-date""" from sympy.assumptions.ask import get_known_facts, get_known_facts_keys from os.path import abspath, dirname, join filename = join(dirname(dirname(abspath(__file__))), 'ask_generated.py') with open(filename, 'r') as f: assert f.read() == \ compute_known_facts(get_known_facts(), get_known_facts_keys()) def test_Add_queries(): assert ask(Q.prime(12345678901234567890 + (cos(1)**2 + sin(1)**2))) is True assert ask(Q.even(Add(S(2), S(2), evaluate=0))) is True assert ask(Q.prime(Add(S(2), S(2), evaluate=0))) is False assert ask(Q.integer(Add(S(2), S(2), evaluate=0))) is True def test_positive_assuming(): with assuming(Q.positive(x + 1)): assert not ask(Q.positive(x)) def test_issue_5421(): raises(TypeError, lambda: ask(pi/log(x), Q.real)) def test_issue_3906(): raises(TypeError, lambda: ask(Q.positive)) def test_issue_5833(): assert ask(Q.positive(log(x)**2), Q.positive(x)) is None assert ask(~Q.negative(log(x)**2), Q.positive(x)) is True def test_issue_6732(): raises(ValueError, lambda: ask(Q.positive(x), Q.positive(x) & Q.negative(x))) raises(ValueError, lambda: ask(Q.negative(x), Q.positive(x) & Q.negative(x))) def test_issue_7246(): assert ask(Q.positive(atan(p)), Q.positive(p)) is True assert ask(Q.positive(atan(p)), Q.negative(p)) is False assert ask(Q.positive(atan(p)), Q.zero(p)) is False assert ask(Q.positive(atan(x))) is None assert ask(Q.positive(asin(p)), Q.positive(p)) is None assert ask(Q.positive(asin(p)), Q.zero(p)) is None assert ask(Q.positive(asin(Rational(1, 7)))) is True assert ask(Q.positive(asin(x)), Q.positive(x) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(asin(x)), Q.negative(x) & Q.nonnegative(x + 1)) is False assert ask(Q.positive(acos(p)), Q.positive(p)) is None assert ask(Q.positive(acos(Rational(1, 7)))) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x + 1) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x - 1)) is None assert ask(Q.positive(acot(x)), Q.positive(x)) is True assert ask(Q.positive(acot(x)), Q.real(x)) is True assert ask(Q.positive(acot(x)), Q.imaginary(x)) is False assert ask(Q.positive(acot(x))) is None @XFAIL def test_issue_7246_failing(): #Move this test to test_issue_7246 once #the new assumptions module is improved. assert ask(Q.positive(acos(x)), Q.zero(x)) is True def test_deprecated_Q_bounded(): with warns_deprecated_sympy(): Q.bounded def test_deprecated_Q_infinity(): with warns_deprecated_sympy(): Q.infinity def test_check_old_assumption(): x = symbols('x', real=True) assert ask(Q.real(x)) is True assert ask(Q.imaginary(x)) is False assert ask(Q.complex(x)) is True x = symbols('x', imaginary=True) assert ask(Q.real(x)) is False assert ask(Q.imaginary(x)) is True assert ask(Q.complex(x)) is True x = symbols('x', complex=True) assert ask(Q.real(x)) is None assert ask(Q.complex(x)) is True x = symbols('x', positive=True, finite=True) assert ask(Q.positive(x)) is True assert ask(Q.negative(x)) is False assert ask(Q.real(x)) is True x = symbols('x', commutative=False) assert ask(Q.commutative(x)) is False x = symbols('x', negative=True) assert ask(Q.positive(x)) is False assert ask(Q.negative(x)) is True x = symbols('x', nonnegative=True) assert ask(Q.negative(x)) is False assert ask(Q.positive(x)) is None assert ask(Q.zero(x)) is None x = symbols('x', finite=True) assert ask(Q.finite(x)) is True x = symbols('x', prime=True) assert ask(Q.prime(x)) is True assert ask(Q.composite(x)) is False x = symbols('x', composite=True) assert ask(Q.prime(x)) is False assert ask(Q.composite(x)) is True x = symbols('x', even=True) assert ask(Q.even(x)) is True assert ask(Q.odd(x)) is False x = symbols('x', odd=True) assert ask(Q.even(x)) is False assert ask(Q.odd(x)) is True x = symbols('x', nonzero=True) assert ask(Q.nonzero(x)) is True assert ask(Q.zero(x)) is False x = symbols('x', zero=True) assert ask(Q.zero(x)) is True x = symbols('x', integer=True) assert ask(Q.integer(x)) is True x = symbols('x', rational=True) assert ask(Q.rational(x)) is True assert ask(Q.irrational(x)) is False x = symbols('x', irrational=True) assert ask(Q.irrational(x)) is True assert ask(Q.rational(x)) is False def test_issue_9636(): assert ask(Q.integer(1.0)) is False assert ask(Q.prime(3.0)) is False assert ask(Q.composite(4.0)) is False assert ask(Q.even(2.0)) is False assert ask(Q.odd(3.0)) is False def test_autosimp_used_to_fail(): # See issue #9807 assert ask(Q.imaginary(0**I)) is False assert ask(Q.imaginary(0**(-I))) is False assert ask(Q.real(0**I)) is False assert ask(Q.real(0**(-I))) is False
5aa5c8dea53f4d327b9c903c9b767eed90182a80294fc7fd5ecd2ed9b4f0cbf7
# Stub __init__.py for sympy.functions.combinatorial
79bc3d2aaa8624569f739d42936c3857d80abc2e076598bd29cc6e5cbe9e5bdd
""" This module implements some special functions that commonly appear in combinatorial contexts (e.g. in power series); in particular, sequences of rational numbers such as Bernoulli and Fibonacci numbers. Factorials, binomial coefficients and related functions are located in the separate 'factorials' module. """ from __future__ import print_function, division from sympy.core import S, Symbol, Rational, Integer, Add, Dummy from sympy.core.cache import cacheit from sympy.core.compatibility import as_int, SYMPY_INTS, range from sympy.core.function import Function, expand_mul from sympy.core.logic import fuzzy_not from sympy.core.numbers import E, pi from sympy.core.relational import LessThan, StrictGreaterThan from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.ntheory import isprime from sympy.ntheory.primetest import is_square from sympy.utilities.memoization import recurrence_memo from mpmath import bernfrac, workprec from mpmath.libmp import ifib as _ifib def _product(a, b): p = 1 for k in range(a, b + 1): p *= k return p # Dummy symbol used for computing polynomial sequences _sym = Symbol('x') #----------------------------------------------------------------------------# # # # Carmichael numbers # # # #----------------------------------------------------------------------------# class carmichael(Function): """ Carmichael Numbers: Certain cryptographic algorithms make use of big prime numbers. However, checking whether a big number is prime is not so easy. Randomized prime number checking tests exist that offer a high degree of confidence of accurate determination at low cost, such as the Fermat test. Let 'a' be a random number between 2 and n - 1, where n is the number whose primality we are testing. Then, n is probably prime if it satisfies the modular arithmetic congruence relation : a^(n-1) = 1(mod n). (where mod refers to the modulo operation) If a number passes the Fermat test several times, then it is prime with a high probability. Unfortunately, certain composite numbers (non-primes) still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers. A Carmichael number will pass a Fermat primality test to every base b relatively prime to the number, even though it is not actually prime. This makes tests based on Fermat's Little Theorem less effective than strong probable prime tests such as the Baillie-PSW primality test and the Miller-Rabin primality test. mr functions given in sympy/sympy/ntheory/primetest.py will produce wrong results for each and every carmichael number. Examples ======== >>> from sympy import carmichael >>> carmichael.find_first_n_carmichaels(5) [561, 1105, 1729, 2465, 2821] >>> carmichael.is_prime(2465) False >>> carmichael.is_prime(1729) False >>> carmichael.find_carmichael_numbers_in_range(0, 562) [561] >>> carmichael.find_carmichael_numbers_in_range(0,1000) [561] >>> carmichael.find_carmichael_numbers_in_range(0,2000) [561, 1105, 1729] References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_number .. [2] https://en.wikipedia.org/wiki/Fermat_primality_test .. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents """ @staticmethod def is_perfect_square(n): return is_square(n) @staticmethod def divides(p, n): return n % p == 0 @staticmethod def is_prime(n): return isprime(n) @staticmethod def is_carmichael(n): if n >= 0: if (n == 1) or (carmichael.is_prime(n)) or (n % 2 == 0): return False divisors = list([1, n]) # get divisors for i in range(3, n // 2 + 1, 2): if n % i == 0: divisors.append(i) for i in divisors: if carmichael.is_perfect_square(i) and i != 1: return False if carmichael.is_prime(i): if not carmichael.divides(i - 1, n - 1): return False return True else: raise ValueError('The provided number must be greater than or equal to 0') @staticmethod def find_carmichael_numbers_in_range(x, y): if 0 <= x <= y: if x % 2 == 0: return list([i for i in range(x + 1, y, 2) if carmichael.is_carmichael(i)]) else: return list([i for i in range(x, y, 2) if carmichael.is_carmichael(i)]) else: raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y') @staticmethod def find_first_n_carmichaels(n): i = 1 carmichaels = list() while len(carmichaels) < n: if carmichael.is_carmichael(i): carmichaels.append(i) i += 2 return carmichaels #----------------------------------------------------------------------------# # # # Fibonacci numbers # # # #----------------------------------------------------------------------------# class fibonacci(Function): r""" Fibonacci numbers / Fibonacci polynomials The Fibonacci numbers are the integer sequence defined by the initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence relation `F_n = F_{n-1} + F_{n-2}`. This definition extended to arbitrary real and complex arguments using the formula .. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5} The Fibonacci polynomials are defined by `F_1(x) = 1`, `F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`. For all positive integers `n`, `F_n(1) = F_n`. * ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n` * ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)` Examples ======== >>> from sympy import fibonacci, Symbol >>> [fibonacci(x) for x in range(11)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fibonacci(5, Symbol('t')) t**4 + 3*t**2 + 1 See Also ======== bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Fibonacci_number .. [2] http://mathworld.wolfram.com/FibonacciNumber.html """ @staticmethod def _fib(n): return _ifib(n) @staticmethod @recurrence_memo([None, S.One, _sym]) def _fibpoly(n, prev): return (prev[-2] + _sym*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: if sym is None: n = int(n) if n < 0: return S.NegativeOne**(n + 1) * fibonacci(-n) else: return Integer(cls._fib(n)) else: if n < 1: raise ValueError("Fibonacci polynomials are defined " "only for positive integer indices.") return cls._fibpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 def _eval_rewrite_as_GoldenRatio(self,n, **kwargs): return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1) #----------------------------------------------------------------------------# # # # Lucas numbers # # # #----------------------------------------------------------------------------# class lucas(Function): """ Lucas numbers Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values `L_0 = 2` and `L_1 = 1`. * ``lucas(n)`` gives the `n^{th}` Lucas number Examples ======== >>> from sympy import lucas >>> [lucas(x) for x in range(11)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123] See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Lucas_number .. [2] http://mathworld.wolfram.com/LucasNumber.html """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n.is_Integer: return fibonacci(n + 1) + fibonacci(n - 1) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n) #----------------------------------------------------------------------------# # # # Tribonacci numbers # # # #----------------------------------------------------------------------------# class tribonacci(Function): r""" Tribonacci numbers / Tribonacci polynomials The Tribonacci numbers are the integer sequence defined by the initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`. The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`, `T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)` for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`. * ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n` * ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)` Examples ======== >>> from sympy import tribonacci, Symbol >>> [tribonacci(x) for x in range(11)] [0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149] >>> tribonacci(5, Symbol('t')) t**8 + 3*t**5 + 3*t**2 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers .. [2] http://mathworld.wolfram.com/TribonacciNumber.html .. [3] https://oeis.org/A000073 """ @staticmethod @recurrence_memo([S.Zero, S.One, S.One]) def _trib(n, prev): return (prev[-3] + prev[-2] + prev[-1]) @staticmethod @recurrence_memo([S.Zero, S.One, _sym**2]) def _tribpoly(n, prev): return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: n = int(n) if n < 0: raise ValueError("Tribonacci polynomials are defined " "only for non-negative integer indices.") if sym is None: return Integer(cls._trib(n)) else: return cls._tribpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 Tn = (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) return Tn def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs): b = cbrt(586 + 102*sqrt(33)) Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4) return floor(Tn + S.Half) #----------------------------------------------------------------------------# # # # Bernoulli numbers # # # #----------------------------------------------------------------------------# class bernoulli(Function): r""" Bernoulli numbers / Bernoulli polynomials The Bernoulli numbers are a sequence of rational numbers defined by `B_0 = 1` and the recursive relation (`n > 0`): .. math :: 0 = \sum_{k=0}^n \binom{n+1}{k} B_k They are also commonly defined by their exponential generating function, which is `\frac{x}{e^x - 1}`. For odd indices > 1, the Bernoulli numbers are zero. The Bernoulli polynomials satisfy the analogous formula: .. math :: B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k} Bernoulli numbers and Bernoulli polynomials are related as `B_n(0) = B_n`. We compute Bernoulli numbers using Ramanujan's formula: .. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}} where: .. math :: A(n) = \begin{cases} \frac{n+3}{3} & n \equiv 0\ \text{or}\ 2 \pmod{6} \\ -\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases} and: .. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k} This formula is similar to the sum given in the definition, but cuts 2/3 of the terms. For Bernoulli polynomials, we use the formula in the definition. * ``bernoulli(n)`` gives the nth Bernoulli number, `B_n` * ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)` Examples ======== >>> from sympy import bernoulli >>> [bernoulli(n) for n in range(11)] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> bernoulli(1000001) 0 See Also ======== bell, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_number .. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial .. [3] http://mathworld.wolfram.com/BernoulliNumber.html .. [4] http://mathworld.wolfram.com/BernoulliPolynomial.html """ # Calculates B_n for positive even n @staticmethod def _calc_bernoulli(n): s = 0 a = int(binomial(n + 3, n - 6)) for j in range(1, n//6 + 1): s += a * bernoulli(n - 6*j) # Avoid computing each binomial coefficient from scratch a *= _product(n - 6 - 6*j + 1, n - 6*j) a //= _product(6*j + 4, 6*j + 9) if n % 6 == 4: s = -Rational(n + 3, 6) - s else: s = Rational(n + 3, 3) - s return s / binomial(n + 3, n) # We implement a specialized memoization scheme to handle each # case modulo 6 separately _cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)} _highest = {0: 0, 2: 2, 4: 4} @classmethod def eval(cls, n, sym=None): if n.is_Number: if n.is_Integer and n.is_nonnegative: if n.is_zero: return S.One elif n is S.One: if sym is None: return Rational(-1, 2) else: return sym - S.Half # Bernoulli numbers elif sym is None: if n.is_odd: return S.Zero n = int(n) # Use mpmath for enormous Bernoulli numbers if n > 500: p, q = bernfrac(n) return Rational(int(p), int(q)) case = n % 6 highest_cached = cls._highest[case] if n <= highest_cached: return cls._cache[n] # To avoid excessive recursion when, say, bernoulli(1000) is # requested, calculate and cache the entire sequence ... B_988, # B_994, B_1000 in increasing order for i in range(highest_cached + 6, n + 6, 6): b = cls._calc_bernoulli(i) cls._cache[i] = b cls._highest[case] = i return b # Bernoulli polynomials else: n, result = int(n), [] for k in range(n + 1): result.append(binomial(n, k)*cls(k)*sym**(n - k)) return Add(*result) else: raise ValueError("Bernoulli numbers are defined only" " for nonnegative integer indices.") if sym is None: if n.is_odd and (n - 1).is_positive: return S.Zero #----------------------------------------------------------------------------# # # # Bell numbers # # # #----------------------------------------------------------------------------# class bell(Function): r""" Bell numbers / Bell polynomials The Bell numbers satisfy `B_0 = 1` and .. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k. They are also given by: .. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}. The Bell polynomials are given by `B_0(x) = 1` and .. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x). The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * ``bell(n)`` gives the `n^{th}` Bell number, `B_n`. * ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`. * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. Notes ===== Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation. Examples ======== >>> from sympy import bell, Symbol, symbols >>> [bell(n) for n in range(11)] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] >>> bell(30) 846749014511809332450147 >>> bell(4, Symbol('t')) t**4 + 6*t**3 + 7*t**2 + t >>> bell(6, 2, symbols('x:6')[1:]) 6*x1*x5 + 15*x2*x4 + 10*x3**2 See Also ======== bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bell_number .. [2] http://mathworld.wolfram.com/BellNumber.html .. [3] http://mathworld.wolfram.com/BellPolynomial.html """ @staticmethod @recurrence_memo([1, 1]) def _bell(n, prev): s = 1 a = 1 for k in range(1, n): a = a * (n - k) // k s += a * prev[k] return s @staticmethod @recurrence_memo([S.One, _sym]) def _bell_poly(n, prev): s = 1 a = 1 for k in range(2, n + 1): a = a * (n - k + 1) // (k - 1) s += a * prev[k - 1] return expand_mul(_sym * s) @staticmethod def _bell_incomplete_poly(n, k, symbols): r""" The second kind of Bell polynomials (incomplete Bell polynomials). Calculated by recurrence formula: .. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) = \sum_{m=1}^{n-k+1} \x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k}) where `B_{0,0} = 1;` `B_{n,0} = 0; for n \ge 1` `B_{0,k} = 0; for k \ge 1` """ if (n == 0) and (k == 0): return S.One elif (n == 0) or (k == 0): return S.Zero s = S.Zero a = S.One for m in range(1, n - k + 2): s += a * bell._bell_incomplete_poly( n - m, k - 1, symbols) * symbols[m - 1] a = a * (n - m) / m return expand_mul(s) @classmethod def eval(cls, n, k_sym=None, symbols=None): if n is S.Infinity: if k_sym is None: return S.Infinity else: raise ValueError("Bell polynomial is not defined") if n.is_negative or n.is_integer is False: raise ValueError("a non-negative integer expected") if n.is_Integer and n.is_nonnegative: if k_sym is None: return Integer(cls._bell(int(n))) elif symbols is None: return cls._bell_poly(int(n)).subs(_sym, k_sym) else: r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols) return r def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs): from sympy import Sum if (k_sym is not None) or (symbols is not None): return self # Dobinski's formula if not n.is_nonnegative: return self k = Dummy('k', integer=True, nonnegative=True) return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity)) #----------------------------------------------------------------------------# # # # Harmonic numbers # # # #----------------------------------------------------------------------------# class harmonic(Function): r""" Harmonic numbers The nth harmonic number is given by `\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`. More generally: .. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m} As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`, the Riemann zeta function. * ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n` * ``harmonic(n, m)`` gives the nth generalized harmonic number of order `m`, `\operatorname{H}_{n,m}`, where ``harmonic(n) == harmonic(n, 1)`` Examples ======== >>> from sympy import harmonic, oo >>> [harmonic(n) for n in range(6)] [0, 1, 3/2, 11/6, 25/12, 137/60] >>> [harmonic(n, 2) for n in range(6)] [0, 1, 5/4, 49/36, 205/144, 5269/3600] >>> harmonic(oo, 2) pi**2/6 >>> from sympy import Symbol, Sum >>> n = Symbol("n") >>> harmonic(n).rewrite(Sum) Sum(1/_k, (_k, 1, n)) We can evaluate harmonic numbers for all integral and positive rational arguments: >>> from sympy import S, expand_func, simplify >>> harmonic(8) 761/280 >>> harmonic(11) 83711/27720 >>> H = harmonic(1/S(3)) >>> H harmonic(1/3) >>> He = expand_func(H) >>> He -log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1)) + 3*Sum(1/(3*_k + 1), (_k, 0, 0)) >>> He.doit() -log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3 >>> H = harmonic(25/S(7)) >>> He = simplify(expand_func(H).doit()) >>> He log(sin(pi/7)**(-2*cos(pi/7))*sin(2*pi/7)**(2*cos(16*pi/7))*cos(pi/14)**(-2*sin(pi/14))/14) + pi*tan(pi/14)/2 + 30247/9900 >>> He.n(40) 1.983697455232980674869851942390639915940 >>> harmonic(25/S(7)).n(40) 1.983697455232980674869851942390639915940 We can rewrite harmonic numbers in terms of polygamma functions: >>> from sympy import digamma, polygamma >>> m = Symbol("m") >>> harmonic(n).rewrite(digamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n).rewrite(polygamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n,3).rewrite(polygamma) polygamma(2, n + 1)/2 - polygamma(2, 1)/2 >>> harmonic(n,m).rewrite(polygamma) (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) Integer offsets in the argument can be pulled out: >>> from sympy import expand_func >>> expand_func(harmonic(n+4)) harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) >>> expand_func(harmonic(n-4)) harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n Some limits can be computed as well: >>> from sympy import limit, oo >>> limit(harmonic(n), n, oo) oo >>> limit(harmonic(n, 2), n, oo) pi**2/6 >>> limit(harmonic(n, 3), n, oo) -polygamma(2, 1)/2 However we can not compute the general relation yet: >>> limit(harmonic(n, m), n, oo) harmonic(oo, m) which equals ``zeta(m)`` for ``m > 1``. See Also ======== bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Harmonic_number .. [2] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/ .. [3] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/ """ # Generate one memoized Harmonic number-generating function for each # order and store it in a dictionary _functions = {} @classmethod def eval(cls, n, m=None): from sympy import zeta if m is S.One: return cls(n) if m is None: m = S.One if m.is_zero: return n if n is S.Infinity and m.is_Number: # TODO: Fix for symbolic values of m if m.is_negative: return S.NaN elif LessThan(m, S.One): return S.Infinity elif StrictGreaterThan(m, S.One): return zeta(m) else: return cls if n == 0: return S.Zero if n.is_Integer and n.is_nonnegative and m.is_Integer: if not m in cls._functions: @recurrence_memo([0]) def f(n, prev): return prev[-1] + S.One / n**m cls._functions[m] = f return cls._functions[m](int(n)) def _eval_rewrite_as_polygamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return S.NegativeOne**m/factorial(m - 1) * (polygamma(m - 1, 1) - polygamma(m - 1, n + 1)) def _eval_rewrite_as_digamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_Sum(self, n, m=None, **kwargs): from sympy import Sum k = Dummy("k", integer=True) if m is None: m = S.One return Sum(k**(-m), (k, 1, n)) def _eval_expand_func(self, **hints): from sympy import Sum n = self.args[0] m = self.args[1] if len(self.args) == 2 else 1 if m == S.One: if n.is_Add: off = n.args[0] nnew = n - off if off.is_Integer and off.is_positive: result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)] return Add(*result) elif off.is_Integer and off.is_negative: result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)] return Add(*result) if n.is_Rational: # Expansions for harmonic numbers at general rational arguments (u + p/q) # Split n as u + p/q with p < q p, q = n.as_numer_denom() u = p // q p = p - u * q if u.is_nonnegative and p.is_positive and q.is_positive and p < q: k = Dummy("k") t1 = q * Sum(1 / (q * k + p), (k, 0, u)) t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) * log(sin((pi * k) / S(q))), (k, 1, floor((q - 1) / S(2)))) t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q) return t1 + t2 - t3 return self def _eval_rewrite_as_tractable(self, n, m=1, **kwargs): from sympy import polygamma return self.rewrite(polygamma).rewrite("tractable", deep=True) def _eval_evalf(self, prec): from sympy import polygamma if all(i.is_number for i in self.args): return self.rewrite(polygamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Euler numbers # # # #----------------------------------------------------------------------------# class euler(Function): r""" Euler numbers / Euler polynomials The Euler numbers are given by: .. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j} \frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k} .. math:: E_{2n+1} = 0 Euler numbers and Euler polynomials are related by .. math:: E_n = 2^n E_n\left(\frac{1}{2}\right). We compute symbolic Euler polynomials using [5]_ .. math:: E_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{E_k}{2^k} \left(x - \frac{1}{2}\right)^{n-k}. However, numerical evaluation of the Euler polynomial is computed more efficiently (and more accurately) using the mpmath library. * ``euler(n)`` gives the `n^{th}` Euler number, `E_n`. * ``euler(n, x)`` gives the `n^{th}` Euler polynomial, `E_n(x)`. Examples ======== >>> from sympy import Symbol, S >>> from sympy.functions import euler >>> [euler(n) for n in range(10)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0] >>> n = Symbol("n") >>> euler(n + 2*n) euler(3*n) >>> x = Symbol("x") >>> euler(n, x) euler(n, x) >>> euler(0, x) 1 >>> euler(1, x) x - 1/2 >>> euler(2, x) x**2 - x >>> euler(3, x) x**3 - 3*x**2/2 + 1/4 >>> euler(4, x) x**4 - 2*x**3 + x >>> euler(12, S.Half) 2702765/4096 >>> euler(12) 2702765 See Also ======== bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Euler_numbers .. [2] http://mathworld.wolfram.com/EulerNumber.html .. [3] https://en.wikipedia.org/wiki/Alternating_permutation .. [4] http://mathworld.wolfram.com/AlternatingPermutation.html .. [5] http://dlmf.nist.gov/24.2#ii """ @classmethod def eval(cls, m, sym=None): if m.is_Number: if m.is_Integer and m.is_nonnegative: # Euler numbers if sym is None: if m.is_odd: return S.Zero from mpmath import mp m = m._to_mpmath(mp.prec) res = mp.eulernum(m, exact=True) return Integer(res) # Euler polynomial else: from sympy.core.evalf import pure_complex reim = pure_complex(sym, or_real=True) # Evaluate polynomial numerically using mpmath if reim and all(a.is_Float or a.is_Integer for a in reim) \ and any(a.is_Float for a in reim): from mpmath import mp from sympy import Expr m = int(m) # XXX ComplexFloat (#12192) would be nice here, above prec = min([a._prec for a in reim if a.is_Float]) with workprec(prec): res = mp.eulerpoly(m, sym) return Expr._from_mpmath(res, prec) # Construct polynomial symbolically from definition m, result = int(m), [] for k in range(m + 1): result.append(binomial(m, k)*cls(k)/(2**k)*(sym - S.Half)**(m - k)) return Add(*result).expand() else: raise ValueError("Euler numbers are defined only" " for nonnegative integer indices.") if sym is None: if m.is_odd and m.is_positive: return S.Zero def _eval_rewrite_as_Sum(self, n, x=None, **kwargs): from sympy import Sum if x is None and n.is_even: k = Dummy("k", integer=True) j = Dummy("j", integer=True) n = n / 2 Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * ((-1)**j * (k - 2*j)**(2*n + 1)) / (2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1))) return Em if x: k = Dummy("k", integer=True) return Sum(binomial(n, k)*euler(k)/2**k*(x - S.Half)**(n - k), (k, 0, n)) def _eval_evalf(self, prec): m, x = (self.args[0], None) if len(self.args) == 1 else self.args if x is None and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = m._to_mpmath(prec) with workprec(prec): res = mp.eulernum(m) return Expr._from_mpmath(res, prec) if x and x.is_number and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = int(m) x = x._to_mpmath(prec) with workprec(prec): res = mp.eulerpoly(m, x) return Expr._from_mpmath(res, prec) #----------------------------------------------------------------------------# # # # Catalan numbers # # # #----------------------------------------------------------------------------# class catalan(Function): r""" Catalan numbers The `n^{th}` catalan number is given by: .. math :: C_n = \frac{1}{n+1} \binom{2n}{n} * ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n` Examples ======== >>> from sympy import (Symbol, binomial, gamma, hyper, polygamma, ... catalan, diff, combsimp, Rational, I) >>> [catalan(i) for i in range(1,10)] [1, 2, 5, 14, 42, 132, 429, 1430, 4862] >>> n = Symbol("n", integer=True) >>> catalan(n) catalan(n) Catalan numbers can be transformed into several other, identical expressions involving other mathematical functions >>> catalan(n).rewrite(binomial) binomial(2*n, n)/(n + 1) >>> catalan(n).rewrite(gamma) 4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2)) >>> catalan(n).rewrite(hyper) hyper((1 - n, -n), (2,), 1) For some non-integer values of n we can get closed form expressions by rewriting in terms of gamma functions: >>> catalan(Rational(1, 2)).rewrite(gamma) 8/(3*pi) We can differentiate the Catalan numbers C(n) interpreted as a continuous real function in n: >>> diff(catalan(n), n) (polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n) As a more advanced example consider the following ratio between consecutive numbers: >>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial)) 2*(2*n + 1)/(n + 2) The Catalan numbers can be generalized to complex numbers: >>> catalan(I).rewrite(gamma) 4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I)) and evaluated with arbitrary precision: >>> catalan(I).evalf(20) 0.39764993382373624267 - 0.020884341620842555705*I See Also ======== bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci sympy.functions.combinatorial.factorials.binomial References ========== .. [1] https://en.wikipedia.org/wiki/Catalan_number .. [2] http://mathworld.wolfram.com/CatalanNumber.html .. [3] http://functions.wolfram.com/GammaBetaErf/CatalanNumber/ .. [4] http://geometer.org/mathcircles/catalan.pdf """ @classmethod def eval(cls, n): from sympy import gamma if (n.is_Integer and n.is_nonnegative) or \ (n.is_noninteger and n.is_negative): return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) if (n.is_integer and n.is_negative): if (n + 1).is_negative: return S.Zero if (n + 1).is_zero: return Rational(-1, 2) def fdiff(self, argindex=1): from sympy import polygamma, log n = self.args[0] return catalan(n)*(polygamma(0, n + S.Half) - polygamma(0, n + 2) + log(4)) def _eval_rewrite_as_binomial(self, n, **kwargs): return binomial(2*n, n)/(n + 1) def _eval_rewrite_as_factorial(self, n, **kwargs): return factorial(2*n) / (factorial(n+1) * factorial(n)) def _eval_rewrite_as_gamma(self, n, **kwargs): from sympy import gamma # The gamma function allows to generalize Catalan numbers to complex n return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) def _eval_rewrite_as_hyper(self, n, **kwargs): from sympy import hyper return hyper([1 - n, -n], [2], 1) def _eval_rewrite_as_Product(self, n, **kwargs): from sympy import Product if not (n.is_integer and n.is_nonnegative): return self k = Dummy('k', integer=True, positive=True) return Product((n + k) / k, (k, 2, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_nonnegative: return True def _eval_is_composite(self): if self.args[0].is_integer and (self.args[0] - 3).is_positive: return True def _eval_evalf(self, prec): from sympy import gamma if self.args[0].is_number: return self.rewrite(gamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Genocchi numbers # # # #----------------------------------------------------------------------------# class genocchi(Function): r""" Genocchi numbers The Genocchi numbers are a sequence of integers `G_n` that satisfy the relation: .. math:: \frac{2t}{e^t + 1} = \sum_{n=1}^\infty \frac{G_n t^n}{n!} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import genocchi >>> [genocchi(n) for n in range(1, 9)] [1, -1, 0, 1, 0, -3, 0, 17] >>> n = Symbol('n', integer=True, positive=True) >>> genocchi(2*n + 1) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Genocchi_number .. [2] http://mathworld.wolfram.com/GenocchiNumber.html """ @classmethod def eval(cls, n): if n.is_Number: if (not n.is_Integer) or n.is_nonpositive: raise ValueError("Genocchi numbers are defined only for " + "positive integers") return 2 * (1 - S(2) ** n) * bernoulli(n) if n.is_odd and (n - 1).is_positive: return S.Zero if (n - 1).is_zero: return S.One def _eval_rewrite_as_bernoulli(self, n, **kwargs): if n.is_integer and n.is_nonnegative: return (1 - S(2) ** n) * bernoulli(n) * 2 def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_positive: return True def _eval_is_negative(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return False return (n / 2).is_odd def _eval_is_positive(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return fuzzy_not((n - 1).is_positive) return (n / 2).is_even def _eval_is_even(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return False return (n - 1).is_positive def _eval_is_odd(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return True return fuzzy_not((n - 1).is_positive) def _eval_is_prime(self): n = self.args[0] # only G_6 = -3 and G_8 = 17 are prime, # but SymPy does not consider negatives as prime # so only n=8 is tested return (n - 8).is_zero #----------------------------------------------------------------------------# # # # Partition numbers # # # #----------------------------------------------------------------------------# _npartition = [1, 1] class partition(Function): r""" Partition numbers The Partition numbers are a sequence of integers `p_n` that represent the number of distinct ways of representing `n` as a sum of natural numbers (with order irrelevant). The generating function for `p_n` is given by: .. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import partition >>> [partition(n) for n in range(9)] [1, 1, 2, 3, 5, 7, 11, 15, 22] >>> n = Symbol('n', integer=True, negative=True) >>> partition(n) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29 .. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem """ @staticmethod def _partition(n): L = len(_npartition) if n < L: return _npartition[n] # lengthen cache for _n in range(L, n + 1): v, p, i = 0, 0, 0 while 1: s = 0 p += 3*i + 1 # p = pentagonal number: 1, 5, 12, ... if _n >= p: s += _npartition[_n - p] i += 1 gp = p + i # gp = generalized pentagonal: 2, 7, 15, ... if _n >= gp: s += _npartition[_n - gp] if s == 0: break else: v += s if i%2 == 1 else -s _npartition.append(v) return v @classmethod def eval(cls, n): is_int = n.is_integer if is_int == False: raise ValueError("Partition numbers are defined only for " "integers") elif is_int: if n.is_negative: return S.Zero if n.is_zero or (n - 1).is_zero: return S.One if n.is_Integer: return Integer(cls._partition(n)) def _eval_is_integer(self): if self.args[0].is_integer: return True def _eval_is_negative(self): if self.args[0].is_integer: return False def _eval_is_positive(self): n = self.args[0] if n.is_nonnegative and n.is_integer: return True ####################################################################### ### ### Functions for enumerating partitions, permutations and combinations ### ####################################################################### class _MultisetHistogram(tuple): pass _N = -1 _ITEMS = -2 _M = slice(None, _ITEMS) def _multiset_histogram(n): """Return tuple used in permutation and combination counting. Input is a dictionary giving items with counts as values or a sequence of items (which need not be sorted). The data is stored in a class deriving from tuple so it is easily recognized and so it can be converted easily to a list. """ if isinstance(n, dict): # item: count if not all(isinstance(v, int) and v >= 0 for v in n.values()): raise ValueError tot = sum(n.values()) items = sum(1 for k in n if n[k] > 0) return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot]) else: n = list(n) s = set(n) if len(s) == len(n): n = [1]*len(n) n.extend([len(n), len(n)]) return _MultisetHistogram(n) m = dict(zip(s, range(len(s)))) d = dict(zip(range(len(s)), [0]*len(s))) for i in n: d[m[i]] += 1 return _multiset_histogram(d) def nP(n, k=None, replacement=False): """Return the number of permutations of ``n`` items taken ``k`` at a time. Possible values for ``n``: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all permutations of length 0 through the number of items represented by ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' permutations of 2 would include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nP >>> from sympy.utilities.iterables import multiset_permutations, multiset >>> nP(3, 2) 6 >>> nP('abc', 2) == nP(multiset('abc'), 2) == 6 True >>> nP('aab', 2) 3 >>> nP([1, 2, 2], 2) 3 >>> [nP(3, i) for i in range(4)] [1, 3, 6, 6] >>> nP(3) == sum(_) True When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nP('aabc', replacement=True) 121 >>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 9, 27, 81] >>> sum(_) 121 See Also ======== sympy.utilities.iterables.multiset_permutations References ========== .. [1] https://en.wikipedia.org/wiki/Permutation """ try: n = as_int(n) except ValueError: return Integer(_nP(_multiset_histogram(n), k, replacement)) return Integer(_nP(n, k, replacement)) @cacheit def _nP(n, k=None, replacement=False): from sympy.functions.combinatorial.factorials import factorial from sympy.core.mul import prod if k == 0: return 1 if isinstance(n, SYMPY_INTS): # n different items # assert n >= 0 if k is None: return sum(_nP(n, i, replacement) for i in range(n + 1)) elif replacement: return n**k elif k > n: return 0 elif k == n: return factorial(k) elif k == 1: return n else: # assert k >= 0 return _product(n - k + 1, n) elif isinstance(n, _MultisetHistogram): if k is None: return sum(_nP(n, i, replacement) for i in range(n[_N] + 1)) elif replacement: return n[_ITEMS]**k elif k == n[_N]: return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1]) elif k > n[_N]: return 0 elif k == 1: return n[_ITEMS] else: # assert k >= 0 tot = 0 n = list(n) for i in range(len(n[_M])): if not n[i]: continue n[_N] -= 1 if n[i] == 1: n[i] = 0 n[_ITEMS] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[_ITEMS] += 1 n[i] = 1 else: n[i] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[i] += 1 n[_N] += 1 return tot @cacheit def _AOP_product(n): """for n = (m1, m2, .., mk) return the coefficients of the polynomial, prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients of the product of AOPs (all-one polynomials) or order given in n. The resulting coefficient corresponding to x**r is the number of r-length combinations of sum(n) elements with multiplicities given in n. The coefficients are given as a default dictionary (so if a query is made for a key that is not present, 0 will be returned). Examples ======== >>> from sympy.functions.combinatorial.numbers import _AOP_product >>> from sympy.abc import x >>> n = (2, 2, 3) # e.g. aabbccc >>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand() >>> c = _AOP_product(n); dict(c) {0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1} >>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)] True The generating poly used here is the same as that listed in http://tinyurl.com/cep849r, but in a refactored form. """ from collections import defaultdict n = list(n) ord = sum(n) need = (ord + 2)//2 rv = [1]*(n.pop() + 1) rv.extend([0]*(need - len(rv))) rv = rv[:need] while n: ni = n.pop() N = ni + 1 was = rv[:] for i in range(1, min(N, len(rv))): rv[i] += rv[i - 1] for i in range(N, need): rv[i] += rv[i - 1] - was[i - N] rev = list(reversed(rv)) if ord % 2: rv = rv + rev else: rv[-1:] = rev d = defaultdict(int) for i in range(len(rv)): d[i] = rv[i] return d def nC(n, k=None, replacement=False): """Return the number of combinations of ``n`` items taken ``k`` at a time. Possible values for ``n``: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all combinations of length 0 through the number of items represented in ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa', 'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nC >>> from sympy.utilities.iterables import multiset_combinations >>> nC(3, 2) 3 >>> nC('abc', 2) 3 >>> nC('aab', 2) 2 When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nC('aabc', replacement=True) 35 >>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 6, 10, 15] >>> sum(_) 35 If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k`` then the total of all combinations of length 0 through ``k`` is the product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity of each item is 1 (i.e., k unique items) then there are 2**k combinations. For example, if there are 4 unique items, the total number of combinations is 16: >>> sum(nC(4, i) for i in range(5)) 16 See Also ======== sympy.utilities.iterables.multiset_combinations References ========== .. [1] https://en.wikipedia.org/wiki/Combination .. [2] http://tinyurl.com/cep849r """ from sympy.functions.combinatorial.factorials import binomial from sympy.core.mul import prod if isinstance(n, SYMPY_INTS): if k is None: if not replacement: return 2**n return sum(nC(n, i, replacement) for i in range(n + 1)) if k < 0: raise ValueError("k cannot be negative") if replacement: return binomial(n + k - 1, k) return binomial(n, k) if isinstance(n, _MultisetHistogram): N = n[_N] if k is None: if not replacement: return prod(m + 1 for m in n[_M]) return sum(nC(n, i, replacement) for i in range(N + 1)) elif replacement: return nC(n[_ITEMS], k, replacement) # assert k >= 0 elif k in (1, N - 1): return n[_ITEMS] elif k in (0, N): return 1 return _AOP_product(tuple(n[_M]))[k] else: return nC(_multiset_histogram(n), k, replacement) def _eval_stirling1(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero # some special values if n == k: return S.One elif k == n - 1: return binomial(n, 2) elif k == n - 2: return (3*n - 1)*binomial(n, 3)/4 elif k == n - 3: return binomial(n, 2)*binomial(n, 4) return _stirling1(n, k) @cacheit def _stirling1(n, k): row = [0, 1]+[0]*(k-1) # for n = 1 for i in range(2, n+1): for j in range(min(k,i), 0, -1): row[j] = (i-1) * row[j] + row[j-1] return Integer(row[k]) def _eval_stirling2(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero # some special values if n == k: return S.One elif k == n - 1: return binomial(n, 2) elif k == 1: return S.One elif k == 2: return Integer(2**(n - 1) - 1) return _stirling2(n, k) @cacheit def _stirling2(n, k): row = [0, 1]+[0]*(k-1) # for n = 1 for i in range(2, n+1): for j in range(min(k,i), 0, -1): row[j] = j * row[j] + row[j-1] return Integer(row[k]) def stirling(n, k, d=None, kind=2, signed=False): r"""Return Stirling number $S(n, k)$ of the first or second (default) kind. The sum of all Stirling numbers of the second kind for $k = 1$ through $n$ is ``bell(n)``. The recurrence relationship for these numbers is: .. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0; .. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}} where $j$ is: $n$ for Stirling numbers of the first kind, $-n$ for signed Stirling numbers of the first kind, $k$ for Stirling numbers of the second kind. The first kind of Stirling number counts the number of permutations of ``n`` distinct items that have ``k`` cycles; the second kind counts the ways in which ``n`` distinct items can be partitioned into ``k`` parts. If ``d`` is given, the "reduced Stirling number of the second kind" is returned: $S^{d}(n, k) = S(n - d + 1, k - d + 1)$ with $n \ge k \ge d$. (This counts the ways to partition $n$ consecutive integers into $k$ groups with no pairwise difference less than $d$. See example below.) To obtain the signed Stirling numbers of the first kind, use keyword ``signed=True``. Using this keyword automatically sets ``kind`` to 1. Examples ======== >>> from sympy.functions.combinatorial.numbers import stirling, bell >>> from sympy.combinatorics import Permutation >>> from sympy.utilities.iterables import multiset_partitions, permutations First kind (unsigned by default): >>> [stirling(6, i, kind=1) for i in range(7)] [0, 120, 274, 225, 85, 15, 1] >>> perms = list(permutations(range(4))) >>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)] [0, 6, 11, 6, 1] >>> [stirling(4, i, kind=1) for i in range(5)] [0, 6, 11, 6, 1] First kind (signed): >>> [stirling(4, i, signed=True) for i in range(5)] [0, -6, 11, -6, 1] Second kind: >>> [stirling(10, i) for i in range(12)] [0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0] >>> sum(_) == bell(10) True >>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2) True Reduced second kind: >>> from sympy import subsets, oo >>> def delta(p): ... if len(p) == 1: ... return oo ... return min(abs(i[0] - i[1]) for i in subsets(p, 2)) >>> parts = multiset_partitions(range(5), 3) >>> d = 2 >>> sum(1 for p in parts if all(delta(i) >= d for i in p)) 7 >>> stirling(5, 3, 2) 7 See Also ======== sympy.utilities.iterables.multiset_partitions References ========== .. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind .. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind """ # TODO: make this a class like bell() n = as_int(n) k = as_int(k) if n < 0: raise ValueError('n must be nonnegative') if k > n: return S.Zero if d: # assert k >= d # kind is ignored -- only kind=2 is supported return _eval_stirling2(n - d + 1, k - d + 1) elif signed: # kind is ignored -- only kind=1 is supported return (-1)**(n - k)*_eval_stirling1(n, k) if kind == 1: return _eval_stirling1(n, k) elif kind == 2: return _eval_stirling2(n, k) else: raise ValueError('kind must be 1 or 2, not %s' % k) @cacheit def _nT(n, k): """Return the partitions of ``n`` items into ``k`` parts. This is used by ``nT`` for the case when ``n`` is an integer.""" # really quick exits if k > n or k < 0: return 0 if k == n or k == 1: return 1 if k == 0: return 0 # exits that could be done below but this is quicker if k == 2: return n//2 d = n - k if d <= 3: return d # quick exit if 3*k >= n: # or, equivalently, 2*k >= d # all the information needed in this case # will be in the cache needed to calculate # partition(d), so... # update cache tot = partition._partition(d) # and correct for values not needed if d - k > 0: tot -= sum(_npartition[:d - k]) return tot # regular exit # nT(n, k) = Sum(nT(n - k, m), (m, 1, k)); # calculate needed nT(i, j) values p = [1]*d for i in range(2, k + 1): for m in range(i + 1, d): p[m] += p[m - i] d -= 1 # if p[0] were appended to the end of p then the last # k values of p are the nT(n, j) values for 0 < j < k in reverse # order p[-1] = nT(n, 1), p[-2] = nT(n, 2), etc.... Instead of # putting the 1 from p[0] there, however, it is simply added to # the sum below which is valid for 1 < k <= n//2 return (1 + sum(p[1 - k:])) def nT(n, k=None): """Return the number of ``k``-sized partitions of ``n`` items. Possible values for ``n``: integer - ``n`` identical items sequence - converted to a multiset internally multiset - {element: multiplicity} Note: the convention for ``nT`` is different than that of ``nC`` and ``nP`` in that here an integer indicates ``n`` *identical* items instead of a set of length ``n``; this is in keeping with the ``partitions`` function which treats its integer-``n`` input like a list of ``n`` 1s. One can use ``range(n)`` for ``n`` to indicate ``n`` distinct items. If ``k`` is None then the total number of ways to partition the elements represented in ``n`` will be returned. Examples ======== >>> from sympy.functions.combinatorial.numbers import nT Partitions of the given multiset: >>> [nT('aabbc', i) for i in range(1, 7)] [1, 8, 11, 5, 1, 0] >>> nT('aabbc') == sum(_) True >>> [nT("mississippi", i) for i in range(1, 12)] [1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1] Partitions when all items are identical: >>> [nT(5, i) for i in range(1, 6)] [1, 2, 2, 1, 1] >>> nT('1'*5) == sum(_) True When all items are different: >>> [nT(range(5), i) for i in range(1, 6)] [1, 15, 25, 10, 1] >>> nT(range(5)) == sum(_) True Partitions of an integer expressed as a sum of positive integers: >>> from sympy.functions.combinatorial.numbers import partition >>> partition(4) 5 >>> nT(4, 1) + nT(4, 2) + nT(4, 3) + nT(4, 4) 5 >>> nT('1'*4) 5 See Also ======== sympy.utilities.iterables.partitions sympy.utilities.iterables.multiset_partitions sympy.functions.combinatorial.numbers.partition References ========== .. [1] http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf """ from sympy.utilities.enumerative import MultisetPartitionTraverser if isinstance(n, SYMPY_INTS): # n identical items if k is None: return partition(n) if isinstance(k, SYMPY_INTS): n = as_int(n) k = as_int(k) return Integer(_nT(n, k)) if not isinstance(n, _MultisetHistogram): try: # if n contains hashable items there is some # quick handling that can be done u = len(set(n)) if u <= 1: return nT(len(n), k) elif u == len(n): n = range(u) raise TypeError except TypeError: n = _multiset_histogram(n) N = n[_N] if k is None and N == 1: return 1 if k in (1, N): return 1 if k == 2 or N == 2 and k is None: m, r = divmod(N, 2) rv = sum(nC(n, i) for i in range(1, m + 1)) if not r: rv -= nC(n, m)//2 if k is None: rv += 1 # for k == 1 return rv if N == n[_ITEMS]: # all distinct if k is None: return bell(N) return stirling(N, k) m = MultisetPartitionTraverser() if k is None: return m.count_partitions(n[_M]) # MultisetPartitionTraverser does not have a range-limited count # method, so need to enumerate and count tot = 0 for discard in m.enum_range(n[_M], k-1, k): tot += 1 return tot
52436f862f4c5346354cfa6474b764bbd73be0639dffe1f8906a4b2057fc56e2
from __future__ import print_function, division from sympy.core import S, sympify, Dummy, Mod from sympy.core.cache import cacheit from sympy.core.compatibility import reduce, range, HAS_GMPY from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_and from sympy.core.numbers import Integer, pi from sympy.core.relational import Eq from sympy.ntheory import sieve from sympy.polys.polytools import Poly from math import sqrt as _sqrt class CombinatorialFunction(Function): """Base class for combinatorial functions. """ def _eval_simplify(self, **kwargs): from sympy.simplify.combsimp import combsimp # combinatorial function with non-integer arguments is # automatically passed to gammasimp expr = combsimp(self) measure = kwargs['measure'] if measure(expr) <= kwargs['ratio']*measure(self): return expr return self ############################################################################### ######################## FACTORIAL and MULTI-FACTORIAL ######################## ############################################################################### class factorial(CombinatorialFunction): r"""Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity. The factorial is very important in combinatorics where it gives the number of ways in which `n` objects can be permuted. It also arises in calculus, probability, number theory, etc. There is strict relation of factorial with gamma function. In fact `n! = gamma(n+1)` for nonnegative integers. Rewrite of this kind is very useful in case of combinatorial simplification. Computation of the factorial is done using two algorithms. For small arguments a precomputed look up table is used. However for bigger input algorithm Prime-Swing is used. It is the fastest algorithm known and computes `n!` via prime factorization of special class of numbers, called here the 'Swing Numbers'. Examples ======== >>> from sympy import Symbol, factorial, S >>> n = Symbol('n', integer=True) >>> factorial(0) 1 >>> factorial(7) 5040 >>> factorial(-2) zoo >>> factorial(n) factorial(n) >>> factorial(2*n) factorial(2*n) >>> factorial(S(1)/2) factorial(1/2) See Also ======== factorial2, RisingFactorial, FallingFactorial """ def fdiff(self, argindex=1): from sympy import gamma, polygamma if argindex == 1: return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1) else: raise ArgumentIndexError(self, argindex) _small_swing = [ 1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195 ] _small_factorials = [] @classmethod def _swing(cls, n): if n < 33: return cls._small_swing[n] else: N, primes = int(_sqrt(n)), [] for prime in sieve.primerange(3, N + 1): p, q = 1, n while True: q //= prime if q > 0: if q & 1 == 1: p *= prime else: break if p > 1: primes.append(p) for prime in sieve.primerange(N + 1, n//3 + 1): if (n // prime) & 1 == 1: primes.append(prime) L_product = R_product = 1 for prime in sieve.primerange(n//2 + 1, n + 1): L_product *= prime for prime in primes: R_product *= prime return L_product*R_product @classmethod def _recursive(cls, n): if n < 2: return 1 else: return (cls._recursive(n//2)**2)*cls._swing(n) @classmethod def eval(cls, n): n = sympify(n) if n.is_Number: if n.is_zero: return S.One elif n is S.Infinity: return S.Infinity elif n.is_Integer: if n.is_negative: return S.ComplexInfinity else: n = n.p if n < 20: if not cls._small_factorials: result = 1 for i in range(1, 20): result *= i cls._small_factorials.append(result) result = cls._small_factorials[n-1] # GMPY factorial is faster, use it when available elif HAS_GMPY: from sympy.core.compatibility import gmpy result = gmpy.fac(n) else: bits = bin(n).count('1') result = cls._recursive(n)*2**(n - bits) return Integer(result) def _facmod(self, n, q): res, N = 1, int(_sqrt(n)) # Exponent of prime p in n! is e_p(n) = [n/p] + [n/p**2] + ... # for p > sqrt(n), e_p(n) < sqrt(n), the primes with [n/p] = m, # occur consecutively and are grouped together in pw[m] for # simultaneous exponentiation at a later stage pw = [1]*N m = 2 # to initialize the if condition below for prime in sieve.primerange(2, n + 1): if m > 1: m, y = 0, n // prime while y: m += y y //= prime if m < N: pw[m] = pw[m]*prime % q else: res = res*pow(prime, m, q) % q for ex, bs in enumerate(pw): if ex == 0 or bs == 1: continue if bs == 0: return 0 res = res*pow(bs, ex, q) % q return res def _eval_Mod(self, q): n = self.args[0] if n.is_integer and n.is_nonnegative and q.is_integer: aq = abs(q) d = aq - n if d.is_nonpositive: return 0 else: isprime = aq.is_prime if d == 1: # Apply Wilson's theorem (if a natural number n > 1 # is a prime number, then (n-1)! = -1 mod n) and # its inverse (if n > 4 is a composite number, then # (n-1)! = 0 mod n) if isprime: return -1 % q elif isprime is False and (aq - 6).is_nonnegative: return 0 elif n.is_Integer and q.is_Integer: n, d, aq = map(int, (n, d, aq)) if isprime and (d - 1 < n): fc = self._facmod(d - 1, aq) fc = pow(fc, aq - 2, aq) if d%2: fc = -fc else: fc = self._facmod(n, aq) return Integer(fc % q) def _eval_rewrite_as_gamma(self, n, **kwargs): from sympy import gamma return gamma(n + 1) def _eval_rewrite_as_Product(self, n, **kwargs): from sympy import Product if n.is_nonnegative and n.is_integer: i = Dummy('i', integer=True) return Product(i, (i, 1, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_even(self): x = self.args[0] if x.is_integer and x.is_nonnegative: return (x - 2).is_nonnegative def _eval_is_composite(self): x = self.args[0] if x.is_integer and x.is_nonnegative: return (x - 3).is_nonnegative def _eval_is_real(self): x = self.args[0] if x.is_nonnegative or x.is_noninteger: return True def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0] arg_1 = arg.as_leading_term(x) if Order(x, x).contains(arg_1): return S.One if Order(1, x).contains(arg_1): return self.func(arg_1) #################################################### # The correct result here should be 'None'. # # Indeed arg in not bounded as x tends to 0. # # Consequently the series expansion does not admit # # the leading term. # # For compatibility reasons, the return value here # # is the original function, i.e. factorial(arg), # # instead of None. # #################################################### return self.func(arg) class MultiFactorial(CombinatorialFunction): pass class subfactorial(CombinatorialFunction): r"""The subfactorial counts the derangements of n items and is defined for non-negative integers as: .. math:: !n = \begin{cases} 1 & n = 0 \\ 0 & n = 1 \\ (n-1)(!(n-1) + !(n-2)) & n > 1 \end{cases} It can also be written as ``int(round(n!/exp(1)))`` but the recursive definition with caching is implemented for this function. An interesting analytic expression is the following [2]_ .. math:: !x = \Gamma(x + 1, -1)/e which is valid for non-negative integers `x`. The above formula is not very useful incase of non-integers. :math:`\Gamma(x + 1, -1)` is single-valued only for integral arguments `x`, elsewhere on the positive real axis it has an infinite number of branches none of which are real. References ========== .. [1] https://en.wikipedia.org/wiki/Subfactorial .. [2] http://mathworld.wolfram.com/Subfactorial.html Examples ======== >>> from sympy import subfactorial >>> from sympy.abc import n >>> subfactorial(n + 1) subfactorial(n + 1) >>> subfactorial(5) 44 See Also ======== sympy.functions.combinatorial.factorials.factorial, sympy.utilities.iterables.generate_derangements, sympy.functions.special.gamma_functions.uppergamma """ @classmethod @cacheit def _eval(self, n): if not n: return S.One elif n == 1: return S.Zero else: z1, z2 = 1, 0 for i in range(2, n + 1): z1, z2 = z2, (i - 1)*(z2 + z1) return z2 @classmethod def eval(cls, arg): if arg.is_Number: if arg.is_Integer and arg.is_nonnegative: return cls._eval(arg) elif arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity def _eval_is_even(self): if self.args[0].is_odd and self.args[0].is_nonnegative: return True def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_rewrite_as_uppergamma(self, arg, **kwargs): from sympy import uppergamma return uppergamma(arg + 1, -1)/S.Exp1 def _eval_is_nonnegative(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_odd(self): if self.args[0].is_even and self.args[0].is_nonnegative: return True class factorial2(CombinatorialFunction): r"""The double factorial `n!!`, not to be confused with `(n!)!` The double factorial is defined for nonnegative integers and for odd negative integers as: .. math:: n!! = \begin{cases} 1 & n = 0 \\ n(n-2)(n-4) \cdots 1 & n\ \text{positive odd} \\ n(n-2)(n-4) \cdots 2 & n\ \text{positive even} \\ (n+2)!!/(n+2) & n\ \text{negative odd} \end{cases} References ========== .. [1] https://en.wikipedia.org/wiki/Double_factorial Examples ======== >>> from sympy import factorial2, var >>> var('n') n >>> factorial2(n + 1) factorial2(n + 1) >>> factorial2(5) 15 >>> factorial2(-1) 1 >>> factorial2(-5) 1/3 See Also ======== factorial, RisingFactorial, FallingFactorial """ @classmethod def eval(cls, arg): # TODO: extend this to complex numbers? if arg.is_Number: if not arg.is_Integer: raise ValueError("argument must be nonnegative integer " "or negative odd integer") # This implementation is faster than the recursive one # It also avoids "maximum recursion depth exceeded" runtime error if arg.is_nonnegative: if arg.is_even: k = arg / 2 return 2**k * factorial(k) return factorial(arg) / factorial2(arg - 1) if arg.is_odd: return arg*(S.NegativeOne)**((1 - arg)/2) / factorial2(-arg) raise ValueError("argument must be nonnegative integer " "or negative odd integer") def _eval_is_even(self): # Double factorial is even for every positive even input n = self.args[0] if n.is_integer: if n.is_odd: return False if n.is_even: if n.is_positive: return True if n.is_zero: return False def _eval_is_integer(self): # Double factorial is an integer for every nonnegative input, and for # -1 and -3 n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return (n + 3).is_nonnegative def _eval_is_odd(self): # Double factorial is odd for every odd input not smaller than -3, and # for 0 n = self.args[0] if n.is_odd: return (n + 3).is_nonnegative if n.is_even: if n.is_positive: return False if n.is_zero: return True def _eval_is_positive(self): # Double factorial is positive for every nonnegative input, and for # every odd negative input which is of the form -1-4k for an # nonnegative integer k n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return ((n + 1) / 2).is_even def _eval_rewrite_as_gamma(self, n, **kwargs): from sympy import gamma, Piecewise, sqrt return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2/pi), Eq(Mod(n, 2), 1))) ############################################################################### ######################## RISING and FALLING FACTORIALS ######################## ############################################################################### class RisingFactorial(CombinatorialFunction): r""" Rising factorial (also called Pochhammer symbol) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by: .. math:: rf(x,k) = x \cdot (x+1) \cdots (x+k-1) where `x` can be arbitrary expression and `k` is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/RisingFactorial.html page. When `x` is a Poly instance of degree >= 1 with a single variable, `rf(x,k) = x(y) \cdot x(y+1) \cdots x(y+k-1)`, where `y` is the variable of `x`. This is as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. Examples ======== >>> from sympy import rf, symbols, factorial, ff, binomial, Poly >>> from sympy.abc import x >>> n, k = symbols('n k', integer=True) >>> rf(x, 0) 1 >>> rf(1, 5) 120 >>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x) True >>> rf(Poly(x**3, x), 2) Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ') Rewrite >>> rf(x, k).rewrite(ff) FallingFactorial(k + x - 1, k) >>> rf(x, k).rewrite(binomial) binomial(k + x - 1, k)*factorial(k) >>> rf(n, k).rewrite(factorial) factorial(k + n - 1)/factorial(n - 1) See Also ======== factorial, factorial2, FallingFactorial References ========== .. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif x is S.One: return factorial(k) elif k.is_Integer: if k.is_zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("rf only defined for " "polynomials on one generator") else: return reduce(lambda r, i: r*(x.shift(i).expand()), range(0, int(k)), 1) else: return reduce(lambda r, i: r*(x + i), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("rf only defined for " "polynomials on one generator") else: return 1/reduce(lambda r, i: r*(x.shift(-i).expand()), range(1, abs(int(k)) + 1), 1) else: return 1/reduce(lambda r, i: r*(x - i), range(1, abs(int(k)) + 1), 1) if k.is_integer == False: if x.is_integer and x.is_negative: return S.Zero def _eval_rewrite_as_gamma(self, x, k, **kwargs): from sympy import gamma return gamma(x + k) / gamma(x) def _eval_rewrite_as_FallingFactorial(self, x, k, **kwargs): return FallingFactorial(x + k - 1, k) def _eval_rewrite_as_factorial(self, x, k, **kwargs): if x.is_integer and k.is_integer: return factorial(k + x - 1) / factorial(x - 1) def _eval_rewrite_as_binomial(self, x, k, **kwargs): if k.is_integer: return factorial(k) * binomial(x + k - 1, k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.rising_factorial(self.args[0]._sage_(), self.args[1]._sage_()) class FallingFactorial(CombinatorialFunction): r""" Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by .. math:: ff(x,k) = x \cdot (x-1) \cdots (x-k+1) where `x` can be arbitrary expression and `k` is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/FallingFactorial.html page. When `x` is a Poly instance of degree >= 1 with single variable, `ff(x,k) = x(y) \cdot x(y-1) \cdots x(y-k+1)`, where `y` is the variable of `x`. This is as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. >>> from sympy import ff, factorial, rf, gamma, polygamma, binomial, symbols, Poly >>> from sympy.abc import x, k >>> n, m = symbols('n m', integer=True) >>> ff(x, 0) 1 >>> ff(5, 5) 120 >>> ff(x, 5) == x*(x-1)*(x-2)*(x-3)*(x-4) True >>> ff(Poly(x**2, x), 2) Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ') >>> ff(n, n) factorial(n) Rewrite >>> ff(x, k).rewrite(gamma) (-1)**k*gamma(k - x)/gamma(-x) >>> ff(x, k).rewrite(rf) RisingFactorial(-k + x + 1, k) >>> ff(x, m).rewrite(binomial) binomial(x, m)*factorial(m) >>> ff(n, m).rewrite(factorial) factorial(n)/factorial(-m + n) See Also ======== factorial, factorial2, RisingFactorial References ========== .. [1] http://mathworld.wolfram.com/FallingFactorial.html """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif k.is_integer and x == k: return factorial(x) elif k.is_Integer: if k.is_zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("ff only defined for " "polynomials on one generator") else: return reduce(lambda r, i: r*(x.shift(-i).expand()), range(0, int(k)), 1) else: return reduce(lambda r, i: r*(x - i), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("rf only defined for " "polynomials on one generator") else: return 1/reduce(lambda r, i: r*(x.shift(i).expand()), range(1, abs(int(k)) + 1), 1) else: return 1/reduce(lambda r, i: r*(x + i), range(1, abs(int(k)) + 1), 1) def _eval_rewrite_as_gamma(self, x, k, **kwargs): from sympy import gamma return (-1)**k*gamma(k - x) / gamma(-x) def _eval_rewrite_as_RisingFactorial(self, x, k, **kwargs): return rf(x - k + 1, k) def _eval_rewrite_as_binomial(self, x, k, **kwargs): if k.is_integer: return factorial(k) * binomial(x, k) def _eval_rewrite_as_factorial(self, x, k, **kwargs): if x.is_integer and k.is_integer: return factorial(x) / factorial(x - k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.falling_factorial(self.args[0]._sage_(), self.args[1]._sage_()) rf = RisingFactorial ff = FallingFactorial ############################################################################### ########################### BINOMIAL COEFFICIENTS ############################# ############################################################################### class binomial(CombinatorialFunction): r"""Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation: .. math:: \binom{n}{k} = \frac{n!}{k!(n-k)!}\ \text{or}\ \binom{n}{k} = \frac{ff(n, k)}{k!} First, in a strict combinatorial sense it defines the number of ways we can choose `k` elements from a set of `n` elements. In this case both arguments are nonnegative integers and binomial is computed using an efficient algorithm based on prime factorization. The other definition is generalization for arbitrary `n`, however `k` must also be nonnegative. This case is very useful when evaluating summations. For the sake of convenience for negative integer `k` this function will return zero no matter what valued is the other argument. To expand the binomial when `n` is a symbol, use either ``expand_func()`` or ``expand(func=True)``. The former will keep the polynomial in factored form while the latter will expand the polynomial itself. See examples for details. Examples ======== >>> from sympy import Symbol, Rational, binomial, expand_func >>> n = Symbol('n', integer=True, positive=True) >>> binomial(15, 8) 6435 >>> binomial(n, -1) 0 Rows of Pascal's triangle can be generated with the binomial function: >>> for N in range(8): ... print([binomial(N, i) for i in range(N + 1)]) ... [1] [1, 1] [1, 2, 1] [1, 3, 3, 1] [1, 4, 6, 4, 1] [1, 5, 10, 10, 5, 1] [1, 6, 15, 20, 15, 6, 1] [1, 7, 21, 35, 35, 21, 7, 1] As can a given diagonal, e.g. the 4th diagonal: >>> N = -4 >>> [binomial(N, i) for i in range(1 - N)] [1, -4, 10, -20, 35] >>> binomial(Rational(5, 4), 3) -5/128 >>> binomial(Rational(-5, 4), 3) -195/128 >>> binomial(n, 3) binomial(n, 3) >>> binomial(n, 3).expand(func=True) n**3/6 - n**2/2 + n/3 >>> expand_func(binomial(n, 3)) n*(n - 2)*(n - 1)/6 References ========== .. [1] https://www.johndcook.com/blog/binomial_coefficients/ """ def fdiff(self, argindex=1): from sympy import polygamma if argindex == 1: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/ n, k = self.args return binomial(n, k)*(polygamma(0, n + 1) - \ polygamma(0, n - k + 1)) elif argindex == 2: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/ n, k = self.args return binomial(n, k)*(polygamma(0, n - k + 1) - \ polygamma(0, k + 1)) else: raise ArgumentIndexError(self, argindex) @classmethod def _eval(self, n, k): # n.is_Number and k.is_Integer and k != 1 and n != k if k.is_Integer: if n.is_Integer and n >= 0: n, k = int(n), int(k) if k > n: return S.Zero elif k > n // 2: k = n - k if HAS_GMPY: from sympy.core.compatibility import gmpy return Integer(gmpy.bincoef(n, k)) d, result = n - k, 1 for i in range(1, k + 1): d += 1 result = result * d // i return Integer(result) else: d, result = n - k, 1 for i in range(1, k + 1): d += 1 result *= d result /= i return result @classmethod def eval(cls, n, k): n, k = map(sympify, (n, k)) d = n - k n_nonneg, n_isint = n.is_nonnegative, n.is_integer if k.is_zero or ((n_nonneg or n_isint is False) and d.is_zero): return S.One if (k - 1).is_zero or ((n_nonneg or n_isint is False) and (d - 1).is_zero): return n if k.is_integer: if k.is_negative or (n_nonneg and n_isint and d.is_negative): return S.Zero elif n.is_number: res = cls._eval(n, k) return res.expand(basic=True) if res else res elif n_nonneg is False and n_isint: # a special case when binomial evaluates to complex infinity return S.ComplexInfinity elif k.is_number: from sympy import gamma return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1)) def _eval_Mod(self, q): n, k = self.args if any(x.is_integer is False for x in (n, k, q)): raise ValueError("Integers expected for binomial Mod") if all(x.is_Integer for x in (n, k, q)): n, k = map(int, (n, k)) aq, res = abs(q), 1 # handle negative integers k or n if k < 0: return 0 if n < 0: n = -n + k - 1 res = -1 if k%2 else 1 # non negative integers k and n if k > n: return 0 isprime = aq.is_prime aq = int(aq) if isprime: if aq < n: # use Lucas Theorem N, K = n, k while N or K: res = res*binomial(N % aq, K % aq) % aq N, K = N // aq, K // aq else: # use Factorial Modulo d = n - k if k > d: k, d = d, k kf = 1 for i in range(2, k + 1): kf = kf*i % aq df = kf for i in range(k + 1, d + 1): df = df*i % aq res *= df for i in range(d + 1, n + 1): res = res*i % aq res *= pow(kf*df % aq, aq - 2, aq) res %= aq else: # Binomial Factorization is performed by calculating the # exponents of primes <= n in `n! /(k! (n - k)!)`, # for non-negative integers n and k. As the exponent of # prime in n! is e_p(n) = [n/p] + [n/p**2] + ... # the exponent of prime in binomial(n, k) would be # e_p(n) - e_p(k) - e_p(n - k) M = int(_sqrt(n)) for prime in sieve.primerange(2, n + 1): if prime > n - k: res = res*prime % aq elif prime > n // 2: continue elif prime > M: if n % prime < k % prime: res = res*prime % aq else: N, K = n, k exp = a = 0 while N > 0: a = int((N % prime) < (K % prime + a)) N, K = N // prime, K // prime exp += a if exp > 0: res *= pow(prime, exp, aq) res %= aq return Integer(res % q) def _eval_expand_func(self, **hints): """ Function to expand binomial(n, k) when m is positive integer Also, n is self.args[0] and k is self.args[1] while using binomial(n, k) """ n = self.args[0] if n.is_Number: return binomial(*self.args) k = self.args[1] if k.is_Add and n in k.args: k = n - k if k.is_Integer: if k.is_zero: return S.One elif k.is_negative: return S.Zero else: n, result = self.args[0], 1 for i in range(1, k + 1): result *= n - k + i result /= i return result else: return binomial(*self.args) def _eval_rewrite_as_factorial(self, n, k, **kwargs): return factorial(n)/(factorial(k)*factorial(n - k)) def _eval_rewrite_as_gamma(self, n, k, **kwargs): from sympy import gamma return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1)) def _eval_rewrite_as_tractable(self, n, k, **kwargs): return self._eval_rewrite_as_gamma(n, k).rewrite('tractable') def _eval_rewrite_as_FallingFactorial(self, n, k, **kwargs): if k.is_integer: return ff(n, k) / factorial(k) def _eval_is_integer(self): n, k = self.args if n.is_integer and k.is_integer: return True elif k.is_integer is False: return False def _eval_is_nonnegative(self): n, k = self.args if n.is_integer and k.is_integer: if n.is_nonnegative or k.is_negative or k.is_even: return True elif k.is_even is False: return False
d876192ae899420d13e2934460833bb72f6f91daf20b5294797fb9c065b50dc8
from __future__ import print_function, division from sympy.core.add import Add from sympy.core.basic import sympify, cacheit from sympy.core.compatibility import range from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not, fuzzy_or from sympy.core.numbers import igcdex, Rational, pi from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.elementary.exponential import log, exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh, coth, HyperbolicFunction, sinh, tanh) from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.sets.sets import FiniteSet from sympy.utilities.iterables import numbered_symbols ############################################################################### ########################## TRIGONOMETRIC FUNCTIONS ############################ ############################################################################### class TrigonometricFunction(Function): """Base class for trigonometric functions. """ unbranched = True def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False pi_coeff = _pi_coeff(self.args[0]) if pi_coeff is not None and pi_coeff.is_rational: return True else: return s.is_algebraic def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _as_real_imag(self, deep=True, **hints): if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.args[0].expand(deep, **hints), S.Zero) else: return (self.args[0], S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (re, im) def _period(self, general_period, symbol=None): f = self.args[0] if symbol is None: symbol = tuple(f.free_symbols)[0] if not f.has(symbol): return S.Zero if f == symbol: return general_period if symbol in f.free_symbols: if f.is_Mul: g, h = f.as_independent(symbol) if h == symbol: return general_period/abs(g) if f.is_Add: a, h = f.as_independent(symbol) g, h = h.as_independent(symbol, as_Add=False) if h == symbol: return general_period/abs(g) raise NotImplementedError("Use the periodicity function instead.") def _peeloff_pi(arg): """ Split ARG into two parts, a "rest" and a multiple of pi/2. This assumes ARG to be an Add. The multiple of pi returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel >>> from sympy import pi >>> from sympy.abc import x, y >>> peel(x + pi/2) (x, pi/2) >>> peel(x + 2*pi/3 + pi*y) (x + pi*y + pi/6, pi/2) """ for a in Add.make_args(arg): if a is S.Pi: K = S.One break elif a.is_Mul: K, p = a.as_two_terms() if p is S.Pi and K.is_Rational: break else: return arg, S.Zero m1 = (K % S.Half) * S.Pi m2 = K*S.Pi - m1 return arg - m2, m2 def _pi_coeff(arg, cycles=1): """ When arg is a Number times pi (e.g. 3*pi/2) then return the Number normalized to be in the range [0, 2], else None. When an even multiple of pi is encountered, if it is multiplying something with known parity then the multiple is returned as 0 otherwise as 2. Examples ======== >>> from sympy.functions.elementary.trigonometric import _pi_coeff as coeff >>> from sympy import pi, Dummy >>> from sympy.abc import x, y >>> coeff(3*x*pi) 3*x >>> coeff(11*pi/7) 11/7 >>> coeff(-11*pi/7) 3/7 >>> coeff(4*pi) 0 >>> coeff(5*pi) 1 >>> coeff(5.0*pi) 1 >>> coeff(5.5*pi) 3/2 >>> coeff(2 + pi) >>> coeff(2*Dummy(integer=True)*pi) 2 >>> coeff(2*Dummy(even=True)*pi) 0 """ arg = sympify(arg) if arg is S.Pi: return S.One elif not arg: return S.Zero elif arg.is_Mul: cx = arg.coeff(S.Pi) if cx: c, x = cx.as_coeff_Mul() # pi is not included as coeff if c.is_Float: # recast exact binary fractions to Rationals f = abs(c) % 1 if f != 0: p = -int(round(log(f, 2).evalf())) m = 2**p cm = c*m i = int(cm) if i == cm: c = Rational(i, m) cx = c*x else: c = Rational(int(c)) cx = c*x if x.is_integer: c2 = c % 2 if c2 == 1: return x elif not c2: if x.is_even is not None: # known parity return S.Zero return S(2) else: return c2*x return cx elif arg.is_zero: return S.Zero class sin(TrigonometricFunction): """ The sine function. Returns the sine of x (measured in radians). Notes ===== This function will evaluate automatically in the case x/pi is some rational number [4]_. For example, if x is a multiple of pi, pi/2, pi/3, pi/4 and pi/6. Examples ======== >>> from sympy import sin, pi >>> from sympy.abc import x >>> sin(x**2).diff(x) 2*x*cos(x**2) >>> sin(1).diff(x) 0 >>> sin(pi) 0 >>> sin(pi/2) 1 >>> sin(pi/6) 1/2 >>> sin(pi/12) -sqrt(2)/4 + sqrt(6)/4 See Also ======== csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sin .. [4] http://mathworld.wolfram.com/TrigonometryAngles.html """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return cos(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/(2*S.Pi)) if min is not S.NegativeInfinity: min = min - d*2*S.Pi if max is not S.Infinity: max = max - d*2*S.Pi if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \ is not S.EmptySet and \ AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2), S.Pi*Rational(7, 2))) is not S.EmptySet: return AccumBounds(-1, 1) elif AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \ is not S.EmptySet: return AccumBounds(Min(sin(min), sin(max)), 1) elif AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2), S.Pi*Rational(8, 2))) \ is not S.EmptySet: return AccumBounds(-1, Max(sin(min), sin(max))) else: return AccumBounds(Min(sin(min), sin(max)), Max(sin(min), sin(max))) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * sinh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.NegativeOne**(pi_coeff - S.Half) if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None # https://github.com/sympy/sympy/issues/6048 # transform a sine to a cosine, to avoid redundant code if pi_coeff.is_Rational: x = pi_coeff % 2 if x > 1: return -cls((x % 1)*S.Pi) if 2*x > 1: return cls((1 - x)*S.Pi) narg = ((pi_coeff + Rational(3, 2)) % 2)*S.Pi result = cos(narg) if not isinstance(result, cos): return result if pi_coeff*S.Pi != arg: return cls(pi_coeff*S.Pi) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: return sin(m)*cos(x) + cos(m)*sin(x) if arg.is_zero: return S.Zero if isinstance(arg, asin): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return x / sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return y / sqrt(x**2 + y**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2) if isinstance(arg, acot): x = arg.args[0] return 1 / (sqrt(1 + 1 / x**2) * x) if isinstance(arg, acsc): x = arg.args[0] return 1 / x if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1 / x**2) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p * x**2 / (n*(n - 1)) else: return (-1)**(n//2) * x**(n)/factorial(n) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) - exp(-arg*I)) / (2*I) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*x**-I / 2 - I*x**I /2 def _eval_rewrite_as_cos(self, arg, **kwargs): return cos(arg - S.Pi / 2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg) return 2*tan_half/(1 + tan_half**2) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg) return 2*cot_half/(1 + cot_half**2) def _eval_rewrite_as_pow(self, arg, **kwargs): return self.rewrite(cos).rewrite(pow) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self.rewrite(cos).rewrite(sqrt) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/csc(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): return 1 / sec(arg - S.Pi / 2, evaluate=False) def _eval_rewrite_as_sinc(self, arg, **kwargs): return arg*sinc(arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) return (sin(re)*cosh(im), cos(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy import expand_mul from sympy.functions.special.polynomials import chebyshevt, chebyshevu arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return sx*cy + sy*cx else: n, x = arg.as_coeff_Mul(rational=True) if n.is_Integer: # n will be positive because of .eval # canonicalization # See http://mathworld.wolfram.com/Multiple-AngleFormulas.html if n.is_odd: return (-1)**((n - 1)/2)*chebyshevt(n, sin(x)) else: return expand_mul((-1)**(n/2 - 1)*cos(x)*chebyshevu(n - 1, sin(x)), deep=False) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return sin(arg) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True class cos(TrigonometricFunction): """ The cosine function. Returns the cosine of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cos, pi >>> from sympy.abc import x >>> cos(x**2).diff(x) -2*x*sin(x**2) >>> cos(1).diff(x) 0 >>> cos(pi) -1 >>> cos(pi/2) 0 >>> cos(2*pi/3) -1/2 >>> cos(pi/12) sqrt(2)/4 + sqrt(6)/4 See Also ======== sin, csc, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cos """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return -sin(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.functions.special.polynomials import chebyshevt from sympy.calculus.util import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.One elif arg is S.Infinity or arg is S.NegativeInfinity: # In this case it is better to return AccumBounds(-1, 1) # rather than returning S.NaN, since AccumBounds(-1, 1) # preserves the information that sin(oo) is between # -1 and 1, where S.NaN does not do that. return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return sin(arg + S.Pi/2) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.could_extract_minus_sign(): return cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return cosh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return (S.NegativeOne)**pi_coeff if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None # cosine formula ##################### # https://github.com/sympy/sympy/issues/6048 # explicit calculations are performed for # cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120 # Some other exact values like cos(k pi/240) can be # calculated using a partial-fraction decomposition # by calling cos( X ).rewrite(sqrt) cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1)/4, } if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*S.Pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*S.Pi return -cls(narg) # If nested sqrt's are worse than un-evaluation # you can require q to be in (1, 2, 3, 4, 6, 12) # q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return # expressions with 2 or fewer sqrt nestings. table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } if q in table2: a, b = p*S.Pi/table2[q][0], p*S.Pi/table2[q][1] nvala, nvalb = cls(a), cls(b) if None == nvala or None == nvalb: return None return nvala*nvalb + cls(S.Pi/2 - a)*cls(S.Pi/2 - b) if q > 12: return None if q in cst_table_some: cts = cst_table_some[pi_coeff.q] return chebyshevt(pi_coeff.p, cts).expand() if 0 == q % 2: narg = (pi_coeff*2)*S.Pi nval = cls(narg) if None == nval: return None x = (2*pi_coeff + 1)/2 sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x))) return sign_cos*sqrt( (1 + nval)/2 ) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: return cos(m)*cos(x) - sin(m)*sin(x) if arg.is_zero: return S.One if isinstance(arg, acos): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1 / sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return x / sqrt(x**2 + y**2) if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x ** 2) if isinstance(arg, acot): x = arg.args[0] return 1 / sqrt(1 + 1 / x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1 / x**2) if isinstance(arg, asec): x = arg.args[0] return 1 / x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p * x**2 / (n*(n - 1)) else: return (-1)**(n//2)*x**(n)/factorial(n) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) + exp(-arg*I)) / 2 def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return x**I/2 + x**-I/2 def _eval_rewrite_as_sin(self, arg, **kwargs): return sin(arg + S.Pi / 2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg)**2 return (1 - tan_half)/(1 + tan_half) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/sin(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg)**2 return (cot_half - 1)/(cot_half + 1) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._eval_rewrite_as_sqrt(arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): from sympy.functions.special.polynomials import chebyshevt def migcdex(x): # recursive calcuation of gcd and linear combination # for a sequence of integers. # Given (x1, x2, x3) # Returns (y1, y1, y3, g) # such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0 # Note, that this is only one such linear combination. if len(x) == 1: return (1, x[0]) if len(x) == 2: return igcdex(x[0], x[-1]) g = migcdex(x[1:]) u, v, h = igcdex(x[0], g[-1]) return tuple([u] + [v*i for i in g[0:-1] ] + [h]) def ipartfrac(r, factors=None): from sympy.ntheory import factorint if isinstance(r, int): return r if not isinstance(r, Rational): raise TypeError("r is not rational") n = r.q if 2 > r.q*r.q: return r.q if None == factors: a = [n//x**y for x, y in factorint(r.q).items()] else: a = [n//x for x in factors] if len(a) == 1: return [ r ] h = migcdex(a) ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ] assert r == sum(ans) return ans pi_coeff = _pi_coeff(arg) if pi_coeff is None: return None if pi_coeff.is_integer: # it was unevaluated return self.func(pi_coeff*S.Pi) if not pi_coeff.is_Rational: return None def _cospi257(): """ Express cos(pi/257) explicitly as a function of radicals Based upon the equations in http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals See also http://www.susqu.edu/brakke/constructions/257-gon.m.txt """ def f1(a, b): return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2 def f2(a, b): return (a - sqrt(a**2 + b))/2 t1, t2 = f1(-1, 256) z1, z3 = f1(t1, 64) z2, z4 = f1(t2, 64) y1, y5 = f1(z1, 4*(5 + t1 + 2*z1)) y6, y2 = f1(z2, 4*(5 + t2 + 2*z2)) y3, y7 = f1(z3, 4*(5 + t1 + 2*z3)) y8, y4 = f1(z4, 4*(5 + t2 + 2*z4)) x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6)) x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7)) x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8)) x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1)) x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2)) x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3)) x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4)) x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5)) v1 = f2(x1, -4*(x1 + x2 + x3 + x6)) v2 = f2(x2, -4*(x2 + x3 + x4 + x7)) v3 = f2(x8, -4*(x8 + x9 + x10 + x13)) v4 = f2(x9, -4*(x9 + x10 + x11 + x14)) v5 = f2(x10, -4*(x10 + x11 + x12 + x15)) v6 = f2(x16, -4*(x16 + x1 + x2 + x5)) u1 = -f2(-v1, -4*(v2 + v3)) u2 = -f2(-v4, -4*(v5 + v6)) w1 = -2*f2(-u1, -4*u2) return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half) cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1)/4, 17: sqrt((15 + sqrt(17))/32 + sqrt(2)*(sqrt(17 - sqrt(17)) + sqrt(sqrt(2)*(-8*sqrt(17 + sqrt(17)) - (1 - sqrt(17)) *sqrt(17 - sqrt(17))) + 6*sqrt(17) + 34))/32), 257: _cospi257() # 65537 is the only other known Fermat prime and the very # large expression is intentionally omitted from SymPy; see # http://www.susqu.edu/brakke/constructions/65537-gon.m.txt } def _fermatCoords(n): # if n can be factored in terms of Fermat primes with # multiplicity of each being 1, return those primes, else # False primes = [] for p_i in cst_table_some: quotient, remainder = divmod(n, p_i) if remainder == 0: n = quotient primes.append(p_i) if n == 1: return tuple(primes) return False if pi_coeff.q in cst_table_some: rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q]) if pi_coeff.q < 257: rv = rv.expand() return rv if not pi_coeff.q % 2: # recursively remove factors of 2 pico2 = pi_coeff*2 nval = cos(pico2*S.Pi).rewrite(sqrt) x = (pico2 + 1)/2 sign_cos = -1 if int(x) % 2 else 1 return sign_cos*sqrt( (1 + nval)/2 ) FC = _fermatCoords(pi_coeff.q) if FC: decomp = ipartfrac(pi_coeff, FC) X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X) return pcls.rewrite(sqrt) else: decomp = ipartfrac(pi_coeff) X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X) return pcls def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1 / sec(arg).rewrite(csc) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) return (cos(re)*cosh(im), -sin(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy.functions.special.polynomials import chebyshevt arg = self.args[0] x = None if arg.is_Add: # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return cx*cy - sx*sy else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer: return chebyshevt(coeff, cos(terms)) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return cos(arg) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True class tan(TrigonometricFunction): """ The tangent function. Returns the tangent of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import tan, pi >>> from sympy.abc import x >>> tan(x**2).diff(x) 2*x*(tan(x**2)**2 + 1) >>> tan(1).diff(x) 0 >>> tan(pi/8).expand() -1 + sqrt(2) See Also ======== sin, csc, cos, sec, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Tan """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.One + self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atan @classmethod def eval(cls, arg): from sympy.calculus.util import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(S.NegativeInfinity, S.Infinity) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/S.Pi) if min is not S.NegativeInfinity: min = min - d*S.Pi if max is not S.Infinity: max = max - d*S.Pi if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(3, 2))): return AccumBounds(S.NegativeInfinity, S.Infinity) else: return AccumBounds(tan(min), tan(max)) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * tanh(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % q # ensure simplified results are returned for n*pi/5, n*pi/10 table10 = { 1: sqrt(1 - 2*sqrt(5)/5), 2: sqrt(5 - 2*sqrt(5)), 3: sqrt(1 + 2*sqrt(5)/5), 4: sqrt(5 + 2*sqrt(5)) } if q == 5 or q == 10: n = 10 * p / q if n > 5: n = 10 - n return -table10[n] else: return table10[n] if not pi_coeff.q % 2: narg = pi_coeff*S.Pi*2 cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return 1/sresult - cresult/sresult table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } if q in table2: nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1]) if None == nvala or None == nvalb: return None return (nvala - nvalb)/(1 + nvala*nvalb) narg = ((pi_coeff + S.Half) % 1 - S.Half)*S.Pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if cresult == 0: return S.ComplexInfinity return (sresult/cresult) if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: tanm = tan(m) if tanm is S.ComplexInfinity: return -cot(x) else: # tanm == 0 return tan(x) if arg.is_zero: return S.Zero if isinstance(arg, atan): return arg.args[0] if isinstance(arg, atan2): y, x = arg.args return y/x if isinstance(arg, asin): x = arg.args[0] return x / sqrt(1 - x**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2) / x if isinstance(arg, acot): x = arg.args[0] return 1 / x if isinstance(arg, acsc): x = arg.args[0] return 1 / (sqrt(1 - 1 / x**2) * x) if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1 / x**2) * x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a, b = ((n - 1)//2), 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return (-1)**a * b*(b - 1) * B/F * x**n def _eval_nseries(self, x, n, logx): i = self.args[0].limit(x, 0)*2/S.Pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return Function._eval_nseries(self, x, n=n, logx=logx) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*(x**-I - x**I)/(x**-I + x**I) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: denom = cos(2*re) + cosh(2*im) return (sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_expand_trig(self, **hints): from sympy import im, re arg = self.args[0] x = None if arg.is_Add: from sympy import symmetric_poly n = len(arg.args) TX = [] for x in arg.args: tx = tan(x, evaluate=False)._eval_expand_trig() TX.append(tx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n + 1): p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, TX))) else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((1 + I*z)**coeff).expand() return (im(P)/re(P)).subs([(z, tan(terms))]) return tan(arg) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(neg_exp - pos_exp)/(neg_exp + pos_exp) def _eval_rewrite_as_sin(self, x, **kwargs): return 2*sin(x)**2/sin(2*x) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x - S.Pi / 2, evaluate=False) / cos(x) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): return 1/cot(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): sin_in_sec_form = sin(arg).rewrite(sec) cos_in_sec_form = cos(arg).rewrite(sec) return sin_in_sec_form / cos_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): sin_in_csc_form = sin(arg).rewrite(csc) cos_in_csc_form = cos(arg).rewrite(csc) return sin_in_csc_form / cos_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_extended_real(self): # FIXME: currently tan(pi/2) return zoo return self.args[0].is_extended_real def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg / pi - S.Half).is_integer is False: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg / pi - S.Half).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg / pi - S.Half).is_integer is False: return True class cot(TrigonometricFunction): """ The cotangent function. Returns the cotangent of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cot, pi >>> from sympy.abc import x >>> cot(x**2).diff(x) 2*x*(-cot(x**2)**2 - 1) >>> cot(1).diff(x) 0 >>> cot(pi/12) sqrt(3) + 2 See Also ======== sin, csc, cos, sec, tan asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cot """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.NegativeOne - self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acot @classmethod def eval(cls, arg): from sympy.calculus.util import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN if arg.is_zero: return S.ComplexInfinity if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return -tan(arg + S.Pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * coth(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.ComplexInfinity if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: if pi_coeff.q == 5 or pi_coeff.q == 10: return tan(S.Pi/2 - arg) if pi_coeff.q > 2 and not pi_coeff.q % 2: narg = pi_coeff*S.Pi*2 cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): return 1/sresult + cresult/sresult table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } q = pi_coeff.q p = pi_coeff.p % q if q in table2: nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1]) if None == nvala or None == nvalb: return None return (1 + nvala*nvalb)/(nvalb - nvala) narg = (((pi_coeff + S.Half) % 1) - S.Half)*S.Pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return cresult / sresult if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: cotm = cot(m) if cotm is S.ComplexInfinity: return cot(x) else: # cotm == 0 return -tan(x) if arg.is_zero: return S.ComplexInfinity if isinstance(arg, acot): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1 / x if isinstance(arg, atan2): y, x = arg.args return x/y if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x**2) / x if isinstance(arg, acos): x = arg.args[0] return x / sqrt(1 - x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1 / x**2) * x if isinstance(arg, asec): x = arg.args[0] return 1 / (sqrt(1 - 1 / x**2) * x) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1 / sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return (-1)**((n + 1)//2) * 2**(n + 1) * B/F * x**n def _eval_nseries(self, x, n, logx): i = self.args[0].limit(x, 0)/S.Pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: denom = cos(2*re) - cosh(2*im) return (-sin(2*re)/denom, -sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return -I*(x**-I + x**I)/(x**-I - x**I) def _eval_rewrite_as_sin(self, x, **kwargs): return sin(2*x)/(2*(sin(x)**2)) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x) / cos(x - S.Pi / 2, evaluate=False) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/sin(arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return 1/tan(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): cos_in_sec_form = cos(arg).rewrite(sec) sin_in_sec_form = sin(arg).rewrite(sec) return cos_in_sec_form / sin_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): cos_in_csc_form = cos(arg).rewrite(csc) sin_in_csc_form = sin(arg).rewrite(csc) return cos_in_csc_form / sin_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 1/arg else: return self.func(arg) def _eval_is_extended_real(self): return self.args[0].is_extended_real def _eval_expand_trig(self, **hints): from sympy import im, re arg = self.args[0] x = None if arg.is_Add: from sympy import symmetric_poly n = len(arg.args) CX = [] for x in arg.args: cx = cot(x, evaluate=False)._eval_expand_trig() CX.append(cx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n, -1, -1): p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, CX))) else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((z + I)**coeff).expand() return (re(P)/im(P)).subs([(z, cot(terms))]) return cot(arg) def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg / pi).is_integer is False: return True def _eval_subs(self, old, new): arg = self.args[0] argnew = arg.subs(old, new) if arg != argnew and (argnew/S.Pi).is_integer: return S.ComplexInfinity return cot(argnew) class ReciprocalTrigonometricFunction(TrigonometricFunction): """Base class for reciprocal functions of trigonometric functions. """ _reciprocal_of = None # mandatory, to be defined in subclass # _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x) # TODO refactor into TrigonometricFunction common parts of # trigonometric functions eval() like even/odd, func(x+2*k*pi), etc. _is_even = None # optional, to be defined in subclass _is_odd = None # optional, to be defined in subclass @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) pi_coeff = _pi_coeff(arg) if (pi_coeff is not None and not (2*pi_coeff).is_integer and pi_coeff.is_Rational): q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*S.Pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*S.Pi if cls._is_odd: return cls(narg) elif cls._is_even: return -cls(narg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] t = cls._reciprocal_of.eval(arg) if t is None: return t elif any(isinstance(i, cos) for i in (t, -t)): return (1/t).rewrite(sec) elif any(isinstance(i, sin) for i in (t, -t)): return (1/t).rewrite(csc) else: return 1/t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t is not None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t is not None and t != self._reciprocal_of(arg): return 1/t def _period(self, symbol): f = self.args[0] return self._reciprocal_of(f).period(symbol) def fdiff(self, argindex=1): return -self._calculate_reciprocal("fdiff", argindex)/self**2 def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_Pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg) def _eval_rewrite_as_cos(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_expand_trig(self, **hints): return self._calculate_reciprocal("_eval_expand_trig", **hints) def _eval_is_extended_real(self): return self._reciprocal_of(self.args[0])._eval_is_extended_real() def _eval_as_leading_term(self, x): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite def _eval_nseries(self, x, n, logx): return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx) class sec(ReciprocalTrigonometricFunction): """ The secant function. Returns the secant of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import sec >>> from sympy.abc import x >>> sec(x**2).diff(x) 2*x*tan(x**2)*sec(x**2) >>> sec(1).diff(x) 0 See Also ======== sin, csc, cos, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sec """ _reciprocal_of = cos _is_even = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half_sq = cot(arg/2)**2 return (cot_half_sq + 1)/(cot_half_sq - 1) def _eval_rewrite_as_cos(self, arg, **kwargs): return (1/cos(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/(cos(arg)*sin(arg)) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1 / cos(arg).rewrite(sin)) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1 / cos(arg).rewrite(tan)) def _eval_rewrite_as_csc(self, arg, **kwargs): return csc(pi / 2 - arg, evaluate=False) def fdiff(self, argindex=1): if argindex == 1: return tan(self.args[0])*sec(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_is_complex(self): arg = self.args[0] if arg.is_complex and (arg / pi - S.Half).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # Reference Formula: # http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/ from sympy.functions.combinatorial.numbers import euler if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) k = n//2 return (-1)**k*euler(2*k)/factorial(2*k)*x**(2*k) class csc(ReciprocalTrigonometricFunction): """ The cosecant function. Returns the cosecant of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import csc >>> from sympy.abc import x >>> csc(x**2).diff(x) -2*x*cot(x**2)*csc(x**2) >>> csc(1).diff(x) 0 See Also ======== sin, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Csc """ _reciprocal_of = sin _is_odd = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/sin(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/(sin(arg)*cos(arg)) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(arg/2) return (1 + cot_half**2)/(2*cot_half) def _eval_rewrite_as_cos(self, arg, **kwargs): return 1 / sin(arg).rewrite(cos) def _eval_rewrite_as_sec(self, arg, **kwargs): return sec(pi / 2 - arg, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1 / sin(arg).rewrite(tan)) def fdiff(self, argindex=1): if argindex == 1: return -cot(self.args[0])*csc(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg / pi).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = n//2 + 1 return ((-1)**(k - 1)*2*(2**(2*k - 1) - 1)* bernoulli(2*k)*x**(2*k - 1)/factorial(2*k)) class sinc(Function): r""" Represents an unnormalized sinc function: .. math:: \operatorname{sinc}(x) = \begin{cases} \frac{\sin x}{x} & \qquad x \neq 0 \\ 1 & \qquad x = 0 \end{cases} Examples ======== >>> from sympy import sinc, oo, jn, Product, Symbol >>> from sympy.abc import x >>> sinc(x) sinc(x) * Automated Evaluation >>> sinc(0) 1 >>> sinc(oo) 0 * Differentiation >>> sinc(x).diff() Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, 0)), (0, True)) * Series Expansion >>> sinc(x).series() 1 - x**2/6 + x**4/120 + O(x**6) * As zero'th order spherical Bessel Function >>> sinc(x).rewrite(jn) jn(0, x) References ========== .. [1] https://en.wikipedia.org/wiki/Sinc_function """ def fdiff(self, argindex=1): x = self.args[0] if argindex == 1: return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_zero: return S.One if arg.is_Number: if arg in [S.Infinity, S.NegativeInfinity]: return S.Zero elif arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.NaN if arg.could_extract_minus_sign(): return cls(-arg) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: if fuzzy_not(arg.is_zero): return S.Zero elif (2*pi_coeff).is_integer: return S.NegativeOne**(pi_coeff - S.Half) / arg def _eval_nseries(self, x, n, logx): x = self.args[0] return (sin(x)/x)._eval_nseries(x, n, logx) def _eval_rewrite_as_jn(self, arg, **kwargs): from sympy.functions.special.bessel import jn return jn(0, arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true)) ############################################################################### ########################### TRIGONOMETRIC INVERSES ############################ ############################################################################### class InverseTrigonometricFunction(Function): """Base class for inverse trigonometric functions.""" @staticmethod def _asin_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/2: S.Pi/3, sqrt(2)/2: S.Pi/4, 1/sqrt(2): S.Pi/4, sqrt((5 - sqrt(5))/8): S.Pi/5, sqrt(2)*sqrt(5 - sqrt(5))/4: S.Pi/5, sqrt((5 + sqrt(5))/8): S.Pi*Rational(2, 5), sqrt(2)*sqrt(5 + sqrt(5))/4: S.Pi*Rational(2, 5), S.Half: S.Pi/6, sqrt(2 - sqrt(2))/2: S.Pi/8, sqrt(S.Half - sqrt(2)/4): S.Pi/8, sqrt(2 + sqrt(2))/2: S.Pi*Rational(3, 8), sqrt(S.Half + sqrt(2)/4): S.Pi*Rational(3, 8), (sqrt(5) - 1)/4: S.Pi/10, (1 - sqrt(5))/4: -S.Pi/10, (sqrt(5) + 1)/4: S.Pi*Rational(3, 10), sqrt(6)/4 - sqrt(2)/4: S.Pi/12, -sqrt(6)/4 + sqrt(2)/4: -S.Pi/12, (sqrt(3) - 1)/sqrt(8): S.Pi/12, (1 - sqrt(3))/sqrt(8): -S.Pi/12, sqrt(6)/4 + sqrt(2)/4: S.Pi*Rational(5, 12), (1 + sqrt(3))/sqrt(8): S.Pi*Rational(5, 12) } @staticmethod def _atan_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/3: S.Pi/6, 1/sqrt(3): S.Pi/6, sqrt(3): S.Pi/3, sqrt(2) - 1: S.Pi/8, 1 - sqrt(2): -S.Pi/8, 1 + sqrt(2): S.Pi*Rational(3, 8), sqrt(5 - 2*sqrt(5)): S.Pi/5, sqrt(5 + 2*sqrt(5)): S.Pi*Rational(2, 5), sqrt(1 - 2*sqrt(5)/5): S.Pi/10, sqrt(1 + 2*sqrt(5)/5): S.Pi*Rational(3, 10), 2 - sqrt(3): S.Pi/12, -2 + sqrt(3): -S.Pi/12, 2 + sqrt(3): S.Pi*Rational(5, 12) } @staticmethod def _acsc_table(): # Keys for which could_extract_minus_sign() # will obviously return True are omitted. return { 2*sqrt(3)/3: S.Pi/3, sqrt(2): S.Pi/4, sqrt(2 + 2*sqrt(5)/5): S.Pi/5, 1/sqrt(Rational(5, 8) - sqrt(5)/8): S.Pi/5, sqrt(2 - 2*sqrt(5)/5): S.Pi*Rational(2, 5), 1/sqrt(Rational(5, 8) + sqrt(5)/8): S.Pi*Rational(2, 5), 2: S.Pi/6, sqrt(4 + 2*sqrt(2)): S.Pi/8, 2/sqrt(2 - sqrt(2)): S.Pi/8, sqrt(4 - 2*sqrt(2)): S.Pi*Rational(3, 8), 2/sqrt(2 + sqrt(2)): S.Pi*Rational(3, 8), 1 + sqrt(5): S.Pi/10, sqrt(5) - 1: S.Pi*Rational(3, 10), -(sqrt(5) - 1): S.Pi*Rational(-3, 10), sqrt(6) + sqrt(2): S.Pi/12, sqrt(6) - sqrt(2): S.Pi*Rational(5, 12), -(sqrt(6) - sqrt(2)): S.Pi*Rational(-5, 12) } class asin(InverseTrigonometricFunction): """ The inverse sine function. Returns the arcsine of x in radians. Notes ===== ``asin(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). A purely imaginary argument will lead to an asinh expression. Examples ======== >>> from sympy import asin, oo, pi >>> asin(1) pi/2 >>> asin(-1) -pi/2 See Also ======== sin, csc, cos, sec, tan, cot acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self._eval_is_extended_real() and self.args[0].is_positive def _eval_is_negative(self): return self._eval_is_extended_real() and self.args[0].is_negative @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.NegativeInfinity * S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.Infinity * S.ImaginaryUnit elif arg.is_zero: return S.Zero elif arg is S.One: return S.Pi / 2 elif arg is S.NegativeOne: return -S.Pi / 2 if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return asin_table[arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * asinh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, sin): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, cos): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acos(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return R / F * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_acos(self, x, **kwargs): return S.Pi/2 - acos(x) def _eval_rewrite_as_atan(self, x, **kwargs): return 2*atan(x/(1 + sqrt(1 - x**2))) def _eval_rewrite_as_log(self, x, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return S.Pi/2 - asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return acsc(1/arg) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sin class acos(InverseTrigonometricFunction): """ The inverse cosine function. Returns the arc cosine of x (measured in radians). Notes ===== ``acos(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). ``acos(zoo)`` evaluates to ``zoo`` (see note in :class:`sympy.functions.elementary.trigonometric.asec`) A purely imaginary argument will be rewritten to asinh. Examples ======== >>> from sympy import acos, oo, pi >>> acos(1) 0 >>> acos(0) pi/2 >>> acos(oo) oo*I See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos """ def fdiff(self, argindex=1): if argindex == 1: return -1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity * S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.NegativeInfinity * S.ImaginaryUnit elif arg.is_zero: return S.Pi / 2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return pi/2 - asin_table[arg] elif -arg in asin_table: return pi/2 + asin_table[-arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return pi/2 - asin(arg) if isinstance(arg, cos): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, sin): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asin(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R / F * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def _eval_is_nonnegative(self): return self._eval_is_extended_real() def _eval_nseries(self, x, n, logx): return self._eval_rewrite_as_log(self.args[0])._eval_nseries(x, n, logx) def _eval_rewrite_as_log(self, x, **kwargs): return S.Pi/2 + S.ImaginaryUnit * \ log(S.ImaginaryUnit * x + sqrt(1 - x**2)) def _eval_rewrite_as_asin(self, x, **kwargs): return S.Pi/2 - asin(x) def _eval_rewrite_as_atan(self, x, **kwargs): return atan(sqrt(1 - x**2)/x) + (S.Pi/2)*(1 - x*sqrt(1/x**2)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cos def _eval_rewrite_as_acot(self, arg, **kwargs): return S.Pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return S.Pi/2 - acsc(1/arg) def _eval_conjugate(self): z = self.args[0] r = self.func(self.args[0].conjugate()) if z.is_extended_real is False: return r elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive: return r class atan(InverseTrigonometricFunction): """ The inverse tangent function. Returns the arc tangent of x (measured in radians). Notes ===== ``atan(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). Examples ======== >>> from sympy import atan, oo, pi >>> atan(0) 0 >>> atan(1) pi/4 >>> atan(oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_extended_positive def _eval_is_nonnegative(self): return self.args[0].is_extended_nonnegative def _eval_is_zero(self): return self.args[0].is_zero def _eval_is_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Pi / 2 elif arg is S.NegativeInfinity: return -S.Pi / 2 elif arg.is_zero: return S.Zero elif arg is S.One: return S.Pi / 4 elif arg is S.NegativeOne: return -S.Pi / 4 if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return AccumBounds(-S.Pi/2, S.Pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: return atan_table[arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * atanh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, tan): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang if isinstance(arg, cot): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - acot(arg) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return (-1)**((n - 1)//2) * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2 * (log(S.One - S.ImaginaryUnit * x) - log(S.One + S.ImaginaryUnit * x)) def _eval_aseries(self, n, args0, x, logx): if args0[0] is S.Infinity: return (S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] is S.NegativeInfinity: return (-S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) else: return super(atan, self)._eval_aseries(n, args0, x, logx) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tan def _eval_rewrite_as_asin(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - asin(1/sqrt(1 + arg**2))) def _eval_rewrite_as_acos(self, arg, **kwargs): return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return acot(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - acsc(sqrt(1 + arg**2))) class acot(InverseTrigonometricFunction): r""" The inverse cotangent function. Returns the arc cotangent of x (measured in radians). Notes ===== ``acot(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``zoo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). A purely imaginary argument will lead to an ``acoth`` expression. ``acot(x)`` has a branch cut along `(-i, i)`, hence it is discontinuous at 0. Its range for real ``x`` is `(-\frac{\pi}{2}, \frac{\pi}{2}]`. Examples ======== >>> from sympy import acot, sqrt >>> acot(0) pi/2 >>> acot(1) pi/4 >>> acot(sqrt(3) - 2) -5*pi/12 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, atan2 References ========== .. [1] http://dlmf.nist.gov/4.23 .. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot """ def fdiff(self, argindex=1): if argindex == 1: return -1 / (1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_nonnegative def _eval_is_negative(self): return self.args[0].is_negative def _eval_is_extended_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.Pi/ 2 elif arg is S.One: return S.Pi / 4 elif arg is S.NegativeOne: return -S.Pi / 4 if arg is S.ComplexInfinity: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: ang = pi/2 - atan_table[arg] if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * acoth(i_coeff) if arg.is_zero: return S.Pi*S.Half if isinstance(arg, cot): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi; return ang if isinstance(arg, tan): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - atan(arg) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi / 2 # FIX THIS elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return (-1)**((n + 1)//2) * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_aseries(self, n, args0, x, logx): if args0[0] is S.Infinity: return (S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] is S.NegativeInfinity: return (S.Pi*Rational(3, 2) - acot(1/self.args[0]))._eval_nseries(x, n, logx) else: return super(atan, self)._eval_aseries(n, args0, x, logx) def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2 * (log(1 - S.ImaginaryUnit/x) - log(1 + S.ImaginaryUnit/x)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cot def _eval_rewrite_as_asin(self, arg, **kwargs): return (arg*sqrt(1/arg**2)* (S.Pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1)))) def _eval_rewrite_as_acos(self, arg, **kwargs): return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1)) def _eval_rewrite_as_atan(self, arg, **kwargs): return atan(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return arg*sqrt(1/arg**2)*(S.Pi/2 - acsc(sqrt((1 + arg**2)/arg**2))) class asec(InverseTrigonometricFunction): r""" The inverse secant function. Returns the arc secant of x (measured in radians). Notes ===== ``asec(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). ``asec(x)`` has branch cut in the interval [-1, 1]. For complex arguments, it can be defined [4]_ as .. math:: \operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z} At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For negative branch cut, the limit .. math:: \lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z} simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which ultimately evaluates to ``zoo``. As ``acos(x)`` = ``asec(1/x)``, a similar argument can be given for ``acos(x)``. Examples ======== >>> from sympy import asec, oo, pi >>> asec(1) 0 >>> asec(-1) pi See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec .. [4] http://reference.wolfram.com/language/ref/ArcSec.html """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Pi/2 if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return pi/2 - acsc_table[arg] elif -arg in acsc_table: return pi/2 + acsc_table[-arg] if isinstance(arg, sec): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acsc(arg) def fdiff(self, argindex=1): if argindex == 1: return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sec def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if Order(1,x).contains(arg): return log(arg) else: return self.func(arg) def _eval_is_extended_real(self): x = self.args[0] if x.is_extended_real is False: return False return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative)) def _eval_rewrite_as_log(self, arg, **kwargs): return S.Pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) def _eval_rewrite_as_asin(self, arg, **kwargs): return S.Pi/2 - asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return acos(1/arg) def _eval_rewrite_as_atan(self, arg, **kwargs): return sqrt(arg**2)/arg*(-S.Pi/2 + 2*atan(arg + sqrt(arg**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(-S.Pi/2 + 2*acot(arg - sqrt(arg**2 - 1))) def _eval_rewrite_as_acsc(self, arg, **kwargs): return S.Pi/2 - acsc(arg) class acsc(InverseTrigonometricFunction): """ The inverse cosecant function. Returns the arc cosecant of x (measured in radians). Notes ===== ``acsc(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). Examples ======== >>> from sympy import acsc, oo, pi >>> acsc(1) pi/2 >>> acsc(-1) -pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Pi/2 elif arg is S.NegativeOne: return -S.Pi/2 if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return acsc_table[arg] if isinstance(arg, csc): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asec(arg) def fdiff(self, argindex=1): if argindex == 1: return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csc def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if Order(1,x).contains(arg): return log(arg) else: return self.func(arg) def _eval_rewrite_as_log(self, arg, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) def _eval_rewrite_as_asin(self, arg, **kwargs): return asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return S.Pi/2 - acos(1/arg) def _eval_rewrite_as_atan(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - atan(sqrt(arg**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - acot(1/sqrt(arg**2 - 1))) def _eval_rewrite_as_asec(self, arg, **kwargs): return S.Pi/2 - asec(arg) class atan2(InverseTrigonometricFunction): r""" The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking two arguments `y` and `x`. Signs of both `y` and `x` are considered to determine the appropriate quadrant of `\operatorname{atan}(y/x)`. The range is `(-\pi, \pi]`. The complete definition reads as follows: .. math:: \operatorname{atan2}(y, x) = \begin{cases} \arctan\left(\frac y x\right) & \qquad x > 0 \\ \arctan\left(\frac y x\right) + \pi& \qquad y \ge 0 , x < 0 \\ \arctan\left(\frac y x\right) - \pi& \qquad y < 0 , x < 0 \\ +\frac{\pi}{2} & \qquad y > 0 , x = 0 \\ -\frac{\pi}{2} & \qquad y < 0 , x = 0 \\ \text{undefined} & \qquad y = 0, x = 0 \end{cases} Attention: Note the role reversal of both arguments. The `y`-coordinate is the first argument and the `x`-coordinate the second. If either `x` or `y` is complex: .. math:: \operatorname{atan2}(y, x) = -i\log\left(\frac{x + iy}{\sqrt{x**2 + y**2}}\right) Examples ======== Going counter-clock wise around the origin we find the following angles: >>> from sympy import atan2 >>> atan2(0, 1) 0 >>> atan2(1, 1) pi/4 >>> atan2(1, 0) pi/2 >>> atan2(1, -1) 3*pi/4 >>> atan2(0, -1) pi >>> atan2(-1, -1) -3*pi/4 >>> atan2(-1, 0) -pi/2 >>> atan2(-1, 1) -pi/4 which are all correct. Compare this to the results of the ordinary `\operatorname{atan}` function for the point `(x, y) = (-1, 1)` >>> from sympy import atan, S >>> atan(S(1) / -1) -pi/4 >>> atan2(1, -1) 3*pi/4 where only the `\operatorname{atan2}` function reurns what we expect. We can differentiate the function with respect to both arguments: >>> from sympy import diff >>> from sympy.abc import x, y >>> diff(atan2(y, x), x) -y/(x**2 + y**2) >>> diff(atan2(y, x), y) x/(x**2 + y**2) We can express the `\operatorname{atan2}` function in terms of complex logarithms: >>> from sympy import log >>> atan2(y, x).rewrite(log) -I*log((x + I*y)/sqrt(x**2 + y**2)) and in terms of `\operatorname(atan)`: >>> from sympy import atan >>> atan2(y, x).rewrite(atan) Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) but note that this form is undefined on the negative real axis. See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://en.wikipedia.org/wiki/Atan2 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2 """ @classmethod def eval(cls, y, x): from sympy import Heaviside, im, re if x is S.NegativeInfinity: if y.is_zero: # Special case y = 0 because we define Heaviside(0) = 1/2 return S.Pi return 2*S.Pi*(Heaviside(re(y))) - S.Pi elif x is S.Infinity: return S.Zero elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number: x = im(x) y = im(y) if x.is_extended_real and y.is_extended_real: if x.is_positive: return atan(y / x) elif x.is_negative: if y.is_negative: return atan(y / x) - S.Pi elif y.is_nonnegative: return atan(y / x) + S.Pi elif x.is_zero: if y.is_positive: return S.Pi/2 elif y.is_negative: return -S.Pi/2 elif y.is_zero: return S.NaN if y.is_zero: if x.is_extended_nonzero: return S.Pi * (S.One - Heaviside(x)) if x.is_number: return Piecewise((S.Pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) if x.is_number and y.is_number: return -S.ImaginaryUnit*log( (x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_log(self, y, x, **kwargs): return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y) / sqrt(x**2 + y**2)) def _eval_rewrite_as_atan(self, y, x, **kwargs): from sympy import re return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) def _eval_rewrite_as_arg(self, y, x, **kwargs): from sympy import arg if x.is_extended_real and y.is_extended_real: return arg(x + y*S.ImaginaryUnit) n = x + S.ImaginaryUnit*y d = x**2 + y**2 return arg(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d))) def _eval_is_extended_real(self): return self.args[0].is_extended_real and self.args[1].is_extended_real def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def fdiff(self, argindex): y, x = self.args if argindex == 1: # Diff wrt y return x/(x**2 + y**2) elif argindex == 2: # Diff wrt x return -y/(x**2 + y**2) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): y, x = self.args if x.is_extended_real and y.is_extended_real: return super(atan2, self)._eval_evalf(prec)
163f29e6a13e46bd65a80c87234692802dd1617e7a3be816c28eb0bbe7944180
# Stub __init__.py for sympy.functions.elementary
5381c484f0e2eae815f58da6f5afb05a81d7da36adc83a0d330df8191aa942fe
from __future__ import print_function, division from sympy.core import Basic, S, Function, diff, Tuple, Dummy from sympy.core.basic import as_Basic from sympy.core.compatibility import range from sympy.core.numbers import Rational, NumberSymbol from sympy.core.relational import (Equality, Unequality, Relational, _canonical) from sympy.functions.elementary.miscellaneous import Max, Min from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, true, false, Or, ITE, simplify_logic) from sympy.utilities.iterables import uniq, ordered, product, sift from sympy.utilities.misc import filldedent, func_name Undefined = S.NaN # Piecewise() class ExprCondPair(Tuple): """Represents an expression, condition pair.""" def __new__(cls, expr, cond): expr = as_Basic(expr) if cond == True: return Tuple.__new__(cls, expr, true) elif cond == False: return Tuple.__new__(cls, expr, false) elif isinstance(cond, Basic) and cond.has(Piecewise): cond = piecewise_fold(cond) if isinstance(cond, Piecewise): cond = cond.rewrite(ITE) if not isinstance(cond, Boolean): raise TypeError(filldedent(''' Second argument must be a Boolean, not `%s`''' % func_name(cond))) return Tuple.__new__(cls, expr, cond) @property def expr(self): """ Returns the expression of this pair. """ return self.args[0] @property def cond(self): """ Returns the condition of this pair. """ return self.args[1] @property def is_commutative(self): return self.expr.is_commutative def __iter__(self): yield self.expr yield self.cond def _eval_simplify(self, **kwargs): return self.func(*[a.simplify(**kwargs) for a in self.args]) class Piecewise(Function): """ Represents a piecewise function. Usage: Piecewise( (expr,cond), (expr,cond), ... ) - Each argument is a 2-tuple defining an expression and condition - The conds are evaluated in turn returning the first that is True. If any of the evaluated conds are not determined explicitly False, e.g. x < 1, the function is returned in symbolic form. - If the function is evaluated at a place where all conditions are False, nan will be returned. - Pairs where the cond is explicitly False, will be removed. Examples ======== >>> from sympy import Piecewise, log, ITE, piecewise_fold >>> from sympy.abc import x, y >>> f = x**2 >>> g = log(x) >>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True)) >>> p.subs(x,1) 1 >>> p.subs(x,5) log(5) Booleans can contain Piecewise elements: >>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond Piecewise((2, x < 0), (3, True)) < y The folded version of this results in a Piecewise whose expressions are Booleans: >>> folded_cond = piecewise_fold(cond); folded_cond Piecewise((2 < y, x < 0), (3 < y, True)) When a Boolean containing Piecewise (like cond) or a Piecewise with Boolean expressions (like folded_cond) is used as a condition, it is converted to an equivalent ITE object: >>> Piecewise((1, folded_cond)) Piecewise((1, ITE(x < 0, y > 2, y > 3))) When a condition is an ITE, it will be converted to a simplified Boolean expression: >>> piecewise_fold(_) Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0)))) See Also ======== piecewise_fold, ITE """ nargs = None is_Piecewise = True def __new__(cls, *args, **options): if len(args) == 0: raise TypeError("At least one (expr, cond) pair expected.") # (Try to) sympify args first newargs = [] for ec in args: # ec could be a ExprCondPair or a tuple pair = ExprCondPair(*getattr(ec, 'args', ec)) cond = pair.cond if cond is false: continue newargs.append(pair) if cond is true: break if options.pop('evaluate', True): r = cls.eval(*newargs) else: r = None if r is None: return Basic.__new__(cls, *newargs, **options) else: return r @classmethod def eval(cls, *_args): """Either return a modified version of the args or, if no modifications were made, return None. Modifications that are made here: 1) relationals are made canonical 2) any False conditions are dropped 3) any repeat of a previous condition is ignored 3) any args past one with a true condition are dropped If there are no args left, nan will be returned. If there is a single arg with a True condition, its corresponding expression will be returned. """ from sympy.functions.elementary.complexes import im, re if not _args: return Undefined if len(_args) == 1 and _args[0][-1] == True: return _args[0][0] newargs = [] # the unevaluated conditions current_cond = set() # the conditions up to a given e, c pair # make conditions canonical args = [] for e, c in _args: if (not c.is_Atom and not isinstance(c, Relational) and not c.has(im, re)): free = c.free_symbols if len(free) == 1: funcs = [i for i in c.atoms(Function) if not isinstance(i, Boolean)] if len(funcs) == 1 and len( c.xreplace({list(funcs)[0]: Dummy()} ).free_symbols) == 1: # we can treat function like a symbol free = funcs _c = c x = free.pop() try: c = c.as_set().as_relational(x) except NotImplementedError: pass else: reps = {} for i in c.atoms(Relational): ic = i.canonical if ic.rhs in (S.Infinity, S.NegativeInfinity): if not _c.has(ic.rhs): # don't accept introduction of # new Relationals with +/-oo reps[i] = S.true elif ('=' not in ic.rel_op and c.xreplace({x: i.rhs}) != _c.xreplace({x: i.rhs})): reps[i] = Relational( i.lhs, i.rhs, i.rel_op + '=') c = c.xreplace(reps) args.append((e, _canonical(c))) for expr, cond in args: # Check here if expr is a Piecewise and collapse if one of # the conds in expr matches cond. This allows the collapsing # of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)). # This is important when using piecewise_fold to simplify # multiple Piecewise instances having the same conds. # Eventually, this code should be able to collapse Piecewise's # having different intervals, but this will probably require # using the new assumptions. if isinstance(expr, Piecewise): unmatching = [] for i, (e, c) in enumerate(expr.args): if c in current_cond: # this would already have triggered continue if c == cond: if c != True: # nothing past this condition will ever # trigger and only those args before this # that didn't match a previous condition # could possibly trigger if unmatching: expr = Piecewise(*( unmatching + [(e, c)])) else: expr = e break else: unmatching.append((e, c)) # check for condition repeats got = False # -- if an And contains a condition that was # already encountered, then the And will be # False: if the previous condition was False # then the And will be False and if the previous # condition is True then then we wouldn't get to # this point. In either case, we can skip this condition. for i in ([cond] + (list(cond.args) if isinstance(cond, And) else [])): if i in current_cond: got = True break if got: continue # -- if not(c) is already in current_cond then c is # a redundant condition in an And. This does not # apply to Or, however: (e1, c), (e2, Or(~c, d)) # is not (e1, c), (e2, d) because if c and d are # both False this would give no results when the # true answer should be (e2, True) if isinstance(cond, And): nonredundant = [] for c in cond.args: if (isinstance(c, Relational) and c.negated.canonical in current_cond): continue nonredundant.append(c) cond = cond.func(*nonredundant) elif isinstance(cond, Relational): if cond.negated.canonical in current_cond: cond = S.true current_cond.add(cond) # collect successive e,c pairs when exprs or cond match if newargs: if newargs[-1].expr == expr: orcond = Or(cond, newargs[-1].cond) if isinstance(orcond, (And, Or)): orcond = distribute_and_over_or(orcond) newargs[-1] = ExprCondPair(expr, orcond) continue elif newargs[-1].cond == cond: newargs[-1] = ExprCondPair(expr, cond) continue newargs.append(ExprCondPair(expr, cond)) # some conditions may have been redundant missing = len(newargs) != len(_args) # some conditions may have changed same = all(a == b for a, b in zip(newargs, _args)) # if either change happened we return the expr with the # updated args if not newargs: raise ValueError(filldedent(''' There are no conditions (or none that are not trivially false) to define an expression.''')) if missing or not same: return cls(*newargs) def doit(self, **hints): """ Evaluate this piecewise function. """ newargs = [] for e, c in self.args: if hints.get('deep', True): if isinstance(e, Basic): newe = e.doit(**hints) if newe != self: e = newe if isinstance(c, Basic): c = c.doit(**hints) newargs.append((e, c)) return self.func(*newargs) def _eval_simplify(self, **kwargs): return piecewise_simplify(self, **kwargs) def _eval_as_leading_term(self, x): for e, c in self.args: if c == True or c.subs(x, 0) == True: return e.as_leading_term(x) def _eval_adjoint(self): return self.func(*[(e.adjoint(), c) for e, c in self.args]) def _eval_conjugate(self): return self.func(*[(e.conjugate(), c) for e, c in self.args]) def _eval_derivative(self, x): return self.func(*[(diff(e, x), c) for e, c in self.args]) def _eval_evalf(self, prec): return self.func(*[(e._evalf(prec), c) for e, c in self.args]) def piecewise_integrate(self, x, **kwargs): """Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the `integrate` function or method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) Note that this does not give a continuous function, e.g. at x = 1 the 3rd condition applies and the antiderivative there is 2*x so the value of the antiderivative is 2: >>> anti = _ >>> anti.subs(x, 1) 2 The continuous derivative accounts for the integral *up to* the point of interest, however: >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> _.subs(x, 1) 1 See Also ======== Piecewise._eval_integral """ from sympy.integrals import integrate return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args]) def _handle_irel(self, x, handler): """Return either None (if the conditions of self depend only on x) else a Piecewise expression whose expressions (handled by the handler that was passed) are paired with the governing x-independent relationals, e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) -> Piecewise( (handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)), (handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True)) """ # identify governing relationals rel = self.atoms(Relational) irel = list(ordered([r for r in rel if x not in r.free_symbols and r not in (S.true, S.false)])) if irel: args = {} exprinorder = [] for truth in product((1, 0), repeat=len(irel)): reps = dict(zip(irel, truth)) # only store the true conditions since the false are implied # when they appear lower in the Piecewise args if 1 not in truth: cond = None # flag this one so it doesn't get combined else: andargs = Tuple(*[i for i in reps if reps[i]]) free = list(andargs.free_symbols) if len(free) == 1: from sympy.solvers.inequalities import ( reduce_inequalities, _solve_inequality) try: t = reduce_inequalities(andargs, free[0]) # ValueError when there are potentially # nonvanishing imaginary parts except (ValueError, NotImplementedError): # at least isolate free symbol on left t = And(*[_solve_inequality( a, free[0], linear=True) for a in andargs]) else: t = And(*andargs) if t is S.false: continue # an impossible combination cond = t expr = handler(self.xreplace(reps)) if isinstance(expr, self.func) and len(expr.args) == 1: expr, econd = expr.args[0] cond = And(econd, True if cond is None else cond) # the ec pairs are being collected since all possibilities # are being enumerated, but don't put the last one in since # its expr might match a previous expression and it # must appear last in the args if cond is not None: args.setdefault(expr, []).append(cond) # but since we only store the true conditions we must maintain # the order so that the expression with the most true values # comes first exprinorder.append(expr) # convert collected conditions as args of Or for k in args: args[k] = Or(*args[k]) # take them in the order obtained args = [(e, args[e]) for e in uniq(exprinorder)] # add in the last arg args.append((expr, True)) # if any condition reduced to True, it needs to go last # and there should only be one of them or else the exprs # should agree trues = [i for i in range(len(args)) if args[i][1] is S.true] if not trues: # make the last one True since all cases were enumerated e, c = args[-1] args[-1] = (e, S.true) else: assert len(set([e for e, c in [args[i] for i in trues]])) == 1 args.append(args.pop(trues.pop())) while trues: args.pop(trues.pop()) return Piecewise(*args) def _eval_integral(self, x, _first=True, **kwargs): """Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including the constant of integration) up to that point. To only integrate the individual parts of Piecewise, use the `piecewise_integrate` method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) See Also ======== Piecewise.piecewise_integrate """ from sympy.integrals.integrals import integrate if _first: def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_integral(x, _first=False, **kwargs) else: return ipw.integrate(x, **kwargs) irv = self._handle_irel(x, handler) if irv is not None: return irv # handle a Piecewise from -oo to oo with and no x-independent relationals # ----------------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral return Integral(self, x) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] oo = S.Infinity done = [(-oo, oo, -1)] for k, p in enumerate(pieces): if p == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # append an arg if there is a hole so a reference to # argument -1 will give Undefined if any(i == -1 for (a, b, i) in done): abei.append((-oo, oo, Undefined, -1)) # return the sum of the intervals args = [] sum = None for a, b, i in done: anti = integrate(abei[i][-2], x, **kwargs) if sum is None: sum = anti else: sum = sum.subs(x, a) if sum == Undefined: sum = 0 sum += anti._eval_interval(x, a, x) # see if we know whether b is contained in original # condition if b is S.Infinity: cond = True elif self.args[abei[i][-1]].cond.subs(x, b) == False: cond = (x < b) else: cond = (x <= b) args.append((sum, cond)) return Piecewise(*args) def _eval_interval(self, sym, a, b, _first=True): """Evaluates the function along the sym in a given interval [a, b]""" # FIXME: Currently complex intervals are not supported. A possible # replacement algorithm, discussed in issue 5227, can be found in the # following papers; # http://portal.acm.org/citation.cfm?id=281649 # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf from sympy.core.symbol import Dummy if a is None or b is None: # In this case, it is just simple substitution return super(Piecewise, self)._eval_interval(sym, a, b) else: x, lo, hi = map(as_Basic, (sym, a, b)) if _first: # get only x-dependent relationals def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_interval(x, lo, hi, _first=None) else: return ipw._eval_interval(x, lo, hi) irv = self._handle_irel(x, handler) if irv is not None: return irv if (lo < hi) is S.false or ( lo is S.Infinity or hi is S.NegativeInfinity): rv = self._eval_interval(x, hi, lo, _first=False) if isinstance(rv, Piecewise): rv = Piecewise(*[(-e, c) for e, c in rv.args]) else: rv = -rv return rv if (lo < hi) is S.true or ( hi is S.Infinity or lo is S.NegativeInfinity): pass else: _a = Dummy('lo') _b = Dummy('hi') a = lo if lo.is_comparable else _a b = hi if hi.is_comparable else _b pos = self._eval_interval(x, a, b, _first=False) if a == _a and b == _b: # it's purely symbolic so just swap lo and hi and # change the sign to get the value for when lo > hi neg, pos = (-pos.xreplace({_a: hi, _b: lo}), pos.xreplace({_a: lo, _b: hi})) else: # at least one of the bounds was comparable, so allow # _eval_interval to use that information when computing # the interval with lo and hi reversed neg, pos = (-self._eval_interval(x, hi, lo, _first=False), pos.xreplace({_a: lo, _b: hi})) # allow simplification based on ordering of lo and hi p = Dummy('', positive=True) if lo.is_Symbol: pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo}) neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi}) elif hi.is_Symbol: pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo}) neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi}) # assemble return expression; make the first condition be Lt # b/c then the first expression will look the same whether # the lo or hi limit is symbolic if a == _a: # the lower limit was symbolic rv = Piecewise( (pos, lo < hi), (neg, True)) else: rv = Piecewise( (neg, hi < lo), (pos, True)) if rv == Undefined: raise ValueError("Can't integrate across undefined region.") if any(isinstance(i, Piecewise) for i in (pos, neg)): rv = piecewise_fold(rv) return rv # handle a Piecewise with lo <= hi and no x-independent relationals # ----------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral # not being able to do the interval of f(x) can # be stated as not being able to do the integral # of f'(x) over the same range return Integral(self.diff(x), (x, lo, hi)) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] done = [(lo, hi, -1)] oo = S.Infinity for k, p in enumerate(pieces): if p[:2] == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # return the sum of the intervals sum = S.Zero upto = None for a, b, i in done: if i == -1: if upto is None: return Undefined # TODO simplify hi <= upto return Piecewise((sum, hi <= upto), (Undefined, True)) sum += abei[i][-2]._eval_interval(x, a, b) upto = b return sum def _intervals(self, sym): """Return a list of unique tuples, (a, b, e, i), where a and b are the lower and upper bounds in which the expression e of argument i in self is defined and a < b (when involving numbers) or a <= b when involving symbols. If there are any relationals not involving sym, or any relational cannot be solved for sym, NotImplementedError is raised. The calling routine should have removed such relationals before calling this routine. The evaluated conditions will be returned as ranges. Discontinuous ranges will be returned separately with identical expressions. The first condition that evaluates to True will be returned as the last tuple with a, b = -oo, oo. """ from sympy.solvers.inequalities import _solve_inequality from sympy.logic.boolalg import to_cnf, distribute_or_over_and assert isinstance(self, Piecewise) def _solve_relational(r): if sym not in r.free_symbols: nonsymfail(r) rv = _solve_inequality(r, sym) if isinstance(rv, Relational): free = rv.args[1].free_symbols if rv.args[0] != sym or sym in free: raise NotImplementedError(filldedent(''' Unable to solve relational %s for %s.''' % (r, sym))) if rv.rel_op == '==': # this equality has been affirmed to have the form # Eq(sym, rhs) where rhs is sym-free; it represents # a zero-width interval which will be ignored # whether it is an isolated condition or contained # within an And or an Or rv = S.false elif rv.rel_op == '!=': try: rv = Or(sym < rv.rhs, sym > rv.rhs) except TypeError: # e.g. x != I ==> all real x satisfy rv = S.true elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity): rv = S.true return rv def nonsymfail(cond): raise NotImplementedError(filldedent(''' A condition not involving %s appeared: %s''' % (sym, cond))) # make self canonical wrt Relationals reps = dict([ (r, _solve_relational(r)) for r in self.atoms(Relational)]) # process args individually so if any evaluate, their position # in the original Piecewise will be known args = [i.xreplace(reps) for i in self.args] # precondition args expr_cond = [] default = idefault = None for i, (expr, cond) in enumerate(args): if cond is S.false: continue elif cond is S.true: default = expr idefault = i break cond = to_cnf(cond) if isinstance(cond, And): cond = distribute_or_over_and(cond) if isinstance(cond, Or): expr_cond.extend( [(i, expr, o) for o in cond.args if not isinstance(o, Equality)]) elif cond is not S.false: expr_cond.append((i, expr, cond)) # determine intervals represented by conditions int_expr = [] for iarg, expr, cond in expr_cond: if isinstance(cond, And): lower = S.NegativeInfinity upper = S.Infinity for cond2 in cond.args: if isinstance(cond2, Equality): lower = upper # ignore break elif cond2.lts == sym: upper = Min(cond2.gts, upper) elif cond2.gts == sym: lower = Max(cond2.lts, lower) else: nonsymfail(cond2) # should never get here elif isinstance(cond, Relational): lower, upper = cond.lts, cond.gts # part 1: initialize with givens if cond.lts == sym: # part 1a: expand the side ... lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0 elif cond.gts == sym: # part 1a: ... that can be expanded upper = S.Infinity # e.g. x >= 0 ---> oo >= 0 else: nonsymfail(cond) else: raise NotImplementedError( 'unrecognized condition: %s' % cond) lower, upper = lower, Max(lower, upper) if (lower >= upper) is not S.true: int_expr.append((lower, upper, expr, iarg)) if default is not None: int_expr.append( (S.NegativeInfinity, S.Infinity, default, idefault)) return list(uniq(int_expr)) def _eval_nseries(self, x, n, logx): args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args] return self.func(*args) def _eval_power(self, s): return self.func(*[(e**s, c) for e, c in self.args]) def _eval_subs(self, old, new): # this is strictly not necessary, but we can keep track # of whether True or False conditions arise and be # somewhat more efficient by avoiding other substitutions # and avoiding invalid conditions that appear after a # True condition args = list(self.args) args_exist = False for i, (e, c) in enumerate(args): c = c._subs(old, new) if c != False: args_exist = True e = e._subs(old, new) args[i] = (e, c) if c == True: break if not args_exist: args = ((Undefined, True),) return self.func(*args) def _eval_transpose(self): return self.func(*[(e.transpose(), c) for e, c in self.args]) def _eval_template_is_attr(self, is_attr): b = None for expr, _ in self.args: a = getattr(expr, is_attr) if a is None: return if b is None: b = a elif b is not a: return return b _eval_is_finite = lambda self: self._eval_template_is_attr( 'is_finite') _eval_is_complex = lambda self: self._eval_template_is_attr('is_complex') _eval_is_even = lambda self: self._eval_template_is_attr('is_even') _eval_is_imaginary = lambda self: self._eval_template_is_attr( 'is_imaginary') _eval_is_integer = lambda self: self._eval_template_is_attr('is_integer') _eval_is_irrational = lambda self: self._eval_template_is_attr( 'is_irrational') _eval_is_negative = lambda self: self._eval_template_is_attr('is_negative') _eval_is_nonnegative = lambda self: self._eval_template_is_attr( 'is_nonnegative') _eval_is_nonpositive = lambda self: self._eval_template_is_attr( 'is_nonpositive') _eval_is_nonzero = lambda self: self._eval_template_is_attr( 'is_nonzero') _eval_is_odd = lambda self: self._eval_template_is_attr('is_odd') _eval_is_polar = lambda self: self._eval_template_is_attr('is_polar') _eval_is_positive = lambda self: self._eval_template_is_attr('is_positive') _eval_is_extended_real = lambda self: self._eval_template_is_attr( 'is_extended_real') _eval_is_extended_positive = lambda self: self._eval_template_is_attr( 'is_extended_positive') _eval_is_extended_negative = lambda self: self._eval_template_is_attr( 'is_extended_negative') _eval_is_extended_nonzero = lambda self: self._eval_template_is_attr( 'is_extended_nonzero') _eval_is_extended_nonpositive = lambda self: self._eval_template_is_attr( 'is_extended_nonpositive') _eval_is_extended_nonnegative = lambda self: self._eval_template_is_attr( 'is_extended_nonnegative') _eval_is_real = lambda self: self._eval_template_is_attr('is_real') _eval_is_zero = lambda self: self._eval_template_is_attr( 'is_zero') @classmethod def __eval_cond(cls, cond): """Return the truth value of the condition.""" if cond == True: return True if isinstance(cond, Equality): try: diff = cond.lhs - cond.rhs if diff.is_commutative: return diff.is_zero except TypeError: pass def as_expr_set_pairs(self, domain=S.Reals): """Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. If a condition cannot be converted to a set, an error will be raised. The variable of the conditions is assumed to be real; sets of real values are returned. Examples ======== >>> from sympy import Piecewise, Interval >>> from sympy.abc import x >>> p = Piecewise( ... (1, x < 2), ... (2,(x > 0) & (x < 4)), ... (3, True)) >>> p.as_expr_set_pairs() [(1, Interval.open(-oo, 2)), (2, Interval.Ropen(2, 4)), (3, Interval(4, oo))] >>> p.as_expr_set_pairs(Interval(0, 3)) [(1, Interval.Ropen(0, 2)), (2, Interval(2, 3)), (3, EmptySet)] """ exp_sets = [] U = domain complex = not domain.is_subset(S.Reals) for expr, cond in self.args: if complex: for i in cond.atoms(Relational): if not isinstance(i, (Equality, Unequality)): raise ValueError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) cond_int = U.intersect(cond.as_set()) U = U - cond_int exp_sets.append((expr, cond_int)) return exp_sets def _eval_rewrite_as_ITE(self, *args, **kwargs): byfree = {} args = list(args) default = any(c == True for b, c in args) for i, (b, c) in enumerate(args): if not isinstance(b, Boolean) and b != True: raise TypeError(filldedent(''' Expecting Boolean or bool but got `%s` ''' % func_name(b))) if c == True: break # loop over independent conditions for this b for c in c.args if isinstance(c, Or) else [c]: free = c.free_symbols x = free.pop() try: byfree[x] = byfree.setdefault( x, S.EmptySet).union(c.as_set()) except NotImplementedError: if not default: raise NotImplementedError(filldedent(''' A method to determine whether a multivariate conditional is consistent with a complete coverage of all variables has not been implemented so the rewrite is being stopped after encountering `%s`. This error would not occur if a default expression like `(foo, True)` were given. ''' % c)) if byfree[x] in (S.UniversalSet, S.Reals): # collapse the ith condition to True and break args[i] = list(args[i]) c = args[i][1] = True break if c == True: break if c != True: raise ValueError(filldedent(''' Conditions must cover all reals or a final default condition `(foo, True)` must be given. ''')) last, _ = args[i] # ignore all past ith arg for a, c in reversed(args[:i]): last = ITE(c, a, last) return _canonical(last) def _eval_rewrite_as_KroneckerDelta(self, *args): from sympy import Ne, Eq, Not, KroneckerDelta rules = { And: [False, False], Or: [True, True], Not: [True, False], Eq: [None, None], Ne: [None, None] } class UnrecognizedCondition(Exception): pass def rewrite(cond): if isinstance(cond, Eq): return KroneckerDelta(*cond.args) if isinstance(cond, Ne): return 1 - KroneckerDelta(*cond.args) cls, args = type(cond), cond.args if cls not in rules: raise UnrecognizedCondition(cls) b1, b2 = rules[cls] k = 1 for c in args: if b1: k *= 1 - rewrite(c) else: k *= rewrite(c) if b2: return 1 - k return k conditions = [] true_value = None for value, cond in args: if type(cond) in rules: conditions.append((value, cond)) elif cond is S.true: if true_value is None: true_value = value else: return if true_value is not None: result = true_value for value, cond in conditions[::-1]: try: k = rewrite(cond) result = k * value + (1 - k) * result except UnrecognizedCondition: return return result def piecewise_fold(expr): """ Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified. Examples ======== >>> from sympy import Piecewise, piecewise_fold, sympify as S >>> from sympy.abc import x >>> p = Piecewise((x, x < 1), (1, S(1) <= x)) >>> piecewise_fold(x*p) Piecewise((x**2, x < 1), (x, True)) See Also ======== Piecewise """ if not isinstance(expr, Basic) or not expr.has(Piecewise): return expr new_args = [] if isinstance(expr, (ExprCondPair, Piecewise)): for e, c in expr.args: if not isinstance(e, Piecewise): e = piecewise_fold(e) # we don't keep Piecewise in condition because # it has to be checked to see that it's complete # and we convert it to ITE at that time assert not c.has(Piecewise) # pragma: no cover if isinstance(c, ITE): c = c.to_nnf() c = simplify_logic(c, form='cnf') if isinstance(e, Piecewise): new_args.extend([(piecewise_fold(ei), And(ci, c)) for ei, ci in e.args]) else: new_args.append((e, c)) else: from sympy.utilities.iterables import cartes, sift, common_prefix # Given # P1 = Piecewise((e11, c1), (e12, c2), A) # P2 = Piecewise((e21, c1), (e22, c2), B) # ... # the folding of f(P1, P2) is trivially # Piecewise( # (f(e11, e21), c1), # (f(e12, e22), c2), # (f(Piecewise(A), Piecewise(B)), True)) # Certain objects end up rewriting themselves as thus, so # we do that grouping before the more generic folding. # The following applies this idea when f = Add or f = Mul # (and the expression is commutative). if expr.is_Add or expr.is_Mul and expr.is_commutative: p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True) pc = sift(p, lambda x: tuple([c for e,c in x.args])) for c in list(ordered(pc)): if len(pc[c]) > 1: pargs = [list(i.args) for i in pc[c]] # the first one is the same; there may be more com = common_prefix(*[ [i.cond for i in j] for j in pargs]) n = len(com) collected = [] for i in range(n): collected.append(( expr.func(*[ai[i].expr for ai in pargs]), com[i])) remains = [] for a in pargs: if n == len(a): # no more args continue if a[n].cond == True: # no longer Piecewise remains.append(a[n].expr) else: # restore the remaining Piecewise remains.append( Piecewise(*a[n:], evaluate=False)) if remains: collected.append((expr.func(*remains), True)) args.append(Piecewise(*collected, evaluate=False)) continue args.extend(pc[c]) else: args = expr.args # fold folded = list(map(piecewise_fold, args)) for ec in cartes(*[ (i.args if isinstance(i, Piecewise) else [(i, true)]) for i in folded]): e, c = zip(*ec) new_args.append((expr.func(*e), And(*c))) return Piecewise(*new_args) def _clip(A, B, k): """Return interval B as intervals that are covered by A (keyed to k) and all other intervals of B not covered by A keyed to -1. The reference point of each interval is the rhs; if the lhs is greater than the rhs then an interval of zero width interval will result, e.g. (4, 1) is treated like (1, 1). Examples ======== >>> from sympy.functions.elementary.piecewise import _clip >>> from sympy import Tuple >>> A = Tuple(1, 3) >>> B = Tuple(2, 4) >>> _clip(A, B, 0) [(2, 3, 0), (3, 4, -1)] Interpretation: interval portion (2, 3) of interval (2, 4) is covered by interval (1, 3) and is keyed to 0 as requested; interval (3, 4) was not covered by (1, 3) and is keyed to -1. """ a, b = B c, d = A c, d = Min(Max(c, a), b), Min(Max(d, a), b) a, b = Min(a, b), b p = [] if a != c: p.append((a, c, -1)) else: pass if c != d: p.append((c, d, k)) else: pass if b != d: if d == c and p and p[-1][-1] == -1: p[-1] = p[-1][0], b, -1 else: p.append((d, b, -1)) else: pass return p def piecewise_simplify_arguments(expr, **kwargs): from sympy import simplify args = [] for e, c in expr.args: if isinstance(e, Basic): doit = kwargs.pop('doit', None) # Skip doit to avoid growth at every call for some integrals # and sums, see sympy/sympy#17165 newe = simplify(e, doit=False, **kwargs) if newe != expr: e = newe if isinstance(c, Basic): c = simplify(c, doit=doit, **kwargs) args.append((e, c)) return Piecewise(*args) def piecewise_simplify(expr, **kwargs): expr = piecewise_simplify_arguments(expr, **kwargs) args = list(expr.args) _blessed = lambda e: getattr(e.lhs, '_diff_wrt', False) and ( getattr(e.rhs, '_diff_wrt', None) or isinstance(e.rhs, (Rational, NumberSymbol))) for i, (expr, cond) in enumerate(args): # try to simplify conditions and the expression for # equalities that are part of the condition, e.g. # Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True)) # -> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True)) if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] if eqs: eqs = list(ordered(eqs)) for j, e in enumerate(eqs): # these blessed lhs objects behave like Symbols # and the rhs are simple replacements for the "symbols" if _blessed(e): expr = expr.subs(*e.args) eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]] other = [ei.subs(*e.args) for ei in other] cond = And(*(eqs + other)) args[i] = args[i].func(expr, cond) # See if expressions valid for an Equal expression happens to evaluate # to the same function as in the next piecewise segment, see: # https://github.com/sympy/sympy/issues/8458 prevexpr = None for i, (expr, cond) in reversed(list(enumerate(args))): if prevexpr is not None: if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] _prevexpr = prevexpr _expr = expr if eqs and not other: eqs = list(ordered(eqs)) for e in eqs: # these blessed lhs objects behave like Symbols # and the rhs are simple replacements for the "symbols" if _blessed(e): _prevexpr = _prevexpr.subs(*e.args) _expr = _expr.subs(*e.args) # Did it evaluate to the same? if _prevexpr == _expr: # Set the expression for the Not equal section to the same # as the next. These will be merged when creating the new # Piecewise args[i] = args[i].func(args[i+1][0], cond) else: # Update the expression that we compare against prevexpr = expr else: prevexpr = expr return Piecewise(*args)
eb1e202583ee5a9b29a4ccf6e123ef2242c3a0c79bed43bcbfe2c6f1bf1c412d
from __future__ import print_function, division from sympy.core import sympify from sympy.core.add import Add from sympy.core.cache import cacheit from sympy.core.compatibility import range from sympy.core.function import (Function, ArgumentIndexError, _coeff_isneg, expand_mul) from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or from sympy.core.mul import Mul from sympy.core.numbers import Integer, Rational from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.miscellaneous import sqrt from sympy.ntheory import multiplicity, perfect_power # NOTE IMPORTANT # The series expansion code in this file is an important part of the gruntz # algorithm for determining limits. _eval_nseries has to return a generalized # power series with coefficients in C(log(x), log). # In more detail, the result of _eval_nseries(self, x, n) must be # c_0*x**e_0 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i involve only # numbers, the function log, and log(x). [This also means it must not contain # log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and # p.is_positive.] class ExpBase(Function): unbranched = True def inverse(self, argindex=1): """ Returns the inverse function of ``exp(x)``. """ return log def as_numer_denom(self): """ Returns this with a positive exponent as a 2-tuple (a fraction). Examples ======== >>> from sympy.functions import exp >>> from sympy.abc import x >>> exp(-x).as_numer_denom() (1, exp(x)) >>> exp(x).as_numer_denom() (exp(x), 1) """ # this should be the same as Pow.as_numer_denom wrt # exponent handling exp = self.exp neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) if neg_exp: return S.One, self.func(-exp) return self, S.One @property def exp(self): """ Returns the exponent of the function. """ return self.args[0] def as_base_exp(self): """ Returns the 2-tuple (base, exponent). """ return self.func(1), Mul(*self.args) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_finite(self): arg = self.args[0] if arg.is_infinite: if arg.is_extended_negative: return True if arg.is_extended_positive: return False if arg.is_finite: return True def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: z = s.exp.is_zero if z: return True elif s.exp.is_rational and fuzzy_not(z): return False else: return s.is_rational def _eval_is_zero(self): return (self.args[0] is S.NegativeInfinity) def _eval_power(self, other): """exp(arg)**e -> exp(arg*e) if assumptions allow it. """ b, e = self.as_base_exp() return Pow._eval_power(Pow(b, e, evaluate=False), other) def _eval_expand_power_exp(self, **hints): from sympy import Sum, Product arg = self.args[0] if arg.is_Add and arg.is_commutative: return Mul.fromiter(self.func(x) for x in arg.args) elif isinstance(arg, Sum) and arg.is_commutative: return Product(self.func(arg.function), *arg.limits) return self.func(arg) class exp_polar(ExpBase): r""" Represent a 'polar number' (see g-function Sphinx documentation). ``exp_polar`` represents the function `Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number `z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of the main functions to construct polar numbers. >>> from sympy import exp_polar, pi, I, exp The main difference is that polar numbers don't "wrap around" at `2 \pi`: >>> exp(2*pi*I) 1 >>> exp_polar(2*pi*I) exp_polar(2*I*pi) apart from that they behave mostly like classical complex numbers: >>> exp_polar(2)*exp_polar(3) exp_polar(5) See Also ======== sympy.simplify.powsimp.powsimp polar_lift periodic_argument principal_branch """ is_polar = True is_comparable = False # cannot be evalf'd def _eval_Abs(self): # Abs is never a polar number from sympy.functions.elementary.complexes import re return exp(re(self.args[0])) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ from sympy import im, pi, re i = im(self.args[0]) try: bad = (i <= -pi or i > pi) except TypeError: bad = True if bad: return self # cannot evalf for this argument res = exp(self.args[0])._eval_evalf(prec) if i > 0 and im(res) < 0: # i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi return re(res) return res def _eval_power(self, other): return self.func(self.args[0]*other) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def as_base_exp(self): # XXX exp_polar(0) is special! if self.args[0] == 0: return self, S.One return ExpBase.as_base_exp(self) class exp(ExpBase): """ The exponential function, :math:`e^x`. See Also ======== log """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return self else: raise ArgumentIndexError(self, argindex) def _eval_refine(self, assumptions): from sympy.assumptions import ask, Q arg = self.args[0] if arg.is_Mul: Ioo = S.ImaginaryUnit*S.Infinity if arg in [Ioo, -Ioo]: return S.NaN coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit) if coeff: if ask(Q.integer(2*coeff)): if ask(Q.even(coeff)): return S.One elif ask(Q.odd(coeff)): return S.NegativeOne elif ask(Q.even(coeff + S.Half)): return -S.ImaginaryUnit elif ask(Q.odd(coeff + S.Half)): return S.ImaginaryUnit @classmethod def eval(cls, arg): from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr from sympy.matrices.matrices import MatrixBase from sympy import logcombine if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.One elif arg is S.One: return S.Exp1 elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg is S.ComplexInfinity: return S.NaN elif isinstance(arg, log): return arg.args[0] elif isinstance(arg, AccumBounds): return AccumBounds(exp(arg.min), exp(arg.max)) elif isinstance(arg, SetExpr): return arg._eval_func(cls) elif arg.is_Mul: coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit) if coeff: if (2*coeff).is_integer: if coeff.is_even: return S.One elif coeff.is_odd: return S.NegativeOne elif (coeff + S.Half).is_even: return -S.ImaginaryUnit elif (coeff + S.Half).is_odd: return S.ImaginaryUnit elif coeff.is_Rational: ncoeff = coeff % 2 # restrict to [0, 2pi) if ncoeff > 1: # restrict to (-pi, pi] ncoeff -= 2 if ncoeff != coeff: return cls(ncoeff*S.Pi*S.ImaginaryUnit) # Warning: code in risch.py will be very sensitive to changes # in this (see DifferentialExtension). # look for a single log factor coeff, terms = arg.as_coeff_Mul() # but it can't be multiplied by oo if coeff in [S.NegativeInfinity, S.Infinity]: return None coeffs, log_term = [coeff], None for term in Mul.make_args(terms): term_ = logcombine(term) if isinstance(term_, log): if log_term is None: log_term = term_.args[0] else: return None elif term.is_comparable: coeffs.append(term) else: return None return log_term**Mul(*coeffs) if log_term else None elif arg.is_Add: out = [] add = [] argchanged = False for a in arg.args: if a is S.One: add.append(a) continue newa = cls(a) if isinstance(newa, cls): if newa.args[0] != a: add.append(newa.args[0]) argchanged = True else: add.append(a) else: out.append(newa) if out or argchanged: return Mul(*out)*cls(Add(*add), evaluate=False) elif isinstance(arg, MatrixBase): return arg.exp() if arg.is_zero: return S.One @property def base(self): """ Returns the base of the exponential function. """ return S.Exp1 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Calculates the next term in the Taylor series expansion. """ if n < 0: return S.Zero if n == 0: return S.One x = sympify(x) if previous_terms: p = previous_terms[-1] if p is not None: return p * x / n return x**n/factorial(n) def as_real_imag(self, deep=True, **hints): """ Returns this function as a 2-tuple representing a complex number. Examples ======== >>> from sympy import I >>> from sympy.abc import x >>> from sympy.functions import exp >>> exp(x).as_real_imag() (exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x))) >>> exp(1).as_real_imag() (E, 0) >>> exp(I).as_real_imag() (cos(1), sin(1)) >>> exp(1+I).as_real_imag() (E*cos(1), E*sin(1)) See Also ======== sympy.functions.elementary.complexes.re sympy.functions.elementary.complexes.im """ import sympy re, im = self.args[0].as_real_imag() if deep: re = re.expand(deep, **hints) im = im.expand(deep, **hints) cos, sin = sympy.cos(im), sympy.sin(im) return (exp(re)*cos, exp(re)*sin) def _eval_subs(self, old, new): # keep processing of power-like args centralized in Pow if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2) old = exp(old.exp*log(old.base)) elif old is S.Exp1 and new.is_Function: old = exp if isinstance(old, exp) or old is S.Exp1: f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if ( a.is_Pow or isinstance(a, exp)) else a return Pow._eval_subs(f(self), f(old), new) if old is exp and not new.is_Function: return new**self.exp._subs(old, new) return Function._eval_subs(self, old, new) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True elif self.args[0].is_imaginary: arg2 = -S(2) * S.ImaginaryUnit * self.args[0] / S.Pi return arg2.is_even def _eval_is_complex(self): def complex_extended_negative(arg): yield arg.is_complex yield arg.is_extended_negative return fuzzy_or(complex_extended_negative(self.args[0])) def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.exp.is_zero): if self.exp.is_algebraic: return False elif (self.exp/S.Pi).is_rational: return False else: return s.is_algebraic def _eval_is_extended_positive(self): if self.args[0].is_extended_real: return not self.args[0] is S.NegativeInfinity elif self.args[0].is_imaginary: arg2 = -S.ImaginaryUnit * self.args[0] / S.Pi return arg2.is_even def _eval_nseries(self, x, n, logx): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import limit, oo, Order, powsimp, Wild, expand_complex arg = self.args[0] arg_series = arg._eval_nseries(x, n=n, logx=logx) if arg_series.is_Order: return 1 + arg_series arg0 = limit(arg_series.removeO(), x, 0) if arg0 in [-oo, oo]: return self t = Dummy("t") exp_series = exp(t)._taylor(t, n) o = exp_series.getO() exp_series = exp_series.removeO() r = exp(arg0)*exp_series.subs(t, arg_series - arg0) r += Order(o.expr.subs(t, (arg_series - arg0)), x) r = r.expand() r = powsimp(r, deep=True, combine='exp') # powsimp may introduce unexpanded (-1)**Rational; see PR #17201 simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6] w = Wild('w', properties=[simplerat]) r = r.replace((-1)**w, expand_complex((-1)**w)) return r def _taylor(self, x, n): from sympy import Order l = [] g = None for i in range(n): g = self.taylor_term(i, self.args[0], g) g = g.nseries(x, n=n) l.append(g) return Add(*l) + Order(x**n, x) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0] if arg.is_Add: return Mul(*[exp(f).as_leading_term(x) for f in arg.args]) arg_1 = arg.as_leading_term(x) if Order(x, x).contains(arg_1): return S.One if Order(1, x).contains(arg_1): return exp(arg_1) #################################################### # The correct result here should be 'None'. # # Indeed arg in not bounded as x tends to 0. # # Consequently the series expansion does not admit # # the leading term. # # For compatibility reasons, the return value here # # is the original function, i.e. exp(arg), # # instead of None. # #################################################### return exp(arg) def _eval_rewrite_as_sin(self, arg, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I*arg + S.Pi/2) - I*sin(I*arg) def _eval_rewrite_as_cos(self, arg, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I*arg) + I*cos(I*arg + S.Pi/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): from sympy import tanh return (1 + tanh(arg/2))/(1 - tanh(arg/2)) def _eval_rewrite_as_sqrt(self, arg, **kwargs): from sympy.functions.elementary.trigonometric import sin, cos if arg.is_Mul: coeff = arg.coeff(S.Pi*S.ImaginaryUnit) if coeff and coeff.is_number: cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff) if not isinstance(cosine, cos) and not isinstance (sine, sin): return cosine + S.ImaginaryUnit*sine def _eval_rewrite_as_Pow(self, arg, **kwargs): if arg.is_Mul: logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1] if logs: return Pow(logs[0].args[0], arg.coeff(logs[0])) def match_real_imag(expr): """ Try to match expr with a + b*I for real a and b. ``match_real_imag`` returns a tuple containing the real and imaginary parts of expr or (None, None) if direct matching is not possible. Contrary to ``re()``, ``im()``, ``as_real_imag()``, this helper won't force things by returning expressions themselves containing ``re()`` or ``im()`` and it doesn't expand its argument either. """ r_, i_ = expr.as_independent(S.ImaginaryUnit, as_Add=True) if i_ == 0 and r_.is_real: return (r_, i_) i_ = i_.as_coefficient(S.ImaginaryUnit) if i_ and i_.is_real and r_.is_real: return (r_, i_) else: return (None, None) # simpler to check for than None class log(Function): r""" The natural logarithm function `\ln(x)` or `\log(x)`. Logarithms are taken with the natural base, `e`. To get a logarithm of a different base ``b``, use ``log(x, b)``, which is essentially short-hand for ``log(x)/log(b)``. ``log`` represents the principal branch of the natural logarithm. As such it has a branch cut along the negative real axis and returns values having a complex argument in `(-\pi, \pi]`. Examples ======== >>> from sympy import log, sqrt, S, I >>> log(8, 2) 3 >>> log(S(8)/3, 2) -log(3)/log(2) + 3 >>> log(-1 + I*sqrt(3)) log(2) + 2*I*pi/3 See Also ======== exp """ def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if argindex == 1: return 1/self.args[0] else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): r""" Returns `e^x`, the inverse function of `\log(x)`. """ return exp @classmethod def eval(cls, arg, base=None): from sympy import unpolarify from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr from sympy.functions.elementary.complexes import Abs arg = sympify(arg) if base is not None: base = sympify(base) if base == 1: if arg == 1: return S.NaN else: return S.ComplexInfinity try: # handle extraction of powers of the base now # or else expand_log in Mul would have to handle this n = multiplicity(base, arg) if n: return n + log(arg / base**n) / log(base) else: return log(arg)/log(base) except ValueError: pass if base is not S.Exp1: return cls(arg)/cls(base) else: return cls(arg) if arg.is_Number: if arg.is_zero: return S.ComplexInfinity elif arg is S.One: return S.Zero elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg is S.NaN: return S.NaN elif arg.is_Rational and arg.p == 1: return -cls(arg.q) I = S.ImaginaryUnit if isinstance(arg, exp) and arg.args[0].is_extended_real: return arg.args[0] elif isinstance(arg, exp) and arg.args[0].is_number: r_, i_ = match_real_imag(arg.args[0]) if i_ and i_.is_comparable: i_ %= 2*S.Pi if i_ > S.Pi: i_ -= 2*S.Pi return r_ + expand_mul(i_ * I, deep=False) elif isinstance(arg, exp_polar): return unpolarify(arg.exp) elif isinstance(arg, AccumBounds): if arg.min.is_positive: return AccumBounds(log(arg.min), log(arg.max)) else: return elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.is_number: if arg.is_negative: return S.Pi * I + cls(-arg) elif arg is S.ComplexInfinity: return S.ComplexInfinity elif arg is S.Exp1: return S.One if arg.is_zero: return S.ComplexInfinity # don't autoexpand Pow or Mul (see the issue 3351): if not arg.is_Add: coeff = arg.as_coefficient(I) if coeff is not None: if coeff is S.Infinity: return S.Infinity elif coeff is S.NegativeInfinity: return S.Infinity elif coeff.is_Rational: if coeff.is_nonnegative: return S.Pi * I * S.Half + cls(coeff) else: return -S.Pi * I * S.Half + cls(-coeff) if arg.is_number and arg.is_algebraic: # Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real. coeff, arg_ = arg.as_independent(I, as_Add=False) if coeff.is_negative: coeff *= -1 arg_ *= -1 arg_ = expand_mul(arg_, deep=False) r_, i_ = arg_.as_independent(I, as_Add=True) i_ = i_.as_coefficient(I) if coeff.is_real and i_ and i_.is_real and r_.is_real: if r_.is_zero: if i_.is_positive: return S.Pi * I * S.Half + cls(coeff * i_) elif i_.is_negative: return -S.Pi * I * S.Half + cls(coeff * -i_) else: from sympy.simplify import ratsimp # Check for arguments involving rational multiples of pi t = (i_/r_).cancel() atan_table = { # first quadrant only sqrt(3): S.Pi/3, 1: S.Pi/4, sqrt(5 - 2*sqrt(5)): S.Pi/5, sqrt(2)*sqrt(5 - sqrt(5))/(1 + sqrt(5)): S.Pi/5, sqrt(5 + 2*sqrt(5)): S.Pi*Rational(2, 5), sqrt(2)*sqrt(sqrt(5) + 5)/(-1 + sqrt(5)): S.Pi*Rational(2, 5), sqrt(3)/3: S.Pi/6, sqrt(2) - 1: S.Pi/8, sqrt(2 - sqrt(2))/sqrt(sqrt(2) + 2): S.Pi/8, sqrt(2) + 1: S.Pi*Rational(3, 8), sqrt(sqrt(2) + 2)/sqrt(2 - sqrt(2)): S.Pi*Rational(3, 8), sqrt(1 - 2*sqrt(5)/5): S.Pi/10, (-sqrt(2) + sqrt(10))/(2*sqrt(sqrt(5) + 5)): S.Pi/10, sqrt(1 + 2*sqrt(5)/5): S.Pi*Rational(3, 10), (sqrt(2) + sqrt(10))/(2*sqrt(5 - sqrt(5))): S.Pi*Rational(3, 10), 2 - sqrt(3): S.Pi/12, (-1 + sqrt(3))/(1 + sqrt(3)): S.Pi/12, 2 + sqrt(3): S.Pi*Rational(5, 12), (1 + sqrt(3))/(-1 + sqrt(3)): S.Pi*Rational(5, 12) } if t in atan_table: modulus = ratsimp(coeff * Abs(arg_)) if r_.is_positive: return cls(modulus) + I * atan_table[t] else: return cls(modulus) + I * (atan_table[t] - S.Pi) elif -t in atan_table: modulus = ratsimp(coeff * Abs(arg_)) if r_.is_positive: return cls(modulus) + I * (-atan_table[-t]) else: return cls(modulus) + I * (S.Pi - atan_table[-t]) def as_base_exp(self): """ Returns this function in the form (base, exponent). """ return self, S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # of log(1+x) r""" Returns the next term in the Taylor series expansion of `\log(1+x)`. """ from sympy import powsimp if n < 0: return S.Zero x = sympify(x) if n == 0: return x if previous_terms: p = previous_terms[-1] if p is not None: return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp') return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1) def _eval_expand_log(self, deep=True, **hints): from sympy import unpolarify, expand_log from sympy.concrete import Sum, Product force = hints.get('force', False) if (len(self.args) == 2): return expand_log(self.func(*self.args), deep=deep, force=force) arg = self.args[0] if arg.is_Integer: # remove perfect powers p = perfect_power(int(arg)) if p is not False: return p[1]*self.func(p[0]) elif arg.is_Rational: return log(arg.p) - log(arg.q) elif arg.is_Mul: expr = [] nonpos = [] for x in arg.args: if force or x.is_positive or x.is_polar: a = self.func(x) if isinstance(a, log): expr.append(self.func(x)._eval_expand_log(**hints)) else: expr.append(a) elif x.is_negative: a = self.func(-x) expr.append(a) nonpos.append(S.NegativeOne) else: nonpos.append(x) return Add(*expr) + log(Mul(*nonpos)) elif arg.is_Pow or isinstance(arg, exp): if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1) .is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar: b = arg.base e = arg.exp a = self.func(b) if isinstance(a, log): return unpolarify(e) * a._eval_expand_log(**hints) else: return unpolarify(e) * a elif isinstance(arg, Product): if force or arg.function.is_positive: return Sum(log(arg.function), *arg.limits) return self.func(arg) def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import expand_log, simplify, inversecombine if len(self.args) == 2: # it's unevaluated return simplify(self.func(*self.args), **kwargs) expr = self.func(simplify(self.args[0], **kwargs)) if kwargs['inverse']: expr = inversecombine(expr) expr = expand_log(expr, deep=True) return min([expr, self], key=kwargs['measure']) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. Examples ======== >>> from sympy import I >>> from sympy.abc import x >>> from sympy.functions import log >>> log(x).as_real_imag() (log(Abs(x)), arg(x)) >>> log(I).as_real_imag() (0, pi/2) >>> log(1 + I).as_real_imag() (log(sqrt(2)), pi/4) >>> log(I*x).as_real_imag() (log(Abs(x)), arg(I*x)) """ from sympy import Abs, arg sarg = self.args[0] if deep: sarg = self.args[0].expand(deep, **hints) abs = Abs(sarg) if abs == sarg: return self, S.Zero arg = arg(sarg) if hints.get('log', False): # Expand the log hints['complex'] = False return (log(abs).expand(deep, **hints), arg) else: return log(abs), arg def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True elif fuzzy_not((self.args[0] - 1).is_zero): if self.args[0].is_algebraic: return False else: return s.is_algebraic def _eval_is_extended_real(self): return self.args[0].is_extended_positive def _eval_is_complex(self): z = self.args[0] return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)]) def _eval_is_finite(self): arg = self.args[0] if arg.is_zero: return False return arg.is_finite def _eval_is_extended_positive(self): return (self.args[0] - 1).is_extended_positive def _eval_is_zero(self): return (self.args[0] - 1).is_zero def _eval_is_extended_nonnegative(self): return (self.args[0] - 1).is_extended_nonnegative def _eval_nseries(self, x, n, logx): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import cancel, Order if not logx: logx = log(x) if self.args[0] == x: return logx arg = self.args[0] k, l = Wild("k"), Wild("l") r = arg.match(k*x**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(x) and not k.has(x): r = log(k) + l*logx # XXX true regardless of assumptions? return r # TODO new and probably slow s = self.args[0].nseries(x, n=n, logx=logx) while s.is_Order: n += 1 s = self.args[0].nseries(x, n=n, logx=logx) a, b = s.leadterm(x) p = cancel(s/(a*x**b) - 1) g = None l = [] for i in range(n + 2): g = log.taylor_term(i, p, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return log(a) + b*logx + Add(*l) + Order(p**n, x) def _eval_as_leading_term(self, x): arg = self.args[0].as_leading_term(x) if arg is S.One: return (self.args[0] - 1).as_leading_term(x) return self.func(arg) class LambertW(Function): r""" The Lambert W function `W(z)` is defined as the inverse function of `w \exp(w)` [1]_. In other words, the value of `W(z)` is such that `z = W(z) \exp(W(z))` for any complex number `z`. The Lambert W function is a multivalued function with infinitely many branches `W_k(z)`, indexed by `k \in \mathbb{Z}`. Each branch gives a different solution `w` of the equation `z = w \exp(w)`. The Lambert W function has two partially real branches: the principal branch (`k = 0`) is real for real `z > -1/e`, and the `k = -1` branch is real for `-1/e < z < 0`. All branches except `k = 0` have a logarithmic singularity at `z = 0`. Examples ======== >>> from sympy import LambertW >>> LambertW(1.2) 0.635564016364870 >>> LambertW(1.2, -1).n() -1.34747534407696 - 4.41624341514535*I >>> LambertW(-1).is_real False References ========== .. [1] https://en.wikipedia.org/wiki/Lambert_W_function """ @classmethod def eval(cls, x, k=None): if k == S.Zero: return cls(x) elif k is None: k = S.Zero if k.is_zero: if x.is_zero: return S.Zero if x is S.Exp1: return S.One if x == -1/S.Exp1: return S.NegativeOne if x == -log(2)/2: return -log(2) if x == 2*log(2): return log(2) if x == -S.Pi/2: return S.ImaginaryUnit*S.Pi/2 if x == exp(1 + S.Exp1): return S.Exp1 if x is S.Infinity: return S.Infinity if x.is_zero: return S.Zero if fuzzy_not(k.is_zero): if x.is_zero: return S.NegativeInfinity if k is S.NegativeOne: if x == -S.Pi/2: return -S.ImaginaryUnit*S.Pi/2 elif x == -1/S.Exp1: return S.NegativeOne elif x == -2*exp(-2): return -Integer(2) def fdiff(self, argindex=1): """ Return the first derivative of this function. """ x = self.args[0] if len(self.args) == 1: if argindex == 1: return LambertW(x)/(x*(1 + LambertW(x))) else: k = self.args[1] if argindex == 1: return LambertW(x, k)/(x*(1 + LambertW(x, k))) raise ArgumentIndexError(self, argindex) def _eval_is_extended_real(self): x = self.args[0] if len(self.args) == 1: k = S.Zero else: k = self.args[1] if k.is_zero: if (x + 1/S.Exp1).is_positive: return True elif (x + 1/S.Exp1).is_nonpositive: return False elif (k + 1).is_zero: if x.is_negative and (x + 1/S.Exp1).is_positive: return True elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative: return False elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero): if x.is_extended_real: return False def _eval_is_finite(self): return self.args[0].is_finite def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False else: return s.is_algebraic def _eval_nseries(self, x, n, logx): if len(self.args) == 1: from sympy import Order, ceiling, expand_multinomial arg = self.args[0].nseries(x, n=n, logx=logx) lt = arg.compute_leading_term(x, logx=logx) lte = 1 if lt.is_Pow: lte = lt.exp if ceiling(n/lte) >= 1: s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/ factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))]) s = expand_multinomial(s) else: s = S.Zero return s + Order(x**n, x) return super(LambertW, self)._eval_nseries(x, n, logx) def _eval_is_zero(self): x = self.args[0] if len(self.args) == 1: k = S.Zero else: k = self.args[1] if x.is_zero and k.is_zero: return True
35076f654939074515abc48a72d4b5b3931f4f15fbe9d3971b4d1886df1a0259
from __future__ import print_function, division from sympy.core import S, sympify, cacheit, pi, I, Rational from sympy.core.add import Add from sympy.core.function import Function, ArgumentIndexError, _coeff_isneg from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.elementary.exponential import exp, log, match_real_imag from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.integers import floor from sympy import pi, Eq from sympy.logic import Or, And from sympy.core.logic import fuzzy_or, fuzzy_and, fuzzy_bool def _rewrite_hyperbolics_as_exp(expr): expr = sympify(expr) return expr.xreplace({h: h.rewrite(exp) for h in expr.atoms(HyperbolicFunction)}) ############################################################################### ########################### HYPERBOLIC FUNCTIONS ############################## ############################################################################### class HyperbolicFunction(Function): """ Base class for hyperbolic functions. See Also ======== sinh, cosh, tanh, coth """ unbranched = True def _peeloff_ipi(arg): """ Split ARG into two parts, a "rest" and a multiple of I*pi/2. This assumes ARG to be an Add. The multiple of I*pi returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel >>> from sympy import pi, I >>> from sympy.abc import x, y >>> peel(x + I*pi/2) (x, I*pi/2) >>> peel(x + I*2*pi/3 + I*pi*y) (x + I*pi*y + I*pi/6, I*pi/2) """ for a in Add.make_args(arg): if a == S.Pi*S.ImaginaryUnit: K = S.One break elif a.is_Mul: K, p = a.as_two_terms() if p == S.Pi*S.ImaginaryUnit and K.is_Rational: break else: return arg, S.Zero m1 = (K % S.Half)*S.Pi*S.ImaginaryUnit m2 = K*S.Pi*S.ImaginaryUnit - m1 return arg - m2, m2 class sinh(HyperbolicFunction): r""" The hyperbolic sine function, `\frac{e^x - e^{-x}}{2}`. * sinh(x) -> Returns the hyperbolic sine of x See Also ======== cosh, tanh, asinh """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return cosh(self.args[0]) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return asinh @classmethod def eval(cls, arg): from sympy import sin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg.is_zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * sin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return sinh(m)*cosh(x) + cosh(m)*sinh(x) if arg.is_zero: return S.Zero if arg.func == asinh: return arg.args[0] if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) if arg.func == atanh: x = arg.args[0] return x/sqrt(1 - x**2) if arg.func == acoth: x = arg.args[0] return 1/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion. """ if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n) / factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. """ from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (sinh(re)*cos(im), cosh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True) return sinh(arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg) return 2*tanh_half/(1 - tanh_half**2) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg) return 2*coth_half/(coth_half**2 - 1) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] if arg.is_real: return True # if `im` is of the form n*pi # else, check if it is a number re, im = arg.as_real_imag() return (im%pi).is_zero def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_is_finite(self): arg = self.args[0] return arg.is_finite def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class cosh(HyperbolicFunction): r""" The hyperbolic cosine function, `\frac{e^x + e^{-x}}{2}`. * cosh(x) -> Returns the hyperbolic cosine of x See Also ======== sinh, tanh, acosh """ def fdiff(self, argindex=1): if argindex == 1: return sinh(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import cos arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg.is_zero: return S.One elif arg.is_negative: return cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return cos(i_coeff) else: if _coeff_isneg(arg): return cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return cosh(m)*cosh(x) + sinh(m)*sinh(x) if arg.is_zero: return S.One if arg.func == asinh: return sqrt(1 + arg.args[0]**2) if arg.func == acosh: return arg.args[0] if arg.func == atanh: return 1/sqrt(1 - arg.args[0]**2) if arg.func == acoth: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n)/factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (cosh(re)*cos(im), sinh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True) return cosh(arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg)**2 return (1 + tanh_half)/(1 - tanh_half) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg)**2 return (coth_half + 1)/(coth_half - 1) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] # `cosh(x)` is real for real OR purely imaginary `x` if arg.is_real or arg.is_imaginary: return True # cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a) # the imaginary part can be an expression like n*pi # if not, check if the imaginary part is a number re, im = arg.as_real_imag() return (im%pi).is_zero def _eval_is_positive(self): # cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x) # cosh(z) is positive iff it is real and the real part is positive. # So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi # Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even # Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive z = self.args[0] x, y = z.as_real_imag() ymod = y % (2*pi) yzero = ymod.is_zero # shortcut if ymod is zero if yzero: return True xzero = x.is_zero # shortcut x is not zero if xzero is False: return yzero return fuzzy_or([ # Case 1: yzero, # Case 2: fuzzy_and([ xzero, fuzzy_or([ymod < pi/2, ymod > 3*pi/2]) ]) ]) def _eval_is_nonnegative(self): z = self.args[0] x, y = z.as_real_imag() ymod = y % (2*pi) yzero = ymod.is_zero # shortcut if ymod is zero if yzero: return True xzero = x.is_zero # shortcut x is not zero if xzero is False: return yzero return fuzzy_or([ # Case 1: yzero, # Case 2: fuzzy_and([ xzero, fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2]) ]) ]) def _eval_is_finite(self): arg = self.args[0] return arg.is_finite class tanh(HyperbolicFunction): r""" The hyperbolic tangent function, `\frac{\sinh(x)}{\cosh(x)}`. * tanh(x) -> Returns the hyperbolic tangent of x See Also ======== sinh, cosh, atanh """ def fdiff(self, argindex=1): if argindex == 1: return S.One - tanh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atanh @classmethod def eval(cls, arg): from sympy import tan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return -S.ImaginaryUnit * tan(-i_coeff) return S.ImaginaryUnit * tan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: tanhm = tanh(m) if tanhm is S.ComplexInfinity: return coth(x) else: # tanhm == 0 return tanh(x) if arg.is_zero: return S.Zero if arg.func == asinh: x = arg.args[0] return x/sqrt(1 + x**2) if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) / x if arg.func == atanh: return arg.args[0] if arg.func == acoth: return 1/arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a = 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return a*(a - 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + cos(im)**2 return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom) def _eval_rewrite_as_tractable(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit*sinh(arg)/sinh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit*cosh(S.Pi*S.ImaginaryUnit/2 - arg)/cosh(arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return 1/coth(arg) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] if arg.is_real: return True re, im = arg.as_real_imag() # if denom = 0, tanh(arg) = zoo if re == 0 and im % pi == pi/2: return None # check if im is of the form n*pi/2 to make sin(2*im) = 0 # if not, im could be a number, return False in that case return (im % (pi/2)).is_zero def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_is_finite(self): from sympy import sinh, cos arg = self.args[0] re, im = arg.as_real_imag() denom = cos(im)**2 + sinh(re)**2 if denom == 0: return False elif denom.is_number: return True if arg.is_extended_real: return True def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class coth(HyperbolicFunction): r""" The hyperbolic cotangent function, `\frac{\cosh(x)}{\sinh(x)}`. * coth(x) -> Returns the hyperbolic cotangent of x """ def fdiff(self, argindex=1): if argindex == 1: return -1/sinh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acoth @classmethod def eval(cls, arg): from sympy import cot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.ComplexInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return S.ImaginaryUnit * cot(-i_coeff) return -S.ImaginaryUnit * cot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: cothm = coth(m) if cothm is S.ComplexInfinity: return coth(x) else: # cothm == 0 return tanh(x) if arg.is_zero: return S.ComplexInfinity if arg.func == asinh: x = arg.args[0] return sqrt(1 + x**2)/x if arg.func == acosh: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) if arg.func == atanh: return 1/arg.args[0] if arg.func == acoth: return arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1 / sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2**(n + 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + sin(im)**2 return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom) def _eval_rewrite_as_tractable(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(S.Pi*S.ImaginaryUnit/2 - arg)/sinh(arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg)/cosh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return 1/tanh(arg) def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 1/arg else: return self.func(arg) class ReciprocalHyperbolicFunction(HyperbolicFunction): """Base class for reciprocal functions of hyperbolic functions. """ #To be defined in class _reciprocal_of = None _is_even = None _is_odd = None @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) t = cls._reciprocal_of.eval(arg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] return 1/t if t is not None else t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t is not None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t is not None and t != self._reciprocal_of(arg): return 1/t def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg) def as_real_imag(self, deep = True, **hints): return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=True, **hints) return re_part + S.ImaginaryUnit*im_part def _eval_as_leading_term(self, x): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_extended_real(self): return self._reciprocal_of(self.args[0]).is_extended_real def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite class csch(ReciprocalHyperbolicFunction): r""" The hyperbolic cosecant function, `\frac{2}{e^x - e^{-x}}` * csch(x) -> Returns the hyperbolic cosecant of x See Also ======== sinh, cosh, tanh, sech, asinh, acosh """ _reciprocal_of = sinh _is_odd = True def fdiff(self, argindex=1): """ Returns the first derivative of this function """ if argindex == 1: return -coth(self.args[0]) * csch(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion """ from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2 * (1 - 2**n) * B/F * x**n def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit / cosh(arg + S.ImaginaryUnit * S.Pi / 2) def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _sage_(self): import sage.all as sage return sage.csch(self.args[0]._sage_()) class sech(ReciprocalHyperbolicFunction): r""" The hyperbolic secant function, `\frac{2}{e^x + e^{-x}}` * sech(x) -> Returns the hyperbolic secant of x See Also ======== sinh, cosh, tanh, coth, csch, asinh, acosh """ _reciprocal_of = cosh _is_even = True def fdiff(self, argindex=1): if argindex == 1: return - tanh(self.args[0])*sech(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy.functions.combinatorial.numbers import euler if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) return euler(n) / factorial(n) * x**(n) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit / sinh(arg + S.ImaginaryUnit * S.Pi /2) def _eval_is_positive(self): if self.args[0].is_extended_real: return True def _sage_(self): import sage.all as sage return sage.sech(self.args[0]._sage_()) ############################################################################### ############################# HYPERBOLIC INVERSES ############################# ############################################################################### class InverseHyperbolicFunction(Function): """Base class for inverse hyperbolic functions.""" pass class asinh(InverseHyperbolicFunction): """ The inverse hyperbolic sine function. * asinh(x) -> Returns the inverse hyperbolic sine of x See Also ======== acosh, atanh, sinh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import asin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg.is_zero: return S.Zero elif arg is S.One: return log(sqrt(2) + 1) elif arg is S.NegativeOne: return log(sqrt(2) - 1) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_zero: return S.Zero i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * asin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if isinstance(arg, sinh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: return z r, i = match_real_imag(z) if r is not None and i is not None: f = floor((i + pi/2)/pi) m = z - I*pi*f even = f.is_even if even is True: return m elif even is False: return -m @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return -p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return (-1)**k * R / F * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x**2 + 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sinh def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class acosh(InverseHyperbolicFunction): """ The inverse hyperbolic cosine function. * acosh(x) -> Returns the inverse hyperbolic cosine of x See Also ======== asinh, atanh, cosh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 - 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg.is_zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: log(S.ImaginaryUnit*(1 + sqrt(2))), -S.ImaginaryUnit: log(-S.ImaginaryUnit*(1 + sqrt(2))), S.Half: S.Pi/3, Rational(-1, 2): S.Pi*Rational(2, 3), sqrt(2)/2: S.Pi/4, -sqrt(2)/2: S.Pi*Rational(3, 4), 1/sqrt(2): S.Pi/4, -1/sqrt(2): S.Pi*Rational(3, 4), sqrt(3)/2: S.Pi/6, -sqrt(3)/2: S.Pi*Rational(5, 6), (sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(5, 12), -(sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(7, 12), sqrt(2 + sqrt(2))/2: S.Pi/8, -sqrt(2 + sqrt(2))/2: S.Pi*Rational(7, 8), sqrt(2 - sqrt(2))/2: S.Pi*Rational(3, 8), -sqrt(2 - sqrt(2))/2: S.Pi*Rational(5, 8), (1 + sqrt(3))/(2*sqrt(2)): S.Pi/12, -(1 + sqrt(3))/(2*sqrt(2)): S.Pi*Rational(11, 12), (sqrt(5) + 1)/4: S.Pi/5, -(sqrt(5) + 1)/4: S.Pi*Rational(4, 5) } if arg in cst_table: if arg.is_extended_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: return S.ComplexInfinity if arg == S.ImaginaryUnit*S.Infinity: return S.Infinity + S.ImaginaryUnit*S.Pi/2 if arg == -S.ImaginaryUnit*S.Infinity: return S.Infinity - S.ImaginaryUnit*S.Pi/2 if arg.is_zero: return S.Pi*S.ImaginaryUnit*S.Half if isinstance(arg, cosh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: from sympy.functions.elementary.complexes import Abs return Abs(z) r, i = match_real_imag(z) if r is not None and i is not None: f = floor(i/pi) m = z - I*pi*f even = f.is_even if even is True: if r.is_nonnegative: return m elif r.is_negative: return -m elif even is False: m -= I*pi if r.is_nonpositive: return -m elif r.is_positive: return m @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R / F * S.ImaginaryUnit * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x + 1) * sqrt(x - 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cosh class atanh(InverseHyperbolicFunction): """ The inverse hyperbolic tangent function. * atanh(x) -> Returns the inverse hyperbolic tangent of x See Also ======== asinh, acosh, tanh """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import atan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg is S.Infinity: return -S.ImaginaryUnit * atan(arg) elif arg is S.NegativeInfinity: return S.ImaginaryUnit * atan(-arg) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * atan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_zero: return S.Zero if isinstance(arg, tanh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: return z r, i = match_real_imag(z) if r is not None and i is not None: f = floor(2*i/pi) even = f.is_even m = z - I*f*pi/2 if even is True: return m elif even is False: return m - I*pi/2 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + x) - log(1 - x)) / 2 def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tanh class acoth(InverseHyperbolicFunction): """ The inverse hyperbolic cotangent function. * acoth(x) -> Returns the inverse hyperbolic cotangent of x """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import acot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.Zero i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * acot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_zero: return S.Pi*S.ImaginaryUnit*S.Half @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + 1/x) - log(1 - 1/x)) / 2 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return coth class asech(InverseHyperbolicFunction): """ The inverse hyperbolic secant function. * asech(x) -> Returns the inverse hyperbolic secant of x Examples ======== >>> from sympy import asech, sqrt, S >>> from sympy.abc import x >>> asech(x).diff(x) -1/(x*sqrt(1 - x**2)) >>> asech(1).diff(x) 0 >>> asech(1) 0 >>> asech(S(2)) I*pi/3 >>> asech(-sqrt(2)) 3*I*pi/4 >>> asech((sqrt(6) - sqrt(2))) I*pi/12 See Also ======== asinh, atanh, cosh, acoth References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z*sqrt(1 - z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.NegativeInfinity: return S.Pi*S.ImaginaryUnit / 2 elif arg.is_zero: return S.Infinity elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: - (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), -S.ImaginaryUnit: (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), (sqrt(6) - sqrt(2)): S.Pi / 12, (sqrt(2) - sqrt(6)): 11*S.Pi / 12, sqrt(2 - 2/sqrt(5)): S.Pi / 10, -sqrt(2 - 2/sqrt(5)): 9*S.Pi / 10, 2 / sqrt(2 + sqrt(2)): S.Pi / 8, -2 / sqrt(2 + sqrt(2)): 7*S.Pi / 8, 2 / sqrt(3): S.Pi / 6, -2 / sqrt(3): 5*S.Pi / 6, (sqrt(5) - 1): S.Pi / 5, (1 - sqrt(5)): 4*S.Pi / 5, sqrt(2): S.Pi / 4, -sqrt(2): 3*S.Pi / 4, sqrt(2 + 2/sqrt(5)): 3*S.Pi / 10, -sqrt(2 + 2/sqrt(5)): 7*S.Pi / 10, S(2): S.Pi / 3, -S(2): 2*S.Pi / 3, sqrt(2*(2 + sqrt(2))): 3*S.Pi / 8, -sqrt(2*(2 + sqrt(2))): 5*S.Pi / 8, (1 + sqrt(5)): 2*S.Pi / 5, (-1 - sqrt(5)): 3*S.Pi / 5, (sqrt(6) + sqrt(2)): 5*S.Pi / 12, (-sqrt(6) - sqrt(2)): 7*S.Pi / 12, } if arg in cst_table: if arg.is_extended_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) if arg.is_zero: return S.Infinity @staticmethod @cacheit def expansion_term(n, x, *previous_terms): if n == 0: return log(2 / x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * (n - 1)**2 // (n // 2)**2 * x**2 / 4 else: k = n // 2 R = RisingFactorial(S.Half , k) * n F = factorial(k) * n // 2 * n // 2 return -1 * R / F * x**n / 4 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sech def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1)) class acsch(InverseHyperbolicFunction): """ The inverse hyperbolic cosecant function. * acsch(x) -> Returns the inverse hyperbolic cosecant of x Examples ======== >>> from sympy import acsch, sqrt, S >>> from sympy.abc import x >>> acsch(x).diff(x) -1/(x**2*sqrt(1 + x**(-2))) >>> acsch(1).diff(x) 0 >>> acsch(1) log(1 + sqrt(2)) >>> acsch(S.ImaginaryUnit) -I*pi/2 >>> acsch(-2*S.ImaginaryUnit) I*pi/6 >>> acsch(S.ImaginaryUnit*(sqrt(6) - sqrt(2))) -5*I*pi/12 References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z**2*sqrt(1 + 1/z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.ComplexInfinity elif arg is S.One: return log(1 + sqrt(2)) elif arg is S.NegativeOne: return - log(1 + sqrt(2)) if arg.is_number: cst_table = { S.ImaginaryUnit: -S.Pi / 2, S.ImaginaryUnit*(sqrt(2) + sqrt(6)): -S.Pi / 12, S.ImaginaryUnit*(1 + sqrt(5)): -S.Pi / 10, S.ImaginaryUnit*2 / sqrt(2 - sqrt(2)): -S.Pi / 8, S.ImaginaryUnit*2: -S.Pi / 6, S.ImaginaryUnit*sqrt(2 + 2/sqrt(5)): -S.Pi / 5, S.ImaginaryUnit*sqrt(2): -S.Pi / 4, S.ImaginaryUnit*(sqrt(5)-1): -3*S.Pi / 10, S.ImaginaryUnit*2 / sqrt(3): -S.Pi / 3, S.ImaginaryUnit*2 / sqrt(2 + sqrt(2)): -3*S.Pi / 8, S.ImaginaryUnit*sqrt(2 - 2/sqrt(5)): -2*S.Pi / 5, S.ImaginaryUnit*(sqrt(6) - sqrt(2)): -5*S.Pi / 12, S(2): -S.ImaginaryUnit*log((1+sqrt(5))/2), } if arg in cst_table: return cst_table[arg]*S.ImaginaryUnit if arg is S.ComplexInfinity: return S.Zero if arg.is_zero: return S.ComplexInfinity if _coeff_isneg(arg): return -cls(-arg) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csch def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg**2 + 1))
655dd1e78e489bb49c622562ea1c73a2b7c5af4965f1aadaf740405077241e02
from __future__ import print_function, division from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic from sympy.core.expr import Expr from sympy.core.exprtools import factor_terms from sympy.core.function import (Function, Derivative, ArgumentIndexError, AppliedUndef) from sympy.core.logic import fuzzy_not, fuzzy_or from sympy.core.numbers import pi, I, oo from sympy.core.relational import Eq from sympy.functions.elementary.exponential import exp, exp_polar, log from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import atan, atan2 ############################################################################### ######################### REAL and IMAGINARY PARTS ############################ ############################################################################### class re(Function): """ Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, I, E >>> from sympy.abc import x, y >>> re(2*E) 2*E >>> re(2*I + 17) 17 >>> re(2*I) 0 >>> re(im(x) + x*I + 2) 2 See Also ======== im """ is_extended_real = True unbranched = True # implicitly works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_extended_real: return arg elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real: return S.Zero elif arg.is_Matrix: return arg.as_real_imag()[0] elif arg.is_Function and isinstance(arg, conjugate): return re(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_extended_real: reverted.append(coeff) elif not term.has(S.ImaginaryUnit) and term.is_extended_real: excluded.append(term) else: # Try to do some advanced expansion. If # impossible, don't try to do re(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[0]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) - im(b) + c def as_real_imag(self, deep=True, **hints): """ Returns the real number with a zero imaginary part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_extended_real or self.args[0].is_extended_real: return re(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * im(Derivative(self.args[0], x, evaluate=True)) def _eval_rewrite_as_im(self, arg, **kwargs): return self.args[0] - S.ImaginaryUnit*im(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): # is_imaginary implies nonzero return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero]) def _eval_is_finite(self): if self.args[0].is_finite: return True def _eval_is_complex(self): if self.args[0].is_finite: return True def _sage_(self): import sage.all as sage return sage.real_part(self.args[0]._sage_()) class im(Function): """ Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, E, I >>> from sympy.abc import x, y >>> im(2*E) 0 >>> re(2*I + 17) 17 >>> im(x*I) re(x) >>> im(re(x) + y) im(y) See Also ======== re """ is_extended_real = True unbranched = True # implicitly works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_extended_real: return S.Zero elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real: return -S.ImaginaryUnit * arg elif arg.is_Matrix: return arg.as_real_imag()[1] elif arg.is_Function and isinstance(arg, conjugate): return -im(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_extended_real: reverted.append(coeff) else: excluded.append(coeff) elif term.has(S.ImaginaryUnit) or not term.is_extended_real: # Try to do some advanced expansion. If # impossible, don't try to do im(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[1]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) + re(b) + c def as_real_imag(self, deep=True, **hints): """ Return the imaginary part with a zero real part. Examples ======== >>> from sympy.functions import im >>> from sympy import I >>> im(2 + 3*I).as_real_imag() (3, 0) """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_extended_real or self.args[0].is_extended_real: return im(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * re(Derivative(self.args[0], x, evaluate=True)) def _sage_(self): import sage.all as sage return sage.imag_part(self.args[0]._sage_()) def _eval_rewrite_as_re(self, arg, **kwargs): return -S.ImaginaryUnit*(self.args[0] - re(self.args[0])) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): return self.args[0].is_extended_real def _eval_is_finite(self): if self.args[0].is_finite: return True def _eval_is_complex(self): if self.args[0].is_finite: return True ############################################################################### ############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################ ############################################################################### class sign(Function): """ Returns the complex sign of an expression: If the expression is real the sign will be: * 1 if expression is positive * 0 if expression is equal to zero * -1 if expression is negative If the expression is imaginary the sign will be: * I if im(expression) is positive * -I if im(expression) is negative Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``. Examples ======== >>> from sympy.functions import sign >>> from sympy.core.numbers import I >>> sign(-1) -1 >>> sign(0) 0 >>> sign(-3*I) -I >>> sign(1 + I) sign(1 + I) >>> _.evalf() 0.707106781186548 + 0.707106781186548*I See Also ======== Abs, conjugate """ is_complex = True def doit(self, **hints): if self.args[0].is_zero is False: return self.args[0] / Abs(self.args[0]) return self @classmethod def eval(cls, arg): # handle what we can if arg.is_Mul: c, args = arg.as_coeff_mul() unk = [] s = sign(c) for a in args: if a.is_extended_negative: s = -s elif a.is_extended_positive: pass else: ai = im(a) if a.is_imaginary and ai.is_comparable: # i.e. a = I*real s *= S.ImaginaryUnit if ai.is_extended_negative: # can't use sign(ai) here since ai might not be # a Number s = -s else: unk.append(a) if c is S.One and len(unk) == len(args): return None return s * cls(arg._new_rawargs(*unk)) if arg is S.NaN: return S.NaN if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_extended_positive: return S.One if arg.is_extended_negative: return S.NegativeOne if arg.is_Function: if isinstance(arg, sign): return arg if arg.is_imaginary: if arg.is_Pow and arg.exp is S.Half: # we catch this because non-trivial sqrt args are not expanded # e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1) return S.ImaginaryUnit arg2 = -S.ImaginaryUnit * arg if arg2.is_extended_positive: return S.ImaginaryUnit if arg2.is_extended_negative: return -S.ImaginaryUnit def _eval_Abs(self): if fuzzy_not(self.args[0].is_zero): return S.One def _eval_conjugate(self): return sign(conjugate(self.args[0])) def _eval_derivative(self, x): if self.args[0].is_extended_real: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(self.args[0]) elif self.args[0].is_imaginary: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(-S.ImaginaryUnit * self.args[0]) def _eval_is_nonnegative(self): if self.args[0].is_nonnegative: return True def _eval_is_nonpositive(self): if self.args[0].is_nonpositive: return True def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_extended_real def _eval_is_zero(self): return self.args[0].is_zero def _eval_power(self, other): if ( fuzzy_not(self.args[0].is_zero) and other.is_integer and other.is_even ): return S.One def _sage_(self): import sage.all as sage return sage.sgn(self.args[0]._sage_()) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_extended_real: return Piecewise((1, arg > 0), (-1, arg < 0), (0, True)) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): from sympy.functions.special.delta_functions import Heaviside if arg.is_extended_real: return Heaviside(arg, H0=S(1)/2) * 2 - 1 def _eval_simplify(self, **kwargs): return self.func(self.args[0].factor()) # XXX include doit? class Abs(Function): """ Return the absolute value of the argument. This is an extension of the built-in function abs() to accept symbolic values. If you pass a SymPy expression to the built-in abs(), it will pass it automatically to Abs(). Examples ======== >>> from sympy import Abs, Symbol, S >>> Abs(-1) 1 >>> x = Symbol('x', real=True) >>> Abs(-x) Abs(x) >>> Abs(x**2) x**2 >>> abs(-x) # The Python built-in Abs(x) Note that the Python built-in will return either an Expr or int depending on the argument:: >>> type(abs(-1)) <... 'int'> >>> type(abs(S.NegativeOne)) <class 'sympy.core.numbers.One'> Abs will always return a sympy object. See Also ======== sign, conjugate """ is_extended_real = True is_extended_negative = False is_extended_nonnegative = True unbranched = True def fdiff(self, argindex=1): """ Get the first derivative of the argument to Abs(). Examples ======== >>> from sympy.abc import x >>> from sympy.functions import Abs >>> Abs(-x).fdiff() sign(x) """ if argindex == 1: return sign(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.simplify.simplify import signsimp from sympy.core.function import expand_mul from sympy.core.power import Pow if hasattr(arg, '_eval_Abs'): obj = arg._eval_Abs() if obj is not None: return obj if not isinstance(arg, Expr): raise TypeError("Bad argument type for Abs(): %s" % type(arg)) # handle what we can arg = signsimp(arg, evaluate=False) n, d = arg.as_numer_denom() if d.free_symbols and not n.free_symbols: return cls(n)/cls(d) if arg.is_Mul: known = [] unk = [] for t in arg.args: if t.is_Pow and t.exp.is_integer and t.exp.is_negative: bnew = cls(t.base) if isinstance(bnew, cls): unk.append(t) else: known.append(Pow(bnew, t.exp)) else: tnew = cls(t) if isinstance(tnew, cls): unk.append(t) else: known.append(tnew) known = Mul(*known) unk = cls(Mul(*unk), evaluate=False) if unk else S.One return known*unk if arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.Infinity if arg.is_Pow: base, exponent = arg.as_base_exp() if base.is_extended_real: if exponent.is_integer: if exponent.is_even: return arg if base is S.NegativeOne: return S.One return Abs(base)**exponent if base.is_extended_nonnegative: return base**re(exponent) if base.is_extended_negative: return (-base)**re(exponent)*exp(-S.Pi*im(exponent)) return elif not base.has(Symbol): # complex base # express base**exponent as exp(exponent*log(base)) a, b = log(base).as_real_imag() z = a + I*b return exp(re(exponent*z)) if isinstance(arg, exp): return exp(re(arg.args[0])) if isinstance(arg, AppliedUndef): return if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity): if any(a.is_infinite for a in arg.as_real_imag()): return S.Infinity if arg.is_zero: return S.Zero if arg.is_extended_nonnegative: return arg if arg.is_extended_nonpositive: return -arg if arg.is_imaginary: arg2 = -S.ImaginaryUnit * arg if arg2.is_extended_nonnegative: return arg2 # reject result if all new conjugates are just wrappers around # an expression that was already in the arg conj = signsimp(arg.conjugate(), evaluate=False) new_conj = conj.atoms(conjugate) - arg.atoms(conjugate) if new_conj and all(arg.has(i.args[0]) for i in new_conj): return if arg != conj and arg != -conj: ignore = arg.atoms(Abs) abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore}) unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None] if not unk or not all(conj.has(conjugate(u)) for u in unk): return sqrt(expand_mul(arg*conj)) def _eval_is_real(self): if self.args[0].is_finite: return True def _eval_is_integer(self): if self.args[0].is_extended_real: return self.args[0].is_integer def _eval_is_extended_nonzero(self): return fuzzy_not(self._args[0].is_zero) def _eval_is_zero(self): return self._args[0].is_zero def _eval_is_extended_positive(self): is_z = self.is_zero if is_z is not None: return not is_z def _eval_is_rational(self): if self.args[0].is_extended_real: return self.args[0].is_rational def _eval_is_even(self): if self.args[0].is_extended_real: return self.args[0].is_even def _eval_is_odd(self): if self.args[0].is_extended_real: return self.args[0].is_odd def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_power(self, exponent): if self.args[0].is_extended_real and exponent.is_integer: if exponent.is_even: return self.args[0]**exponent elif exponent is not S.NegativeOne and exponent.is_Integer: return self.args[0]**(exponent - 1)*self return def _eval_nseries(self, x, n, logx): direction = self.args[0].leadterm(x)[0] s = self.args[0]._eval_nseries(x, n=n, logx=logx) when = Eq(direction, 0) return Piecewise( ((s.subs(direction, 0)), when), (sign(direction)*s, True), ) def _sage_(self): import sage.all as sage return sage.abs_symbolic(self.args[0]._sage_()) def _eval_derivative(self, x): if self.args[0].is_extended_real or self.args[0].is_imaginary: return Derivative(self.args[0], x, evaluate=True) \ * sign(conjugate(self.args[0])) rv = (re(self.args[0]) * Derivative(re(self.args[0]), x, evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]), x, evaluate=True)) / Abs(self.args[0]) return rv.rewrite(sign) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): # Note this only holds for real arg (since Heaviside is not defined # for complex arguments). from sympy.functions.special.delta_functions import Heaviside if arg.is_extended_real: return arg*(Heaviside(arg) - Heaviside(-arg)) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_extended_real: return Piecewise((arg, arg >= 0), (-arg, True)) elif arg.is_imaginary: return Piecewise((I*arg, I*arg >= 0), (-I*arg, True)) def _eval_rewrite_as_sign(self, arg, **kwargs): return arg/sign(arg) def _eval_rewrite_as_conjugate(self, arg, **kwargs): return (arg*conjugate(arg))**S.Half class arg(Function): """ Returns the argument (in radians) of a complex number. For a positive number, the argument is always 0. Examples ======== >>> from sympy.functions import arg >>> from sympy import I, sqrt >>> arg(2.0) 0 >>> arg(I) pi/2 >>> arg(sqrt(2) + I*sqrt(2)) pi/4 """ is_extended_real = True is_real = True is_finite = True @classmethod def eval(cls, arg): if isinstance(arg, exp_polar): return periodic_argument(arg, oo) if not arg.is_Atom: c, arg_ = factor_terms(arg).as_coeff_Mul() if arg_.is_Mul: arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else sign(a) for a in arg_.args]) arg_ = sign(c)*arg_ else: arg_ = arg if arg_.atoms(AppliedUndef): return x, y = arg_.as_real_imag() rv = atan2(y, x) if rv.is_number: return rv if arg_ != arg: return cls(arg_, evaluate=False) def _eval_derivative(self, t): x, y = self.args[0].as_real_imag() return (x * Derivative(y, t, evaluate=True) - y * Derivative(x, t, evaluate=True)) / (x**2 + y**2) def _eval_rewrite_as_atan2(self, arg, **kwargs): x, y = self.args[0].as_real_imag() return atan2(y, x) class conjugate(Function): """ Returns the `complex conjugate` Ref[1] of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part. Thus, the conjugate of the complex number :math:`a + ib` (where a and b are real numbers) is :math:`a - ib` Examples ======== >>> from sympy import conjugate, I >>> conjugate(2) 2 >>> conjugate(I) -I See Also ======== sign, Abs References ========== .. [1] https://en.wikipedia.org/wiki/Complex_conjugation """ @classmethod def eval(cls, arg): obj = arg._eval_conjugate() if obj is not None: return obj def _eval_Abs(self): return Abs(self.args[0], evaluate=True) def _eval_adjoint(self): return transpose(self.args[0]) def _eval_conjugate(self): return self.args[0] def _eval_derivative(self, x): if x.is_real: return conjugate(Derivative(self.args[0], x, evaluate=True)) elif x.is_imaginary: return -conjugate(Derivative(self.args[0], x, evaluate=True)) def _eval_transpose(self): return adjoint(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic class transpose(Function): """ Linear map transposition. """ @classmethod def eval(cls, arg): obj = arg._eval_transpose() if obj is not None: return obj def _eval_adjoint(self): return conjugate(self.args[0]) def _eval_conjugate(self): return adjoint(self.args[0]) def _eval_transpose(self): return self.args[0] class adjoint(Function): """ Conjugate transpose or Hermite conjugation. """ @classmethod def eval(cls, arg): obj = arg._eval_adjoint() if obj is not None: return obj obj = arg._eval_transpose() if obj is not None: return conjugate(obj) def _eval_adjoint(self): return self.args[0] def _eval_conjugate(self): return transpose(self.args[0]) def _eval_transpose(self): return conjugate(self.args[0]) def _latex(self, printer, exp=None, *args): arg = printer._print(self.args[0]) tex = r'%s^{\dagger}' % arg if exp: tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp)) return tex def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if printer._use_unicode: pform = pform**prettyForm(u'\N{DAGGER}') else: pform = pform**prettyForm('+') return pform ############################################################################### ############### HANDLING OF POLAR NUMBERS ##################################### ############################################################################### class polar_lift(Function): """ Lift argument to the Riemann surface of the logarithm, using the standard branch. >>> from sympy import Symbol, polar_lift, I >>> p = Symbol('p', polar=True) >>> x = Symbol('x') >>> polar_lift(4) 4*exp_polar(0) >>> polar_lift(-4) 4*exp_polar(I*pi) >>> polar_lift(-I) exp_polar(-I*pi/2) >>> polar_lift(I + 2) polar_lift(2 + I) >>> polar_lift(4*x) 4*polar_lift(x) >>> polar_lift(4*p) 4*p See Also ======== sympy.functions.elementary.exponential.exp_polar periodic_argument """ is_polar = True is_comparable = False # Cannot be evalf'd. @classmethod def eval(cls, arg): from sympy.functions.elementary.complexes import arg as argument if arg.is_number: ar = argument(arg) # In general we want to affirm that something is known, # e.g. `not ar.has(argument) and not ar.has(atan)` # but for now we will just be more restrictive and # see that it has evaluated to one of the known values. if ar in (0, pi/2, -pi/2, pi): return exp_polar(I*ar)*abs(arg) if arg.is_Mul: args = arg.args else: args = [arg] included = [] excluded = [] positive = [] for arg in args: if arg.is_polar: included += [arg] elif arg.is_positive: positive += [arg] else: excluded += [arg] if len(excluded) < len(args): if excluded: return Mul(*(included + positive))*polar_lift(Mul(*excluded)) elif included: return Mul(*(included + positive)) else: return Mul(*positive)*exp_polar(0) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ return self.args[0]._eval_evalf(prec) def _eval_Abs(self): return Abs(self.args[0], evaluate=True) class periodic_argument(Function): """ Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period P, always return a value in (-P/2, P/2], by using exp(P*I) == 1. >>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument >>> from sympy import I, pi >>> unbranched_argument(exp(5*I*pi)) pi >>> unbranched_argument(exp_polar(5*I*pi)) 5*pi >>> periodic_argument(exp_polar(5*I*pi), 2*pi) pi >>> periodic_argument(exp_polar(5*I*pi), 3*pi) -pi >>> periodic_argument(exp_polar(5*I*pi), pi) 0 See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm principal_branch """ @classmethod def _getunbranched(cls, ar): if ar.is_Mul: args = ar.args else: args = [ar] unbranched = 0 for a in args: if not a.is_polar: unbranched += arg(a) elif isinstance(a, exp_polar): unbranched += a.exp.as_real_imag()[1] elif a.is_Pow: re, im = a.exp.as_real_imag() unbranched += re*unbranched_argument( a.base) + im*log(abs(a.base)) elif isinstance(a, polar_lift): unbranched += arg(a.args[0]) else: return None return unbranched @classmethod def eval(cls, ar, period): # Our strategy is to evaluate the argument on the Riemann surface of the # logarithm, and then reduce. # NOTE evidently this means it is a rather bad idea to use this with # period != 2*pi and non-polar numbers. if not period.is_extended_positive: return None if period == oo and isinstance(ar, principal_branch): return periodic_argument(*ar.args) if isinstance(ar, polar_lift) and period >= 2*pi: return periodic_argument(ar.args[0], period) if ar.is_Mul: newargs = [x for x in ar.args if not x.is_positive] if len(newargs) != len(ar.args): return periodic_argument(Mul(*newargs), period) unbranched = cls._getunbranched(ar) if unbranched is None: return None if unbranched.has(periodic_argument, atan2, atan): return None if period == oo: return unbranched if period != oo: n = ceiling(unbranched/period - S.Half)*period if not n.has(ceiling): return unbranched - n def _eval_evalf(self, prec): z, period = self.args if period == oo: unbranched = periodic_argument._getunbranched(z) if unbranched is None: return self return unbranched._eval_evalf(prec) ub = periodic_argument(z, oo)._eval_evalf(prec) return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec) def unbranched_argument(arg): return periodic_argument(arg, oo) class principal_branch(Function): """ Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm. This is a function of two arguments. The first argument is a polar number `z`, and the second one a positive real number of infinity, `p`. The result is "z mod exp_polar(I*p)". >>> from sympy import exp_polar, principal_branch, oo, I, pi >>> from sympy.abc import z >>> principal_branch(z, oo) z >>> principal_branch(exp_polar(2*pi*I)*3, 2*pi) 3*exp_polar(0) >>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi) 3*principal_branch(z, 2*pi) See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm periodic_argument """ is_polar = True is_comparable = False # cannot always be evalf'd @classmethod def eval(self, x, period): from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol if isinstance(x, polar_lift): return principal_branch(x.args[0], period) if period == oo: return x ub = periodic_argument(x, oo) barg = periodic_argument(x, period) if ub != barg and not ub.has(periodic_argument) \ and not barg.has(periodic_argument): pl = polar_lift(x) def mr(expr): if not isinstance(expr, Symbol): return polar_lift(expr) return expr pl = pl.replace(polar_lift, mr) # Recompute unbranched argument ub = periodic_argument(pl, oo) if not pl.has(polar_lift): if ub != barg: res = exp_polar(I*(barg - ub))*pl else: res = pl if not res.is_polar and not res.has(exp_polar): res *= exp_polar(0) return res if not x.free_symbols: c, m = x, () else: c, m = x.as_coeff_mul(*x.free_symbols) others = [] for y in m: if y.is_positive: c *= y else: others += [y] m = tuple(others) arg = periodic_argument(c, period) if arg.has(periodic_argument): return None if arg.is_number and (unbranched_argument(c) != arg or (arg == 0 and m != () and c != 1)): if arg == 0: return abs(c)*principal_branch(Mul(*m), period) return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c) if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \ and m == (): return exp_polar(arg*I)*abs(c) def _eval_evalf(self, prec): from sympy import exp, pi, I z, period = self.args p = periodic_argument(z, period)._eval_evalf(prec) if abs(p) > pi or p == -pi: return self # Cannot evalf for this argument. return (abs(z)*exp(I*p))._eval_evalf(prec) def _polarify(eq, lift, pause=False): from sympy import Integral if eq.is_polar: return eq if eq.is_number and not pause: return polar_lift(eq) if isinstance(eq, Symbol) and not pause and lift: return polar_lift(eq) elif eq.is_Atom: return eq elif eq.is_Add: r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args]) if lift: return polar_lift(r) return r elif eq.is_Function: return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args]) elif isinstance(eq, Integral): # Don't lift the integration variable func = _polarify(eq.function, lift, pause=pause) limits = [] for limit in eq.args[1:]: var = _polarify(limit[0], lift=False, pause=pause) rest = _polarify(limit[1:], lift=lift, pause=pause) limits.append((var,) + rest) return Integral(*((func,) + tuple(limits))) else: return eq.func(*[_polarify(arg, lift, pause=pause) if isinstance(arg, Expr) else arg for arg in eq.args]) def polarify(eq, subs=True, lift=False): """ Turn all numbers in eq into their polar equivalents (under the standard choice of argument). Note that no attempt is made to guess a formal convention of adding polar numbers, expressions like 1 + x will generally not be altered. Note also that this function does not promote exp(x) to exp_polar(x). If ``subs`` is True, all symbols which are not already polar will be substituted for polar dummies; in this case the function behaves much like posify. If ``lift`` is True, both addition statements and non-polar symbols are changed to their polar_lift()ed versions. Note that lift=True implies subs=False. >>> from sympy import polarify, sin, I >>> from sympy.abc import x, y >>> expr = (-x)**y >>> expr.expand() (-x)**y >>> polarify(expr) ((_x*exp_polar(I*pi))**_y, {_x: x, _y: y}) >>> polarify(expr)[0].expand() _x**_y*exp_polar(_y*I*pi) >>> polarify(x, lift=True) polar_lift(x) >>> polarify(x*(1+y), lift=True) polar_lift(x)*polar_lift(y + 1) Adds are treated carefully: >>> polarify(1 + sin((1 + I)*x)) (sin(_x*polar_lift(1 + I)) + 1, {_x: x}) """ if lift: subs = False eq = _polarify(sympify(eq), lift) if not subs: return eq reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols} eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def _unpolarify(eq, exponents_only, pause=False): if not isinstance(eq, Basic) or eq.is_Atom: return eq if not pause: if isinstance(eq, exp_polar): return exp(_unpolarify(eq.exp, exponents_only)) if isinstance(eq, principal_branch) and eq.args[1] == 2*pi: return _unpolarify(eq.args[0], exponents_only) if ( eq.is_Add or eq.is_Mul or eq.is_Boolean or eq.is_Relational and ( eq.rel_op in ('==', '!=') and 0 in eq.args or eq.rel_op not in ('==', '!=')) ): return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args]) if isinstance(eq, polar_lift): return _unpolarify(eq.args[0], exponents_only) if eq.is_Pow: expo = _unpolarify(eq.exp, exponents_only) base = _unpolarify(eq.base, exponents_only, not (expo.is_integer and not pause)) return base**expo if eq.is_Function and getattr(eq.func, 'unbranched', False): return eq.func(*[_unpolarify(x, exponents_only, exponents_only) for x in eq.args]) return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args]) def unpolarify(eq, subs={}, exponents_only=False): """ If p denotes the projection from the Riemann surface of the logarithm to the complex line, return a simplified version eq' of `eq` such that p(eq') == p(eq). Also apply the substitution subs in the end. (This is a convenience, since ``unpolarify``, in a certain sense, undoes polarify.) >>> from sympy import unpolarify, polar_lift, sin, I >>> unpolarify(polar_lift(I + 2)) 2 + I >>> unpolarify(sin(polar_lift(I + 7))) sin(7 + I) """ if isinstance(eq, bool): return eq eq = sympify(eq) if subs != {}: return unpolarify(eq.subs(subs)) changed = True pause = False if exponents_only: pause = True while changed: changed = False res = _unpolarify(eq, exponents_only, pause) if res != eq: changed = True eq = res if isinstance(res, bool): return res # Finally, replacing Exp(0) by 1 is always correct. # So is polar_lift(0) -> 0. return res.subs({exp_polar(0): 1, polar_lift(0): 0}) # /cyclic/ from sympy.core import basic as _ _.abs_ = Abs del _
af669bbd9e2a2a3146f64822a53f4a02f87290beefa22214591d94c83e3dd65e
"""Hypergeometric and Meijer G-functions""" from __future__ import print_function, division from sympy.core import S, I, pi, oo, zoo, ilcm, Mod from sympy.core.function import Function, Derivative, ArgumentIndexError from sympy.core.compatibility import reduce, range from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.symbol import Dummy from sympy.functions import (sqrt, exp, log, sin, cos, asin, atan, sinh, cosh, asinh, acosh, atanh, acoth, Abs) from sympy.utilities.iterables import default_sort_key class TupleArg(Tuple): def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return TupleArg(*[limit(f, x, xlim, dir) for f in self.args]) # TODO should __new__ accept **options? # TODO should constructors should check if parameters are sensible? def _prep_tuple(v): """ Turn an iterable argument *v* into a tuple and unpolarify, since both hypergeometric and meijer g-functions are unbranched in their parameters. Examples ======== >>> from sympy.functions.special.hyper import _prep_tuple >>> _prep_tuple([1, 2, 3]) (1, 2, 3) >>> _prep_tuple((4, 5)) (4, 5) >>> _prep_tuple((7, 8, 9)) (7, 8, 9) """ from sympy import unpolarify return TupleArg(*[unpolarify(x) for x in v]) class TupleParametersBase(Function): """ Base class that takes care of differentiation, when some of the arguments are actually tuples. """ # This is not deduced automatically since there are Tuples as arguments. is_commutative = True def _eval_derivative(self, s): try: res = 0 if self.args[0].has(s) or self.args[1].has(s): for i, p in enumerate(self._diffargs): m = self._diffargs[i].diff(s) if m != 0: res += self.fdiff((1, i))*m return res + self.fdiff(3)*self.args[2].diff(s) except (ArgumentIndexError, NotImplementedError): return Derivative(self, s) class hyper(TupleParametersBase): r""" The generalized hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest possible domain. Explanation =========== The hypergeometric function depends on two vectors of parameters, called the numerator parameters $a_p$, and the denominator parameters $b_q$. It also has an argument $z$. The series definition is .. math :: {}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix} \middle| z \right) = \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!}, where $(a)_n = (a)(a+1)\cdots(a+n-1)$ denotes the rising factorial. If one of the $b_q$ is a non-positive integer then the series is undefined unless one of the $a_p$ is a larger (i.e., smaller in magnitude) non-positive integer. If none of the $b_q$ is a non-positive integer and one of the $a_p$ is a non-positive integer, then the series reduces to a polynomial. To simplify the following discussion, we assume that none of the $a_p$ or $b_q$ is a non-positive integer. For more details, see the references. The series converges for all $z$ if $p \le q$, and thus defines an entire single-valued function in this case. If $p = q+1$ the series converges for $|z| < 1$, and can be continued analytically into a half-plane. If $p > q+1$ the series is divergent for all $z$. Please note the hypergeometric function constructor currently does *not* check if the parameters actually yield a well-defined function. Examples ======== The parameters $a_p$ and $b_q$ can be passed as arbitrary iterables, for example: >>> from sympy.functions import hyper >>> from sympy.abc import x, n, a >>> hyper((1, 2, 3), [3, 4], x) hyper((1, 2, 3), (3, 4), x) There is also pretty printing (it looks better using Unicode): >>> from sympy import pprint >>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False) _ |_ /1, 2, 3 | \ | | | x| 3 2 \ 3, 4 | / The parameters must always be iterables, even if they are vectors of length one or zero: >>> hyper((1, ), [], x) hyper((1,), (), x) But of course they may be variables (but if they depend on $x$ then you should not expect much implemented functionality): >>> hyper((n, a), (n**2,), x) hyper((n, a), (n**2,), x) The hypergeometric function generalizes many named special functions. The function ``hyperexpand()`` tries to express a hypergeometric function using named special functions. For example: >>> from sympy import hyperexpand >>> hyperexpand(hyper([], [], x)) exp(x) You can also use ``expand_func()``: >>> from sympy import expand_func >>> expand_func(x*hyper([1, 1], [2], -x)) log(x + 1) More examples: >>> from sympy import S >>> hyperexpand(hyper([], [S(1)/2], -x**2/4)) cos(x) >>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2)) asin(x) We can also sometimes ``hyperexpand()`` parametric functions: >>> from sympy.abc import a >>> hyperexpand(hyper([-a], [], x)) (1 - x)**a See Also ======== sympy.simplify.hyperexpand gamma meijerg References ========== .. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [2] https://en.wikipedia.org/wiki/Generalized_hypergeometric_function """ def __new__(cls, ap, bq, z, **kwargs): # TODO should we check convergence conditions? return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z, **kwargs) @classmethod def eval(cls, ap, bq, z): from sympy import unpolarify if len(ap) <= len(bq) or (len(ap) == len(bq) + 1 and (Abs(z) <= 1) == True): nz = unpolarify(z) if z != nz: return hyper(ap, bq, nz) def fdiff(self, argindex=3): if argindex != 3: raise ArgumentIndexError(self, argindex) nap = Tuple(*[a + 1 for a in self.ap]) nbq = Tuple(*[b + 1 for b in self.bq]) fac = Mul(*self.ap)/Mul(*self.bq) return fac*hyper(nap, nbq, self.argument) def _eval_expand_func(self, **hints): from sympy import gamma, hyperexpand if len(self.ap) == 2 and len(self.bq) == 1 and self.argument == 1: a, b = self.ap c = self.bq[0] return gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b) return hyperexpand(self) def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs): from sympy.functions import factorial, RisingFactorial, Piecewise from sympy import Sum n = Dummy("n", integer=True) rfap = Tuple(*[RisingFactorial(a, n) for a in ap]) rfbq = Tuple(*[RisingFactorial(b, n) for b in bq]) coeff = Mul(*rfap) / Mul(*rfbq) return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)), self.convergence_statement), (self, True)) @property def argument(self): """ Argument of the hypergeometric function. """ return self.args[2] @property def ap(self): """ Numerator parameters of the hypergeometric function. """ return Tuple(*self.args[0]) @property def bq(self): """ Denominator parameters of the hypergeometric function. """ return Tuple(*self.args[1]) @property def _diffargs(self): return self.ap + self.bq @property def eta(self): """ A quantity related to the convergence of the series. """ return sum(self.ap) - sum(self.bq) @property def radius_of_convergence(self): """ Compute the radius of convergence of the defining series. Explanation =========== Note that even if this is not ``oo``, the function may still be evaluated outside of the radius of convergence by analytic continuation. But if this is zero, then the function is not actually defined anywhere else. Examples ======== >>> from sympy.functions import hyper >>> from sympy.abc import z >>> hyper((1, 2), [3], z).radius_of_convergence 1 >>> hyper((1, 2, 3), [4], z).radius_of_convergence 0 >>> hyper((1, 2), (3, 4), z).radius_of_convergence oo """ if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq): aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True] bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True] if len(aints) < len(bints): return S.Zero popped = False for b in bints: cancelled = False while aints: a = aints.pop() if a >= b: cancelled = True break popped = True if not cancelled: return S.Zero if aints or popped: # There are still non-positive numerator parameters. # This is a polynomial. return oo if len(self.ap) == len(self.bq) + 1: return S.One elif len(self.ap) <= len(self.bq): return oo else: return S.Zero @property def convergence_statement(self): """ Return a condition on z under which the series converges. """ from sympy import And, Or, re, Ne, oo R = self.radius_of_convergence if R == 0: return False if R == oo: return True # The special functions and their approximations, page 44 e = self.eta z = self.argument c1 = And(re(e) < 0, abs(z) <= 1) c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1)) c3 = And(re(e) >= 1, abs(z) < 1) return Or(c1, c2, c3) def _eval_simplify(self, **kwargs): from sympy.simplify.hyperexpand import hyperexpand return hyperexpand(self) def _sage_(self): import sage.all as sage ap = [arg._sage_() for arg in self.args[0]] bq = [arg._sage_() for arg in self.args[1]] return sage.hypergeometric(ap, bq, self.argument._sage_()) class meijerg(TupleParametersBase): r""" The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions. Explanation =========== The Meijer G-function depends on four sets of parameters. There are "*numerator parameters*" $a_1, \ldots, a_n$ and $a_{n+1}, \ldots, a_p$, and there are "*denominator parameters*" $b_1, \ldots, b_m$ and $b_{m+1}, \ldots, b_q$. Confusingly, it is traditionally denoted as follows (note the position of $m$, $n$, $p$, $q$, and how they relate to the lengths of the four parameter vectors): .. math :: G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\ b_1, \cdots, b_m & b_{m+1}, \cdots, b_q \end{matrix} \middle| z \right). However, in SymPy the four parameter vectors are always available separately (see examples), so that there is no need to keep track of the decorating sub- and super-scripts on the G symbol. The G function is defined as the following integral: .. math :: \frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s) \prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s, where $\Gamma(z)$ is the gamma function. There are three possible contours which we will not describe in detail here (see the references). If the integral converges along more than one of them, the definitions agree. The contours all separate the poles of $\Gamma(1-a_j+s)$ from the poles of $\Gamma(b_k-s)$, so in particular the G function is undefined if $a_j - b_k \in \mathbb{Z}_{>0}$ for some $j \le n$ and $k \le m$. The conditions under which one of the contours yields a convergent integral are complicated and we do not state them here, see the references. Please note currently the Meijer G-function constructor does *not* check any convergence conditions. Examples ======== You can pass the parameters either as four separate vectors: >>> from sympy.functions import meijerg >>> from sympy.abc import x, a >>> from sympy.core.containers import Tuple >>> from sympy import pprint >>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False) __1, 2 /1, 2 a, 4 | \ /__ | | x| \_|4, 1 \ 5 | / Or as two nested vectors: >>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False) __1, 2 /1, 2 3, 4 | \ /__ | | x| \_|4, 1 \ 5 | / As with the hypergeometric function, the parameters may be passed as arbitrary iterables. Vectors of length zero and one also have to be passed as iterables. The parameters need not be constants, but if they depend on the argument then not much implemented functionality should be expected. All the subvectors of parameters are available: >>> from sympy import pprint >>> g = meijerg([1], [2], [3], [4], x) >>> pprint(g, use_unicode=False) __1, 1 /1 2 | \ /__ | | x| \_|2, 2 \3 4 | / >>> g.an (1,) >>> g.ap (1, 2) >>> g.aother (2,) >>> g.bm (3,) >>> g.bq (3, 4) >>> g.bother (4,) The Meijer G-function generalizes the hypergeometric functions. In some cases it can be expressed in terms of hypergeometric functions, using Slater's theorem. For example: >>> from sympy import hyperexpand >>> from sympy.abc import a, b, c >>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True) x**c*gamma(-a + c + 1)*hyper((-a + c + 1,), (-b + c + 1,), -x)/gamma(-b + c + 1) Thus the Meijer G-function also subsumes many named functions as special cases. You can use ``expand_func()`` or ``hyperexpand()`` to (try to) rewrite a Meijer G-function in terms of named special functions. For example: >>> from sympy import expand_func, S >>> expand_func(meijerg([[],[]], [[0],[]], -x)) exp(x) >>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2)) sin(x)/sqrt(pi) See Also ======== hyper sympy.simplify.hyperexpand References ========== .. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [2] https://en.wikipedia.org/wiki/Meijer_G-function """ def __new__(cls, *args, **kwargs): if len(args) == 5: args = [(args[0], args[1]), (args[2], args[3]), args[4]] if len(args) != 3: raise TypeError("args must be either as, as', bs, bs', z or " "as, bs, z") def tr(p): if len(p) != 2: raise TypeError("wrong argument") return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1])) arg0, arg1 = tr(args[0]), tr(args[1]) if Tuple(arg0, arg1).has(oo, zoo, -oo): raise ValueError("G-function parameters must be finite") if any((a - b).is_Integer and a - b > 0 for a in arg0[0] for b in arg1[0]): raise ValueError("no parameter a1, ..., an may differ from " "any b1, ..., bm by a positive integer") # TODO should we check convergence conditions? return Function.__new__(cls, arg0, arg1, args[2], **kwargs) def fdiff(self, argindex=3): if argindex != 3: return self._diff_wrt_parameter(argindex[1]) if len(self.an) >= 1: a = list(self.an) a[0] -= 1 G = meijerg(a, self.aother, self.bm, self.bother, self.argument) return 1/self.argument * ((self.an[0] - 1)*self + G) elif len(self.bm) >= 1: b = list(self.bm) b[0] += 1 G = meijerg(self.an, self.aother, b, self.bother, self.argument) return 1/self.argument * (self.bm[0]*self - G) else: return S.Zero def _diff_wrt_parameter(self, idx): # Differentiation wrt a parameter can only be done in very special # cases. In particular, if we want to differentiate with respect to # `a`, all other gamma factors have to reduce to rational functions. # # Let MT denote mellin transform. Suppose T(-s) is the gamma factor # appearing in the definition of G. Then # # MT(log(z)G(z)) = d/ds T(s) = d/da T(s) + ... # # Thus d/da G(z) = log(z)G(z) - ... # The ... can be evaluated as a G function under the above conditions, # the formula being most easily derived by using # # d Gamma(s + n) Gamma(s + n) / 1 1 1 \ # -- ------------ = ------------ | - + ---- + ... + --------- | # ds Gamma(s) Gamma(s) \ s s + 1 s + n - 1 / # # which follows from the difference equation of the digamma function. # (There is a similar equation for -n instead of +n). # We first figure out how to pair the parameters. an = list(self.an) ap = list(self.aother) bm = list(self.bm) bq = list(self.bother) if idx < len(an): an.pop(idx) else: idx -= len(an) if idx < len(ap): ap.pop(idx) else: idx -= len(ap) if idx < len(bm): bm.pop(idx) else: bq.pop(idx - len(bm)) pairs1 = [] pairs2 = [] for l1, l2, pairs in [(an, bq, pairs1), (ap, bm, pairs2)]: while l1: x = l1.pop() found = None for i, y in enumerate(l2): if not Mod((x - y).simplify(), 1): found = i break if found is None: raise NotImplementedError('Derivative not expressible ' 'as G-function?') y = l2[i] l2.pop(i) pairs.append((x, y)) # Now build the result. res = log(self.argument)*self for a, b in pairs1: sign = 1 n = a - b base = b if n < 0: sign = -1 n = b - a base = a for k in range(n): res -= sign*meijerg(self.an + (base + k + 1,), self.aother, self.bm, self.bother + (base + k + 0,), self.argument) for a, b in pairs2: sign = 1 n = b - a base = a if n < 0: sign = -1 n = a - b base = b for k in range(n): res -= sign*meijerg(self.an, self.aother + (base + k + 1,), self.bm + (base + k + 0,), self.bother, self.argument) return res def get_period(self): """ Return a number $P$ such that $G(x*exp(I*P)) == G(x)$. Examples ======== >>> from sympy.functions.special.hyper import meijerg >>> from sympy.abc import z >>> from sympy import pi, S >>> meijerg([1], [], [], [], z).get_period() 2*pi >>> meijerg([pi], [], [], [], z).get_period() oo >>> meijerg([1, 2], [], [], [], z).get_period() oo >>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period() 12*pi """ # This follows from slater's theorem. def compute(l): # first check that no two differ by an integer for i, b in enumerate(l): if not b.is_Rational: return oo for j in range(i + 1, len(l)): if not Mod((b - l[j]).simplify(), 1): return oo return reduce(ilcm, (x.q for x in l), 1) beta = compute(self.bm) alpha = compute(self.an) p, q = len(self.ap), len(self.bq) if p == q: if beta == oo or alpha == oo: return oo return 2*pi*ilcm(alpha, beta) elif p < q: return 2*pi*beta else: return 2*pi*alpha def _eval_expand_func(self, **hints): from sympy import hyperexpand return hyperexpand(self) def _eval_evalf(self, prec): # The default code is insufficient for polar arguments. # mpmath provides an optional argument "r", which evaluates # G(z**(1/r)). I am not sure what its intended use is, but we hijack it # here in the following way: to evaluate at a number z of |argument| # less than (say) n*pi, we put r=1/n, compute z' = root(z, n) # (carefully so as not to loose the branch information), and evaluate # G(z'**(1/r)) = G(z'**n) = G(z). from sympy.functions import exp_polar, ceiling from sympy import Expr import mpmath znum = self.argument._eval_evalf(prec) if znum.has(exp_polar): znum, branch = znum.as_coeff_mul(exp_polar) if len(branch) != 1: return branch = branch[0].args[0]/I else: branch = S.Zero n = ceiling(abs(branch/S.Pi)) + 1 znum = znum**(S.One/n)*exp(I*branch / n) # Convert all args to mpf or mpc try: [z, r, ap, bq] = [arg._to_mpmath(prec) for arg in [znum, 1/n, self.args[0], self.args[1]]] except ValueError: return with mpmath.workprec(prec): v = mpmath.meijerg(ap, bq, z, r) return Expr._from_mpmath(v, prec) def integrand(self, s): """ Get the defining integrand D(s). """ from sympy import gamma return self.argument**s \ * Mul(*(gamma(b - s) for b in self.bm)) \ * Mul(*(gamma(1 - a + s) for a in self.an)) \ / Mul(*(gamma(1 - b + s) for b in self.bother)) \ / Mul(*(gamma(a - s) for a in self.aother)) @property def argument(self): """ Argument of the Meijer G-function. """ return self.args[2] @property def an(self): """ First set of numerator parameters. """ return Tuple(*self.args[0][0]) @property def ap(self): """ Combined numerator parameters. """ return Tuple(*(self.args[0][0] + self.args[0][1])) @property def aother(self): """ Second set of numerator parameters. """ return Tuple(*self.args[0][1]) @property def bm(self): """ First set of denominator parameters. """ return Tuple(*self.args[1][0]) @property def bq(self): """ Combined denominator parameters. """ return Tuple(*(self.args[1][0] + self.args[1][1])) @property def bother(self): """ Second set of denominator parameters. """ return Tuple(*self.args[1][1]) @property def _diffargs(self): return self.ap + self.bq @property def nu(self): """ A quantity related to the convergence region of the integral, c.f. references. """ return sum(self.bq) - sum(self.ap) @property def delta(self): """ A quantity related to the convergence region of the integral, c.f. references. """ return len(self.bm) + len(self.an) - S(len(self.ap) + len(self.bq))/2 @property def is_number(self): """ Returns true if expression has numeric data only. """ return not self.free_symbols class HyperRep(Function): """ A base class for "hyper representation functions". This is used exclusively in ``hyperexpand()``, but fits more logically here. pFq is branched at 1 if p == q+1. For use with slater-expansion, we want define an "analytic continuation" to all polar numbers, which is continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want a "nice" expression for the various cases. This base class contains the core logic, concrete derived classes only supply the actual functions. """ @classmethod def eval(cls, *args): from sympy import unpolarify newargs = tuple(map(unpolarify, args[:-1])) + args[-1:] if args != newargs: return cls(*newargs) @classmethod def _expr_small(cls, x): """ An expression for F(x) which holds for |x| < 1. """ raise NotImplementedError @classmethod def _expr_small_minus(cls, x): """ An expression for F(-x) which holds for |x| < 1. """ raise NotImplementedError @classmethod def _expr_big(cls, x, n): """ An expression for F(exp_polar(2*I*pi*n)*x), |x| > 1. """ raise NotImplementedError @classmethod def _expr_big_minus(cls, x, n): """ An expression for F(exp_polar(2*I*pi*n + pi*I)*x), |x| > 1. """ raise NotImplementedError def _eval_rewrite_as_nonrep(self, *args, **kwargs): from sympy import Piecewise x, n = self.args[-1].extract_branch_factor(allow_half=True) minus = False newargs = self.args[:-1] + (x,) if not n.is_Integer: minus = True n -= S.Half newerargs = newargs + (n,) if minus: small = self._expr_small_minus(*newargs) big = self._expr_big_minus(*newerargs) else: small = self._expr_small(*newargs) big = self._expr_big(*newerargs) if big == small: return small return Piecewise((big, abs(x) > 1), (small, True)) def _eval_rewrite_as_nonrepsmall(self, *args, **kwargs): x, n = self.args[-1].extract_branch_factor(allow_half=True) args = self.args[:-1] + (x,) if not n.is_Integer: return self._expr_small_minus(*args) return self._expr_small(*args) class HyperRep_power1(HyperRep): """ Return a representative for hyper([-a], [], z) == (1 - z)**a. """ @classmethod def _expr_small(cls, a, x): return (1 - x)**a @classmethod def _expr_small_minus(cls, a, x): return (1 + x)**a @classmethod def _expr_big(cls, a, x, n): if a.is_integer: return cls._expr_small(a, x) return (x - 1)**a*exp((2*n - 1)*pi*I*a) @classmethod def _expr_big_minus(cls, a, x, n): if a.is_integer: return cls._expr_small_minus(a, x) return (1 + x)**a*exp(2*n*pi*I*a) class HyperRep_power2(HyperRep): """ Return a representative for hyper([a, a - 1/2], [2*a], z). """ @classmethod def _expr_small(cls, a, x): return 2**(2*a - 1)*(1 + sqrt(1 - x))**(1 - 2*a) @classmethod def _expr_small_minus(cls, a, x): return 2**(2*a - 1)*(1 + sqrt(1 + x))**(1 - 2*a) @classmethod def _expr_big(cls, a, x, n): sgn = -1 if n.is_odd: sgn = 1 n -= 1 return 2**(2*a - 1)*(1 + sgn*I*sqrt(x - 1))**(1 - 2*a) \ *exp(-2*n*pi*I*a) @classmethod def _expr_big_minus(cls, a, x, n): sgn = 1 if n.is_odd: sgn = -1 return sgn*2**(2*a - 1)*(sqrt(1 + x) + sgn)**(1 - 2*a)*exp(-2*pi*I*a*n) class HyperRep_log1(HyperRep): """ Represent -z*hyper([1, 1], [2], z) == log(1 - z). """ @classmethod def _expr_small(cls, x): return log(1 - x) @classmethod def _expr_small_minus(cls, x): return log(1 + x) @classmethod def _expr_big(cls, x, n): return log(x - 1) + (2*n - 1)*pi*I @classmethod def _expr_big_minus(cls, x, n): return log(1 + x) + 2*n*pi*I class HyperRep_atanh(HyperRep): """ Represent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z). """ @classmethod def _expr_small(cls, x): return atanh(sqrt(x))/sqrt(x) def _expr_small_minus(cls, x): return atan(sqrt(x))/sqrt(x) def _expr_big(cls, x, n): if n.is_even: return (acoth(sqrt(x)) + I*pi/2)/sqrt(x) else: return (acoth(sqrt(x)) - I*pi/2)/sqrt(x) def _expr_big_minus(cls, x, n): if n.is_even: return atan(sqrt(x))/sqrt(x) else: return (atan(sqrt(x)) - pi)/sqrt(x) class HyperRep_asin1(HyperRep): """ Represent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z). """ @classmethod def _expr_small(cls, z): return asin(sqrt(z))/sqrt(z) @classmethod def _expr_small_minus(cls, z): return asinh(sqrt(z))/sqrt(z) @classmethod def _expr_big(cls, z, n): return S.NegativeOne**n*((S.Half - n)*pi/sqrt(z) + I*acosh(sqrt(z))/sqrt(z)) @classmethod def _expr_big_minus(cls, z, n): return S.NegativeOne**n*(asinh(sqrt(z))/sqrt(z) + n*pi*I/sqrt(z)) class HyperRep_asin2(HyperRep): """ Represent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z). """ # TODO this can be nicer @classmethod def _expr_small(cls, z): return HyperRep_asin1._expr_small(z) \ /HyperRep_power1._expr_small(S.Half, z) @classmethod def _expr_small_minus(cls, z): return HyperRep_asin1._expr_small_minus(z) \ /HyperRep_power1._expr_small_minus(S.Half, z) @classmethod def _expr_big(cls, z, n): return HyperRep_asin1._expr_big(z, n) \ /HyperRep_power1._expr_big(S.Half, z, n) @classmethod def _expr_big_minus(cls, z, n): return HyperRep_asin1._expr_big_minus(z, n) \ /HyperRep_power1._expr_big_minus(S.Half, z, n) class HyperRep_sqrts1(HyperRep): """ Return a representative for hyper([-a, 1/2 - a], [1/2], z). """ @classmethod def _expr_small(cls, a, z): return ((1 - sqrt(z))**(2*a) + (1 + sqrt(z))**(2*a))/2 @classmethod def _expr_small_minus(cls, a, z): return (1 + z)**a*cos(2*a*atan(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): if n.is_even: return ((sqrt(z) + 1)**(2*a)*exp(2*pi*I*n*a) + (sqrt(z) - 1)**(2*a)*exp(2*pi*I*(n - 1)*a))/2 else: n -= 1 return ((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) + (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))/2 @classmethod def _expr_big_minus(cls, a, z, n): if n.is_even: return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z))) else: return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a) class HyperRep_sqrts2(HyperRep): """ Return a representative for sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a] == -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)""" @classmethod def _expr_small(cls, a, z): return sqrt(z)*((1 - sqrt(z))**(2*a) - (1 + sqrt(z))**(2*a))/2 @classmethod def _expr_small_minus(cls, a, z): return sqrt(z)*(1 + z)**a*sin(2*a*atan(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): if n.is_even: return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n - 1)) - (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n)) else: n -= 1 return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) - (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n)) def _expr_big_minus(cls, a, z, n): if n.is_even: return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z))) else: return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \ *sin(2*a*atan(sqrt(z)) - 2*pi*a) class HyperRep_log2(HyperRep): """ Represent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z) """ @classmethod def _expr_small(cls, z): return log(S.Half + sqrt(1 - z)/2) @classmethod def _expr_small_minus(cls, z): return log(S.Half + sqrt(1 + z)/2) @classmethod def _expr_big(cls, z, n): if n.is_even: return (n - S.Half)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z)) else: return (n - S.Half)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z)) def _expr_big_minus(cls, z, n): if n.is_even: return pi*I*n + log(S.Half + sqrt(1 + z)/2) else: return pi*I*n + log(sqrt(1 + z)/2 - S.Half) class HyperRep_cosasin(HyperRep): """ Represent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))). """ # Note there are many alternative expressions, e.g. as powers of a sum of # square roots. @classmethod def _expr_small(cls, a, z): return cos(2*a*asin(sqrt(z))) @classmethod def _expr_small_minus(cls, a, z): return cosh(2*a*asinh(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): return cosh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1)) @classmethod def _expr_big_minus(cls, a, z, n): return cosh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n) class HyperRep_sinasin(HyperRep): """ Represent 2*a*z*hyper([1 - a, 1 + a], [3/2], z) == sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z))) """ @classmethod def _expr_small(cls, a, z): return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z))) @classmethod def _expr_small_minus(cls, a, z): return -sqrt(z)/sqrt(1 + z)*sinh(2*a*asinh(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): return -1/sqrt(1 - 1/z)*sinh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1)) @classmethod def _expr_big_minus(cls, a, z, n): return -1/sqrt(1 + 1/z)*sinh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n) class appellf1(Function): r""" This is the Appell hypergeometric function of two variables as: .. math :: F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}} \frac{x^m y^n}{m! n!}. References ========== .. [1] https://en.wikipedia.org/wiki/Appell_series .. [2] http://functions.wolfram.com/HypergeometricFunctions/AppellF1/ """ @classmethod def eval(cls, a, b1, b2, c, x, y): if default_sort_key(b1) > default_sort_key(b2): b1, b2 = b2, b1 x, y = y, x return cls(a, b1, b2, c, x, y) elif b1 == b2 and default_sort_key(x) > default_sort_key(y): x, y = y, x return cls(a, b1, b2, c, x, y) if x == 0 and y == 0: return S.One def fdiff(self, argindex=5): a, b1, b2, c, x, y = self.args if argindex == 5: return (a*b1/c)*appellf1(a + 1, b1 + 1, b2, c + 1, x, y) elif argindex == 6: return (a*b2/c)*appellf1(a + 1, b1, b2 + 1, c + 1, x, y) elif argindex in (1, 2, 3, 4): return Derivative(self, self.args[argindex-1]) else: raise ArgumentIndexError(self, argindex)
037049461653027f877624732580799f9d7d57b654b837b849f7a307dd482ff3
from __future__ import print_function, division from sympy.core import Add, S, sympify, oo, pi, Dummy, expand_func from sympy.core.compatibility import range, as_int from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_and, fuzzy_not from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.functions.special.zeta_functions import zeta from sympy.functions.special.error_functions import erf, erfc, Ei from sympy.functions.elementary.complexes import re from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.functions.combinatorial.numbers import bernoulli, harmonic from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial def intlike(n): try: as_int(n, strict=False) return True except ValueError: return False ############################################################################### ############################ COMPLETE GAMMA FUNCTION ########################## ############################################################################### class gamma(Function): r""" The gamma function .. math:: \Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t. Explanation =========== The ``gamma`` function implements the function which passes through the values of the factorial function (i.e., $\Gamma(n) = (n - 1)!$ when n is an integer). More generally, $\Gamma(z)$ is defined in the whole complex plane except at the negative integers where there are simple poles. Examples ======== >>> from sympy import S, I, pi, oo, gamma >>> from sympy.abc import x Several special values are known: >>> gamma(1) 1 >>> gamma(4) 6 >>> gamma(S(3)/2) sqrt(pi)/2 The ``gamma`` function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(gamma(x)) gamma(conjugate(x)) Differentiation with respect to $x$ is supported: >>> from sympy import diff >>> diff(gamma(x), x) gamma(x)*polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(gamma(x), x, 0, 3) 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3) We can numerically evaluate the ``gamma`` function to arbitrary precision on the whole complex plane: >>> gamma(pi).evalf(40) 2.288037795340032417959588909060233922890 >>> gamma(1+I).evalf(20) 0.49801566811835604271 - 0.15494982830181068512*I See Also ======== lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/GammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/ """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return self.func(self.args[0])*polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif intlike(arg): if arg.is_positive: return factorial(arg - 1) else: return S.ComplexInfinity elif arg.is_Rational: if arg.q == 2: n = abs(arg.p) // arg.q if arg.is_positive: k, coeff = n, S.One else: n = k = n + 1 if n & 1 == 0: coeff = S.One else: coeff = S.NegativeOne for i in range(3, 2*k, 2): coeff *= i if arg.is_positive: return coeff*sqrt(S.Pi) / 2**n else: return 2**n*sqrt(S.Pi) / coeff def _eval_expand_func(self, **hints): arg = self.args[0] if arg.is_Rational: if abs(arg.p) > arg.q: x = Dummy('x') n = arg.p // arg.q p = arg.p - n*arg.q return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q)) if arg.is_Add: coeff, tail = arg.as_coeff_add() if coeff and coeff.q != 1: intpart = floor(coeff) tail = (coeff - intpart,) + tail coeff = intpart tail = arg._new_rawargs(*tail, reeval=False) return self.func(tail)*RisingFactorial(tail, coeff) return self.func(*self.args) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): x = self.args[0] if x.is_nonpositive and x.is_integer: return False if intlike(x) and x <= 0: return False if x.is_positive or x.is_noninteger: return True def _eval_is_positive(self): x = self.args[0] if x.is_positive: return True elif x.is_noninteger: return floor(x).is_even def _eval_rewrite_as_tractable(self, z, **kwargs): return exp(loggamma(z)) def _eval_rewrite_as_factorial(self, z, **kwargs): return factorial(z - 1) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if not (x0.is_Integer and x0 <= 0): return super(gamma, self)._eval_nseries(x, n, logx) t = self.args[0] - x0 return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx) def _sage_(self): import sage.all as sage return sage.gamma(self.args[0]._sage_()) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0] arg_1 = arg.as_leading_term(x) if Order(x, x).contains(arg_1): return S(1) / arg_1 if Order(1, x).contains(arg_1): return self.func(arg_1) #################################################### # The correct result here should be 'None'. # # Indeed arg in not bounded as x tends to 0. # # Consequently the series expansion does not admit # # the leading term. # # For compatibility reasons, the return value here # # is the original function, i.e. gamma(arg), # # instead of None. # #################################################### return self.func(arg) ############################################################################### ################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS ################# ############################################################################### class lowergamma(Function): r""" The lower incomplete gamma function. Explanation =========== It can be defined as the meromorphic continuation of .. math:: \gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x). This can be shown to be the same as .. math:: \gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where ${}_1F_1$ is the (confluent) hypergeometric function. Examples ======== >>> from sympy import lowergamma, S >>> from sympy.abc import s, x >>> lowergamma(s, x) lowergamma(s, x) >>> lowergamma(3, x) -2*(x**2/2 + x + 1)*exp(-x) + 2 >>> lowergamma(-S(1)/2, x) -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x) See Also ======== gamma: Gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ """ def fdiff(self, argindex=2): from sympy import meijerg, unpolarify if argindex == 2: a, z = self.args return exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \ - meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, x): # For lack of a better place, we use this one to extract branching # information. The following can be # found in the literature (c/f references given above), albeit scattered: # 1) For fixed x != 0, lowergamma(s, x) is an entire function of s # 2) For fixed positive integers s, lowergamma(s, x) is an entire # function of x. # 3) For fixed non-positive integers s, # lowergamma(s, exp(I*2*pi*n)*x) = # 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x) # (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)). # 4) For fixed non-integral s, # lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x), # where lowergamma_unbranched(s, x) is an entire function (in fact # of both s and x), i.e. # lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x) from sympy import unpolarify, I if x is S.Zero: return S.Zero nx, n = x.extract_branch_factor() if a.is_integer and a.is_positive: nx = unpolarify(x) if nx != x: return lowergamma(a, nx) elif a.is_integer and a.is_nonpositive: if n != 0: return 2*pi*I*n*(-1)**(-a)/factorial(-a) + lowergamma(a, nx) elif n != 0: return exp(2*pi*I*n*a)*lowergamma(a, nx) # Special values. if a.is_Number: if a is S.One: return S.One - exp(-x) elif a is S.Half: return sqrt(pi)*erf(sqrt(x)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)]) else: return gamma(a)*(lowergamma(S.Half, x)/sqrt(pi) - exp(-x)*Add(*[x**(k - S.Half)/gamma(S.Half + k) for k in range(1, a + S.Half)])) if not a.is_Integer: return (-1)**(S.Half - a)*pi*erf(sqrt(x))/gamma(1 - a) + exp(-x)*Add(*[x**(k + a - 1)*gamma(a)/gamma(a + k) for k in range(1, Rational(3, 2) - a)]) if x.is_zero: return S.Zero def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, 0, z) return Expr._from_mpmath(res, prec) else: return self def _eval_conjugate(self): x = self.args[1] if x not in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), x.conjugate()) def _eval_rewrite_as_uppergamma(self, s, x, **kwargs): return gamma(s) - uppergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy import expint if s.is_integer and s.is_nonpositive: return self return self.rewrite(uppergamma).rewrite(expint) def _eval_is_zero(self): x = self.args[1] if x.is_zero: return True class uppergamma(Function): r""" The upper incomplete gamma function. Explanation =========== It can be defined as the meromorphic continuation of .. math:: \Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x). where $\gamma(s, x)$ is the lower incomplete gamma function, :class:`lowergamma`. This can be shown to be the same as .. math:: \Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where ${}_1F_1$ is the (confluent) hypergeometric function. The upper incomplete gamma function is also essentially equivalent to the generalized exponential integral: .. math:: \operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x). Examples ======== >>> from sympy import uppergamma, S >>> from sympy.abc import s, x >>> uppergamma(s, x) uppergamma(s, x) >>> uppergamma(3, x) 2*(x**2/2 + x + 1)*exp(-x) >>> uppergamma(-S(1)/2, x) -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x) >>> uppergamma(-2, x) expint(3, x)/x**2 See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ .. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions """ def fdiff(self, argindex=2): from sympy import meijerg, unpolarify if argindex == 2: a, z = self.args return -exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, z, mp.inf) return Expr._from_mpmath(res, prec) return self @classmethod def eval(cls, a, z): from sympy import unpolarify, I, expint if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: return S.Zero elif z.is_zero: if re(a).is_positive: return gamma(a) # We extract branching information here. C/f lowergamma. nx, n = z.extract_branch_factor() if a.is_integer and a.is_positive: nx = unpolarify(z) if z != nx: return uppergamma(a, nx) elif a.is_integer and a.is_nonpositive: if n != 0: return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx) elif n != 0: return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx) # Special values. if a.is_Number: if a is S.Zero and z.is_positive: return -Ei(-z) elif a is S.One: return exp(-z) elif a is S.Half: return sqrt(pi)*erfc(sqrt(z)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return exp(-z) * factorial(b) * Add(*[z**k / factorial(k) for k in range(a)]) else: return gamma(a) * erfc(sqrt(z)) + (-1)**(a - S(3)/2) * exp(-z) * sqrt(z) * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a) for k in range(a - S.Half)]) elif b.is_Integer: return expint(-b, z)*unpolarify(z)**(b + 1) if not a.is_Integer: return (-1)**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a) - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1) for k in range(S.Half - a)]) if a.is_zero and z.is_positive: return -Ei(-z) if z.is_zero and re(a).is_positive: return gamma(a) def _eval_conjugate(self): z = self.args[1] if not z in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), z.conjugate()) def _eval_rewrite_as_lowergamma(self, s, x, **kwargs): return gamma(s) - lowergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy import expint return expint(1 - s, x)*x**s def _sage_(self): import sage.all as sage return sage.gamma(self.args[0]._sage_(), self.args[1]._sage_()) ############################################################################### ###################### POLYGAMMA and LOGGAMMA FUNCTIONS ####################### ############################################################################### class polygamma(Function): r""" The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``. Explanation =========== It is a meromorphic function on $\mathbb{C}$ and defined as the $(n+1)$-th derivative of the logarithm of the gamma function: .. math:: \psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z). Examples ======== Several special values are known: >>> from sympy import S, polygamma >>> polygamma(0, 1) -EulerGamma >>> polygamma(0, 1/S(2)) -2*log(2) - EulerGamma >>> polygamma(0, 1/S(3)) -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)) >>> polygamma(0, 1/S(4)) -pi/2 - log(4) - log(2) - EulerGamma >>> polygamma(0, 2) 1 - EulerGamma >>> polygamma(0, 23) 19093197/5173168 - EulerGamma >>> from sympy import oo, I >>> polygamma(0, oo) oo >>> polygamma(0, -oo) oo >>> polygamma(0, I*oo) oo >>> polygamma(0, -I*oo) oo Differentiation with respect to $x$ is supported: >>> from sympy import Symbol, diff >>> x = Symbol("x") >>> diff(polygamma(0, x), x) polygamma(1, x) >>> diff(polygamma(0, x), x, 2) polygamma(2, x) >>> diff(polygamma(0, x), x, 3) polygamma(3, x) >>> diff(polygamma(1, x), x) polygamma(2, x) >>> diff(polygamma(1, x), x, 2) polygamma(3, x) >>> diff(polygamma(2, x), x) polygamma(3, x) >>> diff(polygamma(2, x), x, 2) polygamma(4, x) >>> n = Symbol("n") >>> diff(polygamma(n, x), x) polygamma(n + 1, x) >>> diff(polygamma(n, x), x, 2) polygamma(n + 2, x) We can rewrite ``polygamma`` functions in terms of harmonic numbers: >>> from sympy import harmonic >>> polygamma(0, x).rewrite(harmonic) harmonic(x - 1) - EulerGamma >>> polygamma(2, x).rewrite(harmonic) 2*harmonic(x - 1, 3) - 2*zeta(3) >>> ni = Symbol("n", integer=True) >>> polygamma(ni, x).rewrite(harmonic) (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Polygamma_function .. [2] http://mathworld.wolfram.com/PolygammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/ .. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): n = self.args[0] # the mpmath polygamma implementation valid only for nonnegative integers if n.is_number and n.is_real: if (n.is_integer or n == int(n)) and n.is_nonnegative: return super(polygamma, self)._eval_evalf(prec) def fdiff(self, argindex=2): if argindex == 2: n, z = self.args[:2] return polygamma(n + 1, z) else: raise ArgumentIndexError(self, argindex) def _eval_is_real(self): if self.args[0].is_positive and self.args[1].is_positive: return True def _eval_is_complex(self): z = self.args[1] is_negative_integer = fuzzy_and([z.is_negative, z.is_integer]) return fuzzy_and([z.is_complex, fuzzy_not(is_negative_integer)]) def _eval_is_positive(self): if self.args[0].is_positive and self.args[1].is_positive: return self.args[0].is_odd def _eval_is_negative(self): if self.args[0].is_positive and self.args[1].is_positive: return self.args[0].is_even def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[1] != oo or not \ (self.args[0].is_Integer and self.args[0].is_nonnegative): return super(polygamma, self)._eval_aseries(n, args0, x, logx) z = self.args[1] N = self.args[0] if N == 0: # digamma function series # Abramowitz & Stegun, p. 259, 6.3.18 r = log(z) - 1/(2*z) o = None if n < 2: o = Order(1/z, x) else: m = ceiling((n + 1)//2) l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)] r -= Add(*l) o = Order(1/z**(2*m), x) return r._eval_nseries(x, n, logx) + o else: # proper polygamma function # Abramowitz & Stegun, p. 260, 6.4.10 # We return terms to order higher than O(x**n) on purpose # -- otherwise we would not be able to return any terms for # quite a long time! fac = gamma(N) e0 = fac + N*fac/(2*z) m = ceiling((n + 1)//2) for k in range(1, m): fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1)) e0 += bernoulli(2*k)*fac/z**(2*k) o = Order(1/z**(2*m), x) if n == 0: o = Order(1/z, x) elif n == 1: o = Order(1/z**2, x) r = e0._eval_nseries(z, n, logx) + o return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx) @classmethod def eval(cls, n, z): n, z = map(sympify, (n, z)) from sympy import unpolarify if n.is_integer: if n.is_nonnegative: nz = unpolarify(z) if z != nz: return polygamma(n, nz) if n is S.NegativeOne: return loggamma(z) else: if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: if n.is_Number: if n.is_zero: return S.Infinity else: return S.Zero if n.is_zero: return S.Infinity elif z.is_Integer: if z.is_nonpositive: return S.ComplexInfinity else: if n.is_zero: return -S.EulerGamma + harmonic(z - 1, 1) elif n.is_odd: return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z) if n.is_zero: if z is S.NaN: return S.NaN elif z.is_Rational: p, q = z.as_numer_denom() # only expand for small denominators to avoid creating long expressions if q <= 5: return expand_func(polygamma(S.Zero, z, evaluate=False)) elif z in (S.Infinity, S.NegativeInfinity): return S.Infinity else: t = z.extract_multiplicatively(S.ImaginaryUnit) if t in (S.Infinity, S.NegativeInfinity): return S.Infinity # TODO n == 1 also can do some rational z def _eval_expand_func(self, **hints): n, z = self.args if n.is_Integer and n.is_nonnegative: if z.is_Add: coeff = z.args[0] if coeff.is_Integer: e = -(n + 1) if coeff > 0: tail = Add(*[Pow( z - i, e) for i in range(1, int(coeff) + 1)]) else: tail = -Add(*[Pow( z + i, e) for i in range(0, int(-coeff))]) return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail elif z.is_Mul: coeff, z = z.as_two_terms() if coeff.is_Integer and coeff.is_positive: tail = [ polygamma(n, z + Rational( i, coeff)) for i in range(0, int(coeff)) ] if n == 0: return Add(*tail)/coeff + log(coeff) else: return Add(*tail)/coeff**(n + 1) z *= coeff if n == 0 and z.is_Rational: p, q = z.as_numer_denom() # Reference: # Values of the polygamma functions at rational arguments, J. Choi, 2007 part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add( *[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)]) if z > 0: n = floor(z) z0 = z - n return part_1 + Add(*[1 / (z0 + k) for k in range(n)]) elif z < 0: n = floor(1 - z) z0 = z + n return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)]) return polygamma(n, z) def _eval_rewrite_as_zeta(self, n, z, **kwargs): if n.is_integer: if (n - S.One).is_nonnegative: return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z) def _eval_rewrite_as_harmonic(self, n, z, **kwargs): if n.is_integer: if n.is_zero: return harmonic(z - 1) - S.EulerGamma else: return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1)) def _eval_as_leading_term(self, x): from sympy import Order n, z = [a.as_leading_term(x) for a in self.args] o = Order(z, x) if n == 0 and o.contains(1/x): return o.getn() * log(x) else: return self.func(n, z) class loggamma(Function): r""" The ``loggamma`` function implements the logarithm of the gamma function (i.e., $\log\Gamma(x)$). Examples ======== Several special values are known. For numerical integral arguments we have: >>> from sympy import loggamma >>> loggamma(-2) oo >>> loggamma(0) oo >>> loggamma(1) 0 >>> loggamma(2) 0 >>> loggamma(3) log(2) And for symbolic values: >>> from sympy import Symbol >>> n = Symbol("n", integer=True, positive=True) >>> loggamma(n) log(gamma(n)) >>> loggamma(-n) oo For half-integral values: >>> from sympy import S, pi >>> loggamma(S(5)/2) log(3*sqrt(pi)/4) >>> loggamma(n/2) log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2)) And general rational arguments: >>> from sympy import expand_func >>> L = loggamma(S(16)/3) >>> expand_func(L).doit() -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13) >>> L = loggamma(S(19)/4) >>> expand_func(L).doit() -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15) >>> L = loggamma(S(23)/7) >>> expand_func(L).doit() -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16) The ``loggamma`` function has the following limits towards infinity: >>> from sympy import oo >>> loggamma(oo) oo >>> loggamma(-oo) zoo The ``loggamma`` function obeys the mirror symmetry if $x \in \mathbb{C} \setminus \{-\infty, 0\}$: >>> from sympy.abc import x >>> from sympy import conjugate >>> conjugate(loggamma(x)) loggamma(conjugate(x)) Differentiation with respect to $x$ is supported: >>> from sympy import diff >>> diff(loggamma(x), x) polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(loggamma(x), x, 0, 4) -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4) We can numerically evaluate the ``gamma`` function to arbitrary precision on the whole complex plane: >>> from sympy import I >>> loggamma(5).evalf(30) 3.17805383034794561964694160130 >>> loggamma(I).evalf(20) -0.65092319930185633889 - 1.8724366472624298171*I See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. digamma: Digamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/LogGammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/ """ @classmethod def eval(cls, z): z = sympify(z) if z.is_integer: if z.is_nonpositive: return S.Infinity elif z.is_positive: return log(gamma(z)) elif z.is_rational: p, q = z.as_numer_denom() # Half-integral values: if p.is_positive and q == 2: return log(sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half)) if z is S.Infinity: return S.Infinity elif abs(z) is S.Infinity: return S.ComplexInfinity if z is S.NaN: return S.NaN def _eval_expand_func(self, **hints): from sympy import Sum z = self.args[0] if z.is_Rational: p, q = z.as_numer_denom() # General rational arguments (u + p/q) # Split z as n + p/q with p < q n = p // q p = p - n*q if p.is_positive and q.is_positive and p < q: k = Dummy("k") if n.is_positive: return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n)) elif n.is_negative: return loggamma(p / q) - n*log(q) + S.Pi*S.ImaginaryUnit*n - Sum(log(k*q - p), (k, 1, -n)) elif n.is_zero: return loggamma(p / q) return self def _eval_nseries(self, x, n, logx=None): x0 = self.args[0].limit(x, 0) if x0.is_zero: f = self._eval_rewrite_as_intractable(*self.args) return f._eval_nseries(x, n, logx) return super(loggamma, self)._eval_nseries(x, n, logx) def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[0] != oo: return super(loggamma, self)._eval_aseries(n, args0, x, logx) z = self.args[0] m = min(n, ceiling((n + S.One)/2)) r = log(z)*(z - S.Half) - z + log(2*pi)/2 l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, m)] o = None if m == 0: o = Order(1, x) else: o = Order(1/z**(2*m - 1), x) # It is very inefficient to first add the order and then do the nseries return (r + Add(*l))._eval_nseries(x, n, logx) + o def _eval_rewrite_as_intractable(self, z, **kwargs): return log(gamma(z)) def _eval_is_real(self): z = self.args[0] if z.is_positive: return True elif z.is_nonpositive: return False def _eval_conjugate(self): z = self.args[0] if not z in (S.Zero, S.NegativeInfinity): return self.func(z.conjugate()) def fdiff(self, argindex=1): if argindex == 1: return polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) def _sage_(self): import sage.all as sage return sage.log_gamma(self.args[0]._sage_()) class digamma(Function): r""" The ``digamma`` function is the first derivative of the ``loggamma`` function .. math:: \psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z) }. In this case, ``digamma(z) = polygamma(0, z)``. Examples ======== >>> from sympy import digamma >>> digamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> digamma(z) polygamma(0, z) To retain ``digamma`` as it is: >>> digamma(0, evaluate=False) digamma(0) >>> digamma(z, evaluate=False) digamma(z) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. trigamma: Trigamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Digamma_function .. [2] http://mathworld.wolfram.com/DigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): z = self.args[0] return polygamma(0, z).evalf(prec) def fdiff(self, argindex=1): z = self.args[0] return polygamma(0, z).fdiff() def _eval_is_real(self): z = self.args[0] return polygamma(0, z).is_real def _eval_is_positive(self): z = self.args[0] return polygamma(0, z).is_positive def _eval_is_negative(self): z = self.args[0] return polygamma(0, z).is_negative def _eval_aseries(self, n, args0, x, logx): as_polygamma = self.rewrite(polygamma) args0 = [S.Zero,] + args0 return as_polygamma._eval_aseries(n, args0, x, logx) @classmethod def eval(cls, z): return polygamma(0, z) def _eval_expand_func(self, **hints): z = self.args[0] return polygamma(0, z).expand(func=True) def _eval_rewrite_as_harmonic(self, z, **kwargs): return harmonic(z - 1) - S.EulerGamma def _eval_rewrite_as_polygamma(self, z, **kwargs): return polygamma(0, z) def _eval_as_leading_term(self, x): z = self.args[0] return polygamma(0, z).as_leading_term(x) class trigamma(Function): r""" The ``trigamma`` function is the second derivative of the ``loggamma`` function .. math:: \psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z). In this case, ``trigamma(z) = polygamma(1, z)``. Examples ======== >>> from sympy import trigamma >>> trigamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> trigamma(z) polygamma(1, z) To retain ``trigamma`` as it is: >>> trigamma(0, evaluate=False) trigamma(0) >>> trigamma(z, evaluate=False) trigamma(z) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Trigamma_function .. [2] http://mathworld.wolfram.com/TrigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def _eval_evalf(self, prec): z = self.args[0] return polygamma(1, z).evalf(prec) def fdiff(self, argindex=1): z = self.args[0] return polygamma(1, z).fdiff() def _eval_is_real(self): z = self.args[0] return polygamma(1, z).is_real def _eval_is_positive(self): z = self.args[0] return polygamma(1, z).is_positive def _eval_is_negative(self): z = self.args[0] return polygamma(1, z).is_negative def _eval_aseries(self, n, args0, x, logx): as_polygamma = self.rewrite(polygamma) args0 = [S.One,] + args0 return as_polygamma._eval_aseries(n, args0, x, logx) @classmethod def eval(cls, z): return polygamma(1, z) def _eval_expand_func(self, **hints): z = self.args[0] return polygamma(1, z).expand(func=True) def _eval_rewrite_as_zeta(self, z, **kwargs): return zeta(2, z) def _eval_rewrite_as_polygamma(self, z, **kwargs): return polygamma(1, z) def _eval_rewrite_as_harmonic(self, z, **kwargs): return -harmonic(z - 1, 2) + S.Pi**2 / 6 def _eval_as_leading_term(self, x): z = self.args[0] return polygamma(1, z).as_leading_term(x) ############################################################################### ##################### COMPLETE MULTIVARIATE GAMMA FUNCTION #################### ############################################################################### class multigamma(Function): r""" The multivariate gamma function is a generalization of the gamma function .. math:: \Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2]. In a special case, ``multigamma(x, 1) = gamma(x)``. Examples ======== >>> from sympy import S, I, pi, oo, gamma, multigamma >>> from sympy import Symbol >>> x = Symbol('x') >>> p = Symbol('p', positive=True, integer=True) >>> multigamma(x, p) pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p)) Several special values are known: >>> multigamma(1, 1) 1 >>> multigamma(4, 1) 6 >>> multigamma(S(3)/2, 1) sqrt(pi)/2 Writing ``multigamma`` in terms of the ``gamma`` function: >>> multigamma(x, 1) gamma(x) >>> multigamma(x, 2) sqrt(pi)*gamma(x)*gamma(x - 1/2) >>> multigamma(x, 3) pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2) Parameters ========== p : order or dimension of the multivariate gamma function See Also ======== gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma, beta References ========== .. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function """ unbranched = True def fdiff(self, argindex=2): from sympy import Sum if argindex == 2: x, p = self.args k = Dummy("k") return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, p): from sympy import Product x, p = map(sympify, (x, p)) if p.is_positive is False or p.is_integer is False: raise ValueError('Order parameter p must be positive integer.') k = Dummy("k") return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2), (k, 1, p))).doit() def _eval_conjugate(self): x, p = self.args return self.func(x.conjugate(), p) def _eval_is_real(self): x, p = self.args y = 2*x if y.is_integer and (y <= (p - 1)) is True: return False if intlike(y) and (y <= (p - 1)): return False if y > (p - 1) or y.is_noninteger: return True
e698c8abf45508cb2e09ed5bf8597022dcb7d0ac68528c1960a2e6a484fd2874
# Stub __init__.py for the sympy.functions.special package
66d845ba252eedd5ff27450799a8f4a747c35f169a9595ff1473f129cd895bf9
from __future__ import print_function, division from sympy.core import S, sympify, diff from sympy.core.decorators import deprecated from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not from sympy.core.relational import Eq, Ne from sympy.functions.elementary.complexes import im, sign from sympy.functions.elementary.piecewise import Piecewise from sympy.polys.polyerrors import PolynomialError from sympy.utilities import filldedent ############################################################################### ################################ DELTA FUNCTION ############################### ############################################################################### class DiracDelta(Function): r""" The DiracDelta function and its derivatives. Explanation =========== DiracDelta is not an ordinary function. It can be rigorously defined either as a distribution or as a measure. DiracDelta only makes sense in definite integrals, and in particular, integrals of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``, where it equals ``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally, DiracDelta acts in some ways like a function that is ``0`` everywhere except at ``0``, but in many ways it also does not. It can often be useful to treat DiracDelta in formal ways, building up and manipulating expressions with delta functions (which may eventually be integrated), but care must be taken to not treat it as a real function. SymPy's ``oo`` is similar. It only truly makes sense formally in certain contexts (such as integration limits), but SymPy allows its use everywhere, and it tries to be consistent with operations on it (like ``1/oo``), but it is easy to get into trouble and get wrong results if ``oo`` is treated too much like a number. Similarly, if DiracDelta is treated too much like a function, it is easy to get wrong or nonsensical results. DiracDelta function has the following properties: 1) $\frac{d}{d x} \theta(x) = \delta(x)$ 2) $\int_{-\infty}^\infty \delta(x - a)f(x)\, dx = f(a)$ and $\int_{a- \epsilon}^{a+\epsilon} \delta(x - a)f(x)\, dx = f(a)$ 3) $\delta(x) = 0$ for all $x \neq 0$ 4) $\delta(g(x)) = \sum_i \frac{\delta(x - x_i)}{\|g'(x_i)\|}$ where $x_i$ are the roots of $g$ 5) $\delta(-x) = \delta(x)$ Derivatives of ``k``-th order of DiracDelta have the following properties: 6) $\delta(x, k) = 0$ for all $x \neq 0$ 7) $\delta(-x, k) = -\delta(x, k)$ for odd $k$ 8) $\delta(-x, k) = \delta(x, k)$ for even $k$ Examples ======== >>> from sympy import DiracDelta, diff, pi, Piecewise >>> from sympy.abc import x, y >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(1) 0 >>> DiracDelta(-1) 0 >>> DiracDelta(pi) 0 >>> DiracDelta(x - 4).subs(x, 4) DiracDelta(0) >>> diff(DiracDelta(x)) DiracDelta(x, 1) >>> diff(DiracDelta(x - 1),x,2) DiracDelta(x - 1, 2) >>> diff(DiracDelta(x**2 - 1),x,2) 2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1)) >>> DiracDelta(3*x).is_simple(x) True >>> DiracDelta(x**2).is_simple(x) False >>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y)) See Also ======== Heaviside sympy.simplify.simplify.simplify, is_simple sympy.functions.special.tensor_functions.KroneckerDelta References ========== .. [1] http://mathworld.wolfram.com/DeltaFunction.html """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a DiracDelta Function. Explanation =========== The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the user-level function and ``fdiff()`` is an object method. ``fdiff()`` is a convenience method available in the ``Function`` class. It returns the derivative of the function without considering the chain rule. ``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls ``fdiff()`` internally to compute the derivative of the function. Examples ======== >>> from sympy import DiracDelta, diff >>> from sympy.abc import x >>> DiracDelta(x).fdiff() DiracDelta(x, 1) >>> DiracDelta(x, 1).fdiff() DiracDelta(x, 2) >>> DiracDelta(x**2 - 1).fdiff() DiracDelta(x**2 - 1, 1) >>> diff(DiracDelta(x, 1)).fdiff() DiracDelta(x, 3) """ if argindex == 1: #I didn't know if there is a better way to handle default arguments k = 0 if len(self.args) > 1: k = self.args[1] return self.func(self.args[0], k + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg, k=0): """ Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object. Explanation =========== The ``eval()`` method is automatically called when the ``DiracDelta`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import DiracDelta, S, Subs >>> from sympy.abc import x >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(-x, 1) -DiracDelta(x, 1) >>> DiracDelta(1) 0 >>> DiracDelta(5, 1) 0 >>> DiracDelta(0) DiracDelta(0) >>> DiracDelta(-1) 0 >>> DiracDelta(S.NaN) nan >>> DiracDelta(x).eval(1) 0 >>> DiracDelta(x - 100).subs(x, 5) 0 >>> DiracDelta(x - 100).subs(x, 100) DiracDelta(0) """ k = sympify(k) if not k.is_Integer or k.is_negative: raise ValueError("Error: the second argument of DiracDelta must be \ a non-negative integer, %s given instead." % (k,)) arg = sympify(arg) if arg is S.NaN: return S.NaN if arg.is_nonzero: return S.Zero if fuzzy_not(im(arg).is_zero): raise ValueError(filldedent(''' Function defined only for Real Values. Complex part: %s found in %s .''' % ( repr(im(arg)), repr(arg)))) c, nc = arg.args_cnc() if c and c[0] is S.NegativeOne: # keep this fast and simple instead of using # could_extract_minus_sign if k.is_odd: return -cls(-arg, k) elif k.is_even: return cls(-arg, k) if k else cls(-arg) @deprecated(useinstead="expand(diracdelta=True, wrt=x)", issue=12859, deprecated_since_version="1.1") def simplify(self, x, **kwargs): return self.expand(diracdelta=True, wrt=x) def _eval_expand_diracdelta(self, **hints): """ Compute a simplified representation of the function using property number 4. Pass ``wrt`` as a hint to expand the expression with respect to a particular variable. Explanation =========== ``wrt`` is: - a variable with respect to which a DiracDelta expression will get expanded. Examples ======== >>> from sympy import DiracDelta >>> from sympy.abc import x, y >>> DiracDelta(x*y).expand(diracdelta=True, wrt=x) DiracDelta(x)/Abs(y) >>> DiracDelta(x*y).expand(diracdelta=True, wrt=y) DiracDelta(y)/Abs(x) >>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3 See Also ======== is_simple, Diracdelta """ from sympy.polys.polyroots import roots wrt = hints.get('wrt', None) if wrt is None: free = self.free_symbols if len(free) == 1: wrt = free.pop() else: raise TypeError(filldedent(''' When there is more than 1 free symbol or variable in the expression, the 'wrt' keyword is required as a hint to expand when using the DiracDelta hint.''')) if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ): return self try: argroots = roots(self.args[0], wrt) result = 0 valid = True darg = abs(diff(self.args[0], wrt)) for r, m in argroots.items(): if r.is_real is not False and m == 1: result += self.func(wrt - r)/darg.subs(wrt, r) else: # don't handle non-real and if m != 1 then # a polynomial will have a zero in the derivative (darg) # at r valid = False break if valid: return result except PolynomialError: pass return self def is_simple(self, x): """ Tells whether the argument(args[0]) of DiracDelta is a linear expression in *x*. Examples ======== >>> from sympy import DiracDelta, cos >>> from sympy.abc import x, y >>> DiracDelta(x*y).is_simple(x) True >>> DiracDelta(x*y).is_simple(y) True >>> DiracDelta(x**2 + x - 2).is_simple(x) False >>> DiracDelta(cos(x)).is_simple(x) False Parameters ========== x : can be a symbol See Also ======== sympy.simplify.simplify.simplify, DiracDelta """ p = self.args[0].as_poly(x) if p: return p.degree() == 1 return False def _eval_rewrite_as_Piecewise(self, *args, **kwargs): """ Represents DiracDelta in a piecewise form. Examples ======== >>> from sympy import DiracDelta, Piecewise, Symbol, SingularityFunction >>> x = Symbol('x') >>> DiracDelta(x).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x, 0)), (0, True)) >>> DiracDelta(x - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True)) >>> DiracDelta(x**2 - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x**2 - 5, 0)), (0, True)) >>> DiracDelta(x - 5, 4).rewrite(Piecewise) DiracDelta(x - 5, 4) """ if len(args) == 1: return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True)) def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs): """ Returns the DiracDelta expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == DiracDelta(0): return SingularityFunction(0, 0, -1) if self == DiracDelta(0, 1): return SingularityFunction(0, 0, -2) free = self.free_symbols if len(free) == 1: x = (free.pop()) if len(args) == 1: return SingularityFunction(x, solve(args[0], x)[0], -1) return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1) else: # I don't know how to handle the case for DiracDelta expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.dirac_delta(self.args[0]._sage_()) ############################################################################### ############################## HEAVISIDE FUNCTION ############################# ############################################################################### class Heaviside(Function): r""" Heaviside Piecewise function. Explanation =========== Heaviside function has the following properties: 1) $\frac{d}{d x} \theta(x) = \delta(x)$ 2) $\theta(x) = \begin{cases} 0 & \text{for}\: x < 0 \\ \text{undefined} & \text{for}\: x = 0 \\1 & \text{for}\: x > 0 \end{cases}$ 3) $\frac{d}{d x} \max(x, 0) = \theta(x)$ Heaviside(x) is printed as $\theta(x)$ with the SymPy LaTeX printer. Regarding to the value at 0, Mathematica defines $\theta(0)=1$, but Maple uses $\theta(0) = \text{undefined}$. Different application areas may have specific conventions. For example, in control theory, it is common practice to assume $\theta(0) = 0$ to match the Laplace transform of a DiracDelta distribution. To specify the value of Heaviside at ``x=0``, a second argument can be given. Omit this 2nd argument or pass ``None`` to recover the default behavior. Examples ======== >>> from sympy import Heaviside, S >>> from sympy.abc import x >>> Heaviside(9) 1 >>> Heaviside(-9) 0 >>> Heaviside(0) Heaviside(0) >>> Heaviside(0, S.Half) 1/2 >>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1)) Heaviside(x, 1) + 1 See Also ======== DiracDelta References ========== .. [1] http://mathworld.wolfram.com/HeavisideStepFunction.html .. [2] http://dlmf.nist.gov/1.16#iv """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a Heaviside Function. Examples ======== >>> from sympy import Heaviside, diff >>> from sympy.abc import x >>> Heaviside(x).fdiff() DiracDelta(x) >>> Heaviside(x**2 - 1).fdiff() DiracDelta(x**2 - 1) >>> diff(Heaviside(x)).fdiff() DiracDelta(x, 1) """ if argindex == 1: # property number 1 return DiracDelta(self.args[0]) else: raise ArgumentIndexError(self, argindex) def __new__(cls, arg, H0=None, **options): if isinstance(H0, Heaviside) and len(H0.args) == 1: H0 = None if H0 is None: return super(cls, cls).__new__(cls, arg, **options) return super(cls, cls).__new__(cls, arg, H0, **options) @classmethod def eval(cls, arg, H0=None): """ Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object. Explanation =========== The ``eval()`` method is automatically called when the ``Heaviside`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import Heaviside, S >>> from sympy.abc import x >>> Heaviside(x) Heaviside(x) >>> Heaviside(19) 1 >>> Heaviside(0) Heaviside(0) >>> Heaviside(0, 1) 1 >>> Heaviside(-5) 0 >>> Heaviside(S.NaN) nan >>> Heaviside(x).eval(100) 1 >>> Heaviside(x - 100).subs(x, 5) 0 >>> Heaviside(x - 100).subs(x, 105) 1 """ H0 = sympify(H0) arg = sympify(arg) if arg.is_extended_negative: return S.Zero elif arg.is_extended_positive: return S.One elif arg.is_zero: return H0 elif arg is S.NaN: return S.NaN elif fuzzy_not(im(arg).is_zero): raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) ) def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs): """ Represents Heaviside in a Piecewise form. Examples ======== >>> from sympy import Heaviside, Piecewise, Symbol, pprint >>> x = Symbol('x') >>> Heaviside(x).rewrite(Piecewise) Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0)) >>> Heaviside(x - 5).rewrite(Piecewise) Piecewise((0, x - 5 < 0), (Heaviside(0), Eq(x - 5, 0)), (1, x - 5 > 0)) >>> Heaviside(x**2 - 1).rewrite(Piecewise) Piecewise((0, x**2 - 1 < 0), (Heaviside(0), Eq(x**2 - 1, 0)), (1, x**2 - 1 > 0)) """ if H0 is None: return Piecewise((0, arg < 0), (Heaviside(0), Eq(arg, 0)), (1, arg > 0)) if H0 == 0: return Piecewise((0, arg <= 0), (1, arg > 0)) if H0 == 1: return Piecewise((0, arg < 0), (1, arg >= 0)) return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, arg > 0)) def _eval_rewrite_as_sign(self, arg, H0=None, **kwargs): """ Represents the Heaviside function in the form of sign function. Explanation =========== The value of the second argument of Heaviside must specify Heaviside(0) = 1/2 for rewritting as sign to be strictly equivalent. For easier usage, we also allow this rewriting when Heaviside(0) is undefined. Examples ======== >>> from sympy import Heaviside, Symbol, sign, S >>> x = Symbol('x', real=True) >>> Heaviside(x, H0=S.Half).rewrite(sign) sign(x)/2 + 1/2 >>> Heaviside(x, 0).rewrite(sign) Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (0, True)) >>> Heaviside(x - 2, H0=S.Half).rewrite(sign) sign(x - 2)/2 + 1/2 >>> Heaviside(x**2 - 2*x + 1, H0=S.Half).rewrite(sign) sign(x**2 - 2*x + 1)/2 + 1/2 >>> y = Symbol('y') >>> Heaviside(y).rewrite(sign) Heaviside(y) >>> Heaviside(y**2 - 2*y + 1).rewrite(sign) Heaviside(y**2 - 2*y + 1) See Also ======== sign """ if arg.is_extended_real: pw1 = Piecewise( ((sign(arg) + 1)/2, Ne(arg, 0)), (Heaviside(0, H0=H0), True)) pw2 = Piecewise( ((sign(arg) + 1)/2, Eq(Heaviside(0, H0=H0), S(1)/2)), (pw1, True)) return pw2 def _eval_rewrite_as_SingularityFunction(self, args, **kwargs): """ Returns the Heaviside expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == Heaviside(0): return SingularityFunction(0, 0, 0) free = self.free_symbols if len(free) == 1: x = (free.pop()) return SingularityFunction(x, solve(args, x)[0], 0) # TODO # ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output # SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0) else: # I don't know how to handle the case for Heaviside expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.heaviside(self.args[0]._sage_())
9b11ceee7df44b667788e62c19c5514eaf2b495878160a2eb01db220cd7a4748
from __future__ import print_function, division from sympy import pi, I from sympy.core import Dummy, sympify from sympy.core.function import Function, ArgumentIndexError from sympy.core.singleton import S from sympy.functions import assoc_legendre from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos, cot _x = Dummy("x") class Ynm(Function): r""" Spherical harmonics defined as .. math:: Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} \exp(i m \varphi) \mathrm{P}_n^m\left(\cos(\theta)\right) Explanation =========== ``Ynm()`` gives the spherical harmonic function of order $n$ and $m$ in $\theta$ and $\varphi$, $Y_n^m(\theta, \varphi)$. The four parameters are as follows: $n \geq 0$ an integer and $m$ an integer such that $-n \leq m \leq n$ holds. The two angles are real-valued with $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi]$. Examples ======== >>> from sympy import Ynm, Symbol, simplify >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Ynm(n, m, theta, phi) Ynm(n, m, theta, phi) Several symmetries are known, for the order: >>> Ynm(n, -m, theta, phi) (-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) As well as for the angles: >>> Ynm(n, m, -theta, phi) Ynm(n, m, theta, phi) >>> Ynm(n, m, theta, -phi) exp(-2*I*m*phi)*Ynm(n, m, theta, phi) For specific integers $n$ and $m$ we can evaluate the harmonics to more useful expressions: >>> simplify(Ynm(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi)) >>> simplify(Ynm(1, -1, theta, phi).expand(func=True)) sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi)) >>> simplify(Ynm(1, 0, theta, phi).expand(func=True)) sqrt(3)*cos(theta)/(2*sqrt(pi)) >>> simplify(Ynm(1, 1, theta, phi).expand(func=True)) -sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi)) >>> simplify(Ynm(2, -2, theta, phi).expand(func=True)) sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi)) >>> simplify(Ynm(2, -1, theta, phi).expand(func=True)) sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi)) >>> simplify(Ynm(2, 0, theta, phi).expand(func=True)) sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi)) >>> simplify(Ynm(2, 1, theta, phi).expand(func=True)) -sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi)) >>> simplify(Ynm(2, 2, theta, phi).expand(func=True)) sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi)) We can differentiate the functions with respect to both angles: >>> from sympy import Ynm, Symbol, diff >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> diff(Ynm(n, m, theta, phi), theta) m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi) >>> diff(Ynm(n, m, theta, phi), phi) I*m*Ynm(n, m, theta, phi) Further we can compute the complex conjugation: >>> from sympy import Ynm, Symbol, conjugate >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> conjugate(Ynm(n, m, theta, phi)) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) To get back the well known expressions in spherical coordinates, we use full expansion: >>> from sympy import Ynm, Symbol, expand_func >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> expand_func(Ynm(n, m, theta, phi)) sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi)) See Also ======== Ynm_c, Znm References ========== .. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/ .. [4] http://dlmf.nist.gov/14.30 """ @classmethod def eval(cls, n, m, theta, phi): n, m, theta, phi = [sympify(x) for x in (n, m, theta, phi)] # Handle negative index m and arguments theta, phi if m.could_extract_minus_sign(): m = -m return S.NegativeOne**m * exp(-2*I*m*phi) * Ynm(n, m, theta, phi) if theta.could_extract_minus_sign(): theta = -theta return Ynm(n, m, theta, phi) if phi.could_extract_minus_sign(): phi = -phi return exp(-2*I*m*phi) * Ynm(n, m, theta, phi) # TODO Add more simplififcation here def _eval_expand_func(self, **hints): n, m, theta, phi = self.args rv = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * exp(I*m*phi) * assoc_legendre(n, m, cos(theta))) # We can do this because of the range of theta return rv.subs(sqrt(-cos(theta)**2 + 1), sin(theta)) def fdiff(self, argindex=4): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt m raise ArgumentIndexError(self, argindex) elif argindex == 3: # Diff wrt theta n, m, theta, phi = self.args return (m * cot(theta) * Ynm(n, m, theta, phi) + sqrt((n - m)*(n + m + 1)) * exp(-I*phi) * Ynm(n, m + 1, theta, phi)) elif argindex == 4: # Diff wrt phi n, m, theta, phi = self.args return I * m * Ynm(n, m, theta, phi) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, m, theta, phi, **kwargs): # TODO: Make sure n \in N # TODO: Assert |m| <= n ortherwise we should return 0 return self.expand(func=True) def _eval_rewrite_as_sin(self, n, m, theta, phi, **kwargs): return self.rewrite(cos) def _eval_rewrite_as_cos(self, n, m, theta, phi, **kwargs): # This method can be expensive due to extensive use of simplification! from sympy.simplify import simplify, trigsimp # TODO: Make sure n \in N # TODO: Assert |m| <= n ortherwise we should return 0 term = simplify(self.expand(func=True)) # We can do this because of the range of theta term = term.xreplace({Abs(sin(theta)):sin(theta)}) return simplify(trigsimp(term)) def _eval_conjugate(self): # TODO: Make sure theta \in R and phi \in R n, m, theta, phi = self.args return S.NegativeOne**m * self.func(n, -m, theta, phi) def as_real_imag(self, deep=True, **hints): # TODO: Handle deep and hints n, m, theta, phi = self.args re = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * cos(m*phi) * assoc_legendre(n, m, cos(theta))) im = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * sin(m*phi) * assoc_legendre(n, m, cos(theta))) return (re, im) def _eval_evalf(self, prec): # Note: works without this function by just calling # mpmath for Legendre polynomials. But using # the dedicated function directly is cleaner. from mpmath import mp, workprec from sympy import Expr n = self.args[0]._to_mpmath(prec) m = self.args[1]._to_mpmath(prec) theta = self.args[2]._to_mpmath(prec) phi = self.args[3]._to_mpmath(prec) with workprec(prec): res = mp.spherharm(n, m, theta, phi) return Expr._from_mpmath(res, prec) def _sage_(self): import sage.all as sage return sage.spherical_harmonic(self.args[0]._sage_(), self.args[1]._sage_(), self.args[2]._sage_(), self.args[3]._sage_()) def Ynm_c(n, m, theta, phi): r""" Conjugate spherical harmonics defined as .. math:: \overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi). See Also ======== Ynm, Znm References ========== .. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/ """ from sympy import conjugate return conjugate(Ynm(n, m, theta, phi)) class Znm(Function): r""" Real spherical harmonics defined as .. math:: Z_n^m(\theta, \varphi) := \begin{cases} \frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\ \end{cases} which gives in simplified form .. math:: Z_n^m(\theta, \varphi) = \begin{cases} \frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\ \end{cases} See Also ======== Ynm, Ynm_c References ========== .. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/ """ @classmethod def eval(cls, n, m, theta, phi): n, m, th, ph = [sympify(x) for x in (n, m, theta, phi)] if m.is_positive: zz = (Ynm(n, m, th, ph) + Ynm_c(n, m, th, ph)) / sqrt(2) return zz elif m.is_zero: return Ynm(n, m, th, ph) elif m.is_negative: zz = (Ynm(n, m, th, ph) - Ynm_c(n, m, th, ph)) / (sqrt(2)*I) return zz
ef22e9a5a8d891247ce7564ae1b800e81dd6ecf23cd055d4f270cac864fb68b3
from __future__ import print_function, division from sympy.core import S, sympify from sympy.core.compatibility import range from sympy.functions import Piecewise, piecewise_fold from sympy.sets.sets import Interval from sympy.core.cache import lru_cache def _add_splines(c, b1, d, b2): """Construct c*b1 + d*b2.""" if b1 == S.Zero or c == S.Zero: rv = piecewise_fold(d * b2) elif b2 == S.Zero or d == S.Zero: rv = piecewise_fold(c * b1) else: new_args = [] # Just combining the Piecewise without any fancy optimization p1 = piecewise_fold(c * b1) p2 = piecewise_fold(d * b2) # Search all Piecewise arguments except (0, True) p2args = list(p2.args[:-1]) # This merging algorithm assumes the conditions in # p1 and p2 are sorted for arg in p1.args[:-1]: # Conditional of Piecewise are And objects # the args of the And object is a tuple of two # Relational objects the numerical value is in the .rhs # of the Relational object expr = arg.expr cond = arg.cond lower = cond.args[0].rhs # Check p2 for matching conditions that can be merged for i, arg2 in enumerate(p2args): expr2 = arg2.expr cond2 = arg2.cond lower_2 = cond2.args[0].rhs upper_2 = cond2.args[1].rhs if cond2 == cond: # Conditions match, join expressions expr += expr2 # Remove matching element del p2args[i] # No need to check the rest break elif lower_2 < lower and upper_2 <= lower: # Check if arg2 condition smaller than arg1, # add to new_args by itself (no match expected # in p1) new_args.append(arg2) del p2args[i] break # Checked all, add expr and cond new_args.append((expr, cond)) # Add remaining items from p2args new_args.extend(p2args) # Add final (0, True) new_args.append((0, True)) rv = Piecewise(*new_args) return rv.expand() @lru_cache(maxsize=128) def bspline_basis(d, knots, n, x): """ The $n$-th B-spline at $x$ of degree $d$ with knots. Explanation =========== B-Splines are piecewise polynomials of degree $d$. They are defined on a set of knots, which is a sequence of integers or floats. Examples ======== The 0th degree splines have a value of 1 on a single interval: >>> from sympy import bspline_basis >>> from sympy.abc import x >>> d = 0 >>> knots = tuple(range(5)) >>> bspline_basis(d, knots, 0, x) Piecewise((1, (x >= 0) & (x <= 1)), (0, True)) For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines defined, that are indexed by ``n`` (starting at 0). Here is an example of a cubic B-spline: >>> bspline_basis(3, tuple(range(5)), 0, x) Piecewise((x**3/6, (x >= 0) & (x <= 1)), (-x**3/2 + 2*x**2 - 2*x + 2/3, (x >= 1) & (x <= 2)), (x**3/2 - 4*x**2 + 10*x - 22/3, (x >= 2) & (x <= 3)), (-x**3/6 + 2*x**2 - 8*x + 32/3, (x >= 3) & (x <= 4)), (0, True)) By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives: >>> d = 1 >>> knots = (0, 0, 2, 3, 4) >>> bspline_basis(d, knots, 0, x) Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True)) It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-spline many times, it is best to lambdify them first: >>> from sympy import lambdify >>> d = 3 >>> knots = tuple(range(10)) >>> b0 = bspline_basis(d, knots, 0, x) >>> f = lambdify(x, b0) >>> y = f(0.5) See Also ======== bspline_basis_set References ========== .. [1] https://en.wikipedia.org/wiki/B-spline """ knots = tuple(sympify(k) for k in knots) d = int(d) n = int(n) n_knots = len(knots) n_intervals = n_knots - 1 if n + d + 1 > n_intervals: raise ValueError("n + d + 1 must not exceed len(knots) - 1") if d == 0: result = Piecewise( (S.One, Interval(knots[n], knots[n + 1]).contains(x)), (0, True) ) elif d > 0: denom = knots[n + d + 1] - knots[n + 1] if denom != S.Zero: B = (knots[n + d + 1] - x) / denom b2 = bspline_basis(d - 1, knots, n + 1, x) else: b2 = B = S.Zero denom = knots[n + d] - knots[n] if denom != S.Zero: A = (x - knots[n]) / denom b1 = bspline_basis(d - 1, knots, n, x) else: b1 = A = S.Zero result = _add_splines(A, b1, B, b2) else: raise ValueError("degree must be non-negative: %r" % n) return result def bspline_basis_set(d, knots, x): """ Return the ``len(knots)-d-1`` B-splines at *x* of degree *d* with *knots*. Explanation =========== This function returns a list of piecewise polynomials that are the ``len(knots)-d-1`` B-splines of degree *d* for the given knots. This function calls ``bspline_basis(d, knots, n, x)`` for different values of *n*. Examples ======== >>> from sympy import bspline_basis_set >>> from sympy.abc import x >>> d = 2 >>> knots = range(5) >>> splines = bspline_basis_set(d, knots, x) >>> splines [Piecewise((x**2/2, (x >= 0) & (x <= 1)), (-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)), (x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)), (0, True)), Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)), (-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)), (x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)), (0, True))] See Also ======== bspline_basis """ n_splines = len(knots) - d - 1 return [bspline_basis(d, tuple(knots), i, x) for i in range(n_splines)] def interpolating_spline(d, x, X, Y): """ Return spline of degree *d*, passing through the given *X* and *Y* values. Explanation =========== This function returns a piecewise function such that each part is a polynomial of degree not greater than *d*. The value of *d* must be 1 or greater and the values of *X* must be strictly increasing. Examples ======== >>> from sympy import interpolating_spline >>> from sympy.abc import x >>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7]) Piecewise((3*x, (x >= 1) & (x <= 2)), (7 - x/2, (x >= 2) & (x <= 4)), (2*x/3 + 7/3, (x >= 4) & (x <= 7))) >>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3]) Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)), (10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4))) See Also ======== bspline_basis_set, interpolating_poly """ from sympy import symbols, Number, Dummy, Rational from sympy.solvers.solveset import linsolve from sympy.matrices.dense import Matrix # Input sanitization d = sympify(d) if not (d.is_Integer and d.is_positive): raise ValueError("Spline degree must be a positive integer, not %s." % d) if len(X) != len(Y): raise ValueError("Number of X and Y coordinates must be the same.") if len(X) < d + 1: raise ValueError("Degree must be less than the number of control points.") if not all(a < b for a, b in zip(X, X[1:])): raise ValueError("The x-coordinates must be strictly increasing.") # Evaluating knots value if d.is_odd: j = (d + 1) // 2 interior_knots = X[j:-j] else: j = d // 2 interior_knots = [ Rational(a + b, 2) for a, b in zip(X[j : -j - 1], X[j + 1 : -j]) ] knots = [X[0]] * (d + 1) + list(interior_knots) + [X[-1]] * (d + 1) basis = bspline_basis_set(d, knots, x) A = [[b.subs(x, v) for b in basis] for v in X] coeff = linsolve((Matrix(A), Matrix(Y)), symbols("c0:{}".format(len(X)), cls=Dummy)) coeff = list(coeff)[0] intervals = set([c for b in basis for (e, c) in b.args if c != True]) # Sorting the intervals # ival contains the end-points of each interval ival = [e.atoms(Number) for e in intervals] ival = [list(sorted(e))[0] for e in ival] com = zip(ival, intervals) com = sorted(com, key=lambda x: x[0]) intervals = [y for x, y in com] basis_dicts = [dict((c, e) for (e, c) in b.args) for b in basis] spline = [] for i in intervals: piece = sum( [c * d.get(i, S.Zero) for (c, d) in zip(coeff, basis_dicts)], S.Zero ) spline.append((piece, i)) return Piecewise(*spline)
adb41bfbb18af82bbf6afa8fb331367480595eaa86ba1420682920646c3354a1
from __future__ import print_function, division from sympy.core import S from sympy.core.function import Function, ArgumentIndexError from sympy.functions.special.gamma_functions import gamma, digamma ############################################################################### ############################ COMPLETE BETA FUNCTION ########################## ############################################################################### class beta(Function): r""" The beta integral is called the Eulerian integral of the first kind by Legendre: .. math:: \mathrm{B}(x,y) := \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t. Explanation =========== The Beta function or Euler's first integral is closely associated with the gamma function. The Beta function is often used in probability theory and mathematical statistics. It satisfies properties like: .. math:: \mathrm{B}(a,1) = \frac{1}{a} \\ \mathrm{B}(a,b) = \mathrm{B}(b,a) \\ \mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} Therefore for integral values of $a$ and $b$: .. math:: \mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!} Examples ======== >>> from sympy import I, pi >>> from sympy.abc import x, y The Beta function obeys the mirror symmetry: >>> from sympy import beta >>> from sympy import conjugate >>> conjugate(beta(x, y)) beta(conjugate(x), conjugate(y)) Differentiation with respect to both $x$ and $y$ is supported: >>> from sympy import beta >>> from sympy import diff >>> diff(beta(x, y), x) (polygamma(0, x) - polygamma(0, x + y))*beta(x, y) >>> from sympy import beta >>> from sympy import diff >>> diff(beta(x, y), y) (polygamma(0, y) - polygamma(0, x + y))*beta(x, y) We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane: >>> from sympy import beta >>> beta(pi, pi).evalf(40) 0.02671848900111377452242355235388489324562 >>> beta(1 + I, 1 + I).evalf(20) -0.2112723729365330143 - 0.7655283165378005676*I See Also ======== gamma: Gamma function. uppergamma: Upper incomplete gamma function. lowergamma: Lower incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. References ========== .. [1] https://en.wikipedia.org/wiki/Beta_function .. [2] http://mathworld.wolfram.com/BetaFunction.html .. [3] http://dlmf.nist.gov/5.12 """ nargs = 2 unbranched = True def fdiff(self, argindex): x, y = self.args if argindex == 1: # Diff wrt x return beta(x, y)*(digamma(x) - digamma(x + y)) elif argindex == 2: # Diff wrt y return beta(x, y)*(digamma(y) - digamma(x + y)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): if y is S.One: return 1/x if x is S.One: return 1/y def _eval_expand_func(self, **hints): x, y = self.args return gamma(x)*gamma(y) / gamma(x + y) def _eval_is_real(self): return self.args[0].is_real and self.args[1].is_real def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def _eval_rewrite_as_gamma(self, x, y, **kwargs): return self._eval_expand_func(**kwargs)
a8139c0f1db7d021b5a67457597ab84dc21c43f423d2719a97902e783e045afc
""" Riemann zeta and related function. """ from __future__ import print_function, division from sympy.core import Function, S, sympify, pi, I from sympy.core.compatibility import range from sympy.core.function import ArgumentIndexError from sympy.functions.combinatorial.numbers import bernoulli, factorial, harmonic from sympy.functions.elementary.exponential import log, exp_polar from sympy.functions.elementary.miscellaneous import sqrt ############################################################################### ###################### LERCH TRANSCENDENT ##################################### ############################################################################### class lerchphi(Function): r""" Lerch transcendent (Lerch phi function). Explanation =========== For $\operatorname{Re}(a) > 0$, $|z| < 1$ and $s \in \mathbb{C}$, the Lerch transcendent is defined as .. math :: \Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s}, where the standard branch of the argument is used for $n + a$, and by analytic continuation for other values of the parameters. A commonly used related function is the Lerch zeta function, defined by .. math:: L(q, s, a) = \Phi(e^{2\pi i q}, s, a). **Analytic Continuation and Branching Behavior** It can be shown that .. math:: \Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}. This provides the analytic continuation to $\operatorname{Re}(a) \le 0$. Assume now $\operatorname{Re}(a) > 0$. The integral representation .. math:: \Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}} \frac{\mathrm{d}t}{\Gamma(s)} provides an analytic continuation to $\mathbb{C} - [1, \infty)$. Finally, for $x \in (1, \infty)$ we find .. math:: \lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a) -\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a) = \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)}, using the standard branch for both $\log{x}$ and $\log{\log{x}}$ (a branch of $\log{\log{x}}$ is needed to evaluate $\log{x}^{s-1}$). This concludes the analytic continuation. The Lerch transcendent is thus branched at $z \in \{0, 1, \infty\}$ and $a \in \mathbb{Z}_{\le 0}$. For fixed $z, a$ outside these branch points, it is an entire function of $s$. Examples ======== The Lerch transcendent is a fairly general function, for this reason it does not automatically evaluate to simpler functions. Use ``expand_func()`` to achieve this. If $z=1$, the Lerch transcendent reduces to the Hurwitz zeta function: >>> from sympy import lerchphi, expand_func >>> from sympy.abc import z, s, a >>> expand_func(lerchphi(1, s, a)) zeta(s, a) More generally, if $z$ is a root of unity, the Lerch transcendent reduces to a sum of Hurwitz zeta functions: >>> expand_func(lerchphi(-1, s, a)) 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, a/2 + 1/2) If $a=1$, the Lerch transcendent reduces to the polylogarithm: >>> expand_func(lerchphi(z, s, 1)) polylog(s, z)/z More generally, if $a$ is rational, the Lerch transcendent reduces to a sum of polylogarithms: >>> from sympy import S >>> expand_func(lerchphi(z, s, S(1)/2)) 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z)) >>> expand_func(lerchphi(z, s, S(3)/2)) -2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z The derivatives with respect to $z$ and $a$ can be computed in closed form: >>> lerchphi(z, s, a).diff(z) (-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z >>> lerchphi(z, s, a).diff(a) -s*lerchphi(z, s + 1, a) See Also ======== polylog, zeta References ========== .. [1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions, Vol. I, New York: McGraw-Hill. Section 1.11. .. [2] http://dlmf.nist.gov/25.14 .. [3] https://en.wikipedia.org/wiki/Lerch_transcendent """ def _eval_expand_func(self, **hints): from sympy import exp, I, floor, Add, Poly, Dummy, exp_polar, unpolarify z, s, a = self.args if z == 1: return zeta(s, a) if s.is_Integer and s <= 0: t = Dummy('t') p = Poly((t + a)**(-s), t) start = 1/(1 - t) res = S.Zero for c in reversed(p.all_coeffs()): res += c*start start = t*start.diff(t) return res.subs(t, z) if a.is_Rational: # See section 18 of # Kelly B. Roach. Hypergeometric Function Representations. # In: Proceedings of the 1997 International Symposium on Symbolic and # Algebraic Computation, pages 205-211, New York, 1997. ACM. # TODO should something be polarified here? add = S.Zero mul = S.One # First reduce a to the interaval (0, 1] if a > 1: n = floor(a) if n == a: n -= 1 a -= n mul = z**(-n) add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)]) elif a <= 0: n = floor(-a) + 1 a += n mul = z**n add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)]) m, n = S([a.p, a.q]) zet = exp_polar(2*pi*I/n) root = z**(1/n) return add + mul*n**(s - 1)*Add( *[polylog(s, zet**k*root)._eval_expand_func(**hints) / (unpolarify(zet)**k*root)**m for k in range(n)]) # TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed if isinstance(z, exp) and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]: # TODO reference? if z == -1: p, q = S([1, 2]) elif z == I: p, q = S([1, 4]) elif z == -I: p, q = S([-1, 4]) else: arg = z.args[0]/(2*pi*I) p, q = S([arg.p, arg.q]) return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q) for k in range(q)]) return lerchphi(z, s, a) def fdiff(self, argindex=1): z, s, a = self.args if argindex == 3: return -s*lerchphi(z, s + 1, a) elif argindex == 1: return (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z else: raise ArgumentIndexError def _eval_rewrite_helper(self, z, s, a, target): res = self._eval_expand_func() if res.has(target): return res else: return self def _eval_rewrite_as_zeta(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, zeta) def _eval_rewrite_as_polylog(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, polylog) ############################################################################### ###################### POLYLOGARITHM ########################################## ############################################################################### class polylog(Function): r""" Polylogarithm function. Explanation =========== For $|z| < 1$ and $s \in \mathbb{C}$, the polylogarithm is defined by .. math:: \operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s}, where the standard branch of the argument is used for $n$. It admits an analytic continuation which is branched at $z=1$ (notably not on the sheet of initial definition), $z=0$ and $z=\infty$. The name polylogarithm comes from the fact that for $s=1$, the polylogarithm is related to the ordinary logarithm (see examples), and that .. math:: \operatorname{Li}_{s+1}(z) = \int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t. The polylogarithm is a special case of the Lerch transcendent: .. math:: \operatorname{Li}_{s}(z) = z \Phi(z, s, 1). Examples ======== For $z \in \{0, 1, -1\}$, the polylogarithm is automatically expressed using other functions: >>> from sympy import polylog >>> from sympy.abc import s >>> polylog(s, 0) 0 >>> polylog(s, 1) zeta(s) >>> polylog(s, -1) -dirichlet_eta(s) If $s$ is a negative integer, $0$ or $1$, the polylogarithm can be expressed using elementary functions. This can be done using ``expand_func()``: >>> from sympy import expand_func >>> from sympy.abc import z >>> expand_func(polylog(1, z)) -log(1 - z) >>> expand_func(polylog(0, z)) z/(1 - z) The derivative with respect to $z$ can be computed in closed form: >>> polylog(s, z).diff(z) polylog(s - 1, z)/z The polylogarithm can be expressed in terms of the lerch transcendent: >>> from sympy import lerchphi >>> polylog(s, z).rewrite(lerchphi) z*lerchphi(z, s, 1) See Also ======== zeta, lerchphi """ @classmethod def eval(cls, s, z): s, z = sympify((s, z)) if z is S.One: return zeta(s) elif z is S.NegativeOne: return -dirichlet_eta(s) elif z is S.Zero: return S.Zero elif s == 2: if z == S.Half: return pi**2/12 - log(2)**2/2 elif z == 2: return pi**2/4 - I*pi*log(2) elif z == -(sqrt(5) - 1)/2: return -pi**2/15 + log((sqrt(5)-1)/2)**2/2 elif z == -(sqrt(5) + 1)/2: return -pi**2/10 - log((sqrt(5)+1)/2)**2 elif z == (3 - sqrt(5))/2: return pi**2/15 - log((sqrt(5)-1)/2)**2 elif z == (sqrt(5) - 1)/2: return pi**2/10 - log((sqrt(5)-1)/2)**2 if z.is_zero: return S.Zero # Make an effort to determine if z is 1 to avoid replacing into # expression with singularity zone = z.equals(S.One) if zone: return zeta(s) elif zone is False: # For s = 0 or -1 use explicit formulas to evaluate, but # automatically expanding polylog(1, z) to -log(1-z) seems # undesirable for summation methods based on hypergeometric # functions if s is S.Zero: return z/(1 - z) elif s is S.NegativeOne: return z/(1 - z)**2 if s.is_zero: return z/(1 - z) # polylog is branched, but not over the unit disk from sympy.functions.elementary.complexes import (Abs, unpolarify, polar_lift) if z.has(exp_polar, polar_lift) and (zone or (Abs(z) <= S.One) == True): return cls(s, unpolarify(z)) def fdiff(self, argindex=1): s, z = self.args if argindex == 2: return polylog(s - 1, z)/z raise ArgumentIndexError def _eval_rewrite_as_lerchphi(self, s, z, **kwargs): return z*lerchphi(z, s, 1) def _eval_expand_func(self, **hints): from sympy import log, expand_mul, Dummy s, z = self.args if s == 1: return -log(1 - z) if s.is_Integer and s <= 0: u = Dummy('u') start = u/(1 - u) for _ in range(-s): start = u*start.diff(u) return expand_mul(start).subs(u, z) return polylog(s, z) def _eval_is_zero(self): z = self.args[1] if z.is_zero: return True ############################################################################### ###################### HURWITZ GENERALIZED ZETA FUNCTION ###################### ############################################################################### class zeta(Function): r""" Hurwitz zeta function (or Riemann zeta function). Explanation =========== For $\operatorname{Re}(a) > 0$ and $\operatorname{Re}(s) > 1$, this function is defined as .. math:: \zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s}, where the standard choice of argument for $n + a$ is used. For fixed $a$ with $\operatorname{Re}(a) > 0$ the Hurwitz zeta function admits a meromorphic continuation to all of $\mathbb{C}$, it is an unbranched function with a simple pole at $s = 1$. Analytic continuation to other $a$ is possible under some circumstances, but this is not typically done. The Hurwitz zeta function is a special case of the Lerch transcendent: .. math:: \zeta(s, a) = \Phi(1, s, a). This formula defines an analytic continuation for all possible values of $s$ and $a$ (also $\operatorname{Re}(a) < 0$), see the documentation of :class:`lerchphi` for a description of the branching behavior. If no value is passed for $a$, by this function assumes a default value of $a = 1$, yielding the Riemann zeta function. Examples ======== For $a = 1$ the Hurwitz zeta function reduces to the famous Riemann zeta function: .. math:: \zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}. >>> from sympy import zeta >>> from sympy.abc import s >>> zeta(s, 1) zeta(s) >>> zeta(s) zeta(s) The Riemann zeta function can also be expressed using the Dirichlet eta function: >>> from sympy import dirichlet_eta >>> zeta(s).rewrite(dirichlet_eta) dirichlet_eta(s)/(1 - 2**(1 - s)) The Riemann zeta function at positive even integer and negative odd integer values is related to the Bernoulli numbers: >>> zeta(2) pi**2/6 >>> zeta(4) pi**4/90 >>> zeta(-1) -1/12 The specific formulae are: .. math:: \zeta(2n) = (-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!} .. math:: \zeta(-n) = -\frac{B_{n+1}}{n+1} At negative even integers the Riemann zeta function is zero: >>> zeta(-4) 0 No closed-form expressions are known at positive odd integers, but numerical evaluation is possible: >>> zeta(3).n() 1.20205690315959 The derivative of $\zeta(s, a)$ with respect to $a$ can be computed: >>> from sympy.abc import a >>> zeta(s, a).diff(a) -s*zeta(s + 1, a) However the derivative with respect to $s$ has no useful closed form expression: >>> zeta(s, a).diff(s) Derivative(zeta(s, a), s) The Hurwitz zeta function can be expressed in terms of the Lerch transcendent, :class:`~.lerchphi`: >>> from sympy import lerchphi >>> zeta(s, a).rewrite(lerchphi) lerchphi(1, s, a) See Also ======== dirichlet_eta, lerchphi, polylog References ========== .. [1] http://dlmf.nist.gov/25.11 .. [2] https://en.wikipedia.org/wiki/Hurwitz_zeta_function """ @classmethod def eval(cls, z, a_=None): if a_ is None: z, a = list(map(sympify, (z, 1))) else: z, a = list(map(sympify, (z, a_))) if a.is_Number: if a is S.NaN: return S.NaN elif a is S.One and a_ is not None: return cls(z) # TODO Should a == 0 return S.NaN as well? if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: return S.One elif z.is_zero: return S.Half - a elif z is S.One: return S.ComplexInfinity if z.is_integer: if a.is_Integer: if z.is_negative: zeta = (-1)**z * bernoulli(-z + 1)/(-z + 1) elif z.is_even and z.is_positive: B, F = bernoulli(z), factorial(z) zeta = ((-1)**(z/2+1) * 2**(z - 1) * B * pi**z) / F else: return if a.is_negative: return zeta + harmonic(abs(a), z) else: return zeta - harmonic(a - 1, z) if z.is_zero: return S.Half - a def _eval_rewrite_as_dirichlet_eta(self, s, a=1, **kwargs): if a != 1: return self s = self.args[0] return dirichlet_eta(s)/(1 - 2**(1 - s)) def _eval_rewrite_as_lerchphi(self, s, a=1, **kwargs): return lerchphi(1, s, a) def _eval_is_finite(self): arg_is_one = (self.args[0] - 1).is_zero if arg_is_one is not None: return not arg_is_one def fdiff(self, argindex=1): if len(self.args) == 2: s, a = self.args else: s, a = self.args + (1,) if argindex == 2: return -s*zeta(s + 1, a) else: raise ArgumentIndexError class dirichlet_eta(Function): r""" Dirichlet eta function. Explanation =========== For $\operatorname{Re}(s) > 0$, this function is defined as .. math:: \eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}. It admits a unique analytic continuation to all of $\mathbb{C}$. It is an entire, unbranched function. Examples ======== The Dirichlet eta function is closely related to the Riemann zeta function: >>> from sympy import dirichlet_eta, zeta >>> from sympy.abc import s >>> dirichlet_eta(s).rewrite(zeta) (1 - 2**(1 - s))*zeta(s) See Also ======== zeta References ========== .. [1] https://en.wikipedia.org/wiki/Dirichlet_eta_function """ @classmethod def eval(cls, s): if s == 1: return log(2) z = zeta(s) if not z.has(zeta): return (1 - 2**(1 - s))*z def _eval_rewrite_as_zeta(self, s, **kwargs): return (1 - 2**(1 - s)) * zeta(s) class stieltjes(Function): r""" Represents Stieltjes constants, $\gamma_{k}$ that occur in Laurent Series expansion of the Riemann zeta function. Examples ======== >>> from sympy import stieltjes >>> from sympy.abc import n, m >>> stieltjes(n) stieltjes(n) The zero'th stieltjes constant: >>> stieltjes(0) EulerGamma >>> stieltjes(0, 1) EulerGamma For generalized stieltjes constants: >>> stieltjes(n, m) stieltjes(n, m) Constants are only defined for integers >= 0: >>> stieltjes(-1) zoo References ========== .. [1] https://en.wikipedia.org/wiki/Stieltjes_constants """ @classmethod def eval(cls, n, a=None): n = sympify(n) if a is not None: a = sympify(a) if a is S.NaN: return S.NaN if a.is_Integer and a.is_nonpositive: return S.ComplexInfinity if n.is_Number: if n is S.NaN: return S.NaN elif n < 0: return S.ComplexInfinity elif not n.is_Integer: return S.ComplexInfinity elif n is S.Zero and a in [None, 1]: return S.EulerGamma if n.is_extended_negative: return S.ComplexInfinity if n.is_zero and a in [None, 1]: return S.EulerGamma if n.is_integer == False: return S.ComplexInfinity
7fd6c77c151f2cb505a9e8785a8b96250d225314760b653967ccfca73a15eff4
from __future__ import print_function, division from sympy.core import S, sympify, oo, diff from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not from sympy.core.relational import Eq from sympy.functions.elementary.complexes import im from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import Heaviside ############################################################################### ############################# SINGULARITY FUNCTION ############################ ############################################################################### class SingularityFunction(Function): r""" Singularity functions are a class of discontinuous functions. Explanation =========== Singularity functions take a variable, an offset, and an exponent as arguments. These functions are represented using Macaulay brackets as: SingularityFunction(x, a, n) := <x - a>^n The singularity function will automatically evaluate to ``Derivative(DiracDelta(x - a), x, -n - 1)`` if ``n < 0`` and ``(x - a)**n*Heaviside(x - a)`` if ``n >= 0``. Examples ======== >>> from sympy import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol >>> from sympy.abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> SingularityFunction(y, -10, n) (y + 10)**n >>> y = Symbol('y', negative=True) >>> SingularityFunction(y, 10, n) 0 >>> SingularityFunction(x, 4, -1).subs(x, 4) oo >>> SingularityFunction(x, 10, -2).subs(x, 10) oo >>> SingularityFunction(4, 1, 5) 243 >>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x) 4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4) >>> diff(SingularityFunction(x, 4, 0), x, 2) SingularityFunction(x, 4, -2) >>> SingularityFunction(x, 4, 5).rewrite(Piecewise) Piecewise(((x - 4)**5, x - 4 > 0), (0, True)) >>> expr = SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> expr.subs({x: y, a: -10, n: n}) (y + 10)**n The methods ``rewrite(DiracDelta)``, ``rewrite(Heaviside)``, and ``rewrite('HeavisideDiracDelta')`` returns the same output. One can use any of these methods according to their choice. >>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2) >>> expr.rewrite(Heaviside) (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite(DiracDelta) (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite('HeavisideDiracDelta') (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) See Also ======== DiracDelta, Heaviside References ========== .. [1] https://en.wikipedia.org/wiki/Singularity_function """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a DiracDelta Function. Explanation =========== The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the user-level function and ``fdiff()`` is an object method. ``fdiff()`` is a convenience method available in the ``Function`` class. It returns the derivative of the function without considering the chain rule. ``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls ``fdiff()`` internally to compute the derivative of the function. """ if argindex == 1: x = sympify(self.args[0]) a = sympify(self.args[1]) n = sympify(self.args[2]) if n == 0 or n == -1: return self.func(x, a, n-1) elif n.is_positive: return n*self.func(x, a, n-1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, variable, offset, exponent): """ Returns a simplified form or a value of Singularity Function depending on the argument passed by the object. Explanation =========== The ``eval()`` method is automatically called when the ``SingularityFunction`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import SingularityFunction, Symbol, nan >>> from sympy.abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> SingularityFunction(5, 3, 2) 4 >>> SingularityFunction(x, a, nan) nan >>> SingularityFunction(x, 3, 0).subs(x, 3) 1 >>> SingularityFunction(x, a, n).eval(3, 5, 1) 0 >>> SingularityFunction(x, a, n).eval(4, 1, 5) 243 >>> x = Symbol('x', positive = True) >>> a = Symbol('a', negative = True) >>> n = Symbol('n', nonnegative = True) >>> SingularityFunction(x, a, n) (-a + x)**n >>> x = Symbol('x', negative = True) >>> a = Symbol('a', positive = True) >>> SingularityFunction(x, a, n) 0 """ x = sympify(variable) a = sympify(offset) n = sympify(exponent) shift = (x - a) if fuzzy_not(im(shift).is_zero): raise ValueError("Singularity Functions are defined only for Real Numbers.") if fuzzy_not(im(n).is_zero): raise ValueError("Singularity Functions are not defined for imaginary exponents.") if shift is S.NaN or n is S.NaN: return S.NaN if (n + 2).is_negative: raise ValueError("Singularity Functions are not defined for exponents less than -2.") if shift.is_extended_negative: return S.Zero if n.is_nonnegative and shift.is_extended_nonnegative: return (x - a)**n if n == -1 or n == -2: if shift.is_negative or shift.is_extended_positive: return S.Zero if shift.is_zero: return S.Infinity def _eval_rewrite_as_Piecewise(self, *args, **kwargs): ''' Converts a Singularity Function expression into its Piecewise form. ''' x = self.args[0] a = self.args[1] n = sympify(self.args[2]) if n == -1 or n == -2: return Piecewise((oo, Eq((x - a), 0)), (0, True)) elif n.is_nonnegative: return Piecewise(((x - a)**n, (x - a) > 0), (0, True)) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): ''' Rewrites a Singularity Function expression using Heavisides and DiracDeltas. ''' x = self.args[0] a = self.args[1] n = sympify(self.args[2]) if n == -2: return diff(Heaviside(x - a), x.free_symbols.pop(), 2) if n == -1: return diff(Heaviside(x - a), x.free_symbols.pop(), 1) if n.is_nonnegative: return (x - a)**n*Heaviside(x - a) _eval_rewrite_as_DiracDelta = _eval_rewrite_as_Heaviside _eval_rewrite_as_HeavisideDiracDelta = _eval_rewrite_as_Heaviside
f7f0b36cc600cc7aa5b391ab2ec387a448929c43cd023a2999a04369f6686e0f
""" This module contains the Mathieu functions. """ from __future__ import print_function, division from sympy.core.function import Function, ArgumentIndexError from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos class MathieuBase(Function): """ Abstract base class for Mathieu functions. This class is meant to reduce code duplication. """ unbranched = True def _eval_conjugate(self): a, q, z = self.args return self.func(a.conjugate(), q.conjugate(), z.conjugate()) class mathieus(MathieuBase): r""" The Mathieu Sine function $S(a,q,z)$. Explanation =========== This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Cosine function. Examples ======== >>> from sympy import diff, mathieus >>> from sympy.abc import a, q, z >>> mathieus(a, q, z) mathieus(a, q, z) >>> mathieus(a, 0, z) sin(sqrt(a)*z) >>> diff(mathieus(a, q, z), z) mathieusprime(a, q, z) See Also ======== mathieuc: Mathieu cosine function. mathieusprime: Derivative of Mathieu sine function. mathieucprime: Derivative of Mathieu cosine function. References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return mathieusprime(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return sin(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(a, q, -z) class mathieuc(MathieuBase): r""" The Mathieu Cosine function $C(a,q,z)$. Explanation =========== This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Sine function. Examples ======== >>> from sympy import diff, mathieuc >>> from sympy.abc import a, q, z >>> mathieuc(a, q, z) mathieuc(a, q, z) >>> mathieuc(a, 0, z) cos(sqrt(a)*z) >>> diff(mathieuc(a, q, z), z) mathieucprime(a, q, z) See Also ======== mathieus: Mathieu sine function mathieusprime: Derivative of Mathieu sine function mathieucprime: Derivative of Mathieu cosine function References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return mathieucprime(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return cos(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return cls(a, q, -z) class mathieusprime(MathieuBase): r""" The derivative $S^{\prime}(a,q,z)$ of the Mathieu Sine function. Explanation =========== This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Cosine function. Examples ======== >>> from sympy import diff, mathieusprime >>> from sympy.abc import a, q, z >>> mathieusprime(a, q, z) mathieusprime(a, q, z) >>> mathieusprime(a, 0, z) sqrt(a)*cos(sqrt(a)*z) >>> diff(mathieusprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieus(a, q, z) See Also ======== mathieus: Mathieu sine function mathieuc: Mathieu cosine function mathieucprime: Derivative of Mathieu cosine function References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return (2*q*cos(2*z) - a)*mathieus(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return sqrt(a)*cos(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return cls(a, q, -z) class mathieucprime(MathieuBase): r""" The derivative $C^{\prime}(a,q,z)$ of the Mathieu Cosine function. Explanation =========== This function is one solution of the Mathieu differential equation: .. math :: y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0 The other solution is the Mathieu Sine function. Examples ======== >>> from sympy import diff, mathieucprime >>> from sympy.abc import a, q, z >>> mathieucprime(a, q, z) mathieucprime(a, q, z) >>> mathieucprime(a, 0, z) -sqrt(a)*sin(sqrt(a)*z) >>> diff(mathieucprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieuc(a, q, z) See Also ======== mathieus: Mathieu sine function mathieuc: Mathieu cosine function mathieusprime: Derivative of Mathieu sine function References ========== .. [1] https://en.wikipedia.org/wiki/Mathieu_function .. [2] http://dlmf.nist.gov/28 .. [3] http://mathworld.wolfram.com/MathieuBase.html .. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/ """ def fdiff(self, argindex=1): if argindex == 3: a, q, z = self.args return (2*q*cos(2*z) - a)*mathieuc(a, q, z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, q, z): if q.is_Number and q.is_zero: return -sqrt(a)*sin(sqrt(a)*z) # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(a, q, -z)
d7f64fa4d9877d6e2b21fe01555a7ae82c6cee50a2d771e15f0722de2ddd235b
from __future__ import print_function, division from functools import wraps from sympy import S, pi, I, Rational, Wild, cacheit, sympify from sympy.core.function import Function, ArgumentIndexError from sympy.core.power import Pow from sympy.core.compatibility import range from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.trigonometric import sin, cos, csc, cot from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import sqrt, root from sympy.functions.elementary.complexes import re, im from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper from sympy.polys.orthopolys import spherical_bessel_fn as fn # TODO # o Scorer functions G1 and G2 # o Asymptotic expansions # These are possible, e.g. for fixed order, but since the bessel type # functions are oscillatory they are not actually tractable at # infinity, so this is not particularly useful right now. # o Series Expansions for functions of the second kind about zero # o Nicer series expansions. # o More rewriting. # o Add solvers to ode.py (or rather add solvers for the hypergeometric equation). class BesselBase(Function): """ Abstract base class for Bessel-type functions. This class is meant to reduce code duplication. All Bessel-type functions can 1) be differentiated, with the derivatives expressed in terms of similar functions, and 2) be rewritten in terms of other Bessel-type functions. Here, Bessel-type functions are assumed to have one complex parameter. To use this base class, define class attributes ``_a`` and ``_b`` such that ``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``. """ @property def order(self): """ The order of the Bessel-type function. """ return self.args[0] @property def argument(self): """ The argument of the Bessel-type function. """ return self.args[1] @classmethod def eval(cls, nu, z): return def fdiff(self, argindex=2): if argindex != 2: raise ArgumentIndexError(self, argindex) return (self._b/2 * self.__class__(self.order - 1, self.argument) - self._a/2 * self.__class__(self.order + 1, self.argument)) def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return self.__class__(self.order.conjugate(), z.conjugate()) def _eval_expand_func(self, **hints): nu, z, f = self.order, self.argument, self.__class__ if nu.is_extended_real: if (nu - 1).is_extended_positive: return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() + 2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z) elif (nu + 1).is_extended_negative: return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z - self._a*self._b*f(nu + 2, z)._eval_expand_func()) return self def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import besselsimp return besselsimp(self) class besselj(BesselBase): r""" Bessel function of the first kind. Explanation =========== The Bessel $J$ function of order $\nu$ is defined to be the function satisfying Bessel's differential equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0, with Laurent expansion .. math :: J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right), if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$ *is* a negative integer, then the definition is .. math :: J_{-n}(z) = (-1)^n J_n(z). Examples ======== Create a Bessel function object: >>> from sympy import besselj, jn >>> from sympy.abc import z, n >>> b = besselj(n, z) Differentiate it: >>> b.diff(z) besselj(n - 1, z)/2 - besselj(n + 1, z)/2 Rewrite in terms of spherical Bessel functions: >>> b.rewrite(jn) sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi) Access the parameter and argument: >>> b.order n >>> b.argument z See Also ======== bessely, besseli, besselk References ========== .. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9", Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [2] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [3] https://en.wikipedia.org/wiki/Bessel_function .. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/ """ _a = S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive: return S.Zero elif re(nu).is_negative and not (nu.is_integer is True): return S.ComplexInfinity elif nu.is_imaginary: return S.NaN if z is S.Infinity or (z is S.NegativeInfinity): return S.Zero if z.could_extract_minus_sign(): return (z)**nu*(-z)**(-nu)*besselj(nu, -z) if nu.is_integer: if nu.could_extract_minus_sign(): return S.NegativeOne**(-nu)*besselj(-nu, z) newz = z.extract_multiplicatively(I) if newz: # NOTE we don't want to change the function if z==0 return I**(nu)*besseli(nu, newz) # branch handling: from sympy import unpolarify, exp if nu.is_integer: newz = unpolarify(z) if newz != z: return besselj(nu, newz) else: newz, n = z.extract_branch_factor() if n != 0: return exp(2*n*pi*nu*I)*besselj(nu, newz) nnu = unpolarify(nu) if nu != nnu: return besselj(nnu, z) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): from sympy import polar_lift, exp return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): if nu.is_integer is False: return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return sqrt(2*z/pi)*jn(nu - S.Half, self.argument) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_extended_real: return True def _sage_(self): import sage.all as sage return sage.bessel_J(self.args[0]._sage_(), self.args[1]._sage_()) class bessely(BesselBase): r""" Bessel function of the second kind. Explanation =========== The Bessel $Y$ function of order $\nu$ is defined as .. math :: Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu) - J_{-\mu}(z)}{\sin(\pi \mu)}, where $J_\mu(z)$ is the Bessel function of the first kind. It is a solution to Bessel's equation, and linearly independent from $J_\nu$. Examples ======== >>> from sympy import bessely, yn >>> from sympy.abc import z, n >>> b = bessely(n, z) >>> b.diff(z) bessely(n - 1, z)/2 - bessely(n + 1, z)/2 >>> b.rewrite(yn) sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi) See Also ======== besselj, besseli, besselk References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/ """ _a = S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.NegativeInfinity elif re(nu).is_zero is False: return S.ComplexInfinity elif re(nu).is_zero: return S.NaN if z is S.Infinity or z is S.NegativeInfinity: return S.Zero if nu.is_integer: if nu.could_extract_minus_sign(): return S.NegativeOne**(-nu)*bessely(-nu, z) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): if nu.is_integer is False: return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z)) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(besseli) def _eval_rewrite_as_yn(self, nu, z, **kwargs): return sqrt(2*z/pi) * yn(nu - S.Half, self.argument) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_positive: return True def _sage_(self): import sage.all as sage return sage.bessel_Y(self.args[0]._sage_(), self.args[1]._sage_()) class besseli(BesselBase): r""" Modified Bessel function of the first kind. Explanation =========== The Bessel $I$ function is a solution to the modified Bessel equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0. It can be defined as .. math :: I_\nu(z) = i^{-\nu} J_\nu(iz), where $J_\nu(z)$ is the Bessel function of the first kind. Examples ======== >>> from sympy import besseli >>> from sympy.abc import z, n >>> besseli(n, z).diff(z) besseli(n - 1, z)/2 + besseli(n + 1, z)/2 See Also ======== besselj, bessely, besselk References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/ """ _a = -S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive: return S.Zero elif re(nu).is_negative and not (nu.is_integer is True): return S.ComplexInfinity elif nu.is_imaginary: return S.NaN if z.is_imaginary: if im(z) is S.Infinity or im(z) is S.NegativeInfinity: return S.Zero if z.could_extract_minus_sign(): return (z)**nu*(-z)**(-nu)*besseli(nu, -z) if nu.is_integer: if nu.could_extract_minus_sign(): return besseli(-nu, z) newz = z.extract_multiplicatively(I) if newz: # NOTE we don't want to change the function if z==0 return I**(-nu)*besselj(nu, -newz) # branch handling: from sympy import unpolarify, exp if nu.is_integer: newz = unpolarify(z) if newz != z: return besseli(nu, newz) else: newz, n = z.extract_branch_factor() if n != 0: return exp(2*n*pi*nu*I)*besseli(nu, newz) nnu = unpolarify(nu) if nu != nnu: return besseli(nnu, z) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): from sympy import polar_lift, exp return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(bessely) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return self._eval_rewrite_as_besselj(*self.args).rewrite(jn) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_extended_real: return True def _sage_(self): import sage.all as sage return sage.bessel_I(self.args[0]._sage_(), self.args[1]._sage_()) class besselk(BesselBase): r""" Modified Bessel function of the second kind. Explanation =========== The Bessel $K$ function of order $\nu$ is defined as .. math :: K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2} \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)}, where $I_\mu(z)$ is the modified Bessel function of the first kind. It is a solution of the modified Bessel equation, and linearly independent from $Y_\nu$. Examples ======== >>> from sympy import besselk >>> from sympy.abc import z, n >>> besselk(n, z).diff(z) -besselk(n - 1, z)/2 - besselk(n + 1, z)/2 See Also ======== besselj, besseli, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/ """ _a = S.One _b = -S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.Infinity elif re(nu).is_zero is False: return S.ComplexInfinity elif re(nu).is_zero: return S.NaN if z.is_imaginary: if im(z) is S.Infinity or im(z) is S.NegativeInfinity: return S.Zero if nu.is_integer: if nu.could_extract_minus_sign(): return besselk(-nu, z) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): if nu.is_integer is False: return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2 def _eval_rewrite_as_besselj(self, nu, z, **kwargs): ai = self._eval_rewrite_as_besseli(*self.args) if ai: return ai.rewrite(besselj) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(bessely) def _eval_rewrite_as_yn(self, nu, z, **kwargs): ay = self._eval_rewrite_as_bessely(*self.args) if ay: return ay.rewrite(yn) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_positive: return True def _sage_(self): import sage.all as sage return sage.bessel_K(self.args[0]._sage_(), self.args[1]._sage_()) class hankel1(BesselBase): r""" Hankel function of the first kind. Explanation =========== This function is defined as .. math :: H_\nu^{(1)} = J_\nu(z) + iY_\nu(z), where $J_\nu(z)$ is the Bessel function of the first kind, and $Y_\nu(z)$ is the Bessel function of the second kind. It is a solution to Bessel's equation. Examples ======== >>> from sympy import hankel1 >>> from sympy.abc import z, n >>> hankel1(n, z).diff(z) hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2 See Also ======== hankel2, besselj, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/ """ _a = S.One _b = S.One def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return hankel2(self.order.conjugate(), z.conjugate()) class hankel2(BesselBase): r""" Hankel function of the second kind. Explanation =========== This function is defined as .. math :: H_\nu^{(2)} = J_\nu(z) - iY_\nu(z), where $J_\nu(z)$ is the Bessel function of the first kind, and $Y_\nu(z)$ is the Bessel function of the second kind. It is a solution to Bessel's equation, and linearly independent from $H_\nu^{(1)}$. Examples ======== >>> from sympy import hankel2 >>> from sympy.abc import z, n >>> hankel2(n, z).diff(z) hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2 See Also ======== hankel1, besselj, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/ """ _a = S.One _b = S.One def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return hankel1(self.order.conjugate(), z.conjugate()) def assume_integer_order(fn): @wraps(fn) def g(self, nu, z): if nu.is_integer: return fn(self, nu, z) return g class SphericalBesselBase(BesselBase): """ Base class for spherical Bessel functions. These are thin wrappers around ordinary Bessel functions, since spherical Bessel functions differ from the ordinary ones just by a slight change in order. To use this class, define the ``_rewrite()`` and ``_expand()`` methods. """ def _expand(self, **hints): """ Expand self into a polynomial. Nu is guaranteed to be Integer. """ raise NotImplementedError('expansion') def _rewrite(self): """ Rewrite self in terms of ordinary Bessel functions. """ raise NotImplementedError('rewriting') def _eval_expand_func(self, **hints): if self.order.is_Integer: return self._expand(**hints) return self def _eval_evalf(self, prec): if self.order.is_Integer: return self._rewrite()._eval_evalf(prec) def fdiff(self, argindex=2): if argindex != 2: raise ArgumentIndexError(self, argindex) return self.__class__(self.order - 1, self.argument) - \ self * (self.order + 1)/self.argument def _jn(n, z): return fn(n, z)*sin(z) + (-1)**(n + 1)*fn(-n - 1, z)*cos(z) def _yn(n, z): # (-1)**(n + 1) * _jn(-n - 1, z) return (-1)**(n + 1) * fn(-n - 1, z)*sin(z) - fn(n, z)*cos(z) class jn(SphericalBesselBase): r""" Spherical Bessel function of the first kind. Explanation =========== This function is a solution to the spherical Bessel equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0. It can be defined as .. math :: j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z), where $J_\nu(z)$ is the Bessel function of the first kind. The spherical Bessel functions of integral order are calculated using the formula: .. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z}, where the coefficients $f_n(z)$ are available as :func:`sympy.polys.orthopolys.spherical_bessel_fn`. Examples ======== >>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely >>> from sympy import simplify >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(jn(0, z))) sin(z)/z >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z True >>> expand_func(jn(3, z)) (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z) >>> jn(nu, z).rewrite(besselj) sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2 >>> jn(nu, z).rewrite(bessely) (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2 >>> jn(2, 5.2+0.3j).evalf(20) 0.099419756723640344491 - 0.054525080242173562897*I See Also ======== besselj, bessely, besselk, yn References ========== .. [1] http://dlmf.nist.gov/10.47 """ @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif nu.is_integer: if nu.is_positive: return S.Zero else: return S.ComplexInfinity if z in (S.NegativeInfinity, S.Infinity): return S.Zero def _rewrite(self): return self._eval_rewrite_as_besselj(self.order, self.argument) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): return sqrt(pi/(2*z)) * besselj(nu + S.Half, z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): return (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z) def _eval_rewrite_as_yn(self, nu, z, **kwargs): return (-1)**(nu) * yn(-nu - 1, z) def _expand(self, **hints): return _jn(self.order, self.argument) class yn(SphericalBesselBase): r""" Spherical Bessel function of the second kind. Explanation =========== This function is another solution to the spherical Bessel equation, and linearly independent from $j_n$. It can be defined as .. math :: y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z), where $Y_\nu(z)$ is the Bessel function of the second kind. For integral orders $n$, $y_n$ is calculated using the formula: .. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(yn(0, z))) -cos(z)/z >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z True >>> yn(nu, z).rewrite(besselj) (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2 >>> yn(nu, z).rewrite(bessely) sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2 >>> yn(2, 5.2+0.3j).evalf(20) 0.18525034196069722536 + 0.014895573969924817587*I See Also ======== besselj, bessely, besselk, jn References ========== .. [1] http://dlmf.nist.gov/10.47 """ def _rewrite(self): return self._eval_rewrite_as_bessely(self.order, self.argument) @assume_integer_order def _eval_rewrite_as_besselj(self, nu, z, **kwargs): return (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z) @assume_integer_order def _eval_rewrite_as_bessely(self, nu, z, **kwargs): return sqrt(pi/(2*z)) * bessely(nu + S.Half, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return (-1)**(nu + 1) * jn(-nu - 1, z) def _expand(self, **hints): return _yn(self.order, self.argument) class SphericalHankelBase(SphericalBesselBase): def _rewrite(self): return self._eval_rewrite_as_besselj(self.order, self.argument) @assume_integer_order def _eval_rewrite_as_besselj(self, nu, z, **kwargs): # jn +- I*yn # jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z) # yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z) hks = self._hankel_kind_sign return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) + hks*I*(-1)**(nu+1)*besselj(-nu - S.Half, z)) @assume_integer_order def _eval_rewrite_as_bessely(self, nu, z, **kwargs): # jn +- I*yn # jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z) # yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z) hks = self._hankel_kind_sign return sqrt(pi/(2*z))*((-1)**nu*bessely(-nu - S.Half, z) + hks*I*bessely(nu + S.Half, z)) def _eval_rewrite_as_yn(self, nu, z, **kwargs): hks = self._hankel_kind_sign return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): hks = self._hankel_kind_sign return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn) def _eval_expand_func(self, **hints): if self.order.is_Integer: return self._expand(**hints) else: nu = self.order z = self.argument hks = self._hankel_kind_sign return jn(nu, z) + hks*I*yn(nu, z) def _expand(self, **hints): n = self.order z = self.argument hks = self._hankel_kind_sign # fully expanded version # return ((fn(n, z) * sin(z) + # (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn # (hks * I * (-1)**(n + 1) * # (fn(-n - 1, z) * hk * I * sin(z) + # (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn # ) return (_jn(n, z) + hks*I*_yn(n, z)).expand() class hn1(SphericalHankelBase): r""" Spherical Hankel function of the first kind. Explanation =========== This function is defined as .. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z), where $j_\nu(z)$ and $y_\nu(z)$ are the spherical Bessel function of the first and second kinds. For integral orders $n$, $h_n^(1)$ is calculated using the formula: .. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn1(nu, z))) jn(nu, z) + I*yn(nu, z) >>> print(expand_func(hn1(0, z))) sin(z)/z - I*cos(z)/z >>> print(expand_func(hn1(1, z))) -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2 >>> hn1(nu, z).rewrite(jn) (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn1(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z) >>> hn1(nu, z).rewrite(hankel1) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2 See Also ======== hn2, jn, yn, hankel1, hankel2 References ========== .. [1] http://dlmf.nist.gov/10.47 """ _hankel_kind_sign = S.One @assume_integer_order def _eval_rewrite_as_hankel1(self, nu, z, **kwargs): return sqrt(pi/(2*z))*hankel1(nu, z) class hn2(SphericalHankelBase): r""" Spherical Hankel function of the second kind. Explanation =========== This function is defined as .. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z), where $j_\nu(z)$ and $y_\nu(z)$ are the spherical Bessel function of the first and second kinds. For integral orders $n$, $h_n^(2)$ is calculated using the formula: .. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn2(nu, z))) jn(nu, z) - I*yn(nu, z) >>> print(expand_func(hn2(0, z))) sin(z)/z + I*cos(z)/z >>> print(expand_func(hn2(1, z))) I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2 >>> hn2(nu, z).rewrite(hankel2) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2 >>> hn2(nu, z).rewrite(jn) -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn2(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z) See Also ======== hn1, jn, yn, hankel1, hankel2 References ========== .. [1] http://dlmf.nist.gov/10.47 """ _hankel_kind_sign = -S.One @assume_integer_order def _eval_rewrite_as_hankel2(self, nu, z, **kwargs): return sqrt(pi/(2*z))*hankel2(nu, z) def jn_zeros(n, k, method="sympy", dps=15): """ Zeros of the spherical Bessel function of the first kind. Explanation =========== This returns an array of zeros of $jn$ up to the $k$-th zero. * method = "sympy": uses `mpmath.besseljzero <http://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_ * method = "scipy": uses the `SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_ and `newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_ to find all roots, which is faster than computing the zeros using a general numerical solver, but it requires SciPy and only works with low precision floating point numbers. (The function used with method="sympy" is a recent addition to mpmath; before that a general solver was used.) Examples ======== >>> from sympy import jn_zeros >>> jn_zeros(2, 4, dps=5) [5.7635, 9.095, 12.323, 15.515] See Also ======== jn, yn, besselj, besselk, bessely """ from math import pi if method == "sympy": from mpmath import besseljzero from mpmath.libmp.libmpf import dps_to_prec from sympy import Expr prec = dps_to_prec(dps) return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec), int(l)), prec) for l in range(1, k + 1)] elif method == "scipy": from scipy.optimize import newton try: from scipy.special import spherical_jn f = lambda x: spherical_jn(n, x) except ImportError: from scipy.special import sph_jn f = lambda x: sph_jn(n, x)[0][-1] else: raise NotImplementedError("Unknown method.") def solver(f, x): if method == "scipy": root = newton(f, x) else: raise NotImplementedError("Unknown method.") return root # we need to approximate the position of the first root: root = n + pi # determine the first root exactly: root = solver(f, root) roots = [root] for i in range(k - 1): # estimate the position of the next root using the last root + pi: root = solver(f, root + pi) roots.append(root) return roots class AiryBase(Function): """ Abstract base class for Airy functions. This class is meant to reduce code duplication. """ def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_extended_real(self): return self.args[0].is_extended_real def as_real_imag(self, deep=True, **hints): z = self.args[0] zc = z.conjugate() f = self.func u = (f(z)+f(zc))/2 v = I*(f(zc)-f(z))/2 return u, v def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit class airyai(AiryBase): r""" The Airy function $\operatorname{Ai}$ of the first kind. Explanation =========== The Airy function $\operatorname{Ai}(z)$ is defined to be the function satisfying Airy's differential equation .. math:: \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0. Equivalently, for real $z$ .. math:: \operatorname{Ai}(z) := \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t. Examples ======== Create an Airy function object: >>> from sympy import airyai >>> from sympy.abc import z >>> airyai(z) airyai(z) Several special values are known: >>> airyai(0) 3**(1/3)/(3*gamma(2/3)) >>> from sympy import oo >>> airyai(oo) 0 >>> airyai(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airyai(z)) airyai(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airyai(z), z) airyaiprime(z) >>> diff(airyai(z), z, 2) z*airyai(z) Series expansion is also supported: >>> from sympy import series >>> series(airyai(z), z, 0, 3) 3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airyai(-2).evalf(50) 0.22740742820168557599192443603787379946077222541710 Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airyai(z).rewrite(hyper) -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)) See Also ======== airybi: Airy function of the second kind. airyaiprime: Derivative of the Airy function of the first kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3))) if arg.is_zero: return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3))) def fdiff(self, argindex=1): if argindex == 1: return airyaiprime(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return ((3**Rational(1, 3)*x)**(-n)*(3**Rational(1, 3)*x)**(n + 1)*sin(pi*(n*Rational(2, 3) + Rational(4, 3)))*factorial(n) * gamma(n/3 + Rational(2, 3))/(sin(pi*(n*Rational(2, 3) + Rational(2, 3)))*factorial(n + 1)*gamma(n/3 + Rational(1, 3))) * p) else: return (S.One/(3**Rational(2, 3)*pi) * gamma((n+S.One)/S(3)) * sin(2*pi*(n+S.One)/S(3)) / factorial(n) * (root(3, 3)*x)**n) def _eval_rewrite_as_besselj(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(z, Rational(3, 2)) if re(z).is_positive: return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a)) else: return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = S.One / (3**Rational(2, 3)*gamma(Rational(2, 3))) pf2 = z / (root(3, 3)*gamma(Rational(1, 3))) return pf1 * hyper([], [Rational(2, 3)], z**3/9) - pf2 * hyper([], [Rational(4, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is given by 03.05.16.0001.01 # http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d * z**n)**m / (d**m * z**(m*n)) newarg = c * d**m * z**(m*n) return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg)) class airybi(AiryBase): r""" The Airy function $\operatorname{Bi}$ of the second kind. Explanation =========== The Airy function $\operatorname{Bi}(z)$ is defined to be the function satisfying Airy's differential equation .. math:: \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0. Equivalently, for real $z$ .. math:: \operatorname{Bi}(z) := \frac{1}{\pi} \int_0^\infty \exp\left(-\frac{t^3}{3} + z t\right) + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t. Examples ======== Create an Airy function object: >>> from sympy import airybi >>> from sympy.abc import z >>> airybi(z) airybi(z) Several special values are known: >>> airybi(0) 3**(5/6)/(3*gamma(2/3)) >>> from sympy import oo >>> airybi(oo) oo >>> airybi(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airybi(z)) airybi(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airybi(z), z) airybiprime(z) >>> diff(airybi(z), z, 2) z*airybi(z) Series expansion is also supported: >>> from sympy import series >>> series(airybi(z), z, 0, 3) 3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airybi(-2).evalf(50) -0.41230258795639848808323405461146104203453483447240 Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airybi(z).rewrite(hyper) 3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)) See Also ======== airyai: Airy function of the first kind. airyaiprime: Derivative of the Airy function of the first kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3))) if arg.is_zero: return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3))) def fdiff(self, argindex=1): if argindex == 1: return airybiprime(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (3**Rational(1, 3)*x * Abs(sin(2*pi*(n + S.One)/S(3))) * factorial((n - S.One)/S(3)) / ((n + S.One) * Abs(cos(2*pi*(n + S.Half)/S(3))) * factorial((n - 2)/S(3))) * p) else: return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(2*pi*(n + S.One)/S(3))) / factorial(n) * (root(3, 3)*x)**n) def _eval_rewrite_as_besselj(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(z, Rational(3, 2)) if re(z).is_positive: return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a)) else: b = Pow(a, ot) c = Pow(a, -ot) return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = S.One / (root(3, 6)*gamma(Rational(2, 3))) pf2 = z*root(3, 6) / gamma(Rational(1, 3)) return pf1 * hyper([], [Rational(2, 3)], z**3/9) + pf2 * hyper([], [Rational(4, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is given by 03.06.16.0001.01 # http://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d * z**n)**m / (d**m * z**(m*n)) newarg = c * d**m * z**(m*n) return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg)) class airyaiprime(AiryBase): r""" The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first kind. Explanation =========== The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the function .. math:: \operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}. Examples ======== Create an Airy function object: >>> from sympy import airyaiprime >>> from sympy.abc import z >>> airyaiprime(z) airyaiprime(z) Several special values are known: >>> airyaiprime(0) -3**(2/3)/(3*gamma(1/3)) >>> from sympy import oo >>> airyaiprime(oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airyaiprime(z)) airyaiprime(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airyaiprime(z), z) z*airyai(z) >>> diff(airyaiprime(z), z, 2) z*airyaiprime(z) + airyai(z) Series expansion is also supported: >>> from sympy import series >>> series(airyaiprime(z), z, 0, 3) -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airyaiprime(-2).evalf(50) 0.61825902074169104140626429133247528291577794512415 Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airyaiprime(z).rewrite(hyper) 3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3)) See Also ======== airyai: Airy function of the first kind. airybi: Airy function of the second kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero if arg.is_zero: return S.NegativeOne / (3**Rational(1, 3) * gamma(Rational(1, 3))) def fdiff(self, argindex=1): if argindex == 1: return self.args[0]*airyai(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr z = self.args[0]._to_mpmath(prec) with workprec(prec): res = mp.airyai(z, derivative=1) return Expr._from_mpmath(res, prec) def _eval_rewrite_as_besselj(self, z, **kwargs): tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = tt * Pow(z, Rational(3, 2)) if re(z).is_positive: return z/3 * (besseli(tt, a) - besseli(-tt, a)) else: a = Pow(z, Rational(3, 2)) b = Pow(a, tt) c = Pow(a, -tt) return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2*3**Rational(2, 3)*gamma(Rational(2, 3))) pf2 = 1 / (root(3, 3)*gamma(Rational(1, 3))) return pf1 * hyper([], [Rational(5, 3)], z**3/9) - pf2 * hyper([], [Rational(1, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is in principle # given by 03.07.16.0001.01 but note # that there is an error in this formula. # http://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d**m * z**(n*m)) / (d * z**n)**m newarg = c * d**m * z**(n*m) return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg)) class airybiprime(AiryBase): r""" The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first kind. Explanation =========== The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the function .. math:: \operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}. Examples ======== Create an Airy function object: >>> from sympy import airybiprime >>> from sympy.abc import z >>> airybiprime(z) airybiprime(z) Several special values are known: >>> airybiprime(0) 3**(1/6)/gamma(1/3) >>> from sympy import oo >>> airybiprime(oo) oo >>> airybiprime(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airybiprime(z)) airybiprime(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airybiprime(z), z) z*airybi(z) >>> diff(airybiprime(z), z, 2) z*airybiprime(z) + airybi(z) Series expansion is also supported: >>> from sympy import series >>> series(airybiprime(z), z, 0, 3) 3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airybiprime(-2).evalf(50) 0.27879516692116952268509756941098324140300059345163 Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airybiprime(z).rewrite(hyper) 3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3) See Also ======== airyai: Airy function of the first kind. airybi: Airy function of the second kind. airyaiprime: Derivative of the Airy function of the first kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return 3**Rational(1, 6) / gamma(Rational(1, 3)) if arg.is_zero: return 3**Rational(1, 6) / gamma(Rational(1, 3)) def fdiff(self, argindex=1): if argindex == 1: return self.args[0]*airybi(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr z = self.args[0]._to_mpmath(prec) with workprec(prec): res = mp.airybi(z, derivative=1) return Expr._from_mpmath(res, prec) def _eval_rewrite_as_besselj(self, z, **kwargs): tt = Rational(2, 3) a = tt * Pow(-z, Rational(3, 2)) if re(z).is_negative: return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = tt * Pow(z, Rational(3, 2)) if re(z).is_positive: return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a)) else: a = Pow(z, Rational(3, 2)) b = Pow(a, tt) c = Pow(a, -tt) return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2*root(3, 6)*gamma(Rational(2, 3))) pf2 = root(3, 6) / gamma(Rational(1, 3)) return pf1 * hyper([], [Rational(5, 3)], z**3/9) + pf2 * hyper([], [Rational(1, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is in principle # given by 03.08.16.0001.01 but note # that there is an error in this formula. # http://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d**m * z**(n*m)) / (d * z**n)**m newarg = c * d**m * z**(n*m) return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg)) class marcumq(Function): r""" The Marcum Q-function. Explanation =========== The Marcum Q-function is defined by the meromorphic continuation of .. math:: Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx Examples ======== >>> from sympy import marcumq >>> from sympy.abc import m, a, b, x >>> marcumq(m, a, b) marcumq(m, a, b) Special values: >>> marcumq(m, 0, b) uppergamma(m, b**2/2)/gamma(m) >>> marcumq(0, 0, 0) 0 >>> marcumq(0, a, 0) 1 - exp(-a**2/2) >>> marcumq(1, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 >>> marcumq(2, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2) Differentiation with respect to $a$ and $b$ is supported: >>> from sympy import diff >>> diff(marcumq(m, a, b), a) a*(-marcumq(m, a, b) + marcumq(m + 1, a, b)) >>> diff(marcumq(m, a, b), b) -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b) References ========== .. [1] https://en.wikipedia.org/wiki/Marcum_Q-function .. [2] http://mathworld.wolfram.com/MarcumQ-Function.html """ @classmethod def eval(cls, m, a, b): from sympy import exp, uppergamma if a is S.Zero: if m is S.Zero and b is S.Zero: return S.Zero return uppergamma(m, b**2 * S.Half) / gamma(m) if m is S.Zero and b is S.Zero: return 1 - 1 / exp(a**2 * S.Half) if a == b: if m is S.One: return (1 + exp(-a**2) * besseli(0, a**2))*S.Half if m == 2: return S.Half + S.Half * exp(-a**2) * besseli(0, a**2) + exp(-a**2) * besseli(1, a**2) if a.is_zero: if m.is_zero and b.is_zero: return S.Zero return uppergamma(m, b**2*S.Half) / gamma(m) if m.is_zero and b.is_zero: return 1 - 1 / exp(a**2*S.Half) def fdiff(self, argindex=2): from sympy import exp m, a, b = self.args if argindex == 2: return a * (-marcumq(m, a, b) + marcumq(1+m, a, b)) elif argindex == 3: return (-b**m / a**(m-1)) * exp(-(a**2 + b**2)/2) * besseli(m-1, a*b) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Integral(self, m, a, b, **kwargs): from sympy import Integral, exp, Dummy, oo x = kwargs.get('x', Dummy('x')) return a ** (1 - m) * \ Integral(x**m * exp(-(x**2 + a**2)/2) * besseli(m-1, a*x), [x, b, oo]) def _eval_rewrite_as_Sum(self, m, a, b, **kwargs): from sympy import Sum, exp, Dummy, oo k = kwargs.get('k', Dummy('k')) return exp(-(a**2 + b**2) / 2) * Sum((a/b)**k * besseli(k, a*b), [k, 1-m, oo]) def _eval_rewrite_as_besseli(self, m, a, b, **kwargs): if a == b: from sympy import exp if m == 1: return (1 + exp(-a**2) * besseli(0, a**2)) / 2 if m.is_Integer and m >= 2: s = sum([besseli(i, a**2) for i in range(1, m)]) return S.Half + exp(-a**2) * besseli(0, a**2) / 2 + exp(-a**2) * s def _eval_is_zero(self): if all(arg.is_zero for arg in self.args): return True
f30363c1e027cce410807c2f49c0164fa5b5f7d9bd80c8a01d800a0593e5a322
from __future__ import print_function, division from sympy.core import S, Integer from sympy.core.compatibility import range, SYMPY_INTS from sympy.core.function import Function from sympy.core.logic import fuzzy_not from sympy.core.mul import prod from sympy.utilities.iterables import (has_dups, default_sort_key) ############################################################################### ###################### Kronecker Delta, Levi-Civita etc. ###################### ############################################################################### def Eijk(*args, **kwargs): """ Represent the Levi-Civita symbol. This is a compatibility wrapper to ``LeviCivita()``. See Also ======== LeviCivita """ return LeviCivita(*args, **kwargs) def eval_levicivita(*args): """Evaluate Levi-Civita symbol.""" from sympy import factorial n = len(args) return prod( prod(args[j] - args[i] for j in range(i + 1, n)) / factorial(i) for i in range(n)) # converting factorial(i) to int is slightly faster class LeviCivita(Function): """ Represent the Levi-Civita symbol. Explanation =========== For even permutations of indices it returns 1, for odd permutations -1, and for everything else (a repeated index) it returns 0. Thus it represents an alternating pseudotensor. Examples ======== >>> from sympy import LeviCivita >>> from sympy.abc import i, j, k >>> LeviCivita(1, 2, 3) 1 >>> LeviCivita(1, 3, 2) -1 >>> LeviCivita(1, 2, 2) 0 >>> LeviCivita(i, j, k) LeviCivita(i, j, k) >>> LeviCivita(i, j, i) 0 See Also ======== Eijk """ is_integer = True @classmethod def eval(cls, *args): if all(isinstance(a, (SYMPY_INTS, Integer)) for a in args): return eval_levicivita(*args) if has_dups(args): return S.Zero def doit(self): return eval_levicivita(*self.args) class KroneckerDelta(Function): """ The discrete, or Kronecker, delta function. Explanation =========== A function that takes in two integers $i$ and $j$. It returns $0$ if $i$ and $j$ are not equal, or it returns $1$ if $i$ and $j$ are equal. Examples ======== An example with integer indices: >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> KroneckerDelta(1, 2) 0 >>> KroneckerDelta(3, 3) 1 Symbolic indices: >>> from sympy.abc import i, j, k >>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1) Parameters ========== i : Number, Symbol The first index of the delta function. j : Number, Symbol The second index of the delta function. See Also ======== eval DiracDelta References ========== .. [1] https://en.wikipedia.org/wiki/Kronecker_delta """ is_integer = True @classmethod def eval(cls, i, j, delta_range=None): """ Evaluates the discrete delta function. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy.abc import i, j, k >>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1) # indirect doctest """ if delta_range is not None: dinf, dsup = delta_range if (dinf - i > 0) == True: return S.Zero if (dinf - j > 0) == True: return S.Zero if (dsup - i < 0) == True: return S.Zero if (dsup - j < 0) == True: return S.Zero diff = i - j if diff.is_zero: return S.One elif fuzzy_not(diff.is_zero): return S.Zero if i.assumptions0.get("below_fermi") and \ j.assumptions0.get("above_fermi"): return S.Zero if j.assumptions0.get("below_fermi") and \ i.assumptions0.get("above_fermi"): return S.Zero # to make KroneckerDelta canonical # following lines will check if inputs are in order # if not, will return KroneckerDelta with correct order if i is not min(i, j, key=default_sort_key): if delta_range: return cls(j, i, delta_range) else: return cls(j, i) @property def delta_range(self): if len(self.args) > 2: return self.args[2] def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative and not -expt is S.One: return 1/self @property def is_above_fermi(self): """ True if Delta can be non-zero above fermi. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_above_fermi True >>> KroneckerDelta(p, i).is_above_fermi False >>> KroneckerDelta(p, q).is_above_fermi True See Also ======== is_below_fermi, is_only_below_fermi, is_only_above_fermi """ if self.args[0].assumptions0.get("below_fermi"): return False if self.args[1].assumptions0.get("below_fermi"): return False return True @property def is_below_fermi(self): """ True if Delta can be non-zero below fermi. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_below_fermi False >>> KroneckerDelta(p, i).is_below_fermi True >>> KroneckerDelta(p, q).is_below_fermi True See Also ======== is_above_fermi, is_only_above_fermi, is_only_below_fermi """ if self.args[0].assumptions0.get("above_fermi"): return False if self.args[1].assumptions0.get("above_fermi"): return False return True @property def is_only_above_fermi(self): """ True if Delta is restricted to above fermi. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_only_above_fermi True >>> KroneckerDelta(p, q).is_only_above_fermi False >>> KroneckerDelta(p, i).is_only_above_fermi False See Also ======== is_above_fermi, is_below_fermi, is_only_below_fermi """ return ( self.args[0].assumptions0.get("above_fermi") or self.args[1].assumptions0.get("above_fermi") ) or False @property def is_only_below_fermi(self): """ True if Delta is restricted to below fermi. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, i).is_only_below_fermi True >>> KroneckerDelta(p, q).is_only_below_fermi False >>> KroneckerDelta(p, a).is_only_below_fermi False See Also ======== is_above_fermi, is_below_fermi, is_only_above_fermi """ return ( self.args[0].assumptions0.get("below_fermi") or self.args[1].assumptions0.get("below_fermi") ) or False @property def indices_contain_equal_information(self): """ Returns True if indices are either both above or below fermi. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, q).indices_contain_equal_information True >>> KroneckerDelta(p, q+1).indices_contain_equal_information True >>> KroneckerDelta(i, p).indices_contain_equal_information False """ if (self.args[0].assumptions0.get("below_fermi") and self.args[1].assumptions0.get("below_fermi")): return True if (self.args[0].assumptions0.get("above_fermi") and self.args[1].assumptions0.get("above_fermi")): return True # if both indices are general we are True, else false return self.is_below_fermi and self.is_above_fermi @property def preferred_index(self): """ Returns the index which is preferred to keep in the final expression. Explanation =========== The preferred index is the index with more information regarding fermi level. If indices contain the same information, 'a' is preferred before 'b'. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).preferred_index i >>> KroneckerDelta(p, a).preferred_index a >>> KroneckerDelta(i, j).preferred_index i See Also ======== killable_index """ if self._get_preferred_index(): return self.args[1] else: return self.args[0] @property def killable_index(self): """ Returns the index which is preferred to substitute in the final expression. Explanation =========== The index to substitute is the index with less information regarding fermi level. If indices contain the same information, 'a' is preferred before 'b'. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).killable_index p >>> KroneckerDelta(p, a).killable_index p >>> KroneckerDelta(i, j).killable_index j See Also ======== preferred_index """ if self._get_preferred_index(): return self.args[0] else: return self.args[1] def _get_preferred_index(self): """ Returns the index which is preferred to keep in the final expression. The preferred index is the index with more information regarding fermi level. If indices contain the same information, index 0 is returned. """ if not self.is_above_fermi: if self.args[0].assumptions0.get("below_fermi"): return 0 else: return 1 elif not self.is_below_fermi: if self.args[0].assumptions0.get("above_fermi"): return 0 else: return 1 else: return 0 @property def indices(self): return self.args[0:2] def _sage_(self): import sage.all as sage return sage.kronecker_delta(self.args[0]._sage_(), self.args[1]._sage_()) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): from sympy.functions.elementary.piecewise import Piecewise from sympy.core.relational import Ne i, j = args return Piecewise((0, Ne(i, j)), (1, True))
73dff26f32472de25d7ae9f1401379d87d6346859a37842a91e2aec5a27b3794
""" Elliptic Integrals. """ from __future__ import print_function, division from sympy.core import S, pi, I, Rational from sympy.core.function import Function, ArgumentIndexError from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.hyperbolic import atanh from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, tan from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper, meijerg class elliptic_k(Function): r""" The complete elliptic integral of the first kind, defined by .. math:: K(m) = F\left(\tfrac{\pi}{2}\middle| m\right) where $F\left(z\middle| m\right)$ is the Legendre incomplete elliptic integral of the first kind. Explanation =========== The function $K(m)$ is a single-valued function on the complex plane with branch cut along the interval $(1, \infty)$. Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_k, I, pi >>> from sympy.abc import m >>> elliptic_k(0) pi/2 >>> elliptic_k(1.0 + I) 1.50923695405127 + 0.625146415202697*I >>> elliptic_k(m).series(n=3) pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3) See Also ======== elliptic_f References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticK """ @classmethod def eval(cls, m): if m.is_zero: return pi/2 elif m is S.Half: return 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2 elif m is S.One: return S.ComplexInfinity elif m is S.NegativeOne: return gamma(Rational(1, 4))**2/(4*sqrt(2*pi)) elif m in (S.Infinity, S.NegativeInfinity, I*S.Infinity, I*S.NegativeInfinity, S.ComplexInfinity): return S.Zero if m.is_zero: return pi*S.Half def fdiff(self, argindex=1): m = self.args[0] return (elliptic_e(m) - (1 - m)*elliptic_k(m))/(2*m*(1 - m)) def _eval_conjugate(self): m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx): from sympy.simplify import hyperexpand return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) def _eval_rewrite_as_hyper(self, m, **kwargs): return pi*S.Half*hyper((S.Half, S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, m, **kwargs): return meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -m)/2 def _eval_is_zero(self): m = self.args[0] if m.is_infinite: return True def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy t = Dummy('t') m = self.args[0] return Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2)) def _sage_(self): import sage.all as sage return sage.elliptic_kc(self.args[0]._sage_()) class elliptic_f(Function): r""" The Legendre incomplete elliptic integral of the first kind, defined by .. math:: F\left(z\middle| m\right) = \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}} Explanation =========== This function reduces to a complete elliptic integral of the first kind, $K(m)$, when $z = \pi/2$. Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_f, I, O >>> from sympy.abc import z, m >>> elliptic_f(z, m).series(z) z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) >>> elliptic_f(3.0 + I/2, 1.0 + I) 2.909449841483 + 1.74720545502474*I See Also ======== elliptic_k References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticF """ @classmethod def eval(cls, z, m): if z.is_zero: return S.Zero if m.is_zero: return z k = 2*z/pi if k.is_integer: return k*elliptic_k(m) elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_f(-z, m) def fdiff(self, argindex=1): z, m = self.args fm = sqrt(1 - m*sin(z)**2) if argindex == 1: return 1/fm elif argindex == 2: return (elliptic_e(z, m)/(2*m*(1 - m)) - elliptic_f(z, m)/(2*m) - sin(2*z)/(4*(1 - m)*fm)) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy t = Dummy('t') z, m = self.args[0], self.args[1] return Integral(1/(sqrt(1 - m*sin(t)**2)), (t, 0, z)) def _eval_is_zero(self): z, m = self.args if z.is_zero: return True if m.is_extended_real and m.is_infinite: return True class elliptic_e(Function): r""" Called with two arguments $z$ and $m$, evaluates the incomplete elliptic integral of the second kind, defined by .. math:: E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt Called with a single argument $m$, evaluates the Legendre complete elliptic integral of the second kind .. math:: E(m) = E\left(\tfrac{\pi}{2}\middle| m\right) Explanation =========== The function $E(m)$ is a single-valued function on the complex plane with branch cut along the interval $(1, \infty)$. Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_e, I, pi, O >>> from sympy.abc import z, m >>> elliptic_e(z, m).series(z) z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) >>> elliptic_e(m).series(n=4) pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4) >>> elliptic_e(1 + I, 2 - I/2).n() 1.55203744279187 + 0.290764986058437*I >>> elliptic_e(0) pi/2 >>> elliptic_e(2.0 - I) 0.991052601328069 + 0.81879421395609*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticE2 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticE """ @classmethod def eval(cls, m, z=None): if z is not None: z, m = m, z k = 2*z/pi if m.is_zero: return z if z.is_zero: return S.Zero elif k.is_integer: return k*elliptic_e(m) elif m in (S.Infinity, S.NegativeInfinity): return S.ComplexInfinity elif z.could_extract_minus_sign(): return -elliptic_e(-z, m) else: if m.is_zero: return pi/2 elif m is S.One: return S.One elif m is S.Infinity: return I*S.Infinity elif m is S.NegativeInfinity: return S.Infinity elif m is S.ComplexInfinity: return S.ComplexInfinity def fdiff(self, argindex=1): if len(self.args) == 2: z, m = self.args if argindex == 1: return sqrt(1 - m*sin(z)**2) elif argindex == 2: return (elliptic_e(z, m) - elliptic_f(z, m))/(2*m) else: m = self.args[0] if argindex == 1: return (elliptic_e(m) - elliptic_k(m))/(2*m) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): if len(self.args) == 2: z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) else: m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx): from sympy.simplify import hyperexpand if len(self.args) == 1: return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) return super(elliptic_e, self)._eval_nseries(x, n=n, logx=logx) def _eval_rewrite_as_hyper(self, *args, **kwargs): if len(args) == 1: m = args[0] return (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, *args, **kwargs): if len(args) == 1: m = args[0] return -meijerg(((S.Half, Rational(3, 2)), []), \ ((S.Zero,), (S.Zero,)), -m)/4 def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy z, m = (pi/2, self.args[0]) if len(self.args) == 1 else self.args t = Dummy('t') return Integral(sqrt(1 - m*sin(t)**2), (t, 0, z)) class elliptic_pi(Function): r""" Called with three arguments $n$, $z$ and $m$, evaluates the Legendre incomplete elliptic integral of the third kind, defined by .. math:: \Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt} {\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}} Called with two arguments $n$ and $m$, evaluates the complete elliptic integral of the third kind: .. math:: \Pi\left(n\middle| m\right) = \Pi\left(n; \tfrac{\pi}{2}\middle| m\right) Explanation =========== Note that our notation defines the incomplete elliptic integral in terms of the parameter $m$ instead of the elliptic modulus (eccentricity) $k$. In this case, the parameter $m$ is defined as $m=k^2$. Examples ======== >>> from sympy import elliptic_pi, I, pi, O, S >>> from sympy.abc import z, n, m >>> elliptic_pi(n, z, m).series(z, n=4) z + z**3*(m/6 + n/3) + O(z**4) >>> elliptic_pi(0.5 + I, 1.0 - I, 1.2) 2.50232379629182 - 0.760939574180767*I >>> elliptic_pi(0, 0) pi/2 >>> elliptic_pi(1.0 - I/3, 2.0 + I) 3.29136443417283 + 0.32555634906645*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticPi3 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticPi """ @classmethod def eval(cls, n, m, z=None): if z is not None: n, z, m = n, m, z if n.is_zero: return elliptic_f(z, m) elif n is S.One: return (elliptic_f(z, m) + (sqrt(1 - m*sin(z)**2)*tan(z) - elliptic_e(z, m))/(1 - m)) k = 2*z/pi if k.is_integer: return k*elliptic_pi(n, m) elif m.is_zero: return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1) elif n == m: return (elliptic_f(z, n) - elliptic_pi(1, z, n) + tan(z)/sqrt(1 - n*sin(z)**2)) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_pi(n, -z, m) if n.is_zero: return elliptic_f(z, m) if m.is_extended_real and m.is_infinite or \ n.is_extended_real and n.is_infinite: return S.Zero else: if n.is_zero: return elliptic_k(m) elif n is S.One: return S.ComplexInfinity elif m.is_zero: return pi/(2*sqrt(1 - n)) elif m == S.One: return S.NegativeInfinity/sign(n - 1) elif n == m: return elliptic_e(n)/(1 - n) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero if n.is_zero: return elliptic_k(m) if m.is_extended_real and m.is_infinite or \ n.is_extended_real and n.is_infinite: return S.Zero def _eval_conjugate(self): if len(self.args) == 3: n, z, m = self.args if (n.is_real and (n - 1).is_positive) is False and \ (m.is_real and (m - 1).is_positive) is False: return self.func(n.conjugate(), z.conjugate(), m.conjugate()) else: n, m = self.args return self.func(n.conjugate(), m.conjugate()) def fdiff(self, argindex=1): if len(self.args) == 3: n, z, m = self.args fm, fn = sqrt(1 - m*sin(z)**2), 1 - n*sin(z)**2 if argindex == 1: return (elliptic_e(z, m) + (m - n)*elliptic_f(z, m)/n + (n**2 - m)*elliptic_pi(n, z, m)/n - n*fm*sin(2*z)/(2*fn))/(2*(m - n)*(n - 1)) elif argindex == 2: return 1/(fm*fn) elif argindex == 3: return (elliptic_e(z, m)/(m - 1) + elliptic_pi(n, z, m) - m*sin(2*z)/(2*(m - 1)*fm))/(2*(n - m)) else: n, m = self.args if argindex == 1: return (elliptic_e(m) + (m - n)*elliptic_k(m)/n + (n**2 - m)*elliptic_pi(n, m)/n)/(2*(m - n)*(n - 1)) elif argindex == 2: return (elliptic_e(m)/(m - 1) + elliptic_pi(n, m))/(2*(n - m)) raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Integral(self, *args): from sympy import Integral, Dummy if len(self.args) == 2: n, m, z = self.args[0], self.args[1], pi/2 else: n, z, m = self.args t = Dummy('t') return Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z))
1c1f816dd5f63eb0baa61f28e37e3fc9902438321d346b960cefcb4ebaeb148e
""" This module contains various functions that are special cases of incomplete gamma functions. It should probably be renamed. """ from __future__ import print_function, division from sympy.core import Add, S, sympify, cacheit, pi, I, Rational from sympy.core.compatibility import range from sympy.core.function import Function, ArgumentIndexError from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, root from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.complexes import polar_lift from sympy.functions.elementary.hyperbolic import cosh, sinh from sympy.functions.elementary.trigonometric import cos, sin, sinc from sympy.functions.special.hyper import hyper, meijerg # TODO series expansions # TODO see the "Note:" in Ei # Helper function def real_to_real_as_real_imag(self, deep=True, **hints): if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: x, y = self.args[0].expand(deep, **hints).as_real_imag() else: x, y = self.args[0].as_real_imag() re = (self.func(x + I*y) + self.func(x - I*y))/2 im = (self.func(x + I*y) - self.func(x - I*y))/(2*I) return (re, im) ############################################################################### ################################ ERROR FUNCTION ############################### ############################################################################### class erf(Function): r""" The Gauss error function. Explanation =========== This function is defined as: .. math :: \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t. Examples ======== >>> from sympy import I, oo, erf >>> from sympy.abc import z Several special values are known: >>> erf(0) 0 >>> erf(oo) 1 >>> erf(-oo) -1 >>> erf(I*oo) oo*I >>> erf(-I*oo) -oo*I In general one can pull out factors of -1 and $I$ from the argument: >>> erf(-z) -erf(z) The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erf(z)) erf(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(erf(z), z) 2*exp(-z**2)/sqrt(pi) We can numerically evaluate the error function to arbitrary precision on the whole complex plane: >>> erf(4).evalf(30) 0.999999984582742099719981147840 >>> erf(-4*I).evalf(30) -1296959.73071763923152794095062*I See Also ======== erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/Erf.html .. [4] http://functions.wolfram.com/GammaBetaErf/Erf """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return 2*exp(-self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfinv @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.Zero if isinstance(arg, erfinv): return arg.args[0] if isinstance(arg, erfcinv): return S.One - arg.args[0] if arg.is_zero: return S.Zero # Only happens with unevaluated erf2inv if isinstance(arg, erf2inv) and arg.args[0].is_zero: return arg.args[1] # Try to pull out factors of I t = arg.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity or t is S.NegativeInfinity: return arg # Try to pull out factors of -1 if arg.could_extract_minus_sign(): return -cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return -previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return 2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): return self.args[0].is_extended_real def _eval_is_finite(self): if self.args[0].is_finite: return True else: return self.args[0].is_extended_real def _eval_is_zero(self): if self.args[0].is_zero: return True def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi)) def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) def _eval_rewrite_as_expint(self, z, **kwargs): return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi) def _eval_rewrite_as_tractable(self, z, **kwargs): return S.One - _erfs(z)*exp(-z**2) def _eval_rewrite_as_erfc(self, z, **kwargs): return S.One - erfc(z) def _eval_rewrite_as_erfi(self, z, **kwargs): return -I*erfi(I*z) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 2*x/sqrt(pi) else: return self.func(arg) as_real_imag = real_to_real_as_real_imag class erfc(Function): r""" Complementary Error Function. Explanation =========== The function is defined as: .. math :: \mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erfc >>> from sympy.abc import z Several special values are known: >>> erfc(0) 1 >>> erfc(oo) 0 >>> erfc(-oo) 2 >>> erfc(I*oo) -oo*I >>> erfc(-I*oo) oo*I The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erfc(z)) erfc(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(erfc(z), z) -2*exp(-z**2)/sqrt(pi) It also follows >>> erfc(-z) 2 - erfc(z) We can numerically evaluate the complementary error function to arbitrary precision on the whole complex plane: >>> erfc(4).evalf(30) 0.0000000154172579002800188521596734869 >>> erfc(4*I).evalf(30) 1.0 - 1296959.73071763923152794095062*I See Also ======== erf: Gaussian error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/Erfc.html .. [4] http://functions.wolfram.com/GammaBetaErf/Erfc """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return -2*exp(-self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfcinv @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg.is_zero: return S.One if isinstance(arg, erfinv): return S.One - arg.args[0] if isinstance(arg, erfcinv): return arg.args[0] if arg.is_zero: return S.One # Try to pull out factors of I t = arg.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity or t is S.NegativeInfinity: return -arg # Try to pull out factors of -1 if arg.could_extract_minus_sign(): return S(2) - cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.One elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return -previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return -2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): return self.args[0].is_extended_real def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(erf).rewrite("tractable", deep=True) def _eval_rewrite_as_erf(self, z, **kwargs): return S.One - erf(z) def _eval_rewrite_as_erfi(self, z, **kwargs): return S.One + I*erfi(I*z) def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One-S.ImaginaryUnit)*z/sqrt(pi) return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi)) def _eval_rewrite_as_expint(self, z, **kwargs): return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi) def _eval_expand_func(self, **hints): return self.rewrite(erf) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) as_real_imag = real_to_real_as_real_imag class erfi(Function): r""" Imaginary error function. Explanation =========== The function erfi is defined as: .. math :: \mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erfi >>> from sympy.abc import z Several special values are known: >>> erfi(0) 0 >>> erfi(oo) oo >>> erfi(-oo) -oo >>> erfi(I*oo) I >>> erfi(-I*oo) -I In general one can pull out factors of -1 and $I$ from the argument: >>> erfi(-z) -erfi(z) >>> from sympy import conjugate >>> conjugate(erfi(z)) erfi(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(erfi(z), z) 2*exp(z**2)/sqrt(pi) We can numerically evaluate the imaginary error function to arbitrary precision on the whole complex plane: >>> erfi(2).evalf(30) 18.5648024145755525987042919132 >>> erfi(-2*I).evalf(30) -0.995322265018952734162069256367*I See Also ======== erf: Gaussian error function. erfc: Complementary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://mathworld.wolfram.com/Erfi.html .. [3] http://functions.wolfram.com/GammaBetaErf/Erfi """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return 2*exp(self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, z): if z.is_Number: if z is S.NaN: return S.NaN elif z.is_zero: return S.Zero elif z is S.Infinity: return S.Infinity if z.is_zero: return S.Zero # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(-z) # Try to pull out factors of I nz = z.extract_multiplicatively(I) if nz is not None: if nz is S.Infinity: return I if isinstance(nz, erfinv): return I*nz.args[0] if isinstance(nz, erfcinv): return I*(S.One - nz.args[0]) # Only happens with unevaluated erf2inv if isinstance(nz, erf2inv) and nz.args[0].is_zero: return I*nz.args[1] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return 2 * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_extended_real(self): return self.args[0].is_extended_real def _eval_is_zero(self): if self.args[0].is_zero: return True def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(erf).rewrite("tractable", deep=True) def _eval_rewrite_as_erf(self, z, **kwargs): return -I*erf(I*z) def _eval_rewrite_as_erfc(self, z, **kwargs): return I*erfc(I*z) - I def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi) return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi) return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(S.Pi) - S.One) def _eval_rewrite_as_expint(self, z, **kwargs): return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi) def _eval_expand_func(self, **hints): return self.rewrite(erf) as_real_imag = real_to_real_as_real_imag class erf2(Function): r""" Two-argument error function. Explanation =========== This function is defined as: .. math :: \mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erf2 >>> from sympy.abc import x, y Several special values are known: >>> erf2(0, 0) 0 >>> erf2(x, x) 0 >>> erf2(x, oo) 1 - erf(x) >>> erf2(x, -oo) -erf(x) - 1 >>> erf2(oo, y) erf(y) - 1 >>> erf2(-oo, y) erf(y) + 1 In general one can pull out factors of -1: >>> erf2(-x, -y) -erf2(x, y) The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erf2(x, y)) erf2(conjugate(x), conjugate(y)) Differentiation with respect to $x$, $y$ is supported: >>> from sympy import diff >>> diff(erf2(x, y), x) -2*exp(-x**2)/sqrt(pi) >>> diff(erf2(x, y), y) 2*exp(-y**2)/sqrt(pi) See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] http://functions.wolfram.com/GammaBetaErf/Erf2/ """ def fdiff(self, argindex): x, y = self.args if argindex == 1: return -2*exp(-x**2)/sqrt(S.Pi) elif argindex == 2: return 2*exp(-y**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): I = S.Infinity N = S.NegativeInfinity O = S.Zero if x is S.NaN or y is S.NaN: return S.NaN elif x == y: return S.Zero elif (x is I or x is N or x is O) or (y is I or y is N or y is O): return erf(y) - erf(x) if isinstance(y, erf2inv) and y.args[0] == x: return y.args[1] if x.is_zero or y.is_zero or x.is_extended_real and x.is_infinite or \ y.is_extended_real and y.is_infinite: return erf(y) - erf(x) #Try to pull out -1 factor sign_x = x.could_extract_minus_sign() sign_y = y.could_extract_minus_sign() if (sign_x and sign_y): return -cls(-x, -y) elif (sign_x or sign_y): return erf(y)-erf(x) def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def _eval_is_extended_real(self): return self.args[0].is_extended_real and self.args[1].is_extended_real def _eval_rewrite_as_erf(self, x, y, **kwargs): return erf(y) - erf(x) def _eval_rewrite_as_erfc(self, x, y, **kwargs): return erfc(x) - erfc(y) def _eval_rewrite_as_erfi(self, x, y, **kwargs): return I*(erfi(I*x)-erfi(I*y)) def _eval_rewrite_as_fresnels(self, x, y, **kwargs): return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels) def _eval_rewrite_as_fresnelc(self, x, y, **kwargs): return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc) def _eval_rewrite_as_meijerg(self, x, y, **kwargs): return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg) def _eval_rewrite_as_hyper(self, x, y, **kwargs): return erf(y).rewrite(hyper) - erf(x).rewrite(hyper) def _eval_rewrite_as_uppergamma(self, x, y, **kwargs): from sympy import uppergamma return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(S.Pi)) - sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(S.Pi))) def _eval_rewrite_as_expint(self, x, y, **kwargs): return erf(y).rewrite(expint) - erf(x).rewrite(expint) def _eval_expand_func(self, **hints): return self.rewrite(erf) class erfinv(Function): r""" Inverse Error Function. The erfinv function is defined as: .. math :: \mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x Examples ======== >>> from sympy import I, oo, erfinv >>> from sympy.abc import x Several special values are known: >>> erfinv(0) 0 >>> erfinv(1) oo Differentiation with respect to $x$ is supported: >>> from sympy import diff >>> diff(erfinv(x), x) sqrt(pi)*exp(erfinv(x)**2)/2 We can numerically evaluate the inverse error function to arbitrary precision on [-1, 1]: >>> erfinv(0.2).evalf(30) 0.179143454621291692285822705344 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions .. [2] http://functions.wolfram.com/GammaBetaErf/InverseErf/ """ def fdiff(self, argindex =1): if argindex == 1: return sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half else : raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erf @classmethod def eval(cls, z): if z is S.NaN: return S.NaN elif z is S.NegativeOne: return S.NegativeInfinity elif z.is_zero: return S.Zero elif z is S.One: return S.Infinity if isinstance(z, erf) and z.args[0].is_extended_real: return z.args[0] if z.is_zero: return S.Zero # Try to pull out factors of -1 nz = z.extract_multiplicatively(-1) if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_extended_real): return -nz.args[0] def _eval_rewrite_as_erfcinv(self, z, **kwargs): return erfcinv(1-z) def _eval_is_zero(self): if self.args[0].is_zero: return True class erfcinv (Function): r""" Inverse Complementary Error Function. The erfcinv function is defined as: .. math :: \mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x Examples ======== >>> from sympy import I, oo, erfcinv >>> from sympy.abc import x Several special values are known: >>> erfcinv(1) 0 >>> erfcinv(0) oo Differentiation with respect to $x$ is supported: >>> from sympy import diff >>> diff(erfcinv(x), x) -sqrt(pi)*exp(erfcinv(x)**2)/2 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions .. [2] http://functions.wolfram.com/GammaBetaErf/InverseErfc/ """ def fdiff(self, argindex =1): if argindex == 1: return -sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfc @classmethod def eval(cls, z): if z is S.NaN: return S.NaN elif z.is_zero: return S.Infinity elif z is S.One: return S.Zero elif z == 2: return S.NegativeInfinity if z.is_zero: return S.Infinity def _eval_rewrite_as_erfinv(self, z, **kwargs): return erfinv(1-z) class erf2inv(Function): r""" Two-argument Inverse error function. The erf2inv function is defined as: .. math :: \mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w Examples ======== >>> from sympy import I, oo, erf2inv, erfinv, erfcinv >>> from sympy.abc import x, y Several special values are known: >>> erf2inv(0, 0) 0 >>> erf2inv(1, 0) 1 >>> erf2inv(0, 1) oo >>> erf2inv(0, y) erfinv(y) >>> erf2inv(oo, y) erfcinv(-y) Differentiation with respect to $x$ and $y$ is supported: >>> from sympy import diff >>> diff(erf2inv(x, y), x) exp(-x**2 + erf2inv(x, y)**2) >>> diff(erf2inv(x, y), y) sqrt(pi)*exp(erf2inv(x, y)**2)/2 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse complementary error function. References ========== .. [1] http://functions.wolfram.com/GammaBetaErf/InverseErf2/ """ def fdiff(self, argindex): x, y = self.args if argindex == 1: return exp(self.func(x,y)**2-x**2) elif argindex == 2: return sqrt(S.Pi)*S.Half*exp(self.func(x,y)**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): if x is S.NaN or y is S.NaN: return S.NaN elif x.is_zero and y.is_zero: return S.Zero elif x.is_zero and y is S.One: return S.Infinity elif x is S.One and y.is_zero: return S.One elif x.is_zero: return erfinv(y) elif x is S.Infinity: return erfcinv(-y) elif y.is_zero: return x elif y is S.Infinity: return erfinv(x) if x.is_zero: if y.is_zero: return S.Zero else: return erfinv(y) if y.is_zero: return x def _eval_is_zero(self): x, y = self.args if x.is_zero and y.is_zero: return True ############################################################################### #################### EXPONENTIAL INTEGRALS #################################### ############################################################################### class Ei(Function): r""" The classical exponential integral. Explanation =========== For use in SymPy, this function is defined as .. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!} + \log(x) + \gamma, where $\gamma$ is the Euler-Mascheroni constant. If $x$ is a polar number, this defines an analytic function on the Riemann surface of the logarithm. Otherwise this defines an analytic function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$. **Background** The name exponential integral comes from the following statement: .. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t If the integral is interpreted as a Cauchy principal value, this statement holds for $x > 0$ and $\operatorname{Ei}(x)$ as defined above. Examples ======== >>> from sympy import Ei, polar_lift, exp_polar, I, pi >>> from sympy.abc import x >>> Ei(-1) Ei(-1) This yields a real value: >>> Ei(-1).n(chop=True) -0.219383934395520 On the other hand the analytic continuation is not real: >>> Ei(polar_lift(-1)).n(chop=True) -0.21938393439552 + 3.14159265358979*I The exponential integral has a logarithmic branch point at the origin: >>> Ei(x*exp_polar(2*I*pi)) Ei(x) + 2*I*pi Differentiation is supported: >>> Ei(x).diff(x) exp(x)/x The exponential integral is related to many other special functions. For example: >>> from sympy import uppergamma, expint, Shi >>> Ei(x).rewrite(expint) -expint(1, x*exp_polar(I*pi)) - I*pi >>> Ei(x).rewrite(Shi) Chi(x) + Shi(x) See Also ======== expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. uppergamma: Upper incomplete gamma function. References ========== .. [1] http://dlmf.nist.gov/6.6 .. [2] https://en.wikipedia.org/wiki/Exponential_integral .. [3] Abramowitz & Stegun, section 5: http://people.math.sfu.ca/~cbm/aands/page_228.htm """ @classmethod def eval(cls, z): if z.is_zero: return S.NegativeInfinity elif z is S.Infinity: return S.Infinity elif z is S.NegativeInfinity: return S.Zero if z.is_zero: return S.NegativeInfinity nz, n = z.extract_branch_factor() if n: return Ei(nz) + 2*I*pi*n def fdiff(self, argindex=1): from sympy import unpolarify arg = unpolarify(self.args[0]) if argindex == 1: return exp(arg)/arg else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): if (self.args[0]/polar_lift(-1)).is_positive: return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec) return Function._eval_evalf(self, prec) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma # XXX this does not currently work usefully because uppergamma # immediately turns into expint return -uppergamma(0, polar_lift(-1)*z) - I*pi def _eval_rewrite_as_expint(self, z, **kwargs): return -expint(1, polar_lift(-1)*z) - I*pi def _eval_rewrite_as_li(self, z, **kwargs): if isinstance(z, log): return li(z.args[0]) # TODO: # Actually it only holds that: # Ei(z) = li(exp(z)) # for -pi < imag(z) <= pi return li(exp(z)) def _eval_rewrite_as_Si(self, z, **kwargs): if z.is_negative: return Shi(z) + Chi(z) - I*pi else: return Shi(z) + Chi(z) _eval_rewrite_as_Ci = _eval_rewrite_as_Si _eval_rewrite_as_Chi = _eval_rewrite_as_Si _eval_rewrite_as_Shi = _eval_rewrite_as_Si def _eval_rewrite_as_tractable(self, z, **kwargs): return exp(z) * _eis(z) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if x0.is_zero: f = self._eval_rewrite_as_Si(*self.args) return f._eval_nseries(x, n, logx) return super(Ei, self)._eval_nseries(x, n, logx) class expint(Function): r""" Generalized exponential integral. Explanation =========== This function is defined as .. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z), where $\Gamma(1 - \nu, z)$ is the upper incomplete gamma function (``uppergamma``). Hence for $z$ with positive real part we have .. math:: \operatorname{E}_\nu(z) = \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t, which explains the name. The representation as an incomplete gamma function provides an analytic continuation for $\operatorname{E}_\nu(z)$. If $\nu$ is a non-positive integer, the exponential integral is thus an unbranched function of $z$, otherwise there is a branch point at the origin. Refer to the incomplete gamma function documentation for details of the branching behavior. Examples ======== >>> from sympy import expint, S >>> from sympy.abc import nu, z Differentiation is supported. Differentiation with respect to $z$ further explains the name: for integral orders, the exponential integral is an iterated integral of the exponential function. >>> expint(nu, z).diff(z) -expint(nu - 1, z) Differentiation with respect to $\nu$ has no classical expression: >>> expint(nu, z).diff(nu) -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z) At non-postive integer orders, the exponential integral reduces to the exponential function: >>> expint(0, z) exp(-z)/z >>> expint(-1, z) exp(-z)/z + exp(-z)/z**2 At half-integers it reduces to error functions: >>> expint(S(1)/2, z) sqrt(pi)*erfc(sqrt(z))/sqrt(z) At positive integer orders it can be rewritten in terms of exponentials and ``expint(1, z)``. Use ``expand_func()`` to do this: >>> from sympy import expand_func >>> expand_func(expint(5, z)) z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24 The generalised exponential integral is essentially equivalent to the incomplete gamma function: >>> from sympy import uppergamma >>> expint(nu, z).rewrite(uppergamma) z**(nu - 1)*uppergamma(1 - nu, z) As such it is branched at the origin: >>> from sympy import exp_polar, pi, I >>> expint(4, z*exp_polar(2*pi*I)) I*pi*z**3/3 + expint(4, z) >>> expint(nu, z*exp_polar(2*pi*I)) z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z) See Also ======== Ei: Another related function called exponential integral. E1: The classical case, returns expint(1, z). li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. uppergamma References ========== .. [1] http://dlmf.nist.gov/8.19 .. [2] http://functions.wolfram.com/GammaBetaErf/ExpIntegralE/ .. [3] https://en.wikipedia.org/wiki/Exponential_integral """ @classmethod def eval(cls, nu, z): from sympy import (unpolarify, expand_mul, uppergamma, exp, gamma, factorial) nu2 = unpolarify(nu) if nu != nu2: return expint(nu2, z) if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer): return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z))) # Extract branching information. This can be deduced from what is # explained in lowergamma.eval(). z, n = z.extract_branch_factor() if n is S.Zero: return if nu.is_integer: if not nu > 0: return return expint(nu, z) \ - 2*pi*I*n*(-1)**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1) else: return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z) def fdiff(self, argindex): from sympy import meijerg nu, z = self.args if argindex == 1: return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z) elif argindex == 2: return -expint(nu - 1, z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs): from sympy import uppergamma return z**(nu - 1)*uppergamma(1 - nu, z) def _eval_rewrite_as_Ei(self, nu, z, **kwargs): from sympy import exp_polar, unpolarify, exp, factorial if nu == 1: return -Ei(z*exp_polar(-I*pi)) - I*pi elif nu.is_Integer and nu > 1: # DLMF, 8.19.7 x = -unpolarify(z) return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \ exp(x)/factorial(nu - 1) * \ Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)]) else: return self def _eval_expand_func(self, **hints): return self.rewrite(Ei).rewrite(expint, **hints) def _eval_rewrite_as_Si(self, nu, z, **kwargs): if nu != 1: return self return Shi(z) - Chi(z) _eval_rewrite_as_Ci = _eval_rewrite_as_Si _eval_rewrite_as_Chi = _eval_rewrite_as_Si _eval_rewrite_as_Shi = _eval_rewrite_as_Si def _eval_nseries(self, x, n, logx): if not self.args[0].has(x): nu = self.args[0] if nu == 1: f = self._eval_rewrite_as_Si(*self.args) return f._eval_nseries(x, n, logx) elif nu.is_Integer and nu > 1: f = self._eval_rewrite_as_Ei(*self.args) return f._eval_nseries(x, n, logx) return super(expint, self)._eval_nseries(x, n, logx) def _sage_(self): import sage.all as sage return sage.exp_integral_e(self.args[0]._sage_(), self.args[1]._sage_()) def E1(z): """ Classical case of the generalized exponential integral. Explanation =========== This is equivalent to ``expint(1, z)``. See Also ======== Ei: Exponential integral. expint: Generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. """ return expint(1, z) class li(Function): r""" The classical logarithmic integral. Explanation =========== For use in SymPy, this function is defined as .. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,. Examples ======== >>> from sympy import I, oo, li >>> from sympy.abc import z Several special values are known: >>> li(0) 0 >>> li(1) -oo >>> li(oo) oo Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(li(z), z) 1/log(z) Defining the ``li`` function via an integral: The logarithmic integral can also be defined in terms of ``Ei``: >>> from sympy import Ei >>> li(z).rewrite(Ei) Ei(log(z)) >>> diff(li(z).rewrite(Ei), z) 1/log(z) We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points): >>> li(2).evalf(30) 1.04516378011749278484458888919 >>> li(2*I).evalf(30) 1.0652795784357498247001125598 + 3.08346052231061726610939702133*I We can even compute Soldner's constant by the help of mpmath: >>> from mpmath import findroot >>> findroot(li, 2) 1.45136923488338 Further transformations include rewriting ``li`` in terms of the trigonometric integrals ``Si``, ``Ci``, ``Shi`` and ``Chi``: >>> from sympy import Si, Ci, Shi, Chi >>> li(z).rewrite(Si) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Ci) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Shi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) >>> li(z).rewrite(Chi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) See Also ======== Li: Offset logarithmic integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral .. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html .. [3] http://dlmf.nist.gov/6 .. [4] http://mathworld.wolfram.com/SoldnersConstant.html """ @classmethod def eval(cls, z): if z.is_zero: return S.Zero elif z is S.One: return S.NegativeInfinity elif z is S.Infinity: return S.Infinity if z.is_zero: return S.Zero def fdiff(self, argindex=1): arg = self.args[0] if argindex == 1: return S.One / log(arg) else: raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): z = self.args[0] # Exclude values on the branch cut (-oo, 0) if not z.is_extended_negative: return self.func(z.conjugate()) def _eval_rewrite_as_Li(self, z, **kwargs): return Li(z) + li(2) def _eval_rewrite_as_Ei(self, z, **kwargs): return Ei(log(z)) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return (-uppergamma(0, -log(z)) + S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z))) def _eval_rewrite_as_Si(self, z, **kwargs): return (Ci(I*log(z)) - I*Si(I*log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z))) _eval_rewrite_as_Ci = _eval_rewrite_as_Si def _eval_rewrite_as_Shi(self, z, **kwargs): return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))) _eval_rewrite_as_Chi = _eval_rewrite_as_Shi def _eval_rewrite_as_hyper(self, z, **kwargs): return (log(z)*hyper((1, 1), (2, 2), log(z)) + S.Half*(log(log(z)) - log(S.One/log(z))) + S.EulerGamma) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))) - meijerg(((), (1,)), ((0, 0), ()), -log(z))) def _eval_rewrite_as_tractable(self, z, **kwargs): return z * _eis(log(z)) def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True class Li(Function): r""" The offset logarithmic integral. Explanation =========== For use in SymPy, this function is defined as .. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2) Examples ======== >>> from sympy import I, oo, Li >>> from sympy.abc import z The following special value is known: >>> Li(2) 0 Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(Li(z), z) 1/log(z) The shifted logarithmic integral can be written in terms of $li(z)$: >>> from sympy import li >>> Li(z).rewrite(li) li(z) - li(2) We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points): >>> Li(2).evalf(30) 0 >>> Li(4).evalf(30) 1.92242131492155809316615998938 See Also ======== li: Logarithmic integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral .. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html .. [3] http://dlmf.nist.gov/6 """ @classmethod def eval(cls, z): if z is S.Infinity: return S.Infinity elif z == S(2): return S.Zero def fdiff(self, argindex=1): arg = self.args[0] if argindex == 1: return S.One / log(arg) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): return self.rewrite(li).evalf(prec) def _eval_rewrite_as_li(self, z, **kwargs): return li(z) - li(2) def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(li).rewrite("tractable", deep=True) ############################################################################### #################### TRIGONOMETRIC INTEGRALS ################################## ############################################################################### class TrigonometricIntegral(Function): """ Base class for trigonometric integrals. """ @classmethod def eval(cls, z): if z is S.Zero: return cls._atzero elif z is S.Infinity: return cls._atinf() elif z is S.NegativeInfinity: return cls._atneginf() if z.is_zero: return cls._atzero nz = z.extract_multiplicatively(polar_lift(I)) if nz is None and cls._trigfunc(0) == 0: nz = z.extract_multiplicatively(I) if nz is not None: return cls._Ifactor(nz, 1) nz = z.extract_multiplicatively(polar_lift(-I)) if nz is not None: return cls._Ifactor(nz, -1) nz = z.extract_multiplicatively(polar_lift(-1)) if nz is None and cls._trigfunc(0) == 0: nz = z.extract_multiplicatively(-1) if nz is not None: return cls._minusfactor(nz) nz, n = z.extract_branch_factor() if n == 0 and nz == z: return return 2*pi*I*n*cls._trigfunc(0) + cls(nz) def fdiff(self, argindex=1): from sympy import unpolarify arg = unpolarify(self.args[0]) if argindex == 1: return self._trigfunc(arg)/arg else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Ei(self, z, **kwargs): return self._eval_rewrite_as_expint(z).rewrite(Ei) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return self._eval_rewrite_as_expint(z).rewrite(uppergamma) def _eval_nseries(self, x, n, logx): # NOTE this is fairly inefficient from sympy import log, EulerGamma, Pow n += 1 if self.args[0].subs(x, 0) != 0: return super(TrigonometricIntegral, self)._eval_nseries(x, n, logx) baseseries = self._trigfunc(x)._eval_nseries(x, n, logx) if self._trigfunc(0) != 0: baseseries -= 1 baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False) if self._trigfunc(0) != 0: baseseries += EulerGamma + log(x) return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx) class Si(TrigonometricIntegral): r""" Sine integral. Explanation =========== This function is defined by .. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import Si >>> from sympy.abc import z The sine integral is an antiderivative of $sin(z)/z$: >>> Si(z).diff(z) sin(z)/z It is unbranched: >>> from sympy import exp_polar, I, pi >>> Si(z*exp_polar(2*I*pi)) Si(z) Sine integral behaves much like ordinary sine under multiplication by ``I``: >>> Si(I*z) I*Shi(z) >>> Si(-z) -Si(z) It can also be expressed in terms of exponential integrals, but beware that the latter is branched: >>> from sympy import expint >>> Si(z).rewrite(expint) -I*(-expint(1, z*exp_polar(-I*pi/2))/2 + expint(1, z*exp_polar(I*pi/2))/2) + pi/2 It can be rewritten in the form of sinc function (by definition): >>> from sympy import sinc >>> Si(z).rewrite(sinc) Integral(sinc(t), (t, 0, z)) See Also ======== Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. sinc: unnormalized sinc function E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = sin _atzero = S.Zero @classmethod def _atinf(cls): return pi*S.Half @classmethod def _atneginf(cls): return -pi*S.Half @classmethod def _minusfactor(cls, z): return -Si(z) @classmethod def _Ifactor(cls, z, sign): return I*Shi(z)*sign def _eval_rewrite_as_expint(self, z, **kwargs): # XXX should we polarify z? return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I def _eval_rewrite_as_sinc(self, z, **kwargs): from sympy import Integral t = Symbol('t', Dummy=True) return Integral(sinc(t), (t, 0, z)) def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True def _sage_(self): import sage.all as sage return sage.sin_integral(self.args[0]._sage_()) class Ci(TrigonometricIntegral): r""" Cosine integral. Explanation =========== This function is defined for positive $x$ by .. math:: \operatorname{Ci}(x) = \gamma + \log{x} + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t, where $\gamma$ is the Euler-Mascheroni constant. We have .. math:: \operatorname{Ci}(z) = -\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right) + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2} which holds for all polar $z$ and thus provides an analytic continuation to the Riemann surface of the logarithm. The formula also holds as stated for $z \in \mathbb{C}$ with $\Re(z) > 0$. By lifting to the principal branch, we obtain an analytic function on the cut complex plane. Examples ======== >>> from sympy import Ci >>> from sympy.abc import z The cosine integral is a primitive of $\cos(z)/z$: >>> Ci(z).diff(z) cos(z)/z It has a logarithmic branch point at the origin: >>> from sympy import exp_polar, I, pi >>> Ci(z*exp_polar(2*I*pi)) Ci(z) + 2*I*pi The cosine integral behaves somewhat like ordinary $\cos$ under multiplication by $i$: >>> from sympy import polar_lift >>> Ci(polar_lift(I)*z) Chi(z) + I*pi/2 >>> Ci(polar_lift(-1)*z) Ci(z) + I*pi It can also be expressed in terms of exponential integrals: >>> from sympy import expint >>> Ci(z).rewrite(expint) -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2 See Also ======== Si: Sine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = cos _atzero = S.ComplexInfinity @classmethod def _atinf(cls): return S.Zero @classmethod def _atneginf(cls): return I*pi @classmethod def _minusfactor(cls, z): return Ci(z) + I*pi @classmethod def _Ifactor(cls, z, sign): return Chi(z) + I*pi/2*sign def _eval_rewrite_as_expint(self, z, **kwargs): return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2 def _sage_(self): import sage.all as sage return sage.cos_integral(self.args[0]._sage_()) class Shi(TrigonometricIntegral): r""" Sinh integral. Explanation =========== This function is defined by .. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import Shi >>> from sympy.abc import z The Sinh integral is a primitive of $\sinh(z)/z$: >>> Shi(z).diff(z) sinh(z)/z It is unbranched: >>> from sympy import exp_polar, I, pi >>> Shi(z*exp_polar(2*I*pi)) Shi(z) The $\sinh$ integral behaves much like ordinary $\sinh$ under multiplication by $i$: >>> Shi(I*z) I*Si(z) >>> Shi(-z) -Shi(z) It can also be expressed in terms of exponential integrals, but beware that the latter is branched: >>> from sympy import expint >>> Shi(z).rewrite(expint) expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 See Also ======== Si: Sine integral. Ci: Cosine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = sinh _atzero = S.Zero @classmethod def _atinf(cls): return S.Infinity @classmethod def _atneginf(cls): return S.NegativeInfinity @classmethod def _minusfactor(cls, z): return -Shi(z) @classmethod def _Ifactor(cls, z, sign): return I*Si(z)*sign def _eval_rewrite_as_expint(self, z, **kwargs): from sympy import exp_polar # XXX should we polarify z? return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2 def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True def _sage_(self): import sage.all as sage return sage.sinh_integral(self.args[0]._sage_()) class Chi(TrigonometricIntegral): r""" Cosh integral. Explanation =========== This function is defined for positive $x$ by .. math:: \operatorname{Chi}(x) = \gamma + \log{x} + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t, where $\gamma$ is the Euler-Mascheroni constant. We have .. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right) - i\frac{\pi}{2}, which holds for all polar $z$ and thus provides an analytic continuation to the Riemann surface of the logarithm. By lifting to the principal branch we obtain an analytic function on the cut complex plane. Examples ======== >>> from sympy import Chi >>> from sympy.abc import z The $\cosh$ integral is a primitive of $\cosh(z)/z$: >>> Chi(z).diff(z) cosh(z)/z It has a logarithmic branch point at the origin: >>> from sympy import exp_polar, I, pi >>> Chi(z*exp_polar(2*I*pi)) Chi(z) + 2*I*pi The $\cosh$ integral behaves somewhat like ordinary $\cosh$ under multiplication by $i$: >>> from sympy import polar_lift >>> Chi(polar_lift(I)*z) Ci(z) + I*pi/2 >>> Chi(polar_lift(-1)*z) Chi(z) + I*pi It can also be expressed in terms of exponential integrals: >>> from sympy import expint >>> Chi(z).rewrite(expint) -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 See Also ======== Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = cosh _atzero = S.ComplexInfinity @classmethod def _atinf(cls): return S.Infinity @classmethod def _atneginf(cls): return S.Infinity @classmethod def _minusfactor(cls, z): return Chi(z) + I*pi @classmethod def _Ifactor(cls, z, sign): return Ci(z) + I*pi/2*sign def _eval_rewrite_as_expint(self, z, **kwargs): from sympy import exp_polar return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2 def _sage_(self): import sage.all as sage return sage.cosh_integral(self.args[0]._sage_()) ############################################################################### #################### FRESNEL INTEGRALS ######################################## ############################################################################### class FresnelIntegral(Function): """ Base class for the Fresnel integrals.""" unbranched = True @classmethod def eval(cls, z): # Values at positive infinities signs # if any were extracted automatically if z is S.Infinity: return S.Half # Value at zero if z.is_zero: return S.Zero # Try to pull out factors of -1 and I prefact = S.One newarg = z changed = False nz = newarg.extract_multiplicatively(-1) if nz is not None: prefact = -prefact newarg = nz changed = True nz = newarg.extract_multiplicatively(I) if nz is not None: prefact = cls._sign*I*prefact newarg = nz changed = True if changed: return prefact*cls(newarg) def fdiff(self, argindex=1): if argindex == 1: return self._trigfunc(S.Half*pi*self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_extended_real(self): return self.args[0].is_extended_real _eval_is_finite = _eval_is_extended_real def _eval_is_zero(self): z = self.args[0] if z.is_zero: return True def _eval_conjugate(self): return self.func(self.args[0].conjugate()) as_real_imag = real_to_real_as_real_imag class fresnels(FresnelIntegral): r""" Fresnel integral S. Explanation =========== This function is defined by .. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import I, oo, fresnels >>> from sympy.abc import z Several special values are known: >>> fresnels(0) 0 >>> fresnels(oo) 1/2 >>> fresnels(-oo) -1/2 >>> fresnels(I*oo) -I/2 >>> fresnels(-I*oo) I/2 In general one can pull out factors of -1 and $i$ from the argument: >>> fresnels(-z) -fresnels(z) >>> fresnels(I*z) -I*fresnels(z) The Fresnel S integral obeys the mirror symmetry $\overline{S(z)} = S(\bar{z})$: >>> from sympy import conjugate >>> conjugate(fresnels(z)) fresnels(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(fresnels(z), z) sin(pi*z**2/2) Defining the Fresnel functions via an integral: >>> from sympy import integrate, pi, sin, gamma, expand_func >>> integrate(sin(pi*z**2/2), z) 3*fresnels(z)*gamma(3/4)/(4*gamma(7/4)) >>> expand_func(integrate(sin(pi*z**2/2), z)) fresnels(z) We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane: >>> fresnels(2).evalf(30) 0.343415678363698242195300815958 >>> fresnels(-2*I).evalf(30) 0.343415678363698242195300815958*I See Also ======== fresnelc: Fresnel cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Fresnel_integral .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/FresnelIntegrals.html .. [4] http://functions.wolfram.com/GammaBetaErf/FresnelS .. [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley """ _trigfunc = sin _sign = -S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p else: return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1)) def _eval_rewrite_as_erf(self, z, **kwargs): return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z)) def _eval_rewrite_as_hyper(self, z, **kwargs): return pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (pi*z**Rational(9, 4) / (sqrt(2)*(z**2)**Rational(3, 4)*(-z)**Rational(3, 4)) * meijerg([], [1], [Rational(3, 4)], [Rational(1, 4), 0], -pi**2*z**4/16)) def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo and -oo if point in [S.Infinity, -S.Infinity]: z = self.args[0] # expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8 # as only real infinities are dealt with, sin and cos are O(1) p = [(-1)**k * factorial(4*k + 1) / (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) for k in range(0, n) if 4*k + 3 < n] q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) / (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) for k in range(1, n) if 4*k + 1 < n] p = [-sqrt(2/pi)*t for t in p] q = [-sqrt(2/pi)*t for t in q] s = 1 if point is S.Infinity else -1 # The expansion at oo is 1/2 + some odd powers of z # To get the expansion at -oo, replace z by -z and flip the sign # The result -1/2 + the same odd powers of z as before. return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q) ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) # All other points are not handled return super(fresnels, self)._eval_aseries(n, args0, x, logx) class fresnelc(FresnelIntegral): r""" Fresnel integral C. Explanation =========== This function is defined by .. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import I, oo, fresnelc >>> from sympy.abc import z Several special values are known: >>> fresnelc(0) 0 >>> fresnelc(oo) 1/2 >>> fresnelc(-oo) -1/2 >>> fresnelc(I*oo) I/2 >>> fresnelc(-I*oo) -I/2 In general one can pull out factors of -1 and $i$ from the argument: >>> fresnelc(-z) -fresnelc(z) >>> fresnelc(I*z) I*fresnelc(z) The Fresnel C integral obeys the mirror symmetry $\overline{C(z)} = C(\bar{z})$: >>> from sympy import conjugate >>> conjugate(fresnelc(z)) fresnelc(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(fresnelc(z), z) cos(pi*z**2/2) Defining the Fresnel functions via an integral: >>> from sympy import integrate, pi, cos, gamma, expand_func >>> integrate(cos(pi*z**2/2), z) fresnelc(z)*gamma(1/4)/(4*gamma(5/4)) >>> expand_func(integrate(cos(pi*z**2/2), z)) fresnelc(z) We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane: >>> fresnelc(2).evalf(30) 0.488253406075340754500223503357 >>> fresnelc(-2*I).evalf(30) -0.488253406075340754500223503357*I See Also ======== fresnels: Fresnel sine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Fresnel_integral .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/FresnelIntegrals.html .. [4] http://functions.wolfram.com/GammaBetaErf/FresnelC .. [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley """ _trigfunc = cos _sign = S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p else: return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n)) def _eval_rewrite_as_erf(self, z, **kwargs): return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z)) def _eval_rewrite_as_hyper(self, z, **kwargs): return z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (pi*z**Rational(3, 4) / (sqrt(2)*root(z**2, 4)*root(-z, 4)) * meijerg([], [1], [Rational(1, 4)], [Rational(3, 4), 0], -pi**2*z**4/16)) def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo if point in [S.Infinity, -S.Infinity]: z = self.args[0] # expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8 # as only real infinities are dealt with, sin and cos are O(1) p = [(-1)**k * factorial(4*k + 1) / (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) for k in range(0, n) if 4*k + 3 < n] q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) / (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) for k in range(1, n) if 4*k + 1 < n] p = [-sqrt(2/pi)*t for t in p] q = [ sqrt(2/pi)*t for t in q] s = 1 if point is S.Infinity else -1 # The expansion at oo is 1/2 + some odd powers of z # To get the expansion at -oo, replace z by -z and flip the sign # The result -1/2 + the same odd powers of z as before. return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q) ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) # All other points are not handled return super(fresnelc, self)._eval_aseries(n, args0, x, logx) ############################################################################### #################### HELPER FUNCTIONS ######################################### ############################################################################### class _erfs(Function): """ Helper function to make the $\\mathrm{erf}(z)$ function tractable for the Gruntz algorithm. """ def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo if point is S.Infinity: z = self.args[0] l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S( 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ] o = Order(1/z**(2*n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o # Expansion at I*oo t = point.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity: z = self.args[0] # TODO: is the series really correct? l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S( 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ] o = Order(1/z**(2*n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o # All other points are not handled return super(_erfs, self)._eval_aseries(n, args0, x, logx) def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -2/sqrt(S.Pi) + 2*z*_erfs(z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_intractable(self, z, **kwargs): return (S.One - erf(z))*exp(z**2) class _eis(Function): """ Helper function to make the $\\mathrm{Ei}(z)$ and $\\mathrm{li}(z)$ functions tractable for the Gruntz algorithm. """ def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[0] != S.Infinity: return super(_erfs, self)._eval_aseries(n, args0, x, logx) z = self.args[0] l = [ factorial(k) * (1/z)**(k + 1) for k in range(0, n) ] o = Order(1/z**(n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return S.One / z - _eis(z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_intractable(self, z, **kwargs): return exp(-z)*Ei(z) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if x0.is_zero: f = self._eval_rewrite_as_intractable(*self.args) return f._eval_nseries(x, n, logx) return super(_eis, self)._eval_nseries(x, n, logx)
f958aef82fe5919bae7481861f8e1aa40fd629b47f27a473ee11705b85fe154f
""" This module mainly implements special orthogonal polynomials. See also functions.combinatorial.numbers which contains some combinatorial polynomials. """ from __future__ import print_function, division from sympy.core import Rational from sympy.core.function import Function, ArgumentIndexError from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.functions.combinatorial.factorials import binomial, factorial, RisingFactorial from sympy.functions.elementary.complexes import re from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos, sec from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper from sympy.polys.orthopolys import ( jacobi_poly, gegenbauer_poly, chebyshevt_poly, chebyshevu_poly, laguerre_poly, hermite_poly, legendre_poly ) _x = Dummy('x') class OrthogonalPolynomial(Function): """Base class for orthogonal polynomials. """ @classmethod def _eval_at_order(cls, n, x): if n.is_integer and n >= 0: return cls._ortho_poly(int(n), _x).subs(_x, x) def _eval_conjugate(self): return self.func(self.args[0], self.args[1].conjugate()) #---------------------------------------------------------------------------- # Jacobi polynomials # class jacobi(OrthogonalPolynomial): r""" Jacobi polynomial $P_n^{\left(\alpha, \beta\right)}(x)$. Explanation =========== ``jacobi(n, alpha, beta, x)`` gives the nth Jacobi polynomial in x, $P_n^{\left(\alpha, \beta\right)}(x)$. The Jacobi polynomials are orthogonal on $[-1, 1]$ with respect to the weight $\left(1-x\right)^\alpha \left(1+x\right)^\beta$. Examples ======== >>> from sympy import jacobi, S, conjugate, diff >>> from sympy.abc import a, b, n, x >>> jacobi(0, a, b, x) 1 >>> jacobi(1, a, b, x) a/2 - b/2 + x*(a/2 + b/2 + 1) >>> jacobi(2, a, b, x) a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 + b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2 >>> jacobi(n, a, b, x) jacobi(n, a, b, x) >>> jacobi(n, a, a, x) RisingFactorial(a + 1, n)*gegenbauer(n, a + 1/2, x)/RisingFactorial(2*a + 1, n) >>> jacobi(n, 0, 0, x) legendre(n, x) >>> jacobi(n, S(1)/2, S(1)/2, x) RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1) >>> jacobi(n, -S(1)/2, -S(1)/2, x) RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n) >>> jacobi(n, a, b, -x) (-1)**n*jacobi(n, b, a, x) >>> jacobi(n, a, b, 0) 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1)) >>> jacobi(n, a, b, 1) RisingFactorial(a + 1, n)/factorial(n) >>> conjugate(jacobi(n, a, b, x)) jacobi(n, conjugate(a), conjugate(b), conjugate(x)) >>> diff(jacobi(n,a,b,x), x) (a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x) See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ @classmethod def eval(cls, n, a, b, x): # Simplify to other polynomials # P^{a, a}_n(x) if a == b: if a == Rational(-1, 2): return RisingFactorial(S.Half, n) / factorial(n) * chebyshevt(n, x) elif a.is_zero: return legendre(n, x) elif a == S.Half: return RisingFactorial(3*S.Half, n) / factorial(n + 1) * chebyshevu(n, x) else: return RisingFactorial(a + 1, n) / RisingFactorial(2*a + 1, n) * gegenbauer(n, a + S.Half, x) elif b == -a: # P^{a, -a}_n(x) return gamma(n + a + 1) / gamma(n + 1) * (1 + x)**(a/2) / (1 - x)**(a/2) * assoc_legendre(n, -a, x) if not n.is_Number: # Symbolic result P^{a,b}_n(x) # P^{a,b}_n(-x) ---> (-1)**n * P^{b,a}_n(-x) if x.could_extract_minus_sign(): return S.NegativeOne**n * jacobi(n, b, a, -x) # We can evaluate for some special values of x if x.is_zero: return (2**(-n) * gamma(a + n + 1) / (gamma(a + 1) * factorial(n)) * hyper([-b - n, -n], [a + 1], -1)) if x == S.One: return RisingFactorial(a + 1, n) / factorial(n) elif x is S.Infinity: if n.is_positive: # Make sure a+b+2*n \notin Z if (a + b + 2*n).is_integer: raise ValueError("Error. a + b + 2*n should not be an integer.") return RisingFactorial(a + b + n + 1, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return jacobi_poly(n, a, b, x) def fdiff(self, argindex=4): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt a n, a, b, x = self.args k = Dummy("k") f1 = 1 / (a + b + n + k + 1) f2 = ((a + b + 2*k + 1) * RisingFactorial(b + k + 1, n - k) / ((n - k) * RisingFactorial(a + b + k + 1, n - k))) return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) elif argindex == 3: # Diff wrt b n, a, b, x = self.args k = Dummy("k") f1 = 1 / (a + b + n + k + 1) f2 = (-1)**(n - k) * ((a + b + 2*k + 1) * RisingFactorial(a + k + 1, n - k) / ((n - k) * RisingFactorial(a + b + k + 1, n - k))) return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) elif argindex == 4: # Diff wrt x n, a, b, x = self.args return S.Half * (a + b + n + 1) * jacobi(n - 1, a + 1, b + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, a, b, x, **kwargs): from sympy import Sum # Make sure n \in N if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = (RisingFactorial(-n, k) * RisingFactorial(a + b + n + 1, k) * RisingFactorial(a + k + 1, n - k) / factorial(k) * ((1 - x)/2)**k) return 1 / factorial(n) * Sum(kern, (k, 0, n)) def _eval_conjugate(self): n, a, b, x = self.args return self.func(n, a.conjugate(), b.conjugate(), x.conjugate()) def jacobi_normalized(n, a, b, x): r""" Jacobi polynomial $P_n^{\left(\alpha, \beta\right)}(x)$. Explanation =========== ``jacobi_normalized(n, alpha, beta, x)`` gives the nth Jacobi polynomial in *x*, $P_n^{\left(\alpha, \beta\right)}(x)$. The Jacobi polynomials are orthogonal on $[-1, 1]$ with respect to the weight $\left(1-x\right)^\alpha \left(1+x\right)^\beta$. This functions returns the polynomials normilzed: .. math:: \int_{-1}^{1} P_m^{\left(\alpha, \beta\right)}(x) P_n^{\left(\alpha, \beta\right)}(x) (1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x = \delta_{m,n} Examples ======== >>> from sympy import jacobi_normalized >>> from sympy.abc import n,a,b,x >>> jacobi_normalized(n, a, b, x) jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))) See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ nfactor = (S(2)**(a + b + 1) * (gamma(n + a + 1) * gamma(n + b + 1)) / (2*n + a + b + 1) / (factorial(n) * gamma(n + a + b + 1))) return jacobi(n, a, b, x) / sqrt(nfactor) #---------------------------------------------------------------------------- # Gegenbauer polynomials # class gegenbauer(OrthogonalPolynomial): r""" Gegenbauer polynomial $C_n^{\left(\alpha\right)}(x)$. Explanation =========== ``gegenbauer(n, alpha, x)`` gives the nth Gegenbauer polynomial in x, $C_n^{\left(\alpha\right)}(x)$. The Gegenbauer polynomials are orthogonal on $[-1, 1]$ with respect to the weight $\left(1-x^2\right)^{\alpha-\frac{1}{2}}$. Examples ======== >>> from sympy import gegenbauer, conjugate, diff >>> from sympy.abc import n,a,x >>> gegenbauer(0, a, x) 1 >>> gegenbauer(1, a, x) 2*a*x >>> gegenbauer(2, a, x) -a + x**2*(2*a**2 + 2*a) >>> gegenbauer(3, a, x) x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a) >>> gegenbauer(n, a, x) gegenbauer(n, a, x) >>> gegenbauer(n, a, -x) (-1)**n*gegenbauer(n, a, x) >>> gegenbauer(n, a, 0) 2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(1/2 - n/2)*gamma(n + 1)) >>> gegenbauer(n, a, 1) gamma(2*a + n)/(gamma(2*a)*gamma(n + 1)) >>> conjugate(gegenbauer(n, a, x)) gegenbauer(n, conjugate(a), conjugate(x)) >>> diff(gegenbauer(n, a, x), x) 2*a*gegenbauer(n - 1, a + 1, x) See Also ======== jacobi, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Gegenbauer_polynomials .. [2] http://mathworld.wolfram.com/GegenbauerPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/GegenbauerC3/ """ @classmethod def eval(cls, n, a, x): # For negative n the polynomials vanish # See http://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/ if n.is_negative: return S.Zero # Some special values for fixed a if a == S.Half: return legendre(n, x) elif a == S.One: return chebyshevu(n, x) elif a == S.NegativeOne: return S.Zero if not n.is_Number: # Handle this before the general sign extraction rule if x == S.NegativeOne: if (re(a) > S.Half) == True: return S.ComplexInfinity else: return (cos(S.Pi*(a+n)) * sec(S.Pi*a) * gamma(2*a+n) / (gamma(2*a) * gamma(n+1))) # Symbolic result C^a_n(x) # C^a_n(-x) ---> (-1)**n * C^a_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * gegenbauer(n, a, -x) # We can evaluate for some special values of x if x.is_zero: return (2**n * sqrt(S.Pi) * gamma(a + S.Half*n) / (gamma((1 - n)/2) * gamma(n + 1) * gamma(a)) ) if x == S.One: return gamma(2*a + n) / (gamma(2*a) * gamma(n + 1)) elif x is S.Infinity: if n.is_positive: return RisingFactorial(a, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return gegenbauer_poly(n, a, x) def fdiff(self, argindex=3): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt a n, a, x = self.args k = Dummy("k") factor1 = 2 * (1 + (-1)**(n - k)) * (k + a) / ((k + n + 2*a) * (n - k)) factor2 = 2*(k + 1) / ((k + 2*a) * (2*k + 2*a + 1)) + \ 2 / (k + n + 2*a) kern = factor1*gegenbauer(k, a, x) + factor2*gegenbauer(n, a, x) return Sum(kern, (k, 0, n - 1)) elif argindex == 3: # Diff wrt x n, a, x = self.args return 2*a*gegenbauer(n - 1, a + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, a, x, **kwargs): from sympy import Sum k = Dummy("k") kern = ((-1)**k * RisingFactorial(a, n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k))) return Sum(kern, (k, 0, floor(n/2))) def _eval_conjugate(self): n, a, x = self.args return self.func(n, a.conjugate(), x.conjugate()) #---------------------------------------------------------------------------- # Chebyshev polynomials of first and second kind # class chebyshevt(OrthogonalPolynomial): r""" Chebyshev polynomial of the first kind, $T_n(x)$. Explanation =========== ``chebyshevt(n, x)`` gives the nth Chebyshev polynomial (of the first kind) in x, $T_n(x)$. The Chebyshev polynomials of the first kind are orthogonal on $[-1, 1]$ with respect to the weight $\frac{1}{\sqrt{1-x^2}}$. Examples ======== >>> from sympy import chebyshevt, chebyshevu, diff >>> from sympy.abc import n,x >>> chebyshevt(0, x) 1 >>> chebyshevt(1, x) x >>> chebyshevt(2, x) 2*x**2 - 1 >>> chebyshevt(n, x) chebyshevt(n, x) >>> chebyshevt(n, -x) (-1)**n*chebyshevt(n, x) >>> chebyshevt(-n, x) chebyshevt(n, x) >>> chebyshevt(n, 0) cos(pi*n/2) >>> chebyshevt(n, -1) (-1)**n >>> diff(chebyshevt(n, x), x) n*chebyshevu(n - 1, x) See Also ======== jacobi, gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial .. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html .. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html .. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/ .. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/ """ _ortho_poly = staticmethod(chebyshevt_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result T_n(x) # T_n(-x) ---> (-1)**n * T_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * chebyshevt(n, -x) # T_{-n}(x) ---> T_n(x) if n.could_extract_minus_sign(): return chebyshevt(-n, x) # We can evaluate for some special values of x if x.is_zero: return cos(S.Half * S.Pi * n) if x == S.One: return S.One elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: # T_{-n}(x) == T_n(x) return cls._eval_at_order(-n, x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return n * chebyshevu(n - 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = binomial(n, 2*k) * (x**2 - 1)**k * x**(n - 2*k) return Sum(kern, (k, 0, floor(n/2))) class chebyshevu(OrthogonalPolynomial): r""" Chebyshev polynomial of the second kind, $U_n(x)$. Explanation =========== ``chebyshevu(n, x)`` gives the nth Chebyshev polynomial of the second kind in x, $U_n(x)$. The Chebyshev polynomials of the second kind are orthogonal on $[-1, 1]$ with respect to the weight $\sqrt{1-x^2}$. Examples ======== >>> from sympy import chebyshevt, chebyshevu, diff >>> from sympy.abc import n,x >>> chebyshevu(0, x) 1 >>> chebyshevu(1, x) 2*x >>> chebyshevu(2, x) 4*x**2 - 1 >>> chebyshevu(n, x) chebyshevu(n, x) >>> chebyshevu(n, -x) (-1)**n*chebyshevu(n, x) >>> chebyshevu(-n, x) -chebyshevu(n - 2, x) >>> chebyshevu(n, 0) cos(pi*n/2) >>> chebyshevu(n, 1) n + 1 >>> diff(chebyshevu(n, x), x) (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial .. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html .. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html .. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/ .. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/ """ _ortho_poly = staticmethod(chebyshevu_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result U_n(x) # U_n(-x) ---> (-1)**n * U_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * chebyshevu(n, -x) # U_{-n}(x) ---> -U_{n-2}(x) if n.could_extract_minus_sign(): if n == S.NegativeOne: # n can not be -1 here return S.Zero elif not (-n - 2).could_extract_minus_sign(): return -chebyshevu(-n - 2, x) # We can evaluate for some special values of x if x.is_zero: return cos(S.Half * S.Pi * n) if x == S.One: return S.One + n elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: # U_{-n}(x) ---> -U_{n-2}(x) if n == S.NegativeOne: return S.Zero else: return -cls._eval_at_order(-n - 2, x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return ((n + 1) * chebyshevt(n + 1, x) - x * chebyshevu(n, x)) / (x**2 - 1) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = S.NegativeOne**k * factorial( n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k)) return Sum(kern, (k, 0, floor(n/2))) class chebyshevt_root(Function): r""" ``chebyshev_root(n, k)`` returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the first kind; that is, if 0 <= k < n, ``chebyshevt(n, chebyshevt_root(n, k)) == 0``. Examples ======== >>> from sympy import chebyshevt, chebyshevt_root >>> chebyshevt_root(3, 2) -sqrt(3)/2 >>> chebyshevt(3, chebyshevt_root(3, 2)) 0 See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly """ @classmethod def eval(cls, n, k): if not ((0 <= k) and (k < n)): raise ValueError("must have 0 <= k < n, " "got k = %s and n = %s" % (k, n)) return cos(S.Pi*(2*k + 1)/(2*n)) class chebyshevu_root(Function): r""" ``chebyshevu_root(n, k)`` returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the second kind; that is, if 0 <= k < n, ``chebyshevu(n, chebyshevu_root(n, k)) == 0``. Examples ======== >>> from sympy import chebyshevu, chebyshevu_root >>> chebyshevu_root(3, 2) -sqrt(2)/2 >>> chebyshevu(3, chebyshevu_root(3, 2)) 0 See Also ======== chebyshevt, chebyshevt_root, chebyshevu, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly """ @classmethod def eval(cls, n, k): if not ((0 <= k) and (k < n)): raise ValueError("must have 0 <= k < n, " "got k = %s and n = %s" % (k, n)) return cos(S.Pi*(k + 1)/(n + 1)) #---------------------------------------------------------------------------- # Legendre polynomials and Associated Legendre polynomials # class legendre(OrthogonalPolynomial): r""" ``legendre(n, x)`` gives the nth Legendre polynomial of x, $P_n(x)$ Explanation =========== The Legendre polynomials are orthogonal on [-1, 1] with respect to the constant weight 1. They satisfy $P_n(1) = 1$ for all n; further, $P_n$ is odd for odd n and even for even n. Examples ======== >>> from sympy import legendre, diff >>> from sympy.abc import x, n >>> legendre(0, x) 1 >>> legendre(1, x) x >>> legendre(2, x) 3*x**2/2 - 1/2 >>> legendre(n, x) legendre(n, x) >>> diff(legendre(n,x), x) n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Legendre_polynomial .. [2] http://mathworld.wolfram.com/LegendrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LegendreP/ .. [4] http://functions.wolfram.com/Polynomials/LegendreP2/ """ _ortho_poly = staticmethod(legendre_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result L_n(x) # L_n(-x) ---> (-1)**n * L_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * legendre(n, -x) # L_{-n}(x) ---> L_{n-1}(x) if n.could_extract_minus_sign() and not(-n - 1).could_extract_minus_sign(): return legendre(-n - S.One, x) # We can evaluate for some special values of x if x.is_zero: return sqrt(S.Pi)/(gamma(S.Half - n/2)*gamma(S.One + n/2)) elif x == S.One: return S.One elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial; # L_{-n}(x) ---> L_{n-1}(x) if n.is_negative: n = -n - S.One return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x # Find better formula, this is unsuitable for x = +/-1 # http://www.autodiff.org/ad16/Oral/Buecker_Legendre.pdf says # at x = 1: # n*(n + 1)/2 , m = 0 # oo , m = 1 # -(n-1)*n*(n+1)*(n+2)/4 , m = 2 # 0 , m = 3, 4, ..., n # # at x = -1 # (-1)**(n+1)*n*(n + 1)/2 , m = 0 # (-1)**n*oo , m = 1 # (-1)**n*(n-1)*n*(n+1)*(n+2)/4 , m = 2 # 0 , m = 3, 4, ..., n n, x = self.args return n/(x**2 - 1)*(x*legendre(n, x) - legendre(n - 1, x)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = (-1)**k*binomial(n, k)**2*((1 + x)/2)**(n - k)*((1 - x)/2)**k return Sum(kern, (k, 0, n)) class assoc_legendre(Function): r""" ``assoc_legendre(n, m, x)`` gives $P_n^m(x)$, where n and m are the degree and order or an expression which is related to the nth order Legendre polynomial, $P_n(x)$ in the following manner: .. math:: P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{\mathrm{d}^m P_n(x)}{\mathrm{d} x^m} Explanation =========== Associated Legendre polynomials are orthogonal on [-1, 1] with: - weight = 1 for the same m, and different n. - weight = 1/(1-x**2) for the same n, and different m. Examples ======== >>> from sympy import assoc_legendre >>> from sympy.abc import x, m, n >>> assoc_legendre(0,0, x) 1 >>> assoc_legendre(1,0, x) x >>> assoc_legendre(1,1, x) -sqrt(1 - x**2) >>> assoc_legendre(n,m,x) assoc_legendre(n, m, x) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Associated_Legendre_polynomials .. [2] http://mathworld.wolfram.com/LegendrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LegendreP/ .. [4] http://functions.wolfram.com/Polynomials/LegendreP2/ """ @classmethod def _eval_at_order(cls, n, m): P = legendre_poly(n, _x, polys=True).diff((_x, m)) return (-1)**m * (1 - _x**2)**Rational(m, 2) * P.as_expr() @classmethod def eval(cls, n, m, x): if m.could_extract_minus_sign(): # P^{-m}_n ---> F * P^m_n return S.NegativeOne**(-m) * (factorial(m + n)/factorial(n - m)) * assoc_legendre(n, -m, x) if m == 0: # P^0_n ---> L_n return legendre(n, x) if x == 0: return 2**m*sqrt(S.Pi) / (gamma((1 - m - n)/2)*gamma(1 - (m - n)/2)) if n.is_Number and m.is_Number and n.is_integer and m.is_integer: if n.is_negative: raise ValueError("%s : 1st index must be nonnegative integer (got %r)" % (cls, n)) if abs(m) > n: raise ValueError("%s : abs('2nd index') must be <= '1st index' (got %r, %r)" % (cls, n, m)) return cls._eval_at_order(int(n), abs(int(m))).subs(_x, x) def fdiff(self, argindex=3): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt m raise ArgumentIndexError(self, argindex) elif argindex == 3: # Diff wrt x # Find better formula, this is unsuitable for x = 1 n, m, x = self.args return 1/(x**2 - 1)*(x*n*assoc_legendre(n, m, x) - (m + n)*assoc_legendre(n - 1, m, x)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, m, x, **kwargs): from sympy import Sum k = Dummy("k") kern = factorial(2*n - 2*k)/(2**n*factorial(n - k)*factorial( k)*factorial(n - 2*k - m))*(-1)**k*x**(n - m - 2*k) return (1 - x**2)**(m/2) * Sum(kern, (k, 0, floor((n - m)*S.Half))) def _eval_conjugate(self): n, m, x = self.args return self.func(n, m.conjugate(), x.conjugate()) #---------------------------------------------------------------------------- # Hermite polynomials # class hermite(OrthogonalPolynomial): r""" ``hermite(n, x)`` gives the nth Hermite polynomial in x, $H_n(x)$ Explanation =========== The Hermite polynomials are orthogonal on $(-\infty, \infty)$ with respect to the weight $\exp\left(-x^2\right)$. Examples ======== >>> from sympy import hermite, diff >>> from sympy.abc import x, n >>> hermite(0, x) 1 >>> hermite(1, x) 2*x >>> hermite(2, x) 4*x**2 - 2 >>> hermite(n, x) hermite(n, x) >>> diff(hermite(n,x), x) 2*n*hermite(n - 1, x) >>> hermite(n, -x) (-1)**n*hermite(n, x) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Hermite_polynomial .. [2] http://mathworld.wolfram.com/HermitePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/HermiteH/ """ _ortho_poly = staticmethod(hermite_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result H_n(x) # H_n(-x) ---> (-1)**n * H_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * hermite(n, -x) # We can evaluate for some special values of x if x.is_zero: return 2**n * sqrt(S.Pi) / gamma((S.One - n)/2) elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return 2*n*hermite(n - 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = (-1)**k / (factorial(k)*factorial(n - 2*k)) * (2*x)**(n - 2*k) return factorial(n)*Sum(kern, (k, 0, floor(n/2))) #---------------------------------------------------------------------------- # Laguerre polynomials # class laguerre(OrthogonalPolynomial): r""" Returns the nth Laguerre polynomial in x, $L_n(x)$. Examples ======== >>> from sympy import laguerre, diff >>> from sympy.abc import x, n >>> laguerre(0, x) 1 >>> laguerre(1, x) 1 - x >>> laguerre(2, x) x**2/2 - 2*x + 1 >>> laguerre(3, x) -x**3/6 + 3*x**2/2 - 3*x + 1 >>> laguerre(n, x) laguerre(n, x) >>> diff(laguerre(n, x), x) -assoc_laguerre(n - 1, 1, x) Parameters ========== n : int Degree of Laguerre polynomial. Must be ``n >= 0``. See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial .. [2] http://mathworld.wolfram.com/LaguerrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LaguerreL/ .. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/ """ _ortho_poly = staticmethod(laguerre_poly) @classmethod def eval(cls, n, x): if n.is_integer is False: raise ValueError("Error: n should be an integer.") if not n.is_Number: # Symbolic result L_n(x) # L_{n}(-x) ---> exp(-x) * L_{-n-1}(x) # L_{-n}(x) ---> exp(x) * L_{n-1}(-x) if n.could_extract_minus_sign() and not(-n - 1).could_extract_minus_sign(): return exp(x)*laguerre(-n - 1, -x) # We can evaluate for some special values of x if x.is_zero: return S.One elif x is S.NegativeInfinity: return S.Infinity elif x is S.Infinity: return S.NegativeOne**n * S.Infinity else: if n.is_negative: return exp(x)*laguerre(-n - 1, -x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return -assoc_laguerre(n - 1, 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum # Make sure n \in N_0 if n.is_negative: return exp(x) * self._eval_rewrite_as_polynomial(-n - 1, -x, **kwargs) if n.is_integer is False: raise ValueError("Error: n should be an integer.") k = Dummy("k") kern = RisingFactorial(-n, k) / factorial(k)**2 * x**k return Sum(kern, (k, 0, n)) class assoc_laguerre(OrthogonalPolynomial): r""" Returns the nth generalized Laguerre polynomial in x, $L_n(x)$. Examples ======== >>> from sympy import laguerre, assoc_laguerre, diff >>> from sympy.abc import x, n, a >>> assoc_laguerre(0, a, x) 1 >>> assoc_laguerre(1, a, x) a - x + 1 >>> assoc_laguerre(2, a, x) a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1 >>> assoc_laguerre(3, a, x) a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) + x*(-a**2/2 - 5*a/2 - 3) + 1 >>> assoc_laguerre(n, a, 0) binomial(a + n, a) >>> assoc_laguerre(n, a, x) assoc_laguerre(n, a, x) >>> assoc_laguerre(n, 0, x) laguerre(n, x) >>> diff(assoc_laguerre(n, a, x), x) -assoc_laguerre(n - 1, a + 1, x) >>> diff(assoc_laguerre(n, a, x), a) Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1)) Parameters ========== n : int Degree of Laguerre polynomial. Must be ``n >= 0``. alpha : Expr Arbitrary expression. For ``alpha=0`` regular Laguerre polynomials will be generated. See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial#Generalized_Laguerre_polynomials .. [2] http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LaguerreL/ .. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/ """ @classmethod def eval(cls, n, alpha, x): # L_{n}^{0}(x) ---> L_{n}(x) if alpha.is_zero: return laguerre(n, x) if not n.is_Number: # We can evaluate for some special values of x if x.is_zero: return binomial(n + alpha, alpha) elif x is S.Infinity and n > 0: return S.NegativeOne**n * S.Infinity elif x is S.NegativeInfinity and n > 0: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return laguerre_poly(n, x, alpha) def fdiff(self, argindex=3): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt alpha n, alpha, x = self.args k = Dummy("k") return Sum(assoc_laguerre(k, alpha, x) / (n - alpha), (k, 0, n - 1)) elif argindex == 3: # Diff wrt x n, alpha, x = self.args return -assoc_laguerre(n - 1, alpha + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, alpha, x, **kwargs): from sympy import Sum # Make sure n \in N_0 if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = RisingFactorial( -n, k) / (gamma(k + alpha + 1) * factorial(k)) * x**k return gamma(n + alpha + 1) / factorial(n) * Sum(kern, (k, 0, n)) def _eval_conjugate(self): n, alpha, x = self.args return self.func(n, alpha.conjugate(), x.conjugate())
46e17b7df1b64c3233fdbb854eb4d97c812f152be88c69001bae2684edc314cc
from sympy import (S, Symbol, symbols, factorial, factorial2, Float, binomial, rf, ff, gamma, polygamma, EulerGamma, O, pi, nan, oo, zoo, simplify, expand_func, Product, Mul, Piecewise, Mod, Eq, sqrt, Poly, Dummy, I, Rational) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.functions.combinatorial.factorials import subfactorial from sympy.functions.special.gamma_functions import uppergamma from sympy.utilities.pytest import XFAIL, raises, slow #Solves and Fixes Issue #10388 - This is the updated test for the same solved issue def test_rf_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(nan, y) is nan assert rf(x, nan) is nan assert unchanged(rf, x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) is oo assert rf(-oo, 7) is -oo assert rf(-oo, 6) is oo assert rf(oo, -6) is oo assert rf(-oo, -7) is oo assert rf(-1, pi) == 0 assert rf(-5, 1 + I) == 0 assert unchanged(rf, -3, k) assert unchanged(rf, x, Symbol('k', integer=False)) assert rf(-3, Symbol('k', integer=False)) == 0 assert rf(Symbol('x', negative=True, integer=True), Symbol('k', integer=False)) == 0 assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x*(x + 1) assert rf(x, 3) == x*(x + 1)*(x + 2) assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4) assert rf(x, -1) == 1/(x - 1) assert rf(x, -2) == 1/((x - 1)*(x - 2)) assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3)) assert rf(1, 100) == factorial(100) assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1) assert isinstance(rf(x**2 + 3*x, 2), Mul) assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2)) assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x) assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly) raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2)) assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20) raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2)) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False assert rf(x, k).rewrite(ff) == ff(x + k - 1, k) assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k) assert rf(n, k).rewrite(factorial) == \ factorial(n + k - 1) / factorial(n - 1) assert rf(x, y).rewrite(factorial) == rf(x, y) assert rf(x, y).rewrite(binomial) == rf(x, y) import random from mpmath import rf as mpmath_rf for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15)) def test_ff_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert ff(nan, y) is nan assert ff(x, nan) is nan assert unchanged(ff, x, y) assert ff(oo, 0) == 1 assert ff(-oo, 0) == 1 assert ff(oo, 6) is oo assert ff(-oo, 7) is -oo assert ff(-oo, 6) is oo assert ff(oo, -6) is oo assert ff(-oo, -7) is oo assert ff(x, 0) == 1 assert ff(x, 1) == x assert ff(x, 2) == x*(x - 1) assert ff(x, 3) == x*(x - 1)*(x - 2) assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4) assert ff(x, -1) == 1/(x + 1) assert ff(x, -2) == 1/((x + 1)*(x + 2)) assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3)) assert ff(100, 100) == factorial(100) assert ff(2*x**2 - 5*x, 2) == (2*x**2 - 5*x)*(2*x**2 - 5*x - 1) assert isinstance(ff(2*x**2 - 5*x, 2), Mul) assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2)) assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x) assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly) raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2)) assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40) raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2)) assert ff(x, m).is_integer is None assert ff(n, k).is_integer is None assert ff(n, m).is_integer is True assert ff(n, k + pi).is_integer is False assert ff(n, m + pi).is_integer is False assert ff(pi, m).is_integer is False assert isinstance(ff(x, x), ff) assert ff(n, n) == factorial(n) assert ff(x, k).rewrite(rf) == rf(x - k + 1, k) assert ff(x, k).rewrite(gamma) == (-1)**k*gamma(k - x) / gamma(-x) assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k) assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k) assert ff(x, y).rewrite(factorial) == ff(x, y) assert ff(x, y).rewrite(binomial) == ff(x, y) import random from mpmath import ff as mpmath_ff for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() assert (abs(mpmath_ff(x, k) - ff(x, k)) < 10**(-15)) def test_rf_ff_eval_hiprec(): maple = Float('6.9109401292234329956525265438452') us = ff(18, Rational(2, 3)).evalf(32) assert abs(us - maple)/us < 1e-31 maple = Float('6.8261540131125511557924466355367') us = rf(18, Rational(2, 3)).evalf(32) assert abs(us - maple)/us < 1e-31 maple = Float('34.007346127440197150854651814225') us = rf(Float('4.4', 32), Float('2.2', 32)); assert abs(us - maple)/us < 1e-31 def test_rf_lambdify_mpmath(): from sympy import lambdify x, y = symbols('x,y') f = lambdify((x,y), rf(x, y), 'mpmath') maple = Float('34.007346127440197') us = f(4.4, 2.2) assert abs(us - maple)/us < 1e-15 def test_factorial(): x = Symbol('x') n = Symbol('n', integer=True) k = Symbol('k', integer=True, nonnegative=True) r = Symbol('r', integer=False) s = Symbol('s', integer=False, negative=True) t = Symbol('t', nonnegative=True) u = Symbol('u', noninteger=True) assert factorial(-2) is zoo assert factorial(0) == 1 assert factorial(7) == 5040 assert factorial(19) == 121645100408832000 assert factorial(31) == 8222838654177922817725562880000000 assert factorial(n).func == factorial assert factorial(2*n).func == factorial assert factorial(x).is_integer is None assert factorial(n).is_integer is None assert factorial(k).is_integer assert factorial(r).is_integer is None assert factorial(n).is_positive is None assert factorial(k).is_positive assert factorial(x).is_real is None assert factorial(n).is_real is None assert factorial(k).is_real is True assert factorial(r).is_real is None assert factorial(s).is_real is True assert factorial(t).is_real is True assert factorial(u).is_real is True assert factorial(x).is_composite is None assert factorial(n).is_composite is None assert factorial(k).is_composite is None assert factorial(k + 3).is_composite is True assert factorial(r).is_composite is None assert factorial(s).is_composite is None assert factorial(t).is_composite is None assert factorial(u).is_composite is None assert factorial(oo) is oo def test_factorial_Mod(): pr = Symbol('pr', prime=True) p, q = 10**9 + 9, 10**9 + 33 # prime modulo r, s = 10**7 + 5, 33333333 # composite modulo assert Mod(factorial(pr - 1), pr) == pr - 1 assert Mod(factorial(pr - 1), -pr) == -1 assert Mod(factorial(r - 1, evaluate=False), r) == 0 assert Mod(factorial(s - 1, evaluate=False), s) == 0 assert Mod(factorial(p - 1, evaluate=False), p) == p - 1 assert Mod(factorial(q - 1, evaluate=False), q) == q - 1 assert Mod(factorial(p - 50, evaluate=False), p) == 854928834 assert Mod(factorial(q - 1800, evaluate=False), q) == 905504050 assert Mod(factorial(153, evaluate=False), r) == Mod(factorial(153), r) assert Mod(factorial(255, evaluate=False), s) == Mod(factorial(255), s) def test_factorial_diff(): n = Symbol('n', integer=True) assert factorial(n).diff(n) == \ gamma(1 + n)*polygamma(0, 1 + n) assert factorial(n**2).diff(n) == \ 2*n*gamma(1 + n**2)*polygamma(0, 1 + n**2) raises(ArgumentIndexError, lambda: factorial(n**2).fdiff(2)) def test_factorial_series(): n = Symbol('n', integer=True) assert factorial(n).series(n, 0, 3) == \ 1 - n*EulerGamma + n**2*(EulerGamma**2/2 + pi**2/12) + O(n**3) def test_factorial_rewrite(): n = Symbol('n', integer=True) k = Symbol('k', integer=True, nonnegative=True) assert factorial(n).rewrite(gamma) == gamma(n + 1) _i = Dummy('i') assert factorial(k).rewrite(Product).dummy_eq(Product(_i, (_i, 1, k))) assert factorial(n).rewrite(Product) == factorial(n) def test_factorial2(): n = Symbol('n', integer=True) assert factorial2(-1) == 1 assert factorial2(0) == 1 assert factorial2(7) == 105 assert factorial2(8) == 384 # The following is exhaustive tt = Symbol('tt', integer=True, nonnegative=True) tte = Symbol('tte', even=True, nonnegative=True) tpe = Symbol('tpe', even=True, positive=True) tto = Symbol('tto', odd=True, nonnegative=True) tf = Symbol('tf', integer=True, nonnegative=False) tfe = Symbol('tfe', even=True, nonnegative=False) tfo = Symbol('tfo', odd=True, nonnegative=False) ft = Symbol('ft', integer=False, nonnegative=True) ff = Symbol('ff', integer=False, nonnegative=False) fn = Symbol('fn', integer=False) nt = Symbol('nt', nonnegative=True) nf = Symbol('nf', nonnegative=False) nn = Symbol('nn') z = Symbol('z', zero=True) #Solves and Fixes Issue #10388 - This is the updated test for the same solved issue raises(ValueError, lambda: factorial2(oo)) raises(ValueError, lambda: factorial2(Rational(5, 2))) raises(ValueError, lambda: factorial2(-4)) assert factorial2(n).is_integer is None assert factorial2(tt - 1).is_integer assert factorial2(tte - 1).is_integer assert factorial2(tpe - 3).is_integer assert factorial2(tto - 4).is_integer assert factorial2(tto - 2).is_integer assert factorial2(tf).is_integer is None assert factorial2(tfe).is_integer is None assert factorial2(tfo).is_integer is None assert factorial2(ft).is_integer is None assert factorial2(ff).is_integer is None assert factorial2(fn).is_integer is None assert factorial2(nt).is_integer is None assert factorial2(nf).is_integer is None assert factorial2(nn).is_integer is None assert factorial2(n).is_positive is None assert factorial2(tt - 1).is_positive is True assert factorial2(tte - 1).is_positive is True assert factorial2(tpe - 3).is_positive is True assert factorial2(tpe - 1).is_positive is True assert factorial2(tto - 2).is_positive is True assert factorial2(tto - 1).is_positive is True assert factorial2(tf).is_positive is None assert factorial2(tfe).is_positive is None assert factorial2(tfo).is_positive is None assert factorial2(ft).is_positive is None assert factorial2(ff).is_positive is None assert factorial2(fn).is_positive is None assert factorial2(nt).is_positive is None assert factorial2(nf).is_positive is None assert factorial2(nn).is_positive is None assert factorial2(tt).is_even is None assert factorial2(tt).is_odd is None assert factorial2(tte).is_even is None assert factorial2(tte).is_odd is None assert factorial2(tte + 2).is_even is True assert factorial2(tpe).is_even is True assert factorial2(tpe).is_odd is False assert factorial2(tto).is_odd is True assert factorial2(tf).is_even is None assert factorial2(tf).is_odd is None assert factorial2(tfe).is_even is None assert factorial2(tfe).is_odd is None assert factorial2(tfo).is_even is False assert factorial2(tfo).is_odd is None assert factorial2(z).is_even is False assert factorial2(z).is_odd is True def test_factorial2_rewrite(): n = Symbol('n', integer=True) assert factorial2(n).rewrite(gamma) == \ 2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1) assert factorial2(2*n).rewrite(gamma) == 2**n*gamma(n + 1) assert factorial2(2*n + 1).rewrite(gamma) == \ sqrt(2)*2**(n + S.Half)*gamma(n + Rational(3, 2))/sqrt(pi) def test_binomial(): x = Symbol('x') n = Symbol('n', integer=True) nz = Symbol('nz', integer=True, nonzero=True) k = Symbol('k', integer=True) kp = Symbol('kp', integer=True, positive=True) kn = Symbol('kn', integer=True, negative=True) u = Symbol('u', negative=True) v = Symbol('v', nonnegative=True) p = Symbol('p', positive=True) z = Symbol('z', zero=True) nt = Symbol('nt', integer=False) kt = Symbol('kt', integer=False) a = Symbol('a', integer=True, nonnegative=True) b = Symbol('b', integer=True, nonnegative=True) assert binomial(0, 0) == 1 assert binomial(1, 1) == 1 assert binomial(10, 10) == 1 assert binomial(n, z) == 1 assert binomial(1, 2) == 0 assert binomial(-1, 2) == 1 assert binomial(1, -1) == 0 assert binomial(-1, 1) == -1 assert binomial(-1, -1) == 0 assert binomial(S.Half, S.Half) == 1 assert binomial(-10, 1) == -10 assert binomial(-10, 7) == -11440 assert binomial(n, -1) == 0 # holds for all integers (negative, zero, positive) assert binomial(kp, -1) == 0 assert binomial(nz, 0) == 1 assert expand_func(binomial(n, 1)) == n assert expand_func(binomial(n, 2)) == n*(n - 1)/2 assert expand_func(binomial(n, n - 2)) == n*(n - 1)/2 assert expand_func(binomial(n, n - 1)) == n assert binomial(n, 3).func == binomial assert binomial(n, 3).expand(func=True) == n**3/6 - n**2/2 + n/3 assert expand_func(binomial(n, 3)) == n*(n - 2)*(n - 1)/6 assert binomial(n, n).func == binomial # e.g. (-1, -1) == 0, (2, 2) == 1 assert binomial(n, n + 1).func == binomial # e.g. (-1, 0) == 1 assert binomial(kp, kp + 1) == 0 assert binomial(kn, kn) == 0 # issue #14529 assert binomial(n, u).func == binomial assert binomial(kp, u).func == binomial assert binomial(n, p).func == binomial assert binomial(n, k).func == binomial assert binomial(n, n + p).func == binomial assert binomial(kp, kp + p).func == binomial assert expand_func(binomial(n, n - 3)) == n*(n - 2)*(n - 1)/6 assert binomial(n, k).is_integer assert binomial(nt, k).is_integer is None assert binomial(x, nt).is_integer is False assert binomial(gamma(25), 6) == 79232165267303928292058750056084441948572511312165380965440075720159859792344339983120618959044048198214221915637090855535036339620413440000 assert binomial(1324, 47) == 906266255662694632984994480774946083064699457235920708992926525848438478406790323869952 assert binomial(1735, 43) == 190910140420204130794758005450919715396159959034348676124678207874195064798202216379800 assert binomial(2512, 53) == 213894469313832631145798303740098720367984955243020898718979538096223399813295457822575338958939834177325304000 assert binomial(3383, 52) == 27922807788818096863529701501764372757272890613101645521813434902890007725667814813832027795881839396839287659777235 assert binomial(4321, 51) == 124595639629264868916081001263541480185227731958274383287107643816863897851139048158022599533438936036467601690983780576 assert binomial(a, b).is_nonnegative is True assert binomial(-1, 2, evaluate=False).is_nonnegative is True assert binomial(10, 5, evaluate=False).is_nonnegative is True assert binomial(10, -3, evaluate=False).is_nonnegative is True assert binomial(-10, -3, evaluate=False).is_nonnegative is True assert binomial(-10, 2, evaluate=False).is_nonnegative is True assert binomial(-10, 1, evaluate=False).is_nonnegative is False assert binomial(-10, 7, evaluate=False).is_nonnegative is False # issue #14625 for _ in (pi, -pi, nt, v, a): assert binomial(_, _) == 1 assert binomial(_, _ - 1) == _ assert isinstance(binomial(u, u), binomial) assert isinstance(binomial(u, u - 1), binomial) assert isinstance(binomial(x, x), binomial) assert isinstance(binomial(x, x - 1), binomial) # issue #13980 and #13981 assert binomial(-7, -5) == 0 assert binomial(-23, -12) == 0 assert binomial(Rational(13, 2), -10) == 0 assert binomial(-49, -51) == 0 assert binomial(19, Rational(-7, 2)) == S(-68719476736)/(911337863661225*pi) assert binomial(0, Rational(3, 2)) == S(-2)/(3*pi) assert binomial(-3, Rational(-7, 2)) is zoo assert binomial(kn, kt) is zoo assert binomial(nt, kt).func == binomial assert binomial(nt, Rational(15, 6)) == 8*gamma(nt + 1)/(15*sqrt(pi)*gamma(nt - Rational(3, 2))) assert binomial(Rational(20, 3), Rational(-10, 8)) == gamma(Rational(23, 3))/(gamma(Rational(-1, 4))*gamma(Rational(107, 12))) assert binomial(Rational(19, 2), Rational(-7, 2)) == Rational(-1615, 8388608) assert binomial(Rational(-13, 5), Rational(-7, 8)) == gamma(Rational(-8, 5))/(gamma(Rational(-29, 40))*gamma(Rational(1, 8))) assert binomial(Rational(-19, 8), Rational(-13, 5)) == gamma(Rational(-11, 8))/(gamma(Rational(-8, 5))*gamma(Rational(49, 40))) # binomial for complexes from sympy import I assert binomial(I, Rational(-89, 8)) == gamma(1 + I)/(gamma(Rational(-81, 8))*gamma(Rational(97, 8) + I)) assert binomial(I, 2*I) == gamma(1 + I)/(gamma(1 - I)*gamma(1 + 2*I)) assert binomial(-7, I) is zoo assert binomial(Rational(-7, 6), I) == gamma(Rational(-1, 6))/(gamma(Rational(-1, 6) - I)*gamma(1 + I)) assert binomial((1+2*I), (1+3*I)) == gamma(2 + 2*I)/(gamma(1 - I)*gamma(2 + 3*I)) assert binomial(I, 5) == Rational(1, 3) - I/S(12) assert binomial((2*I + 3), 7) == -13*I/S(63) assert isinstance(binomial(I, n), binomial) assert expand_func(binomial(3, 2, evaluate=False)) == 3 assert expand_func(binomial(n, 0, evaluate=False)) == 1 assert expand_func(binomial(n, -2, evaluate=False)) == 0 assert expand_func(binomial(n, k)) == binomial(n, k) def test_binomial_Mod(): p, q = 10**5 + 3, 10**9 + 33 # prime modulo r = 10**7 + 5 # composite modulo # A few tests to get coverage # Lucas Theorem assert Mod(binomial(156675, 4433, evaluate=False), p) == Mod(binomial(156675, 4433), p) # factorial Mod assert Mod(binomial(1234, 432, evaluate=False), q) == Mod(binomial(1234, 432), q) # binomial factorize assert Mod(binomial(253, 113, evaluate=False), r) == Mod(binomial(253, 113), r) @slow def test_binomial_Mod_slow(): p, q = 10**5 + 3, 10**9 + 33 # prime modulo r, s = 10**7 + 5, 33333333 # composite modulo n, k, m = symbols('n k m') assert (binomial(n, k) % q).subs({n: s, k: p}) == Mod(binomial(s, p), q) assert (binomial(n, k) % m).subs({n: 8, k: 5, m: 13}) == 4 assert (binomial(9, k) % 7).subs(k, 2) == 1 # Lucas Theorem assert Mod(binomial(123456, 43253, evaluate=False), p) == Mod(binomial(123456, 43253), p) assert Mod(binomial(-178911, 237, evaluate=False), p) == Mod(-binomial(178911 + 237 - 1, 237), p) assert Mod(binomial(-178911, 238, evaluate=False), p) == Mod(binomial(178911 + 238 - 1, 238), p) # factorial Mod assert Mod(binomial(9734, 451, evaluate=False), q) == Mod(binomial(9734, 451), q) assert Mod(binomial(-10733, 4459, evaluate=False), q) == Mod(binomial(-10733, 4459), q) assert Mod(binomial(-15733, 4458, evaluate=False), q) == Mod(binomial(-15733, 4458), q) # binomial factorize assert Mod(binomial(753, 119, evaluate=False), r) == Mod(binomial(753, 119), r) assert Mod(binomial(3781, 948, evaluate=False), s) == Mod(binomial(3781, 948), s) assert Mod(binomial(25773, 1793, evaluate=False), s) == Mod(binomial(25773, 1793), s) assert Mod(binomial(-753, 118, evaluate=False), r) == Mod(binomial(-753, 118), r) assert Mod(binomial(-25773, 1793, evaluate=False), s) == Mod(binomial(-25773, 1793), s) def test_binomial_diff(): n = Symbol('n', integer=True) k = Symbol('k', integer=True) assert binomial(n, k).diff(n) == \ (-polygamma(0, 1 + n - k) + polygamma(0, 1 + n))*binomial(n, k) assert binomial(n**2, k**3).diff(n) == \ 2*n*(-polygamma( 0, 1 + n**2 - k**3) + polygamma(0, 1 + n**2))*binomial(n**2, k**3) assert binomial(n, k).diff(k) == \ (-polygamma(0, 1 + k) + polygamma(0, 1 + n - k))*binomial(n, k) assert binomial(n**2, k**3).diff(k) == \ 3*k**2*(-polygamma( 0, 1 + k**3) + polygamma(0, 1 + n**2 - k**3))*binomial(n**2, k**3) raises(ArgumentIndexError, lambda: binomial(n, k).fdiff(3)) def test_binomial_rewrite(): n = Symbol('n', integer=True) k = Symbol('k', integer=True) x = Symbol('x') assert binomial(n, k).rewrite( factorial) == factorial(n)/(factorial(k)*factorial(n - k)) assert binomial( n, k).rewrite(gamma) == gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1)) assert binomial(n, k).rewrite(ff) == ff(n, k) / factorial(k) assert binomial(n, x).rewrite(ff) == binomial(n, x) @XFAIL def test_factorial_simplify_fail(): # simplify(factorial(x + 1).diff(x) - ((x + 1)*factorial(x)).diff(x))) == 0 from sympy.abc import x assert simplify(x*polygamma(0, x + 1) - x*polygamma(0, x + 2) + polygamma(0, x + 1) - polygamma(0, x + 2) + 1) == 0 def test_subfactorial(): assert all(subfactorial(i) == ans for i, ans in enumerate( [1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496])) assert subfactorial(oo) is oo assert subfactorial(nan) is nan assert subfactorial(23) == 9510425471055777937262 assert unchanged(subfactorial, 2.2) x = Symbol('x') assert subfactorial(x).rewrite(uppergamma) == uppergamma(x + 1, -1)/S.Exp1 tt = Symbol('tt', integer=True, nonnegative=True) tf = Symbol('tf', integer=True, nonnegative=False) tn = Symbol('tf', integer=True) ft = Symbol('ft', integer=False, nonnegative=True) ff = Symbol('ff', integer=False, nonnegative=False) fn = Symbol('ff', integer=False) nt = Symbol('nt', nonnegative=True) nf = Symbol('nf', nonnegative=False) nn = Symbol('nf') te = Symbol('te', even=True, nonnegative=True) to = Symbol('to', odd=True, nonnegative=True) assert subfactorial(tt).is_integer assert subfactorial(tf).is_integer is None assert subfactorial(tn).is_integer is None assert subfactorial(ft).is_integer is None assert subfactorial(ff).is_integer is None assert subfactorial(fn).is_integer is None assert subfactorial(nt).is_integer is None assert subfactorial(nf).is_integer is None assert subfactorial(nn).is_integer is None assert subfactorial(tt).is_nonnegative assert subfactorial(tf).is_nonnegative is None assert subfactorial(tn).is_nonnegative is None assert subfactorial(ft).is_nonnegative is None assert subfactorial(ff).is_nonnegative is None assert subfactorial(fn).is_nonnegative is None assert subfactorial(nt).is_nonnegative is None assert subfactorial(nf).is_nonnegative is None assert subfactorial(nn).is_nonnegative is None assert subfactorial(tt).is_even is None assert subfactorial(tt).is_odd is None assert subfactorial(te).is_odd is True assert subfactorial(to).is_even is True
cccd82effc0e54e4bb6addf4679881b0165f8c4197646cdb6c78da9ab0dfe768
import string from sympy import ( Symbol, symbols, Dummy, S, Sum, Rational, oo, pi, I, floor, limit, expand_func, diff, EulerGamma, cancel, re, im, Product, carmichael, TribonacciConstant) from sympy.functions import ( bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan, genocchi, partition, binomial, gamma, sqrt, cbrt, hyper, log, digamma, trigamma, polygamma, factorial, sin, cos, cot, zeta) from sympy.functions.combinatorial.numbers import _nT from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.core.numbers import GoldenRatio, Integer from sympy.utilities.pytest import XFAIL, raises, nocache_fail x = Symbol('x') def test_carmichael(): assert carmichael.find_carmichael_numbers_in_range(0, 561) == [] assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561] assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561, 562) assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821] assert carmichael.is_prime(2821) == False assert carmichael.is_prime(2465) == False assert carmichael.is_prime(1729) == False assert carmichael.is_prime(1105) == False assert carmichael.is_prime(561) == False raises(ValueError, lambda: carmichael.is_carmichael(-2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(-2, 2)) raises(ValueError, lambda: carmichael.find_carmichael_numbers_in_range(22, 2)) def test_bernoulli(): assert bernoulli(0) == 1 assert bernoulli(1) == Rational(-1, 2) assert bernoulli(2) == Rational(1, 6) assert bernoulli(3) == 0 assert bernoulli(4) == Rational(-1, 30) assert bernoulli(5) == 0 assert bernoulli(6) == Rational(1, 42) assert bernoulli(7) == 0 assert bernoulli(8) == Rational(-1, 30) assert bernoulli(10) == Rational(5, 66) assert bernoulli(1000001) == 0 assert bernoulli(0, x) == 1 assert bernoulli(1, x) == x - S.Half assert bernoulli(2, x) == x**2 - x + Rational(1, 6) assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2 # Should be fast; computed with mpmath b = bernoulli(1000) assert b.p % 10**10 == 7950421099 assert b.q == 342999030 b = bernoulli(10**6, evaluate=False).evalf() assert str(b) == '-2.23799235765713e+4767529' # Issue #8527 l = Symbol('l', integer=True) m = Symbol('m', integer=True, nonnegative=True) n = Symbol('n', integer=True, positive=True) assert isinstance(bernoulli(2 * l + 1), bernoulli) assert isinstance(bernoulli(2 * m + 1), bernoulli) assert bernoulli(2 * n + 1) == 0 raises(ValueError, lambda: bernoulli(-2)) def test_fibonacci(): assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3] assert fibonacci(100) == 354224848179261915075 assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7] assert lucas(100) == 792070839848372253127 assert fibonacci(1, x) == 1 assert fibonacci(2, x) == x assert fibonacci(3, x) == x**2 + 1 assert fibonacci(4, x) == x**3 + 2*x # issue #8800 n = Dummy('n') assert fibonacci(n).limit(n, S.Infinity) is S.Infinity assert lucas(n).limit(n, S.Infinity) is S.Infinity assert fibonacci(n).rewrite(sqrt) == \ 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10) assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ fibonacci(10) assert lucas(n).rewrite(sqrt) == \ (fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify() assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10) raises(ValueError, lambda: fibonacci(-3, x)) def test_tribonacci(): assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24] assert tribonacci(100) == 98079530178586034536500564 assert tribonacci(0, x) == 0 assert tribonacci(1, x) == 1 assert tribonacci(2, x) == x**2 assert tribonacci(3, x) == x**4 + x assert tribonacci(4, x) == x**6 + 2*x**3 + 1 assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2 n = Dummy('n') assert tribonacci(n).limit(n, S.Infinity) is S.Infinity w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 assert tribonacci(n).rewrite(sqrt) == \ (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4) assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \ tribonacci(10) assert tribonacci(n).rewrite(TribonacciConstant) == floor( 3*TribonacciConstant**n*(102*sqrt(33) + 586)**Rational(1, 3)/ (-2*(102*sqrt(33) + 586)**Rational(1, 3) + 4 + (102*sqrt(33) + 586)**Rational(2, 3)) + S.Half) raises(ValueError, lambda: tribonacci(-1, x)) @nocache_fail def test_bell(): assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877] assert bell(0, x) == 1 assert bell(1, x) == x assert bell(2, x) == x**2 + x assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x assert bell(oo) is S.Infinity raises(ValueError, lambda: bell(oo, x)) raises(ValueError, lambda: bell(-1)) raises(ValueError, lambda: bell(S.Half)) X = symbols('x:6') # X = (x0, x1, .. x5) # at the same time: X[1] = x1, X[2] = x2 for standard readablity. # but we must supply zero-based indexed object X[1:] = (x1, .. x5) assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2 assert bell( 6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3 X = (1, 10, 100, 1000, 10000) assert bell(6, 2, X) == (6 + 15 + 10)*10000 X = (1, 2, 3, 3, 5) assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2 X = (1, 2, 3, 5) assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3 # Dobinski's formula n = Symbol('n', integer=True, nonnegative=True) # For large numbers, this is too slow # For nonintegers, there are significant precision errors for i in [0, 2, 3, 7, 13, 42, 55]: # Running without the cache this is either very slow or goes into an # infinite loop. assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i}) m = Symbol("m") assert bell(m).rewrite(Sum) == bell(m) assert bell(n, m).rewrite(Sum) == bell(n, m) # issue 9184 n = Dummy('n') assert bell(n).limit(n, S.Infinity) is S.Infinity def test_harmonic(): n = Symbol("n") m = Symbol("m") assert harmonic(n, 0) == n assert harmonic(n).evalf() == harmonic(n) assert harmonic(n, 1) == harmonic(n) assert harmonic(1, n).evalf() == harmonic(1, n) assert harmonic(0, 1) == 0 assert harmonic(1, 1) == 1 assert harmonic(2, 1) == Rational(3, 2) assert harmonic(3, 1) == Rational(11, 6) assert harmonic(4, 1) == Rational(25, 12) assert harmonic(0, 2) == 0 assert harmonic(1, 2) == 1 assert harmonic(2, 2) == Rational(5, 4) assert harmonic(3, 2) == Rational(49, 36) assert harmonic(4, 2) == Rational(205, 144) assert harmonic(0, 3) == 0 assert harmonic(1, 3) == 1 assert harmonic(2, 3) == Rational(9, 8) assert harmonic(3, 3) == Rational(251, 216) assert harmonic(4, 3) == Rational(2035, 1728) assert harmonic(oo, -1) is S.NaN assert harmonic(oo, 0) is oo assert harmonic(oo, S.Half) is oo assert harmonic(oo, 1) is oo assert harmonic(oo, 2) == (pi**2)/6 assert harmonic(oo, 3) == zeta(3) assert harmonic(0, m) == 0 def test_harmonic_rational(): ne = S(6) no = S(5) pe = S(8) po = S(9) qe = S(10) qo = S(13) Heee = harmonic(ne + pe/qe) Aeee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(13944145, 4720968)) Heeo = harmonic(ne + pe/qo) Aeeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(2422020029, 702257080)) Heoe = harmonic(ne + po/qe) Aeoe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(11818877030, 4286604231) + pi*sqrt(2*sqrt(5) + 5)/2) Heoo = harmonic(ne + po/qo) Aeoo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(3, 13)) + Rational(11669332571, 3628714320)) Hoee = harmonic(no + pe/qe) Aoee = (-log(10) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + pi*sqrt(2*sqrt(5)/5 + 1)/2 + Rational(779405, 277704)) Hoeo = harmonic(no + pe/qo) Aoeo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(4, 13)) + 2*log(sin(pi*Rational(2, 13)))*cos(pi*Rational(32, 13)) + 2*log(sin(pi*Rational(5, 13)))*cos(pi*Rational(80, 13)) - 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(5, 13)) - 2*log(sin(pi*Rational(4, 13)))*cos(pi/13) + pi*cot(pi*Rational(5, 13))/2 - 2*log(sin(pi/13))*cos(pi*Rational(3, 13)) + Rational(53857323, 16331560)) Hooe = harmonic(no + po/qe) Aooe = (-log(20) + 2*(Rational(1, 4) + sqrt(5)/4)*log(Rational(-1, 4) + sqrt(5)/4) + 2*(Rational(-1, 4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 - Rational(1, 4))*log(sqrt(sqrt(5)/8 + Rational(5, 8))) + 2*(-sqrt(5)/4 + Rational(1, 4))*log(Rational(1, 4) + sqrt(5)/4) + Rational(486853480, 186374097) + pi*sqrt(2*sqrt(5) + 5)/2) Hooo = harmonic(no + po/qo) Aooo = (-log(26) + 2*log(sin(pi*Rational(3, 13)))*cos(pi*Rational(54, 13)) + 2*log(sin(pi*Rational(4, 13)))*cos(pi*Rational(6, 13)) + 2*log(sin(pi*Rational(6, 13)))*cos(pi*Rational(108, 13)) - 2*log(sin(pi*Rational(5, 13)))*cos(pi/13) - 2*log(sin(pi/13))*cos(pi*Rational(5, 13)) + pi*cot(pi*Rational(4, 13))/2 - 2*log(sin(pi*Rational(2, 13)))*cos(3*pi/13) + Rational(383693479, 125128080)) H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo] A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo] for h, a in zip(H, A): e = expand_func(h).doit() assert cancel(e/a) == 1 assert abs(h.n() - a.n()) < 1e-12 def test_harmonic_evalf(): assert str(harmonic(1.5).evalf(n=10)) == '1.280372306' assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443 def test_harmonic_rewrite(): n = Symbol("n") m = Symbol("m") assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2 assert harmonic(n,m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma) _k = Dummy("k") assert harmonic(n).rewrite(Sum).dummy_eq(Sum(1/_k, (_k, 1, n))) assert harmonic(n, m).rewrite(Sum).dummy_eq(Sum(_k**(-m), (_k, 1, n))) @XFAIL def test_harmonic_limit_fail(): n = Symbol("n") m = Symbol("m") # For m > 1: assert limit(harmonic(n, m), n, oo) == zeta(m) def test_euler(): assert euler(0) == 1 assert euler(1) == 0 assert euler(2) == -1 assert euler(3) == 0 assert euler(4) == 5 assert euler(6) == -61 assert euler(8) == 1385 assert euler(20, evaluate=False) != 370371188237525 n = Symbol('n', integer=True) assert euler(n) != -1 assert euler(n).subs(n, 2) == -1 raises(ValueError, lambda: euler(-2)) raises(ValueError, lambda: euler(-3)) raises(ValueError, lambda: euler(2.3)) assert euler(20).evalf() == 370371188237525.0 assert euler(20, evaluate=False).evalf() == 370371188237525.0 assert euler(n).rewrite(Sum) == euler(n) n = Symbol('n', integer=True, nonnegative=True) assert euler(2*n + 1).rewrite(Sum) == 0 _j = Dummy('j') _k = Dummy('k') assert euler(2*n).rewrite(Sum).dummy_eq( I*Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)* binomial(_k, _j)/_k, (_j, 0, _k), (_k, 1, 2*n + 1))) def test_euler_odd(): n = Symbol('n', odd=True, positive=True) assert euler(n) == 0 n = Symbol('n', odd=True) assert euler(n) != 0 def test_euler_polynomials(): assert euler(0, x) == 1 assert euler(1, x) == x - S.Half assert euler(2, x) == x**2 - x assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4) m = Symbol('m') assert isinstance(euler(m, x), euler) from sympy import Float A = Float('-0.46237208575048694923364757452876131e8') # from Maple B = euler(19, S.Pi.evalf(32)) assert abs((A - B)/A) < 1e-31 # expect low relative error C = euler(19, S.Pi, evaluate=False).evalf(32) assert abs((A - C)/A) < 1e-31 def test_euler_polynomial_rewrite(): m = Symbol('m') A = euler(m, x).rewrite('Sum'); assert A.subs({m:3, x:5}).doit() == euler(3, 5) def test_catalan(): n = Symbol('n', integer=True) m = Symbol('m', integer=True, positive=True) k = Symbol('k', integer=True, nonnegative=True) p = Symbol('p', nonnegative=True) catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786] for i, c in enumerate(catalans): assert catalan(i) == c assert catalan(n).rewrite(factorial).subs(n, i) == c assert catalan(n).rewrite(Product).subs(n, i).doit() == c assert unchanged(catalan, x) assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1) assert catalan(S.Half).rewrite(gamma) == 8/(3*pi) assert catalan(S.Half).rewrite(factorial).rewrite(gamma) ==\ 8 / (3 * pi) assert catalan(3*x).rewrite(gamma) == 4**( 3*x)*gamma(3*x + S.Half)/(sqrt(pi)*gamma(3*x + 2)) assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1) assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1) * factorial(n)) assert isinstance(catalan(n).rewrite(Product), catalan) assert isinstance(catalan(m).rewrite(Product), Product) assert diff(catalan(x), x) == (polygamma( 0, x + S.Half) - polygamma(0, x + 2) + log(4))*catalan(x) assert catalan(x).evalf() == catalan(x) c = catalan(S.Half).evalf() assert str(c) == '0.848826363156775' c = catalan(I).evalf(3) assert str((re(c), im(c))) == '(0.398, -0.0209)' # Assumptions assert catalan(p).is_positive is True assert catalan(k).is_integer is True assert catalan(m+3).is_composite is True def test_genocchi(): genocchis = [1, -1, 0, 1, 0, -3, 0, 17] for n, g in enumerate(genocchis): assert genocchi(n + 1) == g m = Symbol('m', integer=True) n = Symbol('n', integer=True, positive=True) assert unchanged(genocchi, m) assert genocchi(2*n + 1) == 0 assert genocchi(n).rewrite(bernoulli) == (1 - 2 ** n) * bernoulli(n) * 2 assert genocchi(2 * n).is_odd assert genocchi(2 * n).is_even is False assert genocchi(2 * n + 1).is_even assert genocchi(n).is_integer assert genocchi(4 * n).is_positive # these are the only 2 prime Genocchi numbers assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime assert genocchi(8, evaluate=False).is_prime assert genocchi(4 * n + 2).is_negative assert genocchi(4 * n + 1).is_negative is False assert genocchi(4 * n - 2).is_negative raises(ValueError, lambda: genocchi(Rational(5, 4))) raises(ValueError, lambda: genocchi(-2)) @nocache_fail def test_partition(): partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22] for n, p in enumerate(partition_nums): assert partition(n) == p x = Symbol('x') y = Symbol('y', real=True) m = Symbol('m', integer=True) n = Symbol('n', integer=True, negative=True) p = Symbol('p', integer=True, nonnegative=True) assert partition(m).is_integer assert not partition(m).is_negative assert partition(m).is_nonnegative assert partition(n).is_zero assert partition(p).is_positive assert partition(x).subs(x, 7) == 15 assert partition(y).subs(y, 8) == 22 raises(ValueError, lambda: partition(Rational(5, 4))) def test__nT(): assert [_nT(i, j) for i in range(5) for j in range(i + 2)] == [ 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0] check = [_nT(10, i) for i in range(11)] assert check == [0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1] assert all(type(i) is int for i in check) assert _nT(10, 5) == 7 assert _nT(100, 98) == 2 assert _nT(100, 100) == 1 assert _nT(10, 3) == 8 def test_nC_nP_nT(): from sympy.utilities.iterables import ( multiset_permutations, multiset_combinations, multiset_partitions, partitions, subsets, permutations) from sympy.functions.combinatorial.numbers import ( nP, nC, nT, stirling, _stirling1, _stirling2, _multiset_histogram, _AOP_product) from sympy.combinatorics.permutations import Permutation from sympy.core.numbers import oo from random import choice c = string.ascii_lowercase for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nP(s, i) tot += check assert len(list(multiset_permutations(s, i))) == check if u: assert nP(len(s), i) == check assert nP(s) == tot except AssertionError: print(s, i, 'failed perm test') raise ValueError() for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(8): check = nC(s, i) tot += check assert len(list(multiset_combinations(s, i))) == check if u: assert nC(len(s), i) == check assert nC(s) == tot if u: assert nC(len(s)) == tot except AssertionError: print(s, i, 'failed combo test') raise ValueError() for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(i, j) assert check.is_Integer tot += check assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check assert nT(i) == tot for i in range(1, 10): tot = 0 for j in range(1, i + 2): check = nT(range(i), j) tot += check assert len(list(multiset_partitions(list(range(i)), j))) == check assert nT(range(i)) == tot for i in range(100): s = ''.join(choice(c) for i in range(7)) u = len(s) == len(set(s)) try: tot = 0 for i in range(1, 8): check = nT(s, i) tot += check assert len(list(multiset_partitions(s, i))) == check if u: assert nT(range(len(s)), i) == check if u: assert nT(range(len(s))) == tot assert nT(s) == tot except AssertionError: print(s, i, 'failed partition test') raise ValueError() # tests for Stirling numbers of the first kind that are not tested in the # above assert [stirling(9, i, kind=1) for i in range(11)] == [ 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0] perms = list(permutations(range(4))) assert [sum(1 for p in perms if Permutation(p).cycles == i) for i in range(5)] == [0, 6, 11, 6, 1] == [ stirling(4, i, kind=1) for i in range(5)] # http://oeis.org/A008275 assert [stirling(n, k, signed=1) for n in range(10) for k in range(1, n + 1)] == [ 1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274, -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind assert [stirling(n, k, kind=1) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1] # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind assert [stirling(n, k, kind=2) for n in range(10) for k in range(n+1)] == [ 1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1] assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0 raises(ValueError, lambda: stirling(-2, 2)) # Assertion that the return type is SymPy Integer. assert isinstance(_stirling1(6, 3), Integer) assert isinstance(_stirling2(6, 3), Integer) def delta(p): if len(p) == 1: return oo return min(abs(i[0] - i[1]) for i in subsets(p, 2)) parts = multiset_partitions(range(5), 3) d = 2 assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) == stirling(5, 3, d=d) == 7) # other coverage tests assert nC('abb', 2) == nC('aab', 2) == 2 assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27 assert nP(3, 4) == 0 assert nP('aabc', 5) == 0 assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \ len(list(multiset_combinations('aabbccdd', 2))) == 10 assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24 assert nC(list('abcdd'), 4) == 4 assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5 assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7 assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa assert dict(_AOP_product((4,1,1,1))) == { 0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1} # the following was the first t that showed a problem in a previous form of # the function, so it's not as random as it may appear t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4) assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000 raises(ValueError, lambda: _multiset_histogram({1:'a'})) def test_PR_14617(): from sympy.functions.combinatorial.numbers import nT for n in (0, []): for k in (-1, 0, 1): if k == 0: assert nT(n, k) == 1 else: assert nT(n, k) == 0 def test_issue_8496(): n = Symbol("n") k = Symbol("k") raises(TypeError, lambda: catalan(n, k)) def test_issue_8601(): n = Symbol('n', integer=True, negative=True) assert catalan(n - 1) is S.Zero assert catalan(Rational(-1, 2)) is S.ComplexInfinity assert catalan(-S.One) == Rational(-1, 2) c1 = catalan(-5.6).evalf() assert str(c1) == '6.93334070531408e-5' c2 = catalan(-35.4).evalf() assert str(c2) == '-4.14189164517449e-24'
26581d096a13dad1ee5e25ac2927239e4c9056240b3bed3d2e45ce427a48690e
from sympy import ( symbols, log, ln, Float, nan, oo, zoo, I, pi, E, exp, Symbol, LambertW, sqrt, Rational, expand_log, S, sign, conjugate, refine, sin, cos, sinh, cosh, tanh, exp_polar, re, simplify, AccumBounds, MatrixSymbol, Pow, gcd, Sum, Product) from sympy.functions.elementary.exponential import match_real_imag from sympy.abc import x, y, z from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.utilities.pytest import raises, XFAIL def test_exp_values(): k = Symbol('k', integer=True) assert exp(nan) is nan assert exp(oo) is oo assert exp(-oo) == 0 assert exp(0) == 1 assert exp(1) == E assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1) assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1) assert exp(pi*I/2) == I assert exp(pi*I) == -1 assert exp(pi*I*Rational(3, 2)) == -I assert exp(2*pi*I) == 1 assert refine(exp(pi*I*2*k)) == 1 assert refine(exp(pi*I*2*(k + S.Half))) == -1 assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I assert exp(log(x)) == x assert exp(2*log(x)) == x**2 assert exp(pi*log(x)) == x**pi assert exp(17*log(x) + E*log(y)) == x**17 * y**E assert exp(x*log(x)) != x**x assert exp(sin(x)*log(x)) != x assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3 assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y)) assert exp(-oo, evaluate=False).is_finite is True assert exp(oo, evaluate=False).is_finite is False def test_exp_period(): assert exp(I*pi*Rational(9, 4)) == exp(I*pi/4) assert exp(I*pi*Rational(46, 18)) == exp(I*pi*Rational(5, 9)) assert exp(I*pi*Rational(25, 7)) == exp(I*pi*Rational(-3, 7)) assert exp(I*pi*Rational(-19, 3)) == exp(-I*pi/3) assert exp(I*pi*Rational(37, 8)) - exp(I*pi*Rational(-11, 8)) == 0 assert exp(I*pi*Rational(-5, 3)) / exp(I*pi*Rational(11, 5)) * exp(I*pi*Rational(148, 15)) == 1 assert exp(2 - I*pi*Rational(17, 5)) == exp(2 + I*pi*Rational(3, 5)) assert exp(log(3) + I*pi*Rational(29, 9)) == 3 * exp(I*pi*Rational(-7, 9)) n = Symbol('n', integer=True) e = Symbol('e', even=True) assert exp(e*I*pi) == 1 assert exp((e + 1)*I*pi) == -1 assert exp((1 + 4*n)*I*pi/2) == I assert exp((-1 + 4*n)*I*pi/2) == -I def test_exp_log(): x = Symbol("x", real=True) assert log(exp(x)) == x assert exp(log(x)) == x assert log(x).inverse() == exp assert exp(x).inverse() == log y = Symbol("y", polar=True) assert log(exp_polar(z)) == z assert exp(log(y)) == y def test_exp_expand(): e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x) assert e.expand() == 2 assert exp(x + y) != exp(x)*exp(y) assert exp(x + y).expand() == exp(x)*exp(y) def test_exp__as_base_exp(): assert exp(x).as_base_exp() == (E, x) assert exp(2*x).as_base_exp() == (E, 2*x) assert exp(x*y).as_base_exp() == (E, x*y) assert exp(-x).as_base_exp() == (E, -x) # Pow( *expr.as_base_exp() ) == expr invariant should hold assert E**x == exp(x) assert E**(2*x) == exp(2*x) assert E**(x*y) == exp(x*y) assert exp(x).base is S.Exp1 assert exp(x).exp == x def test_exp_infinity(): assert exp(I*y) != nan assert refine(exp(I*oo)) is nan assert refine(exp(-I*oo)) is nan assert exp(y*I*oo) != nan assert exp(zoo) is nan x = Symbol('x', extended_real=True, finite=False) assert exp(x).is_complex is None def test_exp_subs(): x = Symbol('x') e = (exp(3*log(x), evaluate=False)) # evaluates to x**3 assert e.subs(x**3, y**3) == e assert e.subs(x**2, 5) == e assert (x**3).subs(x**2, y) != y**Rational(3, 2) assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2)) assert exp(x).subs(E, y) == y**x x = symbols('x', real=True) assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7) assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7) x = symbols('x', positive=True) assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2) # differentiate between E and exp assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E)) assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3)) assert exp(3).subs(E, sin) == sin(3) def test_exp_conjugate(): assert conjugate(exp(x)) == exp(conjugate(x)) def test_exp_rewrite(): from sympy.concrete.summations import Sum assert exp(x).rewrite(sin) == sinh(x) + cosh(x) assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x) assert exp(1).rewrite(cos) == sinh(1) + cosh(1) assert exp(1).rewrite(sin) == sinh(1) + cosh(1) assert exp(1).rewrite(sin) == sinh(1) + cosh(1) assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2)) assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2 assert exp(pi*I/3).rewrite(sqrt) == S.Half + sqrt(3)*I/2 assert exp(x*log(y)).rewrite(Pow) == y**x assert exp(log(x)*log(y)).rewrite(Pow) in [x**log(y), y**log(x)] assert exp(log(log(x))*y).rewrite(Pow) == log(x)**y n = Symbol('n', integer=True) assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == Rational(4, 5) + I*Rational(2, 5) assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4) assert Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(Rational(3, 4) - sqrt(3)*I/4) def test_exp_leading_term(): assert exp(x).as_leading_term(x) == 1 assert exp(2 + x).as_leading_term(x) == exp(2) assert exp((2*x + 3) / (x+1)).as_leading_term(x) == exp(3) # The following tests are commented, since now SymPy returns the # original function when the leading term in the series expansion does # not exist. # raises(NotImplementedError, lambda: exp(1/x).as_leading_term(x)) # raises(NotImplementedError, lambda: exp((x + 1) / x**2).as_leading_term(x)) # raises(NotImplementedError, lambda: exp(x + 1/x).as_leading_term(x)) def test_exp_taylor_term(): x = symbols('x') assert exp(x).taylor_term(1, x) == x assert exp(x).taylor_term(3, x) == x**3/6 assert exp(x).taylor_term(4, x) == x**4/24 assert exp(x).taylor_term(-1, x) is S.Zero def test_exp_MatrixSymbol(): A = MatrixSymbol("A", 2, 2) assert exp(A).has(exp) def test_exp_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: exp(x).fdiff(2)) def test_log_values(): assert log(nan) is nan assert log(oo) is oo assert log(-oo) is oo assert log(zoo) is zoo assert log(-zoo) is zoo assert log(0) is zoo assert log(1) == 0 assert log(-1) == I*pi assert log(E) == 1 assert log(-E).expand() == 1 + I*pi assert unchanged(log, pi) assert log(-pi).expand() == log(pi) + I*pi assert unchanged(log, 17) assert log(-17) == log(17) + I*pi assert log(I) == I*pi/2 assert log(-I) == -I*pi/2 assert log(17*I) == I*pi/2 + log(17) assert log(-17*I).expand() == -I*pi/2 + log(17) assert log(oo*I) is oo assert log(-oo*I) is oo assert log(0, 2) is zoo assert log(0, 5) is zoo assert exp(-log(3))**(-1) == 3 assert log(S.Half) == -log(2) assert log(2*3).func is log assert log(2*3**2).func is log def test_match_real_imag(): x, y = symbols('x,y', real=True) i = Symbol('i', imaginary=True) assert match_real_imag(S.One) == (1, 0) assert match_real_imag(I) == (0, 1) assert match_real_imag(3 - 5*I) == (3, -5) assert match_real_imag(-sqrt(3) + S.Half*I) == (-sqrt(3), S.Half) assert match_real_imag(x + y*I) == (x, y) assert match_real_imag(x*I + y*I) == (0, x + y) assert match_real_imag((x + y)*I) == (0, x + y) assert match_real_imag(Rational(-2, 3)*i*I) == (None, None) assert match_real_imag(1 - 2*i) == (None, None) assert match_real_imag(sqrt(2)*(3 - 5*I)) == (None, None) def test_log_exact(): # check for pi/2, pi/3, pi/4, pi/6, pi/8, pi/12; pi/5, pi/10: for n in range(-23, 24): if gcd(n, 24) != 1: assert log(exp(n*I*pi/24).rewrite(sqrt)) == n*I*pi/24 for n in range(-9, 10): assert log(exp(n*I*pi/10).rewrite(sqrt)) == n*I*pi/10 assert log(S.Half - I*sqrt(3)/2) == -I*pi/3 assert log(Rational(-1, 2) + I*sqrt(3)/2) == I*pi*Rational(2, 3) assert log(-sqrt(2)/2 - I*sqrt(2)/2) == -I*pi*Rational(3, 4) assert log(-sqrt(3)/2 - I*S.Half) == -I*pi*Rational(5, 6) assert log(Rational(-1, 4) + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + Rational(5, 8))) == -I*pi*Rational(2, 5) assert log(sqrt(Rational(5, 8) - sqrt(5)/8) + I*(Rational(1, 4) + sqrt(5)/4)) == I*pi*Rational(3, 10) assert log(-sqrt(sqrt(2)/4 + S.Half) + I*sqrt(S.Half - sqrt(2)/4)) == I*pi*Rational(7, 8) assert log(-sqrt(6)/4 - sqrt(2)/4 + I*(-sqrt(6)/4 + sqrt(2)/4)) == -I*pi*Rational(11, 12) assert log(-1 + I*sqrt(3)) == log(2) + I*pi*Rational(2, 3) assert log(5 + 5*I) == log(5*sqrt(2)) + I*pi/4 assert log(sqrt(-12)) == log(2*sqrt(3)) + I*pi/2 assert log(-sqrt(6) + sqrt(2) - I*sqrt(6) - I*sqrt(2)) == log(4) - I*pi*Rational(7, 12) assert log(-sqrt(6-3*sqrt(2)) - I*sqrt(6+3*sqrt(2))) == log(2*sqrt(3)) - I*pi*Rational(5, 8) assert log(1 + I*sqrt(2-sqrt(2))/sqrt(2+sqrt(2))) == log(2/sqrt(sqrt(2) + 2)) + I*pi/8 assert log(cos(pi*Rational(7, 12)) + I*sin(pi*Rational(7, 12))) == I*pi*Rational(7, 12) assert log(cos(pi*Rational(6, 5)) + I*sin(pi*Rational(6, 5))) == I*pi*Rational(-4, 5) assert log(5*(1 + I)/sqrt(2)) == log(5) + I*pi/4 assert log(sqrt(2)*(-sqrt(3) + 1 - sqrt(3)*I - I)) == log(4) - I*pi*Rational(7, 12) assert log(-sqrt(2)*(1 - I*sqrt(3))) == log(2*sqrt(2)) + I*pi*Rational(2, 3) assert log(sqrt(3)*I*(-sqrt(6 - 3*sqrt(2)) - I*sqrt(3*sqrt(2) + 6))) == log(6) - I*pi/8 zero = (1 + sqrt(2))**2 - 3 - 2*sqrt(2) assert log(zero - I*sqrt(3)) == log(sqrt(3)) - I*pi/2 assert unchanged(log, zero + I*zero) or log(zero + zero*I) is zoo # bail quickly if no obvious simplification is possible: assert unchanged(log, (sqrt(2)-1/sqrt(sqrt(3)+I))**1000) # beware of non-real coefficients assert unchanged(log, sqrt(2-sqrt(5))*(1 + I)) def test_log_base(): assert log(1, 2) == 0 assert log(2, 2) == 1 assert log(3, 2) == log(3)/log(2) assert log(6, 2) == 1 + log(3)/log(2) assert log(6, 3) == 1 + log(2)/log(3) assert log(2**3, 2) == 3 assert log(3**3, 3) == 3 assert log(5, 1) is zoo assert log(1, 1) is nan assert log(Rational(2, 3), 10) == log(Rational(2, 3))/log(10) assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1 assert log(Rational(2, 3), Rational(2, 5)) == \ log(Rational(2, 3))/log(Rational(2, 5)) # issue 17148 assert log(Rational(8, 3), 2) == -log(3)/log(2) + 3 def test_log_symbolic(): assert log(x, exp(1)) == log(x) assert log(exp(x)) != x assert log(x, exp(1)) == log(x) assert log(x*y) != log(x) + log(y) assert log(x/y).expand() != log(x) - log(y) assert log(x/y).expand(force=True) == log(x) - log(y) assert log(x**y).expand() != y*log(x) assert log(x**y).expand(force=True) == y*log(x) assert log(x, 2) == log(x)/log(2) assert log(E, 2) == 1/log(2) p, q = symbols('p,q', positive=True) r = Symbol('r', real=True) assert log(p**2) != 2*log(p) assert log(p**2).expand() == 2*log(p) assert log(x**2).expand() != 2*log(x) assert log(p**q) != q*log(p) assert log(exp(p)) == p assert log(p*q) != log(p) + log(q) assert log(p*q).expand() == log(p) + log(q) assert log(-sqrt(3)) == log(sqrt(3)) + I*pi assert log(-exp(p)) != p + I*pi assert log(-exp(x)).expand() != x + I*pi assert log(-exp(r)).expand() == r + I*pi assert log(x**y) != y*log(x) assert (log(x**-5)**-1).expand() != -1/log(x)/5 assert (log(p**-5)**-1).expand() == -1/log(p)/5 assert log(-x).func is log and log(-x).args[0] == -x assert log(-p).func is log and log(-p).args[0] == -p def test_log_exp(): assert log(exp(4*I*pi)) == 0 # exp evaluates assert log(exp(-5*I*pi)) == I*pi # exp evaluates assert log(exp(I*pi*Rational(19, 4))) == I*pi*Rational(3, 4) assert log(exp(I*pi*Rational(25, 7))) == I*pi*Rational(-3, 7) assert log(exp(-5*I)) == -5*I + 2*I*pi def test_exp_assumptions(): r = Symbol('r', real=True) i = Symbol('i', imaginary=True) for e in exp, exp_polar: assert e(x).is_real is None assert e(x).is_imaginary is None assert e(i).is_real is None assert e(i).is_imaginary is None assert e(r).is_real is True assert e(r).is_imaginary is False assert e(re(x)).is_extended_real is True assert e(re(x)).is_imaginary is False assert exp(0, evaluate=False).is_algebraic a = Symbol('a', algebraic=True) an = Symbol('an', algebraic=True, nonzero=True) r = Symbol('r', rational=True) rn = Symbol('rn', rational=True, nonzero=True) assert exp(a).is_algebraic is None assert exp(an).is_algebraic is False assert exp(pi*r).is_algebraic is None assert exp(pi*rn).is_algebraic is False def test_exp_AccumBounds(): assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2) def test_log_assumptions(): p = symbols('p', positive=True) n = symbols('n', negative=True) z = symbols('z', zero=True) x = symbols('x', infinite=True, extended_positive=True) assert log(z).is_positive is False assert log(x).is_extended_positive is True assert log(2) > 0 assert log(1, evaluate=False).is_zero assert log(1 + z).is_zero assert log(p).is_zero is None assert log(n).is_zero is False assert log(0.5).is_negative is True assert log(exp(p) + 1).is_positive assert log(1, evaluate=False).is_algebraic assert log(42, evaluate=False).is_algebraic is False assert log(1 + z).is_rational def test_log_hashing(): assert x != log(log(x)) assert hash(x) != hash(log(log(x))) assert log(x) != log(log(log(x))) e = 1/log(log(x) + log(log(x))) assert e.base.func is log e = 1/log(log(x) + log(log(log(x)))) assert e.base.func is log e = log(log(x)) assert e.func is log assert not x.func is log assert hash(log(log(x))) != hash(x) assert e != x def test_log_sign(): assert sign(log(2)) == 1 def test_log_expand_complex(): assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4 assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi def test_log_apply_evalf(): value = (log(3)/log(2) - 1).evalf() assert value.epsilon_eq(Float("0.58496250072115618145373")) def test_log_expand(): w = Symbol("w", positive=True) e = log(w**(log(5)/log(3))) assert e.expand() == log(5)/log(3) * log(w) x, y, z = symbols('x,y,z', positive=True) assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z) assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) + 2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2), log((log(y) + log(z))*log(x)) + log(2)] assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2) assert log(x**log(x**2)).expand() == 2*log(x)**2 x, y = symbols('x,y') assert log(x*y).expand(force=True) == log(x) + log(y) assert log(x**y).expand(force=True) == y*log(x) assert log(exp(x)).expand(force=True) == x # there's generally no need to expand out logs since this requires # factoring and if simplification is sought, it's cheaper to put # logs together than it is to take them apart. assert log(2*3**2).expand() != 2*log(3) + log(2) @XFAIL def test_log_expand_fail(): x, y, z = symbols('x,y,z', positive=True) assert (log(x*(y + z))*(x + y)).expand(mul=True, log=True) == y*log( x) + y*log(y + z) + z*log(x) + z*log(y + z) def test_log_simplify(): x = Symbol("x", positive=True) assert log(x**2).expand() == 2*log(x) assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x) z = Symbol('z') assert log(sqrt(z)).expand() == log(z)/2 assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z) assert log(z**(-1)).expand() != -log(z) assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1) def test_log_AccumBounds(): assert log(AccumBounds(1, E)) == AccumBounds(0, 1) def test_lambertw(): k = Symbol('k') assert LambertW(x, 0) == LambertW(x) assert LambertW(x, 0, evaluate=False) != LambertW(x) assert LambertW(0) == 0 assert LambertW(E) == 1 assert LambertW(-1/E) == -1 assert LambertW(-log(2)/2) == -log(2) assert LambertW(oo) is oo assert LambertW(0, 1) is -oo assert LambertW(0, 42) is -oo assert LambertW(-pi/2, -1) == -I*pi/2 assert LambertW(-1/E, -1) == -1 assert LambertW(-2*exp(-2), -1) == -2 assert LambertW(2*log(2)) == log(2) assert LambertW(-pi/2) == I*pi/2 assert LambertW(exp(1 + E)) == E assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2)) assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k)) assert LambertW(sqrt(2)).evalf(30).epsilon_eq( Float("0.701338383413663009202120278965", 30), 1e-29) assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110")) assert LambertW(-1).is_real is False # issue 5215 assert LambertW(2, evaluate=False).is_real p = Symbol('p', positive=True) assert LambertW(p, evaluate=False).is_real assert LambertW(p - 1, evaluate=False).is_real is None assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False assert LambertW(S.Half, -1, evaluate=False).is_real is False assert LambertW(Rational(-1, 10), -1, evaluate=False).is_real assert LambertW(-10, -1, evaluate=False).is_real is False assert LambertW(-2, 2, evaluate=False).is_real is False assert LambertW(0, evaluate=False).is_algebraic na = Symbol('na', nonzero=True, algebraic=True) assert LambertW(na).is_algebraic is False def test_issue_5673(): e = LambertW(-1) assert e.is_comparable is False assert e.is_positive is not True e2 = 1 - 1/(1 - exp(-1000)) assert e2.is_positive is not True e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2))) assert e3.is_nonzero is not True def test_log_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: log(x).fdiff(2)) def test_log_taylor_term(): x = symbols('x') assert log(x).taylor_term(0, x) == x assert log(x).taylor_term(1, x) == -x**2/2 assert log(x).taylor_term(4, x) == x**5/5 assert log(x).taylor_term(-1, x) is S.Zero def test_exp_expand_NC(): A, B, C = symbols('A,B,C', commutative=False) assert exp(A + B).expand() == exp(A + B) assert exp(A + B + C).expand() == exp(A + B + C) assert exp(x + y).expand() == exp(x)*exp(y) assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z) def test_as_numer_denom(): n = symbols('n', negative=True) assert exp(x).as_numer_denom() == (exp(x), 1) assert exp(-x).as_numer_denom() == (1, exp(x)) assert exp(-2*x).as_numer_denom() == (1, exp(2*x)) assert exp(-2).as_numer_denom() == (1, exp(2)) assert exp(n).as_numer_denom() == (1, exp(-n)) assert exp(-n).as_numer_denom() == (exp(-n), 1) assert exp(-I*x).as_numer_denom() == (1, exp(I*x)) assert exp(-I*n).as_numer_denom() == (1, exp(I*n)) assert exp(-n).as_numer_denom() == (exp(-n), 1) def test_polar(): x, y = symbols('x y', polar=True) assert abs(exp_polar(I*4)) == 1 assert abs(exp_polar(0)) == 1 assert abs(exp_polar(2 + 3*I)) == exp(2) assert exp_polar(I*10).n() == exp_polar(I*10) assert log(exp_polar(z)) == z assert log(x*y).expand() == log(x) + log(y) assert log(x**z).expand() == z*log(x) assert exp_polar(3).exp == 3 # Compare exp(1.0*pi*I). assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0 assert exp_polar(0).is_rational is True # issue 8008 def test_exp_summation(): w = symbols("w") m, n, i, j = symbols("m n i j") expr = exp(Sum(w*i, (i, 0, n), (j, 0, m))) assert expr.expand() == Product(exp(w*i), (i, 0, n), (j, 0, m)) def test_log_product(): from sympy.abc import n, m from sympy.concrete import Product i, j = symbols('i,j', positive=True, integer=True) x, y = symbols('x,y', positive=True) z = symbols('z', real=True) w = symbols('w') expr = log(Product(x**i, (i, 1, n))) assert simplify(expr) == expr assert expr.expand() == Sum(i*log(x), (i, 1, n)) expr = log(Product(x**i*y**j, (i, 1, n), (j, 1, m))) assert simplify(expr) == expr assert expr.expand() == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m)) expr = log(Product(-2, (n, 0, 4))) assert simplify(expr) == expr assert expr.expand() == expr assert expr.expand(force=True) == Sum(log(-2), (n, 0, 4)) expr = log(Product(exp(z*i), (i, 0, n))) assert expr.expand() == Sum(z*i, (i, 0, n)) expr = log(Product(exp(w*i), (i, 0, n))) assert expr.expand() == expr assert expr.expand(force=True) == Sum(w*i, (i, 0, n)) expr = log(Product(i**2*abs(j), (i, 1, n), (j, 1, m))) assert expr.expand() == Sum(2*log(i) + log(j), (i, 1, n), (j, 1, m)) @XFAIL def test_log_product_simplify_to_sum(): from sympy.abc import n, m i, j = symbols('i,j', positive=True, integer=True) x, y = symbols('x,y', positive=True) from sympy.concrete import Product, Sum assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n)) assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \ Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m)) def test_issue_8866(): assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10)) assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10)) y = Symbol('y', positive=True) l1 = log(exp(y), exp(10)) b1 = log(exp(y), exp(5)) l2 = log(exp(y), exp(10), evaluate=False) b2 = log(exp(y), exp(5), evaluate=False) assert simplify(log(l1, b1)) == simplify(log(l2, b2)) assert expand_log(log(l1, b1)) == expand_log(log(l2, b2)) def test_issue_9116(): n = Symbol('n', positive=True, integer=True) assert ln(n).is_nonnegative is True assert log(n).is_nonnegative is True
fba7f0d7682eb6ae02030447a4370d8becb92b420213a1f74ead74ea949814b2
from sympy import (symbols, Symbol, nan, oo, zoo, I, sinh, sin, pi, atan, acos, Rational, sqrt, asin, acot, coth, E, S, tan, tanh, cos, cosh, atan2, exp, log, asinh, acoth, atanh, O, cancel, Matrix, re, im, Float, Pow, gcd, sec, csc, cot, diff, simplify, Heaviside, arg, conjugate, series, FiniteSet, asec, acsc, Mul, sinc, jn, AccumBounds, Interval, ImageSet, Lambda, besselj, Add) from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.core.relational import Ne, Eq from sympy.functions.elementary.piecewise import Piecewise from sympy.sets.setexpr import SetExpr from sympy.utilities.pytest import XFAIL, slow, raises x, y, z = symbols('x y z') r = Symbol('r', real=True) k = Symbol('k', integer=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('p', nonpositive=True) nn = Symbol('n', nonnegative=True) nz = Symbol('nz', nonzero=True) ep = Symbol('ep', extended_positive=True) en = Symbol('en', extended_negative=True) enp = Symbol('ep', extended_nonpositive=True) enn = Symbol('en', extended_nonnegative=True) enz = Symbol('enz', extended_nonzero=True) a = Symbol('a', algebraic=True) na = Symbol('na', nonzero=True, algebraic=True) def test_sin(): x, y = symbols('x y') assert sin.nargs == FiniteSet(1) assert sin(nan) is nan assert sin(zoo) is nan assert sin(oo) == AccumBounds(-1, 1) assert sin(oo) - sin(oo) == AccumBounds(-2, 2) assert sin(oo*I) == oo*I assert sin(-oo*I) == -oo*I assert 0*sin(oo) is S.Zero assert 0/sin(oo) is S.Zero assert 0 + sin(oo) == AccumBounds(-1, 1) assert 5 + sin(oo) == AccumBounds(4, 6) assert sin(0) == 0 assert sin(asin(x)) == x assert sin(atan(x)) == x / sqrt(1 + x**2) assert sin(acos(x)) == sqrt(1 - x**2) assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x) assert sin(acsc(x)) == 1 / x assert sin(asec(x)) == sqrt(1 - 1 / x**2) assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2) assert sin(pi*I) == sinh(pi)*I assert sin(-pi*I) == -sinh(pi)*I assert sin(-2*I) == -sinh(2)*I assert sin(pi) == 0 assert sin(-pi) == 0 assert sin(2*pi) == 0 assert sin(-2*pi) == 0 assert sin(-3*10**73*pi) == 0 assert sin(7*10**103*pi) == 0 assert sin(pi/2) == 1 assert sin(-pi/2) == -1 assert sin(pi*Rational(5, 2)) == 1 assert sin(pi*Rational(7, 2)) == -1 ne = symbols('ne', integer=True, even=False) e = symbols('e', even=True) assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half) assert sin(pi*k/2).func == sin assert sin(pi*e/2) == 0 assert sin(pi*k) == 0 assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298 assert sin(pi/3) == S.Half*sqrt(3) assert sin(pi*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3) assert sin(pi/4) == S.Half*sqrt(2) assert sin(-pi/4) == Rational(-1, 2)*sqrt(2) assert sin(pi*Rational(17, 4)) == S.Half*sqrt(2) assert sin(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert sin(pi/6) == S.Half assert sin(-pi/6) == Rational(-1, 2) assert sin(pi*Rational(7, 6)) == Rational(-1, 2) assert sin(pi*Rational(-5, 6)) == Rational(-1, 2) assert sin(pi*Rational(1, 5)) == sqrt((5 - sqrt(5)) / 8) assert sin(pi*Rational(2, 5)) == sqrt((5 + sqrt(5)) / 8) assert sin(pi*Rational(3, 5)) == sin(pi*Rational(2, 5)) assert sin(pi*Rational(4, 5)) == sin(pi*Rational(1, 5)) assert sin(pi*Rational(6, 5)) == -sin(pi*Rational(1, 5)) assert sin(pi*Rational(8, 5)) == -sin(pi*Rational(2, 5)) assert sin(pi*Rational(-1273, 5)) == -sin(pi*Rational(2, 5)) assert sin(pi/8) == sqrt((2 - sqrt(2))/4) assert sin(pi/10) == Rational(-1, 4) + sqrt(5)/4 assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4 assert sin(pi*Rational(5, 12)) == sqrt(2)/4 + sqrt(6)/4 assert sin(pi*Rational(-7, 12)) == -sqrt(2)/4 - sqrt(6)/4 assert sin(pi*Rational(-11, 12)) == sqrt(2)/4 - sqrt(6)/4 assert sin(pi*Rational(104, 105)) == sin(pi/105) assert sin(pi*Rational(106, 105)) == -sin(pi/105) assert sin(pi*Rational(-104, 105)) == -sin(pi/105) assert sin(pi*Rational(-106, 105)) == sin(pi/105) assert sin(x*I) == sinh(x)*I assert sin(k*pi) == 0 assert sin(17*k*pi) == 0 assert sin(k*pi*I) == sinh(k*pi)*I assert sin(r).is_real is True assert sin(0, evaluate=False).is_algebraic assert sin(a).is_algebraic is None assert sin(na).is_algebraic is False q = Symbol('q', rational=True) assert sin(pi*q).is_algebraic qn = Symbol('qn', rational=True, nonzero=True) assert sin(qn).is_rational is False assert sin(q).is_rational is None # issue 8653 assert isinstance(sin( re(x) - im(y)), sin) is True assert isinstance(sin(-re(x) + im(y)), sin) is False assert sin(SetExpr(Interval(0, 1))) == SetExpr(ImageSet(Lambda(x, sin(x)), Interval(0, 1))) for d in list(range(1, 22)) + [60, 85]: for n in range(0, d*2 + 1): x = n*pi/d e = abs( float(sin(x)) - sin(float(x)) ) assert e < 1e-12 assert sin(0, evaluate=False).is_zero is True assert sin(k*pi, evaluate=False).is_zero is None assert sin(Add(1, -1, evaluate=False), evaluate=False).is_zero is True def test_sin_cos(): for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive... for n in range(-2*d, d*2): x = n*pi/d assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d) assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d) def test_sin_series(): assert sin(x).series(x, 0, 9) == \ x - x**3/6 + x**5/120 - x**7/5040 + O(x**9) def test_sin_rewrite(): assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2 assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2) assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2) assert sin(sinh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n() assert sin(cosh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n() assert sin(tanh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n() assert sin(coth(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n() assert sin(sin(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n() assert sin(cos(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n() assert sin(tan(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n() assert sin(cot(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n() assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2 assert sin(x).rewrite(csc) == 1/csc(x) assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False) assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False) assert sin(cos(x)).rewrite(Pow) == sin(cos(x)) def test_sin_expansion(): # Note: these formulas are not unique. The ones here come from the # Chebyshev formulas. assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y) assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y) assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y) assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x) assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x) assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x) assert sin(2).expand(trig=True) == 2*sin(1)*cos(1) assert sin(3).expand(trig=True) == -4*sin(1)**3 + 3*sin(1) def test_sin_AccumBounds(): assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, S.Pi*Rational(3, 4))) == AccumBounds(0, 1) assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(7, 4))) == AccumBounds(-1, sin(S.Pi*Rational(3, 4))) assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3)) assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 6))) == AccumBounds(sin(S.Pi*Rational(5, 6)), sin(S.Pi*Rational(3, 4))) def test_sin_fdiff(): assert sin(x).fdiff() == cos(x) raises(ArgumentIndexError, lambda: sin(x).fdiff(2)) def test_trig_symmetry(): assert sin(-x) == -sin(x) assert cos(-x) == cos(x) assert tan(-x) == -tan(x) assert cot(-x) == -cot(x) assert sin(x + pi) == -sin(x) assert sin(x + 2*pi) == sin(x) assert sin(x + 3*pi) == -sin(x) assert sin(x + 4*pi) == sin(x) assert sin(x - 5*pi) == -sin(x) assert cos(x + pi) == -cos(x) assert cos(x + 2*pi) == cos(x) assert cos(x + 3*pi) == -cos(x) assert cos(x + 4*pi) == cos(x) assert cos(x - 5*pi) == -cos(x) assert tan(x + pi) == tan(x) assert tan(x - 3*pi) == tan(x) assert cot(x + pi) == cot(x) assert cot(x - 3*pi) == cot(x) assert sin(pi/2 - x) == cos(x) assert sin(pi*Rational(3, 2) - x) == -cos(x) assert sin(pi*Rational(5, 2) - x) == cos(x) assert cos(pi/2 - x) == sin(x) assert cos(pi*Rational(3, 2) - x) == -sin(x) assert cos(pi*Rational(5, 2) - x) == sin(x) assert tan(pi/2 - x) == cot(x) assert tan(pi*Rational(3, 2) - x) == cot(x) assert tan(pi*Rational(5, 2) - x) == cot(x) assert cot(pi/2 - x) == tan(x) assert cot(pi*Rational(3, 2) - x) == tan(x) assert cot(pi*Rational(5, 2) - x) == tan(x) assert sin(pi/2 + x) == cos(x) assert cos(pi/2 + x) == -sin(x) assert tan(pi/2 + x) == -cot(x) assert cot(pi/2 + x) == -tan(x) def test_cos(): x, y = symbols('x y') assert cos.nargs == FiniteSet(1) assert cos(nan) is nan assert cos(oo) == AccumBounds(-1, 1) assert cos(oo) - cos(oo) == AccumBounds(-2, 2) assert cos(oo*I) is oo assert cos(-oo*I) is oo assert cos(zoo) is nan assert cos(0) == 1 assert cos(acos(x)) == x assert cos(atan(x)) == 1 / sqrt(1 + x**2) assert cos(asin(x)) == sqrt(1 - x**2) assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2) assert cos(acsc(x)) == sqrt(1 - 1 / x**2) assert cos(asec(x)) == 1 / x assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2) assert cos(pi*I) == cosh(pi) assert cos(-pi*I) == cosh(pi) assert cos(-2*I) == cosh(2) assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos((-3*10**73 + 1)*pi/2) == 0 assert cos((7*10**103 + 1)*pi/2) == 0 n = symbols('n', integer=True, even=False) e = symbols('e', even=True) assert cos(pi*n/2) == 0 assert cos(pi*e/2) == (-1)**(e/2) assert cos(pi) == -1 assert cos(-pi) == -1 assert cos(2*pi) == 1 assert cos(5*pi) == -1 assert cos(8*pi) == 1 assert cos(pi/3) == S.Half assert cos(pi*Rational(-2, 3)) == Rational(-1, 2) assert cos(pi/4) == S.Half*sqrt(2) assert cos(-pi/4) == S.Half*sqrt(2) assert cos(pi*Rational(11, 4)) == Rational(-1, 2)*sqrt(2) assert cos(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert cos(pi/6) == S.Half*sqrt(3) assert cos(-pi/6) == S.Half*sqrt(3) assert cos(pi*Rational(7, 6)) == Rational(-1, 2)*sqrt(3) assert cos(pi*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3) assert cos(pi*Rational(1, 5)) == (sqrt(5) + 1)/4 assert cos(pi*Rational(2, 5)) == (sqrt(5) - 1)/4 assert cos(pi*Rational(3, 5)) == -cos(pi*Rational(2, 5)) assert cos(pi*Rational(4, 5)) == -cos(pi*Rational(1, 5)) assert cos(pi*Rational(6, 5)) == -cos(pi*Rational(1, 5)) assert cos(pi*Rational(8, 5)) == cos(pi*Rational(2, 5)) assert cos(pi*Rational(-1273, 5)) == -cos(pi*Rational(2, 5)) assert cos(pi/8) == sqrt((2 + sqrt(2))/4) assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4 assert cos(pi*Rational(5, 12)) == -sqrt(2)/4 + sqrt(6)/4 assert cos(pi*Rational(7, 12)) == sqrt(2)/4 - sqrt(6)/4 assert cos(pi*Rational(11, 12)) == -sqrt(2)/4 - sqrt(6)/4 assert cos(pi*Rational(104, 105)) == -cos(pi/105) assert cos(pi*Rational(106, 105)) == -cos(pi/105) assert cos(pi*Rational(-104, 105)) == -cos(pi/105) assert cos(pi*Rational(-106, 105)) == -cos(pi/105) assert cos(x*I) == cosh(x) assert cos(k*pi*I) == cosh(k*pi) assert cos(r).is_real is True assert cos(0, evaluate=False).is_algebraic assert cos(a).is_algebraic is None assert cos(na).is_algebraic is False q = Symbol('q', rational=True) assert cos(pi*q).is_algebraic assert cos(pi*Rational(2, 7)).is_algebraic assert cos(k*pi) == (-1)**k assert cos(2*k*pi) == 1 for d in list(range(1, 22)) + [60, 85]: for n in range(0, 2*d + 1): x = n*pi/d e = abs( float(cos(x)) - cos(float(x)) ) assert e < 1e-12 def test_issue_6190(): c = Float('123456789012345678901234567890.25', '') for cls in [sin, cos, tan, cot]: assert cls(c*pi) == cls(pi/4) assert cls(4.125*pi) == cls(pi/8) assert cls(4.7*pi) == cls((4.7 % 2)*pi) def test_cos_series(): assert cos(x).series(x, 0, 9) == \ 1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9) def test_cos_rewrite(): assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2 assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2) assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2) assert cos(sinh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n() assert cos(cosh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n() assert cos(tanh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n() assert cos(coth(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n() assert cos(sin(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n() assert cos(cos(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n() assert cos(tan(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n() assert cos(cot(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n() assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2 assert cos(x).rewrite(sec) == 1/sec(x) assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False) assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False) assert cos(sin(x)).rewrite(Pow) == cos(sin(x)) def test_cos_expansion(): assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y) assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1 assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x) assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1 assert cos(2).expand(trig=True) == 2*cos(1)**2 - 1 assert cos(3).expand(trig=True) == 4*cos(1)**3 - 3*cos(1) def test_cos_AccumBounds(): assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1) assert cos(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 4))) == AccumBounds(-1, cos(S.Pi*Rational(3, 4))) assert cos(AccumBounds(S.Pi*Rational(5, 4), S.Pi*Rational(4, 3))) == AccumBounds(cos(S.Pi*Rational(5, 4)), cos(S.Pi*Rational(4, 3))) assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4)) def test_cos_fdiff(): assert cos(x).fdiff() == -sin(x) raises(ArgumentIndexError, lambda: cos(x).fdiff(2)) def test_tan(): assert tan(nan) is nan assert tan(zoo) is nan assert tan(oo) == AccumBounds(-oo, oo) assert tan(oo) - tan(oo) == AccumBounds(-oo, oo) assert tan.nargs == FiniteSet(1) assert tan(oo*I) == I assert tan(-oo*I) == -I assert tan(0) == 0 assert tan(atan(x)) == x assert tan(asin(x)) == x / sqrt(1 - x**2) assert tan(acos(x)) == sqrt(1 - x**2) / x assert tan(acot(x)) == 1 / x assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x assert tan(atan2(y, x)) == y/x assert tan(pi*I) == tanh(pi)*I assert tan(-pi*I) == -tanh(pi)*I assert tan(-2*I) == -tanh(2)*I assert tan(pi) == 0 assert tan(-pi) == 0 assert tan(2*pi) == 0 assert tan(-2*pi) == 0 assert tan(-3*10**73*pi) == 0 assert tan(pi/2) is zoo assert tan(pi*Rational(3, 2)) is zoo assert tan(pi/3) == sqrt(3) assert tan(pi*Rational(-2, 3)) == sqrt(3) assert tan(pi/4) is S.One assert tan(-pi/4) is S.NegativeOne assert tan(pi*Rational(17, 4)) is S.One assert tan(pi*Rational(-3, 4)) is S.One assert tan(pi/5) == sqrt(5 - 2*sqrt(5)) assert tan(pi*Rational(2, 5)) == sqrt(5 + 2*sqrt(5)) assert tan(pi*Rational(18, 5)) == -sqrt(5 + 2*sqrt(5)) assert tan(pi*Rational(-16, 5)) == -sqrt(5 - 2*sqrt(5)) assert tan(pi/6) == 1/sqrt(3) assert tan(-pi/6) == -1/sqrt(3) assert tan(pi*Rational(7, 6)) == 1/sqrt(3) assert tan(pi*Rational(-5, 6)) == 1/sqrt(3) assert tan(pi/8) == -1 + sqrt(2) assert tan(pi*Rational(3, 8)) == 1 + sqrt(2) # issue 15959 assert tan(pi*Rational(5, 8)) == -1 - sqrt(2) assert tan(pi*Rational(7, 8)) == 1 - sqrt(2) assert tan(pi/10) == sqrt(1 - 2*sqrt(5)/5) assert tan(pi*Rational(3, 10)) == sqrt(1 + 2*sqrt(5)/5) assert tan(pi*Rational(17, 10)) == -sqrt(1 + 2*sqrt(5)/5) assert tan(pi*Rational(-31, 10)) == -sqrt(1 - 2*sqrt(5)/5) assert tan(pi/12) == -sqrt(3) + 2 assert tan(pi*Rational(5, 12)) == sqrt(3) + 2 assert tan(pi*Rational(7, 12)) == -sqrt(3) - 2 assert tan(pi*Rational(11, 12)) == sqrt(3) - 2 assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6) assert tan(pi*Rational(5, 24)).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6) assert tan(pi*Rational(7, 24)).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6) assert tan(pi*Rational(11, 24)).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6) assert tan(pi*Rational(13, 24)).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6) assert tan(pi*Rational(17, 24)).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6) assert tan(pi*Rational(19, 24)).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6) assert tan(pi*Rational(23, 24)).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6) assert tan(x*I) == tanh(x)*I assert tan(k*pi) == 0 assert tan(17*k*pi) == 0 assert tan(k*pi*I) == tanh(k*pi)*I assert tan(r).is_real is None assert tan(r).is_extended_real is True assert tan(0, evaluate=False).is_algebraic assert tan(a).is_algebraic is None assert tan(na).is_algebraic is False assert tan(pi*Rational(10, 7)) == tan(pi*Rational(3, 7)) assert tan(pi*Rational(11, 7)) == -tan(pi*Rational(3, 7)) assert tan(pi*Rational(-11, 7)) == tan(pi*Rational(3, 7)) assert tan(pi*Rational(15, 14)) == tan(pi/14) assert tan(pi*Rational(-15, 14)) == -tan(pi/14) assert tan(r).is_finite is None assert tan(I*r).is_finite is True def test_tan_series(): assert tan(x).series(x, 0, 9) == \ x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9) def test_tan_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp) assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x) assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x) assert tan(x).rewrite(cot) == 1/cot(x) assert tan(sinh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n() assert tan(cosh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n() assert tan(tanh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n() assert tan(coth(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n() assert tan(sin(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n() assert tan(cos(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n() assert tan(tan(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n() assert tan(cot(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n() assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I) assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow) assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow) assert tan(pi/19).rewrite(pow) == tan(pi/19) assert tan(pi*Rational(8, 19)).rewrite(sqrt) == tan(pi*Rational(8, 19)) assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False) assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x) assert tan(sin(x)).rewrite(Pow) == tan(sin(x)) assert tan(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == sqrt(sqrt(5)/8 + Rational(5, 8))/(Rational(-1, 4) + sqrt(5)/4) def test_tan_subs(): assert tan(x).subs(tan(x), y) == y assert tan(x).subs(x, y) == tan(y) assert tan(x).subs(x, S.Pi/2) is zoo assert tan(x).subs(x, S.Pi*Rational(3, 2)) is zoo def test_tan_expansion(): assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand() assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand() assert tan(x + y + z).expand(trig=True) == ( (tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/ (1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand() assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7 assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37 assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1 def test_tan_AccumBounds(): assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/3, S.Pi*Rational(2, 3))) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3)) def test_tan_fdiff(): assert tan(x).fdiff() == tan(x)**2 + 1 raises(ArgumentIndexError, lambda: tan(x).fdiff(2)) def test_cot(): assert cot(nan) is nan assert cot.nargs == FiniteSet(1) assert cot(oo*I) == -I assert cot(-oo*I) == I assert cot(zoo) is nan assert cot(0) is zoo assert cot(2*pi) is zoo assert cot(acot(x)) == x assert cot(atan(x)) == 1 / x assert cot(asin(x)) == sqrt(1 - x**2) / x assert cot(acos(x)) == x / sqrt(1 - x**2) assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert cot(atan2(y, x)) == x/y assert cot(pi*I) == -coth(pi)*I assert cot(-pi*I) == coth(pi)*I assert cot(-2*I) == coth(2)*I assert cot(pi) == cot(2*pi) == cot(3*pi) assert cot(-pi) == cot(-2*pi) == cot(-3*pi) assert cot(pi/2) == 0 assert cot(-pi/2) == 0 assert cot(pi*Rational(5, 2)) == 0 assert cot(pi*Rational(7, 2)) == 0 assert cot(pi/3) == 1/sqrt(3) assert cot(pi*Rational(-2, 3)) == 1/sqrt(3) assert cot(pi/4) is S.One assert cot(-pi/4) is S.NegativeOne assert cot(pi*Rational(17, 4)) is S.One assert cot(pi*Rational(-3, 4)) is S.One assert cot(pi/6) == sqrt(3) assert cot(-pi/6) == -sqrt(3) assert cot(pi*Rational(7, 6)) == sqrt(3) assert cot(pi*Rational(-5, 6)) == sqrt(3) assert cot(pi/8) == 1 + sqrt(2) assert cot(pi*Rational(3, 8)) == -1 + sqrt(2) assert cot(pi*Rational(5, 8)) == 1 - sqrt(2) assert cot(pi*Rational(7, 8)) == -1 - sqrt(2) assert cot(pi/12) == sqrt(3) + 2 assert cot(pi*Rational(5, 12)) == -sqrt(3) + 2 assert cot(pi*Rational(7, 12)) == sqrt(3) - 2 assert cot(pi*Rational(11, 12)) == -sqrt(3) - 2 assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6) assert cot(pi*Rational(5, 24)).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6) assert cot(pi*Rational(7, 24)).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6) assert cot(pi*Rational(11, 24)).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6) assert cot(pi*Rational(13, 24)).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6) assert cot(pi*Rational(17, 24)).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6) assert cot(pi*Rational(19, 24)).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6) assert cot(pi*Rational(23, 24)).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6) assert cot(x*I) == -coth(x)*I assert cot(k*pi*I) == -coth(k*pi)*I assert cot(r).is_real is None assert cot(r).is_extended_real is True assert cot(a).is_algebraic is None assert cot(na).is_algebraic is False assert cot(pi*Rational(10, 7)) == cot(pi*Rational(3, 7)) assert cot(pi*Rational(11, 7)) == -cot(pi*Rational(3, 7)) assert cot(pi*Rational(-11, 7)) == cot(pi*Rational(3, 7)) assert cot(pi*Rational(39, 34)) == cot(pi*Rational(5, 34)) assert cot(pi*Rational(-41, 34)) == -cot(pi*Rational(7, 34)) assert cot(x).is_finite is None assert cot(r).is_finite is None i = Symbol('i', imaginary=True) assert cot(i).is_finite is True assert cot(x).subs(x, 3*pi) is zoo def test_tan_cot_sin_cos_evalf(): assert abs((tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15)) - 1).evalf()) < 1e-14 assert abs((cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15)) - 1).evalf()) < 1e-14 @XFAIL def test_tan_cot_sin_cos_ratsimp(): assert 1 == (tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15))).ratsimp() assert 1 == (cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15))).ratsimp() def test_cot_series(): assert cot(x).series(x, 0, 9) == \ 1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9) # issue 6210 assert cot(x**4 + x**5).series(x, 0, 1) == \ x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x) assert cot(pi*(1-x)).series(x, 0, 3) == -1/(pi*x) + pi*x/3 + O(x**3) assert cot(x).taylor_term(0, x) == 1/x assert cot(x).taylor_term(2, x) is S.Zero assert cot(x).taylor_term(3, x) == -x**3/45 def test_cot_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp) assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2)) assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False) assert cot(x).rewrite(tan) == 1/tan(x) assert cot(sinh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sinh(3)).n() assert cot(cosh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, cosh(3)).n() assert cot(tanh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tanh(3)).n() assert cot(coth(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, coth(3)).n() assert cot(sin(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sin(3)).n() assert cot(tan(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tan(3)).n() assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I) assert cot(pi*Rational(4, 34)).rewrite(pow).ratsimp() == (cos(pi*Rational(4, 34))/sin(pi*Rational(4, 34))).rewrite(pow).ratsimp() assert cot(pi*Rational(4, 17)).rewrite(pow) == (cos(pi*Rational(4, 17))/sin(pi*Rational(4, 17))).rewrite(pow) assert cot(pi/19).rewrite(pow) == cot(pi/19) assert cot(pi/19).rewrite(sqrt) == cot(pi/19) assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x) assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False) assert cot(sin(x)).rewrite(Pow) == cot(sin(x)) assert cot(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == (Rational(-1, 4) + sqrt(5)/4)/\ sqrt(sqrt(5)/8 + Rational(5, 8)) def test_cot_subs(): assert cot(x).subs(cot(x), y) == y assert cot(x).subs(x, y) == cot(y) assert cot(x).subs(x, 0) is zoo assert cot(x).subs(x, S.Pi) is zoo def test_cot_expansion(): assert cot(x + y).expand(trig=True) == ((cot(x)*cot(y) - 1)/(cot(x) + cot(y))).expand() assert cot(x - y).expand(trig=True) == (-(cot(x)*cot(y) + 1)/(cot(x) - cot(y))).expand() assert cot(x + y + z).expand(trig=True) == ( (cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/ (-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z))).expand() assert cot(3*x).expand(trig=True) == ((cot(x)**3 - 3*cot(x))/(3*cot(x)**2 - 1)).expand() assert 0 == cot(2*x).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 3))])*3 + 4 assert 0 == cot(3*x).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 5))])*55 - 37 assert 0 == cot(4*x - pi/4).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 7))])*863 + 191 def test_cot_AccumBounds(): assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo) assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6)) def test_cot_fdiff(): assert cot(x).fdiff() == -cot(x)**2 - 1 raises(ArgumentIndexError, lambda: cot(x).fdiff(2)) def test_sinc(): assert isinstance(sinc(x), sinc) s = Symbol('s', zero=True) assert sinc(s) is S.One assert sinc(S.Infinity) is S.Zero assert sinc(S.NegativeInfinity) is S.Zero assert sinc(S.NaN) is S.NaN assert sinc(S.ComplexInfinity) is S.NaN n = Symbol('n', integer=True, nonzero=True) assert sinc(n*pi) is S.Zero assert sinc(-n*pi) is S.Zero assert sinc(pi/2) == 2 / pi assert sinc(-pi/2) == 2 / pi assert sinc(pi*Rational(5, 2)) == 2 / (5*pi) assert sinc(pi*Rational(7, 2)) == -2 / (7*pi) assert sinc(-x) == sinc(x) assert sinc(x).diff() == Piecewise(((x*cos(x) - sin(x)) / x**2, Ne(x, 0)), (0, True)) assert sinc(x).diff(x).equals(sinc(x).rewrite(sin).diff(x)) assert sinc(x).diff().subs(x, 0) is S.Zero assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6) assert sinc(x).rewrite(jn) == jn(0, x) assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True)) def test_asin(): assert asin(nan) is nan assert asin.nargs == FiniteSet(1) assert asin(oo) == -I*oo assert asin(-oo) == I*oo assert asin(zoo) is zoo # Note: asin(-x) = - asin(x) assert asin(0) == 0 assert asin(1) == pi/2 assert asin(-1) == -pi/2 assert asin(sqrt(3)/2) == pi/3 assert asin(-sqrt(3)/2) == -pi/3 assert asin(sqrt(2)/2) == pi/4 assert asin(-sqrt(2)/2) == -pi/4 assert asin(sqrt((5 - sqrt(5))/8)) == pi/5 assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5 assert asin(S.Half) == pi/6 assert asin(Rational(-1, 2)) == -pi/6 assert asin((sqrt(2 - sqrt(2)))/2) == pi/8 assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8 assert asin((sqrt(5) - 1)/4) == pi/10 assert asin(-(sqrt(5) - 1)/4) == -pi/10 assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12 assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12 # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for n in range(-(d//2), d//2 + 1): if gcd(n, d) == 1: assert asin(sin(n*pi/d)) == n*pi/d assert asin(x).diff(x) == 1/sqrt(1 - x**2) assert asin(0.2).is_real is True assert asin(-2).is_real is False assert asin(r).is_real is None assert asin(-2*I) == -I*asinh(2) assert asin(Rational(1, 7), evaluate=False).is_positive is True assert asin(Rational(-1, 7), evaluate=False).is_positive is False assert asin(p).is_positive is None assert asin(sin(Rational(7, 2))) == Rational(-7, 2) + pi assert asin(sin(Rational(-7, 4))) == Rational(7, 4) - pi assert unchanged(asin, cos(x)) def test_asin_series(): assert asin(x).series(x, 0, 9) == \ x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9) t5 = asin(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112 def test_asin_rewrite(): assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2)) assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2))) assert asin(x).rewrite(acos) == S.Pi/2 - acos(x) assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x) assert asin(x).rewrite(asec) == -asec(1/x) + pi/2 assert asin(x).rewrite(acsc) == acsc(1/x) def test_asin_fdiff(): assert asin(x).fdiff() == 1/sqrt(1 - x**2) raises(ArgumentIndexError, lambda: asin(x).fdiff(2)) def test_acos(): assert acos(nan) is nan assert acos(zoo) is zoo assert acos.nargs == FiniteSet(1) assert acos(oo) == I*oo assert acos(-oo) == -I*oo # Note: acos(-x) = pi - acos(x) assert acos(0) == pi/2 assert acos(S.Half) == pi/3 assert acos(Rational(-1, 2)) == pi*Rational(2, 3) assert acos(1) == 0 assert acos(-1) == pi assert acos(sqrt(2)/2) == pi/4 assert acos(-sqrt(2)/2) == pi*Rational(3, 4) # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for num in range(d): if gcd(num, d) == 1: assert acos(cos(num*pi/d)) == num*pi/d assert acos(2*I) == pi/2 - asin(2*I) assert acos(x).diff(x) == -1/sqrt(1 - x**2) assert acos(0.2).is_real is True assert acos(-2).is_real is False assert acos(r).is_real is None assert acos(Rational(1, 7), evaluate=False).is_positive is True assert acos(Rational(-1, 7), evaluate=False).is_positive is True assert acos(Rational(3, 2), evaluate=False).is_positive is False assert acos(p).is_positive is None assert acos(2 + p).conjugate() != acos(10 + p) assert acos(-3 + n).conjugate() != acos(-3 + n) assert acos(Rational(1, 3)).conjugate() == acos(Rational(1, 3)) assert acos(Rational(-1, 3)).conjugate() == acos(Rational(-1, 3)) assert acos(p + n*I).conjugate() == acos(p - n*I) assert acos(z).conjugate() != acos(conjugate(z)) def test_acos_series(): assert acos(x).series(x, 0, 8) == \ pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8) assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8) t5 = acos(x).taylor_term(5, x) assert t5 == -3*x**5/40 assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112 assert acos(x).taylor_term(0, x) == pi/2 assert acos(x).taylor_term(2, x) is S.Zero def test_acos_rewrite(): assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2)) assert acos(x).rewrite(atan) == \ atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2)) assert acos(0).rewrite(atan) == S.Pi/2 assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log) assert acos(x).rewrite(asin) == S.Pi/2 - asin(x) assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2 assert acos(x).rewrite(asec) == asec(1/x) assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2 def test_acos_fdiff(): assert acos(x).fdiff() == -1/sqrt(1 - x**2) raises(ArgumentIndexError, lambda: acos(x).fdiff(2)) def test_atan(): assert atan(nan) is nan assert atan.nargs == FiniteSet(1) assert atan(oo) == pi/2 assert atan(-oo) == -pi/2 assert atan(zoo) == AccumBounds(-pi/2, pi/2) assert atan(0) == 0 assert atan(1) == pi/4 assert atan(sqrt(3)) == pi/3 assert atan(-(1 + sqrt(2))) == pi*Rational(-3, 8) assert atan(sqrt((5 - 2 * sqrt(5)))) == pi/5 assert atan(-sqrt(1 - 2 * sqrt(5)/ 5)) == -pi/10 assert atan(sqrt(1 + 2 * sqrt(5) / 5)) == pi*Rational(3, 10) assert atan(-2 + sqrt(3)) == -pi/12 assert atan(2 + sqrt(3)) == pi*Rational(5, 12) assert atan(-2 - sqrt(3)) == pi*Rational(-5, 12) # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for num in range(-(d//2), d//2 + 1): if gcd(num, d) == 1: assert atan(tan(num*pi/d)) == num*pi/d assert atan(oo) == pi/2 assert atan(x).diff(x) == 1/(1 + x**2) assert atan(r).is_real is True assert atan(-2*I) == -I*atanh(2) assert unchanged(atan, cot(x)) assert atan(cot(Rational(1, 4))) == Rational(-1, 4) + pi/2 assert acot(Rational(1, 4)).is_rational is False for s in (x, p, n, np, nn, nz, ep, en, enp, enn, enz): if s.is_real or s.is_extended_real is None: assert s.is_nonzero is atan(s).is_nonzero assert s.is_positive is atan(s).is_positive assert s.is_negative is atan(s).is_negative assert s.is_nonpositive is atan(s).is_nonpositive assert s.is_nonnegative is atan(s).is_nonnegative else: assert s.is_extended_nonzero is atan(s).is_nonzero assert s.is_extended_positive is atan(s).is_positive assert s.is_extended_negative is atan(s).is_negative assert s.is_extended_nonpositive is atan(s).is_nonpositive assert s.is_extended_nonnegative is atan(s).is_nonnegative assert s.is_extended_nonzero is atan(s).is_extended_nonzero assert s.is_extended_positive is atan(s).is_extended_positive assert s.is_extended_negative is atan(s).is_extended_negative assert s.is_extended_nonpositive is atan(s).is_extended_nonpositive assert s.is_extended_nonnegative is atan(s).is_extended_nonnegative def test_atan_rewrite(): assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2 assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x assert atan(x).rewrite(acot) == acot(1/x) assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I}) assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I}) def test_atan_fdiff(): assert atan(x).fdiff() == 1/(x**2 + 1) raises(ArgumentIndexError, lambda: atan(x).fdiff(2)) def test_atan2(): assert atan2.nargs == FiniteSet(2) assert atan2(0, 0) is S.NaN assert atan2(0, 1) == 0 assert atan2(1, 1) == pi/4 assert atan2(1, 0) == pi/2 assert atan2(1, -1) == pi*Rational(3, 4) assert atan2(0, -1) == pi assert atan2(-1, -1) == pi*Rational(-3, 4) assert atan2(-1, 0) == -pi/2 assert atan2(-1, 1) == -pi/4 i = symbols('i', imaginary=True) r = symbols('r', real=True) eq = atan2(r, i) ans = -I*log((i + I*r)/sqrt(i**2 + r**2)) reps = ((r, 2), (i, I)) assert eq.subs(reps) == ans.subs(reps) x = Symbol('x', negative=True) y = Symbol('y', negative=True) assert atan2(y, x) == atan(y/x) - pi y = Symbol('y', nonnegative=True) assert atan2(y, x) == atan(y/x) + pi y = Symbol('y') assert atan2(y, x) == atan2(y, x, evaluate=False) u = Symbol("u", positive=True) assert atan2(0, u) == 0 u = Symbol("u", negative=True) assert atan2(0, u) == pi assert atan2(y, oo) == 0 assert atan2(y, -oo)== 2*pi*Heaviside(re(y)) - pi assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2)) assert atan2(0, 0) is S.NaN ex = atan2(y, x) - arg(x + I*y) assert ex.subs({x:2, y:3}).rewrite(arg) == 0 assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5) assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I) assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(Rational(2, 3)) + atan(Rational(3, 2)) i = symbols('i', imaginary=True) r = symbols('r', real=True) e = atan2(i, r) rewrite = e.rewrite(arg) reps = {i: I, r: -2} assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2)) assert (e - rewrite).subs(reps).equals(0) assert atan2(0, x).rewrite(atan) == Piecewise((pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) assert atan2(0, r).rewrite(atan) == Piecewise((pi, r < 0), (0, Ne(r, 0)), (S.NaN, True)) assert atan2(0, i),rewrite(atan) == 0 assert atan2(0, r + i).rewrite(atan) == Piecewise((pi, r < 0), (0, True)) assert atan2(y, x).rewrite(atan) == Piecewise( (2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, (re(x) > 0) | Ne(im(x), 0)), (nan, True)) assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y)) assert diff(atan2(y, x), x) == -y/(x**2 + y**2) assert diff(atan2(y, x), y) == x/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2) assert str(atan2(1, 2).evalf(5)) == '0.46365' raises(ArgumentIndexError, lambda: atan2(x, y).fdiff(3)) def test_issue_17461(): class A(Symbol): is_extended_real = True def _eval_evalf(self, prec): return Float(5.0) x = A('X') y = A('Y') assert abs(atan2(x, y).evalf() - 0.785398163397448) <= 1e-10 def test_acot(): assert acot(nan) is nan assert acot.nargs == FiniteSet(1) assert acot(-oo) == 0 assert acot(oo) == 0 assert acot(zoo) == 0 assert acot(1) == pi/4 assert acot(0) == pi/2 assert acot(sqrt(3)/3) == pi/3 assert acot(1/sqrt(3)) == pi/3 assert acot(-1/sqrt(3)) == -pi/3 assert acot(x).diff(x) == -1/(1 + x**2) assert acot(r).is_extended_real is True assert acot(I*pi) == -I*acoth(pi) assert acot(-2*I) == I*acoth(2) assert acot(x).is_positive is None assert acot(n).is_positive is False assert acot(p).is_positive is True assert acot(I).is_positive is False assert acot(Rational(1, 4)).is_rational is False assert unchanged(acot, cot(x)) assert unchanged(acot, tan(x)) assert acot(cot(Rational(1, 4))) == Rational(1, 4) assert acot(tan(Rational(-1, 4))) == Rational(1, 4) - pi/2 def test_acot_rewrite(): assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2 assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2)) assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1)) assert acot(x).rewrite(atan) == atan(1/x) assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2)) assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2)) assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5}) assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5}) def test_acot_fdiff(): assert acot(x).fdiff() == -1/(x**2 + 1) raises(ArgumentIndexError, lambda: acot(x).fdiff(2)) def test_attributes(): assert sin(x).args == (x,) def test_sincos_rewrite(): assert sin(pi/2 - x) == cos(x) assert sin(pi - x) == sin(x) assert cos(pi/2 - x) == sin(x) assert cos(pi - x) == -cos(x) def _check_even_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> f(x) arg : -x """ return func(arg).args[0] == -arg def _check_odd_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> -f(x) arg : -x """ return func(arg).func.is_Mul def _check_no_rewrite(func, arg): """Checks that the expr is not rewritten""" return func(arg).args[0] == arg def test_evenodd_rewrite(): a = cos(2) # negative b = sin(1) # positive even = [cos] odd = [sin, tan, cot, asin, atan, acot] with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y] for func in even: for expr in with_minus: assert _check_even_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == func(y - x) # it doesn't matter which form is canonical for func in odd: for expr in with_minus: assert _check_odd_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == -func(y - x) # it doesn't matter which form is canonical def test_issue_4547(): assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2) assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2) assert tan(x).rewrite(cot) == 1/cot(x) assert cot(x).fdiff() == -1 - cot(x)**2 def test_as_leading_term_issue_5272(): assert sin(x).as_leading_term(x) == x assert cos(x).as_leading_term(x) == 1 assert tan(x).as_leading_term(x) == x assert cot(x).as_leading_term(x) == 1/x assert asin(x).as_leading_term(x) == x assert acos(x).as_leading_term(x) == x assert atan(x).as_leading_term(x) == x assert acot(x).as_leading_term(x) == x def test_leading_terms(): for func in [sin, cos, tan, cot, asin, acos, atan, acot]: for a in (1/x, S.Half): eq = func(a) assert eq.as_leading_term(x) == eq def test_atan2_expansion(): assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0 assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5) + atan2(0, x) - atan(0)) == O(y**5) assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4) + atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1)) assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3) + atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1)) assert Matrix([atan2(y, x)]).jacobian([y, x]) == \ Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]]) def test_aseries(): def t(n, v, d, e): assert abs( n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e t(atan, 0.1, '+', 1e-5) t(atan, -0.1, '-', 1e-5) t(acot, 0.1, '+', 1e-5) t(acot, -0.1, '-', 1e-5) def test_issue_4420(): i = Symbol('i', integer=True) e = Symbol('e', even=True) o = Symbol('o', odd=True) # unknown parity for variable assert cos(4*i*pi) == 1 assert sin(4*i*pi) == 0 assert tan(4*i*pi) == 0 assert cot(4*i*pi) is zoo assert cos(3*i*pi) == cos(pi*i) # +/-1 assert sin(3*i*pi) == 0 assert tan(3*i*pi) == 0 assert cot(3*i*pi) is zoo assert cos(4.0*i*pi) == 1 assert sin(4.0*i*pi) == 0 assert tan(4.0*i*pi) == 0 assert cot(4.0*i*pi) is zoo assert cos(3.0*i*pi) == cos(pi*i) # +/-1 assert sin(3.0*i*pi) == 0 assert tan(3.0*i*pi) == 0 assert cot(3.0*i*pi) is zoo assert cos(4.5*i*pi) == cos(0.5*pi*i) assert sin(4.5*i*pi) == sin(0.5*pi*i) assert tan(4.5*i*pi) == tan(0.5*pi*i) assert cot(4.5*i*pi) == cot(0.5*pi*i) # parity of variable is known assert cos(4*e*pi) == 1 assert sin(4*e*pi) == 0 assert tan(4*e*pi) == 0 assert cot(4*e*pi) is zoo assert cos(3*e*pi) == 1 assert sin(3*e*pi) == 0 assert tan(3*e*pi) == 0 assert cot(3*e*pi) is zoo assert cos(4.0*e*pi) == 1 assert sin(4.0*e*pi) == 0 assert tan(4.0*e*pi) == 0 assert cot(4.0*e*pi) is zoo assert cos(3.0*e*pi) == 1 assert sin(3.0*e*pi) == 0 assert tan(3.0*e*pi) == 0 assert cot(3.0*e*pi) is zoo assert cos(4.5*e*pi) == cos(0.5*pi*e) assert sin(4.5*e*pi) == sin(0.5*pi*e) assert tan(4.5*e*pi) == tan(0.5*pi*e) assert cot(4.5*e*pi) == cot(0.5*pi*e) assert cos(4*o*pi) == 1 assert sin(4*o*pi) == 0 assert tan(4*o*pi) == 0 assert cot(4*o*pi) is zoo assert cos(3*o*pi) == -1 assert sin(3*o*pi) == 0 assert tan(3*o*pi) == 0 assert cot(3*o*pi) is zoo assert cos(4.0*o*pi) == 1 assert sin(4.0*o*pi) == 0 assert tan(4.0*o*pi) == 0 assert cot(4.0*o*pi) is zoo assert cos(3.0*o*pi) == -1 assert sin(3.0*o*pi) == 0 assert tan(3.0*o*pi) == 0 assert cot(3.0*o*pi) is zoo assert cos(4.5*o*pi) == cos(0.5*pi*o) assert sin(4.5*o*pi) == sin(0.5*pi*o) assert tan(4.5*o*pi) == tan(0.5*pi*o) assert cot(4.5*o*pi) == cot(0.5*pi*o) # x could be imaginary assert cos(4*x*pi) == cos(4*pi*x) assert sin(4*x*pi) == sin(4*pi*x) assert tan(4*x*pi) == tan(4*pi*x) assert cot(4*x*pi) == cot(4*pi*x) assert cos(3*x*pi) == cos(3*pi*x) assert sin(3*x*pi) == sin(3*pi*x) assert tan(3*x*pi) == tan(3*pi*x) assert cot(3*x*pi) == cot(3*pi*x) assert cos(4.0*x*pi) == cos(4.0*pi*x) assert sin(4.0*x*pi) == sin(4.0*pi*x) assert tan(4.0*x*pi) == tan(4.0*pi*x) assert cot(4.0*x*pi) == cot(4.0*pi*x) assert cos(3.0*x*pi) == cos(3.0*pi*x) assert sin(3.0*x*pi) == sin(3.0*pi*x) assert tan(3.0*x*pi) == tan(3.0*pi*x) assert cot(3.0*x*pi) == cot(3.0*pi*x) assert cos(4.5*x*pi) == cos(4.5*pi*x) assert sin(4.5*x*pi) == sin(4.5*pi*x) assert tan(4.5*x*pi) == tan(4.5*pi*x) assert cot(4.5*x*pi) == cot(4.5*pi*x) def test_inverses(): raises(AttributeError, lambda: sin(x).inverse()) raises(AttributeError, lambda: cos(x).inverse()) assert tan(x).inverse() == atan assert cot(x).inverse() == acot raises(AttributeError, lambda: csc(x).inverse()) raises(AttributeError, lambda: sec(x).inverse()) assert asin(x).inverse() == sin assert acos(x).inverse() == cos assert atan(x).inverse() == tan assert acot(x).inverse() == cot def test_real_imag(): a, b = symbols('a b', real=True) z = a + b*I for deep in [True, False]: assert sin( z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b)) assert cos( z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b)) assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) + cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b))) assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) - cosh(2*b)), -sinh(2*b)/(cos(2*a) - cosh(2*b))) assert sin(a).as_real_imag(deep=deep) == (sin(a), 0) assert cos(a).as_real_imag(deep=deep) == (cos(a), 0) assert tan(a).as_real_imag(deep=deep) == (tan(a), 0) assert cot(a).as_real_imag(deep=deep) == (cot(a), 0) @XFAIL def test_sin_cos_with_infinity(): # Test for issue 5196 # https://github.com/sympy/sympy/issues/5196 assert sin(oo) is S.NaN assert cos(oo) is S.NaN @slow def test_sincos_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p # The vertices `exp(i*pi/n)` of a regular `n`-gon can # be expressed by means of nested square roots if and # only if `n` is a product of Fermat primes, `p`, and # powers of 2, `t'. The code aims to check all vertices # not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`). # For large `n` this makes the test too slow, therefore # the vertices are limited to those of index `i < 10`. for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n s1 = sin(x).rewrite(sqrt) c1 = cos(x).rewrite(sqrt) assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half) assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64) assert cos(pi*Rational(-15, 2)/11, evaluate=False).rewrite( sqrt) == -sqrt(-cos(pi*Rational(4, 11))/2 + S.Half) assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite( sqrt) == -1 e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation a = ( -3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 - 3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - Rational(1, 32) + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + 3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128 + 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32 + sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/8 - 5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - 3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32 + sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/2 + S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32)/2) assert e.rewrite(sqrt) == a assert e.n() == a.n() # coverage of fermatCoords: multiplicity > 1; the following could be # different but that portion of the code should be tested in some way assert cos(pi/9/17).rewrite(sqrt) == \ sin(pi/9)*sin(pi*Rational(2, 17)) + cos(pi/9)*cos(pi*Rational(2, 17)) @slow def test_tancot_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n if 2*i != n and 3*i != 2*n: t1 = tan(x).rewrite(sqrt) assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n) if i != 0 and i != n: c1 = cot(x).rewrite(sqrt) assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n) def test_sec(): x = symbols('x', real=True) z = symbols('z') assert sec.nargs == FiniteSet(1) assert sec(zoo) is nan assert sec(0) == 1 assert sec(pi) == -1 assert sec(pi/2) is zoo assert sec(-pi/2) is zoo assert sec(pi/6) == 2*sqrt(3)/3 assert sec(pi/3) == 2 assert sec(pi*Rational(5, 2)) is zoo assert sec(pi*Rational(9, 7)) == -sec(pi*Rational(2, 7)) assert sec(pi*Rational(3, 4)) == -sqrt(2) # issue 8421 assert sec(I) == 1/cosh(1) assert sec(x*I) == 1/cosh(x) assert sec(-x) == sec(x) assert sec(asec(x)) == x assert sec(z).conjugate() == sec(conjugate(z)) assert (sec(z).as_real_imag() == (cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2), sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2))) assert sec(x).expand(trig=True) == 1/cos(x) assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1) assert sec(x).is_extended_real == True assert sec(z).is_real == None assert sec(a).is_algebraic is None assert sec(na).is_algebraic is False assert sec(x).as_leading_term() == sec(x) assert sec(0).is_finite == True assert sec(x).is_finite == None assert sec(pi/2).is_finite == False assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6) # https://github.com/sympy/sympy/issues/7166 assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6) # https://github.com/sympy/sympy/issues/7167 assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) == 1/sqrt(x - pi*Rational(3, 2)) + (x - pi*Rational(3, 2))**Rational(3, 2)/12 + (x - pi*Rational(3, 2))**Rational(7, 2)/160 + O((x - pi*Rational(3, 2))**4, (x, pi*Rational(3, 2)))) assert sec(x).diff(x) == tan(x)*sec(x) # Taylor Term checks assert sec(z).taylor_term(4, z) == 5*z**4/24 assert sec(z).taylor_term(6, z) == 61*z**6/720 assert sec(z).taylor_term(5, z) == 0 def test_sec_rewrite(): assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2) assert sec(x).rewrite(cos) == 1/cos(x) assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1) assert sec(x).rewrite(pow) == sec(x) assert sec(x).rewrite(sqrt) == sec(x) assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1) assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False) assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1) assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False) def test_sec_fdiff(): assert sec(x).fdiff() == tan(x)*sec(x) raises(ArgumentIndexError, lambda: sec(x).fdiff(2)) def test_csc(): x = symbols('x', real=True) z = symbols('z') # https://github.com/sympy/sympy/issues/6707 cosecant = csc('x') alternate = 1/sin('x') assert cosecant.equals(alternate) == True assert alternate.equals(cosecant) == True assert csc.nargs == FiniteSet(1) assert csc(0) is zoo assert csc(pi) is zoo assert csc(zoo) is nan assert csc(pi/2) == 1 assert csc(-pi/2) == -1 assert csc(pi/6) == 2 assert csc(pi/3) == 2*sqrt(3)/3 assert csc(pi*Rational(5, 2)) == 1 assert csc(pi*Rational(9, 7)) == -csc(pi*Rational(2, 7)) assert csc(pi*Rational(3, 4)) == sqrt(2) # issue 8421 assert csc(I) == -I/sinh(1) assert csc(x*I) == -I/sinh(x) assert csc(-x) == -csc(x) assert csc(acsc(x)) == x assert csc(z).conjugate() == csc(conjugate(z)) assert (csc(z).as_real_imag() == (sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2), -cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2))) assert csc(x).expand(trig=True) == 1/sin(x) assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x)) assert csc(x).is_extended_real == True assert csc(z).is_real == None assert csc(a).is_algebraic is None assert csc(na).is_algebraic is False assert csc(x).as_leading_term() == csc(x) assert csc(0).is_finite == False assert csc(x).is_finite == None assert csc(pi/2).is_finite == True assert series(csc(x), x, x0=pi/2, n=6) == \ 1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2)) assert series(csc(x), x, x0=0, n=6) == \ 1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6) assert csc(x).diff(x) == -cot(x)*csc(x) assert csc(x).taylor_term(2, x) == 0 assert csc(x).taylor_term(3, x) == 7*x**3/360 assert csc(x).taylor_term(5, x) == 31*x**5/15120 raises(ArgumentIndexError, lambda: csc(x).fdiff(2)) def test_asec(): z = Symbol('z', zero=True) assert asec(z) is zoo assert asec(nan) is nan assert asec(1) == 0 assert asec(-1) == pi assert asec(oo) == pi/2 assert asec(-oo) == pi/2 assert asec(zoo) == pi/2 assert asec(sec(pi*Rational(13, 4))) == pi*Rational(3, 4) assert asec(1 + sqrt(5)) == pi*Rational(2, 5) assert asec(2/sqrt(3)) == pi/6 assert asec(sqrt(4 - 2*sqrt(2))) == pi/8 assert asec(-sqrt(4 + 2*sqrt(2))) == pi*Rational(5, 8) assert asec(sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(3, 10) assert asec(-sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(7, 10) assert asec(sqrt(2) - sqrt(6)) == pi*Rational(11, 12) assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2)) assert asec(x).as_leading_term(x) == log(x) assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2 assert asec(x).rewrite(asin) == -asin(1/x) + pi/2 assert asec(x).rewrite(acos) == acos(1/x) assert asec(x).rewrite(atan) == (2*atan(x + sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x assert asec(x).rewrite(acot) == (2*acot(x - sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x assert asec(x).rewrite(acsc) == -acsc(x) + pi/2 raises(ArgumentIndexError, lambda: asec(x).fdiff(2)) def test_asec_is_real(): assert asec(S.Half).is_real is False n = Symbol('n', positive=True, integer=True) assert asec(n).is_extended_real is True assert asec(x).is_real is None assert asec(r).is_real is None t = Symbol('t', real=False, finite=True) assert asec(t).is_real is False def test_acsc(): assert acsc(nan) is nan assert acsc(1) == pi/2 assert acsc(-1) == -pi/2 assert acsc(oo) == 0 assert acsc(-oo) == 0 assert acsc(zoo) == 0 assert acsc(0) is zoo assert acsc(csc(3)) == -3 + pi assert acsc(csc(4)) == -4 + pi assert acsc(csc(6)) == 6 - 2*pi assert unchanged(acsc, csc(x)) assert unchanged(acsc, sec(x)) assert acsc(2/sqrt(3)) == pi/3 assert acsc(csc(pi*Rational(13, 4))) == -pi/4 assert acsc(sqrt(2 + 2*sqrt(5)/5)) == pi/5 assert acsc(-sqrt(2 + 2*sqrt(5)/5)) == -pi/5 assert acsc(-2) == -pi/6 assert acsc(-sqrt(4 + 2*sqrt(2))) == -pi/8 assert acsc(sqrt(4 - 2*sqrt(2))) == pi*Rational(3, 8) assert acsc(1 + sqrt(5)) == pi/10 assert acsc(sqrt(2) - sqrt(6)) == pi*Rational(-5, 12) assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2)) assert acsc(x).as_leading_term(x) == log(x) assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x) assert acsc(x).rewrite(asin) == asin(1/x) assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2 assert acsc(x).rewrite(atan) == (-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(asec) == -asec(x) + pi/2 raises(ArgumentIndexError, lambda: acsc(x).fdiff(2)) def test_csc_rewrite(): assert csc(x).rewrite(pow) == csc(x) assert csc(x).rewrite(sqrt) == csc(x) assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x)) assert csc(x).rewrite(sin) == 1/sin(x) assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2)) assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2)) assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False) assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False) # issue 17349 assert csc(1 - exp(-besselj(I, I))).rewrite(cos) == \ -1/cos(-pi/2 - 1 + cos(I*besselj(I, I)) + I*cos(-pi/2 + I*besselj(I, I), evaluate=False), evaluate=False) def test_issue_8653(): n = Symbol('n', integer=True) assert sin(n).is_irrational is None assert cos(n).is_irrational is None assert tan(n).is_irrational is None def test_issue_9157(): n = Symbol('n', integer=True, positive=True) assert atan(n - 1).is_nonnegative is True def test_trig_period(): x, y = symbols('x, y') assert sin(x).period() == 2*pi assert cos(x).period() == 2*pi assert tan(x).period() == pi assert cot(x).period() == pi assert sec(x).period() == 2*pi assert csc(x).period() == 2*pi assert sin(2*x).period() == pi assert cot(4*x - 6).period() == pi/4 assert cos((-3)*x).period() == pi*Rational(2, 3) assert cos(x*y).period(x) == 2*pi/abs(y) assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x) assert tan(3*x).period(y) is S.Zero raises(NotImplementedError, lambda: sin(x**2).period(x)) def test_issue_7171(): assert sin(x).rewrite(sqrt) == sin(x) assert sin(x).rewrite(pow) == sin(x) def test_issue_11864(): w, k = symbols('w, k', real=True) F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True)) soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True)) assert F.rewrite(sinc) == soln def test_real_assumptions(): z = Symbol('z', real=False, finite=True) assert sin(z).is_real is None assert cos(z).is_real is None assert tan(z).is_real is False assert sec(z).is_real is None assert csc(z).is_real is None assert cot(z).is_real is False assert asin(p).is_real is None assert asin(n).is_real is None assert asec(p).is_real is None assert asec(n).is_real is None assert acos(p).is_real is None assert acos(n).is_real is None assert acsc(p).is_real is None assert acsc(n).is_real is None assert atan(p).is_positive is True assert atan(n).is_negative is True assert acot(p).is_positive is True assert acot(n).is_negative is True def test_issue_14320(): assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi) assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2) assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2) assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20) assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi) assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17) assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15) assert atan(cot(12)) == -12 + pi*Rational(7, 2) and (-pi/2 < -12 + pi*Rational(7, 2) < pi/2) and cot(12) == tan(-12 + pi*Rational(7, 2)) assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15) assert acot(tan(19)) == -19 + pi*Rational(13, 2) and (-pi/2 < -19 + pi*Rational(13, 2) <= pi/2) and tan(19) == cot(-19 + pi*Rational(13, 2)) assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi) assert asec(csc(13)) == -13 + pi*Rational(9, 2) and (0 <= -13 + pi*Rational(9, 2) <= pi) and sin(13) == cos(-13 + pi*Rational(9, 2)) assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14) assert acsc(sec(10)) == pi*Rational(-7, 2) + 10 and (-pi/2 <= pi*Rational(-7, 2) + 10 <= pi/2) and cos(10) == sin(pi*Rational(-7, 2) + 10) def test_issue_14543(): assert sec(2*pi + 11) == sec(11) assert sec(2*pi - 11) == sec(11) assert sec(pi + 11) == -sec(11) assert sec(pi - 11) == -sec(11) assert csc(2*pi + 17) == csc(17) assert csc(2*pi - 17) == -csc(17) assert csc(pi + 17) == -csc(17) assert csc(pi - 17) == csc(17) x = Symbol('x') assert csc(pi/2 + x) == sec(x) assert csc(pi/2 - x) == sec(x) assert csc(pi*Rational(3, 2) + x) == -sec(x) assert csc(pi*Rational(3, 2) - x) == -sec(x) assert sec(pi/2 - x) == csc(x) assert sec(pi/2 + x) == -csc(x) assert sec(pi*Rational(3, 2) + x) == csc(x) assert sec(pi*Rational(3, 2) - x) == -csc(x)
97c3bad17293c283ff26110cde3eee99caccb24ea9532e51845805cb622bac67
from sympy import ( Abs, acos, adjoint, arg, atan, atan2, conjugate, cos, DiracDelta, E, exp, expand, Expr, Function, Heaviside, I, im, log, nan, oo, pi, Rational, re, S, sign, sin, sqrt, Symbol, symbols, transpose, zoo, exp_polar, Piecewise, Interval, comp, Integral, Matrix, ImmutableMatrix, SparseMatrix, ImmutableSparseMatrix, MatrixSymbol, FunctionMatrix, Lambda, Derivative) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.utilities.pytest import XFAIL, raises def N_equals(a, b): """Check whether two complex numbers are numerically close""" return comp(a.n(), b.n(), 1.e-6) def test_re(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert re(nan) is nan assert re(oo) is oo assert re(-oo) is -oo assert re(0) == 0 assert re(1) == 1 assert re(-1) == -1 assert re(E) == E assert re(-E) == -E assert unchanged(re, x) assert re(x*I) == -im(x) assert re(r*I) == 0 assert re(r) == r assert re(i*I) == I * i assert re(i) == 0 assert re(x + y) == re(x) + re(y) assert re(x + r) == re(x) + r assert re(re(x)) == re(x) assert re(2 + I) == 2 assert re(x + I) == re(x) assert re(x + y*I) == re(x) - im(y) assert re(x + r*I) == re(x) assert re(log(2*I)) == log(2) assert re((2 + I)**2).expand(complex=True) == 3 assert re(conjugate(x)) == re(x) assert conjugate(re(x)) == re(x) assert re(x).as_real_imag() == (re(x), 0) assert re(i*r*x).diff(r) == re(i*x) assert re(i*r*x).diff(i) == I*r*im(x) assert re( sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2) assert re(a * (2 + b*I)) == 2*a assert re((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + S.Half assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x) assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert re(S.ComplexInfinity) is S.NaN n, m, l = symbols('n m l') A = MatrixSymbol('A',n,m) assert re(A) == (S.Half) * (A + conjugate(A)) A = Matrix([[1 + 4*I,2],[0, -3*I]]) assert re(A) == Matrix([[1, 2],[0, 0]]) A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]]) assert re(A) == ImmutableMatrix([[1, 3],[0, 0]]) X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)]) assert re(X) - Matrix([[0, 0, 0, 0, 0], [2, 2, 2, 2, 2], [4, 4, 4, 4, 4], [6, 6, 6, 6, 6], [8, 8, 8, 8, 8]]) == Matrix.zeros(5) assert im(X) - Matrix([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) == Matrix.zeros(5) X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I)) assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) def test_im(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert im(nan) is nan assert im(oo*I) is oo assert im(-oo*I) is -oo assert im(0) == 0 assert im(1) == 0 assert im(-1) == 0 assert im(E*I) == E assert im(-E*I) == -E assert unchanged(im, x) assert im(x*I) == re(x) assert im(r*I) == r assert im(r) == 0 assert im(i*I) == 0 assert im(i) == -I * i assert im(x + y) == im(x) + im(y) assert im(x + r) == im(x) assert im(x + r*I) == im(x) + r assert im(im(x)*I) == im(x) assert im(2 + I) == 1 assert im(x + I) == im(x) + 1 assert im(x + y*I) == im(x) + re(y) assert im(x + r*I) == im(x) + r assert im(log(2*I)) == pi/2 assert im((2 + I)**2).expand(complex=True) == 4 assert im(conjugate(x)) == -im(x) assert conjugate(im(x)) == im(x) assert im(x).as_real_imag() == (im(x), 0) assert im(i*r*x).diff(r) == im(i*x) assert im(i*r*x).diff(i) == -I * re(r*x) assert im( sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2) assert im(a * (2 + b*I)) == a*b assert im((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2 assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x)) assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y)) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert im(S.ComplexInfinity) is S.NaN n, m, l = symbols('n m l') A = MatrixSymbol('A',n,m) assert im(A) == (S.One/(2*I)) * (A - conjugate(A)) A = Matrix([[1 + 4*I, 2],[0, -3*I]]) assert im(A) == Matrix([[4, 0],[0, -3]]) A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]]) assert im(A) == ImmutableMatrix([[3, -2],[0, 2]]) X = ImmutableSparseMatrix( [[i*I + i for i in range(5)] for i in range(5)]) Y = SparseMatrix([[i for i in range(5)] for i in range(5)]) assert im(X).as_immutable() == Y X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I)) assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]]) def test_sign(): assert sign(1.2) == 1 assert sign(-1.2) == -1 assert sign(3*I) == I assert sign(-3*I) == -I assert sign(0) == 0 assert sign(nan) is nan assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4 assert sign(2 + 3*I).simplify() == sign(2 + 3*I) assert sign(2 + 2*I).simplify() == sign(1 + I) assert sign(im(sqrt(1 - sqrt(3)))) == 1 assert sign(sqrt(1 - sqrt(3))) == I x = Symbol('x') assert sign(x).is_finite is True assert sign(x).is_complex is True assert sign(x).is_imaginary is None assert sign(x).is_integer is None assert sign(x).is_real is None assert sign(x).is_zero is None assert sign(x).doit() == sign(x) assert sign(1.2*x) == sign(x) assert sign(2*x) == sign(x) assert sign(I*x) == I*sign(x) assert sign(-2*I*x) == -I*sign(x) assert sign(conjugate(x)) == conjugate(sign(x)) p = Symbol('p', positive=True) n = Symbol('n', negative=True) m = Symbol('m', negative=True) assert sign(2*p*x) == sign(x) assert sign(n*x) == -sign(x) assert sign(n*m*x) == sign(x) x = Symbol('x', imaginary=True) assert sign(x).is_imaginary is True assert sign(x).is_integer is False assert sign(x).is_real is False assert sign(x).is_zero is False assert sign(x).diff(x) == 2*DiracDelta(-I*x) assert sign(x).doit() == x / Abs(x) assert conjugate(sign(x)) == -sign(x) x = Symbol('x', real=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is None assert sign(x).diff(x) == 2*DiracDelta(x) assert sign(x).doit() == sign(x) assert conjugate(sign(x)) == sign(x) x = Symbol('x', nonzero=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = Symbol('x', positive=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = 0 assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is True assert sign(x).doit() == 0 assert sign(Abs(x)) == 0 assert Abs(sign(x)) == 0 nz = Symbol('nz', nonzero=True, integer=True) assert sign(nz).is_imaginary is False assert sign(nz).is_integer is True assert sign(nz).is_real is True assert sign(nz).is_zero is False assert sign(nz)**2 == 1 assert (sign(nz)**3).args == (sign(nz), 3) assert sign(Symbol('x', nonnegative=True)).is_nonnegative assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None assert sign(Symbol('x', nonpositive=True)).is_nonpositive assert sign(Symbol('x', real=True)).is_nonnegative is None assert sign(Symbol('x', real=True)).is_nonpositive is None assert sign(Symbol('x', real=True, zero=False)).is_nonpositive is None x, y = Symbol('x', real=True), Symbol('y') assert sign(x).rewrite(Piecewise) == \ Piecewise((1, x > 0), (-1, x < 0), (0, True)) assert sign(y).rewrite(Piecewise) == sign(y) assert sign(x).rewrite(Heaviside) == 2*Heaviside(x, H0=S(1)/2) - 1 assert sign(y).rewrite(Heaviside) == sign(y) # evaluate what can be evaluated assert sign(exp_polar(I*pi)*pi) is S.NegativeOne eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) # if there is a fast way to know when and when you cannot prove an # expression like this is zero then the equality to zero is ok assert sign(eq).func is sign or sign(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert sign(d).func is sign or sign(d) == 0 def test_as_real_imag(): n = pi**1000 # the special code for working out the real # and complex parts of a power with Integer exponent # should not run if there is no imaginary part, hence # this should not hang assert n.as_real_imag() == (n, 0) # issue 6261 x = Symbol('x') assert sqrt(x).as_real_imag() == \ ((re(x)**2 + im(x)**2)**Rational(1, 4)*cos(atan2(im(x), re(x))/2), (re(x)**2 + im(x)**2)**Rational(1, 4)*sin(atan2(im(x), re(x))/2)) # issue 3853 a, b = symbols('a,b', real=True) assert ((1 + sqrt(a + b*I))/2).as_real_imag() == \ ( (a**2 + b**2)**Rational( 1, 4)*cos(atan2(b, a)/2)/2 + S.Half, (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2) assert sqrt(a**2).as_real_imag() == (sqrt(a**2), 0) i = symbols('i', imaginary=True) assert sqrt(i**2).as_real_imag() == (0, abs(i)) assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1) assert ((1 + I)**3/(1 - I)).as_real_imag() == (-2, 0) @XFAIL def test_sign_issue_3068(): n = pi**1000 i = int(n) x = Symbol('x') assert (n - i).round() == 1 # doesn't hang assert sign(n - i) == 1 # perhaps it's not possible to get the sign right when # only 1 digit is being requested for this situation; # 2 digits works assert (n - x).n(1, subs={x: i}) > 0 assert (n - x).n(2, subs={x: i}) > 0 def test_Abs(): raises(TypeError, lambda: Abs(Interval(2, 3))) # issue 8717 x, y = symbols('x,y') assert sign(sign(x)) == sign(x) assert sign(x*y).func is sign assert Abs(0) == 0 assert Abs(1) == 1 assert Abs(-1) == 1 assert Abs(I) == 1 assert Abs(-I) == 1 assert Abs(nan) is nan assert Abs(zoo) is oo assert Abs(I * pi) == pi assert Abs(-I * pi) == pi assert Abs(I * x) == Abs(x) assert Abs(-I * x) == Abs(x) assert Abs(-2*x) == 2*Abs(x) assert Abs(-2.0*x) == 2.0*Abs(x) assert Abs(2*pi*x*y) == 2*pi*Abs(x*y) assert Abs(conjugate(x)) == Abs(x) assert conjugate(Abs(x)) == Abs(x) assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2) a = Symbol('a', positive=True) assert Abs(2*pi*x*a) == 2*pi*a*Abs(x) assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x) x = Symbol('x', real=True) n = Symbol('n', integer=True) assert Abs((-1)**n) == 1 assert x**(2*n) == Abs(x)**(2*n) assert Abs(x).diff(x) == sign(x) assert abs(x) == Abs(x) # Python built-in assert Abs(x)**3 == x**2*Abs(x) assert Abs(x)**4 == x**4 assert ( Abs(x)**(3*n)).args == (Abs(x), 3*n) # leave symbolic odd unchanged assert (1/Abs(x)).args == (Abs(x), -1) assert 1/Abs(x)**3 == 1/(x**2*Abs(x)) assert Abs(x)**-3 == Abs(x)/(x**4) assert Abs(x**3) == x**2*Abs(x) assert Abs(I**I) == exp(-pi/2) assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(Rational(5, 4))) y = Symbol('y', real=True) assert Abs(I**y) == 1 y = Symbol('y') assert Abs(I**y) == exp(-pi*im(y)/2) x = Symbol('x', imaginary=True) assert Abs(x).diff(x) == -sign(x) eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) # if there is a fast way to know when you can and when you cannot prove an # expression like this is zero then the equality to zero is ok assert abs(eq).func is Abs or abs(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert abs(d).func is Abs or abs(d) == 0 assert Abs(4*exp(pi*I/4)) == 4 assert Abs(3**(2 + I)) == 9 assert Abs((-3)**(1 - I)) == 3*exp(pi) assert Abs(oo) is oo assert Abs(-oo) is oo assert Abs(oo + I) is oo assert Abs(oo + I*oo) is oo a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert Abs(x).fdiff() == sign(x) raises(ArgumentIndexError, lambda: Abs(x).fdiff(2)) # doesn't have recursion error arg = sqrt(acos(1 - I)*acos(1 + I)) assert abs(arg) == arg # special handling to put Abs in denom assert abs(1/x) == 1/Abs(x) e = abs(2/x**2) assert e.is_Mul and e == 2/Abs(x**2) assert unchanged(Abs, y/x) assert unchanged(Abs, x/(x + 1)) assert unchanged(Abs, x*y) p = Symbol('p', positive=True) assert abs(x/p) == abs(x)/p # coverage assert unchanged(Abs, Symbol('x', real=True)**y) def test_Abs_rewrite(): x = Symbol('x', real=True) a = Abs(x).rewrite(Heaviside).expand() assert a == x*Heaviside(x) - x*Heaviside(-x) for i in [-2, -1, 0, 1, 2]: assert a.subs(x, i) == abs(i) y = Symbol('y') assert Abs(y).rewrite(Heaviside) == Abs(y) x, y = Symbol('x', real=True), Symbol('y') assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True)) assert Abs(y).rewrite(Piecewise) == Abs(y) assert Abs(y).rewrite(sign) == y/sign(y) i = Symbol('i', imaginary=True) assert abs(i).rewrite(Piecewise) == Piecewise((I*i, I*i >= 0), (-I*i, True)) assert Abs(y).rewrite(conjugate) == sqrt(y*conjugate(y)) assert Abs(i).rewrite(conjugate) == sqrt(-i**2) # == -I*i y = Symbol('y', extended_real=True) assert (Abs(exp(-I*x)-exp(-I*y))**2).rewrite(conjugate) == \ -exp(I*x)*exp(-I*y) + 2 - exp(-I*x)*exp(I*y) def test_Abs_real(): # test some properties of abs that only apply # to real numbers x = Symbol('x', complex=True) assert sqrt(x**2) != Abs(x) assert Abs(x**2) != x**2 x = Symbol('x', real=True) assert sqrt(x**2) == Abs(x) assert Abs(x**2) == x**2 # if the symbol is zero, the following will still apply nn = Symbol('nn', nonnegative=True, real=True) np = Symbol('np', nonpositive=True, real=True) assert Abs(nn) == nn assert Abs(np) == -np def test_Abs_properties(): x = Symbol('x') assert Abs(x).is_real is None assert Abs(x).is_extended_real is True assert Abs(x).is_rational is None assert Abs(x).is_positive is None assert Abs(x).is_nonnegative is None assert Abs(x).is_extended_positive is None assert Abs(x).is_extended_nonnegative is True f = Symbol('x', finite=True) assert Abs(f).is_real is True assert Abs(f).is_extended_real is True assert Abs(f).is_rational is None assert Abs(f).is_positive is None assert Abs(f).is_nonnegative is True assert Abs(f).is_extended_positive is None assert Abs(f).is_extended_nonnegative is True z = Symbol('z', complex=True, zero=False) assert Abs(z).is_real is True # since complex implies finite assert Abs(z).is_extended_real is True assert Abs(z).is_rational is None assert Abs(z).is_positive is True assert Abs(z).is_extended_positive is True assert Abs(z).is_zero is False p = Symbol('p', positive=True) assert Abs(p).is_real is True assert Abs(p).is_extended_real is True assert Abs(p).is_rational is None assert Abs(p).is_positive is True assert Abs(p).is_zero is False q = Symbol('q', rational=True) assert Abs(q).is_real is True assert Abs(q).is_rational is True assert Abs(q).is_integer is None assert Abs(q).is_positive is None assert Abs(q).is_nonnegative is True i = Symbol('i', integer=True) assert Abs(i).is_real is True assert Abs(i).is_integer is True assert Abs(i).is_positive is None assert Abs(i).is_nonnegative is True e = Symbol('n', even=True) ne = Symbol('ne', real=True, even=False) assert Abs(e).is_even is True assert Abs(ne).is_even is False assert Abs(i).is_even is None o = Symbol('n', odd=True) no = Symbol('no', real=True, odd=False) assert Abs(o).is_odd is True assert Abs(no).is_odd is False assert Abs(i).is_odd is None def test_abs(): # this tests that abs calls Abs; don't rename to # test_Abs since that test is already above a = Symbol('a', positive=True) assert abs(I*(1 + a)**2) == (1 + a)**2 def test_arg(): assert arg(0) is nan assert arg(1) == 0 assert arg(-1) == pi assert arg(I) == pi/2 assert arg(-I) == -pi/2 assert arg(1 + I) == pi/4 assert arg(-1 + I) == pi*Rational(3, 4) assert arg(1 - I) == -pi/4 assert arg(exp_polar(4*pi*I)) == 4*pi assert arg(exp_polar(-7*pi*I)) == -7*pi assert arg(exp_polar(5 - 3*pi*I/4)) == pi*Rational(-3, 4) f = Function('f') assert not arg(f(0) + I*f(1)).atoms(re) p = Symbol('p', positive=True) assert arg(p) == 0 n = Symbol('n', negative=True) assert arg(n) == pi x = Symbol('x') assert conjugate(arg(x)) == arg(x) e = p + I*p**2 assert arg(e) == arg(1 + p*I) # make sure sign doesn't swap e = -2*p + 4*I*p**2 assert arg(e) == arg(-1 + 2*p*I) # make sure sign isn't lost x = symbols('x', real=True) # could be zero e = x + I*x assert arg(e) == arg(x*(1 + I)) assert arg(e/p) == arg(x*(1 + I)) e = p*cos(p) + I*log(p)*exp(p) assert arg(e).args[0] == e # keep it simple -- let the user do more advanced cancellation e = (p + 1) + I*(p**2 - 1) assert arg(e).args[0] == e f = Function('f') e = 2*x*(f(0) - 1) - 2*x*f(0) assert arg(e) == arg(-2*x) assert arg(f(0)).func == arg and arg(f(0)).args == (f(0),) def test_arg_rewrite(): assert arg(1 + I) == atan2(1, 1) x = Symbol('x', real=True) y = Symbol('y', real=True) assert arg(x + I*y).rewrite(atan2) == atan2(y, x) def test_adjoint(): a = Symbol('a', antihermitian=True) b = Symbol('b', hermitian=True) assert adjoint(a) == -a assert adjoint(I*a) == I*a assert adjoint(b) == b assert adjoint(I*b) == -I*b assert adjoint(a*b) == -b*a assert adjoint(I*a*b) == I*b*a x, y = symbols('x y') assert adjoint(adjoint(x)) == x assert adjoint(x + y) == adjoint(x) + adjoint(y) assert adjoint(x - y) == adjoint(x) - adjoint(y) assert adjoint(x * y) == adjoint(x) * adjoint(y) assert adjoint(x / y) == adjoint(x) / adjoint(y) assert adjoint(-x) == -adjoint(x) x, y = symbols('x y', commutative=False) assert adjoint(adjoint(x)) == x assert adjoint(x + y) == adjoint(x) + adjoint(y) assert adjoint(x - y) == adjoint(x) - adjoint(y) assert adjoint(x * y) == adjoint(y) * adjoint(x) assert adjoint(x / y) == 1 / adjoint(y) * adjoint(x) assert adjoint(-x) == -adjoint(x) def test_conjugate(): a = Symbol('a', real=True) b = Symbol('b', imaginary=True) assert conjugate(a) == a assert conjugate(I*a) == -I*a assert conjugate(b) == -b assert conjugate(I*b) == I*b assert conjugate(a*b) == -a*b assert conjugate(I*a*b) == I*a*b x, y = symbols('x y') assert conjugate(conjugate(x)) == x assert conjugate(x + y) == conjugate(x) + conjugate(y) assert conjugate(x - y) == conjugate(x) - conjugate(y) assert conjugate(x * y) == conjugate(x) * conjugate(y) assert conjugate(x / y) == conjugate(x) / conjugate(y) assert conjugate(-x) == -conjugate(x) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False def test_conjugate_transpose(): x = Symbol('x') assert conjugate(transpose(x)) == adjoint(x) assert transpose(conjugate(x)) == adjoint(x) assert adjoint(transpose(x)) == conjugate(x) assert transpose(adjoint(x)) == conjugate(x) assert adjoint(conjugate(x)) == transpose(x) assert conjugate(adjoint(x)) == transpose(x) class Symmetric(Expr): def _eval_adjoint(self): return None def _eval_conjugate(self): return None def _eval_transpose(self): return self x = Symmetric() assert conjugate(x) == adjoint(x) assert transpose(x) == x def test_transpose(): a = Symbol('a', complex=True) assert transpose(a) == a assert transpose(I*a) == I*a x, y = symbols('x y') assert transpose(transpose(x)) == x assert transpose(x + y) == transpose(x) + transpose(y) assert transpose(x - y) == transpose(x) - transpose(y) assert transpose(x * y) == transpose(x) * transpose(y) assert transpose(x / y) == transpose(x) / transpose(y) assert transpose(-x) == -transpose(x) x, y = symbols('x y', commutative=False) assert transpose(transpose(x)) == x assert transpose(x + y) == transpose(x) + transpose(y) assert transpose(x - y) == transpose(x) - transpose(y) assert transpose(x * y) == transpose(y) * transpose(x) assert transpose(x / y) == 1 / transpose(y) * transpose(x) assert transpose(-x) == -transpose(x) def test_polarify(): from sympy import polar_lift, polarify x = Symbol('x') z = Symbol('z', polar=True) f = Function('f') ES = {} assert polarify(-1) == (polar_lift(-1), ES) assert polarify(1 + I) == (polar_lift(1 + I), ES) assert polarify(exp(x), subs=False) == exp(x) assert polarify(1 + x, subs=False) == 1 + x assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x assert polarify(x, lift=True) == polar_lift(x) assert polarify(z, lift=True) == z assert polarify(f(x), lift=True) == f(polar_lift(x)) assert polarify(1 + x, lift=True) == polar_lift(1 + x) assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x))) newex, subs = polarify(f(x) + z) assert newex.subs(subs) == f(x) + z mu = Symbol("mu") sigma = Symbol("sigma", positive=True) # Make sure polarify(lift=True) doesn't try to lift the integration # variable assert polarify( Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi)* exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x)** (2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo)) def test_unpolarify(): from sympy import (exp_polar, polar_lift, exp, unpolarify, principal_branch) from sympy import gamma, erf, sin, tanh, uppergamma, Eq, Ne from sympy.abc import x p = exp_polar(7*I) + 1 u = exp(7*I) + 1 assert unpolarify(1) == 1 assert unpolarify(p) == u assert unpolarify(p**2) == u**2 assert unpolarify(p**x) == p**x assert unpolarify(p*x) == u*x assert unpolarify(p + x) == u + x assert unpolarify(sqrt(sin(p))) == sqrt(sin(u)) # Test reduction to principal branch 2*pi. t = principal_branch(x, 2*pi) assert unpolarify(t) == x assert unpolarify(sqrt(t)) == sqrt(t) # Test exponents_only. assert unpolarify(p**p, exponents_only=True) == p**u assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u) # Test functions. assert unpolarify(sin(p)) == sin(u) assert unpolarify(tanh(p)) == tanh(u) assert unpolarify(gamma(p)) == gamma(u) assert unpolarify(erf(p)) == erf(u) assert unpolarify(uppergamma(x, p)) == uppergamma(x, p) assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \ uppergamma(sin(u), sin(u + 1)) assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \ uppergamma(0, 2) assert unpolarify(Eq(p, 0)) == Eq(u, 0) assert unpolarify(Ne(p, 0)) == Ne(u, 0) assert unpolarify(polar_lift(x) > 0) == (x > 0) # Test bools assert unpolarify(True) is True def test_issue_4035(): x = Symbol('x') assert Abs(x).expand(trig=True) == Abs(x) assert sign(x).expand(trig=True) == sign(x) assert arg(x).expand(trig=True) == arg(x) def test_issue_3206(): x = Symbol('x') assert Abs(Abs(x)) == Abs(x) def test_issue_4754_derivative_conjugate(): x = Symbol('x', real=True) y = Symbol('y', imaginary=True) f = Function('f') assert (f(x).conjugate()).diff(x) == (f(x).diff(x)).conjugate() assert (f(y).conjugate()).diff(y) == -(f(y).diff(y)).conjugate() def test_derivatives_issue_4757(): x = Symbol('x', real=True) y = Symbol('y', imaginary=True) f = Function('f') assert re(f(x)).diff(x) == re(f(x).diff(x)) assert im(f(x)).diff(x) == im(f(x).diff(x)) assert re(f(y)).diff(y) == -I*im(f(y).diff(y)) assert im(f(y)).diff(y) == -I*re(f(y).diff(y)) assert Abs(f(x)).diff(x).subs(f(x), 1 + I*x).doit() == x/sqrt(1 + x**2) assert arg(f(x)).diff(x).subs(f(x), 1 + I*x**2).doit() == 2*x/(1 + x**4) assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y/sqrt(1 - y**2) assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2*y/(1 + y**4) def test_issue_11413(): from sympy import Matrix, simplify v0 = Symbol('v0') v1 = Symbol('v1') v2 = Symbol('v2') V = Matrix([[v0],[v1],[v2]]) U = V.normalized() assert U == Matrix([ [v0/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)], [v1/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)], [v2/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)]]) U.norm = sqrt(v0**2/(v0**2 + v1**2 + v2**2) + v1**2/(v0**2 + v1**2 + v2**2) + v2**2/(v0**2 + v1**2 + v2**2)) assert simplify(U.norm) == 1 def test_periodic_argument(): from sympy import (periodic_argument, unbranched_argument, oo, principal_branch, polar_lift, pi) x = Symbol('x') p = Symbol('p', positive=True) assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo) assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo) assert N_equals(unbranched_argument((1 + I)**2), pi/2) assert N_equals(unbranched_argument((1 - I)**2), -pi/2) assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2) assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2) assert unbranched_argument(principal_branch(x, pi)) == \ periodic_argument(x, pi) assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I) assert periodic_argument(polar_lift(2 + I), 2*pi) == \ periodic_argument(2 + I, 2*pi) assert periodic_argument(polar_lift(2 + I), 3*pi) == \ periodic_argument(2 + I, 3*pi) assert periodic_argument(polar_lift(2 + I), pi) == \ periodic_argument(polar_lift(2 + I), pi) assert unbranched_argument(polar_lift(1 + I)) == pi/4 assert periodic_argument(2*p, p) == periodic_argument(p, p) assert periodic_argument(pi*p, p) == periodic_argument(p, p) assert Abs(polar_lift(1 + I)) == Abs(1 + I) @XFAIL def test_principal_branch_fail(): # TODO XXX why does abs(x)._eval_evalf() not fall back to global evalf? from sympy import principal_branch assert N_equals(principal_branch((1 + I)**2, pi/2), 0) def test_principal_branch(): from sympy import principal_branch, polar_lift, exp_polar p = Symbol('p', positive=True) x = Symbol('x') neg = Symbol('x', negative=True) assert principal_branch(polar_lift(x), p) == principal_branch(x, p) assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p) assert principal_branch(2*x, p) == 2*principal_branch(x, p) assert principal_branch(1, pi) == exp_polar(0) assert principal_branch(-1, 2*pi) == exp_polar(I*pi) assert principal_branch(-1, pi) == exp_polar(0) assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \ principal_branch(exp_polar(I*pi)*x, 2*pi) assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi) # related to issue #14692 assert principal_branch(exp_polar(-I*pi/2)/polar_lift(neg), 2*pi) == \ exp_polar(-I*pi/2)/neg assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I) assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I) assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I) # test argument sanitization assert principal_branch(x, I).func is principal_branch assert principal_branch(x, -4).func is principal_branch assert principal_branch(x, -oo).func is principal_branch assert principal_branch(x, zoo).func is principal_branch @XFAIL def test_issue_6167_6151(): n = pi**1000 i = int(n) assert sign(n - i) == 1 assert abs(n - i) == n - i x = Symbol('x') eps = pi**-1500 big = pi**1000 one = cos(x)**2 + sin(x)**2 e = big*one - big + eps from sympy import simplify assert sign(simplify(e)) == 1 for xi in (111, 11, 1, Rational(1, 10)): assert sign(e.subs(x, xi)) == 1 def test_issue_14216(): from sympy.functions.elementary.complexes import unpolarify A = MatrixSymbol("A", 2, 2) assert unpolarify(A[0, 0]) == A[0, 0] assert unpolarify(A[0, 0]*A[1, 0]) == A[0, 0]*A[1, 0] def test_issue_14238(): # doesn't cause recursion error r = Symbol('r', real=True) assert Abs(r + Piecewise((0, r > 0), (1 - r, True))) def test_zero_assumptions(): nr = Symbol('nonreal', real=False, finite=True) ni = Symbol('nonimaginary', imaginary=False) # imaginary implies not zero nzni = Symbol('nonzerononimaginary', zero=False, imaginary=False) assert re(nr).is_zero is None assert im(nr).is_zero is False assert re(ni).is_zero is None assert im(ni).is_zero is None assert re(nzni).is_zero is False assert im(nzni).is_zero is None def test_issue_15893(): f = Function('f', real=True) x = Symbol('x', real=True) eq = Derivative(Abs(f(x)), f(x)) assert eq.doit() == sign(f(x))
2a1961aee69906bc88e7967d573e8b5da466ba7a10544e0ad85340c2f4ed43de
from sympy import ( adjoint, And, Basic, conjugate, diff, expand, Eq, Function, I, ITE, Integral, integrate, Interval, KroneckerDelta, lambdify, log, Max, Min, oo, Or, pi, Piecewise, piecewise_fold, Rational, solve, symbols, transpose, cos, sin, exp, Abs, Ne, Not, Symbol, S, sqrt, Sum, Tuple, zoo, DiracDelta, Heaviside, Add, Mul, factorial, Ge, Contains) from sympy.core.expr import unchanged from sympy.functions.elementary.piecewise import Undefined, ExprCondPair from sympy.printing import srepr from sympy.utilities.pytest import raises, slow a, b, c, d, x, y = symbols('a:d, x, y') z = symbols('z', nonzero=True) def test_piecewise1(): # Test canonicalization assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True)) assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1), ExprCondPair(0, True)) assert Piecewise((x, x < 1), (0, True), (1, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \ Piecewise((x, x < 1)) assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \ Piecewise((x, Or(x < 1, x < 2)), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x assert Piecewise((x, True)) == x # Explicitly constructed empty Piecewise not accepted raises(TypeError, lambda: Piecewise()) # False condition is never retained assert Piecewise((2*x, x < 0), (x, False)) == \ Piecewise((2*x, x < 0), (x, False), evaluate=False) == \ Piecewise((2*x, x < 0)) assert Piecewise((x, False)) == Undefined raises(TypeError, lambda: Piecewise(x)) assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False raises(TypeError, lambda: Piecewise((x, 2))) raises(TypeError, lambda: Piecewise((x, x**2))) raises(TypeError, lambda: Piecewise(([1], True))) assert Piecewise(((1, 2), True)) == Tuple(1, 2) cond = (Piecewise((1, x < 0), (2, True)) < y) assert Piecewise((1, cond) ) == Piecewise((1, ITE(x < 0, y > 1, y > 2))) assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1)) ) == Piecewise((1, x > 0), (2, x > -1)) # test for supporting Contains in Piecewise pwise = Piecewise( (1, And(x <= 6, x > 1, Contains(x, S.Integers))), (0, True)) assert pwise.subs(x, pi) == 0 assert pwise.subs(x, 2) == 1 assert pwise.subs(x, 7) == 0 # Test subs p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0)) p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0)) assert p.subs(x, x**2) == p_x2 assert p.subs(x, -5) == -1 assert p.subs(x, -1) == 1 assert p.subs(x, 1) == log(1) # More subs tests p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi)) p3 = Piecewise((1, Eq(x, 0)), (1/x, True)) p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2)) assert p2.subs(x, 2) == 1 assert p2.subs(x, 4) == -1 assert p2.subs(x, 10) == 0 assert p3.subs(x, 0.0) == 1 assert p4.subs(x, 0.0) == 1 f, g, h = symbols('f,g,h', cls=Function) pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1)) pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1)) assert pg.subs(g, f) == pf assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1 assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0 assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1 assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1 assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \ Piecewise((1, Eq(exp(z), cos(z))), (0, True)) p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True)) assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True)) assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True) ).subs(x, 1) == Piecewise((-1, y < 1), (2, True)) assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1 p6 = Piecewise((x, x > 0)) n = symbols('n', negative=True) assert p6.subs(x, n) == Undefined # Test evalf assert p.evalf() == p assert p.evalf(subs={x: -2}) == -1 assert p.evalf(subs={x: -1}) == 1 assert p.evalf(subs={x: 1}) == log(1) assert p6.evalf(subs={x: -5}) == Undefined # Test doit f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1)) assert f_int.doit() == Piecewise( (S.Half, x < 1) ) # Test differentiation f = x fp = x*p dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0)) fp_dx = x*dp + p assert diff(p, x) == dp assert diff(f*p, x) == fp_dx # Test simple arithmetic assert x*p == fp assert x*p + p == p + x*p assert p + f == f + p assert p + dp == dp + p assert p - dp == -(dp - p) # Test power dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0)) assert dp**2 == dp2 # Test _eval_interval f1 = x*y + 2 f2 = x*y**2 + 3 peval = Piecewise((f1, x < 0), (f2, x > 0)) peval_interval = f1.subs( x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0) assert peval._eval_interval(x, 0, 0) == 0 assert peval._eval_interval(x, -1, 1) == peval_interval peval2 = Piecewise((f1, x < 0), (f2, True)) assert peval2._eval_interval(x, 0, 0) == 0 assert peval2._eval_interval(x, 1, -1) == -peval_interval assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1) assert peval2._eval_interval(x, -1, 1) == peval_interval assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0) assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1) # Test integration assert p.integrate() == Piecewise( (-x, x < -1), (x**3/3 + Rational(4, 3), x < 0), (x*log(x) - x + Rational(4, 3), True)) p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) assert integrate(p, (x, -2, 2)) == Rational(5, 6) assert integrate(p, (x, 2, -2)) == Rational(-5, 6) p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True)) assert integrate(p, (x, -oo, oo)) == 2 p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert integrate(p, (x, -2, 2)) == Undefined # Test commutativity assert isinstance(p, Piecewise) and p.is_commutative is True def test_piecewise_free_symbols(): f = Piecewise((x, a < 0), (y, True)) assert f.free_symbols == {x, y, a} def test_piecewise_integrate1(): x, y = symbols('x y', real=True, finite=True) f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert integrate(f, (x, -2, 2)) == Rational(14, 3) g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == Rational(43, 6) assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == Rational(-701, 6) assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True)) g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True)) assert integrate(g, (x, -2, 2)) == Rational(28, 3) assert integrate(g, (x, -2, 5)) == Rational(-673, 6) def test_piecewise_integrate1b(): g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0)) assert integrate(g, (x, -1, 1)) == 0 g = Piecewise((1, x - y < 0), (0, True)) assert integrate(g, (y, -oo, 0)) == -Min(0, x) assert g.subs(x, -3).integrate((y, -oo, 0)) == 3 assert integrate(g, (y, 0, -oo)) == Min(0, x) assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42 assert integrate(g, (y, -oo, oo)) == -x + oo g = Piecewise((0, x < 0), (x, x <= 1), (1, True)) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) for yy in (-1, S.Half, 2): assert g.integrate((x, yy, 1)) == gy1.subs(y, yy) assert g.integrate((x, 1, yy)) == g1y.subs(y, yy) assert gy1 == Piecewise( (-Min(1, Max(0, y))**2/2 + S.Half, y < 1), (-y + 1, True)) assert g1y == Piecewise( (Min(1, Max(0, y))**2/2 - S.Half, y < 1), (y - 1, True)) @slow def test_piecewise_integrate1ca(): y = symbols('y', real=True) g = Piecewise( (1 - x, Interval(0, 1).contains(x)), (1 + x, Interval(-1, 0).contains(x)), (0, True) ) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) assert g.integrate((x, -2, 1)) == gy1.subs(y, -2) assert g.integrate((x, 1, -2)) == g1y.subs(y, -2) assert g.integrate((x, 0, 1)) == gy1.subs(y, 0) assert g.integrate((x, 1, 0)) == g1y.subs(y, 0) # XXX Make test pass without simplify assert g.integrate((x, 2, 1)) == gy1.subs(y, 2).simplify() assert g.integrate((x, 1, 2)) == g1y.subs(y, 2).simplify() assert piecewise_fold(gy1.rewrite(Piecewise)) == \ Piecewise( (1, y <= -1), (-y**2/2 - y + S.Half, y <= 0), (y**2/2 - y + S.Half, y < 1), (0, True)) assert piecewise_fold(g1y.rewrite(Piecewise)) == \ Piecewise( (-1, y <= -1), (y**2/2 + y - S.Half, y <= 0), (-y**2/2 + y - S.Half, y < 1), (0, True)) # g1y and gy1 should simplify if the condition that y < 1 # is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y) # XXX Make test pass without simplify assert gy1.simplify() == Piecewise( ( -Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) + Min(1, Max(0, y))**2 + S.Half, y < 1), (0, True) ) assert g1y.simplify() == Piecewise( ( Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) - Min(1, Max(0, y))**2 - S.Half, y < 1), (0, True)) @slow def test_piecewise_integrate1cb(): y = symbols('y', real=True) g = Piecewise( (0, Or(x <= -1, x >= 1)), (1 - x, x > 0), (1 + x, True) ) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) assert g.integrate((x, -2, 1)) == gy1.subs(y, -2) assert g.integrate((x, 1, -2)) == g1y.subs(y, -2) assert g.integrate((x, 0, 1)) == gy1.subs(y, 0) assert g.integrate((x, 1, 0)) == g1y.subs(y, 0) assert g.integrate((x, 2, 1)) == gy1.subs(y, 2) assert g.integrate((x, 1, 2)) == g1y.subs(y, 2) assert piecewise_fold(gy1.rewrite(Piecewise)) == \ Piecewise( (1, y <= -1), (-y**2/2 - y + S.Half, y <= 0), (y**2/2 - y + S.Half, y < 1), (0, True)) assert piecewise_fold(g1y.rewrite(Piecewise)) == \ Piecewise( (-1, y <= -1), (y**2/2 + y - S.Half, y <= 0), (-y**2/2 + y - S.Half, y < 1), (0, True)) # g1y and gy1 should simplify if the condition that y < 1 # is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y) assert gy1 == Piecewise( ( -Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) + Min(1, Max(0, y))**2 + S.Half, y < 1), (0, True) ) assert g1y == Piecewise( ( Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) - Min(1, Max(0, y))**2 - S.Half, y < 1), (0, True)) def test_piecewise_integrate2(): from itertools import permutations lim = Tuple(x, c, d) p = Piecewise((1, x < a), (2, x > b), (3, True)) q = p.integrate(lim) assert q == Piecewise( (-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d), (-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True)) for v in permutations((1, 2, 3, 4)): r = dict(zip((a, b, c, d), v)) assert p.subs(r).integrate(lim.subs(r)) == q.subs(r) def test_meijer_bypass(): # totally bypass meijerg machinery when dealing # with Piecewise in integrate assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3 def test_piecewise_integrate3_inequality_conditions(): from sympy.utilities.iterables import cartes lim = (x, 0, 5) # set below includes two pts below range, 2 pts in range, # 2 pts above range, and the boundaries N = (-2, -1, 0, 1, 2, 5, 6, 7) p = Piecewise((1, x > a), (2, x > b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1 p = Piecewise((1, x > a), (2, x < b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) # delete old tests that involved c1 and c2 since those # reduce to the above except that a value of 0 was used # for two expressions whereas the above uses 3 different # values @slow def test_piecewise_integrate4_symbolic_conditions(): a = Symbol('a', real=True, finite=True) b = Symbol('b', real=True, finite=True) x = Symbol('x', real=True, finite=True) y = Symbol('y', real=True, finite=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, x < a), (0, x > b), (1, True)) p2 = Piecewise((0, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (0, True)) p4 = Piecewise((0, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) lim = Tuple(x, y, oo) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a:3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) ans = Piecewise( (0, x <= Min(a, b)), (x - Min(a, b), x <= b), (b - Min(a, b), True)) for i in (p0, p1, p2, p4): assert i.integrate(x) == ans assert p3.integrate(x) == Piecewise( (0, x < a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) assert p5.integrate(x) == Piecewise( (0, x <= a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) p1 = Piecewise((0, x < a), (0.5, x > b), (1, True)) p2 = Piecewise((0.5, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (0.5, True)) p4 = Piecewise((0.5, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (0.5, x > b), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) def test_piecewise_integrate5_independent_conditions(): p = Piecewise((0, Eq(y, 0)), (x*y, True)) assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True)) def test_piecewise_simplify(): p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)), ((-1)**x*(-1), True)) assert p.simplify() == \ Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True)) # simplify when there are Eq in conditions assert Piecewise( (a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify( ) == Piecewise( (0, And(Eq(a, 0), Eq(b, 0))), (1, True)) assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify( ) == Piecewise( (2*x, And(Eq(a, 0), Eq(y, 0))), (2, And(Eq(a, 1), Eq(y, 0))), (0, True)) args = (2, And(Eq(x, 2), Ge(y ,0))), (x, True) assert Piecewise(*args).simplify() == Piecewise(*args) args = (1, Eq(x, 0)), (sin(x)/x, True) assert Piecewise(*args).simplify() == Piecewise(*args) assert Piecewise((2 + y, And(Eq(x, 2), Eq(y, 0))), (x, True) ).simplify() == x # check that x or f(x) are recognized as being Symbol-like for lhs args = Tuple((1, Eq(x, 0)), (sin(x) + 1 + x, True)) ans = x + sin(x) + 1 f = Function('f') assert Piecewise(*args).simplify() == ans assert Piecewise(*args.subs(x, f(x))).simplify() == ans.subs(x, f(x)) def test_piecewise_solve(): abs2 = Piecewise((-x, x <= 0), (x, x > 0)) f = abs2.subs(x, x - 2) assert solve(f, x) == [2] assert solve(f - 1, x) == [1, 3] f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert solve(f, x) == [2] g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0)) assert solve(g, x) == [5] # if no symbol is given the piecewise detection must still work assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5] f = Piecewise(((x - 2)**2, x >= 0), (0, True)) raises(NotImplementedError, lambda: solve(f, x)) def nona(ans): return list(filter(lambda x: x is not S.NaN, ans)) p = Piecewise((x**2 - 4, x < y), (x - 2, True)) ans = solve(p, x) assert nona([i.subs(y, -2) for i in ans]) == [2] assert nona([i.subs(y, 2) for i in ans]) == [-2, 2] assert nona([i.subs(y, 3) for i in ans]) == [-2, 2] assert ans == [ Piecewise((-2, y > -2), (S.NaN, True)), Piecewise((2, y <= 2), (S.NaN, True)), Piecewise((2, y > 2), (S.NaN, True))] # issue 6060 absxm3 = Piecewise( (x - 3, 0 <= x - 3), (3 - x, 0 > x - 3) ) assert solve(absxm3 - y, x) == [ Piecewise((-y + 3, -y < 0), (S.NaN, True)), Piecewise((y + 3, y >= 0), (S.NaN, True))] p = Symbol('p', positive=True) assert solve(absxm3 - p, x) == [-p + 3, p + 3] # issue 6989 f = Function('f') assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \ [Piecewise((-1, x > 0), (0, True))] # issue 8587 f = Piecewise((2*x**2, And(0 < x, x < 1)), (2, True)) assert solve(f - 1) == [1/sqrt(2)] def test_piecewise_fold(): p = Piecewise((x, x < 1), (1, 1 <= x)) assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x)) assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x)) assert piecewise_fold(Piecewise((1, x < 0), (2, True)) + Piecewise((10, x < 0), (-10, True))) == \ Piecewise((11, x < 0), (-8, True)) p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True)) p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True)) p = 4*p1 + 2*p2 assert integrate( piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1)) assert piecewise_fold( Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True) )) == Piecewise((1, y <= 0), (-2, y >= 0)) assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1))) ) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1)))) a, b = (Piecewise((2, Eq(x, 0)), (0, True)), Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True))) assert piecewise_fold(Mul(a, b, evaluate=False) ) == piecewise_fold(Mul(b, a, evaluate=False)) def test_piecewise_fold_piecewise_in_cond(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True)) assert p2.subs(x, -pi/2) == 0 assert p2.subs(x, 1) == 0 assert p2.subs(x, -pi/4) == 1 p4 = Piecewise((0, Eq(p1, 0)), (1,True)) ans = piecewise_fold(p4) for i in range(-1, 1): assert ans.subs(x, i) == p4.subs(x, i) r1 = 1 < Piecewise((1, x < 1), (3, True)) ans = piecewise_fold(r1) for i in range(2): assert ans.subs(x, i) == r1.subs(x, i) p5 = Piecewise((1, x < 0), (3, True)) p6 = Piecewise((1, x < 1), (3, True)) p7 = Piecewise((1, p5 < p6), (0, True)) ans = piecewise_fold(p7) for i in range(-1, 2): assert ans.subs(x, i) == p7.subs(x, i) def test_piecewise_fold_piecewise_in_cond_2(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True)) p3 = Piecewise( (0, (x >= 0) | Eq(cos(x), 0)), (1/cos(x), x < 0), (zoo, True)) # redundant b/c all x are already covered assert(piecewise_fold(p2) == p3) def test_piecewise_fold_expand(): p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True)) p2 = piecewise_fold(expand((1 - x)*p1)) assert p2 == Piecewise((1 - x, (x >= 0) & (x < 1)), (0, True)) assert p2 == expand(piecewise_fold((1 - x)*p1)) def test_piecewise_duplicate(): p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert p == Piecewise(*p.args) def test_doit(): p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x)) assert p2.doit() == p1 assert p2.doit(deep=False) == p2 # issue 17165 p1 = Sum(y**x, (x, -1, oo)).doit() assert p1.doit() == p1 def test_piecewise_interval(): p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True)) assert p1.subs(x, -0.5) == 0 assert p1.subs(x, 0.5) == 0.5 assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True)) assert integrate(p1, x) == Piecewise( (0, x <= 0), (x**2/2, x <= 1), (S.Half, True)) def test_piecewise_collapse(): assert Piecewise((x, True)) == x a = x < 1 assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a)) assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a)) b = x < 5 def canonical(i): if isinstance(i, Piecewise): return Piecewise(*i.args) return i for args in [ ((1, a), (Piecewise((2, a), (3, b)), b)), ((1, a), (Piecewise((2, a), (3, b.reversed)), b)), ((1, a), (Piecewise((2, a), (3, b)), b), (4, True)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]: for i in (0, 2, 10): assert canonical( Piecewise(*args, evaluate=False).subs(x, i) ) == canonical(Piecewise(*args).subs(x, i)) r1, r2, r3, r4 = symbols('r1:5') a = x < r1 b = x < r2 c = x < r3 d = x < r4 assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, a), (3, b), (5, c)) assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c), (6, True)), c), (5, d) ) == Piecewise((1, a), (Piecewise( (3, b), (4, c)), c), (5, d)) assert Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b)), b), (5, c)) assert Piecewise((1, c), (2, ~c), (3, S.true) ) == Piecewise((1, c), (2, S.true)) assert Piecewise((1, c), (2, And(~c, b)), (3,True) ) == Piecewise((1, c), (2, b), (3, True)) assert Piecewise((1, c), (2, Or(~c, b)), (3,True) ).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2 assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True)) def test_piecewise_lambdify(): p = Piecewise( (x**2, x < 0), (x, Interval(0, 1, False, True).contains(x)), (2 - x, x >= 1), (0, True) ) f = lambdify(x, p) assert f(-2.0) == 4.0 assert f(0.0) == 0.0 assert f(0.5) == 0.5 assert f(2.0) == 0.0 def test_piecewise_series(): from sympy import sin, cos, O p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0)) p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0)) assert p1.nseries(x, n=2) == p2 def test_piecewise_as_leading_term(): p1 = Piecewise((1/x, x > 1), (0, True)) p2 = Piecewise((x, x > 1), (0, True)) p3 = Piecewise((1/x, x > 1), (x, True)) p4 = Piecewise((x, x > 1), (1/x, True)) p5 = Piecewise((1/x, x > 1), (x, True)) p6 = Piecewise((1/x, x < 1), (x, True)) p7 = Piecewise((x, x < 1), (1/x, True)) p8 = Piecewise((x, x > 1), (1/x, True)) assert p1.as_leading_term(x) == 0 assert p2.as_leading_term(x) == 0 assert p3.as_leading_term(x) == x assert p4.as_leading_term(x) == 1/x assert p5.as_leading_term(x) == x assert p6.as_leading_term(x) == 1/x assert p7.as_leading_term(x) == x assert p8.as_leading_term(x) == 1/x def test_piecewise_complex(): p1 = Piecewise((2, x < 0), (1, 0 <= x)) p2 = Piecewise((2*I, x < 0), (I, 0 <= x)) p3 = Piecewise((I*x, x > 1), (1 + I, True)) p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True)) assert conjugate(p1) == p1 assert conjugate(p2) == piecewise_fold(-p2) assert conjugate(p3) == p4 assert p1.is_imaginary is False assert p1.is_real is True assert p2.is_imaginary is True assert p2.is_real is False assert p3.is_imaginary is None assert p3.is_real is None assert p1.as_real_imag() == (p1, 0) assert p2.as_real_imag() == (0, -I*p2) def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) p = Piecewise((A*B**2, x > 0), (A**2*B, True)) assert p.adjoint() == \ Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True)) assert p.conjugate() == \ Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True)) assert p.transpose() == \ Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True)) def test_piecewise_evaluate(): assert Piecewise((x, True)) == x assert Piecewise((x, True), evaluate=True) == x p = Piecewise((x, True), evaluate=False) assert p != x assert p.is_Piecewise assert all(isinstance(i, Basic) for i in p.args) assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),) assert Piecewise((1, Eq(1, x)), evaluate=False).args == ( (1, Eq(1, x)),) def test_as_expr_set_pairs(): assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \ [(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))] assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \ [((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))] def test_S_srepr_is_identity(): p = Piecewise((10, Eq(x, 0)), (12, True)) q = S(srepr(p)) assert p == q def test_issue_12587(): # sort holes into intervals p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True)) assert p.integrate((x, -5, 5)) == 23 p = Piecewise((1, x > 1), (2, x < y), (3, True)) lim = x, -3, 3 ans = p.integrate(lim) for i in range(-1, 3): assert ans.subs(y, i) == p.subs(y, i).integrate(lim) def test_issue_11045(): assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3 # handle And with Or arguments assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # hidden false assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # targetcond is Eq assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True) ).integrate((x, 0, 4)) == 6 # And has Relational needing to be solved assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # Or has Relational needing to be solved assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True) ).integrate((x, 0, 3)) == 2 # ignore hidden false (handled in canonicalization) assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # watch for hidden True Piecewise assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True) ).integrate((x, 0, 3)) == 6 # overlapping conditions of targetcond are recognized and ignored; # the condition x > 3 will be pre-empted by the first condition assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True) ).integrate((x, 0, 4)) == 6 # convert Ne to Or assert Piecewise((1, Ne(x, 0)), (2, True) ).integrate((x, -1, 1)) == 2 # no default but well defined assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)) ).integrate((x, 1, 4)) == 5 p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))) nan = Undefined i = p.integrate((x, 1, y)) assert i == Piecewise( (y - 1, y < 1), (Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S.Half, y <= Min(4, y)), (nan, True)) assert p.integrate((x, 1, -1)) == i.subs(y, -1) assert p.integrate((x, 1, 4)) == 5 assert p.integrate((x, 1, 5)) is nan # handle Not p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True)) assert p.integrate((x, 0, 3)) == 4 # handle updating of int_expr when there is overlap p = Piecewise( (1, And(5 > x, x > 1)), (2, Or(x < 3, x > 7)), (4, x < 8)) assert p.integrate((x, 0, 10)) == 20 # And with Eq arg handling assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)) ).integrate((x, 0, 3)) is S.NaN assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True) ).integrate((x, 0, 3)) == 7 assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True) ).integrate((x, -1, 1)) == 4 # middle condition doesn't matter: it's a zero width interval assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True) ).integrate((x, 0, 3)) == 7 def test_holes(): nan = Undefined assert Piecewise((1, x < 2)).integrate(x) == Piecewise( (x, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise( (nan, x < 1), (x - 1, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) is nan assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2 # this also tests that the integrate method is used on non-Piecwise # arguments in _eval_integral A, B = symbols("A B") a, b = symbols('a b', real=True) assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2)) ).integrate(x) == Piecewise( (B*x, (a > 2)), (Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1), (Piecewise((B*x, x < 1), (nan, True)), True)) def test_issue_11922(): def f(x): return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True)) autocorr = lambda k: ( f(x) * f(x + k)).integrate((x, -1, 1)) assert autocorr(1.9) > 0 k = symbols('k') good_autocorr = lambda k: ( (1 - x**2) * f(x + k)).integrate((x, -1, 1)) a = good_autocorr(k) assert a.subs(k, 3) == 0 k = symbols('k', positive=True) a = good_autocorr(k) assert a.subs(k, 3) == 0 assert Piecewise((0, x < 1), (10, (x >= 1)) ).integrate() == Piecewise((0, x < 1), (10*x - 10, True)) def test_issue_5227(): f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539), (-0.0160799238820171*x + 1.33215984776403, x < 2), (Piecewise((0.3, x > 123), (0.7, True)) + Piecewise((0.4, x > 2), (0.6, True)), x <= 123), (-0.00817409766454352*x + 2.10541401273885, x < 380.571428571429), (0, True)) i = integrate(f, (x, -oo, oo)) assert i == Integral(f, (x, -oo, oo)).doit() assert str(i) == '1.00195081676351' assert Piecewise((1, x - y < 0), (0, True) ).integrate(y) == Piecewise((0, y <= x), (-x + y, True)) def test_issue_10137(): a = Symbol('a', real=True, finite=True) b = Symbol('b', real=True, finite=True) x = Symbol('x', real=True, finite=True) y = Symbol('y', real=True, finite=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, Or(a > x, b < x)), (1, True)) assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo)) p3 = Piecewise((1, And(0 < x, x < a)), (0, True)) p4 = Piecewise((1, And(a > x, x > 0)), (0, True)) ip3 = integrate(p3, x) assert ip3 == Piecewise( (0, x <= 0), (x, x <= Max(0, a)), (Max(0, a), True)) ip4 = integrate(p4, x) assert ip4 == ip3 assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 def test_stackoverflow_43852159(): f = lambda x: Piecewise((1 , (x >= -1) & (x <= 1)) , (0, True)) Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo)) cx = Conv(x) assert cx.subs(x, -1.5) == cx.subs(x, 1.5) assert cx.subs(x, 3) == 0 assert piecewise_fold(f(x - y)*f(y)) == Piecewise( (1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)), (0, True)) def test_issue_12557(): ''' # 3200 seconds to compute the fourier part of issue import sympy as sym x,y,z,t = sym.symbols('x y z t') k = sym.symbols("k", integer=True) fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2), (x, -sym.pi, sym.pi)) assert fourier == FourierSeries( sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2, Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi), SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n, -k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) + (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4), True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo)))) ''' x = symbols("x", real=True) k = symbols('k', integer=True, finite=True) abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0)) assert integrate(abs2(x), (x, -pi, pi)) == pi**2 func = cos(k*x)*sqrt(x**2) assert integrate(func, (x, -pi, pi)) == Piecewise( (2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True)) def test_issue_6900(): from itertools import permutations t0, t1, T, t = symbols('t0, t1 T t') f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1)) g = f.integrate(t) assert g == Piecewise( (0, t <= t0), (t*x - t0*x, t <= Max(t0, t1)), (-t0*x + x*Max(t0, t1), True)) for i in permutations(range(2)): reps = dict(zip((t0,t1), i)) for tt in range(-1,3): assert (g.xreplace(reps).subs(t,tt) == f.xreplace(reps).integrate(t).subs(t,tt)) lim = Tuple(t, t0, T) g = f.integrate(lim) ans = Piecewise( (-t0*x + x*Min(T, Max(t0, t1)), T > t0), (0, True)) for i in permutations(range(3)): reps = dict(zip((t0,t1,T), i)) tru = f.xreplace(reps).integrate(lim.xreplace(reps)) assert tru == ans.xreplace(reps) assert g == ans def test_issue_10122(): assert solve(abs(x) + abs(x - 1) - 1 > 0, x ) == Or(And(-oo < x, x < S.Zero), And(S.One < x, x < oo)) def test_issue_4313(): u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True)) e = (u - u.subs(x, y))**2/(x - y)**2 M = Max(0, a) assert integrate(e, x).expand() == Piecewise( (Piecewise( (0, x <= 0), (-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-y**2/(-a**2*y + a**2*M) + 1/(-y + M) - 1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), ((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))), (Piecewise( (-1/(x - y), x <= 0), (-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) - y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a + 2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y + a**2*M) - y**2/(-a**2*y + a**2*M) + 2*log(-y)/a - 2*log(-y + M)/a + 2/a - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), a <= y), (Piecewise( (-y**2/(a**2*x - a**2*y), x <= 0), (x/a**2 + y/a**2, x <= M), (a**2/(-a**2*y + a**2*M) - a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) + 2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) - y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)), True)) def test__intervals(): assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == [] assert Piecewise( (1, x > x + 1), (Piecewise((1, x < x + 1)), 2*x < 2*x + 1), (1, True))._intervals(x) == [(-oo, oo, 1, 1)] assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == [ (-oo, oo, 1, 0)] assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True) )._intervals(x) == [(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)] # the following tests that duplicates are removed and that non-Eq # generated zero-width intervals are removed assert Piecewise((1, Abs(x**(-2)) > 1), (0, True) )._intervals(x) == [(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)] def test_containment(): a, b, c, d, e = [1, 2, 3, 4, 5] p = (Piecewise((d, x > 1), (e, True))* Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True))) assert p.integrate(x).diff(x) == Piecewise( (c*e, x <= 0), (a*e, x <= 1), (a*d, x < 2), # this is what we want to get right (b*d, x < 4), (c*d, True)) def test_piecewise_with_DiracDelta(): d1 = DiracDelta(x - 1) assert integrate(d1, (x, -oo, oo)) == 1 assert integrate(d1, (x, 0, 2)) == 1 assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0 assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise( (Heaviside(x - 1), x < 2), (1, True)) # TODO raise error if function is discontinuous at limit of # integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise( # (d1, Eq(x ,1) def test_issue_10258(): assert Piecewise((0, x < 1), (1, True)).is_zero is None assert Piecewise((-1, x < 1), (1, True)).is_zero is False a = Symbol('a', zero=True) assert Piecewise((0, x < 1), (a, True)).is_zero assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None a = Symbol('a') assert Piecewise((0, x < 1), (a, True)).is_zero is None assert Piecewise((0, x < 1), (1, True)).is_nonzero is None assert Piecewise((1, x < 1), (2, True)).is_nonzero assert Piecewise((0, x < 1), (oo, True)).is_finite is None assert Piecewise((0, x < 1), (1, True)).is_finite b = Basic() assert Piecewise((b, x < 1)).is_finite is None # 10258 c = Piecewise((1, x < 0), (2, True)) < 3 assert c != True assert piecewise_fold(c) == True def test_issue_10087(): a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True)) m = a*b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) m = a + b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) def test_issue_8919(): c = symbols('c:5') x = symbols("x") f1 = Piecewise((c[1], x < 1), (c[2], True)) f2 = Piecewise((c[3], x < Rational(1, 3)), (c[4], True)) assert integrate(f1*f2, (x, 0, 2) ) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4] f1 = Piecewise((0, x < 1), (2, True)) f2 = Piecewise((3, x < 2), (0, True)) assert integrate(f1*f2, (x, 0, 3)) == 6 y = symbols("y", positive=True) a, b, c, x, z = symbols("a,b,c,x,z", real=True) I = Integral(Piecewise( (0, (x >= y) | (x < 0) | (b > c)), (a, True)), (x, 0, z)) ans = I.doit() assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True)) for cond in (True, False): for yy in range(1, 3): for zz in range(-yy, 0, yy): reps = [(b > c, cond), (y, yy), (z, zz)] assert ans.subs(reps) == I.subs(reps).doit() def test_unevaluated_integrals(): f = Function('f') p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True)) assert p.integrate(x) == Integral(p, x) assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5)) # test it by replacing f(x) with x%2 which will not # affect the answer: the integrand is essentially 2 over # the domain of integration assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10 # this is a test of using _solve_inequality when # solve_univariate_inequality fails assert p.integrate(y) == Piecewise( (y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))), (2*y, (x >= -oo) & (x < 10)), (0, True)) def test_conditions_as_alternate_booleans(): a, b, c = symbols('a:c') assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True))) ) == Piecewise((x, ITE(x > 0, y < 1, y > 1))) def test_Piecewise_rewrite_as_ITE(): a, b, c, d = symbols('a:d') def _ITE(*args): return Piecewise(*args).rewrite(ITE) assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < 2), (c, True) ) == ITE(x < 1, a, ITE(x < 2, b, c)) assert _ITE((a, x < 1), (b, y < 2), (c, True) ) == ITE(x < 1, a, ITE(y < 2, b, c)) assert _ITE((a, x < 1), (b, x < oo), (c, y < 1) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True) ) == ITE(x < 1, a, ITE(y < 1, c, b)) assert _ITE((a, x < 0), (b, Or(x < oo, y < 1)) ) == ITE(x < 0, a, b) raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True))) # if `a` in the following were replaced with y then the coverage # is complete but something other than as_set would need to be # used to detect this raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a))) raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3))) def test_issue_14052(): assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4 def test_issue_14240(): assert piecewise_fold( Piecewise((1, a), (2, b), (4, True)) + Piecewise((8, a), (16, True)) ) == Piecewise((9, a), (18, b), (20, True)) assert piecewise_fold( Piecewise((2, a), (3, b), (5, True)) * Piecewise((7, a), (11, True)) ) == Piecewise((14, a), (33, b), (55, True)) # these will hang if naive folding is used assert piecewise_fold(Add(*[ Piecewise((i, a), (0, True)) for i in range(40)]) ) == Piecewise((780, a), (0, True)) assert piecewise_fold(Mul(*[ Piecewise((i, a), (0, True)) for i in range(1, 41)]) ) == Piecewise((factorial(40), a), (0, True)) def test_issue_14787(): x = Symbol('x') f = Piecewise((x, x < 1), ((S(58) / 7), True)) assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))" def test_issue_8458(): x, y = symbols('x y') # Original issue p1 = Piecewise((0, Eq(x, 0)), (sin(x), True)) assert p1.simplify() == sin(x) # Slightly larger variant p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p2.simplify() == sin(x) # Test for problem highlighted during review p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True)) def test_issue_16417(): from sympy import im, re, Gt z = Symbol('z') assert unchanged(Piecewise, (1, Or(Eq(im(z), 0), Gt(re(z), 0))), (2, True)) x = Symbol('x') assert unchanged(Piecewise, (S.Pi, re(x) < 0), (0, Or(re(x) > 0, Ne(im(x), 0))), (S.NaN, True)) r = Symbol('r', real=True) p = Piecewise((S.Pi, re(r) < 0), (0, Or(re(r) > 0, Ne(im(r), 0))), (S.NaN, True)) assert p == Piecewise((S.Pi, r < 0), (0, r > 0), (S.NaN, True), evaluate=False) # Does not work since imaginary != 0... #i = Symbol('i', imaginary=True) #p = Piecewise((S.Pi, re(i) < 0), # (0, Or(re(i) > 0, Ne(im(i), 0))), # (S.NaN, True)) #assert p == Piecewise((0, Ne(im(i), 0)), # (S.NaN, True), evaluate=False) i = I*r p = Piecewise((S.Pi, re(i) < 0), (0, Or(re(i) > 0, Ne(im(i), 0))), (S.NaN, True)) assert p == Piecewise((0, Ne(im(i), 0)), (S.NaN, True), evaluate=False) assert p == Piecewise((0, Ne(r, 0)), (S.NaN, True), evaluate=False) def test_eval_rewrite_as_KroneckerDelta(): x, y, z, n, t, m = symbols('x y z n t m') K = KroneckerDelta f = lambda p: expand(p.rewrite(K)) p1 = Piecewise((0, Eq(x, y)), (1, True)) assert f(p1) == 1 - K(x, y) p2 = Piecewise((x, Eq(y,0)), (z, Eq(t,0)), (n, True)) assert f(p2) == n*K(0, t)*K(0, y) - n*K(0, t) - n*K(0, y) + n + \ x*K(0, y) - z*K(0, t)*K(0, y) + z*K(0, t) p3 = Piecewise((1, Ne(x, y)), (0, True)) assert f(p3) == 1 - K(x, y) p4 = Piecewise((1, Eq(x, 3)), (4, True), (5, True)) assert f(p4) == 4 - 3*K(3, x) p5 = Piecewise((3, Ne(x, 2)), (4, Eq(y, 2)), (5, True)) assert f(p5) == -K(2, x)*K(2, y) + 2*K(2, x) + 3 p6 = Piecewise((0, Ne(x, 1) & Ne(y, 4)), (1, True)) assert f(p6) == -K(1, x)*K(4, y) + K(1, x) + K(4, y) p7 = Piecewise((2, Eq(y, 3) & Ne(x, 2)), (1, True)) assert f(p7) == -K(2, x)*K(3, y) + K(3, y) + 1 p8 = Piecewise((4, Eq(x, 3) & Ne(y, 2)), (1, True)) assert f(p8) == -3*K(2, y)*K(3, x) + 3*K(3, x) + 1 p9 = Piecewise((6, Eq(x, 4) & Eq(y, 1)), (1, True)) assert f(p9) == 5 * K(1, y) * K(4, x) + 1 p10 = Piecewise((4, Ne(x, -4) | Ne(y, 1)), (1, True)) assert f(p10) == -3 * K(-4, x) * K(1, y) + 4 p11 = Piecewise((1, Eq(y, 2) | Ne(x, -3)), (2, True)) assert f(p11) == -K(-3, x)*K(2, y) + K(-3, x) + 1 p12 = Piecewise((-1, Eq(x, 1) | Ne(y, 3)), (1, True)) assert f(p12) == -2*K(1, x)*K(3, y) + 2*K(3, y) - 1 p13 = Piecewise((3, Eq(x, 2) | Eq(y, 4)), (1, True)) assert f(p13) == -2*K(2, x)*K(4, y) + 2*K(2, x) + 2*K(4, y) + 1 p14 = Piecewise((1, Ne(x, 0) | Ne(y, 1)), (3, True)) assert f(p14) == 2 * K(0, x) * K(1, y) + 1 p15 = Piecewise((2, Eq(x, 3) | Ne(y, 2)), (3, Eq(x, 4) & Eq(y, 5)), (1, True)) assert f(p15) == -2*K(2, y)*K(3, x)*K(4, x)*K(5, y) + K(2, y)*K(3, x) + \ 2*K(2, y)*K(4, x)*K(5, y) - K(2, y) + 2 p16 = Piecewise((0, Ne(m, n)), (1, True))*Piecewise((0, Ne(n, t)), (1, True))\ *Piecewise((0, Ne(n, x)), (1, True)) - Piecewise((0, Ne(t, x)), (1, True)) assert f(p16) == K(m, n)*K(n, t)*K(n, x) - K(t, x) p17 = Piecewise((0, Ne(t, x) & (Ne(m, n) | Ne(n, t) | Ne(n, x))), (1, Ne(t, x)), (-1, Ne(m, n) | Ne(n, t) | Ne(n, x)), (0, True)) assert f(p17) == K(m, n)*K(n, t)*K(n, x) - K(t, x) p18 = Piecewise((-4, Eq(y, 1) | (Eq(x, -5) & Eq(x, z))), (4, True)) assert f(p18) == 8*K(-5, x)*K(1, y)*K(x, z) - 8*K(-5, x)*K(x, z) - 8*K(1, y) + 4 p19 = Piecewise((0, x > 2), (1, True)) assert f(p19) == p19 p20 = Piecewise((0, And(x < 2, x > -5)), (1, True)) assert f(p20) == p20 p21 = Piecewise((0, Or(x > 1, x < 0)), (1, True)) assert f(p21) == p21 p22 = Piecewise((0, ~((Eq(y, -1) | Ne(x, 0)) & (Ne(x, 1) | Ne(y, -1)))), (1, True)) assert f(p22) == K(-1, y)*K(0, x) - K(-1, y)*K(1, x) - K(0, x) + 1 @slow def test_identical_conds_issue(): from sympy.stats import Uniform, density u1 = Uniform('u1', 0, 1) u2 = Uniform('u2', 0, 1) # Result is quite big, so not really important here (and should ideally be # simpler). Should not give an exception though. density(u1 + u2)
c4e1c021ee85c2124283588b9876bd3d44cf084da340e66a440be4d4bf79f4d8
from sympy import (symbols, Symbol, sinh, nan, oo, zoo, pi, asinh, acosh, log, sqrt, coth, I, cot, E, tanh, tan, cosh, cos, S, sin, Rational, atanh, acoth, Integer, O, exp, sech, sec, csch, asech, acsch, acos, asin, expand_mul, AccumBounds, im, re) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.utilities.pytest import raises def test_sinh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert sinh(nan) is nan assert sinh(zoo) is nan assert sinh(oo) is oo assert sinh(-oo) is -oo assert sinh(0) == 0 assert unchanged(sinh, 1) assert sinh(-1) == -sinh(1) assert unchanged(sinh, x) assert sinh(-x) == -sinh(x) assert unchanged(sinh, pi) assert sinh(-pi) == -sinh(pi) assert unchanged(sinh, 2**1024 * E) assert sinh(-2**1024 * E) == -sinh(2**1024 * E) assert sinh(pi*I) == 0 assert sinh(-pi*I) == 0 assert sinh(2*pi*I) == 0 assert sinh(-2*pi*I) == 0 assert sinh(-3*10**73*pi*I) == 0 assert sinh(7*10**103*pi*I) == 0 assert sinh(pi*I/2) == I assert sinh(-pi*I/2) == -I assert sinh(pi*I*Rational(5, 2)) == I assert sinh(pi*I*Rational(7, 2)) == -I assert sinh(pi*I/3) == S.Half*sqrt(3)*I assert sinh(pi*I*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)*I assert sinh(pi*I/4) == S.Half*sqrt(2)*I assert sinh(-pi*I/4) == Rational(-1, 2)*sqrt(2)*I assert sinh(pi*I*Rational(17, 4)) == S.Half*sqrt(2)*I assert sinh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)*I assert sinh(pi*I/6) == S.Half*I assert sinh(-pi*I/6) == Rational(-1, 2)*I assert sinh(pi*I*Rational(7, 6)) == Rational(-1, 2)*I assert sinh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*I assert sinh(pi*I/105) == sin(pi/105)*I assert sinh(-pi*I/105) == -sin(pi/105)*I assert unchanged(sinh, 2 + 3*I) assert sinh(x*I) == sin(x)*I assert sinh(k*pi*I) == 0 assert sinh(17*k*pi*I) == 0 assert sinh(k*pi*I/2) == sin(k*pi/2)*I assert sinh(x).as_real_imag(deep=False) == (cos(im(x))*sinh(re(x)), sin(im(x))*cosh(re(x))) x = Symbol('x', extended_real=True) assert sinh(x).as_real_imag(deep=False) == (sinh(x), 0) x = Symbol('x', real=True) assert sinh(I*x).is_finite is True assert sinh(x).is_real is True assert sinh(I).is_real is False def test_sinh_series(): x = Symbol('x') assert sinh(x).series(x, 0, 10) == \ x + x**3/6 + x**5/120 + x**7/5040 + x**9/362880 + O(x**10) def test_sinh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: sinh(x).fdiff(2)) def test_cosh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert cosh(nan) is nan assert cosh(zoo) is nan assert cosh(oo) is oo assert cosh(-oo) is oo assert cosh(0) == 1 assert unchanged(cosh, 1) assert cosh(-1) == cosh(1) assert unchanged(cosh, x) assert cosh(-x) == cosh(x) assert cosh(pi*I) == cos(pi) assert cosh(-pi*I) == cos(pi) assert unchanged(cosh, 2**1024 * E) assert cosh(-2**1024 * E) == cosh(2**1024 * E) assert cosh(pi*I/2) == 0 assert cosh(-pi*I/2) == 0 assert cosh((-3*10**73 + 1)*pi*I/2) == 0 assert cosh((7*10**103 + 1)*pi*I/2) == 0 assert cosh(pi*I) == -1 assert cosh(-pi*I) == -1 assert cosh(5*pi*I) == -1 assert cosh(8*pi*I) == 1 assert cosh(pi*I/3) == S.Half assert cosh(pi*I*Rational(-2, 3)) == Rational(-1, 2) assert cosh(pi*I/4) == S.Half*sqrt(2) assert cosh(-pi*I/4) == S.Half*sqrt(2) assert cosh(pi*I*Rational(11, 4)) == Rational(-1, 2)*sqrt(2) assert cosh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert cosh(pi*I/6) == S.Half*sqrt(3) assert cosh(-pi*I/6) == S.Half*sqrt(3) assert cosh(pi*I*Rational(7, 6)) == Rational(-1, 2)*sqrt(3) assert cosh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3) assert cosh(pi*I/105) == cos(pi/105) assert cosh(-pi*I/105) == cos(pi/105) assert unchanged(cosh, 2 + 3*I) assert cosh(x*I) == cos(x) assert cosh(k*pi*I) == cos(k*pi) assert cosh(17*k*pi*I) == cos(17*k*pi) assert unchanged(cosh, k*pi) assert cosh(x).as_real_imag(deep=False) == (cos(im(x))*cosh(re(x)), sin(im(x))*sinh(re(x))) x = Symbol('x', extended_real=True) assert cosh(x).as_real_imag(deep=False) == (cosh(x), 0) x = Symbol('x', real=True) assert cosh(I*x).is_finite is True assert cosh(I*x).is_real is True assert cosh(I*2 + 1).is_real is False def test_cosh_series(): x = Symbol('x') assert cosh(x).series(x, 0, 10) == \ 1 + x**2/2 + x**4/24 + x**6/720 + x**8/40320 + O(x**10) def test_cosh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: cosh(x).fdiff(2)) def test_tanh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert tanh(nan) is nan assert tanh(zoo) is nan assert tanh(oo) == 1 assert tanh(-oo) == -1 assert tanh(0) == 0 assert unchanged(tanh, 1) assert tanh(-1) == -tanh(1) assert unchanged(tanh, x) assert tanh(-x) == -tanh(x) assert unchanged(tanh, pi) assert tanh(-pi) == -tanh(pi) assert unchanged(tanh, 2**1024 * E) assert tanh(-2**1024 * E) == -tanh(2**1024 * E) assert tanh(pi*I) == 0 assert tanh(-pi*I) == 0 assert tanh(2*pi*I) == 0 assert tanh(-2*pi*I) == 0 assert tanh(-3*10**73*pi*I) == 0 assert tanh(7*10**103*pi*I) == 0 assert tanh(pi*I/2) is zoo assert tanh(-pi*I/2) is zoo assert tanh(pi*I*Rational(5, 2)) is zoo assert tanh(pi*I*Rational(7, 2)) is zoo assert tanh(pi*I/3) == sqrt(3)*I assert tanh(pi*I*Rational(-2, 3)) == sqrt(3)*I assert tanh(pi*I/4) == I assert tanh(-pi*I/4) == -I assert tanh(pi*I*Rational(17, 4)) == I assert tanh(pi*I*Rational(-3, 4)) == I assert tanh(pi*I/6) == I/sqrt(3) assert tanh(-pi*I/6) == -I/sqrt(3) assert tanh(pi*I*Rational(7, 6)) == I/sqrt(3) assert tanh(pi*I*Rational(-5, 6)) == I/sqrt(3) assert tanh(pi*I/105) == tan(pi/105)*I assert tanh(-pi*I/105) == -tan(pi/105)*I assert unchanged(tanh, 2 + 3*I) assert tanh(x*I) == tan(x)*I assert tanh(k*pi*I) == 0 assert tanh(17*k*pi*I) == 0 assert tanh(k*pi*I/2) == tan(k*pi/2)*I assert tanh(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(cos(im(x))**2 + sinh(re(x))**2), sin(im(x))*cos(im(x))/(cos(im(x))**2 + sinh(re(x))**2)) x = Symbol('x', extended_real=True) assert tanh(x).as_real_imag(deep=False) == (tanh(x), 0) assert tanh(I*pi/3 + 1).is_real is False assert tanh(x).is_real is True assert tanh(I*pi*x/2).is_real is None def test_tanh_series(): x = Symbol('x') assert tanh(x).series(x, 0, 10) == \ x - x**3/3 + 2*x**5/15 - 17*x**7/315 + 62*x**9/2835 + O(x**10) def test_tanh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: tanh(x).fdiff(2)) def test_coth(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert coth(nan) is nan assert coth(zoo) is nan assert coth(oo) == 1 assert coth(-oo) == -1 assert coth(0) is zoo assert unchanged(coth, 1) assert coth(-1) == -coth(1) assert unchanged(coth, x) assert coth(-x) == -coth(x) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == cot(pi)*I assert unchanged(coth, 2**1024 * E) assert coth(-2**1024 * E) == -coth(2**1024 * E) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == I*cot(pi) assert coth(2*pi*I) == -I*cot(2*pi) assert coth(-2*pi*I) == I*cot(2*pi) assert coth(-3*10**73*pi*I) == I*cot(3*10**73*pi) assert coth(7*10**103*pi*I) == -I*cot(7*10**103*pi) assert coth(pi*I/2) == 0 assert coth(-pi*I/2) == 0 assert coth(pi*I*Rational(5, 2)) == 0 assert coth(pi*I*Rational(7, 2)) == 0 assert coth(pi*I/3) == -I/sqrt(3) assert coth(pi*I*Rational(-2, 3)) == -I/sqrt(3) assert coth(pi*I/4) == -I assert coth(-pi*I/4) == I assert coth(pi*I*Rational(17, 4)) == -I assert coth(pi*I*Rational(-3, 4)) == -I assert coth(pi*I/6) == -sqrt(3)*I assert coth(-pi*I/6) == sqrt(3)*I assert coth(pi*I*Rational(7, 6)) == -sqrt(3)*I assert coth(pi*I*Rational(-5, 6)) == -sqrt(3)*I assert coth(pi*I/105) == -cot(pi/105)*I assert coth(-pi*I/105) == cot(pi/105)*I assert unchanged(coth, 2 + 3*I) assert coth(x*I) == -cot(x)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(17*k*pi*I) == -cot(17*k*pi)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(log(tan(2))) == coth(log(-tan(2))) assert coth(1 + I*pi/2) == tanh(1) assert coth(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(sin(im(x))**2 + sinh(re(x))**2), -sin(im(x))*cos(im(x))/(sin(im(x))**2 + sinh(re(x))**2)) x = Symbol('x', extended_real=True) assert coth(x).as_real_imag(deep=False) == (coth(x), 0) def test_coth_series(): x = Symbol('x') assert coth(x).series(x, 0, 8) == \ 1/x + x/3 - x**3/45 + 2*x**5/945 - x**7/4725 + O(x**8) def test_coth_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: coth(x).fdiff(2)) def test_csch(): x, y = symbols('x,y') k = Symbol('k', integer=True) n = Symbol('n', positive=True) assert csch(nan) is nan assert csch(zoo) is nan assert csch(oo) == 0 assert csch(-oo) == 0 assert csch(0) is zoo assert csch(-1) == -csch(1) assert csch(-x) == -csch(x) assert csch(-pi) == -csch(pi) assert csch(-2**1024 * E) == -csch(2**1024 * E) assert csch(pi*I) is zoo assert csch(-pi*I) is zoo assert csch(2*pi*I) is zoo assert csch(-2*pi*I) is zoo assert csch(-3*10**73*pi*I) is zoo assert csch(7*10**103*pi*I) is zoo assert csch(pi*I/2) == -I assert csch(-pi*I/2) == I assert csch(pi*I*Rational(5, 2)) == -I assert csch(pi*I*Rational(7, 2)) == I assert csch(pi*I/3) == -2/sqrt(3)*I assert csch(pi*I*Rational(-2, 3)) == 2/sqrt(3)*I assert csch(pi*I/4) == -sqrt(2)*I assert csch(-pi*I/4) == sqrt(2)*I assert csch(pi*I*Rational(7, 4)) == sqrt(2)*I assert csch(pi*I*Rational(-3, 4)) == sqrt(2)*I assert csch(pi*I/6) == -2*I assert csch(-pi*I/6) == 2*I assert csch(pi*I*Rational(7, 6)) == 2*I assert csch(pi*I*Rational(-7, 6)) == -2*I assert csch(pi*I*Rational(-5, 6)) == 2*I assert csch(pi*I/105) == -1/sin(pi/105)*I assert csch(-pi*I/105) == 1/sin(pi/105)*I assert csch(x*I) == -1/sin(x)*I assert csch(k*pi*I) is zoo assert csch(17*k*pi*I) is zoo assert csch(k*pi*I/2) == -1/sin(k*pi/2)*I assert csch(n).is_real is True def test_csch_series(): x = Symbol('x') assert csch(x).series(x, 0, 10) == \ 1/ x - x/6 + 7*x**3/360 - 31*x**5/15120 + 127*x**7/604800 \ - 73*x**9/3421440 + O(x**10) def test_csch_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: csch(x).fdiff(2)) def test_sech(): x, y = symbols('x, y') k = Symbol('k', integer=True) n = Symbol('n', positive=True) assert sech(nan) is nan assert sech(zoo) is nan assert sech(oo) == 0 assert sech(-oo) == 0 assert sech(0) == 1 assert sech(-1) == sech(1) assert sech(-x) == sech(x) assert sech(pi*I) == sec(pi) assert sech(-pi*I) == sec(pi) assert sech(-2**1024 * E) == sech(2**1024 * E) assert sech(pi*I/2) is zoo assert sech(-pi*I/2) is zoo assert sech((-3*10**73 + 1)*pi*I/2) is zoo assert sech((7*10**103 + 1)*pi*I/2) is zoo assert sech(pi*I) == -1 assert sech(-pi*I) == -1 assert sech(5*pi*I) == -1 assert sech(8*pi*I) == 1 assert sech(pi*I/3) == 2 assert sech(pi*I*Rational(-2, 3)) == -2 assert sech(pi*I/4) == sqrt(2) assert sech(-pi*I/4) == sqrt(2) assert sech(pi*I*Rational(5, 4)) == -sqrt(2) assert sech(pi*I*Rational(-5, 4)) == -sqrt(2) assert sech(pi*I/6) == 2/sqrt(3) assert sech(-pi*I/6) == 2/sqrt(3) assert sech(pi*I*Rational(7, 6)) == -2/sqrt(3) assert sech(pi*I*Rational(-5, 6)) == -2/sqrt(3) assert sech(pi*I/105) == 1/cos(pi/105) assert sech(-pi*I/105) == 1/cos(pi/105) assert sech(x*I) == 1/cos(x) assert sech(k*pi*I) == 1/cos(k*pi) assert sech(17*k*pi*I) == 1/cos(17*k*pi) assert sech(n).is_real is True def test_sech_series(): x = Symbol('x') assert sech(x).series(x, 0, 10) == \ 1 - x**2/2 + 5*x**4/24 - 61*x**6/720 + 277*x**8/8064 + O(x**10) def test_sech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: sech(x).fdiff(2)) def test_asinh(): x, y = symbols('x,y') assert unchanged(asinh, x) assert asinh(-x) == -asinh(x) #at specific points assert asinh(nan) is nan assert asinh( 0) == 0 assert asinh(+1) == log(sqrt(2) + 1) assert asinh(-1) == log(sqrt(2) - 1) assert asinh(I) == pi*I/2 assert asinh(-I) == -pi*I/2 assert asinh(I/2) == pi*I/6 assert asinh(-I/2) == -pi*I/6 # at infinites assert asinh(oo) is oo assert asinh(-oo) is -oo assert asinh(I*oo) is oo assert asinh(-I *oo) is -oo assert asinh(zoo) is zoo #properties assert asinh(I *(sqrt(3) - 1)/(2**Rational(3, 2))) == pi*I/12 assert asinh(-I *(sqrt(3) - 1)/(2**Rational(3, 2))) == -pi*I/12 assert asinh(I*(sqrt(5) - 1)/4) == pi*I/10 assert asinh(-I*(sqrt(5) - 1)/4) == -pi*I/10 assert asinh(I*(sqrt(5) + 1)/4) == pi*I*Rational(3, 10) assert asinh(-I*(sqrt(5) + 1)/4) == pi*I*Rational(-3, 10) # Symmetry assert asinh(Rational(-1, 2)) == -asinh(S.Half) # inverse composition assert unchanged(asinh, sinh(Symbol('v1'))) assert asinh(sinh(0, evaluate=False)) == 0 assert asinh(sinh(-3, evaluate=False)) == -3 assert asinh(sinh(2, evaluate=False)) == 2 assert asinh(sinh(I, evaluate=False)) == I assert asinh(sinh(-I, evaluate=False)) == -I assert asinh(sinh(5*I, evaluate=False)) == -2*I*pi + 5*I assert asinh(sinh(15 + 11*I)) == 15 - 4*I*pi + 11*I assert asinh(sinh(-73 + 97*I)) == 73 - 97*I + 31*I*pi assert asinh(sinh(-7 - 23*I)) == 7 - 7*I*pi + 23*I assert asinh(sinh(13 - 3*I)) == -13 - I*pi + 3*I def test_asinh_rewrite(): x = Symbol('x') assert asinh(x).rewrite(log) == log(x + sqrt(x**2 + 1)) def test_asinh_series(): x = Symbol('x') assert asinh(x).series(x, 0, 8) == \ x - x**3/6 + 3*x**5/40 - 5*x**7/112 + O(x**8) t5 = asinh(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asinh(x).taylor_term(7, x, t5, 0) == -5*x**7/112 def test_asinh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asinh(x).fdiff(2)) def test_acosh(): x = Symbol('x') assert unchanged(acosh, -x) #at specific points assert acosh(1) == 0 assert acosh(-1) == pi*I assert acosh(0) == I*pi/2 assert acosh(S.Half) == I*pi/3 assert acosh(Rational(-1, 2)) == pi*I*Rational(2, 3) assert acosh(nan) is nan # at infinites assert acosh(oo) is oo assert acosh(-oo) is oo assert acosh(I*oo) == oo + I*pi/2 assert acosh(-I*oo) == oo - I*pi/2 assert acosh(zoo) is zoo assert acosh(I) == log(I*(1 + sqrt(2))) assert acosh(-I) == log(-I*(1 + sqrt(2))) assert acosh((sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(5, 12) assert acosh(-(sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(7, 12) assert acosh(sqrt(2)/2) == I*pi/4 assert acosh(-sqrt(2)/2) == I*pi*Rational(3, 4) assert acosh(sqrt(3)/2) == I*pi/6 assert acosh(-sqrt(3)/2) == I*pi*Rational(5, 6) assert acosh(sqrt(2 + sqrt(2))/2) == I*pi/8 assert acosh(-sqrt(2 + sqrt(2))/2) == I*pi*Rational(7, 8) assert acosh(sqrt(2 - sqrt(2))/2) == I*pi*Rational(3, 8) assert acosh(-sqrt(2 - sqrt(2))/2) == I*pi*Rational(5, 8) assert acosh((1 + sqrt(3))/(2*sqrt(2))) == I*pi/12 assert acosh(-(1 + sqrt(3))/(2*sqrt(2))) == I*pi*Rational(11, 12) assert acosh((sqrt(5) + 1)/4) == I*pi/5 assert acosh(-(sqrt(5) + 1)/4) == I*pi*Rational(4, 5) assert str(acosh(5*I).n(6)) == '2.31244 + 1.5708*I' assert str(acosh(-5*I).n(6)) == '2.31244 - 1.5708*I' # inverse composition assert unchanged(acosh, Symbol('v1')) assert acosh(cosh(-3, evaluate=False)) == 3 assert acosh(cosh(3, evaluate=False)) == 3 assert acosh(cosh(0, evaluate=False)) == 0 assert acosh(cosh(I, evaluate=False)) == I assert acosh(cosh(-I, evaluate=False)) == I assert acosh(cosh(7*I, evaluate=False)) == -2*I*pi + 7*I assert acosh(cosh(1 + I)) == 1 + I assert acosh(cosh(3 - 3*I)) == 3 - 3*I assert acosh(cosh(-3 + 2*I)) == 3 - 2*I assert acosh(cosh(-5 - 17*I)) == 5 - 6*I*pi + 17*I assert acosh(cosh(-21 + 11*I)) == 21 - 11*I + 4*I*pi assert acosh(cosh(cosh(1) + I)) == cosh(1) + I def test_acosh_rewrite(): x = Symbol('x') assert acosh(x).rewrite(log) == log(x + sqrt(x - 1)*sqrt(x + 1)) def test_acosh_series(): x = Symbol('x') assert acosh(x).series(x, 0, 8) == \ -I*x + pi*I/2 - I*x**3/6 - 3*I*x**5/40 - 5*I*x**7/112 + O(x**8) t5 = acosh(x).taylor_term(5, x) assert t5 == - 3*I*x**5/40 assert acosh(x).taylor_term(7, x, t5, 0) == - 5*I*x**7/112 def test_acosh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acosh(x).fdiff(2)) def test_asech(): x = Symbol('x') assert unchanged(asech, -x) # values at fixed points assert asech(1) == 0 assert asech(-1) == pi*I assert asech(0) is oo assert asech(2) == I*pi/3 assert asech(-2) == 2*I*pi / 3 assert asech(nan) is nan # at infinites assert asech(oo) == I*pi/2 assert asech(-oo) == I*pi/2 assert asech(zoo) == I*AccumBounds(-pi/2, pi/2) assert asech(I) == log(1 + sqrt(2)) - I*pi/2 assert asech(-I) == log(1 + sqrt(2)) + I*pi/2 assert asech(sqrt(2) - sqrt(6)) == 11*I*pi / 12 assert asech(sqrt(2 - 2/sqrt(5))) == I*pi / 10 assert asech(-sqrt(2 - 2/sqrt(5))) == 9*I*pi / 10 assert asech(2 / sqrt(2 + sqrt(2))) == I*pi / 8 assert asech(-2 / sqrt(2 + sqrt(2))) == 7*I*pi / 8 assert asech(sqrt(5) - 1) == I*pi / 5 assert asech(1 - sqrt(5)) == 4*I*pi / 5 assert asech(-sqrt(2*(2 + sqrt(2)))) == 5*I*pi / 8 # properties # asech(x) == acosh(1/x) assert asech(sqrt(2)) == acosh(1/sqrt(2)) assert asech(2/sqrt(3)) == acosh(sqrt(3)/2) assert asech(2/sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2))/2) assert asech(2) == acosh(S.Half) # asech(x) == I*acos(1/x) # (Note: the exact formula is asech(x) == +/- I*acos(1/x)) assert asech(-sqrt(2)) == I*acos(-1/sqrt(2)) assert asech(-2/sqrt(3)) == I*acos(-sqrt(3)/2) assert asech(-S(2)) == I*acos(Rational(-1, 2)) assert asech(-2/sqrt(2)) == I*acos(-sqrt(2)/2) # sech(asech(x)) / x == 1 assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) / (sqrt(6) - sqrt(2))) == 1 assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) / (sqrt(6) + sqrt(2))) == 1 assert (sech(asech(sqrt(2 + 2/sqrt(5)))) / (sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(-sqrt(2 + 2/sqrt(5)))) / (-sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(sqrt(2*(2 + sqrt(2))))) / (sqrt(2*(2 + sqrt(2))))).simplify() == 1 assert expand_mul(sech(asech((1 + sqrt(5)))) / ((1 + sqrt(5)))) == 1 assert expand_mul(sech(asech((-1 - sqrt(5)))) / ((-1 - sqrt(5)))) == 1 assert expand_mul(sech(asech((-sqrt(6) - sqrt(2)))) / ((-sqrt(6) - sqrt(2)))) == 1 # numerical evaluation assert str(asech(5*I).n(6)) == '0.19869 - 1.5708*I' assert str(asech(-5*I).n(6)) == '0.19869 + 1.5708*I' def test_asech_series(): x = Symbol('x') t6 = asech(x).expansion_term(6, x) assert t6 == -5*x**6/96 assert asech(x).expansion_term(8, x, t6, 0) == -35*x**8/1024 def test_asech_rewrite(): x = Symbol('x') assert asech(x).rewrite(log) == log(1/x + sqrt(1/x - 1) * sqrt(1/x + 1)) def test_asech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asech(x).fdiff(2)) def test_acsch(): x = Symbol('x') assert unchanged(acsch, x) assert acsch(-x) == -acsch(x) # values at fixed points assert acsch(1) == log(1 + sqrt(2)) assert acsch(-1) == - log(1 + sqrt(2)) assert acsch(0) is zoo assert acsch(2) == log((1+sqrt(5))/2) assert acsch(-2) == - log((1+sqrt(5))/2) assert acsch(I) == - I*pi/2 assert acsch(-I) == I*pi/2 assert acsch(-I*(sqrt(6) + sqrt(2))) == I*pi / 12 assert acsch(I*(sqrt(2) + sqrt(6))) == -I*pi / 12 assert acsch(-I*(1 + sqrt(5))) == I*pi / 10 assert acsch(I*(1 + sqrt(5))) == -I*pi / 10 assert acsch(-I*2 / sqrt(2 - sqrt(2))) == I*pi / 8 assert acsch(I*2 / sqrt(2 - sqrt(2))) == -I*pi / 8 assert acsch(-I*2) == I*pi / 6 assert acsch(I*2) == -I*pi / 6 assert acsch(-I*sqrt(2 + 2/sqrt(5))) == I*pi / 5 assert acsch(I*sqrt(2 + 2/sqrt(5))) == -I*pi / 5 assert acsch(-I*sqrt(2)) == I*pi / 4 assert acsch(I*sqrt(2)) == -I*pi / 4 assert acsch(-I*(sqrt(5)-1)) == 3*I*pi / 10 assert acsch(I*(sqrt(5)-1)) == -3*I*pi / 10 assert acsch(-I*2 / sqrt(3)) == I*pi / 3 assert acsch(I*2 / sqrt(3)) == -I*pi / 3 assert acsch(-I*2 / sqrt(2 + sqrt(2))) == 3*I*pi / 8 assert acsch(I*2 / sqrt(2 + sqrt(2))) == -3*I*pi / 8 assert acsch(-I*sqrt(2 - 2/sqrt(5))) == 2*I*pi / 5 assert acsch(I*sqrt(2 - 2/sqrt(5))) == -2*I*pi / 5 assert acsch(-I*(sqrt(6) - sqrt(2))) == 5*I*pi / 12 assert acsch(I*(sqrt(6) - sqrt(2))) == -5*I*pi / 12 assert acsch(nan) is nan # properties # acsch(x) == asinh(1/x) assert acsch(-I*sqrt(2)) == asinh(I/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == asinh(I*sqrt(3) / 2) # acsch(x) == -I*asin(I/x) assert acsch(-I*sqrt(2)) == -I*asin(-1/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == -I*asin(-sqrt(3)/2) # csch(acsch(x)) / x == 1 assert expand_mul(csch(acsch(-I*(sqrt(6) + sqrt(2)))) / (-I*(sqrt(6) + sqrt(2)))) == 1 assert expand_mul(csch(acsch(I*(1 + sqrt(5)))) / ((I*(1 + sqrt(5))))) == 1 assert (csch(acsch(I*sqrt(2 - 2/sqrt(5)))) / (I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 assert (csch(acsch(-I*sqrt(2 - 2/sqrt(5)))) / (-I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 # numerical evaluation assert str(acsch(5*I+1).n(6)) == '0.0391819 - 0.193363*I' assert str(acsch(-5*I+1).n(6)) == '0.0391819 + 0.193363*I' def test_acsch_infinities(): assert acsch(oo) == 0 assert acsch(-oo) == 0 assert acsch(zoo) == 0 def test_acsch_rewrite(): x = Symbol('x') assert acsch(x).rewrite(log) == log(1/x + sqrt(1/x**2 + 1)) def test_acsch_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acsch(x).fdiff(2)) def test_atanh(): x = Symbol('x') #at specific points assert atanh(0) == 0 assert atanh(I) == I*pi/4 assert atanh(-I) == -I*pi/4 assert atanh(1) is oo assert atanh(-1) is -oo assert atanh(nan) is nan # at infinites assert atanh(oo) == -I*pi/2 assert atanh(-oo) == I*pi/2 assert atanh(I*oo) == I*pi/2 assert atanh(-I*oo) == -I*pi/2 assert atanh(zoo) == I*AccumBounds(-pi/2, pi/2) #properties assert atanh(-x) == -atanh(x) assert atanh(I/sqrt(3)) == I*pi/6 assert atanh(-I/sqrt(3)) == -I*pi/6 assert atanh(I*sqrt(3)) == I*pi/3 assert atanh(-I*sqrt(3)) == -I*pi/3 assert atanh(I*(1 + sqrt(2))) == pi*I*Rational(3, 8) assert atanh(I*(sqrt(2) - 1)) == pi*I/8 assert atanh(I*(1 - sqrt(2))) == -pi*I/8 assert atanh(-I*(1 + sqrt(2))) == pi*I*Rational(-3, 8) assert atanh(I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(2, 5) assert atanh(-I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(-2, 5) assert atanh(I*(2 - sqrt(3))) == pi*I/12 assert atanh(I*(sqrt(3) - 2)) == -pi*I/12 assert atanh(oo) == -I*pi/2 # Symmetry assert atanh(Rational(-1, 2)) == -atanh(S.Half) # inverse composition assert unchanged(atanh, tanh(Symbol('v1'))) assert atanh(tanh(-5, evaluate=False)) == -5 assert atanh(tanh(0, evaluate=False)) == 0 assert atanh(tanh(7, evaluate=False)) == 7 assert atanh(tanh(I, evaluate=False)) == I assert atanh(tanh(-I, evaluate=False)) == -I assert atanh(tanh(-11*I, evaluate=False)) == -11*I + 4*I*pi assert atanh(tanh(3 + I)) == 3 + I assert atanh(tanh(4 + 5*I)) == 4 - 2*I*pi + 5*I assert atanh(tanh(pi/2)) == pi/2 assert atanh(tanh(pi)) == pi assert atanh(tanh(-3 + 7*I)) == -3 - 2*I*pi + 7*I assert atanh(tanh(9 - I*Rational(2, 3))) == 9 - I*Rational(2, 3) assert atanh(tanh(-32 - 123*I)) == -32 - 123*I + 39*I*pi def test_atanh_rewrite(): x = Symbol('x') assert atanh(x).rewrite(log) == (log(1 + x) - log(1 - x)) / 2 def test_atanh_series(): x = Symbol('x') assert atanh(x).series(x, 0, 10) == \ x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10) def test_atanh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: atanh(x).fdiff(2)) def test_acoth(): x = Symbol('x') #at specific points assert acoth(0) == I*pi/2 assert acoth(I) == -I*pi/4 assert acoth(-I) == I*pi/4 assert acoth(1) is oo assert acoth(-1) is -oo assert acoth(nan) is nan # at infinites assert acoth(oo) == 0 assert acoth(-oo) == 0 assert acoth(I*oo) == 0 assert acoth(-I*oo) == 0 assert acoth(zoo) == 0 #properties assert acoth(-x) == -acoth(x) assert acoth(I/sqrt(3)) == -I*pi/3 assert acoth(-I/sqrt(3)) == I*pi/3 assert acoth(I*sqrt(3)) == -I*pi/6 assert acoth(-I*sqrt(3)) == I*pi/6 assert acoth(I*(1 + sqrt(2))) == -pi*I/8 assert acoth(-I*(sqrt(2) + 1)) == pi*I/8 assert acoth(I*(1 - sqrt(2))) == pi*I*Rational(3, 8) assert acoth(I*(sqrt(2) - 1)) == pi*I*Rational(-3, 8) assert acoth(I*sqrt(5 + 2*sqrt(5))) == -I*pi/10 assert acoth(-I*sqrt(5 + 2*sqrt(5))) == I*pi/10 assert acoth(I*(2 + sqrt(3))) == -pi*I/12 assert acoth(-I*(2 + sqrt(3))) == pi*I/12 assert acoth(I*(2 - sqrt(3))) == pi*I*Rational(-5, 12) assert acoth(I*(sqrt(3) - 2)) == pi*I*Rational(5, 12) # Symmetry assert acoth(Rational(-1, 2)) == -acoth(S.Half) def test_acoth_rewrite(): x = Symbol('x') assert acoth(x).rewrite(log) == (log(1 + 1/x) - log(1 - 1/x)) / 2 def test_acoth_series(): x = Symbol('x') assert acoth(x).series(x, 0, 10) == \ I*pi/2 + x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10) def test_acoth_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acoth(x).fdiff(2)) def test_inverses(): x = Symbol('x') assert sinh(x).inverse() == asinh raises(AttributeError, lambda: cosh(x).inverse()) assert tanh(x).inverse() == atanh assert coth(x).inverse() == acoth assert asinh(x).inverse() == sinh assert acosh(x).inverse() == cosh assert atanh(x).inverse() == tanh assert acoth(x).inverse() == coth assert asech(x).inverse() == sech assert acsch(x).inverse() == csch def test_leading_term(): x = Symbol('x') assert cosh(x).as_leading_term(x) == 1 assert coth(x).as_leading_term(x) == 1/x assert acosh(x).as_leading_term(x) == I*pi/2 assert acoth(x).as_leading_term(x) == I*pi/2 for func in [sinh, tanh, asinh, atanh]: assert func(x).as_leading_term(x) == x for func in [sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth]: for arg in (1/x, S.Half): eq = func(arg) assert eq.as_leading_term(x) == eq for func in [csch, sech]: eq = func(S.Half) assert eq.as_leading_term(x) == eq def test_complex(): a, b = symbols('a,b', real=True) z = a + b*I for func in [sinh, cosh, tanh, coth, sech, csch]: assert func(z).conjugate() == func(a - b*I) for deep in [True, False]: assert sinh(z).expand( complex=True, deep=deep) == sinh(a)*cos(b) + I*cosh(a)*sin(b) assert cosh(z).expand( complex=True, deep=deep) == cosh(a)*cos(b) + I*sinh(a)*sin(b) assert tanh(z).expand(complex=True, deep=deep) == sinh(a)*cosh( a)/(cos(b)**2 + sinh(a)**2) + I*sin(b)*cos(b)/(cos(b)**2 + sinh(a)**2) assert coth(z).expand(complex=True, deep=deep) == sinh(a)*cosh( a)/(sin(b)**2 + sinh(a)**2) - I*sin(b)*cos(b)/(sin(b)**2 + sinh(a)**2) assert csch(z).expand(complex=True, deep=deep) == cos(b) * sinh(a) / (sin(b)**2\ *cosh(a)**2 + cos(b)**2 * sinh(a)**2) - I*sin(b) * cosh(a) / (sin(b)**2\ *cosh(a)**2 + cos(b)**2 * sinh(a)**2) assert sech(z).expand(complex=True, deep=deep) == cos(b) * cosh(a) / (sin(b)**2\ *sinh(a)**2 + cos(b)**2 * cosh(a)**2) - I*sin(b) * sinh(a) / (sin(b)**2\ *sinh(a)**2 + cos(b)**2 * cosh(a)**2) def test_complex_2899(): a, b = symbols('a,b', real=True) for deep in [True, False]: for func in [sinh, cosh, tanh, coth]: assert func(a).expand(complex=True, deep=deep) == func(a) def test_simplifications(): x = Symbol('x') assert sinh(asinh(x)) == x assert sinh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) assert sinh(atanh(x)) == x/sqrt(1 - x**2) assert sinh(acoth(x)) == 1/(sqrt(x - 1) * sqrt(x + 1)) assert cosh(asinh(x)) == sqrt(1 + x**2) assert cosh(acosh(x)) == x assert cosh(atanh(x)) == 1/sqrt(1 - x**2) assert cosh(acoth(x)) == x/(sqrt(x - 1) * sqrt(x + 1)) assert tanh(asinh(x)) == x/sqrt(1 + x**2) assert tanh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) / x assert tanh(atanh(x)) == x assert tanh(acoth(x)) == 1/x assert coth(asinh(x)) == sqrt(1 + x**2)/x assert coth(acosh(x)) == x/(sqrt(x - 1) * sqrt(x + 1)) assert coth(atanh(x)) == 1/x assert coth(acoth(x)) == x assert csch(asinh(x)) == 1/x assert csch(acosh(x)) == 1/(sqrt(x - 1) * sqrt(x + 1)) assert csch(atanh(x)) == sqrt(1 - x**2)/x assert csch(acoth(x)) == sqrt(x - 1) * sqrt(x + 1) assert sech(asinh(x)) == 1/sqrt(1 + x**2) assert sech(acosh(x)) == 1/x assert sech(atanh(x)) == sqrt(1 - x**2) assert sech(acoth(x)) == sqrt(x - 1) * sqrt(x + 1)/x def test_issue_4136(): assert cosh(asinh(Integer(3)/2)) == sqrt(Integer(13)/4) def test_sinh_rewrite(): x = Symbol('x') assert sinh(x).rewrite(exp) == (exp(x) - exp(-x))/2 \ == sinh(x).rewrite('tractable') assert sinh(x).rewrite(cosh) == -I*cosh(x + I*pi/2) tanh_half = tanh(S.Half*x) assert sinh(x).rewrite(tanh) == 2*tanh_half/(1 - tanh_half**2) coth_half = coth(S.Half*x) assert sinh(x).rewrite(coth) == 2*coth_half/(coth_half**2 - 1) def test_cosh_rewrite(): x = Symbol('x') assert cosh(x).rewrite(exp) == (exp(x) + exp(-x))/2 \ == cosh(x).rewrite('tractable') assert cosh(x).rewrite(sinh) == -I*sinh(x + I*pi/2) tanh_half = tanh(S.Half*x)**2 assert cosh(x).rewrite(tanh) == (1 + tanh_half)/(1 - tanh_half) coth_half = coth(S.Half*x)**2 assert cosh(x).rewrite(coth) == (coth_half + 1)/(coth_half - 1) def test_tanh_rewrite(): x = Symbol('x') assert tanh(x).rewrite(exp) == (exp(x) - exp(-x))/(exp(x) + exp(-x)) \ == tanh(x).rewrite('tractable') assert tanh(x).rewrite(sinh) == I*sinh(x)/sinh(I*pi/2 - x) assert tanh(x).rewrite(cosh) == I*cosh(I*pi/2 - x)/cosh(x) assert tanh(x).rewrite(coth) == 1/coth(x) def test_coth_rewrite(): x = Symbol('x') assert coth(x).rewrite(exp) == (exp(x) + exp(-x))/(exp(x) - exp(-x)) \ == coth(x).rewrite('tractable') assert coth(x).rewrite(sinh) == -I*sinh(I*pi/2 - x)/sinh(x) assert coth(x).rewrite(cosh) == -I*cosh(x)/cosh(I*pi/2 - x) assert coth(x).rewrite(tanh) == 1/tanh(x) def test_csch_rewrite(): x = Symbol('x') assert csch(x).rewrite(exp) == 1 / (exp(x)/2 - exp(-x)/2) \ == csch(x).rewrite('tractable') assert csch(x).rewrite(cosh) == I/cosh(x + I*pi/2) tanh_half = tanh(S.Half*x) assert csch(x).rewrite(tanh) == (1 - tanh_half**2)/(2*tanh_half) coth_half = coth(S.Half*x) assert csch(x).rewrite(coth) == (coth_half**2 - 1)/(2*coth_half) def test_sech_rewrite(): x = Symbol('x') assert sech(x).rewrite(exp) == 1 / (exp(x)/2 + exp(-x)/2) \ == sech(x).rewrite('tractable') assert sech(x).rewrite(sinh) == I/sinh(x + I*pi/2) tanh_half = tanh(S.Half*x)**2 assert sech(x).rewrite(tanh) == (1 - tanh_half)/(1 + tanh_half) coth_half = coth(S.Half*x)**2 assert sech(x).rewrite(coth) == (coth_half - 1)/(coth_half + 1) def test_derivs(): x = Symbol('x') assert coth(x).diff(x) == -sinh(x)**(-2) assert sinh(x).diff(x) == cosh(x) assert cosh(x).diff(x) == sinh(x) assert tanh(x).diff(x) == -tanh(x)**2 + 1 assert csch(x).diff(x) == -coth(x)*csch(x) assert sech(x).diff(x) == -tanh(x)*sech(x) assert acoth(x).diff(x) == 1/(-x**2 + 1) assert asinh(x).diff(x) == 1/sqrt(x**2 + 1) assert acosh(x).diff(x) == 1/sqrt(x**2 - 1) assert atanh(x).diff(x) == 1/(-x**2 + 1) assert asech(x).diff(x) == -1/(x*sqrt(1 - x**2)) assert acsch(x).diff(x) == -1/(x**2*sqrt(1 + x**(-2))) def test_sinh_expansion(): x, y = symbols('x,y') assert sinh(x+y).expand(trig=True) == sinh(x)*cosh(y) + cosh(x)*sinh(y) assert sinh(2*x).expand(trig=True) == 2*sinh(x)*cosh(x) assert sinh(3*x).expand(trig=True).expand() == \ sinh(x)**3 + 3*sinh(x)*cosh(x)**2 def test_cosh_expansion(): x, y = symbols('x,y') assert cosh(x+y).expand(trig=True) == cosh(x)*cosh(y) + sinh(x)*sinh(y) assert cosh(2*x).expand(trig=True) == cosh(x)**2 + sinh(x)**2 assert cosh(3*x).expand(trig=True).expand() == \ 3*sinh(x)**2*cosh(x) + cosh(x)**3 def test_cosh_positive(): # See issue 11721 # cosh(x) is positive for real values of x x = symbols('x') k = symbols('k', real=True) n = symbols('n', integer=True) assert cosh(k, evaluate=False).is_positive is True assert cosh(k + 2*n*pi*I, evaluate=False).is_positive is True assert cosh(I*pi/4, evaluate=False).is_positive is True assert cosh(3*I*pi/4, evaluate=False).is_positive is False def test_cosh_nonnegative(): x = symbols('x') k = symbols('k', real=True) n = symbols('n', integer=True) assert cosh(k, evaluate=False).is_nonnegative is True assert cosh(k + 2*n*pi*I, evaluate=False).is_nonnegative is True assert cosh(I*pi/4, evaluate=False).is_nonnegative is True assert cosh(3*I*pi/4, evaluate=False).is_nonnegative is False assert cosh(S.Zero, evaluate=False).is_nonnegative is True def test_real_assumptions(): z = Symbol('z', real=False) assert sinh(z).is_real is None assert cosh(z).is_real is None assert tanh(z).is_real is None assert sech(z).is_real is None assert csch(z).is_real is None assert coth(z).is_real is None def test_sign_assumptions(): p = Symbol('p', positive=True) n = Symbol('n', negative=True) assert sinh(n).is_negative is True assert sinh(p).is_positive is True assert cosh(n).is_positive is True assert cosh(p).is_positive is True assert tanh(n).is_negative is True assert tanh(p).is_positive is True assert csch(n).is_negative is True assert csch(p).is_positive is True assert sech(n).is_positive is True assert sech(p).is_positive is True assert coth(n).is_negative is True assert coth(p).is_positive is True
02048b9e236386c64d2cbf86e74cfb30f21aa6cbaddfa7727407a0cdef56bc0f
from sympy import (hyper, meijerg, S, Tuple, pi, I, exp, log, Rational, cos, sqrt, symbols, oo, Derivative, gamma, O, appellf1) from sympy.abc import x, z, k from sympy.series.limits import limit from sympy.utilities.pytest import raises, slow from sympy.utilities.randtest import ( random_complex_number as randcplx, verify_numerically as tn, test_derivative_numerically as td) def test_TupleParametersBase(): # test that our implementation of the chain rule works p = hyper((), (), z**2) assert p.diff(z) == p*2*z def test_hyper(): raises(TypeError, lambda: hyper(1, 2, z)) assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z) h = hyper((1, 2), (3, 4, 5), z) assert h.ap == Tuple(1, 2) assert h.bq == Tuple(3, 4, 5) assert h.argument == z assert h.is_commutative is True # just a few checks to make sure that all arguments go where they should assert tn(hyper(Tuple(), Tuple(), z), exp(z), z) assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z) # differentiation h = hyper( (randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z) assert td(h, z) a1, a2, b1, b2, b3 = symbols('a1:3, b1:4') assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \ a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z) # differentiation wrt parameters is not supported assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z) # hyper is unbranched wrt parameters from sympy import polar_lift assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \ hyper([z], [k], polar_lift(x)) # hyper does not automatically evaluate anyway, but the test is to make # sure that the evaluate keyword is accepted assert hyper((1, 2), (1,), z, evaluate=False).func is hyper def test_expand_func(): # evaluation at 1 of Gauss' hypergeometric function: from sympy.abc import a, b, c from sympy import gamma, expand_func a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5 assert expand_func(hyper([a, b], [c], 1)) == \ gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c)) assert abs(expand_func(hyper([a1, b1], [c1], 1)).n() - hyper([a1, b1], [c1], 1).n()) < 1e-10 # hyperexpand wrapper for hyper: assert expand_func(hyper([], [], z)) == exp(z) assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z) assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1) assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \ meijerg([[1, 1], []], [[], []], z) def replace_dummy(expr, sym): from sympy import Dummy dum = expr.atoms(Dummy) if not dum: return expr assert len(dum) == 1 return expr.xreplace({dum.pop(): sym}) def test_hyper_rewrite_sum(): from sympy import RisingFactorial, factorial, Dummy, Sum _k = Dummy("k") assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \ Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) / RisingFactorial(3, _k), (_k, 0, oo)) assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \ hyper((1, 2, 3), (-1, 3), z) def test_radius_of_convergence(): assert hyper((1, 2), [3], z).radius_of_convergence == 1 assert hyper((1, 2), [3, 4], z).radius_of_convergence is oo assert hyper((1, 2, 3), [4], z).radius_of_convergence == 0 assert hyper((0, 1, 2), [4], z).radius_of_convergence is oo assert hyper((-1, 1, 2), [-4], z).radius_of_convergence == 0 assert hyper((-1, -2, 2), [-1], z).radius_of_convergence is oo assert hyper((-1, 2), [-1, -2], z).radius_of_convergence == 0 assert hyper([-1, 1, 3], [-2, 2], z).radius_of_convergence == 1 assert hyper([-1, 1], [-2, 2], z).radius_of_convergence is oo assert hyper([-1, 1, 3], [-2], z).radius_of_convergence == 0 assert hyper((-1, 2, 3, 4), [], z).radius_of_convergence is oo assert hyper([1, 1], [3], 1).convergence_statement == True assert hyper([1, 1], [2], 1).convergence_statement == False assert hyper([1, 1], [2], -1).convergence_statement == True assert hyper([1, 1], [1], -1).convergence_statement == False def test_meijer(): raises(TypeError, lambda: meijerg(1, z)) raises(TypeError, lambda: meijerg(((1,), (2,)), (3,), (4,), z)) assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \ meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z) g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z) assert g.an == Tuple(1, 2) assert g.ap == Tuple(1, 2, 3, 4, 5) assert g.aother == Tuple(3, 4, 5) assert g.bm == Tuple(6, 7, 8, 9) assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14) assert g.bother == Tuple(10, 11, 12, 13, 14) assert g.argument == z assert g.nu == 75 assert g.delta == -1 assert g.is_commutative is True assert g.is_number is False #issue 13071 assert meijerg([[],[]], [[S.Half],[0]], 1).is_number is True assert meijerg([1, 2], [3], [4], [5], z).delta == S.Half # just a few checks to make sure that all arguments go where they should assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z) assert tn(sqrt(pi)*meijerg(Tuple(), Tuple(), Tuple(0), Tuple(S.Half), z**2/4), cos(z), z) assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z), log(1 + z), z) # test exceptions raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((oo,), (2, 0)), x)) raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((1,), (2, 0)), x)) # differentiation g = meijerg((randcplx(),), (randcplx() + 2*I,), Tuple(), (randcplx(), randcplx()), z) assert td(g, z) g = meijerg(Tuple(), (randcplx(),), Tuple(), (randcplx(), randcplx()), z) assert td(g, z) g = meijerg(Tuple(), Tuple(), Tuple(randcplx()), Tuple(randcplx(), randcplx()), z) assert td(g, z) a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3') assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \ (meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z) + (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z assert meijerg([z, z], [], [], [], z).diff(z) == \ Derivative(meijerg([z, z], [], [], [], z), z) # meijerg is unbranched wrt parameters from sympy import polar_lift as pl assert meijerg([pl(a1)], [pl(a2)], [pl(b1)], [pl(b2)], pl(z)) == \ meijerg([a1], [a2], [b1], [b2], pl(z)) # integrand from sympy.abc import a, b, c, d, s assert meijerg([a], [b], [c], [d], z).integrand(s) == \ z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1)) def test_meijerg_derivative(): assert meijerg([], [1, 1], [0, 0, x], [], z).diff(x) == \ log(z)*meijerg([], [1, 1], [0, 0, x], [], z) \ + 2*meijerg([], [1, 1, 1], [0, 0, x, 0], [], z) y = randcplx() a = 5 # mpmath chokes with non-real numbers, and Mod1 with floats assert td(meijerg([x], [], [], [], y), x) assert td(meijerg([x**2], [], [], [], y), x) assert td(meijerg([], [x], [], [], y), x) assert td(meijerg([], [], [x], [], y), x) assert td(meijerg([], [], [], [x], y), x) assert td(meijerg([x], [a], [a + 1], [], y), x) assert td(meijerg([x], [a + 1], [a], [], y), x) assert td(meijerg([x, a], [], [], [a + 1], y), x) assert td(meijerg([x, a + 1], [], [], [a], y), x) b = Rational(3, 2) assert td(meijerg([a + 2], [b], [b - 3, x], [a], y), x) def test_meijerg_period(): assert meijerg([], [1], [0], [], x).get_period() == 2*pi assert meijerg([1], [], [], [0], x).get_period() == 2*pi assert meijerg([], [], [0], [], x).get_period() == 2*pi # exp(x) assert meijerg( [], [], [0], [S.Half], x).get_period() == 2*pi # cos(sqrt(x)) assert meijerg( [], [], [S.Half], [0], x).get_period() == 4*pi # sin(sqrt(x)) assert meijerg([1, 1], [], [1], [0], x).get_period() is oo # log(1 + x) def test_hyper_unpolarify(): from sympy import exp_polar a = exp_polar(2*pi*I)*x b = x assert hyper([], [], a).argument == b assert hyper([0], [], a).argument == a assert hyper([0], [0], a).argument == b assert hyper([0, 1], [0], a).argument == a assert hyper([0, 1], [0], exp_polar(2*pi*I)).argument == 1 @slow def test_hyperrep(): from sympy.functions.special.hyper import (HyperRep, HyperRep_atanh, HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1, HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2, HyperRep_cosasin, HyperRep_sinasin) # First test the base class works. from sympy import Piecewise, exp_polar a, b, c, d, z = symbols('a b c d z') class myrep(HyperRep): @classmethod def _expr_small(cls, x): return a @classmethod def _expr_small_minus(cls, x): return b @classmethod def _expr_big(cls, x, n): return c*n @classmethod def _expr_big_minus(cls, x, n): return d*n assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True)) assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \ Piecewise((0, abs(z) > 1), (b, True)) assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \ Piecewise((c, abs(z) > 1), (a, True)) assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \ Piecewise((d, abs(z) > 1), (b, True)) assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*c, abs(z) > 1), (a, True)) assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*d, abs(z) > 1), (b, True)) assert myrep(z).rewrite('nonrepsmall') == a assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b def t(func, hyp, z): """ Test that func is a valid representation of hyp. """ # First test that func agrees with hyp for small z if not tn(func.rewrite('nonrepsmall'), hyp, z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half): return False # Next check that the two small representations agree. if not tn( func.rewrite('nonrepsmall').subs( z, exp_polar(I*pi)*z).replace(exp_polar, exp), func.subs(z, exp_polar(I*pi)*z).rewrite('nonrepsmall'), z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half): return False # Next check continuity along exp_polar(I*pi)*t expr = func.subs(z, exp_polar(I*pi)*z).rewrite('nonrep') if abs(expr.subs(z, 1 + 1e-15).n() - expr.subs(z, 1 - 1e-15).n()) > 1e-10: return False # Finally check continuity of the big reps. def dosubs(func, a, b): rv = func.subs(z, exp_polar(a)*z).rewrite('nonrep') return rv.subs(z, exp_polar(b)*z).replace(exp_polar, exp) for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]: expr1 = dosubs(func, 2*I*pi*n, I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2) if not tn(expr1, expr2, z): return False expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2) if not tn(expr1, expr2, z): return False return True # Now test the various representatives. a = Rational(1, 3) assert t(HyperRep_atanh(z), hyper([S.Half, 1], [Rational(3, 2)], z), z) assert t(HyperRep_power1(a, z), hyper([-a], [], z), z) assert t(HyperRep_power2(a, z), hyper([a, a - S.Half], [2*a], z), z) assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z) assert t(HyperRep_asin1(z), hyper([S.Half, S.Half], [Rational(3, 2)], z), z) assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z) assert t(HyperRep_sqrts1(a, z), hyper([-a, S.Half - a], [S.Half], z), z) assert t(HyperRep_sqrts2(a, z), -2*z/(2*a + 1)*hyper([-a - S.Half, -a], [S.Half], z).diff(z), z) assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z) assert t(HyperRep_cosasin(a, z), hyper([-a, a], [S.Half], z), z) assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z) @slow def test_meijerg_eval(): from sympy import besseli, exp_polar from sympy.abc import l a = randcplx() arg = x*exp_polar(k*pi*I) expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4) expr2 = besseli(a, arg) # Test that the two expressions agree for all arguments. for x_ in [0.5, 1.5]: for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]: assert abs((expr1 - expr2).n(subs={x: x_, k: k_})) < 1e-10 assert abs((expr1 - expr2).n(subs={x: x_, k: -k_})) < 1e-10 # Test continuity independently eps = 1e-13 expr2 = expr1.subs(k, l) for x_ in [0.5, 1.5]: for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]: assert abs((expr1 - expr2).n( subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10 assert abs((expr1 - expr2).n( subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10 expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4) + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \ /(2*sqrt(pi)) assert (expr - pi/exp(1)).n(chop=True) == 0 def test_limits(): k, x = symbols('k, x') assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \ hyper((1,), (Rational(4, 3), Rational(5, 3)), 0) + \ 9*k**2*hyper((2,), (Rational(7, 3), Rational(8, 3)), 0)/20 + \ 81*k**4*hyper((3,), (Rational(10, 3), Rational(11, 3)), 0)/1120 + \ O(k**6) # issue 6350 assert limit(meijerg((), (), (1,), (0,), -x), x, 0) == \ meijerg(((), ()), ((1,), (0,)), 0) # issue 6052 def test_appellf1(): a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert appellf1(a, b2, b1, c, y, x) == appellf1(a, b1, b2, c, x, y) assert appellf1(a, b1, b1, c, y, x) == appellf1(a, b1, b1, c, x, y) assert appellf1(a, b1, b2, c, S.Zero, S.Zero) is S.One f = appellf1(a, b1, b2, c, S.Zero, S.Zero, evaluate=False) assert f.func is appellf1 assert f.doit() is S.One def test_derivative_appellf1(): from sympy import diff a, b1, b2, c, x, y, z = symbols('a b1 b2 c x y z') assert diff(appellf1(a, b1, b2, c, x, y), x) == a*b1*appellf1(a + 1, b2, b1 + 1, c + 1, y, x)/c assert diff(appellf1(a, b1, b2, c, x, y), y) == a*b2*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)/c assert diff(appellf1(a, b1, b2, c, x, y), z) == 0 assert diff(appellf1(a, b1, b2, c, x, y), a) == Derivative(appellf1(a, b1, b2, c, x, y), a)
133daa83b1501e6ad17109fe044f2e6c93778549be99cfb95c21bdf877bdcf87
from sympy import (Symbol, gamma, expand_func, beta, diff, conjugate) from sympy.functions.special.gamma_functions import polygamma from sympy.core.function import ArgumentIndexError from sympy.utilities.pytest import raises def test_beta(): x, y = Symbol('x'), Symbol('y') assert isinstance(beta(x, y), beta) assert expand_func(beta(x, y)) == gamma(x)*gamma(y)/gamma(x + y) assert expand_func(beta(x, y) - beta(y, x)) == 0 # Symmetric assert expand_func(beta(x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify() assert diff(beta(x, y), x) == beta(x, y)*(polygamma(0, x) - polygamma(0, x + y)) assert diff(beta(x, y), y) == beta(x, y)*(polygamma(0, y) - polygamma(0, x + y)) assert conjugate(beta(x, y)) == beta(conjugate(x), conjugate(y)) raises(ArgumentIndexError, lambda: beta(x, y).fdiff(3)) assert beta(x, y).rewrite(gamma) == gamma(x)*gamma(y)/gamma(x + y)
957fb511f575c7cd4c2ec77436398a32cc33da7387435887fb8f62fe051bc92d
from sympy import (Symbol, zeta, nan, Rational, Float, pi, dirichlet_eta, log, zoo, expand_func, polylog, lerchphi, S, exp, sqrt, I, exp_polar, polar_lift, O, stieltjes, Abs, Sum, oo) from sympy.core.function import ArgumentIndexError from sympy.functions.combinatorial.numbers import bernoulli, factorial from sympy.utilities.pytest import raises from sympy.utilities.randtest import (test_derivative_numerically as td, random_complex_number as randcplx, verify_numerically as tn) x = Symbol('x') a = Symbol('a') b = Symbol('b', negative=True) z = Symbol('z') s = Symbol('s') def test_zeta_eval(): assert zeta(nan) is nan assert zeta(x, nan) is nan assert zeta(0) == Rational(-1, 2) assert zeta(0, x) == S.Half - x assert zeta(0, b) == S.Half - b assert zeta(1) is zoo assert zeta(1, 2) is zoo assert zeta(1, -7) is zoo assert zeta(1, x) is zoo assert zeta(2, 1) == pi**2/6 assert zeta(2) == pi**2/6 assert zeta(4) == pi**4/90 assert zeta(6) == pi**6/945 assert zeta(2, 2) == pi**2/6 - 1 assert zeta(4, 3) == pi**4/90 - Rational(17, 16) assert zeta(6, 4) == pi**6/945 - Rational(47449, 46656) assert zeta(2, -2) == pi**2/6 + Rational(5, 4) assert zeta(4, -3) == pi**4/90 + Rational(1393, 1296) assert zeta(6, -4) == pi**6/945 + Rational(3037465, 2985984) assert zeta(oo) == 1 assert zeta(-1) == Rational(-1, 12) assert zeta(-2) == 0 assert zeta(-3) == Rational(1, 120) assert zeta(-4) == 0 assert zeta(-5) == Rational(-1, 252) assert zeta(-1, 3) == Rational(-37, 12) assert zeta(-1, 7) == Rational(-253, 12) assert zeta(-1, -4) == Rational(119, 12) assert zeta(-1, -9) == Rational(539, 12) assert zeta(-4, 3) == -17 assert zeta(-4, -8) == 8772 assert zeta(0, 1) == Rational(-1, 2) assert zeta(0, -1) == Rational(3, 2) assert zeta(0, 2) == Rational(-3, 2) assert zeta(0, -2) == Rational(5, 2) assert zeta( 3).evalf(20).epsilon_eq(Float("1.2020569031595942854", 20), 1e-19) def test_zeta_series(): assert zeta(x, a).series(a, 0, 2) == \ zeta(x, 0) - x*a*zeta(x + 1, 0) + O(a**2) def test_dirichlet_eta_eval(): assert dirichlet_eta(0) == S.Half assert dirichlet_eta(-1) == Rational(1, 4) assert dirichlet_eta(1) == log(2) assert dirichlet_eta(2) == pi**2/12 assert dirichlet_eta(4) == pi**4*Rational(7, 720) def test_rewriting(): assert dirichlet_eta(x).rewrite(zeta) == (1 - 2**(1 - x))*zeta(x) assert zeta(x).rewrite(dirichlet_eta) == dirichlet_eta(x)/(1 - 2**(1 - x)) assert zeta(x).rewrite(dirichlet_eta, a=2) == zeta(x) assert tn(dirichlet_eta(x), dirichlet_eta(x).rewrite(zeta), x) assert tn(zeta(x), zeta(x).rewrite(dirichlet_eta), x) assert zeta(x, a).rewrite(lerchphi) == lerchphi(1, x, a) assert polylog(s, z).rewrite(lerchphi) == lerchphi(z, s, 1)*z assert lerchphi(1, x, a).rewrite(zeta) == zeta(x, a) assert z*lerchphi(z, s, 1).rewrite(polylog) == polylog(s, z) def test_derivatives(): from sympy import Derivative assert zeta(x, a).diff(x) == Derivative(zeta(x, a), x) assert zeta(x, a).diff(a) == -x*zeta(x + 1, a) assert lerchphi( z, s, a).diff(z) == (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z assert lerchphi(z, s, a).diff(a) == -s*lerchphi(z, s + 1, a) assert polylog(s, z).diff(z) == polylog(s - 1, z)/z b = randcplx() c = randcplx() assert td(zeta(b, x), x) assert td(polylog(b, z), z) assert td(lerchphi(c, b, x), x) assert td(lerchphi(x, b, c), x) raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(2)) raises(ArgumentIndexError, lambda: lerchphi(c, b, x).fdiff(4)) raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(1)) raises(ArgumentIndexError, lambda: polylog(b, z).fdiff(3)) def myexpand(func, target): expanded = expand_func(func) if target is not None: return expanded == target if expanded == func: # it didn't expand return False # check to see that the expanded and original evaluate to the same value subs = {} for a in func.free_symbols: subs[a] = randcplx() return abs(func.subs(subs).n() - expanded.replace(exp_polar, exp).subs(subs).n()) < 1e-10 def test_polylog_expansion(): from sympy import log assert polylog(s, 0) == 0 assert polylog(s, 1) == zeta(s) assert polylog(s, -1) == -dirichlet_eta(s) assert polylog(s, exp_polar(I*pi*Rational(4, 3))) == polylog(s, exp(I*pi*Rational(4, 3))) assert polylog(s, exp_polar(I*pi)/3) == polylog(s, exp(I*pi)/3) assert myexpand(polylog(1, z), -log(1 - z)) assert myexpand(polylog(0, z), z/(1 - z)) assert myexpand(polylog(-1, z), z/(1 - z)**2) assert ((1-z)**3 * expand_func(polylog(-2, z))).simplify() == z*(1 + z) assert myexpand(polylog(-5, z), None) def test_issue_8404(): i = Symbol('i', integer=True) assert Abs(Sum(1/(3*i + 1)**2, (i, 0, S.Infinity)).doit().n(4) - 1.122) < 0.001 def test_polylog_values(): from sympy.utilities.randtest import verify_numerically as tn assert polylog(2, 2) == pi**2/4 - I*pi*log(2) assert polylog(2, S.Half) == pi**2/12 - log(2)**2/2 for z in [S.Half, 2, (sqrt(5)-1)/2, -(sqrt(5)-1)/2, -(sqrt(5)+1)/2, (3-sqrt(5))/2]: assert Abs(polylog(2, z).evalf() - polylog(2, z, evaluate=False).evalf()) < 1e-15 z = Symbol("z") for s in [-1, 0]: for _ in range(10): assert tn(polylog(s, z), polylog(s, z, evaluate=False), z, a=-3, b=-2, c=S.Half, d=2) assert tn(polylog(s, z), polylog(s, z, evaluate=False), z, a=2, b=-2, c=5, d=2) from sympy import Integral assert polylog(0, Integral(1, (x, 0, 1))) == -S.Half def test_lerchphi_expansion(): assert myexpand(lerchphi(1, s, a), zeta(s, a)) assert myexpand(lerchphi(z, s, 1), polylog(s, z)/z) # direct summation assert myexpand(lerchphi(z, -1, a), a/(1 - z) + z/(1 - z)**2) assert myexpand(lerchphi(z, -3, a), None) # polylog reduction assert myexpand(lerchphi(z, s, S.Half), 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, polar_lift(-1)*sqrt(z))/sqrt(z))) assert myexpand(lerchphi(z, s, 2), -1/z + polylog(s, z)/z**2) assert myexpand(lerchphi(z, s, Rational(3, 2)), None) assert myexpand(lerchphi(z, s, Rational(7, 3)), None) assert myexpand(lerchphi(z, s, Rational(-1, 3)), None) assert myexpand(lerchphi(z, s, Rational(-5, 2)), None) # hurwitz zeta reduction assert myexpand(lerchphi(-1, s, a), 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, (a + 1)/2)) assert myexpand(lerchphi(I, s, a), None) assert myexpand(lerchphi(-I, s, a), None) assert myexpand(lerchphi(exp(I*pi*Rational(2, 5)), s, a), None) def test_stieltjes(): assert isinstance(stieltjes(x), stieltjes) assert isinstance(stieltjes(x, a), stieltjes) # Zero'th constant EulerGamma assert stieltjes(0) == S.EulerGamma assert stieltjes(0, 1) == S.EulerGamma # Not defined assert stieltjes(nan) is nan assert stieltjes(0, nan) is nan assert stieltjes(-1) is S.ComplexInfinity assert stieltjes(1.5) is S.ComplexInfinity assert stieltjes(z, 0) is S.ComplexInfinity assert stieltjes(z, -1) is S.ComplexInfinity def test_stieltjes_evalf(): assert abs(stieltjes(0).evalf() - 0.577215664) < 1E-9 assert abs(stieltjes(0, 0.5).evalf() - 1.963510026) < 1E-9 assert abs(stieltjes(1, 2).evalf() + 0.072815845 ) < 1E-9 def test_issue_10475(): a = Symbol('a', extended_real=True) b = Symbol('b', extended_positive=True) s = Symbol('s', zero=False) assert zeta(2 + I).is_finite assert zeta(1).is_finite is False assert zeta(x).is_finite is None assert zeta(x + I).is_finite is None assert zeta(a).is_finite is None assert zeta(b).is_finite is None assert zeta(-b).is_finite is True assert zeta(b**2 - 2*b + 1).is_finite is None assert zeta(a + I).is_finite is True assert zeta(b + 1).is_finite is True assert zeta(s + 1).is_finite is True def test_issue_14177(): n = Symbol('n', positive=True, integer=True) assert zeta(2*n) == (-1)**(n + 1)*2**(2*n - 1)*pi**(2*n)*bernoulli(2*n)/factorial(2*n) assert zeta(-n) == (-1)**(-n)*bernoulli(n + 1)/(n + 1) n = Symbol('n') assert zeta(2*n) == zeta(2*n) # As sign of z (= 2*n) is not determined
429041b4971ca32222f7f094e702b9bc981201536c58afd896c0dd9397aa08c4
from itertools import product from sympy import (jn, yn, symbols, Symbol, sin, cos, pi, S, jn_zeros, besselj, bessely, besseli, besselk, hankel1, hankel2, hn1, hn2, expand_func, sqrt, sinh, cosh, diff, series, gamma, hyper, Abs, I, O, oo, conjugate, uppergamma, exp, Integral, Sum, Rational) from sympy.functions.special.bessel import fn from sympy.functions.special.bessel import (airyai, airybi, airyaiprime, airybiprime, marcumq) from sympy.utilities.randtest import (random_complex_number as randcplx, verify_numerically as tn, test_derivative_numerically as td, _randint) from sympy.utilities.pytest import raises from sympy.abc import z, n, k, x randint = _randint() def test_bessel_rand(): for f in [besselj, bessely, besseli, besselk, hankel1, hankel2]: assert td(f(randcplx(), z), z) for f in [jn, yn, hn1, hn2]: assert td(f(randint(-10, 10), z), z) def test_bessel_twoinputs(): for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn]: raises(TypeError, lambda: f(1)) raises(TypeError, lambda: f(1, 2, 3)) def test_diff(): assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2 assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2 assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2 assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2 assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2 assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2 def test_rewrite(): from sympy import polar_lift, exp, I assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S.Half, z) assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S.Half, z) assert besseli(n, z).rewrite(besselj) == \ exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z) assert besselj(n, z).rewrite(besseli) == \ exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z) nu = randcplx() assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z) assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z) assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z) assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z) assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z) assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z) assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z) assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z) assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z) # check that a rewrite was triggered, when the order is set to a generic # symbol 'nu' assert yn(nu, z) != yn(nu, z).rewrite(jn) assert hn1(nu, z) != hn1(nu, z).rewrite(jn) assert hn2(nu, z) != hn2(nu, z).rewrite(jn) assert jn(nu, z) != jn(nu, z).rewrite(yn) assert hn1(nu, z) != hn1(nu, z).rewrite(yn) assert hn2(nu, z) != hn2(nu, z).rewrite(yn) # rewriting spherical bessel functions (SBFs) w.r.t. besselj, bessely is # not allowed if a generic symbol 'nu' is used as the order of the SBFs # to avoid inconsistencies (the order of bessel[jy] is allowed to be # complex-valued, whereas SBFs are defined only for integer orders) order = nu for f in (besselj, bessely): assert hn1(order, z) == hn1(order, z).rewrite(f) assert hn2(order, z) == hn2(order, z).rewrite(f) assert jn(order, z).rewrite(besselj) == sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(order + S.Half, z)/2 assert jn(order, z).rewrite(bessely) == (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-order - S.Half, z)/2 # for integral orders rewriting SBFs w.r.t bessel[jy] is allowed N = Symbol('n', integer=True) ri = randint(-11, 10) for order in (ri, N): for f in (besselj, bessely): assert yn(order, z) != yn(order, z).rewrite(f) assert jn(order, z) != jn(order, z).rewrite(f) assert hn1(order, z) != hn1(order, z).rewrite(f) assert hn2(order, z) != hn2(order, z).rewrite(f) for func, refunc in product((yn, jn, hn1, hn2), (jn, yn, besselj, bessely)): assert tn(func(ri, z), func(ri, z).rewrite(refunc), z) def test_expand(): from sympy import besselsimp, Symbol, exp, exp_polar, I assert expand_func(besselj(S.Half, z).rewrite(jn)) == \ sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert expand_func(bessely(S.Half, z).rewrite(yn)) == \ -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z)) # XXX: teach sin/cos to work around arguments like # x*exp_polar(I*pi*n/2). Then change besselsimp -> expand_func assert besselsimp(besselj(S.Half, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besselj(Rational(5, 2), z)) == \ -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besselj(Rational(-5, 2), z)) == \ -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(bessely(S.Half, z)) == \ -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z)) assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(bessely(Rational(5, 2), z)) == \ sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(bessely(Rational(-5, 2), z)) == \ -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besseli(S.Half, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(Rational(-1, 2), z)) == \ sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(Rational(5, 2), z)) == \ sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besseli(Rational(-5, 2), z)) == \ sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besselk(S.Half, z)) == \ besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z)) assert besselsimp(besselk(Rational(5, 2), z)) == \ besselsimp(besselk(Rational(-5, 2), z)) == \ sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2)) def check(eq, ans): return tn(eq, ans) and eq == ans rn = randcplx(a=1, b=0, d=0, c=2) for besselx in [besselj, bessely, besseli, besselk]: ri = S(2*randint(-11, 10) + 1) / 2 # half integer in [-21/2, 21/2] assert tn(besselsimp(besselx(ri, z)), besselx(ri, z)) assert check(expand_func(besseli(rn, x)), besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x) assert check(expand_func(besseli(-rn, x)), besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x) assert check(expand_func(besselj(rn, x)), -besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x) assert check(expand_func(besselj(-rn, x)), -besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x) assert check(expand_func(besselk(rn, x)), besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x) assert check(expand_func(besselk(-rn, x)), besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x) assert check(expand_func(bessely(rn, x)), -bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x) assert check(expand_func(bessely(-rn, x)), -bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x) n = Symbol('n', integer=True, positive=True) assert expand_func(besseli(n + 2, z)) == \ besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z assert expand_func(besselj(n + 2, z)) == \ -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z assert expand_func(besselk(n + 2, z)) == \ besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z assert expand_func(bessely(n + 2, z)) == \ -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z assert expand_func(besseli(n + S.Half, z).rewrite(jn)) == \ (sqrt(2)*sqrt(z)*exp(-I*pi*(n + S.Half)/2) * exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi)) assert expand_func(besselj(n + S.Half, z).rewrite(jn)) == \ sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi) r = Symbol('r', real=True) p = Symbol('p', positive=True) i = Symbol('i', integer=True) for besselx in [besselj, bessely, besseli, besselk]: assert besselx(i, p).is_extended_real is True assert besselx(i, x).is_extended_real is None assert besselx(x, z).is_extended_real is None for besselx in [besselj, besseli]: assert besselx(i, r).is_extended_real is True for besselx in [bessely, besselk]: assert besselx(i, r).is_extended_real is None def test_fn(): x, z = symbols("x z") assert fn(1, z) == 1/z**2 assert fn(2, z) == -1/z + 3/z**3 assert fn(3, z) == -6/z**2 + 15/z**4 assert fn(4, z) == 1/z - 45/z**3 + 105/z**5 def mjn(n, z): return expand_func(jn(n, z)) def myn(n, z): return expand_func(yn(n, z)) def test_jn(): z = symbols("z") assert jn(0, 0) == 1 assert jn(1, 0) == 0 assert jn(-1, 0) == S.ComplexInfinity assert jn(z, 0) == jn(z, 0, evaluate=False) assert jn(0, oo) == 0 assert jn(0, -oo) == 0 assert mjn(0, z) == sin(z)/z assert mjn(1, z) == sin(z)/z**2 - cos(z)/z assert mjn(2, z) == (3/z**3 - 1/z)*sin(z) - (3/z**2) * cos(z) assert mjn(3, z) == (15/z**4 - 6/z**2)*sin(z) + (1/z - 15/z**3)*cos(z) assert mjn(4, z) == (1/z + 105/z**5 - 45/z**3)*sin(z) + \ (-105/z**4 + 10/z**2)*cos(z) assert mjn(5, z) == (945/z**6 - 420/z**4 + 15/z**2)*sin(z) + \ (-1/z - 945/z**5 + 105/z**3)*cos(z) assert mjn(6, z) == (-1/z + 10395/z**7 - 4725/z**5 + 210/z**3)*sin(z) + \ (-10395/z**6 + 1260/z**4 - 21/z**2)*cos(z) assert expand_func(jn(n, z)) == jn(n, z) # SBFs not defined for complex-valued orders assert jn(2+3j, 5.2+0.3j).evalf() == jn(2+3j, 5.2+0.3j) assert eq([jn(2, 5.2+0.3j).evalf(10)], [0.09941975672 - 0.05452508024*I]) def test_yn(): z = symbols("z") assert myn(0, z) == -cos(z)/z assert myn(1, z) == -cos(z)/z**2 - sin(z)/z assert myn(2, z) == -((3/z**3 - 1/z)*cos(z) + (3/z**2)*sin(z)) assert expand_func(yn(n, z)) == yn(n, z) # SBFs not defined for complex-valued orders assert yn(2+3j, 5.2+0.3j).evalf() == yn(2+3j, 5.2+0.3j) assert eq([yn(2, 5.2+0.3j).evalf(10)], [0.185250342 + 0.01489557397*I]) def test_sympify_yn(): assert S(15) in myn(3, pi).atoms() assert myn(3, pi) == 15/pi**4 - 6/pi**2 def eq(a, b, tol=1e-6): for u, v in zip(a, b): if not (abs(u - v) < tol): return False return True def test_jn_zeros(): assert eq(jn_zeros(0, 4), [3.141592, 6.283185, 9.424777, 12.566370]) assert eq(jn_zeros(1, 4), [4.493409, 7.725251, 10.904121, 14.066193]) assert eq(jn_zeros(2, 4), [5.763459, 9.095011, 12.322940, 15.514603]) assert eq(jn_zeros(3, 4), [6.987932, 10.417118, 13.698023, 16.923621]) assert eq(jn_zeros(4, 4), [8.182561, 11.704907, 15.039664, 18.301255]) def test_bessel_eval(): from sympy import I, Symbol n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False) for f in [besselj, besseli]: assert f(0, 0) is S.One assert f(2.1, 0) is S.Zero assert f(-3, 0) is S.Zero assert f(-10.2, 0) is S.ComplexInfinity assert f(1 + 3*I, 0) is S.Zero assert f(-3 + I, 0) is S.ComplexInfinity assert f(-2*I, 0) is S.NaN assert f(n, 0) != S.One and f(n, 0) != S.Zero assert f(m, 0) != S.One and f(m, 0) != S.Zero assert f(k, 0) is S.Zero assert bessely(0, 0) is S.NegativeInfinity assert besselk(0, 0) is S.Infinity for f in [bessely, besselk]: assert f(1 + I, 0) is S.ComplexInfinity assert f(I, 0) is S.NaN for f in [besselj, bessely]: assert f(m, S.Infinity) is S.Zero assert f(m, S.NegativeInfinity) is S.Zero for f in [besseli, besselk]: assert f(m, I*S.Infinity) is S.Zero assert f(m, I*S.NegativeInfinity) is S.Zero for f in [besseli, besselk]: assert f(-4, z) == f(4, z) assert f(-3, z) == f(3, z) assert f(-n, z) == f(n, z) assert f(-m, z) != f(m, z) for f in [besselj, bessely]: assert f(-4, z) == f(4, z) assert f(-3, z) == -f(3, z) assert f(-n, z) == (-1)**n*f(n, z) assert f(-m, z) != (-1)**m*f(m, z) for f in [besselj, besseli]: assert f(m, -z) == (-z)**m*z**(-m)*f(m, z) assert besseli(2, -z) == besseli(2, z) assert besseli(3, -z) == -besseli(3, z) assert besselj(0, -z) == besselj(0, z) assert besselj(1, -z) == -besselj(1, z) assert besseli(0, I*z) == besselj(0, z) assert besseli(1, I*z) == I*besselj(1, z) assert besselj(3, I*z) == -I*besseli(3, z) def test_bessel_nan(): # FIXME: could have these return NaN; for now just fix infinite recursion for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, yn, jn]: assert f(1, S.NaN) == f(1, S.NaN, evaluate=False) def test_conjugate(): from sympy import conjugate, I, Symbol n = Symbol('n') z = Symbol('z', extended_real=False) x = Symbol('x', extended_real=True) y = Symbol('y', real=True, positive=True) t = Symbol('t', negative=True) for f in [besseli, besselj, besselk, bessely, hankel1, hankel2]: assert f(n, -1).conjugate() != f(conjugate(n), -1) assert f(n, x).conjugate() != f(conjugate(n), x) assert f(n, t).conjugate() != f(conjugate(n), t) rz = randcplx(b=0.5) for f in [besseli, besselj, besselk, bessely]: assert f(n, 1 + I).conjugate() == f(conjugate(n), 1 - I) assert f(n, 0).conjugate() == f(conjugate(n), 0) assert f(n, 1).conjugate() == f(conjugate(n), 1) assert f(n, z).conjugate() == f(conjugate(n), conjugate(z)) assert f(n, y).conjugate() == f(conjugate(n), y) assert tn(f(n, rz).conjugate(), f(conjugate(n), conjugate(rz))) assert hankel1(n, 1 + I).conjugate() == hankel2(conjugate(n), 1 - I) assert hankel1(n, 0).conjugate() == hankel2(conjugate(n), 0) assert hankel1(n, 1).conjugate() == hankel2(conjugate(n), 1) assert hankel1(n, y).conjugate() == hankel2(conjugate(n), y) assert hankel1(n, z).conjugate() == hankel2(conjugate(n), conjugate(z)) assert tn(hankel1(n, rz).conjugate(), hankel2(conjugate(n), conjugate(rz))) assert hankel2(n, 1 + I).conjugate() == hankel1(conjugate(n), 1 - I) assert hankel2(n, 0).conjugate() == hankel1(conjugate(n), 0) assert hankel2(n, 1).conjugate() == hankel1(conjugate(n), 1) assert hankel2(n, y).conjugate() == hankel1(conjugate(n), y) assert hankel2(n, z).conjugate() == hankel1(conjugate(n), conjugate(z)) assert tn(hankel2(n, rz).conjugate(), hankel1(conjugate(n), conjugate(rz))) def test_branching(): from sympy import exp_polar, polar_lift, Symbol, I, exp assert besselj(polar_lift(k), x) == besselj(k, x) assert besseli(polar_lift(k), x) == besseli(k, x) n = Symbol('n', integer=True) assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x) assert besselj(n, polar_lift(x)) == besselj(n, x) assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x) assert besseli(n, polar_lift(x)) == besseli(n, x) def tn(func, s): from random import uniform c = uniform(1, 5) expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I) return abs(expr.n() - expr2.n()).n() < 1e-10 nu = Symbol('nu') assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x) assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x) assert tn(besselj, 2) assert tn(besselj, pi) assert tn(besselj, I) assert tn(besseli, 2) assert tn(besseli, pi) assert tn(besseli, I) def test_airy_base(): z = Symbol('z') x = Symbol('x', real=True) y = Symbol('y', real=True) assert conjugate(airyai(z)) == airyai(conjugate(z)) assert airyai(x).is_extended_real assert airyai(x+I*y).as_real_imag() == ( airyai(x - I*y)/2 + airyai(x + I*y)/2, I*(airyai(x - I*y) - airyai(x + I*y))/2) def test_airyai(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airyai(z), airyai) assert airyai(0) == 3**Rational(1, 3)/(3*gamma(Rational(2, 3))) assert airyai(oo) == 0 assert airyai(-oo) == 0 assert diff(airyai(z), z) == airyaiprime(z) assert series(airyai(z), z, 0, 3) == ( 3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - 3**Rational(1, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3)) assert airyai(z).rewrite(hyper) == ( -3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) + 3**Rational(1, 3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3)))) assert isinstance(airyai(z).rewrite(besselj), airyai) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airyai(z).rewrite(besseli) == ( -z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(1, 3)) + (z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3) assert airyai(p).rewrite(besseli) == ( sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) - besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airyai(2*(3*z**5)**Rational(1, 3))) == ( -sqrt(3)*(-1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/6 + (1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_airybi(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airybi(z), airybi) assert airybi(0) == 3**Rational(5, 6)/(3*gamma(Rational(2, 3))) assert airybi(oo) is oo assert airybi(-oo) == 0 assert diff(airybi(z), z) == airybiprime(z) assert series(airybi(z), z, 0, 3) == ( 3**Rational(1, 3)*gamma(Rational(1, 3))/(2*pi) + 3**Rational(2, 3)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3)) assert airybi(z).rewrite(hyper) == ( 3**Rational(1, 6)*z*hyper((), (Rational(4, 3),), z**3/9)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3)))) assert isinstance(airybi(z).rewrite(besselj), airybi) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airybi(z).rewrite(besseli) == ( sqrt(3)*(z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(1, 3) + (z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3))/3) assert airybi(p).rewrite(besseli) == ( sqrt(3)*sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airybi(2*(3*z**5)**Rational(1, 3))) == ( sqrt(3)*(1 - (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2 + (1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_airyaiprime(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airyaiprime(z), airyaiprime) assert airyaiprime(0) == -3**Rational(2, 3)/(3*gamma(Rational(1, 3))) assert airyaiprime(oo) == 0 assert diff(airyaiprime(z), z) == z*airyai(z) assert series(airyaiprime(z), z, 0, 3) == ( -3**Rational(2, 3)/(3*gamma(Rational(1, 3))) + 3**Rational(1, 3)*z**2/(6*gamma(Rational(2, 3))) + O(z**3)) assert airyaiprime(z).rewrite(hyper) == ( 3**Rational(1, 3)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) - 3**Rational(2, 3)*hyper((), (Rational(1, 3),), z**3/9)/(3*gamma(Rational(1, 3)))) assert isinstance(airyaiprime(z).rewrite(besselj), airyaiprime) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airyaiprime(z).rewrite(besseli) == ( z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(2, 3)) - (z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3) assert airyaiprime(p).rewrite(besseli) == ( p*(-besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airyaiprime(2*(3*z**5)**Rational(1, 3))) == ( sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/6 + (z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_airybiprime(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airybiprime(z), airybiprime) assert airybiprime(0) == 3**Rational(1, 6)/gamma(Rational(1, 3)) assert airybiprime(oo) is oo assert airybiprime(-oo) == 0 assert diff(airybiprime(z), z) == z*airybi(z) assert series(airybiprime(z), z, 0, 3) == ( 3**Rational(1, 6)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*z**2/(6*gamma(Rational(2, 3))) + O(z**3)) assert airybiprime(z).rewrite(hyper) == ( 3**Rational(5, 6)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) + 3**Rational(1, 6)*hyper((), (Rational(1, 3),), z**3/9)/gamma(Rational(1, 3))) assert isinstance(airybiprime(z).rewrite(besselj), airybiprime) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airybiprime(z).rewrite(besseli) == ( sqrt(3)*(z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(2, 3) + (z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-2, 3), 2*z**Rational(3, 2)/3))/3) assert airybiprime(p).rewrite(besseli) == ( sqrt(3)*p*(besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airybiprime(2*(3*z**5)**Rational(1, 3))) == ( sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2 + (z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_marcumq(): m = Symbol('m') a = Symbol('a') b = Symbol('b') assert marcumq(0, 0, 0) == 0 assert marcumq(m, 0, b) == uppergamma(m, b**2/2)/gamma(m) assert marcumq(2, 0, 5) == 27*exp(Rational(-25, 2))/2 assert marcumq(0, a, 0) == 1 - exp(-a**2/2) assert marcumq(0, pi, 0) == 1 - exp(-pi**2/2) assert marcumq(1, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2 assert marcumq(2, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2) assert diff(marcumq(1, a, 3), a) == a*(-marcumq(1, a, 3) + marcumq(2, a, 3)) assert diff(marcumq(2, 3, b), b) == -b**2*exp(-b**2/2 - Rational(9, 2))*besseli(1, 3*b)/3 x = Symbol('x') assert marcumq(2, 3, 4).rewrite(Integral, x=x) == \ Integral(x**2*exp(-x**2/2 - Rational(9, 2))*besseli(1, 3*x), (x, 4, oo))/3 assert eq([marcumq(5, -2, 3).rewrite(Integral).evalf(10)], [0.7905769565]) k = Symbol('k') assert marcumq(-3, -5, -7).rewrite(Sum, k=k) == \ exp(-37)*Sum((Rational(5, 7))**k*besseli(k, 35), (k, 4, oo)) assert eq([marcumq(1, 3, 1).rewrite(Sum).evalf(10)], [0.9891705502]) assert marcumq(1, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2 assert marcumq(2, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + \ exp(-a**2)*besseli(1, a**2) assert marcumq(3, a, a).rewrite(besseli) == (besseli(1, a**2) + besseli(2, a**2))*exp(-a**2) + \ S.Half + exp(-a**2)*besseli(0, a**2)/2 assert marcumq(5, 8, 8).rewrite(besseli) == exp(-64)*besseli(0, 64)/2 + \ (besseli(4, 64) + besseli(3, 64) + besseli(2, 64) + besseli(1, 64))*exp(-64) + S.Half assert marcumq(m, a, a).rewrite(besseli) == marcumq(m, a, a) x = Symbol('x', integer=True) assert marcumq(x, a, a).rewrite(besseli) == marcumq(x, a, a)
97cebcc5189565d7b52cefed7bb54c718e569ffd266f587b542e6abe37d7dd22
from sympy import (S, Symbol, pi, I, oo, zoo, sin, sqrt, tan, gamma, atanh, hyper, meijerg, O, Dummy, Integral, Rational) from sympy.functions.special.elliptic_integrals import (elliptic_k as K, elliptic_f as F, elliptic_e as E, elliptic_pi as P) from sympy.utilities.randtest import (test_derivative_numerically as td, random_complex_number as randcplx, verify_numerically as tn) from sympy.abc import z, m, n i = Symbol('i', integer=True) j = Symbol('k', integer=True, positive=True) t = Dummy('t') def test_K(): assert K(0) == pi/2 assert K(S.Half) == 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2 assert K(1) is zoo assert K(-1) == gamma(Rational(1, 4))**2/(4*sqrt(2*pi)) assert K(oo) == 0 assert K(-oo) == 0 assert K(I*oo) == 0 assert K(-I*oo) == 0 assert K(zoo) == 0 assert K(z).diff(z) == (E(z) - (1 - z)*K(z))/(2*z*(1 - z)) assert td(K(z), z) zi = Symbol('z', real=False) assert K(zi).conjugate() == K(zi.conjugate()) zr = Symbol('z', real=True, negative=True) assert K(zr).conjugate() == K(zr) assert K(z).rewrite(hyper) == \ (pi/2)*hyper((S.Half, S.Half), (S.One,), z) assert tn(K(z), (pi/2)*hyper((S.Half, S.Half), (S.One,), z)) assert K(z).rewrite(meijerg) == \ meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2 assert tn(K(z), meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2) assert K(z).series(z) == pi/2 + pi*z/8 + 9*pi*z**2/128 + \ 25*pi*z**3/512 + 1225*pi*z**4/32768 + 3969*pi*z**5/131072 + O(z**6) assert K(m).rewrite(Integral).dummy_eq( Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2))) def test_F(): assert F(z, 0) == z assert F(0, m) == 0 assert F(pi*i/2, m) == i*K(m) assert F(z, oo) == 0 assert F(z, -oo) == 0 assert F(-z, m) == -F(z, m) assert F(z, m).diff(z) == 1/sqrt(1 - m*sin(z)**2) assert F(z, m).diff(m) == E(z, m)/(2*m*(1 - m)) - F(z, m)/(2*m) - \ sin(2*z)/(4*(1 - m)*sqrt(1 - m*sin(z)**2)) r = randcplx() assert td(F(z, r), z) assert td(F(r, m), m) mi = Symbol('m', real=False) assert F(z, mi).conjugate() == F(z.conjugate(), mi.conjugate()) mr = Symbol('m', real=True, negative=True) assert F(z, mr).conjugate() == F(z.conjugate(), mr) assert F(z, m).series(z) == \ z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) assert F(z, m).rewrite(Integral).dummy_eq( Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, z))) def test_E(): assert E(z, 0) == z assert E(0, m) == 0 assert E(i*pi/2, m) == i*E(m) assert E(z, oo) is zoo assert E(z, -oo) is zoo assert E(0) == pi/2 assert E(1) == 1 assert E(oo) == I*oo assert E(-oo) is oo assert E(zoo) is zoo assert E(-z, m) == -E(z, m) assert E(z, m).diff(z) == sqrt(1 - m*sin(z)**2) assert E(z, m).diff(m) == (E(z, m) - F(z, m))/(2*m) assert E(z).diff(z) == (E(z) - K(z))/(2*z) r = randcplx() assert td(E(r, m), m) assert td(E(z, r), z) assert td(E(z), z) mi = Symbol('m', real=False) assert E(z, mi).conjugate() == E(z.conjugate(), mi.conjugate()) assert E(mi).conjugate() == E(mi.conjugate()) mr = Symbol('m', real=True, negative=True) assert E(z, mr).conjugate() == E(z.conjugate(), mr) assert E(mr).conjugate() == E(mr) assert E(z).rewrite(hyper) == (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), z) assert tn(E(z), (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), z)) assert E(z).rewrite(meijerg) == \ -meijerg(((S.Half, Rational(3, 2)), []), ((S.Zero,), (S.Zero,)), -z)/4 assert tn(E(z), -meijerg(((S.Half, Rational(3, 2)), []), ((S.Zero,), (S.Zero,)), -z)/4) assert E(z, m).series(z) == \ z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) assert E(z).series(z) == pi/2 - pi*z/8 - 3*pi*z**2/128 - \ 5*pi*z**3/512 - 175*pi*z**4/32768 - 441*pi*z**5/131072 + O(z**6) assert E(z, m).rewrite(Integral).dummy_eq( Integral(sqrt(1 - m*sin(t)**2), (t, 0, z))) assert E(m).rewrite(Integral).dummy_eq( Integral(sqrt(1 - m*sin(t)**2), (t, 0, pi/2))) def test_P(): assert P(0, z, m) == F(z, m) assert P(1, z, m) == F(z, m) + \ (sqrt(1 - m*sin(z)**2)*tan(z) - E(z, m))/(1 - m) assert P(n, i*pi/2, m) == i*P(n, m) assert P(n, z, 0) == atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1) assert P(n, z, n) == F(z, n) - P(1, z, n) + tan(z)/sqrt(1 - n*sin(z)**2) assert P(oo, z, m) == 0 assert P(-oo, z, m) == 0 assert P(n, z, oo) == 0 assert P(n, z, -oo) == 0 assert P(0, m) == K(m) assert P(1, m) is zoo assert P(n, 0) == pi/(2*sqrt(1 - n)) assert P(2, 1) is -oo assert P(-1, 1) is oo assert P(n, n) == E(n)/(1 - n) assert P(n, -z, m) == -P(n, z, m) ni, mi = Symbol('n', real=False), Symbol('m', real=False) assert P(ni, z, mi).conjugate() == \ P(ni.conjugate(), z.conjugate(), mi.conjugate()) nr, mr = Symbol('n', real=True, negative=True), \ Symbol('m', real=True, negative=True) assert P(nr, z, mr).conjugate() == P(nr, z.conjugate(), mr) assert P(n, m).conjugate() == P(n.conjugate(), m.conjugate()) assert P(n, z, m).diff(n) == (E(z, m) + (m - n)*F(z, m)/n + (n**2 - m)*P(n, z, m)/n - n*sqrt(1 - m*sin(z)**2)*sin(2*z)/(2*(1 - n*sin(z)**2)))/(2*(m - n)*(n - 1)) assert P(n, z, m).diff(z) == 1/(sqrt(1 - m*sin(z)**2)*(1 - n*sin(z)**2)) assert P(n, z, m).diff(m) == (E(z, m)/(m - 1) + P(n, z, m) - m*sin(2*z)/(2*(m - 1)*sqrt(1 - m*sin(z)**2)))/(2*(n - m)) assert P(n, m).diff(n) == (E(m) + (m - n)*K(m)/n + (n**2 - m)*P(n, m)/n)/(2*(m - n)*(n - 1)) assert P(n, m).diff(m) == (E(m)/(m - 1) + P(n, m))/(2*(n - m)) rx, ry = randcplx(), randcplx() assert td(P(n, rx, ry), n) assert td(P(rx, z, ry), z) assert td(P(rx, ry, m), m) assert P(n, z, m).series(z) == z + z**3*(m/6 + n/3) + \ z**5*(3*m**2/40 + m*n/10 - m/30 + n**2/5 - n/15) + O(z**6) assert P(n, z, m).rewrite(Integral).dummy_eq( Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z))) assert P(n, m).rewrite(Integral).dummy_eq( Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, pi/2)))
603bdf88d94f073218af5b830086cb912ed0d89f0cfc9ebcab9570a3ea501db9
from sympy import ( Symbol, Dummy, gamma, I, oo, nan, zoo, factorial, sqrt, Rational, multigamma, log, polygamma, digamma, trigamma, EulerGamma, pi, uppergamma, S, expand_func, loggamma, sin, cos, O, lowergamma, exp, erf, erfc, exp_polar, harmonic, zeta, conjugate, Ei, im, re, tanh, Abs) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.utilities.pytest import raises from sympy.utilities.randtest import (test_derivative_numerically as td, random_complex_number as randcplx, verify_numerically as tn) x = Symbol('x') y = Symbol('y') n = Symbol('n', integer=True) w = Symbol('w', real=True) def test_gamma(): assert gamma(nan) is nan assert gamma(oo) is oo assert gamma(-100) is zoo assert gamma(0) is zoo assert gamma(-100.0) is zoo assert gamma(1) == 1 assert gamma(2) == 1 assert gamma(3) == 2 assert gamma(102) == factorial(101) assert gamma(S.Half) == sqrt(pi) assert gamma(Rational(3, 2)) == sqrt(pi)*S.Half assert gamma(Rational(5, 2)) == sqrt(pi)*Rational(3, 4) assert gamma(Rational(7, 2)) == sqrt(pi)*Rational(15, 8) assert gamma(Rational(-1, 2)) == -2*sqrt(pi) assert gamma(Rational(-3, 2)) == sqrt(pi)*Rational(4, 3) assert gamma(Rational(-5, 2)) == sqrt(pi)*Rational(-8, 15) assert gamma(Rational(-15, 2)) == sqrt(pi)*Rational(256, 2027025) assert gamma(Rational( -11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8)) assert gamma(Rational( -10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3)) assert gamma(Rational( 14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3)) assert gamma(Rational( 17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7)) assert gamma(Rational( 19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8)) assert gamma(x).diff(x) == gamma(x)*polygamma(0, x) assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1) assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x) assert conjugate(gamma(x)) == gamma(conjugate(x)) assert expand_func(gamma(x + Rational(3, 2))) == \ (x + S.Half)*gamma(x + S.Half) assert expand_func(gamma(x - S.Half)) == \ gamma(S.Half + x)/(x - S.Half) # Test a bug: assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4)) # XXX: Not sure about these tests. I can fix them by defining e.g. # exp_polar.is_integer but I'm not sure if that makes sense. assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False assert gamma(3*exp_polar(I*pi)/4).is_extended_nonpositive is True y = Symbol('y', nonpositive=True, integer=True) assert gamma(y).is_real == False y = Symbol('y', positive=True, noninteger=True) assert gamma(y).is_real == True assert gamma(-1.0, evaluate=False).is_real == False assert gamma(0, evaluate=False).is_real == False assert gamma(-2, evaluate=False).is_real == False def test_gamma_rewrite(): assert gamma(n).rewrite(factorial) == factorial(n - 1) def test_gamma_series(): assert gamma(x + 1).series(x, 0, 3) == \ 1 - EulerGamma*x + x**2*(EulerGamma**2/2 + pi**2/12) + O(x**3) assert gamma(x).series(x, -1, 3) == \ -1/(x + 1) + EulerGamma - 1 + (x + 1)*(-1 - pi**2/12 - EulerGamma**2/2 + \ EulerGamma) + (x + 1)**2*(-1 - pi**2/12 - EulerGamma**2/2 + EulerGamma**3/6 - \ polygamma(2, 1)/6 + EulerGamma*pi**2/12 + EulerGamma) + O((x + 1)**3, (x, -1)) def tn_branch(s, func): from sympy import I, pi, exp_polar from random import uniform c = uniform(1, 5) expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I) return abs(expr.n() - expr2.n()).n() < 1e-10 def test_lowergamma(): from sympy import meijerg, exp_polar, I, expint assert lowergamma(x, 0) == 0 assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y) assert td(lowergamma(randcplx(), y), y) assert td(lowergamma(x, randcplx()), x) assert lowergamma(x, y).diff(x) == \ gamma(x)*digamma(x) - uppergamma(x, y)*log(y) \ - meijerg([], [1, 1], [0, 0, x], [], y) assert lowergamma(S.Half, x) == sqrt(pi)*erf(sqrt(x)) assert not lowergamma(S.Half - 3, x).has(lowergamma) assert not lowergamma(S.Half + 3, x).has(lowergamma) assert lowergamma(S.Half, x, evaluate=False).has(lowergamma) assert tn(lowergamma(S.Half + 3, x, evaluate=False), lowergamma(S.Half + 3, x), x) assert tn(lowergamma(S.Half - 3, x, evaluate=False), lowergamma(S.Half - 3, x), x) assert tn_branch(-3, lowergamma) assert tn_branch(-4, lowergamma) assert tn_branch(Rational(1, 3), lowergamma) assert tn_branch(pi, lowergamma) assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x) assert lowergamma(y, exp_polar(5*pi*I)*x) == \ exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I)) assert lowergamma(-2, exp_polar(5*pi*I)*x) == \ lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y)) assert conjugate(lowergamma(x, 0)) == 0 assert unchanged(conjugate, lowergamma(x, -oo)) assert lowergamma( x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x) k = Symbol('k', integer=True) assert lowergamma( k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k) k = Symbol('k', integer=True, positive=False) assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y) assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y) assert lowergamma(70, 6) == factorial(69) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(-6) assert (lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16 assert (lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16 def test_uppergamma(): from sympy import meijerg, exp_polar, I, expint assert uppergamma(4, 0) == 6 assert uppergamma(x, y).diff(y) == -y**(x - 1)*exp(-y) assert td(uppergamma(randcplx(), y), y) assert uppergamma(x, y).diff(x) == \ uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y) assert td(uppergamma(x, randcplx()), x) p = Symbol('p', positive=True) assert uppergamma(0, p) == -Ei(-p) assert uppergamma(p, 0) == gamma(p) assert uppergamma(S.Half, x) == sqrt(pi)*erfc(sqrt(x)) assert not uppergamma(S.Half - 3, x).has(uppergamma) assert not uppergamma(S.Half + 3, x).has(uppergamma) assert uppergamma(S.Half, x, evaluate=False).has(uppergamma) assert tn(uppergamma(S.Half + 3, x, evaluate=False), uppergamma(S.Half + 3, x), x) assert tn(uppergamma(S.Half - 3, x, evaluate=False), uppergamma(S.Half - 3, x), x) assert unchanged(uppergamma, x, -oo) assert unchanged(uppergamma, x, 0) assert tn_branch(-3, uppergamma) assert tn_branch(-4, uppergamma) assert tn_branch(Rational(1, 3), uppergamma) assert tn_branch(pi, uppergamma) assert uppergamma(3, exp_polar(4*pi*I)*x) == uppergamma(3, x) assert uppergamma(y, exp_polar(5*pi*I)*x) == \ exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \ gamma(y)*(1 - exp(4*pi*I*y)) assert uppergamma(-2, exp_polar(5*pi*I)*x) == \ uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I assert uppergamma(-2, x) == expint(3, x)/x**2 assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x), conjugate(y)) assert unchanged(conjugate, uppergamma(x, -oo)) assert uppergamma(x, y).rewrite(expint) == y**x*expint(-x + 1, y) assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y) assert uppergamma(70, 6) == 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320*exp(-6) assert (uppergamma(S(77) / 2, 6) - uppergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16 assert (uppergamma(-S(77) / 2, 6) - uppergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16 def test_polygamma(): from sympy import I assert polygamma(n, nan) is nan assert polygamma(0, oo) is oo assert polygamma(0, -oo) is oo assert polygamma(0, I*oo) is oo assert polygamma(0, -I*oo) is oo assert polygamma(1, oo) == 0 assert polygamma(5, oo) == 0 assert polygamma(0, -9) is zoo assert polygamma(0, -9) is zoo assert polygamma(0, -1) is zoo assert polygamma(0, 0) is zoo assert polygamma(0, 1) == -EulerGamma assert polygamma(0, 7) == Rational(49, 20) - EulerGamma assert polygamma(1, 1) == pi**2/6 assert polygamma(1, 2) == pi**2/6 - 1 assert polygamma(1, 3) == pi**2/6 - Rational(5, 4) assert polygamma(3, 1) == pi**4 / 15 assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90) assert polygamma(5, 1) == 8 * pi**6 / 63 def t(m, n): x = S(m)/n r = polygamma(0, x) if r.has(polygamma): return False return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10 assert t(1, 2) assert t(3, 2) assert t(-1, 2) assert t(1, 4) assert t(-3, 4) assert t(1, 3) assert t(4, 3) assert t(3, 4) assert t(2, 3) assert t(123, 5) assert polygamma(0, x).rewrite(zeta) == polygamma(0, x) assert polygamma(1, x).rewrite(zeta) == zeta(2, x) assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x) assert polygamma(I, 2).rewrite(zeta) == polygamma(I, 2) n1 = Symbol('n1') n2 = Symbol('n2', real=True) n3 = Symbol('n3', integer=True) n4 = Symbol('n4', positive=True) n5 = Symbol('n5', positive=True, integer=True) assert polygamma(n1, x).rewrite(zeta) == polygamma(n1, x) assert polygamma(n2, x).rewrite(zeta) == polygamma(n2, x) assert polygamma(n3, x).rewrite(zeta) == polygamma(n3, x) assert polygamma(n4, x).rewrite(zeta) == polygamma(n4, x) assert polygamma(n5, x).rewrite(zeta) == (-1)**(n5 + 1) * factorial(n5) * zeta(n5 + 1, x) assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x) assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3) ni = Symbol("n", integer=True) assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1) + zeta(ni + 1))*factorial(ni) # Polygamma of non-negative integer order is unbranched: from sympy import exp_polar k = Symbol('n', integer=True, nonnegative=True) assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x) # but negative integers are branched! k = Symbol('n', integer=True) assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x) # Polygamma of order -1 is loggamma: assert polygamma(-1, x) == loggamma(x) # But smaller orders are iterated integrals and don't have a special name assert polygamma(-2, x).func is polygamma # Test a bug assert polygamma(0, -x).expand(func=True) == polygamma(0, -x) assert polygamma(2, 2.5).is_positive == False assert polygamma(2, -2.5).is_positive == False assert polygamma(3, 2.5).is_positive == True assert polygamma(3, -2.5).is_positive is True assert polygamma(-2, -2.5).is_positive is None assert polygamma(-3, -2.5).is_positive is None assert polygamma(2, 2.5).is_negative == True assert polygamma(3, 2.5).is_negative == False assert polygamma(3, -2.5).is_negative == False assert polygamma(2, -2.5).is_negative is True assert polygamma(-2, -2.5).is_negative is None assert polygamma(-3, -2.5).is_negative is None assert polygamma(I, 2).is_positive is None assert polygamma(I, 3).is_negative is None # issue 17350 assert polygamma(pi, 3).evalf() == polygamma(pi, 3) assert (I*polygamma(I, pi)).as_real_imag() == \ (-im(polygamma(I, pi)), re(polygamma(I, pi))) assert (tanh(polygamma(I, 1))).rewrite(exp) == \ (exp(polygamma(I, 1)) - exp(-polygamma(I, 1)))/(exp(polygamma(I, 1)) + exp(-polygamma(I, 1))) assert (I / polygamma(I, 4)).rewrite(exp) == \ I*sqrt(re(polygamma(I, 4))**2 + im(polygamma(I, 4))**2)\ /((re(polygamma(I, 4)) + I*im(polygamma(I, 4)))*Abs(polygamma(I, 4))) assert unchanged(polygamma, 2.3, 1.0) # issue 12569 assert unchanged(im, polygamma(0, I)) assert polygamma(Symbol('a', positive=True), Symbol('b', positive=True)).is_real is True assert polygamma(0, I).is_real is None def test_polygamma_expand_func(): assert polygamma(0, x).expand(func=True) == polygamma(0, x) assert polygamma(0, 2*x).expand(func=True) == \ polygamma(0, x)/2 + polygamma(0, S.Half + x)/2 + log(2) assert polygamma(1, 2*x).expand(func=True) == \ polygamma(1, x)/4 + polygamma(1, S.Half + x)/4 assert polygamma(2, x).expand(func=True) == \ polygamma(2, x) assert polygamma(0, -1 + x).expand(func=True) == \ polygamma(0, x) - 1/(x - 1) assert polygamma(0, 1 + x).expand(func=True) == \ 1/x + polygamma(0, x ) assert polygamma(0, 2 + x).expand(func=True) == \ 1/x + 1/(1 + x) + polygamma(0, x) assert polygamma(0, 3 + x).expand(func=True) == \ polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) assert polygamma(0, 4 + x).expand(func=True) == \ polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x) assert polygamma(1, 1 + x).expand(func=True) == \ polygamma(1, x) - 1/x**2 assert polygamma(1, 2 + x).expand(func=True, multinomial=False) == \ polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 assert polygamma(1, 3 + x).expand(func=True, multinomial=False) == \ polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2 assert polygamma(1, 4 + x).expand(func=True, multinomial=False) == \ polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \ 1/(2 + x)**2 - 1/(3 + x)**2 assert polygamma(0, x + y).expand(func=True) == \ polygamma(0, x + y) assert polygamma(1, x + y).expand(func=True) == \ polygamma(1, x + y) assert polygamma(1, 3 + 4*x + y).expand(func=True, multinomial=False) == \ polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \ 1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2 assert polygamma(3, 3 + 4*x + y).expand(func=True, multinomial=False) == \ polygamma(3, y + 4*x) - 6/(y + 4*x)**4 - \ 6/(1 + y + 4*x)**4 - 6/(2 + y + 4*x)**4 assert polygamma(3, 4*x + y + 1).expand(func=True, multinomial=False) == \ polygamma(3, y + 4*x) - 6/(y + 4*x)**4 e = polygamma(3, 4*x + y + Rational(3, 2)) assert e.expand(func=True) == e e = polygamma(3, x + y + Rational(3, 4)) assert e.expand(func=True, basic=False) == e def test_digamma(): from sympy import I assert digamma(nan) == nan assert digamma(oo) == oo assert digamma(-oo) == oo assert digamma(I*oo) == oo assert digamma(-I*oo) == oo assert digamma(-9) == zoo assert digamma(-9) == zoo assert digamma(-1) == zoo assert digamma(0) == zoo assert digamma(1) == -EulerGamma assert digamma(7) == Rational(49, 20) - EulerGamma def t(m, n): x = S(m)/n r = digamma(x) if r.has(digamma): return False return abs(digamma(x.n()).n() - r.n()).n() < 1e-10 assert t(1, 2) assert t(3, 2) assert t(-1, 2) assert t(1, 4) assert t(-3, 4) assert t(1, 3) assert t(4, 3) assert t(3, 4) assert t(2, 3) assert t(123, 5) assert digamma(x).rewrite(zeta) == polygamma(0, x) assert digamma(x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma assert digamma(I).is_real is None assert digamma(x,evaluate=False).fdiff() == polygamma(1, x) assert digamma(x,evaluate=False).is_real is None assert digamma(x,evaluate=False).is_positive is None assert digamma(x,evaluate=False).is_negative is None assert digamma(x,evaluate=False).rewrite(polygamma) == polygamma(0, x) def test_digamma_expand_func(): assert digamma(x).expand(func=True) == polygamma(0, x) assert digamma(2*x).expand(func=True) == \ polygamma(0, x)/2 + polygamma(0, Rational(1, 2) + x)/2 + log(2) assert digamma(-1 + x).expand(func=True) == \ polygamma(0, x) - 1/(x - 1) assert digamma(1 + x).expand(func=True) == \ 1/x + polygamma(0, x ) assert digamma(2 + x).expand(func=True) == \ 1/x + 1/(1 + x) + polygamma(0, x) assert digamma(3 + x).expand(func=True) == \ polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) assert digamma(4 + x).expand(func=True) == \ polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x) assert digamma(x + y).expand(func=True) == \ polygamma(0, x + y) def test_trigamma(): assert trigamma(nan) == nan assert trigamma(oo) == 0 assert trigamma(1) == pi**2/6 assert trigamma(2) == pi**2/6 - 1 assert trigamma(3) == pi**2/6 - Rational(5, 4) assert trigamma(x, evaluate=False).rewrite(zeta) == zeta(2, x) assert trigamma(x, evaluate=False).rewrite(harmonic) == \ trigamma(x).rewrite(polygamma).rewrite(harmonic) assert trigamma(x,evaluate=False).fdiff() == polygamma(2, x) assert trigamma(x,evaluate=False).is_real is None assert trigamma(x,evaluate=False).is_positive is None assert trigamma(x,evaluate=False).is_negative is None assert trigamma(x,evaluate=False).rewrite(polygamma) == polygamma(1, x) def test_trigamma_expand_func(): assert trigamma(2*x).expand(func=True) == \ polygamma(1, x)/4 + polygamma(1, Rational(1, 2) + x)/4 assert trigamma(1 + x).expand(func=True) == \ polygamma(1, x) - 1/x**2 assert trigamma(2 + x).expand(func=True, multinomial=False) == \ polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 assert trigamma(3 + x).expand(func=True, multinomial=False) == \ polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2 assert trigamma(4 + x).expand(func=True, multinomial=False) == \ polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \ 1/(2 + x)**2 - 1/(3 + x)**2 assert trigamma(x + y).expand(func=True) == \ polygamma(1, x + y) assert trigamma(3 + 4*x + y).expand(func=True, multinomial=False) == \ polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \ 1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2 def test_loggamma(): raises(TypeError, lambda: loggamma(2, 3)) raises(ArgumentIndexError, lambda: loggamma(x).fdiff(2)) assert loggamma(-1) is oo assert loggamma(-2) is oo assert loggamma(0) is oo assert loggamma(1) == 0 assert loggamma(2) == 0 assert loggamma(3) == log(2) assert loggamma(4) == log(6) n = Symbol("n", integer=True, positive=True) assert loggamma(n) == log(gamma(n)) assert loggamma(-n) is oo assert loggamma(n/2) == log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + S.Half)) from sympy import I assert loggamma(oo) is oo assert loggamma(-oo) is zoo assert loggamma(I*oo) is zoo assert loggamma(-I*oo) is zoo assert loggamma(zoo) is zoo assert loggamma(nan) is nan L = loggamma(Rational(16, 3)) E = -5*log(3) + loggamma(Rational(1, 3)) + log(4) + log(7) + log(10) + log(13) assert expand_func(L).doit() == E assert L.n() == E.n() L = loggamma(Rational(19, 4)) E = -4*log(4) + loggamma(Rational(3, 4)) + log(3) + log(7) + log(11) + log(15) assert expand_func(L).doit() == E assert L.n() == E.n() L = loggamma(Rational(23, 7)) E = -3*log(7) + log(2) + loggamma(Rational(2, 7)) + log(9) + log(16) assert expand_func(L).doit() == E assert L.n() == E.n() L = loggamma(Rational(19, 4) - 7) E = -log(9) - log(5) + loggamma(Rational(3, 4)) + 3*log(4) - 3*I*pi assert expand_func(L).doit() == E assert L.n() == E.n() L = loggamma(Rational(23, 7) - 6) E = -log(19) - log(12) - log(5) + loggamma(Rational(2, 7)) + 3*log(7) - 3*I*pi assert expand_func(L).doit() == E assert L.n() == E.n() assert loggamma(x).diff(x) == polygamma(0, x) s1 = loggamma(1/(x + sin(x)) + cos(x)).nseries(x, n=4) s2 = (-log(2*x) - 1)/(2*x) - log(x/pi)/2 + (4 - log(2*x))*x/24 + O(x**2) + \ log(x)*x**2/2 assert (s1 - s2).expand(force=True).removeO() == 0 s1 = loggamma(1/x).series(x) s2 = (1/x - S.Half)*log(1/x) - 1/x + log(2*pi)/2 + \ x/12 - x**3/360 + x**5/1260 + O(x**7) assert ((s1 - s2).expand(force=True)).removeO() == 0 assert loggamma(x).rewrite('intractable') == log(gamma(x)) s1 = loggamma(x).series(x) assert s1 == -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + \ pi**4*x**4/360 + x**5*polygamma(4, 1)/120 + O(x**6) assert s1 == loggamma(x).rewrite('intractable').series(x) assert conjugate(loggamma(x)) == loggamma(conjugate(x)) assert conjugate(loggamma(0)) is oo assert conjugate(loggamma(1)) == loggamma(conjugate(1)) assert conjugate(loggamma(-oo)) == conjugate(zoo) assert loggamma(Symbol('v', positive=True)).is_real is True assert loggamma(Symbol('v', zero=True)).is_real is False assert loggamma(Symbol('v', negative=True)).is_real is False assert loggamma(Symbol('v', nonpositive=True)).is_real is False assert loggamma(Symbol('v', nonnegative=True)).is_real is None assert loggamma(Symbol('v', imaginary=True)).is_real is None assert loggamma(Symbol('v', real=True)).is_real is None assert loggamma(Symbol('v')).is_real is None assert loggamma(S.Half).is_real is True assert loggamma(0).is_real is False assert loggamma(Rational(-1, 2)).is_real is False assert loggamma(I).is_real is None assert loggamma(2 + 3*I).is_real is None def tN(N, M): assert loggamma(1/x)._eval_nseries(x, n=N).getn() == M tN(0, 0) tN(1, 1) tN(2, 3) tN(3, 3) tN(4, 5) tN(5, 5) def test_polygamma_expansion(): # A. & S., pa. 259 and 260 assert polygamma(0, 1/x).nseries(x, n=3) == \ -log(x) - x/2 - x**2/12 + O(x**4) assert polygamma(1, 1/x).series(x, n=5) == \ x + x**2/2 + x**3/6 + O(x**5) assert polygamma(3, 1/x).nseries(x, n=11) == \ 2*x**3 + 3*x**4 + 2*x**5 - x**7 + 4*x**9/3 + O(x**11) def test_issue_8657(): n = Symbol('n', negative=True, integer=True) m = Symbol('m', integer=True) o = Symbol('o', positive=True) p = Symbol('p', negative=True, integer=False) assert gamma(n).is_real is False assert gamma(m).is_real is None assert gamma(o).is_real is True assert gamma(p).is_real is True assert gamma(w).is_real is None def test_issue_8524(): x = Symbol('x', positive=True) y = Symbol('y', negative=True) z = Symbol('z', positive=False) p = Symbol('p', negative=False) q = Symbol('q', integer=True) r = Symbol('r', integer=False) e = Symbol('e', even=True, negative=True) assert gamma(x).is_positive is True assert gamma(y).is_positive is None assert gamma(z).is_positive is None assert gamma(p).is_positive is None assert gamma(q).is_positive is None assert gamma(r).is_positive is None assert gamma(e + S.Half).is_positive is True assert gamma(e - S.Half).is_positive is False def test_issue_14450(): assert uppergamma(Rational(3, 8), x).evalf() == uppergamma(Rational(3, 8), x) assert lowergamma(x, Rational(3, 8)).evalf() == lowergamma(x, Rational(3, 8)) # some values from Wolfram Alpha for comparison assert abs(uppergamma(Rational(3, 8), 2).evalf() - 0.07105675881) < 1e-9 assert abs(lowergamma(Rational(3, 8), 2).evalf() - 2.2993794256) < 1e-9 def test_issue_14528(): k = Symbol('k', integer=True, nonpositive=True) assert isinstance(gamma(k), gamma) def test_multigamma(): from sympy import Product p = Symbol('p') _k = Dummy('_k') assert multigamma(x, p).dummy_eq(pi**(p*(p - 1)/4)*\ Product(gamma(x + (1 - _k)/2), (_k, 1, p))) assert conjugate(multigamma(x, p)).dummy_eq(pi**((conjugate(p) - 1)*\ conjugate(p)/4)*Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p))) assert conjugate(multigamma(x, 1)) == gamma(conjugate(x)) p = Symbol('p', positive=True) assert conjugate(multigamma(x, p)).dummy_eq(pi**((p - 1)*p/4)*\ Product(gamma(conjugate(x) + (1-conjugate(_k))/2), (_k, 1, p))) assert multigamma(nan, 1) is nan assert multigamma(oo, 1).doit() is oo assert multigamma(1, 1) == 1 assert multigamma(2, 1) == 1 assert multigamma(3, 1) == 2 assert multigamma(102, 1) == factorial(101) assert multigamma(S.Half, 1) == sqrt(pi) assert multigamma(1, 2) == pi assert multigamma(2, 2) == pi/2 assert multigamma(1, 3) is zoo assert multigamma(2, 3) == pi**2/2 assert multigamma(3, 3) == 3*pi**2/2 assert multigamma(x, 1).diff(x) == gamma(x)*polygamma(0, x) assert multigamma(x, 2).diff(x) == sqrt(pi)*gamma(x)*gamma(x - S.Half)*\ polygamma(0, x) + sqrt(pi)*gamma(x)*gamma(x - S.Half)*polygamma(0, x - S.Half) assert multigamma(x - 1, 1).expand(func=True) == gamma(x)/(x - 1) assert multigamma(x + 2, 1).expand(func=True, mul=False) == x*(x + 1)*\ gamma(x) assert multigamma(x - 1, 2).expand(func=True) == sqrt(pi)*gamma(x)*\ gamma(x + S.Half)/(x**3 - 3*x**2 + x*Rational(11, 4) - Rational(3, 4)) assert multigamma(x - 1, 3).expand(func=True) == pi**Rational(3, 2)*gamma(x)**2*\ gamma(x + S.Half)/(x**5 - 6*x**4 + 55*x**3/4 - 15*x**2 + x*Rational(31, 4) - Rational(3, 2)) assert multigamma(n, 1).rewrite(factorial) == factorial(n - 1) assert multigamma(n, 2).rewrite(factorial) == sqrt(pi)*\ factorial(n - Rational(3, 2))*factorial(n - 1) assert multigamma(n, 3).rewrite(factorial) == pi**Rational(3, 2)*\ factorial(n - 2)*factorial(n - Rational(3, 2))*factorial(n - 1) assert multigamma(Rational(-1, 2), 3, evaluate=False).is_real == False assert multigamma(S.Half, 3, evaluate=False).is_real == False assert multigamma(0, 1, evaluate=False).is_real == False assert multigamma(1, 3, evaluate=False).is_real == False assert multigamma(-1.0, 3, evaluate=False).is_real == False assert multigamma(0.7, 3, evaluate=False).is_real == True assert multigamma(3, 3, evaluate=False).is_real == True def test_gamma_as_leading_term(): assert gamma(x).as_leading_term(x) == 1/x assert gamma(2 + x).as_leading_term(x) == S(1) assert gamma(cos(x)).as_leading_term(x) == S(1) assert gamma(sin(x)).as_leading_term(x) == 1/x
0a57d3d828ed3550d47097eb9e40aa2470cc275ae384aff1b1a5948eba4c953f
from sympy import ( symbols, expand, expand_func, nan, oo, Float, conjugate, diff, re, im, O, exp_polar, polar_lift, gruntz, limit, Symbol, I, integrate, Integral, S, sqrt, sin, cos, sinc, sinh, cosh, exp, log, pi, EulerGamma, erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, gamma, uppergamma, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi, fresnels, fresnelc, hyper, meijerg, E, Rational) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.functions.special.error_functions import _erfs, _eis from sympy.utilities.pytest import raises, slow x, y, z = symbols('x,y,z') w = Symbol("w", real=True) n = Symbol("n", integer=True) def test_erf(): assert erf(nan) is nan assert erf(oo) == 1 assert erf(-oo) == -1 assert erf(0) == 0 assert erf(I*oo) == oo*I assert erf(-I*oo) == -oo*I assert erf(-2) == -erf(2) assert erf(-x*y) == -erf(x*y) assert erf(-x - y) == -erf(x + y) assert erf(erfinv(x)) == x assert erf(erfcinv(x)) == 1 - x assert erf(erf2inv(0, x)) == x assert erf(erf2inv(0, x, evaluate=False)) == x # To cover code in erf assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x assert erf(I).is_real is False assert erf(0).is_real is True assert conjugate(erf(z)) == erf(conjugate(z)) assert erf(x).as_leading_term(x) == 2*x/sqrt(pi) assert erf(1/x).as_leading_term(x) == erf(1/x) assert erf(z).rewrite('uppergamma') == sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z assert erf(z).rewrite('erfc') == S.One - erfc(z) assert erf(z).rewrite('erfi') == -I*erfi(I*z) assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erf(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi) assert erf(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi) assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi) assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \ 2/sqrt(pi) assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi) assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1 assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1 assert erf(x).as_real_imag() == \ (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2, -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2) assert erf(x).as_real_imag(deep=False) == \ (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2, -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2) assert erf(w).as_real_imag() == (erf(w), 0) assert erf(w).as_real_imag(deep=False) == (erf(w), 0) # issue 13575 assert erf(I).as_real_imag() == (0, -I*erf(I)) raises(ArgumentIndexError, lambda: erf(x).fdiff(2)) assert erf(x).inverse() == erfinv def test_erf_series(): assert erf(x).series(x, 0, 7) == 2*x/sqrt(pi) - \ 2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7) def test_erf_evalf(): assert abs( erf(Float(2.0)) - 0.995322265 ) < 1E-8 # XXX def test__erfs(): assert _erfs(z).diff(z) == -2/sqrt(S.Pi) + 2*z*_erfs(z) assert _erfs(1/z).series(z) == \ z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6) assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) \ == erf(z).diff(z) assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2) raises(ArgumentIndexError, lambda: _erfs(z).fdiff(2)) def test_erfc(): assert erfc(nan) is nan assert erfc(oo) == 0 assert erfc(-oo) == 2 assert erfc(0) == 1 assert erfc(I*oo) == -oo*I assert erfc(-I*oo) == oo*I assert erfc(-x) == S(2) - erfc(x) assert erfc(erfcinv(x)) == x assert erfc(I).is_real is False assert erfc(0).is_real is True assert erfc(erfinv(x)) == 1 - x assert conjugate(erfc(z)) == erfc(conjugate(z)) assert erfc(x).as_leading_term(x) is S.One assert erfc(1/x).as_leading_term(x) == erfc(1/x) assert erfc(z).rewrite('erf') == 1 - erf(z) assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z) assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) - I*fresnels(z*(1 - I)/sqrt(pi))) assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi) assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)/sqrt(pi) assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z assert erfc(z).rewrite('expint') == S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi) assert erfc(z).rewrite('tractable') == _erfs(z)*exp(-z**2) assert expand_func(erf(x) + erfc(x)) is S.One assert erfc(x).as_real_imag() == \ (erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2, -I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2) assert erfc(x).as_real_imag(deep=False) == \ (erfc(re(x) - I*im(x))/2 + erfc(re(x) + I*im(x))/2, -I*(-erfc(re(x) - I*im(x)) + erfc(re(x) + I*im(x)))/2) assert erfc(w).as_real_imag() == (erfc(w), 0) assert erfc(w).as_real_imag(deep=False) == (erfc(w), 0) raises(ArgumentIndexError, lambda: erfc(x).fdiff(2)) assert erfc(x).inverse() == erfcinv def test_erfc_series(): assert erfc(x).series(x, 0, 7) == 1 - 2*x/sqrt(pi) + \ 2*x**3/3/sqrt(pi) - x**5/5/sqrt(pi) + O(x**7) def test_erfc_evalf(): assert abs( erfc(Float(2.0)) - 0.00467773 ) < 1E-8 # XXX def test_erfi(): assert erfi(nan) is nan assert erfi(oo) is S.Infinity assert erfi(-oo) is S.NegativeInfinity assert erfi(0) is S.Zero assert erfi(I*oo) == I assert erfi(-I*oo) == -I assert erfi(-x) == -erfi(x) assert erfi(I*erfinv(x)) == I*x assert erfi(I*erfcinv(x)) == I*(1 - x) assert erfi(I*erf2inv(0, x)) == I*x assert erfi(I*erf2inv(0, x, evaluate=False)) == I*x # To cover code in erfi assert erfi(I).is_real is False assert erfi(0).is_real is True assert conjugate(erfi(z)) == erfi(conjugate(z)) assert erfi(z).rewrite('erf') == -I*erf(I*z) assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) - I*fresnels(z*(1 + I)/sqrt(pi))) assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) - I*fresnels(z*(1 + I)/sqrt(pi))) assert erfi(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], z**2)/sqrt(pi) assert erfi(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2)/sqrt(pi) assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(S.Pi) - S.One)) assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi) assert erfi(z).rewrite('tractable') == -I*(-_erfs(I*z)*exp(z**2) + 1) assert expand_func(erfi(I*z)) == I*erf(z) assert erfi(x).as_real_imag() == \ (erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2, -I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2) assert erfi(x).as_real_imag(deep=False) == \ (erfi(re(x) - I*im(x))/2 + erfi(re(x) + I*im(x))/2, -I*(-erfi(re(x) - I*im(x)) + erfi(re(x) + I*im(x)))/2) assert erfi(w).as_real_imag() == (erfi(w), 0) assert erfi(w).as_real_imag(deep=False) == (erfi(w), 0) raises(ArgumentIndexError, lambda: erfi(x).fdiff(2)) def test_erfi_series(): assert erfi(x).series(x, 0, 7) == 2*x/sqrt(pi) + \ 2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7) def test_erfi_evalf(): assert abs( erfi(Float(2.0)) - 18.5648024145756 ) < 1E-13 # XXX def test_erf2(): assert erf2(0, 0) is S.Zero assert erf2(x, x) is S.Zero assert erf2(nan, 0) is nan assert erf2(-oo, y) == erf(y) + 1 assert erf2( oo, y) == erf(y) - 1 assert erf2( x, oo) == 1 - erf(x) assert erf2( x,-oo) == -1 - erf(x) assert erf2(x, erf2inv(x, y)) == y assert erf2(-x, -y) == -erf2(x,y) assert erf2(-x, y) == erf(y) + erf(x) assert erf2( x, -y) == -erf(y) - erf(x) assert erf2(x, y).rewrite('fresnels') == erf(y).rewrite(fresnels)-erf(x).rewrite(fresnels) assert erf2(x, y).rewrite('fresnelc') == erf(y).rewrite(fresnelc)-erf(x).rewrite(fresnelc) assert erf2(x, y).rewrite('hyper') == erf(y).rewrite(hyper)-erf(x).rewrite(hyper) assert erf2(x, y).rewrite('meijerg') == erf(y).rewrite(meijerg)-erf(x).rewrite(meijerg) assert erf2(x, y).rewrite('uppergamma') == erf(y).rewrite(uppergamma) - erf(x).rewrite(uppergamma) assert erf2(x, y).rewrite('expint') == erf(y).rewrite(expint)-erf(x).rewrite(expint) assert erf2(I, 0).is_real is False assert erf2(0, 0).is_real is True assert expand_func(erf(x) + erf2(x, y)) == erf(y) assert conjugate(erf2(x, y)) == erf2(conjugate(x), conjugate(y)) assert erf2(x, y).rewrite('erf') == erf(y) - erf(x) assert erf2(x, y).rewrite('erfc') == erfc(x) - erfc(y) assert erf2(x, y).rewrite('erfi') == I*(erfi(I*x) - erfi(I*y)) assert erf2(x, y).diff(x) == erf2(x, y).fdiff(1) assert erf2(x, y).diff(y) == erf2(x, y).fdiff(2) assert erf2(x, y).diff(x) == -2*exp(-x**2)/sqrt(pi) assert erf2(x, y).diff(y) == 2*exp(-y**2)/sqrt(pi) raises(ArgumentIndexError, lambda: erf2(x, y).fdiff(3)) assert erf2(x, y).is_extended_real is None xr, yr = symbols('xr yr', extended_real=True) assert erf2(xr, yr).is_extended_real is True def test_erfinv(): assert erfinv(0) == 0 assert erfinv(1) is S.Infinity assert erfinv(nan) is S.NaN assert erfinv(-1) is S.NegativeInfinity assert erfinv(erf(w)) == w assert erfinv(erf(-w)) == -w assert erfinv(x).diff() == sqrt(pi)*exp(erfinv(x)**2)/2 raises(ArgumentIndexError, lambda: erfinv(x).fdiff(2)) assert erfinv(z).rewrite('erfcinv') == erfcinv(1-z) assert erfinv(z).inverse() == erf def test_erfinv_evalf(): assert abs( erfinv(Float(0.2)) - 0.179143454621292 ) < 1E-13 def test_erfcinv(): assert erfcinv(1) == 0 assert erfcinv(0) is S.Infinity assert erfcinv(nan) is S.NaN assert erfcinv(x).diff() == -sqrt(pi)*exp(erfcinv(x)**2)/2 raises(ArgumentIndexError, lambda: erfcinv(x).fdiff(2)) assert erfcinv(z).rewrite('erfinv') == erfinv(1-z) assert erfcinv(z).inverse() == erfc def test_erf2inv(): assert erf2inv(0, 0) is S.Zero assert erf2inv(0, 1) is S.Infinity assert erf2inv(1, 0) is S.One assert erf2inv(0, y) == erfinv(y) assert erf2inv(oo, y) == erfcinv(-y) assert erf2inv(x, 0) == x assert erf2inv(x, oo) == erfinv(x) assert erf2inv(nan, 0) is nan assert erf2inv(0, nan) is nan assert erf2inv(x, y).diff(x) == exp(-x**2 + erf2inv(x, y)**2) assert erf2inv(x, y).diff(y) == sqrt(pi)*exp(erf2inv(x, y)**2)/2 raises(ArgumentIndexError, lambda: erf2inv(x, y).fdiff(3)) # NOTE we multiply by exp_polar(I*pi) and need this to be on the principal # branch, hence take x in the lower half plane (d=0). def mytn(expr1, expr2, expr3, x, d=0): from sympy.utilities.randtest import verify_numerically, random_complex_number subs = {} for a in expr1.free_symbols: if a != x: subs[a] = random_complex_number() return expr2 == expr3 and verify_numerically(expr1.subs(subs), expr2.subs(subs), x, d=d) def mytd(expr1, expr2, x): from sympy.utilities.randtest import test_derivative_numerically, \ random_complex_number subs = {} for a in expr1.free_symbols: if a != x: subs[a] = random_complex_number() return expr1.diff(x) == expr2 and test_derivative_numerically(expr1.subs(subs), x) def tn_branch(func, s=None): from sympy import I, pi, exp_polar from random import uniform def fn(x): if s is None: return func(x) return func(s, x) c = uniform(1, 5) expr = fn(c*exp_polar(I*pi)) - fn(c*exp_polar(-I*pi)) eps = 1e-15 expr2 = fn(-c + eps*I) - fn(-c - eps*I) return abs(expr.n() - expr2.n()).n() < 1e-10 def test_ei(): assert Ei(0) is S.NegativeInfinity assert Ei(oo) is S.Infinity assert Ei(-oo) is S.Zero assert tn_branch(Ei) assert mytd(Ei(x), exp(x)/x, x) assert mytn(Ei(x), Ei(x).rewrite(uppergamma), -uppergamma(0, x*polar_lift(-1)) - I*pi, x) assert mytn(Ei(x), Ei(x).rewrite(expint), -expint(1, x*polar_lift(-1)) - I*pi, x) assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x) assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x) assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si), Ci(x) + I*Si(x) + I*pi/2, x) assert Ei(log(x)).rewrite(li) == li(x) assert Ei(2*log(x)).rewrite(li) == li(x**2) assert gruntz(Ei(x+exp(-x))*exp(-x)*x, x, oo) == 1 assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \ x**3/18 + x**4/96 + x**5/600 + O(x**6) assert Ei(x).series(x, 1, 3) == Ei(1) + E*(x - 1) + O((x - 1)**3, (x, 1)) assert str(Ei(cos(2)).evalf(n=10)) == '-0.6760647401' raises(ArgumentIndexError, lambda: Ei(x).fdiff(2)) def test_expint(): assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma), y**(x - 1)*uppergamma(1 - x, y), x) assert mytd( expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x) assert mytd(expint(x, y), -expint(x - 1, y), y) assert mytn(expint(1, x), expint(1, x).rewrite(Ei), -Ei(x*polar_lift(-1)) + I*pi, x) assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \ + 24*exp(-x)/x**4 + 24*exp(-x)/x**5 assert expint(Rational(-3, 2), x) == \ exp(-x)/x + 3*exp(-x)/(2*x**2) + 3*sqrt(pi)*erfc(sqrt(x))/(4*x**S('5/2')) assert tn_branch(expint, 1) assert tn_branch(expint, 2) assert tn_branch(expint, 3) assert tn_branch(expint, 1.7) assert tn_branch(expint, pi) assert expint(y, x*exp_polar(2*I*pi)) == \ x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(y, x*exp_polar(-2*I*pi)) == \ x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x) assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x) assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x) assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x) assert expint(x, y).rewrite(Ei) == expint(x, y) assert expint(x, y).rewrite(Ci) == expint(x, y) assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x) assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si), -Ci(x) + I*Si(x) - I*pi/2, x) assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint), -x*E1(x) + exp(-x), x) assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint), x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x) assert expint(Rational(3, 2), z).nseries(z) == \ 2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \ 2*sqrt(pi)*sqrt(z) + O(z**6) assert E1(z).series(z) == -EulerGamma - log(z) + z - \ z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6) assert expint(4, z).series(z) == Rational(1, 3) - z/2 + z**2/2 + \ z**3*(log(z)/6 - Rational(11, 36) + EulerGamma/6 - I*pi/6) - z**4/24 + \ z**5/240 + O(z**6) assert expint(z, y).series(z, 0, 2) == exp(-y)/y - z*meijerg(((), (1, 1)), ((0, 0, 1), ()), y)/y + O(z**2) raises(ArgumentIndexError, lambda: expint(x, y).fdiff(3)) neg = Symbol('neg', negative=True) assert Ei(neg).rewrite(Si) == Shi(neg) + Chi(neg) - I*pi def test__eis(): assert _eis(z).diff(z) == -_eis(z) + 1/z assert _eis(1/z).series(z) == \ z + z**2 + 2*z**3 + 6*z**4 + 24*z**5 + O(z**6) assert Ei(z).rewrite('tractable') == exp(z)*_eis(z) assert li(z).rewrite('tractable') == z*_eis(log(z)) assert _eis(z).rewrite('intractable') == exp(-z)*Ei(z) assert expand(li(z).rewrite('tractable').diff(z).rewrite('intractable')) \ == li(z).diff(z) assert expand(Ei(z).rewrite('tractable').diff(z).rewrite('intractable')) \ == Ei(z).diff(z) assert _eis(z).series(z, n=3) == EulerGamma + log(z) + z*(-log(z) - \ EulerGamma + 1) + z**2*(log(z)/2 - Rational(3, 4) + EulerGamma/2) + O(z**3*log(z)) raises(ArgumentIndexError, lambda: _eis(z).fdiff(2)) def tn_arg(func): def test(arg, e1, e2): from random import uniform v = uniform(1, 5) v1 = func(arg*x).subs(x, v).n() v2 = func(e1*v + e2*1e-15).n() return abs(v1 - v2).n() < 1e-10 return test(exp_polar(I*pi/2), I, 1) and \ test(exp_polar(-I*pi/2), -I, 1) and \ test(exp_polar(I*pi), -1, I) and \ test(exp_polar(-I*pi), -1, -I) def test_li(): z = Symbol("z") zr = Symbol("z", real=True) zp = Symbol("z", positive=True) zn = Symbol("z", negative=True) assert li(0) == 0 assert li(1) is -oo assert li(oo) is oo assert isinstance(li(z), li) assert unchanged(li, -zp) assert unchanged(li, zn) assert diff(li(z), z) == 1/log(z) assert conjugate(li(z)) == li(conjugate(z)) assert conjugate(li(-zr)) == li(-zr) assert unchanged(conjugate, li(-zp)) assert unchanged(conjugate, li(zn)) assert li(z).rewrite(Li) == Li(z) + li(2) assert li(z).rewrite(Ei) == Ei(log(z)) assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 - expint(1, -log(z))) assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))) assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))) assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))) assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))) assert li(z).rewrite(hyper) ==(log(z)*hyper((1, 1), (2, 2), log(z)) - log(1/log(z))/2 + log(log(z))/2 + EulerGamma) assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 - meijerg(((), (1,)), ((0, 0), ()), -log(z))) assert gruntz(1/li(z), z, oo) == 0 raises(ArgumentIndexError, lambda: li(z).fdiff(2)) def test_Li(): assert Li(2) == 0 assert Li(oo) is oo assert isinstance(Li(z), Li) assert diff(Li(z), z) == 1/log(z) assert gruntz(1/Li(z), z, oo) == 0 assert Li(z).rewrite(li) == li(z) - li(2) raises(ArgumentIndexError, lambda: Li(z).fdiff(2)) def test_si(): assert Si(I*x) == I*Shi(x) assert Shi(I*x) == I*Si(x) assert Si(-I*x) == -I*Shi(x) assert Shi(-I*x) == -I*Si(x) assert Si(-x) == -Si(x) assert Shi(-x) == -Shi(x) assert Si(exp_polar(2*pi*I)*x) == Si(x) assert Si(exp_polar(-2*pi*I)*x) == Si(x) assert Shi(exp_polar(2*pi*I)*x) == Shi(x) assert Shi(exp_polar(-2*pi*I)*x) == Shi(x) assert Si(oo) == pi/2 assert Si(-oo) == -pi/2 assert Shi(oo) is oo assert Shi(-oo) is -oo assert mytd(Si(x), sin(x)/x, x) assert mytd(Shi(x), sinh(x)/x, x) assert mytn(Si(x), Si(x).rewrite(Ei), -I*(-Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x) assert mytn(Si(x), Si(x).rewrite(expint), -I*(-expint(1, x*exp_polar(-I*pi/2))/2 + expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x) assert mytn(Shi(x), Shi(x).rewrite(Ei), Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x) assert mytn(Shi(x), Shi(x).rewrite(expint), expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x) assert tn_arg(Si) assert tn_arg(Shi) assert Si(x).nseries(x, n=8) == \ x - x**3/18 + x**5/600 - x**7/35280 + O(x**9) assert Shi(x).nseries(x, n=8) == \ x + x**3/18 + x**5/600 + x**7/35280 + O(x**9) assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**6) assert Si(x).nseries(x, 1, n=3) == \ Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1)) t = Symbol('t', Dummy=True) assert Si(x).rewrite(sinc) == Integral(sinc(t), (t, 0, x)) def test_ci(): m1 = exp_polar(I*pi) m1_ = exp_polar(-I*pi) pI = exp_polar(I*pi/2) mI = exp_polar(-I*pi/2) assert Ci(m1*x) == Ci(x) + I*pi assert Ci(m1_*x) == Ci(x) - I*pi assert Ci(pI*x) == Chi(x) + I*pi/2 assert Ci(mI*x) == Chi(x) - I*pi/2 assert Chi(m1*x) == Chi(x) + I*pi assert Chi(m1_*x) == Chi(x) - I*pi assert Chi(pI*x) == Ci(x) + I*pi/2 assert Chi(mI*x) == Ci(x) - I*pi/2 assert Ci(exp_polar(2*I*pi)*x) == Ci(x) + 2*I*pi assert Chi(exp_polar(-2*I*pi)*x) == Chi(x) - 2*I*pi assert Chi(exp_polar(2*I*pi)*x) == Chi(x) + 2*I*pi assert Ci(exp_polar(-2*I*pi)*x) == Ci(x) - 2*I*pi assert Ci(oo) == 0 assert Ci(-oo) == I*pi assert Chi(oo) is oo assert Chi(-oo) is oo assert mytd(Ci(x), cos(x)/x, x) assert mytd(Chi(x), cosh(x)/x, x) assert mytn(Ci(x), Ci(x).rewrite(Ei), Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2, x) assert mytn(Chi(x), Chi(x).rewrite(Ei), Ei(x)/2 + Ei(x*exp_polar(I*pi))/2 - I*pi/2, x) assert tn_arg(Ci) assert tn_arg(Chi) from sympy import O, EulerGamma, log, limit assert Ci(x).nseries(x, n=4) == \ EulerGamma + log(x) - x**2/4 + x**4/96 + O(x**5) assert Chi(x).nseries(x, n=4) == \ EulerGamma + log(x) + x**2/4 + x**4/96 + O(x**5) assert limit(log(x) - Ci(2*x), x, 0) == -log(2) - EulerGamma assert Ci(x).rewrite(uppergamma) == -expint(1, x*exp_polar(-I*pi/2))/2 -\ expint(1, x*exp_polar(I*pi/2))/2 assert Ci(x).rewrite(expint) == -expint(1, x*exp_polar(-I*pi/2))/2 -\ expint(1, x*exp_polar(I*pi/2))/2 raises(ArgumentIndexError, lambda: Ci(x).fdiff(2)) def test_fresnel(): assert fresnels(0) == 0 assert fresnels(oo) == S.Half assert fresnels(-oo) == Rational(-1, 2) assert fresnels(I*oo) == -I*S.Half assert unchanged(fresnels, z) assert fresnels(-z) == -fresnels(z) assert fresnels(I*z) == -I*fresnels(z) assert fresnels(-I*z) == I*fresnels(z) assert conjugate(fresnels(z)) == fresnels(conjugate(z)) assert fresnels(z).diff(z) == sin(pi*z**2/2) assert fresnels(z).rewrite(erf) == (S.One + I)/4 * ( erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z)) assert fresnels(z).rewrite(hyper) == \ pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16) assert fresnels(z).series(z, n=15) == \ pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15) assert fresnels(w).is_extended_real is True assert fresnels(w).is_finite is True assert fresnels(z).is_extended_real is None assert fresnels(z).is_finite is None assert fresnels(z).as_real_imag() == (fresnels(re(z) - I*im(z))/2 + fresnels(re(z) + I*im(z))/2, -I*(-fresnels(re(z) - I*im(z)) + fresnels(re(z) + I*im(z)))/2) assert fresnels(z).as_real_imag(deep=False) == (fresnels(re(z) - I*im(z))/2 + fresnels(re(z) + I*im(z))/2, -I*(-fresnels(re(z) - I*im(z)) + fresnels(re(z) + I*im(z)))/2) assert fresnels(w).as_real_imag() == (fresnels(w), 0) assert fresnels(w).as_real_imag(deep=True) == (fresnels(w), 0) assert fresnels(2 + 3*I).as_real_imag() == ( fresnels(2 + 3*I)/2 + fresnels(2 - 3*I)/2, -I*(fresnels(2 + 3*I) - fresnels(2 - 3*I))/2 ) assert expand_func(integrate(fresnels(z), z)) == \ z*fresnels(z) + cos(pi*z**2/2)/pi assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(9, 4) * \ meijerg(((), (1,)), ((Rational(3, 4),), (Rational(1, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(3, 4)*(z**2)**Rational(3, 4)) assert fresnelc(0) == 0 assert fresnelc(oo) == S.Half assert fresnelc(-oo) == Rational(-1, 2) assert fresnelc(I*oo) == I*S.Half assert unchanged(fresnelc, z) assert fresnelc(-z) == -fresnelc(z) assert fresnelc(I*z) == I*fresnelc(z) assert fresnelc(-I*z) == -I*fresnelc(z) assert conjugate(fresnelc(z)) == fresnelc(conjugate(z)) assert fresnelc(z).diff(z) == cos(pi*z**2/2) assert fresnelc(z).rewrite(erf) == (S.One - I)/4 * ( erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z)) assert fresnelc(z).rewrite(hyper) == \ z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16) assert fresnelc(w).is_extended_real is True assert fresnelc(z).as_real_imag() == \ (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2, -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2) assert fresnelc(z).as_real_imag(deep=False) == \ (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2, -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2) assert fresnelc(2 + 3*I).as_real_imag() == ( fresnelc(2 - 3*I)/2 + fresnelc(2 + 3*I)/2, -I*(fresnelc(2 + 3*I) - fresnelc(2 - 3*I))/2 ) assert expand_func(integrate(fresnelc(z), z)) == \ z*fresnelc(z) - sin(pi*z**2/2)/pi assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(3, 4) * \ meijerg(((), (1,)), ((Rational(1, 4),), (Rational(3, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(1, 4)*(z**2)**Rational(1, 4)) from sympy.utilities.randtest import verify_numerically verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z) verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z) verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z) verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z) verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z) verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z) verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z) verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z) raises(ArgumentIndexError, lambda: fresnels(z).fdiff(2)) raises(ArgumentIndexError, lambda: fresnelc(z).fdiff(2)) assert fresnels(x).taylor_term(-1, x) is S.Zero assert fresnelc(x).taylor_term(-1, x) is S.Zero assert fresnelc(x).taylor_term(1, x) == -pi**2*x**5/40 @slow def test_fresnel_series(): assert fresnelc(z).series(z, n=15) == \ z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15) # issues 6510, 10102 fs = (S.Half - sin(pi*z**2/2)/(pi**2*z**3) + (-1/(pi*z) + 3/(pi**3*z**5))*cos(pi*z**2/2)) fc = (S.Half - cos(pi*z**2/2)/(pi**2*z**3) + (1/(pi*z) - 3/(pi**3*z**5))*sin(pi*z**2/2)) assert fresnels(z).series(z, oo) == fs + O(z**(-6), (z, oo)) assert fresnelc(z).series(z, oo) == fc + O(z**(-6), (z, oo)) assert (fresnels(z).series(z, -oo) + fs.subs(z, -z)).expand().is_Order assert (fresnelc(z).series(z, -oo) + fc.subs(z, -z)).expand().is_Order assert (fresnels(1/z).series(z) - fs.subs(z, 1/z)).expand().is_Order assert (fresnelc(1/z).series(z) - fc.subs(z, 1/z)).expand().is_Order assert ((2*fresnels(3*z)).series(z, oo) - 2*fs.subs(z, 3*z)).expand().is_Order assert ((3*fresnelc(2*z)).series(z, oo) - 3*fc.subs(z, 2*z)).expand().is_Order
281b15f242c31fe13fb3c7c1a015da257a38da134a8c590604e1014eff4c68d7
from sympy.core.containers import Tuple from sympy.core.function import (Function, Lambda, nfloat) from sympy.core.mod import Mod from sympy.core.numbers import (E, I, Rational, oo, pi) from sympy.core.relational import (Eq, Gt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign) from sympy.functions.elementary.exponential import (LambertW, exp, log) from sympy.functions.elementary.hyperbolic import (HyperbolicFunction, atanh, sinh, tanh, cosh, sech, coth) from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2, cos, cot, csc, sec, sin, tan) from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv) from sympy.logic.boolalg import And from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.matrices.immutable import ImmutableDenseMatrix from sympy.polys.polytools import Poly from sympy.polys.rootoftools import CRootOf from sympy.sets.contains import Contains from sympy.sets.conditionset import ConditionSet from sympy.sets.fancysets import ImageSet from sympy.sets.sets import (Complement, EmptySet, FiniteSet, Intersection, Interval, Union, imageset, ProductSet) from sympy.tensor.indexed import Indexed from sympy.utilities.iterables import numbered_symbols from sympy.utilities.pytest import (XFAIL, raises, skip, slow, SKIP, nocache_fail) from sympy.utilities.randtest import verify_numerically as tn from sympy.physics.units import cm from sympy.solvers.solveset import ( solveset_real, domain_check, solveset_complex, linear_eq_to_matrix, linsolve, _is_function_class_equation, invert_real, invert_complex, solveset, solve_decomposition, substitution, nonlinsolve, solvify, _is_finite_with_finite_vars, _transolve, _is_exponential, _solve_exponential, _is_logarithmic, _solve_logarithm, _term_factors, _is_modular) a = Symbol('a', real=True) b = Symbol('b', real=True) c = Symbol('c', real=True) x = Symbol('x', real=True) y = Symbol('y', real=True) z = Symbol('z', real=True) q = Symbol('q', real=True) m = Symbol('m', real=True) n = Symbol('n', real=True) def test_invert_real(): x = Symbol('x', real=True) y = Symbol('y') n = Symbol('n') def ireal(x, s=S.Reals): return Intersection(s, x) # issue 14223 assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet) assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y)))) y = Symbol('y', positive=True) n = Symbol('n', real=True) assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3)) assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y))) assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3)) assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3)) assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3)))) assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3))) assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y))) assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3)) assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3)) assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y)) assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2))) assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2))))) assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y))) assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2)) raises(ValueError, lambda: invert_real(x, x, x)) raises(ValueError, lambda: invert_real(x**pi, y, x)) raises(ValueError, lambda: invert_real(S.One, y, x)) assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y)) lhs = x**31 + x base_values = FiniteSet(y - 1, -y - 1) assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values) assert invert_real(sin(x), y, x) == \ (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers)) assert invert_real(sin(exp(x)), y, x) == \ (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers)) assert invert_real(csc(x), y, x) == \ (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers)) assert invert_real(csc(exp(x)), y, x) == \ (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers)) assert invert_real(cos(x), y, x) == \ (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers))) assert invert_real(cos(exp(x)), y, x) == \ (x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers))) assert invert_real(sec(x), y, x) == \ (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \ imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers))) assert invert_real(sec(exp(x)), y, x) == \ (x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \ imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers))) assert invert_real(tan(x), y, x) == \ (x, imageset(Lambda(n, n*pi + atan(y)), S.Integers)) assert invert_real(tan(exp(x)), y, x) == \ (x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers)) assert invert_real(cot(x), y, x) == \ (x, imageset(Lambda(n, n*pi + acot(y)), S.Integers)) assert invert_real(cot(exp(x)), y, x) == \ (x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers)) assert invert_real(tan(tan(x)), y, x) == \ (tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers)) x = Symbol('x', positive=True) assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi))) def test_invert_complex(): assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3)) assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3)) assert invert_complex(exp(x), y, x) == \ (x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers)) assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y))) raises(ValueError, lambda: invert_real(1, y, x)) raises(ValueError, lambda: invert_complex(x, x, x)) raises(ValueError, lambda: invert_complex(x, x, 1)) # https://github.com/skirpichev/omg/issues/16 assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0)) def test_domain_check(): assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False assert domain_check(x**2, x, 0) is True assert domain_check(x, x, oo) is False assert domain_check(0, x, oo) is False def test_issue_11536(): assert solveset(0**x - 100, x, S.Reals) == S.EmptySet assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0) def test_issue_17479(): import sympy as sb from sympy.solvers.solveset import nonlinsolve x, y, z = sb.symbols("x, y, z") f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2) fx = sb.diff(f, x) fy = sb.diff(f, y) fz = sb.diff(f, z) sol = nonlinsolve([fx, fy, fz], [x, y, z]) # FIXME: This previously gave 18 solutions and now gives 20 due to fixes # in the handling of intersection of FiniteSets or possibly a small change # to ImageSet._contains. However Using expand I can turn this into 16 # solutions either way: # # >>> len(FiniteSet(*(Tuple(*(expand(w) for w in s)) for s in sol))) # 16 # assert len(sol) == 20 def test_is_function_class_equation(): from sympy.abc import x, a assert _is_function_class_equation(TrigonometricFunction, tan(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x) - a, x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x + a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, sin(x)*tan(x*a) + sin(x), x) is True assert _is_function_class_equation(TrigonometricFunction, a*tan(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x)**2 + sin(x) - 1, x) is True assert _is_function_class_equation(TrigonometricFunction, tan(x) + x, x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x**2) + sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(x)**sin(x), x) is False assert _is_function_class_equation(TrigonometricFunction, tan(sin(x)) + sin(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x) - a, x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x + a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, sinh(x)*tanh(x*a) + sinh(x), x) is True assert _is_function_class_equation(HyperbolicFunction, a*tanh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x)**2 + sinh(x) - 1, x) is True assert _is_function_class_equation(HyperbolicFunction, tanh(x) + x, x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x**2) + sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(x)**sinh(x), x) is False assert _is_function_class_equation(HyperbolicFunction, tanh(sinh(x)) + sinh(x), x) is False def test_garbage_input(): raises(ValueError, lambda: solveset_real([x], x)) assert solveset_real(x, 1) == S.EmptySet assert solveset_real(x - 1, 1) == FiniteSet(x) assert solveset_real(x, pi) == S.EmptySet assert solveset_real(x, x**2) == S.EmptySet raises(ValueError, lambda: solveset_complex([x], x)) assert solveset_complex(x, pi) == S.EmptySet raises(ValueError, lambda: solveset((x, y), x)) raises(ValueError, lambda: solveset(x + 1, S.Reals)) raises(ValueError, lambda: solveset(x + 1, x, 2)) def test_solve_mul(): assert solveset_real((a*x + b)*(exp(x) - 3), x) == \ Union({log(3)}, Intersection({-b/a}, S.Reals)) anz = Symbol('anz', nonzero=True) assert solveset_real((anz*x + b)*(exp(x) - 3), x) == \ FiniteSet(-b/anz, log(3)) assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4)) assert solveset_real(x/log(x), x) == EmptySet() def test_solve_invert(): assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3)) assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3)) assert solveset_real(3**(x + 2), x) == FiniteSet() assert solveset_real(3**(2 - x), x) == FiniteSet() assert solveset_real(y - b*exp(a/x), x) == Intersection( S.Reals, FiniteSet(a/log(y/b))) # issue 4504 assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2)) def test_errorinverses(): assert solveset_real(erf(x) - S.Half, x) == \ FiniteSet(erfinv(S.Half)) assert solveset_real(erfinv(x) - 2, x) == \ FiniteSet(erf(2)) assert solveset_real(erfc(x) - S.One, x) == \ FiniteSet(erfcinv(S.One)) assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2)) def test_solve_polynomial(): assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3)) assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One) assert solveset_real(x - y**3, x) == FiniteSet(y ** 3) a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2') assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet( -2 + 3 ** S.Half, S(4), -2 - 3 ** S.Half) assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert len(solveset_real(x**5 + x**3 + 1, x)) == 1 assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0 assert solveset_real(x**6 + x**4 + I, x) == ConditionSet(x, Eq(x**6 + x**4 + I, 0), S.Reals) def test_return_root_of(): f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf # if one uses solve to get the roots of a polynomial that has a CRootOf # solution, make sure that the use of nfloat during the solve process # doesn't fail. Note: if you want numerical solutions to a polynomial # it is *much* faster to use nroots to get them than to solve the # equation only to get CRootOf solutions which are then numerically # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather # than [i.n() for i in solve(eq)] to get the numerical roots of eq. assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0], exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n() sol = list(solveset_complex(x**6 - 2*x + 2, x)) assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = list(solveset_complex(f, x)) for root in s: assert root.func == CRootOf s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) assert solveset_complex(s, x) == \ FiniteSet(*Poly(s*4, domain='ZZ').all_roots()) # Refer issue #7876 eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1) assert solveset_complex(eq, x) == \ FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)) def test__has_rational_power(): from sympy.solvers.solveset import _has_rational_power assert _has_rational_power(sqrt(2), x)[0] is False assert _has_rational_power(x*sqrt(2), x)[0] is False assert _has_rational_power(x**2*sqrt(x), x) == (True, 2) assert _has_rational_power(sqrt(2)*x**Rational(1, 3), x) == (True, 3) assert _has_rational_power(sqrt(x)*x**Rational(1, 3), x) == (True, 6) def test_solveset_sqrt_1(): assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10) assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27) assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49) assert solveset_real(sqrt(x**3), x) == FiniteSet(0) assert solveset_real(sqrt(x - 1), x) == FiniteSet(1) def test_solveset_sqrt_2(): # http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \ FiniteSet(S(5), S(13)) assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \ FiniteSet(-6) # http://www.purplemath.com/modules/solverad.htm assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \ FiniteSet(3) eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4) assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3)) eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4) assert solveset_real(eq, x) == FiniteSet(0) eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1) assert solveset_real(eq, x) == FiniteSet(5) eq = sqrt(x)*sqrt(x - 7) - 12 assert solveset_real(eq, x) == FiniteSet(16) eq = sqrt(x - 3) + sqrt(x) - 3 assert solveset_real(eq, x) == FiniteSet(4) eq = sqrt(2*x**2 - 7) - (3 - x) assert solveset_real(eq, x) == FiniteSet(-S(8), S(2)) # others eq = sqrt(9*x**2 + 4) - (3*x + 2) assert solveset_real(eq, x) == FiniteSet(0) assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet() eq = (2*x - 5)**Rational(1, 3) - 3 assert solveset_real(eq, x) == FiniteSet(16) assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \ FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4) eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x)) assert solveset_real(eq, x) == FiniteSet() eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) ans = solveset_real(eq, x) ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''') rb = Rational(4, 5) assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \ len(ans) == 2 and \ set([i.n(chop=True) for i in ans]) == \ set([i.n(chop=True) for i in (ra, rb)]) assert solveset_real(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == FiniteSet(0) assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0) eq = (x - y**3)/((y**2)*sqrt(1 - y**2)) assert solveset_real(eq, x) == FiniteSet(y**3) # issue 4497 assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \ FiniteSet(Rational(-295244, 59049)) @XFAIL def test_solve_sqrt_fail(): # this only works if we check real_root(eq.subs(x, Rational(1, 3))) # but checksol doesn't work like that eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x assert solveset_real(eq, x) == FiniteSet(Rational(1, 3)) @slow def test_solve_sqrt_3(): R = Symbol('R') eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) sol = solveset_complex(eq, R) fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3, -sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 + 40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 + sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + 40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)] cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) + I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 - sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)] assert sol._args[0] == FiniteSet(*fset) assert sol._args[1] == ConditionSet( R, Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0), FiniteSet(*cset)) # the number of real roots will depend on the value of m: for m=1 there are 4 # and for m=-1 there are none. eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) - sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals) assert solveset_real(eq, q) == unsolved_object def test_solve_polynomial_symbolic_param(): assert solveset_complex((x**2 - 1)**2 - a, x) == \ FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))) # issue 4507 assert solveset_complex(y - b/(1 + a*x), x) == \ FiniteSet((b/y - 1)/a) - FiniteSet(-1/a) # issue 4508 assert solveset_complex(y - b*x/(a + x), x) == \ FiniteSet(-a*y/(y - b)) - FiniteSet(-a) def test_solve_rational(): assert solveset_real(1/x + 1, x) == FiniteSet(-S.One) assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0) assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5) assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) assert solveset_real((x**2/(7 - x)).diff(x), x) == \ FiniteSet(S.Zero, S(14)) def test_solveset_real_gen_is_pow(): assert solveset_real(sqrt(1) + 1, x) == EmptySet() def test_no_sol(): assert solveset(1 - oo*x) == EmptySet() assert solveset(oo*x, x) == EmptySet() assert solveset(oo*x - oo, x) == EmptySet() assert solveset_real(4, x) == EmptySet() assert solveset_real(exp(x), x) == EmptySet() assert solveset_real(x**2 + 1, x) == EmptySet() assert solveset_real(-3*a/sqrt(x), x) == EmptySet() assert solveset_real(1/x, x) == EmptySet() assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \ EmptySet() def test_sol_zero_real(): assert solveset_real(0, x) == S.Reals assert solveset(0, x, Interval(1, 2)) == Interval(1, 2) assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals def test_no_sol_rational_extragenous(): assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet() assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet() def test_solve_polynomial_cv_1a(): """ Test for solving on equations that can be converted to a polynomial equation using the change of variable y -> x**Rational(p, q) """ assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) assert solveset_real(x*(x**(S.One / 3) - 3), x) == \ FiniteSet(S.Zero, S(27)) def test_solveset_real_rational(): """Test solveset_real for rational functions""" assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \ == FiniteSet(y**3) # issue 4486 assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) def test_solveset_real_log(): assert solveset_real(log((x-1)*(x+1)), x) == \ FiniteSet(sqrt(2), -sqrt(2)) def test_poly_gens(): assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \ FiniteSet(Rational(-3, 2), S.Half) def test_solve_abs(): x = Symbol('x') n = Dummy('n') raises(ValueError, lambda: solveset(Abs(x) - 1, x)) assert solveset(Abs(x) - n, x, S.Reals) == ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2) assert solveset_real(Abs(x) + 2, x) is S.EmptySet assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \ FiniteSet(1, 9) assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \ FiniteSet(-1, Rational(1, 3)) sol = ConditionSet( x, And( Contains(b, Interval(0, oo)), Contains(a + b, Interval(0, oo)), Contains(a - b, Interval(0, oo))), FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3)) eq = Abs(Abs(x + 3) - a) - b assert invert_real(eq, 0, x)[1] == sol reps = {a: 3, b: 1} eqab = eq.subs(reps) for i in sol.subs(reps): assert not eqab.subs(x, i) assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == Union( Intersection(Interval(0, oo), ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)), Intersection(Interval(-oo, 0), ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers))) def test_issue_9565(): assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2) def test_issue_10069(): eq = abs(1/(x - 1)) - 1 > 0 u = Union(Interval.open(0, 1), Interval.open(1, 2)) assert solveset_real(eq, x) == u def test_real_imag_splitting(): a, b = symbols('a b', real=True) assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \ FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9)) assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \ S.EmptySet def test_units(): assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm) def test_solve_only_exp_1(): y = Symbol('y', positive=True) assert solveset_real(exp(x) - y, x) == FiniteSet(log(y)) assert solveset_real(exp(x) + exp(-x) - 4, x) == \ FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2)) assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet def test_atan2(): # The .inverse() method on atan2 works only if x.is_real is True and the # second argument is a real constant assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3)) def test_piecewise_solveset(): eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3 assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5)) absxm3 = Piecewise( (x - 3, 0 <= x - 3), (3 - x, 0 > x - 3)) y = Symbol('y', positive=True) assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3) f = Piecewise(((x - 2)**2, x >= 0), (0, True)) assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True)) assert solveset( Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals ) == Interval(-oo, 0) assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1) def test_solveset_complex_polynomial(): from sympy.abc import x, a, b, c assert solveset_complex(a*x**2 + b*x + c, x) == \ FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a)) assert solveset_complex(x - y**3, y) == FiniteSet( (-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2, x**Rational(1, 3), (-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2) assert solveset_complex(x + 1/x - 1, x) == \ FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2) def test_sol_zero_complex(): assert solveset_complex(0, x) == S.Complexes def test_solveset_complex_rational(): assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \ FiniteSet(1, I) assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \ FiniteSet(y**3) assert solveset_complex(-x**2 - I, x) == \ FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2) def test_solve_quintics(): skip("This test is too slow") f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) f = x**5 + 15*x + 12 s = solveset_complex(f, x) for root in s: res = f.subs(x, root.n()).n() assert tn(res, 0) def test_solveset_complex_exp(): from sympy.abc import x, n assert solveset_complex(exp(x) - 1, x) == \ imageset(Lambda(n, I*2*n*pi), S.Integers) assert solveset_complex(exp(x) - I, x) == \ imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers) assert solveset_complex(1/exp(x), x) == S.EmptySet assert solveset_complex(sinh(x).rewrite(exp), x) == \ imageset(Lambda(n, n*pi*I), S.Integers) def test_solveset_real_exp(): from sympy.abc import x, y assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2) assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3) assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42) assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2))) assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2)) def test_solve_complex_log(): assert solveset_complex(log(x), x) == FiniteSet(1) assert solveset_complex(1 - log(a + 4*x**2), x) == \ FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2) def test_solve_complex_sqrt(): assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \ FiniteSet(-S.One, S(2)) assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \ FiniteSet(-S(2), 3 - 4*I) assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \ FiniteSet(S.Zero, 1 / a ** 2) def test_solveset_complex_tan(): s = solveset_complex(tan(x).rewrite(exp), x) assert s == imageset(Lambda(n, pi*n), S.Integers) - \ imageset(Lambda(n, pi*n + pi/2), S.Integers) @nocache_fail def test_solve_trig(): from sympy.abc import n assert solveset_real(sin(x), x) == \ Union(imageset(Lambda(n, 2*pi*n), S.Integers), imageset(Lambda(n, 2*pi*n + pi), S.Integers)) assert solveset_real(sin(x) - 1, x) == \ imageset(Lambda(n, 2*pi*n + pi/2), S.Integers) assert solveset_real(cos(x), x) == \ Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers), imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers)) assert solveset_real(sin(x) + cos(x), x) == \ Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers), imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers)) assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet # This fails when running with the cache off: assert solveset_complex(cos(x) - S.Half, x) == \ Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers), imageset(Lambda(n, 2*n*pi + pi/3), S.Integers)) y, a = symbols('y,a') assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \ Union(ImageSet(Lambda(n, 2*n*pi), S.Integers), Intersection(ImageSet(Lambda(n, -I*(I*( 2*n*pi + arg(-exp(-2*I*y))) + 2*im(y))), S.Integers), S.Reals)) assert solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x) == \ ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers) # Tests for _solve_trig2() function assert solveset_real(2*cos(x)*cos(2*x) - 1, x) == \ Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers), ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 + 9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 + 9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) + 2*pi), S.Integers)) assert solveset_real(2*tan(x)*sin(x) + 1, x) == Union( ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 +sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers), ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/ (1 - sqrt(17))) + pi), S.Integers)) assert solveset_real(cos(2*x)*cos(4*x) - 1, x) == \ ImageSet(Lambda(n, n*pi), S.Integers) def test_solve_hyperbolic(): # actual solver: _solve_trig1 n = Dummy('n') assert solveset(sinh(x) + cosh(x), x) == S.EmptySet assert solveset(sinh(x) + cos(x), x) == ConditionSet(x, Eq(cos(x) + sinh(x), 0), S.Complexes) assert solveset_real(sinh(x) + sech(x), x) == FiniteSet( log(sqrt(sqrt(5) - 2))) assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet( log(sqrt(3)/3), log(sqrt(3))) assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet( log((2 + sqrt(5))*exp(3))) assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet( log(-2 + sqrt(5)), log(1 + sqrt(2))) assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet( log(S.Half + sqrt(5)/2), log(1 + sqrt(2))) assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet( log(sqrt(4 + sqrt(17)))) assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet( log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2)))) assert solveset_complex(sinh(x) - I/2, x) == Union( ImageSet(Lambda(n, I*(2*n*pi + 5*pi/6)), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi/6)), S.Integers)) assert solveset_complex(sinh(x) + sech(x), x) == Union( ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers), ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers)) # issues #9606 / #9531: assert solveset(sinh(x), x, S.Reals) == FiniteSet(0) assert solveset(sinh(x), x, S.Complexes) == Union( ImageSet(Lambda(n, I*(2*n*pi + pi)), S.Integers), ImageSet(Lambda(n, 2*n*I*pi), S.Integers)) def test_solve_invalid_sol(): assert 0 not in solveset_real(sin(x)/x, x) assert 0 not in solveset_complex((exp(x) - 1)/x, x) @XFAIL def test_solve_trig_simplified(): from sympy.abc import n assert solveset_real(sin(x), x) == \ imageset(Lambda(n, n*pi), S.Integers) assert solveset_real(cos(x), x) == \ imageset(Lambda(n, n*pi + pi/2), S.Integers) assert solveset_real(cos(x) + sin(x), x) == \ imageset(Lambda(n, n*pi - pi/4), S.Integers) @XFAIL def test_solve_lambert(): assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1)) assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1)) assert solveset_real(x + 2**x, x) == \ FiniteSet(-LambertW(log(2))/log(2)) # issue 4739 ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x) assert ans == FiniteSet(Rational(-5, 3) + LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2))) eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) result = solveset_real(eq, x) ans = FiniteSet((log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1) assert result == ans assert solveset_real(eq.expand(), x) == result assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \ FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7) assert solveset_real(2*x + 5 + log(3*x - 2), x) == \ FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2) assert solveset_real(3*x + log(4*x), x) == \ FiniteSet(LambertW(Rational(3, 4))/3) assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2)))) a = Symbol('a') assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2)) a = Symbol('a', real=True) assert solveset_real(a/x + exp(x/2), x) == \ FiniteSet(2*LambertW(-a/2)) assert solveset_real((a/x + exp(x/2)).diff(x), x) == \ FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4)) # coverage test assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet() assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*S.Exp1)/3) assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \ FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3) assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \ FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3) assert solveset_real(x*log(x) + 3*x + 1, x) == \ FiniteSet(exp(-3 + LambertW(-exp(3)))) eq = (x*exp(x) - 3).subs(x, x*exp(x)) assert solveset_real(eq, x) == \ FiniteSet(LambertW(3*exp(-LambertW(3)))) assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \ FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a)))) p = symbols('p', positive=True) assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \ FiniteSet( log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p), log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p), log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),) # checked numerically # check collection b = Symbol('b') eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5) assert solveset_real(eq, x) == FiniteSet( -((log(a**5) + LambertW(1/(b + 3)))/(3*log(a)))) # issue 4271 assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet( 6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3)) assert solveset_real(x**3 - 3**x, x) == \ FiniteSet(-3/log(3)*LambertW(-log(3)/3)) assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet( acos(-3*LambertW(-log(3)/3)/log(3))) assert solveset_real(x**2 - 2**x, x) == \ solveset_real(-x**2 + 2**x, x) assert solveset_real(3*log(x) - x*log(3)) == FiniteSet( -3*LambertW(-log(3)/3)/log(3), -3*LambertW(-log(3)/3, -1)/log(3)) assert solveset_real(LambertW(2*x) - y) == FiniteSet( y*exp(y)/2) @XFAIL def test_other_lambert(): a = Rational(6, 5) assert solveset_real(x**a - a**x, x) == FiniteSet( a, -a*LambertW(-log(a)/a)/log(a)) def test_solveset(): x = Symbol('x') f = Function('f') raises(ValueError, lambda: solveset(x + y)) assert solveset(x, 1) == S.EmptySet assert solveset(f(1)**2 + y + 1, f(1) ) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1)) assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1) assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I) assert solveset(x - 1, 1) == FiniteSet(x) assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x)) assert solveset(0, domain=S.Reals) == S.Reals assert solveset(1) == S.EmptySet assert solveset(True, domain=S.Reals) == S.Reals # issue 10197 assert solveset(False, domain=S.Reals) == S.EmptySet assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0) assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0) assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1) A = Indexed('A', x) assert solveset(A - 1, A, S.Reals) == FiniteSet(1) assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo) assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo) assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers) assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n), S.Integers) # issue 13825 assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)} def test__solveset_multi(): from sympy.solvers.solveset import _solveset_multi from sympy import Reals # Basic univariate case: from sympy.abc import x assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,)) # Linear systems of two equations from sympy.abc import x, y assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1)) assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1)) assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2)) assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2)) #assert _solveset_multi([x+y], [x, y], [Reals, Reals]) == ImageSet(Lambda(x, (x, -x)), Reals) assert _solveset_multi([x+y], [x, y], [Reals, Reals]) == Union( ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals))) assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet # Systems of three equations: from sympy.abc import x, y, z assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals, Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half)) # Nonlinear systems: from sympy.abc import r, theta, z, x, y assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1)) assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0)) #assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union( # ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals)) assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union( ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)), ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)), ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals))) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r], [Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1)) assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0)) #assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], # [Interval(0, 1), Interval(0, pi)]) == ? assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta], [Interval(0, 1), Interval(0, pi)]) == Union( ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))), ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi)))) def test_conditionset(): assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \ ConditionSet(x, True, S.Reals) assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals ) == ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals) assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x ) == imageset(Lambda(n, 2*n*pi + pi/2), S.Integers) assert solveset(x + sin(x) > 1, x, domain=S.Reals ) == ConditionSet(x, x + sin(x) > 1, S.Reals) assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals ) == ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals) assert solveset(y**x-z, x, S.Reals) == \ ConditionSet(x, Eq(y**x - z, 0), S.Reals) @XFAIL def test_conditionset_equality(): ''' Checking equality of different representations of ConditionSet''' assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes) def test_solveset_domain(): x = Symbol('x') assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3) assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1) assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2) def test_improve_coverage(): from sympy.solvers.solveset import _has_rational_power x = Symbol('x') solution = solveset(exp(x) + sin(x), x, S.Reals) unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals) assert solution == unsolved_object assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One) assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One) def test_issue_9522(): x = Symbol('x') expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2) expr2 = Eq(1/x + x, 1/x) assert solveset(expr1, x, S.Reals) == EmptySet() assert solveset(expr2, x, S.Reals) == EmptySet() def test_solvify(): x = Symbol('x') assert solvify(x**2 + 10, x, S.Reals) == [] assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2, S.Half + sqrt(3)*I/2] assert solvify(log(x), x, S.Reals) == [1] assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)] assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)] raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes)) def test_abs_invert_solvify(): assert solvify(sin(Abs(x)), x, S.Reals) is None def test_linear_eq_to_matrix(): x, y, z = symbols('x, y, z') a, b, c, d, e, f, g, h, i, j, k, l = symbols('a:l') eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12] eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z] A, B = linear_eq_to_matrix(eqns1, x, y, z) assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]]) assert B == Matrix([[3], [0], [12]]) A, B = linear_eq_to_matrix(eqns2, x, y, z) assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]]) assert B == Matrix([[1], [-2], [0]]) # Pure symbolic coefficients eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l] A, B = linear_eq_to_matrix(eqns3, x, y, z) assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]]) assert B == Matrix([[d], [h], [l]]) # raise ValueError if # 1) no symbols are given raises(ValueError, lambda: linear_eq_to_matrix(eqns3)) # 2) there are duplicates raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y])) # 3) there are non-symbols raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y])) # 4) a nonlinear term is detected in the original expression raises(ValueError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x))) assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]])) # issue 15195 assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == ( Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]])) assert linear_eq_to_matrix(Matrix( [[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == ( Matrix([[a, b], [5, 6]]), Matrix([[7], [c]])) # issue 15312 assert linear_eq_to_matrix(Eq(x + 2, 1), x) == ( Matrix([[1]]), Matrix([[-1]])) def test_issue_16577(): assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == ( Matrix([[2*a, 3*a + 4]]), Matrix([[5]])) def test_linsolve(): x, y, z, u, v, w = symbols("x, y, z, u, v, w") x1, x2, x3, x4 = symbols('x1, x2, x3, x4') # Test for different input forms M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]]) system1 = A, b = M[:, :-1], M[:, -1] Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12, 2*x1 + 4*x2 + 6*x4 - 4] sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) assert linsolve(Eqns, (x1, x2, x3, x4)) == sol assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol assert linsolve(system1, (x1, x2, x3, x4)) == sol assert linsolve(system1, *(x1, x2, x3, x4)) == sol # issue 9667 - symbols can be Dummy symbols x1, x2, x3, x4 = symbols('x:4', cls=Dummy) assert linsolve(system1, x1, x2, x3, x4) == FiniteSet( (-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) # raise ValueError for garbage value raises(ValueError, lambda: linsolve(Eqns)) raises(ValueError, lambda: linsolve(x1)) raises(ValueError, lambda: linsolve(x1, x2)) raises(ValueError, lambda: linsolve((A,), x1, x2)) raises(ValueError, lambda: linsolve(A, b, x1, x2)) #raise ValueError if equations are non-linear in given variables raises(ValueError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y])) raises(ValueError, lambda: linsolve([cos(x) + y, x + y], [x, y])) assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)} # Fully symbolic test a, b, c, d, e, f = symbols('a, b, c, d, e, f') A = Matrix([[a, b], [c, d]]) B = Matrix([[e], [f]]) system2 = (A, B) sol = FiniteSet(((-b*f + d*e)/(a*d - b*c), (a*f - c*e)/(a*d - b*c))) assert linsolve(system2, [x, y]) == sol # No solution A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) b = Matrix([0, 0, 1]) assert linsolve((A, b), (x, y, z)) == EmptySet() # Issue #10056 A, B, J1, J2 = symbols('A B J1 J2') Augmatrix = Matrix([ [2*I*J1, 2*I*J2, -2/J1], [-2*I*J2, -2*I*J1, 2/J2], [0, 2, 2*I/(J1*J2)], [2, 0, 0], ]) assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2))) # Issue #10121 - Assignment of free variables a, b, c, d, e = symbols('a, b, c, d, e') Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e)) raises(IndexError, lambda: linsolve(Augmatrix, a, b, c)) x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau0') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau1') assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]]) ) == FiniteSet((x0, 0, x1, _x0, x2)) # symbols can be given as generators x0, x2, x4 = symbols('x0, x2, x4') assert linsolve(Augmatrix, numbered_symbols('x') ) == FiniteSet((x0, 0, x2, 0, x4)) Augmatrix[-1, -1] = x0 # use Dummy to avoid clash; the names may clash but the symbols # will not Augmatrix[-1, -1] = symbols('_x0') assert len(linsolve( Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4 # Issue #12604 f = Function('f') assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,)) # Issue #14860 from sympy.physics.units import meter, newton, kilo Eqns = [8*kilo*newton + x + y, 28*kilo*newton*meter + 3*x*meter] assert linsolve(Eqns, x, y) == {(newton*Rational(-28000, 3), newton*Rational(4000, 3))} # linsolve fully expands expressions, so removable singularities # and other nonlinearity does not raise an error assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)} assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)} def test_linsolve_immutable(): A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]]) B = ImmutableDenseMatrix([2, 1, -1]) c = symbols('c1 c2 c3') assert linsolve([A, B], c) == FiniteSet((1, 3, -1)) A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]]) assert linsolve(A) == FiniteSet((5, 2)) def test_solve_decomposition(): x = Symbol('x') n = Dummy('n') f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6 f2 = sin(x)**2 - 2*sin(x) + 1 f3 = sin(x)**2 - sin(x) f4 = sin(x + 1) f5 = exp(x + 2) - 1 f6 = 1/log(x) f7 = 1/x s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers) s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers) s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers) s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers) assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3)) assert solve_decomposition(f2, x, S.Reals) == s3 assert solve_decomposition(f3, x, S.Reals) == Union(s1, s2, s3) assert solve_decomposition(f4, x, S.Reals) == Union(s4, s5) assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2) assert solve_decomposition(f6, x, S.Reals) == S.EmptySet assert solve_decomposition(f7, x, S.Reals) == S.EmptySet assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet # nonlinsolve testcases def test_nonlinsolve_basic(): assert nonlinsolve([],[]) == S.EmptySet assert nonlinsolve([],[x, y]) == S.EmptySet system = [x, y - x - 5] assert nonlinsolve([x],[x, y]) == FiniteSet((0, y)) assert nonlinsolve(system, [y]) == FiniteSet((x + 5,)) soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) assert nonlinsolve([sin(x) - 1], [x]) == FiniteSet(tuple(soln)) assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,)) soln = FiniteSet((y, y)) assert nonlinsolve([x - y, 0], x, y) == soln assert nonlinsolve([0, x - y], x, y) == soln assert nonlinsolve([x - y, x - y], x, y) == soln assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y)) f = Function('f') assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y)) assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y))) A = Indexed('A', x) assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y)) assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,)) assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,)) assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,)) def test_nonlinsolve_abs(): soln = FiniteSet((x, Abs(x))) assert nonlinsolve([Abs(x) - y], x, y) == soln def test_raise_exception_nonlinsolve(): raises(IndexError, lambda: nonlinsolve([x**2 -1], [])) raises(ValueError, lambda: nonlinsolve([x**2 -1])) raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y))) def test_trig_system(): # TODO: add more simple testcases when solveset returns # simplified soln for Trig eq assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) soln = FiniteSet(soln1) assert nonlinsolve([sin(x) - 1, cos(x)], x) == soln @XFAIL def test_trig_system_fail(): # fails because solveset trig solver is not much smart. sys = [x + y - pi/2, sin(x) + sin(y) - 1] # solveset returns conditionset for sin(x) + sin(y) - 1 soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers), ImageSet(Lambda(n, n*pi)), S.Integers) soln_1 = FiniteSet(soln_1) soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers), ImageSet(Lambda(n, n*pi+ pi/2), S.Integers)) soln_2 = FiniteSet(soln_2) soln = soln_1 + soln_2 assert nonlinsolve(sys, [x, y]) == soln # Add more cases from here # http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2] soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers)) soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers)) assert nonlinsolve(sys, [x, y]) ==FiniteSet((soln_x, soln_y)) def test_nonlinsolve_positive_dimensional(): x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real = True) assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y)) system = [a**2 + a*c, a - b] assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c)) # here (a= 0, b = 0) is independent soln so both is printed. # if symbols = [a, b, c] then only {a : -c ,b : -c} eq1 = a + b + c + d eq2 = a*b + b*c + c*d + d*a eq3 = a*b*c + b*c*d + c*d*a + d*a*b eq4 = a*b*c*d - 1 system = [eq1, eq2, eq3, eq4] sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0)) sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0)) soln = FiniteSet(sol1, sol2) assert nonlinsolve(system, [a, b, c, d]) == soln def test_nonlinsolve_polysys(): x, y, z = symbols('x, y, z', real = True) assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet s = (-y + 2, y) assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s) system = [x**2 - y**2] soln_real = FiniteSet((-y, y), (y, y)) soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y)) soln =soln_real + soln_complex assert nonlinsolve(system, [x, y]) == soln system = [x**2 - y**2] soln_real= FiniteSet((y, -y), (y, y)) soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y))) soln = soln_real + soln_complex assert nonlinsolve(system, [y, x]) == soln system = [x**2 + y - 3, x - y - 4] assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x)) def test_nonlinsolve_using_substitution(): x, y, z, n = symbols('x, y, z, n', real = True) system = [(x + y)*n - y**2 + 2] s_x = (n*y - y**2 + 2)/n soln = (-s_x, y) assert nonlinsolve(system, [x, y]) == FiniteSet(soln) system = [z**2*x**2 - z**2*y**2/exp(x)] soln_real_1 = (y, x, 0) soln_real_2 = (-exp(x/2)*Abs(x), x, z) soln_real_3 = (exp(x/2)*Abs(x), x, z) soln_complex_1 = (-x*exp(x/2), x, z) soln_complex_2 = (x*exp(x/2), x, z) syms = [y, x, z] soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\ soln_real_2, soln_real_3) assert nonlinsolve(system,syms) == soln def test_nonlinsolve_complex(): x, y, z = symbols('x, y, z') n = Dummy('n') assert nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]) == { (ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))} system = [exp(x) - sin(y), 1/exp(y) - 3] assert nonlinsolve(system, [x, y]) == { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(log(3)))), S.Integers), -log(3)), (ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3)))) + log(Abs(sin(2*n*I*pi - log(3))))), S.Integers), ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))} system = [exp(x) - sin(y), y**2 - 4] assert nonlinsolve(system, [x, y]) == { (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2), (ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)} @XFAIL def test_solve_nonlinear_trans(): # After the transcendental equation solver these will work x, y, z = symbols('x, y, z', real=True) soln1 = FiniteSet((2*LambertW(y/2), y)) soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y)) soln3 = FiniteSet((x*exp(x/2), x)) soln4 = FiniteSet(2*LambertW(y/2), y) assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2 assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3 assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4 def test_issue_5132_1(): system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4] assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1)) n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2) ) soln = soln_real + soln_complex assert nonlinsolve(eqs, [y, z]) == soln def test_issue_5132_2(): x, y = symbols('x, y', real=True) eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] n = Dummy('n') soln_real = (log(-z**2 + sin(y))/2, z) lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2) img = ImageSet(lam, S.Integers) # not sure about the complex soln. But it looks correct. soln_complex = (img, z) soln = FiniteSet(soln_real, soln_complex) assert nonlinsolve(eqs, [x, z]) == soln r, t = symbols('r, t') system = [r - x**2 - y**2, tan(t) - y/x] s_x = sqrt(r/(tan(t)**2 + 1)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x, s_y), (-s_x, -s_y)) assert nonlinsolve(system, [x, y]) == soln def test_issue_6752(): a,b,c,d = symbols('a, b, c, d', real=True) assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)} @SKIP("slow") def test_issue_5114_solveset(): # slow testcase a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r') # there is no 'a' in the equation set but this is how the # problem was originally posed syms = [a, b, c, f, h, k, n] eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p] assert len(nonlinsolve(eqs, syms)) == 1 @SKIP("Hangs") def _test_issue_5335(): # Not able to check zero dimensional system. # is_zero_dimensional Hangs lam, a0, conc = symbols('lam a0 conc') eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] # there are 4 solutions but only two are valid assert len(nonlinsolve(eqs, sym)) == 2 # float lam, a0, conc = symbols('lam a0 conc') eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, x + y - conc] sym = [x, y, a0] assert len(nonlinsolve(eqs, sym)) == 2 def test_issue_2777(): # the equations represent two circles x, y = symbols('x y', real=True) e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 a, b = Rational(191, 20), 3*sqrt(391)/20 ans = {(a, -b), (a, b)} assert nonlinsolve((e1, e2), (x, y)) == ans assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet # make the 2nd circle's radius be -3 e2 += 6 assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet def test_issue_8828(): x1 = 0 y1 = -620 r1 = 920 x2 = 126 y2 = 276 x3 = 51 y3 = 205 r3 = 104 v = [x, y, z] f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 f2 = (x2 - x)**2 + (y2 - y)**2 - z**2 f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 F = [f1, f2, f3] g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 g2 = f2 g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 G = [g1, g2, g3] # both soln same A = nonlinsolve(F, v) B = nonlinsolve(G, v) assert A == B def test_nonlinsolve_conditionset(): # when solveset failed to solve all the eq # return conditionset f = Function('f') f1 = f(x) - pi/2 f2 = f(y) - pi*Rational(3, 2) intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0) symbols = Tuple(x, y) soln = ConditionSet( symbols, intermediate_system, S.Complexes**2) assert nonlinsolve([f1, f2], [x, y]) == soln def test_substitution_basic(): assert substitution([], [x, y]) == S.EmptySet assert substitution([], []) == S.EmptySet system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19] soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2)) assert substitution(system, [x, y]) == soln soln = FiniteSet((-1, 1)) assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln assert substitution( [x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x]) == S.EmptySet def test_issue_5132_substitution(): x, y, z, r, t = symbols('x, y, z, r, t', real=True) system = [r - x**2 - y**2, tan(t) - y/x] s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y)) assert substitution(system, [x, y]) == soln n = Dummy('n') eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] s_real_y = -log(3) s_real_z = sqrt(-exp(2*x) - sin(log(3))) soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) lam = Lambda(n, 2*n*I*pi + -log(3)) s_complex_y = ImageSet(lam, S.Integers) lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_1 = ImageSet(lam, S.Integers) lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3)))) s_complex_z_2 = ImageSet(lam, S.Integers) soln_complex = FiniteSet( (s_complex_y, s_complex_z_1), (s_complex_y, s_complex_z_2)) soln = soln_real + soln_complex assert substitution(eqs, [y, z]) == soln def test_raises_substitution(): raises(ValueError, lambda: substitution([x**2 -1], [])) raises(TypeError, lambda: substitution([x**2 -1])) raises(ValueError, lambda: substitution([x**2 -1], [sin(x)])) raises(TypeError, lambda: substitution([x**2 -1], x)) raises(TypeError, lambda: substitution([x**2 -1], 1)) # end of tests for nonlinsolve def test_issue_9556(): x = Symbol('x') b = Symbol('b', positive=True) assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet() assert solveset(Abs(x) + b, x, S.Reals) == EmptySet() assert solveset(Eq(b, -1), b, S.Reals) == EmptySet() def test_issue_9611(): x = Symbol('x') a = Symbol('a') y = Symbol('y') assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals assert solveset(Eq(y - y + a, a), y) == S.Complexes def test_issue_9557(): x = Symbol('x') a = Symbol('a') assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals, FiniteSet(-sqrt(-a), sqrt(-a))) def test_issue_9778(): assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1) assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet assert solveset(x**3 + y, x, S.Reals) == \ FiniteSet(-Abs(y)**Rational(1, 3)*sign(y)) def test_issue_10214(): assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet ans = FiniteSet(-2**Rational(2, 3)) assert solveset(x**(S(3)) + 4, x, S.Reals) == ans assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result. assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0 def test_issue_9849(): assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet def test_issue_9953(): assert linsolve([ ], x) == S.EmptySet def test_issue_9913(): assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \ FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/ (3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3)) def test_issue_10397(): assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0) def test_issue_14987(): raises(ValueError, lambda: linear_eq_to_matrix( [x**2], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(-3/x + 1) + 2*y - a], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x**2 - 3*x)/(x - 3) - 3], x)) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)**3 - x**3 - 3*x**2 + 7], x)) raises(ValueError, lambda: linear_eq_to_matrix( [x*(1/x + 1) + y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [(x + 1)*y], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(1/x, 1/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(y/x, y/x + y)], [x, y])) raises(ValueError, lambda: linear_eq_to_matrix( [Eq(x*(x + 1), x**2 + y)], [x, y])) def test_simplification(): eq = x + (a - b)/(-2*a + 2*b) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals) # So that ap - bn is not zero: ap = Symbol('ap', positive=True) bn = Symbol('bn', negative=True) eq = x + (ap - bn)/(-2*ap + 2*bn) assert solveset(eq, x) == FiniteSet(S.Half) assert solveset(eq, x, S.Reals) == FiniteSet(S.Half) def test_issue_10555(): f = Function('f') g = Function('g') assert solveset(f(x) - pi/2, x, S.Reals) == \ ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals) assert solveset(f(g(x)) - pi/2, g(x), S.Reals) == \ ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals) def test_issue_8715(): eq = x + 1/x > -2 + 1/x assert solveset(eq, x, S.Reals) == \ (Interval.open(-2, oo) - FiniteSet(0)) assert solveset(eq.subs(x,log(x)), x, S.Reals) == \ Interval.open(exp(-2), oo) - FiniteSet(1) def test_issue_11174(): r, t = symbols('r t') eq = z**2 + exp(2*x) - sin(y) soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2)) assert solveset(eq, x, S.Reals) == soln eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t) s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t)) soln = Intersection(S.Reals, FiniteSet(s)) assert solveset(eq, x, S.Reals) == soln def test_issue_11534(): # eq and eq2 should give the same solution as a Complement eq = -y + x/sqrt(-x**2 + 1) eq2 = -y**2 + x**2/(-x**2 + 1) soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1)) assert solveset(eq, x, S.Reals) == soln assert solveset(eq2, x, S.Reals) == soln def test_issue_10477(): assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \ Union(Interval.open(-oo, -3), Interval.open(0, 1)) def test_issue_10671(): assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi) i = Interval(1, 10) assert solveset((1/x).diff(x) < 0, x, i) == i def test_issue_11064(): eq = x + sqrt(x**2 - 5) assert solveset(eq > 0, x, S.Reals) == \ Interval(sqrt(5), oo) assert solveset(eq < 0, x, S.Reals) == \ Interval(-oo, -sqrt(5)) assert solveset(eq > sqrt(5), x, S.Reals) == \ Interval.Lopen(sqrt(5), oo) def test_issue_12478(): eq = sqrt(x - 2) + 2 soln = solveset_real(eq, x) assert soln is S.EmptySet assert solveset(eq < 0, x, S.Reals) is S.EmptySet assert solveset(eq > 0, x, S.Reals) == Interval(2, oo) def test_issue_12429(): eq = solveset(log(x)/x <= 0, x, S.Reals) sol = Interval.Lopen(0, 1) assert eq == sol def test_solveset_arg(): assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo) assert solveset(arg(4*x -3), x) == Interval.open(Rational(3, 4), oo) def test__is_finite_with_finite_vars(): f = _is_finite_with_finite_vars # issue 12482 assert all(f(1/x) is None for x in ( Dummy(), Dummy(real=True), Dummy(complex=True))) assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0 def test_issue_13550(): assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3) def test_issue_13849(): t = symbols('t') assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet() def test_issue_14223(): x = Symbol('x') assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, S.Reals) == FiniteSet(-1, 1) assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x, Interval(0, 2)) == FiniteSet(1) def test_issue_10158(): x = Symbol('x') dom = S.Reals assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3)) assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10)) assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1) assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1) assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5)) assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2) dom = S.Complexes raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom)) raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom)) raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom)) raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom)) def test_issue_14300(): x, y, n = symbols('x y n') f = 1 - exp(-18000000*x) - y a1 = FiniteSet(-log(-y + 1)/18000000) assert solveset(f, x, S.Reals) == \ Intersection(S.Reals, a1) assert solveset(f, x) == \ ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 - log(Abs(y - 1))/18000000), S.Integers) def test_issue_14454(): x = Symbol('x') number = CRootOf(x**4 + x - 1, 2) raises(ValueError, lambda: invert_real(number, 0, x, S.Reals)) assert invert_real(x**2, number, x, S.Reals) # no error def test_term_factors(): assert list(_term_factors(3**x - 2)) == [-2, 3**x] expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) assert set(_term_factors(expr)) == set([ 3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)]) #################### tests for transolve and its helpers ############### def test_transolve(): assert _transolve(3**x, x, S.Reals) == S.EmptySet assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10) # exponential tests def test_exponential_real(): from sympy.abc import x, y, z e1 = 3**(2*x) - 2**(x + 3) e2 = 4**(5 - 9*x) - 8**(2 - x) e3 = 2**x + 4**x e4 = exp(log(5)*x) - 2**x e5 = exp(x/y)*exp(-z/y) - 2 e6 = 5**(x/2) - 2**(x/3) e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1) e9 = 2**x + 4**x + 8**x - 84 assert solveset(e1, x, S.Reals) == FiniteSet( -3*log(2)/(-2*log(3) + log(2))) assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15)) assert solveset(e3, x, S.Reals) == S.EmptySet assert solveset(e4, x, S.Reals) == FiniteSet(0) assert solveset(e5, x, S.Reals) == Intersection( S.Reals, FiniteSet(y*log(2*exp(z/y)))) assert solveset(e6, x, S.Reals) == FiniteSet(0) assert solveset(e7, x, S.Reals) == FiniteSet(2) assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5)) assert solveset(e9, x, S.Reals) == FiniteSet(2) assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet( -((-5 - 2*log(3) + log(2))/(log(2) + 2))) assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0) b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b) # coverage test C1, C2 = symbols('C1 C2') f = Function('f') assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection( S.Reals, FiniteSet(-log(C1 + C2/x**2))) y = symbols('y', positive=True) assert solveset_real(x**2 - y**2/exp(x), y) == Intersection( S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x)))) p = Symbol('p', positive=True) assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet() @XFAIL def test_exponential_complex(): from sympy.abc import x from sympy import Dummy n = Dummy('n') assert solveset_complex(2**x + 4**x, x) == imageset( Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers) assert solveset_complex(x**z*y**z - 2, z) == FiniteSet( log(2)/(log(x) + log(y))) assert solveset_complex(4**(x/2) - 2**(x/3), x) == imageset( Lambda(n, 3*n*I*pi/log(2)), S.Integers) assert solveset(2**x + 32, x) == imageset( Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers) eq = (2**exp(y**2/x) + 2)/(x**2 + 15) a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi)) assert solveset_complex(eq, y) == FiniteSet(-a, a) union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers) union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers) assert solveset(2**x + 4**x + 8**x, x) == Union(union1, union2) eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3) res = solveset(eq, x) num = 2*n*I*pi - 4*log(2) + 2*log(3) den = -2*log(2) + log(3) ans = imageset(Lambda(n, num/den), S.Integers) assert res == ans def test_expo_conditionset(): from sympy.abc import x, y f1 = (exp(x) + 1)**x - 2 f2 = (x + 2)**y*x - 3 f3 = 2**x - exp(x) - 3 f4 = log(x) - exp(x) f5 = 2**x + 3**x - 5**x assert solveset(f1, x, S.Reals) == ConditionSet( x, Eq((exp(x) + 1)**x - 2, 0), S.Reals) assert solveset(f2, x, S.Reals) == ConditionSet( x, Eq(x*(x + 2)**y - 3, 0), S.Reals) assert solveset(f3, x, S.Reals) == ConditionSet( x, Eq(2**x - exp(x) - 3, 0), S.Reals) assert solveset(f4, x, S.Reals) == ConditionSet( x, Eq(-exp(x) + log(x), 0), S.Reals) assert solveset(f5, x, S.Reals) == ConditionSet( x, Eq(2**x + 3**x - 5**x, 0), S.Reals) def test_exponential_symbols(): x, y, z = symbols('x y z', positive=True) assert solveset(z**x - y, x, S.Reals) == Intersection( S.Reals, FiniteSet(log(y)/log(z))) w = symbols('w') f1 = 2*x**w - 4*y**w f2 = (x/y)**w - 2 sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals) sol2 = Intersection({log(2)/log(x/y)}, S.Reals) assert solveset(f1, w, S.Reals) == sol1 assert solveset(f2, w, S.Reals) == sol2 assert solveset(x**x, x, S.Reals) == S.EmptySet assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0) assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet( (x - z)/log(2)) - FiniteSet(0) a, b, x, y = symbols('a b x y') assert solveset_real(a**x - b**x, x) == ConditionSet( x, (a > 0) & (b > 0), FiniteSet(0)) assert solveset(a**x - b**x, x) == ConditionSet( x, Ne(a, 0) & Ne(b, 0), FiniteSet(0)) @XFAIL def test_issue_10864(): assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1) @XFAIL def test_solve_only_exp_2(): assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \ FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)) def test_is_exponential(): x, y, z = symbols('x y z') assert _is_exponential(y, x) is False assert _is_exponential(3**x - 2, x) is True assert _is_exponential(5**x - 7**(2 - x), x) is True assert _is_exponential(sin(2**x) - 4*x, x) is False assert _is_exponential(x**y - z, y) is True assert _is_exponential(x**y - z, x) is False assert _is_exponential(2**x + 4**x - 1, x) is True assert _is_exponential(x**(y*z) - x, x) is False assert _is_exponential(x**(2*x) - 3**x, x) is False assert _is_exponential(x**y - y*z, y) is False assert _is_exponential(x**y - x*z, y) is True def test_solve_exponential(): assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \ FiniteSet(-3*log(2)/(-2*log(3) + log(2))) assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \ FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2)) assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \ S.EmptySet assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \ ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals) # end of exponential tests # logarithmic tests def test_logarithmic(): assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet( -sqrt(10), sqrt(10)) assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2) assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet( -3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2) eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) assert solveset_real(eq, x) == \ Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)), sqrt(y**2 - y*exp(z)))) - \ Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2))) assert solveset_real( log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half) assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals @XFAIL def test_uselogcombine_2(): eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2) assert solveset_real(eq, x) == EmptySet() eq = log(8*x) - log(sqrt(x) + 1) - 2 assert solveset_real(eq, x) == EmptySet() def test_is_logarithmic(): assert _is_logarithmic(y, x) is False assert _is_logarithmic(log(x), x) is True assert _is_logarithmic(log(x) - 3, x) is True assert _is_logarithmic(log(x)*log(y), x) is True assert _is_logarithmic(log(x)**2, x) is False assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True assert _is_logarithmic(log(x**y) - y*log(x), x) is True assert _is_logarithmic(sin(log(x)), x) is False assert _is_logarithmic(x + y, x) is False assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True assert _is_logarithmic(log(x) + log(y) + x, x) is False assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True assert _is_logarithmic(log(log(3) + x) + log(x), x) is True assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False def test_solve_logarithm(): y = Symbol('y') assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals y = Symbol('y', positive=True) assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1) # end of logarithmic tests def test_linear_coeffs(): from sympy.solvers.solveset import linear_coeffs assert linear_coeffs(0, x) == [0, 0] assert all(i is S.Zero for i in linear_coeffs(0, x)) assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3] assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3] assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3] raises(ValueError, lambda: linear_coeffs(x + 2*x**2 + x**3, x, x**2)) raises(ValueError, lambda: linear_coeffs(1/x*(x - 1) + 1/x, x)) assert linear_coeffs(a*(x + y), x, y) == [a, a, 0] assert linear_coeffs(1.0, x, y) == [0, 0, 1.0] # modular tests def test_is_modular(): x, y = symbols('x y') assert _is_modular(y, x) is False assert _is_modular(Mod(x, 3) - 1, x) is True assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True assert _is_modular(Mod(x, 3) - 1, y) is False assert _is_modular(Mod(x, 3)**2 - 5, x) is False assert _is_modular(Mod(x, 3)**2 - y, x) is False assert _is_modular(exp(Mod(x, 3)) - 1, x) is False assert _is_modular(Mod(3, y) - 1, y) is False def test_invert_modular(): x, y = symbols('x y') n = Dummy('n', integer=True) from sympy.solvers.solveset import _invert_modular as invert_modular # non invertible cases assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5) assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5) assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5) # a is symbol assert invert_modular(Mod(x, 7), S(5), n, x) == \ (x, ImageSet(Lambda(n, 7*n + 5), S.Integers)) # a.is_Add assert invert_modular(Mod(x + 8, 7), S(5), n, x) == \ (x, ImageSet(Lambda(n, 7*n + 4), S.Integers)) assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \ (Mod(x**2 + x, 7), 5) # a.is_Mul assert invert_modular(Mod(3*x, 7), S(5), n, x) == \ (x, ImageSet(Lambda(n, 7*n + 4), S.Integers)) assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \ (Mod((x + 1)*(x + 2), 7), 5) # a.is_Pow assert invert_modular(Mod(x**4, 7), S(5), n, x) == \ (x, EmptySet()) assert invert_modular(Mod(3**x, 4), S(3), n, x) == \ (x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0)) assert invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x) == \ (x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0)) def test_solve_modular(): x = Symbol('x') n = Dummy('n', integer=True) # if rhs has symbol (need to be implemented in future). assert solveset(Mod(x, 4) - x, x, S.Integers) == \ ConditionSet(x, Eq(-x + Mod(x, 4), 0), \ S.Integers) # when _invert_modular fails to invert assert solveset(3 - Mod(sin(x), 7), x, S.Integers) == \ ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers) assert solveset(3 - Mod(log(x), 7), x, S.Integers) == \ ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers) assert solveset(3 - Mod(exp(x), 7), x, S.Integers) == \ ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0), S.Integers) # EmptySet solution definitely assert solveset(7 - Mod(x, 5), x, S.Integers) == EmptySet() assert solveset(5 - Mod(x, 5), x, S.Integers) == EmptySet() # Negative m assert solveset(2 + Mod(x, -3), x, S.Integers) == \ ImageSet(Lambda(n, -3*n - 2), S.Integers) assert solveset(4 + Mod(x, -3), x, S.Integers) == EmptySet() # linear expression in Mod assert solveset(3 - Mod(x, 5), x, S.Integers) == ImageSet(Lambda(n, 5*n + 3), S.Integers) assert solveset(3 - Mod(5*x - 8, 7), x, S.Integers) == \ ImageSet(Lambda(n, 7*n + 5), S.Integers) assert solveset(3 - Mod(5*x, 7), x, S.Integers) == \ ImageSet(Lambda(n, 7*n + 2), S.Integers) # higher degree expression in Mod assert solveset(Mod(x**2, 160) - 9, x, S.Integers) == \ Union(ImageSet(Lambda(n, 160*n + 3), S.Integers), ImageSet(Lambda(n, 160*n + 13), S.Integers), ImageSet(Lambda(n, 160*n + 67), S.Integers), ImageSet(Lambda(n, 160*n + 77), S.Integers), ImageSet(Lambda(n, 160*n + 83), S.Integers), ImageSet(Lambda(n, 160*n + 93), S.Integers), ImageSet(Lambda(n, 160*n + 147), S.Integers), ImageSet(Lambda(n, 160*n + 157), S.Integers)) assert solveset(3 - Mod(x**4, 7), x, S.Integers) == EmptySet() assert solveset(Mod(x**4, 17) - 13, x, S.Integers) == \ Union(ImageSet(Lambda(n, 17*n + 3), S.Integers), ImageSet(Lambda(n, 17*n + 5), S.Integers), ImageSet(Lambda(n, 17*n + 12), S.Integers), ImageSet(Lambda(n, 17*n + 14), S.Integers)) # a.is_Pow tests assert solveset(Mod(7**x, 41) - 15, x, S.Integers) == \ ImageSet(Lambda(n, 40*n + 3), S.Naturals0) assert solveset(Mod(12**x, 21) - 18, x, S.Integers) == \ ImageSet(Lambda(n, 6*n + 2), S.Naturals0) assert solveset(Mod(3**x, 4) - 3, x, S.Integers) == \ ImageSet(Lambda(n, 2*n + 1), S.Naturals0) assert solveset(Mod(2**x, 7) - 2 , x, S.Integers) == \ ImageSet(Lambda(n, 3*n + 1), S.Naturals0) assert solveset(Mod(3**(3**x), 4) - 3, x, S.Integers) == \ Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)}, S.Integers)), S.Naturals0), S.Integers) # Not Implemented for m without primitive root assert solveset(Mod(x**3, 8) - 1, x, S.Integers) == \ ConditionSet(x, Eq(Mod(x**3, 8) - 1, 0), S.Integers) assert solveset(Mod(x**4, 9) - 4, x, S.Integers) == \ ConditionSet(x, Eq(Mod(x**4, 9) - 4, 0), S.Integers) # domain intersection assert solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0) == \ Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0) # Complex args assert solveset(Mod(x, 3) - I, x, S.Integers) == \ EmptySet() assert solveset(Mod(I*x, 3) - 2, x, S.Integers) == \ ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers) assert solveset(Mod(I + x, 3) - 2, x, S.Integers) == \ ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers) # issue 13178 n = symbols('n', integer=True) a = 742938285 z = 1898888478 m = 2**31 - 1 x = 20170816 assert solveset(x - Mod(a**n*z, m), n, S.Integers) == \ ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0) assert solveset(x - Mod(a**n*z, m), n, S.Naturals0) == \ Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0), S.Naturals0) assert solveset(x - Mod(a**(2*n)*z, m), n, S.Integers) == \ Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0), S.Integers) assert solveset(x - Mod(a**(2*n + 7)*z, m), n, S.Integers) == EmptySet() assert solveset(x - Mod(a**(n - 4)*z, m), n, S.Integers) == \ Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0), S.Integers) @XFAIL def test_solve_modular_fail(): # issue 17373 (https://github.com/sympy/sympy/issues/17373) assert solveset(Mod(x**4, 14) - 11, x, S.Integers) == \ Union(ImageSet(Lambda(n, 14*n + 3), S.Integers), ImageSet(Lambda(n, 14*n + 11), S.Integers)) assert solveset(Mod(x**31, 74) - 43, x, S.Integers) == \ ImageSet(Lambda(n, 74*n + 31), S.Integers) # end of modular tests
9616c8134bd7763563c3472a20553a62a4fb09ce4f3febc96a18f2f5c9c90277
from sympy import ( Abs, And, Derivative, Dummy, Eq, Float, Function, Gt, I, Integral, LambertW, Lt, Matrix, Or, Poly, Q, Rational, S, Symbol, Ne, Wild, acos, asin, atan, atanh, cos, cosh, diff, erf, erfinv, erfc, erfcinv, exp, im, log, pi, re, sec, sin, sinh, solve, solve_linear, sqrt, sstr, symbols, sympify, tan, tanh, root, atan2, arg, Mul, SparseMatrix, ask, Tuple, nsolve, oo, E, cbrt, denom, Add, Piecewise) from sympy.core.compatibility import range from sympy.core.function import nfloat from sympy.solvers import solve_linear_system, solve_linear_system_LU, \ solve_undetermined_coeffs from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \ det_quick, det_perm, det_minor, _simple_dens, check_assumptions, denoms, \ failing_assumptions from sympy.physics.units import cm from sympy.polys.rootoftools import CRootOf from sympy.utilities.pytest import slow, XFAIL, SKIP, raises from sympy.utilities.randtest import verify_numerically as tn from sympy.abc import a, b, c, d, k, h, p, x, y, z, t, q, m def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_swap_back(): f, g = map(Function, 'fg') fx, gx = f(x), g(x) assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \ {fx: gx + 5, y: -gx - 3} assert solve(fx + gx*x - 2, [fx, gx], dict=True)[0] == {fx: 2, gx: 0} assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y - gx**2*x}] assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}] def guess_solve_strategy(eq, symbol): try: solve(eq, symbol) return True except (TypeError, NotImplementedError): return False def test_guess_poly(): # polynomial equations assert guess_solve_strategy( S(4), x ) # == GS_POLY assert guess_solve_strategy( x, x ) # == GS_POLY assert guess_solve_strategy( x + a, x ) # == GS_POLY assert guess_solve_strategy( 2*x, x ) # == GS_POLY assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY assert guess_solve_strategy( x*y + y, x ) # == GS_POLY assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY def test_guess_poly_cv(): # polynomial equations via a change of variable assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1 assert guess_solve_strategy( x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1 assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1 # polynomial equation multiplying both sides by x**n assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2 def test_guess_rational_cv(): # rational functions assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL assert guess_solve_strategy( (x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1 # rational functions via the change of variable y -> x**n assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \ #== GS_RATIONAL_CV_1 def test_guess_transcendental(): #transcendental functions assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy( exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL def test_solve_args(): # equation container, issue 5113 ans = {x: -3, y: 1} eqs = (x + 5*y - 2, -3*x + 6*y - 15) assert all(solve(container(eqs), x, y) == ans for container in (tuple, list, set, frozenset)) assert solve(Tuple(*eqs), x, y) == ans # implicit symbol to solve for assert set(solve(x**2 - 4)) == set([S(2), -S(2)]) assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1} assert solve(x - exp(x), x, implicit=True) == [exp(x)] # no symbol to solve for assert solve(42) == solve(42, x) == [] assert solve([1, 2]) == [] # duplicate symbols removed assert solve((x - 3, y + 2), x, y, x) == {x: 3, y: -2} # unordered symbols # only 1 assert solve(y - 3, set([y])) == [3] # more than 1 assert solve(y - 3, set([x, y])) == [{y: 3}] # multiple symbols: take the first linear solution+ # - return as tuple with values for all requested symbols assert solve(x + y - 3, [x, y]) == [(3 - y, y)] # - unless dict is True assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}] # - or no symbols are given assert solve(x + y - 3) == [{x: 3 - y}] # multiple symbols might represent an undetermined coefficients system assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0} args = (a + b)*x - b**2 + 2, a, b assert solve(*args) == \ [(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))] assert solve(*args, set=True) == \ ([a, b], set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))])) assert solve(*args, dict=True) == \ [{b: sqrt(2), a: -sqrt(2)}, {b: -sqrt(2), a: sqrt(2)}] eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p flags = dict(dict=True) assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \ [{k: c - b**2/(4*a), h: -b/(2*a), p: 1/(4*a)}] flags.update(dict(simplify=False)) assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \ [{k: (4*a*c - b**2)/(4*a), h: -b/(2*a), p: 1/(4*a)}] # failing undetermined system assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \ [{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}] # failed single equation assert solve(1/(1/x - y + exp(y))) == [] raises( NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y))) # failed system # -- when no symbols given, 1 fails assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}] # both fail assert solve( (exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}] # -- when symbols given solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)] # symbol is a number assert solve(x**2 - pi, pi) == [x**2] # no equations assert solve([], [x]) == [] # overdetermined system # - nonlinear assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}] # - linear assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2} # When one or more args are Boolean assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}] assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == [] assert not solve([Eq(x, x+1), x < 2], x) assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0) assert solve([Eq(x, x), Eq(x, x+1)], x) == [] assert solve(True, x) == [] assert solve([x-1, False], [x], set=True) == ([], set()) def test_solve_polynomial1(): assert solve(3*x - 2, x) == [Rational(2, 3)] assert solve(Eq(3*x, 2), x) == [Rational(2, 3)] assert set(solve(x**2 - 1, x)) == set([-S.One, S.One]) assert set(solve(Eq(x**2, 1), x)) == set([-S.One, S.One]) assert solve(x - y**3, x) == [y**3] rx = root(x, 3) assert solve(x - y**3, y) == [ rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2] a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \ { x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), } solution = {y: S.Zero, x: S.Zero} assert solve((x - y, x + y), x, y ) == solution assert solve((x - y, x + y), (x, y)) == solution assert solve((x - y, x + y), [x, y]) == solution assert set(solve(x**3 - 15*x - 4, x)) == set([ -2 + 3**S.Half, S(4), -2 - 3**S.Half ]) assert set(solve((x**2 - 1)**2 - a, x)) == \ set([sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))]) def test_solve_polynomial2(): assert solve(4, x) == [] def test_solve_polynomial_cv_1a(): """ Test for solving on equations that can be converted to a polynomial equation using the change of variable y -> x**Rational(p, q) """ assert solve( sqrt(x) - 1, x) == [1] assert solve( sqrt(x) - 2, x) == [4] assert solve( x**Rational(1, 4) - 2, x) == [16] assert solve( x**Rational(1, 3) - 3, x) == [27] assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0] def test_solve_polynomial_cv_1b(): assert set(solve(4*x*(1 - a*sqrt(x)), x)) == set([S.Zero, 1/a**2]) assert set(solve(x*(root(x, 3) - 3), x)) == set([S.Zero, S(27)]) def test_solve_polynomial_cv_2(): """ Test for solving on equations that can be converted to a polynomial equation multiplying both sides of the equation by x**m """ assert solve(x + 1/x - 1, x) in \ [[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2], [ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]] def test_quintics_1(): f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 s = solve(f, check=False) for r in s: res = f.subs(x, r.n()).n() assert tn(res, 0) f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = solve(f) for r in s: assert r.func == CRootOf # if one uses solve to get the roots of a polynomial that has a CRootOf # solution, make sure that the use of nfloat during the solve process # doesn't fail. Note: if you want numerical solutions to a polynomial # it is *much* faster to use nroots to get them than to solve the # equation only to get RootOf solutions which are then numerically # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather # than [i.n() for i in solve(eq)] to get the numerical roots of eq. assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \ CRootOf(x**5 + 3*x**3 + 7, 0).n() def test_highorder_poly(): # just testing that the uniq generator is unpacked sol = solve(x**6 - 2*x + 2) assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 def test_quintics_2(): f = x**5 + 15*x + 12 s = solve(f, check=False) for r in s: res = f.subs(x, r.n()).n() assert tn(res, 0) f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 s = solve(f) for r in s: assert r.func == CRootOf def test_solve_rational(): """Test solve for rational functions""" assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3] def test_solve_nonlinear(): assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}] assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))}, {y: x*sqrt(exp(x))}] def test_issue_8666(): x = symbols('x') assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == [] assert solve(Eq(x + 1/x, 1/x), x) == [] def test_issue_7228(): assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half] def test_issue_7190(): assert solve(log(x-3) + log(x+3), x) == [sqrt(10)] def test_linear_system(): x, y, z, t, n = symbols('x, y, z, t, n') assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == [] assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == [] assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == [] assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1} M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0], [n + 1, n + 1, -2*n - 1, -(n + 1), 0], [-1, 0, 1, 0, 0]]) assert solve_linear_system(M, x, y, z, t) == \ {x: -t - t/n, z: -t - t/n, y: 0} assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t} def test_linear_system_function(): a = Function('a') assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)], a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)} def test_linear_systemLU(): n = Symbol('n') M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]]) assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n), x: 1 - 12*n/(n**2 + 18*n), y: 6*n/(n**2 + 18*n)} # Note: multiple solutions exist for some of these equations, so the tests # should be expected to break if the implementation of the solver changes # in such a way that a different branch is chosen @slow def test_solve_transcendental(): from sympy.abc import a, b assert solve(exp(x) - 3, x) == [log(3)] assert set(solve((a*x + b)*(exp(x) - 3), x)) == set([-b/a, log(3)]) assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)] assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)] assert solve(Eq(cos(x), sin(x)), x) == [pi*Rational(-3, 4), pi/4] assert set(solve(exp(x) + exp(-x) - y, x)) in [set([ log(y/2 - sqrt(y**2 - 4)/2), log(y/2 + sqrt(y**2 - 4)/2), ]), set([ log(y - sqrt(y**2 - 4)) - log(2), log(y + sqrt(y**2 - 4)) - log(2)]), set([ log(y/2 - sqrt((y - 2)*(y + 2))/2), log(y/2 + sqrt((y - 2)*(y + 2))/2)])] assert solve(exp(x) - 3, x) == [log(3)] assert solve(Eq(exp(x), 3), x) == [log(3)] assert solve(log(x) - 3, x) == [exp(3)] assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)] assert solve(3**(x + 2), x) == [] assert solve(3**(2 - x), x) == [] assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)] assert solve(2*x + 5 + log(3*x - 2), x) == \ [Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2] assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3] assert set(solve((2*x + 8)*(8 + exp(x)), x)) == set([S(-4), log(8) + pi*I]) eq = 2*exp(3*x + 4) - 3 ans = solve(eq, x) # this generated a failure in flatten assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3] assert solve(exp(x) + 1, x) == [pi*I] eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) result = solve(eq, x) ans = [(log(2401) + 5*LambertW((-1 + sqrt(5) + sqrt(2)*I*sqrt(sqrt(5) + \ 5))*log(7**(7*3**Rational(1, 5)/20))* -1))/(-3*log(7)), \ (log(2401) + 5*LambertW((1 + sqrt(5) - sqrt(2)*I*sqrt(5 - \ sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \ (log(2401) + 5*LambertW((1 + sqrt(5) + sqrt(2)*I*sqrt(5 - \ sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \ (log(2401) + 5*LambertW((-sqrt(5) + 1 + sqrt(2)*I*sqrt(sqrt(5) + \ 5))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \ (log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(-3*log(7))] assert result == ans # it works if expanded, too assert solve(eq.expand(), x) == result assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)] assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2] assert solve(z*cos(sin(x)) - y, x) == [ pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi, -asin(acos(y/z) - 2*pi), asin(acos(y/z))] assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)] # issue 4508 assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]] assert solve(y - b*exp(a/x), x) == [a/log(y/b)] # issue 4507 assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]] # issue 4506 assert solve(y - a*x**b, x) == [(y/a)**(1/b)] # issue 4505 assert solve(z**x - y, x) == [log(y)/log(z)] # issue 4504 assert solve(2**x - 10, x) == [log(10)/log(2)] # issue 6744 assert solve(x*y) == [{x: 0}, {y: 0}] assert solve([x*y]) == [{x: 0}, {y: 0}] assert solve(x**y - 1) == [{x: 1}, {y: 0}] assert solve([x**y - 1]) == [{x: 1}, {y: 0}] assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] # issue 4739 assert solve(exp(log(5)*x) - 2**x, x) == [0] # issue 14791 assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0] f = Function('f') assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0] assert solve(f(x) - f(0), x) == [0] assert solve(f(x) - f(2 - x), x) == [1] raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x)) raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x)) raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x)) raises(ValueError, lambda: solve(f(x, y) - f(1), x)) # misc # make sure that the right variables is picked up in tsolve # shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated # for eq_down. Actual answers, as determined numerically are approx. +/- 0.83 raises(NotImplementedError, lambda: solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3)) # watch out for recursive loop in tsolve raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x)) # issue 7245 assert solve(sin(sqrt(x))) == [0, pi**2] # issue 7602 a, b = symbols('a, b', real=True, negative=False) assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \ '[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]' # issue 15325 assert solve(y**(1/x) - z, x) == [log(y)/log(z)] def test_solve_for_functions_derivatives(): t = Symbol('t') x = Function('x')(t) y = Function('y')(t) a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) assert soln == { x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), } assert solve(x - 1, x) == [1] assert solve(3*x - 2, x) == [Rational(2, 3)] soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) + a22*y.diff(t) - b2], x.diff(t), y.diff(t)) assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } assert solve(x.diff(t) - 1, x.diff(t)) == [1] assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)] eqns = set((3*x - 1, 2*y - 4)) assert solve(eqns, set((x, y))) == { x: Rational(1, 3), y: 2 } x = Symbol('x') f = Function('f') F = x**2 + f(x)**2 - 4*x - 1 assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)] # Mixed cased with a Symbol and a Function x = Symbol('x') y = Function('y')(t) soln = solve([a11*x + a12*y.diff(t) - b1, a21*x + a22*y.diff(t) - b2], x, y.diff(t)) assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } def test_issue_3725(): f = Function('f') F = x**2 + f(x)**2 - 4*x - 1 e = F.diff(x) assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]] def test_issue_3870(): a, b, c, d = symbols('a b c d') A = Matrix(2, 2, [a, b, c, d]) B = Matrix(2, 2, [0, 2, -3, 0]) C = Matrix(2, 2, [1, 2, 3, 4]) assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0} assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0} def test_solve_linear(): w = Wild('w') assert solve_linear(x, x) == (0, 1) assert solve_linear(x, exclude=[x]) == (0, 1) assert solve_linear(x, symbols=[w]) == (0, 1) assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)] assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x) assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)] assert solve_linear(3*x - y, 0, [x]) == (x, y/3) assert solve_linear(3*x - y, 0, [y]) == (y, 3*x) assert solve_linear(x**2/y, 1) == (y, x**2) assert solve_linear(w, x) in [(w, x), (x, w)] assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \ (y, -2 - cos(x)**2 - sin(x)**2) assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1) assert solve_linear(Eq(x, 3)) == (x, 3) assert solve_linear(1/(1/x - 2)) == (0, 0) assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1) assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1) assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0) assert solve_linear(0**x - 1) == (0**x - 1, 1) assert solve_linear(1 + 1/(x - 1)) == (x, 0) eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 assert solve_linear(eq) == (0, 1) eq = cos(x)**2 + sin(x)**2 # = 1 assert solve_linear(eq) == (0, 1) raises(ValueError, lambda: solve_linear(Eq(x, 3), 3)) def test_solve_undetermined_coeffs(): assert solve_undetermined_coeffs(a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x) == \ {a: -2, b: 2, c: -1} # Test that rational functions work assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == \ {a: 1, b: 1} # Test cancellation in rational functions assert solve_undetermined_coeffs(((c + 1)*a*x**2 + (c + 1)*b*x**2 + (c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \ {a: -2, b: 2, c: -1} def test_solve_inequalities(): x = Symbol('x') sol = And(S.Zero < x, x < oo) assert solve(x + 1 > 1) == sol assert solve([x + 1 > 1]) == sol assert solve([x + 1 > 1], x) == sol assert solve([x + 1 > 1], [x]) == sol system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] assert solve(system) == \ And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0)) x = Symbol('x', real=True) system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] assert solve(system) == \ Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))) # issues 6627, 3448 assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3)) assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1)) assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6)) assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo) assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1) assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo) assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1) assert solve(Eq(False, x)) == False assert solve(Eq(True, x)) == True assert solve(Eq(False, ~x)) == True assert solve(Eq(True, ~x)) == False assert solve(Ne(True, x)) == False def test_issue_4793(): assert solve(1/x) == [] assert solve(x*(1 - 5/x)) == [5] assert solve(x + sqrt(x) - 2) == [1] assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == [] assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == [] assert solve((x/(x + 1) + 3)**(-2)) == [] assert solve(x/sqrt(x**2 + 1), x) == [0] assert solve(exp(x) - y, x) == [log(y)] assert solve(exp(x)) == [] assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]] eq = 4*3**(5*x + 2) - 7 ans = solve(eq, x) assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == ( [x, y], {(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))}) assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}] assert solve((x - 1)/(1 + 1/(x - 1))) == [] assert solve(x**(y*z) - x, x) == [1] raises(NotImplementedError, lambda: solve(log(x) - exp(x), x)) raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3)) def test_PR1964(): # issue 5171 assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0] assert solve(sqrt(x - 1)) == [1] # issue 4462 a = Symbol('a') assert solve(-3*a/sqrt(x), x) == [] # issue 4486 assert solve(2*x/(x + 2) - 1, x) == [2] # issue 4496 assert set(solve((x**2/(7 - x)).diff(x))) == set([S.Zero, S(14)]) # issue 4695 f = Function('f') assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)] # issue 4497 assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)] assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4] assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \ [ set([log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)]), set([2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)]), set([log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)]), ] assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \ set([log(-sqrt(3) + 2), log(sqrt(3) + 2)]) assert set(solve(x**y + x**(2*y) - 1, x)) == \ set([(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)]) assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)] assert solve( x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]] # if you do inversion too soon then multiple roots (as for the following) # will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3 E = S.Exp1 assert solve(exp(3*x) - exp(3), x) in [ [1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))], [1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)], ] # coverage test p = Symbol('p', positive=True) assert solve((1/p + 1)**(p + 1)) == [] def test_issue_5197(): x = Symbol('x', real=True) assert solve(x**2 + 1, x) == [] n = Symbol('n', integer=True, positive=True) assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1] x = Symbol('x', positive=True) y = Symbol('y') assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == [] # not {x: -3, y: 1} b/c x is positive # The solution following should not contain (-sqrt(2), sqrt(2)) assert solve((x + y)*n - y**2 + 2, x, y) == [(sqrt(2), -sqrt(2))] y = Symbol('y', positive=True) # The solution following should not contain {y: -x*exp(x/2)} assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}] x, y, z = symbols('x y z', positive=True) assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}] def test_checking(): assert set( solve(x*(x - y/x), x, check=False)) == set([sqrt(y), S.Zero, -sqrt(y)]) assert set(solve(x*(x - y/x), x, check=True)) == set([sqrt(y), -sqrt(y)]) # {x: 0, y: 4} sets denominator to 0 in the following so system should return None assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == [] # 0 sets denominator of 1/x to zero so None is returned assert solve(1/(1/x + 2)) == [] def test_issue_4671_4463_4467(): assert solve((sqrt(x**2 - 1) - 2)) in ([sqrt(5), -sqrt(5)], [-sqrt(5), sqrt(5)]) assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [ -sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))] C1, C2 = symbols('C1 C2') f = Function('f') assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))] a = Symbol('a') E = S.Exp1 assert solve(1 - log(a + 4*x**2), x) in ( [-sqrt(-a + E)/2, sqrt(-a + E)/2], [sqrt(-a + E)/2, -sqrt(-a + E)/2] ) assert solve(log(a**(-3) - x**2)/a, x) in ( [-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))], [sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],) assert solve(1 - log(a + 4*x**2), x) in ( [-sqrt(-a + E)/2, sqrt(-a + E)/2], [sqrt(-a + E)/2, -sqrt(-a + E)/2],) assert set(solve(( a**2 + 1) * (sin(a*x) + cos(a*x)), x)) == set([-pi/(4*a), 3*pi/(4*a)]) assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a] assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \ set([log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a, log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a]) assert solve(atan(x) - 1) == [tan(1)] def test_issue_5132(): r, t = symbols('r,t') assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \ set([( -sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)), (sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))]) assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \ [(log(sin(Rational(1, 3))), Rational(1, 3))] assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \ [(log(-sin(log(3))), -log(3))] assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \ set([(log(-sin(2)), -S(2)), (log(sin(2)), S(2))]) eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] assert solve(eqs, set=True) == \ ([x, y], set([ (log(-sqrt(-z**2 - sin(log(3)))), -log(3)), (log(-z**2 - sin(log(3)))/2, -log(3))])) assert solve(eqs, x, z, set=True) == ( [x, z], {(log(-z**2 + sin(y))/2, z), (log(-sqrt(-z**2 + sin(y))), z)}) assert set(solve(eqs, x, y)) == \ set([ (log(-sqrt(-z**2 - sin(log(3)))), -log(3)), (log(-z**2 - sin(log(3)))/2, -log(3))]) assert set(solve(eqs, y, z)) == \ set([ (-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (-log(3), sqrt(-exp(2*x) - sin(log(3))))]) eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3] assert solve(eqs, set=True) == ([x, y], set( [ (log(-sqrt(-z - sin(log(3)))), -log(3)), (log(-z - sin(log(3)))/2, -log(3))])) assert solve(eqs, x, z, set=True) == ( [x, z], {(log(-sqrt(-z + sin(y))), z), (log(-z + sin(y))/2, z)}) assert set(solve(eqs, x, y)) == set( [ (log(-sqrt(-z - sin(log(3)))), -log(3)), (log(-z - sin(log(3)))/2, -log(3))]) assert solve(eqs, z, y) == \ [(-exp(2*x) - sin(log(3)), -log(3))] assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == ( [x, y], set([(S.One, S(3)), (S(3), S.One)])) assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \ set([(S.One, S(3)), (S(3), S.One)]) def test_issue_5335(): lam, a0, conc = symbols('lam a0 conc') a = 0.005 b = 0.743436700916726 eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, a0*(1 - x/2)*x - 1*y - b*y, x + y - conc] sym = [x, y, a0] # there are 4 solutions obtained manually but only two are valid assert len(solve(eqs, sym, manual=True, minimal=True)) == 2 assert len(solve(eqs, sym)) == 2 # cf below with rational=False @SKIP("Hangs") def _test_issue_5335_float(): # gives ZeroDivisionError: polynomial division lam, a0, conc = symbols('lam a0 conc') a = 0.005 b = 0.743436700916726 eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, a0*(1 - x/2)*x - 1*y - b*y, x + y - conc] sym = [x, y, a0] assert len(solve(eqs, sym, rational=False)) == 2 def test_issue_5767(): assert set(solve([x**2 + y + 4], [x])) == \ set([(-sqrt(-y - 4),), (sqrt(-y - 4),)]) def test_polysys(): assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \ set([(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)), (1 - sqrt(5), 2 + sqrt(5))]) assert solve([x**2 + y - 2, x**2 + y]) == [] # the ordering should be whatever the user requested assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 + y - 3, x - y - 4], (y, x)) @slow def test_unrad1(): raises(NotImplementedError, lambda: unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3)) raises(NotImplementedError, lambda: unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y))) s = symbols('s', cls=Dummy) # checkers to deal with possibility of answer coming # back with a sign change (cf issue 5203) def check(rv, ans): assert bool(rv[1]) == bool(ans[1]) if ans[1]: return s_check(rv, ans) e = rv[0].expand() a = ans[0].expand() return e in [a, -a] and rv[1] == ans[1] def s_check(rv, ans): # get the dummy rv = list(rv) d = rv[0].atoms(Dummy) reps = list(zip(d, [s]*len(d))) # replace s with this dummy rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)]) ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)]) return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \ str(rv[1]) == str(ans[1]) assert check(unrad(sqrt(x)), (x, [])) assert check(unrad(sqrt(x) + 1), (x - 1, [])) assert check(unrad(sqrt(x) + root(x, 3) + 2), (s**3 + s**2 + 2, [s, s**6 - x])) assert check(unrad(sqrt(x)*root(x, 3) + 2), (x**5 - 64, [])) assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)), (x**3 - (x + 1)**2, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)), (-2*sqrt(2)*x - 2*x + 1, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + 2), (16*x - 9, [])) assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)), (5*x**2 - 4*x, [])) assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)), ((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, [])) assert check(unrad(sqrt(x) + sqrt(1 - x)), (2*x - 1, [])) assert check(unrad(sqrt(x) + sqrt(1 - x) - 3), (x**2 - x + 16, [])) assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)), (5*x**2 - 2*x + 1, [])) assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [ (25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []), (25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])] assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \ (41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487 assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, [])) eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) assert check(unrad(eq), (16*x**2 - 9*x, [])) assert set(solve(eq, check=False)) == set([S.Zero, Rational(9, 16)]) assert solve(eq) == [] # but this one really does have those solutions assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \ set([S.Zero, Rational(9, 16)]) assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y), (S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), [])) assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)), (x**5 - x**4 - x**3 + 2*x**2 + x - 1, [])) assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y), (4*x*y + x - 4*y, [])) assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x), (x**2 - x + 4, [])) # http://tutorial.math.lamar.edu/ # Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a assert solve(Eq(x, sqrt(x + 6))) == [3] assert solve(Eq(x + sqrt(x - 4), 4)) == [4] assert solve(Eq(1, x + sqrt(2*x - 3))) == [] assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == set([-S.One, S(2)]) assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == set([S(5), S(13)]) assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6] # http://www.purplemath.com/modules/solverad.htm assert solve((2*x - 5)**Rational(1, 3) - 3) == [16] assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \ set([Rational(-1, 2), Rational(-1, 3)]) assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == set([-S(8), S(2)]) assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0] assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5] assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16] assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4] assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0] assert solve(sqrt(x) - 2 - 5) == [49] assert solve(sqrt(x - 3) - sqrt(x) - 3) == [] assert solve(sqrt(x - 1) - x + 7) == [10] assert solve(sqrt(x - 2) - 5) == [27] assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3] assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == [] # don't posify the expression in unrad and do use _mexpand z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x) p = posify(z)[0] assert solve(p) == [] assert solve(z) == [] assert solve(z + 6*I) == [Rational(-1, 11)] assert solve(p + 6*I) == [] # issue 8622 assert unrad((root(x + 1, 5) - root(x, 3))) == ( x**5 - x**3 - 3*x**2 - 3*x - 1, []) # issue #8679 assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x), (s**3 + s**2 + s + sqrt(y), [s, s**3 - x])) # for coverage assert check(unrad(sqrt(x) + root(x, 3) + y), (s**3 + s**2 + y, [s, s**6 - x])) assert solve(sqrt(x) + root(x, 3) - 2) == [1] raises(NotImplementedError, lambda: solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2)) # fails through a different code path raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x)) # unrad some assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [ x + (x**Rational(1, 3) + x)**Rational(5, 2)] assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2), (s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 - 192*s - 56, [s, s**2 - x])) e = root(x + 1, 3) + root(x, 3) assert unrad(e) == (2*x + 1, []) eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) assert check(unrad(eq), (15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, [])) assert check(unrad(root(x, 4) + root(x, 4)**3 - 1), (s**3 + s - 1, [s, s**4 - x])) assert check(unrad(root(x, 2) + root(x, 2)**3 - 1), (x**3 + 2*x**2 + x - 1, [])) assert unrad(x**0.5) is None assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3), (s**3 + s + t, [s, s**5 - x - y])) assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y), (s**3 + s + x, [s, s**5 - x - y])) assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x), (s**5 + s**3 + s - y, [s, s**5 - x - y])) assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)), (s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 + 10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1])) raises(NotImplementedError, lambda: unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1))) # the simplify flag should be reset to False for unrad results; # if it's not then this next test will take a long time assert solve(root(x, 3) + root(x, 5) - 2) == [1] eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) assert check(unrad(eq), ((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), [])) ans = S(''' [4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)) + 4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''') assert solve(eq) == ans # duplicate radical handling assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2), (s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1])) # cov post-processing e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2 assert check(unrad(e), (s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30, [s, s**3 - x**2 - 1])) e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2 assert check(unrad(e), (s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25, [s, s**3 - x - 1])) assert check(unrad(e, _reverse=True), (s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89, [s, s**2 - x - sqrt(x + 1)])) # this one needs r0, r1 reversal to work assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2), (s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 + 32*s + 17, [s, s**6 - x])) # is this needed? #assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == ( # x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5, []) raises(NotImplementedError, lambda: unrad(sqrt(cosh(x)/x) + root(x + 1,3)*sqrt(x) - 1)) assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x), (s**(2*y) + s + 1, [s, s**3 - x - y])) # This tests two things: that if full unrad is attempted and fails # the solution should still be found; also it tests that the use of # composite assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 # watch out for when the cov doesn't involve the symbol of interest eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1') assert solve(eq, y) == [ 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (Rational(-1, 2) - sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (Rational(-1, 2) + sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3] eq = root(x + 1, 3) - (root(x, 3) + root(x, 5)) assert check(unrad(eq), (3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x])) assert check(unrad(eq - 2), (3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 + 12*s**3 + 7, [s, s**15 - x])) assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)), (4096*s**13 + 960*s**12 + 48*s**11 - s**10 - 1728*s**4, [s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389 assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2), (343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 - 3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x - 1])) # orig expr has one real root: -0.048 assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)), (729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 - 3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x - 1])) # orig expr has 2 real roots: -0.91, -0.15 assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2), (729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 + 453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3 - 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1])) # orig expr has 1 real root: 19.53 ans = solve(sqrt(x) + sqrt(x + 1) - sqrt(1 - x) - sqrt(2 + x)) assert len(ans) == 1 and NS(ans[0])[:4] == '0.73' # the fence optimization problem # https://github.com/sympy/sympy/issues/4793#issuecomment-36994519 F = Symbol('F') eq = F - (2*x + 2*y + sqrt(x**2 + y**2)) ans = F*Rational(2, 7) - sqrt(2)*F/14 X = solve(eq, x, check=False) for xi in reversed(X): # reverse since currently, ans is the 2nd one Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False) if any((a - ans).expand().is_zero for a in Y): break else: assert None # no answer was found assert solve(sqrt(x + 1) + root(x, 3) - 2) == S(''' [(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 + sqrt(93)/6)**(1/3))**3]''') assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S(''' [(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 + sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 + sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''') assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S(''' [(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) + 2)**2]''') eq = S(''' -x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''') assert check(unrad(eq), (-s*(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 + 51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 + 1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 + 471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 - 165240*x + 61484) + 810])) assert solve(eq) == [] # not other code errors eq = root(x, 3) - root(y, 3) + root(x, 5) assert check(unrad(eq), (s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x])) eq = root(x, 3) + root(y, 3) + root(x*y, 4) assert check(unrad(eq), (s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 - 3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 - 3*s**3*y**5 - y**6), [s, s**4 - x*y])) raises(NotImplementedError, lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5))) @slow def test_unrad_slow(): # this has roots with multiplicity > 1; there should be no # repeats in roots obtained, however eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*((1 + sqrt(1 + 2*sqrt(1 - 4*x**2))))) assert solve(eq) == [S.Half] @XFAIL def test_unrad_fail(): # this only works if we check real_root(eq.subs(x, Rational(1, 3))) # but checksol doesn't work like that assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)] assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [ -1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3] def test_checksol(): x, y, r, t = symbols('x, y, r, t') eq = r - x**2 - y**2 dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1), x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)} assert checksol(eq, dict_var_soln) == True assert checksol(Eq(x, False), {x: False}) is True assert checksol(Ne(x, False), {x: False}) is False assert checksol(Eq(x < 1, True), {x: 0}) is True assert checksol(Eq(x < 1, True), {x: 1}) is False assert checksol(Eq(x < 1, False), {x: 1}) is True assert checksol(Eq(x < 1, False), {x: 0}) is False assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True assert checksol([x - 1, x**2 - 1], x, 1) is True assert checksol([x - 1, x**2 - 2], x, 1) is False assert checksol(Poly(x**2 - 1), x, 1) is True raises(ValueError, lambda: checksol(x, 1)) raises(ValueError, lambda: checksol([], x, 1)) def test__invert(): assert _invert(x - 2) == (2, x) assert _invert(2) == (2, 0) assert _invert(exp(1/x) - 3, x) == (1/log(3), x) assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x) assert _invert(a, x) == (a, 0) def test_issue_4463(): assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)] assert solve(x**x) == [] assert solve(x**x - 2) == [exp(LambertW(log(2)))] assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2] @slow def test_issue_5114_solvers(): a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r') # there is no 'a' in the equation set but this is how the # problem was originally posed syms = a, b, c, f, h, k, n eqs = [b + r/d - c/d, c*(1/d + 1/e + 1/g) - f/g - r/d, f*(1/g + 1/i + 1/j) - c/g - h/i, h*(1/i + 1/l + 1/m) - f/i - k/m, k*(1/m + 1/o + 1/p) - h/m - n/p, n*(1/p + 1/q) - k/p] assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1 def test_issue_5849(): I1, I2, I3, I4, I5, I6 = symbols('I1:7') dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') e = ( I1 - I2 - I3, I3 - I4 - I5, I4 + I5 - I6, -I1 + I2 + I6, -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, -I4 + dQ4, -I2 + dQ2, 2*I3 + 2*I5 + 3*I6 - Q2, I4 - 2*I5 + 2*Q4 + dI4 ) ans = [{ dQ4: I3 - I5, dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24, I4: I3 - I5, dQ2: I2, Q2: 2*I3 + 2*I5 + 3*I6, I1: I2 + I3, Q4: -I3/2 + 3*I5/2 - dI4/2}] v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4 assert solve(e, *v, manual=True, check=False, dict=True) == ans assert solve(e, *v, manual=True) == [] # the matrix solver (tested below) doesn't like this because it produces # a zero row in the matrix. Is this related to issue 4551? assert [ei.subs( ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0] def test_issue_5849_matrix(): '''Same as test_2750 but solved with the matrix solver.''' I1, I2, I3, I4, I5, I6 = symbols('I1:7') dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') e = ( I1 - I2 - I3, I3 - I4 - I5, I4 + I5 - I6, -I1 + I2 + I6, -2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, -I4 + dQ4, -I2 + dQ2, 2*I3 + 2*I5 + 3*I6 - Q2, I4 - 2*I5 + 2*Q4 + dI4 ) assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == { dI4: -I3 + 3*I5 - 2*Q4, dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24, dQ2: I2, I1: I2 + I3, Q2: 2*I3 + 2*I5 + 3*I6, dQ4: I3 - I5, I4: I3 - I5} def test_issue_5901(): f, g, h = map(Function, 'fgh') a = Symbol('a') D = Derivative(f(x), x) G = Derivative(g(a), a) assert solve(f(x) + f(x).diff(x), f(x)) == \ [-D] assert solve(f(x) - 3, f(x)) == \ [3] assert solve(f(x) - 3*f(x).diff(x), f(x)) == \ [3*D] assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \ {f(x): 3*D} assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \ [{f(x): 3*D, y: 9*D**2 + 4}] assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a), h(a), g(a), set=True) == \ ([g(a)], set([ (-sqrt(h(a)**2*f(a)**2 + G)/f(a),), (sqrt(h(a)**2*f(a)**2+ G)/f(a),)])) args = [f(x).diff(x, 2)*(f(x) + g(x)) - g(x)**2 + 2, f(x), g(x)] assert set(solve(*args)) == \ set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]) eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4] assert solve(eqs, f(x), g(x), set=True) == \ ([f(x), g(x)], set([ (-sqrt(2*D - 2), S(2)), (sqrt(2*D - 2), S(2)), (-sqrt(2*D + 2), -S(2)), (sqrt(2*D + 2), -S(2))])) # the underlying problem was in solve_linear that was not masking off # anything but a Mul or Add; it now raises an error if it gets anything # but a symbol and solve handles the substitutions necessary so solve_linear # won't make this error raises( ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)])) assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \ (f(x) + Derivative(f(x), x), 1) assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \ (f(x) + Integral(x, (x, y)), 1) assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \ (x + f(x) + Integral(x, (x, y)), 1) assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \ (x, -f(y) - Integral(x, (x, y))) assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \ (x, 1/a) assert solve_linear(x + Derivative(2*x, x)) == \ (x, -2) assert solve_linear(x + Integral(x, y), symbols=[x]) == \ (x, 0) assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \ (x, 2/(y + 1)) assert set(solve(x + exp(x)**2, exp(x))) == \ set([-sqrt(-x), sqrt(-x)]) assert solve(x + exp(x), x, implicit=True) == \ [-exp(x)] assert solve(cos(x) - sin(x), x, implicit=True) == [] assert solve(x - sin(x), x, implicit=True) == \ [sin(x)] assert solve(x**2 + x - 3, x, implicit=True) == \ [-x**2 + 3] assert solve(x**2 + x - 3, x**2, implicit=True) == \ [-x + 3] def test_issue_5912(): assert set(solve(x**2 - x - 0.1, rational=True)) == \ set([S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half]) ans = solve(x**2 - x - 0.1, rational=False) assert len(ans) == 2 and all(a.is_Number for a in ans) ans = solve(x**2 - x - 0.1) assert len(ans) == 2 and all(a.is_Number for a in ans) def test_float_handling(): def test(e1, e2): return len(e1.atoms(Float)) == len(e2.atoms(Float)) assert solve(x - 0.5, rational=True)[0].is_Rational assert solve(x - 0.5, rational=False)[0].is_Float assert solve(x - S.Half, rational=False)[0].is_Rational assert solve(x - 0.5, rational=None)[0].is_Float assert solve(x - S.Half, rational=None)[0].is_Rational assert test(nfloat(1 + 2*x), 1.0 + 2.0*x) for contain in [list, tuple, set]: ans = nfloat(contain([1 + 2*x])) assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x) k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0] assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x) assert test(nfloat(cos(2*x)), cos(2.0*x)) assert test(nfloat(3*x**2), 3.0*x**2) assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0) assert test(nfloat(exp(2*x)), exp(2.0*x)) assert test(nfloat(x/3), x/3.0) assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1), x**4 + 2.0*x + 1.94495694631474) # don't call nfloat if there is no solution tot = 100 + c + z + t assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == [] def test_check_assumptions(): x = symbols('x', positive=True) assert solve(x**2 - 1) == [1] assert check_assumptions(1, x) == True raises(AssertionError, lambda: check_assumptions(2*x, x, positive=True)) raises(TypeError, lambda: check_assumptions(1, 1)) def test_failing_assumptions(): x = Symbol('x', real=True, positive=True) y = Symbol('y') assert failing_assumptions(6*x + y, **x.assumptions0) == \ {'real': None, 'imaginary': None, 'complex': None, 'hermitian': None, 'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None, 'negative': None, 'zero': None, 'extended_real': None, 'finite': None, 'infinite': None, 'extended_negative': None, 'extended_nonnegative': None, 'extended_nonpositive': None, 'extended_nonzero': None, 'extended_positive': None } def test_issue_6056(): assert solve(tanh(x + 3)*tanh(x - 3) - 1) == [] assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \ [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \ [I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] def test_issue_5673(): eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x))) assert checksol(eq, x, 2) is True assert checksol(eq, x, 2, numerical=False) is None def test_exclude(): R, C, Ri, Vout, V1, Vminus, Vplus, s = \ symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s') Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln eqs = [C*V1*s + Vplus*(-2*C*s - 1/R), Vminus*(-1/Ri - 1/Rf) + Vout/Rf, C*Vplus*s + V1*(-C*s - 1/R) + Vout/R, -Vminus + Vplus] assert solve(eqs, exclude=s*C*R) == [ { Rf: Ri*(C*R*s + 1)**2/(C*R*s), Vminus: Vplus, V1: 2*Vplus + Vplus/(C*R*s), Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)}, { Vplus: 0, Vminus: 0, V1: 0, Vout: 0}, ] # TODO: Investigate why currently solution [0] is preferred over [1]. assert solve(eqs, exclude=[Vplus, s, C]) in [[{ Vminus: Vplus, V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), Rf: Ri*(Vout - Vplus)/Vplus, }, { Vminus: Vplus, V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), Rf: Ri*(Vout - Vplus)/Vplus, }], [{ Vminus: Vplus, Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus), Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)), R: Vplus/(C*s*(V1 - 2*Vplus)), }]] def test_high_order_roots(): s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots()) def test_minsolve_linear_system(): def count(dic): return len([x for x in dic.values() if x == 0]) assert count(solve([x + y + z, y + z + a + t], particular=True, quick=True)) \ == 3 assert count(solve([x + y + z, y + z + a + t], particular=True, quick=False)) \ == 3 assert count(solve([x + y + z, y + z + a], particular=True, quick=True)) == 1 assert count(solve([x + y + z, y + z + a], particular=True, quick=False)) == 2 def test_real_roots(): # cf. issue 6650 x = Symbol('x', real=True) assert len(solve(x**5 + x**3 + 1)) == 1 def test_issue_6528(): eqs = [ 327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626, 895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000] # two expressions encountered are > 1400 ops long so if this hangs # it is likely because simplification is being done assert len(solve(eqs, y, x, check=False)) == 4 def test_overdetermined(): x = symbols('x', real=True) eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1] assert solve(eqs, x) == [(S.Half,)] assert solve(eqs, x, manual=True) == [(S.Half,)] assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)] def test_issue_6605(): x = symbols('x') assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)] # while the first one passed, this one failed x = symbols('x', real=True) assert solve(5**(x/2) - 2**(x/3)) == [0] b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) assert solve(5**(x/2) - 2**(3/x)) == [-b, b] def test__ispow(): assert _ispow(x**2) assert not _ispow(x) assert not _ispow(True) def test_issue_6644(): eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( 4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) sol = solve(eq, q, simplify=False, check=False) assert len(sol) == 5 def test_issue_6752(): assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)] assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)] def test_issue_6792(): assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [ -1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)] def test_issues_6819_6820_6821_6248_8692(): # issue 6821 x, y = symbols('x y', real=True) assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9] assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,), (2,)] assert set(solve(abs(x - 7) - 8)) == set([-S.One, S(15)]) # issue 8692 assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [ Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half] # issue 7145 assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)] x = symbols('x') assert solve([re(x) - 1, im(x) - 2], x) == [ {re(x): 1, x: 1 + 2*I, im(x): 2}] # check for 'dict' handling of solution eq = sqrt(re(x)**2 + im(x)**2) - 3 assert solve(eq) == solve(eq, x) i = symbols('i', imaginary=True) assert solve(abs(i) - 3) == [-3*I, 3*I] raises(NotImplementedError, lambda: solve(abs(x) - 3)) w = symbols('w', integer=True) assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w) x, y = symbols('x y', real=True) assert solve(x + y*I + 3) == {y: 0, x: -3} # issue 2642 assert solve(x*(1 + I)) == [0] x, y = symbols('x y', imaginary=True) assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I} x = symbols('x', real=True) assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I} # issue 6248 f = Function('f') assert solve(f(x + 1) - f(2*x - 1)) == [2] assert solve(log(x + 1) - log(2*x - 1)) == [2] x = symbols('x') assert solve(2**x + 4**x) == [I*pi/log(2)] def test_issue_14607(): # issue 14607 s, tau_c, tau_1, tau_2, phi, K = symbols( 's, tau_c, tau_1, tau_2, phi, K') target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c)) K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D', positive=True, nonzero=True) PID = K_C*(1 + 1/(tau_I*s) + tau_D*s) eq = (target - PID).together() eq *= denom(eq).simplify() eq = Poly(eq, s) c = eq.coeffs() vars = [K_C, tau_I, tau_D] s = solve(c, vars, dict=True) assert len(s) == 1 knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)), tau_I: tau_1 + tau_2, tau_D: tau_1*tau_2/(tau_1 + tau_2)} for var in vars: assert s[0][var].simplify() == knownsolution[var].simplify() def test_lambert_multivariate(): from sympy.abc import x, y assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == set([x, exp(x)]) assert _lambert(x, x) == [] assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3] assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \ [LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3] assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \ [LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3] eq = (x*exp(x) - 3).subs(x, x*exp(x)) assert solve(eq) == [LambertW(3*exp(-LambertW(3)))] # coverage test raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x)) ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478... assert solve(x**3 - 3**x, x) == ans assert set(solve(3*log(x) - x*log(3))) == set(ans) assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2] @XFAIL def test_other_lambert(): assert solve(3*sin(x) - x*sin(3), x) == [3] assert set(solve(x**a - a**x), x) == set( [a, -a*LambertW(-log(a)/a)/log(a)]) @slow def test_lambert_bivariate(): # tests passing current implementation assert solve((x**2 + x)*exp((x**2 + x)) - 1) == [ Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2, Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2] assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [ Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2, Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2] assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)] assert solve((a/x + exp(x/2)).diff(x), x) == \ [4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)] assert solve((1/x + exp(x/2)).diff(x), x) == \ [4*LambertW(-sqrt(2)/4), 4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21 4*LambertW(-sqrt(2)/4, -1)] assert solve(x*log(x) + 3*x + 1, x) == \ [exp(-3 + LambertW(-exp(3)))] assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] ans = solve(3*x + 5 + 2**(-5*x + 3), x) assert len(ans) == 1 and ans[0].expand() == \ Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2)) assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \ [Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7] assert solve((log(x) + x).subs(x, x**2 + 1)) == [ -I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))] # check collection ax = a**(3*x + 5) ans = solve(3*log(ax) + b*log(ax) + ax, x) x0 = 1/log(a) x1 = sqrt(3)*I x2 = b + 3 x3 = x2*LambertW(1/x2)/a**5 x4 = x3**Rational(1, 3)/2 assert ans == [ x0*log(x4*(x1 - 1)), x0*log(-x4*(x1 + 1)), x0*log(x3)/3] x1 = LambertW(Rational(1, 3)) x2 = a**(-5) x3 = 3**Rational(1, 3) x4 = 3**Rational(5, 6)*I x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2 ans = solve(3*log(ax) + ax, x) assert ans == [ x0*log(3*x1*x2)/3, x0*log(x5*(-x3 + x4)), x0*log(-x5*(x3 + x4))] # coverage p = symbols('p', positive=True) eq = 4*2**(2*p + 3) - 2*p - 3 assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [ Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))] assert set(solve(3**cos(x) - cos(x)**3)) == set( [acos(3), acos(-3*LambertW(-log(3)/3)/log(3))]) # should give only one solution after using `uniq` assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [ exp(-z + LambertW(2*z**4*exp(2*z))/2)/z] # cases when p != S.One # issue 4271 ans = solve((a/x + exp(x/2)).diff(x, 2), x) x0 = (-a)**Rational(1, 3) x1 = sqrt(3)*I x2 = x0/6 assert ans == [ 6*LambertW(x0/3), 6*LambertW(x2*(x1 - 1)), 6*LambertW(-x2*(x1 + 1))] assert solve((1/x + exp(x/2)).diff(x, 2), x) == \ [6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \ 6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)] assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \ [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] # this is slow but not exceedingly slow assert solve((x**3)**(x/2) + pi/2, x) == [ exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))] def test_rewrite_trig(): assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi] assert solve(sin(x) + sec(x)) == [ -2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half + sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half - sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)] assert solve(sinh(x) + tanh(x)) == [0, I*pi] # issue 6157 assert solve(2*sin(x) - cos(x), x) == [-2*atan(2 - sqrt(5)), -2*atan(2 + sqrt(5))] @XFAIL def test_rewrite_trigh(): # if this import passes then the test below should also pass from sympy import sech assert solve(sinh(x) + sech(x)) == [ 2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2), 2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2), 2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2), 2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)] def test_uselogcombine(): eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))] assert solve(log(x + 3) + log(1 + 3/x) - 3) in [ [-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, -sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2], [-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2, -3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2], ] assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == [] def test_atan2(): assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)] def test_errorinverses(): assert solve(erf(x) - y, x) == [erfinv(y)] assert solve(erfinv(x) - y, x) == [erf(y)] assert solve(erfc(x) - y, x) == [erfcinv(y)] assert solve(erfcinv(x) - y, x) == [erfc(y)] def test_issue_2725(): R = Symbol('R') eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) sol = solve(eq, R, set=True)[1] assert sol == set([(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)]) def test_issue_5114_6611(): # See that it doesn't hang; this solves in about 2 seconds. # Also check that the solution is relatively small. # Note: the system in issue 6611 solves in about 5 seconds and has # an op-count of 138336 (with simplify=False). b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r') eqs = Matrix([ [b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d], [-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m], [-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]]) v = Matrix([f, h, k, n, b, c]) ans = solve(list(eqs), list(v), simplify=False) # If time is taken to simplify then then 2617 below becomes # 1168 and the time is about 50 seconds instead of 2. assert sum([s.count_ops() for s in ans.values()]) <= 2617 def test_det_quick(): m = Matrix(3, 3, symbols('a:9')) assert m.det() == det_quick(m) # calls det_perm m[0, 0] = 1 assert m.det() == det_quick(m) # calls det_minor m = Matrix(3, 3, list(range(9))) assert m.det() == det_quick(m) # defaults to .det() # make sure they work with Sparse s = SparseMatrix(2, 2, (1, 2, 1, 4)) assert det_perm(s) == det_minor(s) == s.det() def test_real_imag_splitting(): a, b = symbols('a b', real=True) assert solve(sqrt(a**2 + b**2) - 3, a) == \ [-sqrt(-b**2 + 9), sqrt(-b**2 + 9)] a, b = symbols('a b', imaginary=True) assert solve(sqrt(a**2 + b**2) - 3, a) == [] def test_issue_7110(): y = -2*x**3 + 4*x**2 - 2*x + 5 assert any(ask(Q.real(i)) for i in solve(y)) def test_units(): assert solve(1/x - 1/(2*cm)) == [2*cm] def test_issue_7547(): A, B, V = symbols('A,B,V') eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0) eq2 = Eq(B, 1.36*10**8*(V - 39)) eq3 = Eq(A, 5.75*10**5*V*(V + 39.0)) sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0))) assert str(sol) == str(Matrix( [['4442890172.68209'], ['4289299466.1432'], ['70.5389666628177']])) def test_issue_7895(): r = symbols('r', real=True) assert solve(sqrt(r) - 2) == [4] def test_issue_2777(): # the equations represent two circles x, y = symbols('x y', real=True) e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 a, b = Rational(191, 20), 3*sqrt(391)/20 ans = [(a, -b), (a, b)] assert solve((e1, e2), (x, y)) == ans assert solve((e1, e2/(x - a)), (x, y)) == [] # make the 2nd circle's radius be -3 e2 += 6 assert solve((e1, e2), (x, y)) == [] assert solve((e1, e2), (x, y), check=False) == ans def test_issue_7322(): number = 5.62527e-35 assert solve(x - number, x)[0] == number def test_nsolve(): raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect')) raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50))) raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1))) @slow def test_high_order_multivariate(): assert len(solve(a*x**3 - x + 1, x)) == 3 assert len(solve(a*x**4 - x + 1, x)) == 4 assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed raises(NotImplementedError, lambda: solve(a*x**5 - x + 1, x, incomplete=False)) # result checking must always consider the denominator and CRootOf # must be checked, too d = x**5 - x + 1 assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)] d = x - 1 assert solve(d*(2 + 1/d)) == [S.Half] def test_base_0_exp_0(): assert solve(0**x - 1) == [0] assert solve(0**(x - 2) - 1) == [2] assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \ [0, 1] def test__simple_dens(): assert _simple_dens(1/x**0, [x]) == set() assert _simple_dens(1/x**y, [x]) == set([x**y]) assert _simple_dens(1/root(x, 3), [x]) == set([x]) def test_issue_8755(): # This tests two things: that if full unrad is attempted and fails # the solution should still be found; also it tests the use of # keyword `composite`. assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - 1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 @slow def test_issue_8828(): x1 = 0 y1 = -620 r1 = 920 x2 = 126 y2 = 276 x3 = 51 y3 = 205 r3 = 104 v = x, y, z f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 f2 = (x2 - x)**2 + (y2 - y)**2 - z**2 f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 F = f1,f2,f3 g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 g2 = f2 g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 G = g1,g2,g3 A = solve(F, v) B = solve(G, v) C = solve(G, v, manual=True) p, q, r = [set([tuple(i.evalf(2) for i in j) for j in R]) for R in [A, B, C]] assert p == q == r @slow def test_issue_2840_8155(): assert solve(sin(3*x) + sin(6*x)) == [ 0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3), pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9), pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3), pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi, -2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)), -2*I*log(-sin(pi/18) - I*cos(pi/18)), -2*I*log(-sin(pi/18) + I*cos(pi/18)), -2*I*log(sin(pi/18) - I*cos(pi/18)), -2*I*log(sin(pi/18) + I*cos(pi/18))] assert solve(2*sin(x) - 2*sin(2*x)) == [ 0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)] def test_issue_9567(): assert solve(1 + 1/(x - 1)) == [0] def test_issue_11538(): assert solve(x + E) == [-E] assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)] assert solve(x**3 + 2*E) == [ -cbrt(2 * E), cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2, cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2] assert solve([x + 4, y + E], x, y) == {x: -4, y: -E} assert solve([x**2 + 4, y + E], x, y) == [ (-2*I, -E), (2*I, -E)] e1 = x - y**3 + 4 e2 = x + y + 4 + 4 * E assert len(solve([e1, e2], x, y)) == 3 @slow def test_issue_12114(): a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g') terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f, g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2] s = solve(terms, [a, b, c, d, e, f, g], dict=True) assert s == [{a: -sqrt(-f**2 - 1), b: -sqrt(-f**2 - 1), c: -sqrt(-f**2 - 1), d: f, e: f, g: -1}, {a: sqrt(-f**2 - 1), b: sqrt(-f**2 - 1), c: sqrt(-f**2 - 1), d: f, e: f, g: -1}, {a: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, b: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2), d: -f/2 + sqrt(-3*f**2 + 6)/2, e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}, {a: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, b: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2), d: -f/2 - sqrt(-3*f**2 + 6)/2, e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}, {a: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, b: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2), d: -f/2 - sqrt(-3*f**2 + 6)/2, e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}, {a: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, b: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2), d: -f/2 + sqrt(-3*f**2 + 6)/2, e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}] def test_inf(): assert solve(1 - oo*x) == [] assert solve(oo*x, x) == [] assert solve(oo*x - oo, x) == [] def test_issue_12448(): f = Function('f') fun = [f(i) for i in range(15)] sym = symbols('x:15') reps = dict(zip(fun, sym)) (x, y, z), c = sym[:3], sym[3:] ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] for i in range(3)], (x, y, z)) (x, y, z), c = fun[:3], fun[3:] sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] for i in range(3)], (x, y, z)) assert sfun[fun[0]].xreplace(reps).count_ops() == \ ssym[sym[0]].count_ops() def test_denoms(): assert denoms(x/2 + 1/y) == set([2, y]) assert denoms(x/2 + 1/y, y) == set([y]) assert denoms(x/2 + 1/y, [y]) == set([y]) assert denoms(1/x + 1/y + 1/z, [x, y]) == set([x, y]) assert denoms(1/x + 1/y + 1/z, x, y) == set([x, y]) assert denoms(1/x + 1/y + 1/z, set([x, y])) == set([x, y]) def test_issue_12476(): x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5') eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5, x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3, x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2, x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6, -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3, x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3, -x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, -x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3, -x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3, -x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5, x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1] sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1}, {x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1}, {x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1}, {x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}] assert solve(eqns) == sols def test_issue_13849(): t = symbols('t') assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == [] def test_issue_14860(): from sympy.physics.units import newton, kilo assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y] def test_issue_14721(): k, h, a, b = symbols(':4') assert solve([ -1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2, -1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2, h, k + 2], h, k, a, b) == [ (0, -2, -b*sqrt(1/(b**2 - 9)), b), (0, -2, b*sqrt(1/(b**2 - 9)), b)] assert solve([ h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [ (a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)] assert solve((a + b**2 - 1, a + b**2 - 2)) == [] def test_issue_14779(): x = symbols('x', real=True) assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2 + 3969) - 96*Abs(x)/x,x) == [sqrt(130)] def test_issue_15307(): assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \ [{x: -3, y: 2}, {x: 2, y: 2}] assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \ {x: 2, y: 2} assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \ {x: -1, y: 2} eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y) eq2 = Eq(-2*x + 8, 2*x - 40) assert solve([eq1, eq2]) == {x:12, y:75} def test_issue_15415(): assert solve(x - 3, x) == [3] assert solve([x - 3], x) == {x:3} assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == [] assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == [] assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == [] @slow def test_issue_15731(): # f(x)**g(x)=c assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7] assert solve((x)**(x + 4) - 4) == [-2] assert solve((-x)**(-x + 4) - 4) == [2] assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2] assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)] assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)] assert solve((x**2 + 1)**x - 25) == [2] assert solve(x**(2/x) - 2) == [2, 4] assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8] assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)] # a**g(x)=c assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)] assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half] assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3, (3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)] assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3] assert solve(I**x + 1) == [2] assert solve((1 + I)**x - 2*I) == [2] assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)] # bases of both sides are equal b = Symbol('b') assert solve(b**x - b**2, x) == [2] assert solve(b**x - 1/b, x) == [-1] assert solve(b**x - b, x) == [1] b = Symbol('b', positive=True) assert solve(b**x - b**2, x) == [2] assert solve(b**x - 1/b, x) == [-1] def test_issue_10933(): assert solve(x**4 + y*(x + 0.1), x) # doesn't fail assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail def test_Abs_handling(): x = symbols('x', real=True) assert solve(abs(x/y), x) == [0] def test_issue_7982(): x = Symbol('x') # Test that no exception happens assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false # From #8040 assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false def test_issue_14645(): x, y = symbols('x y') assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)] def test_issue_12024(): x, y = symbols('x y') assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \ [{y: Piecewise((0.0, x < 0.1), (x, True))}] def test_issue_17452(): assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)), sqrt(log(pi) + I*pi)/sqrt(log(7))] assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))] def test_issue_17799(): assert solve(-erf(x**(S(1)/3))**pi + I, x) == [] def test_issue_17650(): x = Symbol('x', real=True) assert solve(abs((abs(x**2 - 1) - x)) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)] def test_issue_17949(): assert solve(exp(+x+x**2), x) == [] assert solve(exp(-x+x**2), x) == [] assert solve(exp(+x-x**2), x) == [] assert solve(exp(-x-x**2), x) == []
d065f8491d190700fe849bd9910a03f536e4389139fdb07d19b82863490fc4b1
from sympy import (Add, Matrix, Mul, S, symbols, Eq, pi, factorint, oo, powsimp, Rational) from sympy.core.function import _mexpand from sympy.core.compatibility import range, ordered from sympy.functions.elementary.trigonometric import sin from sympy.solvers.diophantine import (descent, diop_bf_DN, diop_DN, diop_solve, diophantine, divisible, equivalent, find_DN, ldescent, length, reconstruct, partition, power_representation, prime_as_sum_of_two_squares, square_factor, sum_of_four_squares, sum_of_three_squares, transformation_to_DN, transformation_to_normal, classify_diop, base_solution_linear, cornacchia, sqf_normal, diop_ternary_quadratic_normal, _diop_ternary_quadratic_normal, gaussian_reduce, holzer,diop_general_pythagorean, _diop_general_sum_of_squares, _nint_or_floor, _odd, _even, _remove_gcd, check_param, parametrize_ternary_quadratic, diop_ternary_quadratic, diop_linear, diop_quadratic, diop_general_sum_of_squares, sum_of_powers, sum_of_squares, diop_general_sum_of_even_powers, _can_do_sum_of_squares) from sympy.utilities import default_sort_key from sympy.utilities.pytest import slow, raises, XFAIL from sympy.utilities.iterables import ( signed_permutations) a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols( "a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True) t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True) m1, m2, m3 = symbols('m1:4', integer=True) n1 = symbols('n1', integer=True) def diop_simplify(eq): return _mexpand(powsimp(_mexpand(eq))) def test_input_format(): raises(TypeError, lambda: diophantine(sin(x))) raises(TypeError, lambda: diophantine(3)) raises(TypeError, lambda: diophantine(x/pi - 3)) def test_univariate(): assert diop_solve((x - 1)*(x - 2)**2) == set([(1,), (2,)]) assert diop_solve((x - 1)*(x - 2)) == set([(1,), (2,)]) def test_classify_diop(): raises(TypeError, lambda: classify_diop(x**2/3 - 1)) raises(ValueError, lambda: classify_diop(1)) raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1)) raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90)) assert classify_diop(14*x**2 + 15*x - 42) == ( [x], {1: -42, x: 15, x**2: 14}, 'univariate') assert classify_diop(x*y + z) == ( [x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic') assert classify_diop(x*y + z + w + x**2) == ( [w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + x*z + x**2 + 1) == ( [x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z + w + 42) == ( [w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z*w) == ( [w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic') assert classify_diop(x*y**2 + 1) == ( [x, y], {x*y**2: 1, 1: 1}, 'cubic_thue') assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == ( [x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers') def test_linear(): assert diop_solve(x) == (0,) assert diop_solve(1*x) == (0,) assert diop_solve(3*x) == (0,) assert diop_solve(x + 1) == (-1,) assert diop_solve(2*x + 1) == (None,) assert diop_solve(2*x + 4) == (-2,) assert diop_solve(y + x) == (t_0, -t_0) assert diop_solve(y + x + 0) == (t_0, -t_0) assert diop_solve(y + x - 0) == (t_0, -t_0) assert diop_solve(0*x - y - 5) == (-5,) assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5) assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5) assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5) assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0) assert diop_solve(2*x + 4*y) == (2*t_0, -t_0) assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2) assert diop_solve(4*x + 6*y - 3) == (None, None) assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5) assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5) assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None) assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18) assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1) assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2) # to ignore constant factors, use diophantine raises(TypeError, lambda: diop_solve(x/2)) def test_quadratic_simple_hyperbolic_case(): # Simple Hyperbolic case: A = C = 0 and B != 0 assert diop_solve(3*x*y + 34*x - 12*y + 1) == \ set([(-133, -11), (5, -57)]) assert diop_solve(6*x*y + 2*x + 3*y + 1) == set([]) assert diop_solve(-13*x*y + 2*x - 4*y - 54) == set([(27, 0)]) assert diop_solve(-27*x*y - 30*x - 12*y - 54) == set([(-14, -1)]) assert diop_solve(2*x*y + 5*x + 56*y + 7) == set([(-161, -3),\ (-47,-6), (-35, -12), (-29, -69),\ (-27, 64), (-21, 7),(-9, 1),\ (105, -2)]) assert diop_solve(6*x*y + 9*x + 2*y + 3) == set([]) assert diop_solve(x*y + x + y + 1) == set([(-1, t), (t, -1)]) assert diophantine(48*x*y) def test_quadratic_elliptical_case(): # Elliptical case: B**2 - 4AC < 0 # Two test cases highlighted require lot of memory due to quadratic_congruence() method. # This above method should be replaced by Pernici's square_mod() method when his PR gets merged. #assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == set([(-11, -1)]) assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set([]) assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == set([(-1, -1)]) #assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == set([(-15, 6)]) assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \ set([(-1, -1), (-1, 2), (1, -2), (1, 1)]) def test_quadratic_parabolic_case(): # Parabolic case: B**2 - 4AC = 0 assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16) assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6) assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7) assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3) assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(y**2 - 41*x + 40) def test_quadratic_perfect_square(): # B**2 - 4*A*C > 0 # B**2 - 4*A*C is a perfect square assert check_solutions(48*x*y) assert check_solutions(4*x**2 - 5*x*y + y**2 + 2) assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25) assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12) assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23) assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3) assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10) assert check_solutions(x**2 - y**2 - 2*x - 2*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3) def test_quadratic_non_perfect_square(): # B**2 - 4*A*C is not a perfect square # Used check_solutions() since the solutions are complex expressions involving # square roots and exponents assert check_solutions(x**2 - 2*x - 5*y**2) assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y) assert check_solutions(x**2 - x*y - y**2 - 3*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) def test_issue_9106(): eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1) v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) def test_issue_18138(): eq = x**2 - x - y**2 v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) @slow def test_quadratic_non_perfect_slow(): assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23) # This leads to very large numbers. # assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15) assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7) assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2) assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2) def test_DN(): # Most of the test cases were adapted from, # Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004. # http://www.jpr2718.org/pell.pdf # others are verified using Wolfram Alpha. # Covers cases where D <= 0 or D > 0 and D is a square or N = 0 # Solutions are straightforward in these cases. assert diop_DN(3, 0) == [(0, 0)] assert diop_DN(-17, -5) == [] assert diop_DN(-19, 23) == [(2, 1)] assert diop_DN(-13, 17) == [(2, 1)] assert diop_DN(-15, 13) == [] assert diop_DN(0, 5) == [] assert diop_DN(0, 9) == [(3, t)] assert diop_DN(9, 0) == [(3*t, t)] assert diop_DN(16, 24) == [] assert diop_DN(9, 180) == [(18, 4)] assert diop_DN(9, -180) == [(12, 6)] assert diop_DN(7, 0) == [(0, 0)] # When equation is x**2 + y**2 = N # Solutions are interchangeable assert diop_DN(-1, 5) == [(2, 1), (1, 2)] assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)] # D > 0 and D is not a square # N = 1 assert diop_DN(13, 1) == [(649, 180)] assert diop_DN(980, 1) == [(51841, 1656)] assert diop_DN(981, 1) == [(158070671986249, 5046808151700)] assert diop_DN(986, 1) == [(49299, 1570)] assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)] assert diop_DN(17, 1) == [(33, 8)] assert diop_DN(19, 1) == [(170, 39)] # N = -1 assert diop_DN(13, -1) == [(18, 5)] assert diop_DN(991, -1) == [] assert diop_DN(41, -1) == [(32, 5)] assert diop_DN(290, -1) == [(17, 1)] assert diop_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_DN(32, -1) == [] # |N| > 1 # Some tests were created using calculator at # http://www.numbertheory.org/php/patz.html assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)] # Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions # So (-3, 1) and (393, 109) should be in the same equivalent class assert equivalent(-3, 1, 393, 109, 13, -4) == True assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)] assert set(diop_DN(157, 12)) == \ set([(13, 1), (10663, 851), (579160, 46222), \ (483790960,38610722), (26277068347, 2097138361), (21950079635497, 1751807067011)]) assert diop_DN(13, 25) == [(3245, 900)] assert diop_DN(192, 18) == [] assert diop_DN(23, 13) == [(-6, 1), (6, 1)] assert diop_DN(167, 2) == [(13, 1)] assert diop_DN(167, -2) == [] assert diop_DN(123, -2) == [(11, 1)] # One calculator returned [(11, 1), (-11, 1)] but both of these are in # the same equivalence class assert equivalent(11, 1, -11, 1, 123, -2) assert diop_DN(123, -23) == [(-10, 1), (10, 1)] assert diop_DN(0, 0, t) == [(0, t)] assert diop_DN(0, -1, t) == [] def test_bf_pell(): assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)] assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)] assert diop_bf_DN(167, -2) == [] assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)] assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)] assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_bf_DN(340, -4) == [(756, 41)] assert diop_bf_DN(-1, 0, t) == [(0, 0)] assert diop_bf_DN(0, 0, t) == [(0, t)] assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)] assert diop_bf_DN(3, 0, t) == [(0, 0)] assert diop_bf_DN(1, -2, t) == [] def test_length(): assert length(2, 1, 0) == 1 assert length(-2, 4, 5) == 3 assert length(-5, 4, 17) == 4 assert length(0, 4, 13) == 6 assert length(7, 13, 11) == 23 assert length(1, 6, 4) == 2 def is_pell_transformation_ok(eq): """ Test whether X*Y, X, or Y terms are present in the equation after transforming the equation using the transformation returned by transformation_to_pell(). If they are not present we are good. Moreover, coefficient of X**2 should be a divisor of coefficient of Y**2 and the constant term. """ A, B = transformation_to_DN(eq) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] simplified = diop_simplify(eq.subs(zip((x, y), (u, v)))) coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args]) for term in [X*Y, X, Y]: if term in coeff.keys(): return False for term in [X**2, Y**2, 1]: if term not in coeff.keys(): coeff[term] = 0 if coeff[X**2] != 0: return divisible(coeff[Y**2], coeff[X**2]) and \ divisible(coeff[1], coeff[X**2]) return True def test_transformation_to_pell(): assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14) assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23) assert is_pell_transformation_ok(x**2 - y**2 + 17) assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23) assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5) assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130) assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89) assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) def test_find_DN(): assert find_DN(x**2 - 2*x - y**2) == (1, 1) assert find_DN(x**2 - 3*y**2 - 5) == (3, 5) assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7) assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36) assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84) assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0) assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480) def test_ldescent(): # Equations which have solutions u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1), (4, 32), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = ldescent(a, b) assert a*x**2 + b*y**2 == w**2 assert ldescent(-1, -1) is None def test_diop_ternary_quadratic_normal(): assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(23*x**2 + 616*y**2 - z**2) assert check_solutions(5*x**2 + 4*y**2 - z**2) assert check_solutions(3*x**2 + 6*y**2 - 3*z**2) assert check_solutions(x**2 + 3*y**2 - z**2) assert check_solutions(4*x**2 + 5*y**2 - z**2) assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(16*x**2 + y**2 - 25*z**2) assert check_solutions(6*x**2 - y**2 + 10*z**2) assert check_solutions(213*x**2 + 12*y**2 - 9*z**2) assert check_solutions(34*x**2 - 3*y**2 - 301*z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def is_normal_transformation_ok(eq): A = transformation_to_normal(eq) X, Y, Z = A*Matrix([x, y, z]) simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z)))) coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args]) for term in [X*Y, Y*Z, X*Z]: if term in coeff.keys(): return False return True def test_transformation_to_normal(): assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2) assert is_normal_transformation_ok(x**2 + 23*y*z) assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y) assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z) assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z) assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z) assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2) assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z) assert is_normal_transformation_ok(2*x*z + 3*y*z) def test_diop_ternary_quadratic(): assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y) assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z) assert check_solutions(3*x**2 - x*y - y*z - x*z) assert check_solutions(x**2 - y*z - x*z) assert check_solutions(5*x**2 - 3*x*y - x*z) assert check_solutions(4*x**2 - 5*y**2 - x*z) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(8*x**2 - 12*y*z) assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert check_solutions(x*y - 7*y*z + 13*x*z) assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None) assert diop_ternary_quadratic_normal(x**2 + y**2) is None raises(ValueError, lambda: _diop_ternary_quadratic_normal((x, y, z), {x*y: 1, x**2: 2, y**2: 3, z**2: 0})) eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2 assert diop_ternary_quadratic(eq) == (7, 2, 0) assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \ (1, 0, 2) assert diop_ternary_quadratic(x*y + 2*y*z) == \ (-2, 0, n1) eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2 assert parametrize_ternary_quadratic(eq) == \ (8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q) # this cannot be tested with diophantine because it will # factor into a product assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q) def test_square_factor(): assert square_factor(1) == square_factor(-1) == 1 assert square_factor(0) == 1 assert square_factor(5) == square_factor(-5) == 1 assert square_factor(4) == square_factor(-4) == 2 assert square_factor(12) == square_factor(-12) == 2 assert square_factor(6) == 1 assert square_factor(18) == 3 assert square_factor(52) == 2 assert square_factor(49) == 7 assert square_factor(392) == 14 assert square_factor(factorint(-12)) == 2 def test_parametrize_ternary_quadratic(): assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(x**2 + 2*x*y + z**2) assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(x**2 - y**2 - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y) assert check_solutions(8*x*y + z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def test_no_square_ternary_quadratic(): assert check_solutions(2*x*y + y*z - 3*x*z) assert check_solutions(189*x*y - 345*y*z - 12*x*z) assert check_solutions(23*x*y + 34*y*z) assert check_solutions(x*y + y*z + z*x) assert check_solutions(23*x*y + 23*y*z + 23*x*z) def test_descent(): u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = descent(a, b) assert a*x**2 + b*y**2 == w**2 # the docstring warns against bad input, so these are expected results # - can't both be negative raises(TypeError, lambda: descent(-1, -3)) # A can't be zero unless B != 1 raises(ZeroDivisionError, lambda: descent(0, 3)) # supposed to be square-free raises(TypeError, lambda: descent(4, 3)) def test_diophantine(): assert check_solutions((x - y)*(y - z)*(z - x)) assert check_solutions((x - y)*(x**2 + y**2 - z**2)) assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2)) assert check_solutions((x**2 - 3*y**2 - 1)) assert check_solutions(y**2 + 7*x*y) assert check_solutions(x**2 - 3*x*y + y**2) assert check_solutions(z*(x**2 - y**2 - 15)) assert check_solutions(x*(2*y - 2*z + 5)) assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15)) assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z)) assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w)) # Following test case caused problems in parametric representation # But this can be solved by factroing out y. # No need to use methods for ternary quadratic equations. assert check_solutions(y**2 - 7*x*y + 4*y*z) assert check_solutions(x**2 - 2*x + 1) assert diophantine(x - y) == diophantine(Eq(x, y)) assert diophantine(3*x*pi - 2*y*pi) == set([(2*t_0, 3*t_0)]) eq = x**2 + y**2 + z**2 - 14 base_sol = set([(1, 2, 3)]) assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln assert diophantine(x**2 + x*Rational(15, 14) - 3) == set() # test issue 11049 eq = 92*x**2 - 99*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (9, 7, 51) assert diophantine(eq) == set([( 891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2, 5049*p**2 - 1386*p*q - 51*q**2)]) eq = 2*x**2 + 2*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (1, 1, 2) assert diophantine(eq) == set([( 2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)]) eq = 411*x**2+57*y**2-221*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (2021, 2645, 3066) assert diophantine(eq) == \ set([(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q - 584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)]) eq = 573*x**2+267*y**2-984*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (49, 233, 127) assert diophantine(eq) == \ set([(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2, 11303*p**2 - 41474*p*q + 41656*q**2)]) # this produces factors during reconstruction eq = x**2 + 3*y**2 - 12*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ (0, 2, 1) assert diophantine(eq) == \ set([(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)]) # solvers have not been written for every type raises(NotImplementedError, lambda: diophantine(x*y**2 + 1)) # rational expressions assert diophantine(1/x) == set() assert diophantine(1/x + 1/y - S.Half) set([(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)]) assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \ set([(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)]) # issue 18122 assert check_solutions(x**2-y) assert check_solutions(y**2-x) assert diophantine((x**2-y), t) == set([(t, t**2)]) assert diophantine((y**2-x), t) == set([(t**2, -t)]) def test_general_pythagorean(): from sympy.abc import a, b, c, d, e assert check_solutions(a**2 + b**2 + c**2 - d**2) assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 ) assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2) assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2) assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2) def test_diop_general_sum_of_squares_quick(): for i in range(3, 10): assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i) raises(ValueError, lambda: _diop_general_sum_of_squares((x, y), 2)) assert _diop_general_sum_of_squares((x, y, z), -2) == set() eq = x**2 + y**2 + z**2 - (1 + 4 + 9) assert diop_general_sum_of_squares(eq) == \ set([(1, 2, 3)]) eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313 assert len(diop_general_sum_of_squares(eq, 3)) == 3 # issue 11016 var = symbols(':5') + (symbols('6', negative=True),) eq = Add(*[i**2 for i in var]) - 112 base_soln = set( [(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10), (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6), (1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9), (0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8), (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)]) assert diophantine(eq) == base_soln assert len(diophantine(eq, permute=True)) == 196800 # handle negated squares with signsimp assert diophantine(12 - x**2 - y**2 - z**2) == set([(2, 2, 2)]) # diophantine handles simplification, so classify_diop should # not have to look for additional patterns that are removed # by diophantine eq = a**2 + b**2 + c**2 + d**2 - 4 raises(NotImplementedError, lambda: classify_diop(-eq)) def test_diop_partition(): for n in [8, 10]: for k in range(1, 8): for p in partition(n, k): assert len(p) == k assert [p for p in partition(3, 5)] == [] assert [list(p) for p in partition(3, 5, 1)] == [ [0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]] assert list(partition(0)) == [()] assert list(partition(1, 0)) == [()] assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]] def test_prime_as_sum_of_two_squares(): for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]: a, b = prime_as_sum_of_two_squares(i) assert a**2 + b**2 == i assert prime_as_sum_of_two_squares(7) is None ans = prime_as_sum_of_two_squares(800029) assert ans == (450, 773) and type(ans[0]) is int def test_sum_of_three_squares(): for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344, 800, 801, 802, 803, 804, 805, 806]: a, b, c = sum_of_three_squares(i) assert a**2 + b**2 + c**2 == i assert sum_of_three_squares(7) is None assert sum_of_three_squares((4**5)*15) is None assert sum_of_three_squares(25) == (5, 0, 0) assert sum_of_three_squares(4) == (0, 0, 2) def test_sum_of_four_squares(): from random import randint # this should never fail n = randint(1, 100000000000000) assert sum(i**2 for i in sum_of_four_squares(n)) == n assert sum_of_four_squares(0) == (0, 0, 0, 0) assert sum_of_four_squares(14) == (0, 1, 2, 3) assert sum_of_four_squares(15) == (1, 1, 2, 3) assert sum_of_four_squares(18) == (1, 2, 2, 3) assert sum_of_four_squares(19) == (0, 1, 3, 3) assert sum_of_four_squares(48) == (0, 4, 4, 4) def test_power_representation(): tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4), (32760, 2, 3)] for test in tests: n, p, k = test f = power_representation(n, p, k) while True: try: l = next(f) assert len(l) == k chk_sum = 0 for l_i in l: chk_sum = chk_sum + l_i**p assert chk_sum == n except StopIteration: break assert list(power_representation(20, 2, 4, True)) == \ [(1, 1, 3, 3), (0, 0, 2, 4)] raises(ValueError, lambda: list(power_representation(1.2, 2, 2))) raises(ValueError, lambda: list(power_representation(2, 0, 2))) raises(ValueError, lambda: list(power_representation(2, 2, 0))) assert list(power_representation(-1, 2, 2)) == [] assert list(power_representation(1, 1, 1)) == [(1,)] assert list(power_representation(3, 2, 1)) == [] assert list(power_representation(4, 2, 1)) == [(2,)] assert list(power_representation(3**4, 4, 6, zeros=True)) == \ [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)] assert list(power_representation(3**4, 4, 5, zeros=False)) == [] assert list(power_representation(-2, 3, 2)) == [(-1, -1)] assert list(power_representation(-2, 4, 2)) == [] assert list(power_representation(0, 3, 2, True)) == [(0, 0)] assert list(power_representation(0, 3, 2, False)) == [] # when we are dealing with squares, do feasibility checks assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0 # there will be a recursion error if these aren't recognized big = 2**30 for i in [13, 10, 7, 5, 4, 2, 1]: assert list(sum_of_powers(big, 2, big - i)) == [] def test_assumptions(): """ Test whether diophantine respects the assumptions. """ #Test case taken from the below so question regarding assumptions in diophantine module #https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy m, n = symbols('m n', integer=True, positive=True) diof = diophantine(n ** 2 + m * n - 500) assert diof == set([(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)]) a, b = symbols('a b', integer=True, positive=False) diof = diophantine(a*b + 2*a + 3*b - 6) assert diof == set([(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)]) def check_solutions(eq): """ Determines whether solutions returned by diophantine() satisfy the original equation. Hope to generalize this so we can remove functions like check_ternay_quadratic, check_solutions_normal, check_solutions() """ s = diophantine(eq) factors = Mul.make_args(eq) var = list(eq.free_symbols) var.sort(key=default_sort_key) while s: solution = s.pop() for f in factors: if diop_simplify(f.subs(zip(var, solution))) == 0: break else: return False return True def test_diopcoverage(): eq = (2*x + y + 1)**2 assert diop_solve(eq) == set([(t_0, -2*t_0 - 1)]) eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18 assert diop_solve(eq) == set([(t_0, -t_0 - 3), (2*t_0 - 3, -t_0)]) assert diop_quadratic(x + y**2 - 3) == set([(-t**2 + 3, -t)]) assert diop_linear(x + y - 3) == (t_0, 3 - t_0) assert base_solution_linear(0, 1, 2, t=None) == (0, 0) ans = (3*t - 1, -2*t + 1) assert base_solution_linear(4, 8, 12, t) == ans assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans) assert cornacchia(1, 1, 20) is None assert cornacchia(1, 1, 5) == set([(2, 1)]) assert cornacchia(1, 2, 17) == set([(3, 2)]) raises(ValueError, lambda: reconstruct(4, 20, 1)) assert gaussian_reduce(4, 1, 3) == (1, 1) eq = -w**2 - x**2 - y**2 + z**2 assert diop_general_pythagorean(eq) == \ diop_general_pythagorean(-eq) == \ (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) assert check_param(S(3) + x/3, S(4) + x/2, S(2), x) == (None, None) assert check_param(Rational(3, 2), S(4) + x, S(2), x) == (None, None) assert check_param(S(4) + x, Rational(3, 2), S(2), x) == (None, None) assert _nint_or_floor(16, 10) == 2 assert _odd(1) == (not _even(1)) == True assert _odd(0) == (not _even(0)) == False assert _remove_gcd(2, 4, 6) == (1, 2, 3) raises(TypeError, lambda: _remove_gcd((2, 4, 6))) assert sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) == \ (11, 1, 5) # it's ok if these pass some day when the solvers are implemented raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12)) raises(NotImplementedError, lambda: diophantine(x**3 + y**2)) assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \ set([(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)]) def test_holzer(): # if the input is good, don't let it diverge in holzer() # (but see test_fail_holzer below) assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13) # None in uv condition met; solution is not Holzer reduced # so this will hopefully change but is here for coverage assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2) raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23)) @XFAIL def test_fail_holzer(): eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2 a, b, c = 4, 79, 23 x, y, z = xyz = 26, 1, 11 X, Y, Z = ans = 2, 7, 13 assert eq(*xyz) == 0 assert eq(*ans) == 0 assert max(a*x**2, b*y**2, c*z**2) <= a*b*c assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c h = holzer(x, y, z, a, b, c) assert h == ans # it would be nice to get the smaller soln def test_issue_9539(): assert diophantine(6*w + 9*y + 20*x - z) == \ set([(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)]) def test_issue_8943(): assert diophantine( (3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x))) == \ set([(0, 0, 0)]) def test_diop_sum_of_even_powers(): eq = x**4 + y**4 + z**4 - 2673 assert diop_solve(eq) == set([(3, 6, 6), (2, 4, 7)]) assert diop_general_sum_of_even_powers(eq, 2) == set( [(3, 6, 6), (2, 4, 7)]) raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2)) neg = symbols('neg', negative=True) eq = x**4 + y**4 + neg**4 - 2673 assert diop_general_sum_of_even_powers(eq) == set([(-3, 6, 6)]) assert diophantine(x**4 + y**4 + 2) == set() assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set() def test_sum_of_squares_powers(): tru = set([ (0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8), (1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9), (2, 3, 5, 6, 7), (3, 3, 4, 5, 8)]) eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123 ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used assert len(ans) == 14 assert ans == tru raises(ValueError, lambda: list(sum_of_squares(10, -1))) assert list(sum_of_squares(-10, 2)) == [] assert list(sum_of_squares(2, 3)) == [] assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)] assert list(sum_of_squares(0, 3)) == [] assert list(sum_of_squares(4, 1)) == [(2,)] assert list(sum_of_squares(5, 1)) == [] assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)] assert list(sum_of_squares(11, 5, True)) == [ (1, 1, 1, 2, 2), (0, 0, 1, 1, 3)] assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)] assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [ 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 3, 3, 3, 4, 3, 3, 2, 2, 4, 4, 4, 4, 5] assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3] for i in range(30): s1 = set(sum_of_squares(i, 5, True)) assert not s1 or all(sum(j**2 for j in t) == i for t in s1) s2 = set(sum_of_squares(i, 5)) assert all(sum(j**2 for j in t) == i for t in s2) raises(ValueError, lambda: list(sum_of_powers(2, -1, 1))) raises(ValueError, lambda: list(sum_of_powers(2, 1, -1))) assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)] assert list(sum_of_powers(-2, 4, 2)) == [] assert list(sum_of_powers(2, 1, 1)) == [(2,)] assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)] assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)] assert list(sum_of_powers(6, 2, 2)) == [] assert list(sum_of_powers(3**5, 3, 1)) == [] assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6) assert list(sum_of_powers(2**1000, 5, 2)) == [] def test__can_do_sum_of_squares(): assert _can_do_sum_of_squares(3, -1) is False assert _can_do_sum_of_squares(-3, 1) is False assert _can_do_sum_of_squares(0, 1) assert _can_do_sum_of_squares(4, 1) assert _can_do_sum_of_squares(1, 2) assert _can_do_sum_of_squares(2, 2) assert _can_do_sum_of_squares(3, 2) is False def test_diophantine_permute_sign(): from sympy.abc import a, b, c, d, e eq = a**4 + b**4 - (2**4 + 3**4) base_sol = set([(2, 3)]) assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234 assert len(diophantine(eq)) == 35 assert len(diophantine(eq, permute=True)) == 62000 soln = set([(-1, -1), (-1, 2), (1, -2), (1, 1)]) assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln @XFAIL def test_not_implemented(): eq = x**2 + y**4 - 1**2 - 3**4 assert diophantine(eq, syms=[x, y]) == set([(9, 1), (1, 3)]) def test_issue_9538(): eq = x - 3*y + 2 assert diophantine(eq, syms=[y,x]) == set([(t_0, 3*t_0 - 2)]) raises(TypeError, lambda: diophantine(eq, syms=set([y,x]))) def test_ternary_quadratic(): # solution with 3 parameters s = diophantine(2*x**2 + y**2 - 2*z**2) p, q, r = ordered(S(s).free_symbols) assert s == {( p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)} # solution with Mul in solution s = diophantine(x**2 + 2*y**2 - 2*z**2) assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)} # solution with no Mul in solution s = diophantine(2*x**2 + 2*y**2 - z**2) assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)} # reduced form when parametrized s = diophantine(3*x**2 + 72*y**2 - 27*z**2) assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)} assert parametrize_ternary_quadratic( 3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == ( 2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 - 2*p*q + 3*q**2) assert parametrize_ternary_quadratic( 124*x**2 - 30*y**2 - 7729*z**2) == ( -1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q - 695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
89a8c1b41cd640642b5a0d8732689b1e9840a1a5f81c335d263721f3302f5a09
"""Tests for tools for solving inequalities and systems of inequalities. """ from sympy import (And, Eq, FiniteSet, Ge, Gt, Interval, Le, Lt, Ne, oo, I, Or, S, sin, cos, tan, sqrt, Symbol, Union, Integral, Sum, Function, Poly, PurePoly, pi, root, log, exp, Dummy, Abs, Piecewise, Rational) from sympy.solvers.inequalities import (reduce_inequalities, solve_poly_inequality as psolve, reduce_rational_inequalities, solve_univariate_inequality as isolve, reduce_abs_inequality, _solve_inequality) from sympy.polys.rootoftools import rootof from sympy.solvers.solvers import solve from sympy.solvers.solveset import solveset from sympy.abc import x, y from sympy.utilities.pytest import raises, XFAIL inf = oo.evalf() def test_solve_poly_inequality(): assert psolve(Poly(0, x), '==') == [S.Reals] assert psolve(Poly(1, x), '==') == [S.EmptySet] assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)] def test_reduce_poly_inequalities_real_interval(): assert reduce_rational_inequalities( [[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0) assert reduce_rational_inequalities( [[Le(x**2, 0)]], x, relational=False) == FiniteSet(0) assert reduce_rational_inequalities( [[Lt(x**2, 0)]], x, relational=False) == S.EmptySet assert reduce_rational_inequalities( [[Ge(x**2, 0)]], x, relational=False) == \ S.Reals if x.is_real else Interval(-oo, oo) assert reduce_rational_inequalities( [[Gt(x**2, 0)]], x, relational=False) == \ FiniteSet(0).complement(S.Reals) assert reduce_rational_inequalities( [[Ne(x**2, 0)]], x, relational=False) == \ FiniteSet(0).complement(S.Reals) assert reduce_rational_inequalities( [[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1) assert reduce_rational_inequalities( [[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1) assert reduce_rational_inequalities( [[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True) assert reduce_rational_inequalities( [[Ge(x**2, 1)]], x, relational=False) == \ Union(Interval(-oo, -1), Interval(1, oo)) assert reduce_rational_inequalities( [[Gt(x**2, 1)]], x, relational=False) == \ Interval(-1, 1).complement(S.Reals) assert reduce_rational_inequalities( [[Ne(x**2, 1)]], x, relational=False) == \ FiniteSet(-1, 1).complement(S.Reals) assert reduce_rational_inequalities([[Eq( x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf() assert reduce_rational_inequalities( [[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0) assert reduce_rational_inequalities([[Lt( x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True) assert reduce_rational_inequalities( [[Ge(x**2, 1.0)]], x, relational=False) == \ Union(Interval(-inf, -1.0), Interval(1.0, inf)) assert reduce_rational_inequalities( [[Gt(x**2, 1.0)]], x, relational=False) == \ Union(Interval(-inf, -1.0, right_open=True), Interval(1.0, inf, left_open=True)) assert reduce_rational_inequalities([[Ne( x**2, 1.0)]], x, relational=False) == \ FiniteSet(-1.0, 1.0).complement(S.Reals) s = sqrt(2) assert reduce_rational_inequalities([[Lt( x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge( x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1) assert reduce_rational_inequalities( [[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False)) assert reduce_rational_inequalities( [[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False)) assert reduce_rational_inequalities( [[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True)) assert reduce_rational_inequalities( [[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True)) assert reduce_rational_inequalities( [[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False ) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True), Interval(1, s, True, True)) assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false def test_reduce_poly_inequalities_complex_relational(): assert reduce_rational_inequalities( [[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0) assert reduce_rational_inequalities( [[Le(x**2, 0)]], x, relational=True) == Eq(x, 0) assert reduce_rational_inequalities( [[Lt(x**2, 0)]], x, relational=True) == False assert reduce_rational_inequalities( [[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo)) assert reduce_rational_inequalities( [[Gt(x**2, 0)]], x, relational=True) == \ And(Gt(x, -oo), Lt(x, oo), Ne(x, 0)) assert reduce_rational_inequalities( [[Ne(x**2, 0)]], x, relational=True) == \ And(Gt(x, -oo), Lt(x, oo), Ne(x, 0)) for one in (S.One, S(1.0)): inf = one*oo assert reduce_rational_inequalities( [[Eq(x**2, one)]], x, relational=True) == \ Or(Eq(x, -one), Eq(x, one)) assert reduce_rational_inequalities( [[Le(x**2, one)]], x, relational=True) == \ And(And(Le(-one, x), Le(x, one))) assert reduce_rational_inequalities( [[Lt(x**2, one)]], x, relational=True) == \ And(And(Lt(-one, x), Lt(x, one))) assert reduce_rational_inequalities( [[Ge(x**2, one)]], x, relational=True) == \ And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x)))) assert reduce_rational_inequalities( [[Gt(x**2, one)]], x, relational=True) == \ And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf)))) assert reduce_rational_inequalities( [[Ne(x**2, one)]], x, relational=True) == \ Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(-one, x), Lt(x, one)), And(Lt(one, x), Lt(x, inf))) def test_reduce_rational_inequalities_real_relational(): assert reduce_rational_inequalities([], x) == False assert reduce_rational_inequalities( [[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \ Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo)) assert reduce_rational_inequalities( [[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x, relational=False) == \ Union(Interval.open(-5, 2), Interval.open(2, 3)) assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x, relational=False) == \ Interval.Ropen(-1, 5) assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x, relational=False) == \ Union(Interval.open(-3, -1), Interval.open(1, oo)) assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x, relational=False) == \ Union(Interval.open(-4, 1), Interval.open(1, 4)) assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x, relational=False) == \ Union(Interval.open(-oo, -4), Interval.Ropen(Rational(3, 2), oo)) assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x, relational=False) == \ Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4)) # issue sympy/sympy#10237 assert reduce_rational_inequalities( [[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo) def test_reduce_abs_inequalities(): e = abs(x - 5) < 3 ans = And(Lt(2, x), Lt(x, 8)) assert reduce_inequalities(e) == ans assert reduce_inequalities(e, x) == ans assert reduce_inequalities(abs(x - 5)) == Eq(x, 5) assert reduce_inequalities( abs(2*x + 3) >= 8) == Or(And(Le(Rational(5, 2), x), Lt(x, oo)), And(Le(x, Rational(-11, 2)), Lt(-oo, x))) assert reduce_inequalities(abs(x - 4) + abs( 3*x - 5) < 7) == And(Lt(S.Half, x), Lt(x, 4)) assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \ Or(And(S(-2) < x, x < -1), And(S.Half < x, x < 4)) nr = Symbol('nr', extended_real=False) raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3)) assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3) def test_reduce_inequalities_general(): assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo) assert reduce_inequalities(PurePoly(x + 1, x) > 0) == And(S.NegativeOne < x, x < oo) def test_reduce_inequalities_boolean(): assert reduce_inequalities( [Eq(x**2, 0), True]) == Eq(x, 0) assert reduce_inequalities([Eq(x**2, 0), False]) == False assert reduce_inequalities(x**2 >= 0) is S.true # issue 10196 def test_reduce_inequalities_multivariate(): assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And( Or(And(Le(S.One, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))), Or(And(Le(S.One, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y)))) def test_reduce_inequalities_errors(): raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1))) raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1))) def test__solve_inequalities(): assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y) assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1) assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y) assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y) def test_issue_6343(): eq = -3*x**2/2 - x*Rational(45, 4) + Rational(33, 2) > 0 assert reduce_inequalities(eq) == \ And(x < Rational(-15, 4) + sqrt(401)/4, -sqrt(401)/4 - Rational(15, 4) < x) def test_issue_8235(): assert reduce_inequalities(x**2 - 1 < 0) == \ And(S.NegativeOne < x, x < 1) assert reduce_inequalities(x**2 - 1 <= 0) == \ And(S.NegativeOne <= x, x <= 1) assert reduce_inequalities(x**2 - 1 > 0) == \ Or(And(-oo < x, x < -1), And(x < oo, S.One < x)) assert reduce_inequalities(x**2 - 1 >= 0) == \ Or(And(-oo < x, x <= -1), And(S.One <= x, x < oo)) eq = x**8 + x - 9 # we want CRootOf solns here sol = solve(eq >= 0) tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0))) assert sol == tru # recast vanilla as real assert solve(sqrt((-x + 1)**2) < 1) == And(S.Zero < x, x < 2) def test_issue_5526(): assert reduce_inequalities(0 <= x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \ (x >= -Integral(y**2, (y, 1, 3)) + 1) f = Function('f') e = Sum(f(x), (x, 1, 3)) assert reduce_inequalities(0 <= x + e + y**2, [x]) == \ (x >= -y**2 - Sum(f(x), (x, 1, 3))) def test_solve_univariate_inequality(): assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2), Interval(2, oo)) assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2), Lt(-oo, x))) assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \ Union(Interval(1, 2), Interval(3, oo)) assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \ Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo))) assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \ Or(Eq(x, 0), Eq(x, 3)) # issue 2785: assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \ Union(Interval(-1, -sqrt(5)/2 + S.Half, True, True), Interval(S.Half + sqrt(5)/2, oo, True, True)) # issue 2794: assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \ Interval(1, oo, True) #issue 13105 assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0) assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2)) assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1) raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x)) # numerical testing in valid() is needed assert isolve(x**7 - x - 2 > 0, x) == \ And(rootof(x**7 - x - 2, 0) < x, x < oo) # handle numerator and denominator; although these would be handled as # rational inequalities, these test confirm that the right thing is done # when the domain is EX (e.g. when 2 is replaced with sqrt(2)) assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo) den = ((x - 1)*(x - 2)).expand() assert isolve((x - 1)/den <= 0, x) == \ Or(And(-oo < x, x < 1), And(S.One < x, x < 2)) n = Dummy('n') raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False)) c1 = Dummy("c1", positive=True) raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1)) n = Dummy('n', negative=True) assert isolve(n/c1 > -2, c1) == (-n/2 < c1) assert isolve(n/c1 < 0, c1) == True assert isolve(n/c1 > 0, c1) == False zero = cos(1)**2 + sin(1)**2 - 1 raises(NotImplementedError, lambda: isolve(x**2 < zero, x)) raises(NotImplementedError, lambda: isolve( x**2 < zero*I, x)) raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x)) raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x)) raises(TypeError, lambda: isolve(x - I < 0, x)) zero = x**2 + x - x*(x + 1) assert isolve(zero < 0, x, relational=False) is S.EmptySet assert isolve(zero <= 0, x, relational=False) is S.Reals # make sure iter_solutions gets a default value raises(NotImplementedError, lambda: isolve( Eq(cos(x)**2 + sin(x)**2, 1), x)) def test_trig_inequalities(): # all the inequalities are solved in a periodic interval. assert isolve(sin(x) < S.Half, x, relational=False) == \ Union(Interval(0, pi/6, False, True), Interval(pi*Rational(5, 6), 2*pi, True, False)) assert isolve(sin(x) > S.Half, x, relational=False) == \ Interval(pi/6, pi*Rational(5, 6), True, True) assert isolve(cos(x) < S.Zero, x, relational=False) == \ Interval(pi/2, pi*Rational(3, 2), True, True) assert isolve(cos(x) >= S.Zero, x, relational=False) == \ Union(Interval(0, pi/2), Interval(pi*Rational(3, 2), 2*pi)) assert isolve(tan(x) < S.One, x, relational=False) == \ Union(Interval.Ropen(0, pi/4), Interval.Lopen(pi/2, pi)) assert isolve(sin(x) <= S.Zero, x, relational=False) == \ Union(FiniteSet(S.Zero), Interval(pi, 2*pi)) assert isolve(sin(x) <= S.One, x, relational=False) == S.Reals assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet assert isolve(sin(x) >= S.NegativeOne, x, relational=False) == S.Reals assert isolve(cos(x) > S.One, x, relational=False) == S.EmptySet def test_issue_9954(): assert isolve(x**2 >= 0, x, relational=False) == S.Reals assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x) assert isolve(x**2 < 0, x, relational=False) == S.EmptySet assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x) @XFAIL def test_slow_general_univariate(): r = rootof(x**5 - x**2 + 1, 0) assert solve(sqrt(x) + 1/root(x, 3) > 1) == \ Or(And(0 < x, x < r**6), And(r**6 < x, x < oo)) def test_issue_8545(): eq = 1 - x - abs(1 - x) ans = And(Lt(1, x), Lt(x, oo)) assert reduce_abs_inequality(eq, '<', x) == ans eq = 1 - x - sqrt((1 - x)**2) assert reduce_inequalities(eq < 0) == ans def test_issue_8974(): assert isolve(-oo < x, x) == And(-oo < x, x < oo) assert isolve(oo > x, x) == And(-oo < x, x < oo) def test_issue_10198(): assert reduce_inequalities( -1 + 1/abs(1/x - 1) < 0) == Or( And(-oo < x, x < 0), And(S.Zero < x, x < S.Half) ) assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1) assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \ Or(And(-oo < x, x < 0), And(S.Zero < x, x < Rational(3, 4)), And(Rational(3, 2) < x, x < oo)) raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs( 1 - 1/sqrt(x)), '<', x)) def test_issue_10047(): # issue 10047: this must remain an inequality, not True, since if x # is not real the inequality is invalid # assert solve(sin(x) < 2) == (x <= oo) # with PR 16956, (x <= oo) autoevaluates when x is extended_real # which is assumed in the current implementation of inequality solvers assert solve(sin(x) < 2) == True assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals def test_issue_10268(): assert solve(log(x) < 1000) == And(S.Zero < x, x < exp(1000)) @XFAIL def test_isolve_Sets(): n = Dummy('n') assert isolve(Abs(x) <= n, x, relational=False) == \ Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True)) def test_issue_10671_12466(): assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi) i = Interval(1, 10) assert solveset((1/x).diff(x) < 0, x, i) == i assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \ Interval.Lopen(6, 7) def test__solve_inequality(): for op in (Gt, Lt, Le, Ge, Eq, Ne): assert _solve_inequality(op(x, 1), x).lhs == x assert _solve_inequality(op(S.One, x), x).lhs == x # don't get tricked by symbol on right: solve it assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1) ie = Eq(S.One, y) assert _solve_inequality(ie, x) == ie for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)): for c in (0, 1): e = 2*fx - c > 0 assert _solve_inequality(e, x, linear=True) == ( fx > c/S(2)) assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == ( x*(x + 1) < S.Half) assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1) nz = Symbol('nz', nonzero=True) assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz) assert _solve_inequality(x*nz < 1, x) == (x*nz < 1) a = Symbol('a', positive=True) assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a) assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a) # make sure to include conditions under which solution is valid e = Eq(1 - x, x*(1/x - 1)) assert _solve_inequality(e, x) == Ne(x, 0) assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0) def test__pt(): from sympy.solvers.inequalities import _pt assert _pt(-oo, oo) == 0 assert _pt(S.One, S(3)) == 2 assert _pt(S.One, oo) == _pt(oo, S.One) == 2 assert _pt(S.One, -oo) == _pt(-oo, S.One) == S.Half assert _pt(S.NegativeOne, oo) == _pt(oo, S.NegativeOne) == Rational(-1, 2) assert _pt(S.NegativeOne, -oo) == _pt(-oo, S.NegativeOne) == -2 assert _pt(x, oo) == _pt(oo, x) == x + 1 assert _pt(x, -oo) == _pt(-oo, x) == x - 1 raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S.One))
e0fb78fffe83aefb05addf30fee6f827a90f4dca06902e5e4a4f572b7c781d8e
from sympy import (acos, acosh, asinh, atan, cos, Derivative, diff, Dummy, Eq, Ne, erf, erfi, exp, Function, I, Integral, LambertW, log, O, pi, Rational, rootof, S, sin, sqrt, Subs, Symbol, tan, asin, sinh, Piecewise, symbols, Poly, sec, Ei, re, im, atan2, collect, hyper) from sympy.solvers.ode import (_undetermined_coefficients_match, checkodesol, classify_ode, classify_sysode, constant_renumber, constantsimp, homogeneous_order, infinitesimals, checkinfsol, checksysodesol, solve_ics, dsolve, get_numbered_constants) from sympy.functions import airyai, airybi, besselj, bessely from sympy.solvers.deutils import ode_order from sympy.utilities.pytest import XFAIL, skip, raises, slow, ON_TRAVIS, SKIP from sympy.utilities.misc import filldedent C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11') u, x, y, z = symbols('u,x:z', real=True) f = Function('f') g = Function('g') h = Function('h') # Note: the tests below may fail (but still be correct) if ODE solver, # the integral engine, solve(), or even simplify() changes. Also, in # differently formatted solutions, the arbitrary constants might not be # equal. Using specific hints in tests can help to avoid this. # Tests of order higher than 1 should run the solutions through # constant_renumber because it will normalize it (constant_renumber causes # dsolve() to return different results on different machines) def test_linear_2eq_order1(): x, y, z = symbols('x, y, z', cls=Function) k, l, m, n = symbols('k, l, m, n', Integer=True) t = Symbol('t') x0, y0 = symbols('x0, y0', cls=Function) eq1 = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t))) sol1 = [Eq(x(t), 9*C1*exp(6*sqrt(3)*t) + 9*C2*exp(-6*sqrt(3)*t)), \ Eq(y(t), 6*sqrt(3)*C1*exp(6*sqrt(3)*t) - 6*sqrt(3)*C2*exp(-6*sqrt(3)*t))] assert checksysodesol(eq1, sol1) == (True, [0, 0]) eq2 = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t))) sol2 = [Eq(x(t), 4*C1*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + 4*C2*exp(t*(-sqrt(1713)/2 + Rational(43, 2)))), \ Eq(y(t), C1*(Rational(39, 2) + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + Rational(43, 2))) + \ C2*(-sqrt(1713)/2 + Rational(39, 2))*exp(t*(-sqrt(1713)/2 + Rational(43, 2))))] assert checksysodesol(eq2, sol2) == (True, [0, 0]) eq3 = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t))) sol3 = [Eq(x(t), (C1*cos(sqrt(7)*t/2) + C2*sin(sqrt(7)*t/2))*exp(t*Rational(3, 2))), \ Eq(y(t), (C1*(-sqrt(7)*sin(sqrt(7)*t/2)/2 + cos(sqrt(7)*t/2)/2) + \ C2*(sin(sqrt(7)*t/2)/2 + sqrt(7)*cos(sqrt(7)*t/2)/2))*exp(t*Rational(3, 2)))] assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23)) sol4 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \ Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))] assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23)) sol5 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \ Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))] assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t))) sol6 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))] s = dsolve(eq6) assert checksysodesol(eq6, sol6) == (True, [0, 0]) eq7 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) sol7 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))] assert checksysodesol(eq7, sol7) == (True, [0, 0]) eq8 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t))) sol8 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \ C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \ Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \ C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))] assert checksysodesol(eq8, sol8) == (True, [0, 0]) eq10 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t))) sol10 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \ Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \ exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))] s = dsolve(eq10) assert s == sol10 # too complicated to test with subs and simplify # assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails def test_linear_2eq_order1_nonhomog_linear(): e = [Eq(diff(f(x), x), f(x) + g(x) + 5*x), Eq(diff(g(x), x), f(x) - g(x))] raises(NotImplementedError, lambda: dsolve(e)) def test_linear_2eq_order1_nonhomog(): # Note: once implemented, add some tests esp. with resonance e = [Eq(diff(f(x), x), f(x) + exp(x)), Eq(diff(g(x), x), f(x) + g(x) + x*exp(x))] raises(NotImplementedError, lambda: dsolve(e)) def test_linear_2eq_order1_type2_degen(): e = [Eq(diff(f(x), x), f(x) + 5), Eq(diff(g(x), x), f(x) + 7)] s1 = [Eq(f(x), C1*exp(x) - 5), Eq(g(x), C1*exp(x) - C2 + 2*x - 5)] assert checksysodesol(e, s1) == (True, [0, 0]) def test_dsolve_linear_2eq_order1_diag_triangular(): e = [Eq(diff(f(x), x), f(x)), Eq(diff(g(x), x), g(x))] s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))] assert checksysodesol(e, s1) == (True, [0, 0]) e = [Eq(diff(f(x), x), 2*f(x)), Eq(diff(g(x), x), 3*f(x) + 7*g(x))] s1 = [Eq(f(x), -5*C2*exp(2*x)), Eq(g(x), 5*C1*exp(7*x) + 3*C2*exp(2*x))] assert checksysodesol(e, s1) == (True, [0, 0]) def test_sysode_linear_2eq_order1_type1_D_lt_0(): e = [Eq(diff(f(x), x), -9*I*f(x) - 4*g(x)), Eq(diff(g(x), x), -4*I*g(x))] s1 = [Eq(f(x), -4*C1*exp(-4*I*x) - 4*C2*exp(-9*I*x)), \ Eq(g(x), 5*I*C1*exp(-4*I*x))] assert checksysodesol(e, s1) == (True, [0, 0]) def test_sysode_linear_2eq_order1_type1_D_lt_0_b_eq_0(): e = [Eq(diff(f(x), x), -9*I*f(x)), Eq(diff(g(x), x), -4*I*g(x))] s1 = [Eq(f(x), -5*I*C2*exp(-9*I*x)), Eq(g(x), 5*I*C1*exp(-4*I*x))] assert checksysodesol(e, s1) == (True, [0, 0]) def test_sysode_linear_2eq_order1_many_zeros(): t = Symbol('t') corner_cases = [(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, I), (I, 0, 0, -I), (0, I, 0, 0), (0, I, I, 0)] s1 = [[Eq(f(t), C1), Eq(g(t), C2)], [Eq(f(t), C1*exp(t)), Eq(g(t), -C2)], [Eq(f(t), C1 + C2*t), Eq(g(t), C2)], [Eq(f(t), C2), Eq(g(t), C1 + C2*t)], [Eq(f(t), -C2), Eq(g(t), C1*exp(t))], [Eq(f(t), C1*(1 - I)*exp(t)), Eq(g(t), C2*(-1 + I)*exp(I*t))], [Eq(f(t), 2*I*C1*exp(I*t)), Eq(g(t), -2*I*C2*exp(-I*t))], [Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)], [Eq(f(t), I*C1*exp(I*t) + I*C2*exp(-I*t)), \ Eq(g(t), I*C1*exp(I*t) - I*C2*exp(-I*t))] ] for r, sol in zip(corner_cases, s1): eq = [Eq(diff(f(t), t), r[0]*f(t) + r[1]*g(t)), Eq(diff(g(t), t), r[2]*f(t) + r[3]*g(t))] assert checksysodesol(eq, sol) == (True, [0, 0]) def test_dsolve_linsystem_symbol_piecewise(): u = Symbol('u') # XXX it's more complicated with real u eq = (Eq(diff(f(x), x), 2*f(x) + g(x)), Eq(diff(g(x), x), u*f(x))) s1 = [Eq(f(x), Piecewise((C1*exp(x*(sqrt(4*u + 4)/2 + 1)) + C2*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4, 0)), ((C1 + C2*(x + Piecewise((0, Eq(sqrt(4*u + 4)/2 + 1, 2)), (1/(-sqrt(4*u + 4)/2 + 1), True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True))), Eq(g(x), Piecewise((C1*(sqrt(4*u + 4)/2 - 1)*exp(x*(sqrt(4*u + 4)/2 + 1)) + C2*(-sqrt(4*u + 4)/2 - 1)*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4, 0)), ((C1*(sqrt(4*u + 4)/2 - 1) + C2*(x*(sqrt(4*u + 4)/2 - 1) + Piecewise((1, Eq(sqrt(4*u + 4)/2 + 1, 2)), (0, True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True)))] assert dsolve(eq) == s1 # FIXME: assert checksysodesol(eq, s) == (True, [0, 0]) # Remove lines below when checksysodesol works s = [(l.lhs, l.rhs) for l in s1] for v in [0, 7, -42, 5*I, 3 + 4*I]: assert eq[0].subs(s).subs(u, v).doit().simplify() assert eq[1].subs(s).subs(u, v).doit().simplify() # example from https://groups.google.com/d/msg/sympy/xmzoqW6tWaE/sf0bgQrlCgAJ i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t') x1 = Function('x1') x2 = Function('x2') eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i sol = dsolve((eq1, eq2)) # FIXME: assert checksysodesol(eq, sol) == (True, [0, 0]) # Remove line below when checksysodesol works assert all(s.has(Piecewise) for s in sol) @slow def test_linear_2eq_order2(): x, y, z = symbols('x, y, z', cls=Function) k, l, m, n = symbols('k, l, m, n', Integer=True) t, l = symbols('t, l') x0, y0 = symbols('x0, y0', cls=Function) eq1 = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t))) sol1 = [Eq(x(t), 43*C1*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + 43*C2*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \ 43*C3*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + 43*C4*exp(t*rootof(l**4 - 14*l**2 + 2, 3))), \ Eq(y(t), C1*(rootof(l**4 - 14*l**2 + 2, 0)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + \ C2*(rootof(l**4 - 14*l**2 + 2, 1)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \ C3*(rootof(l**4 - 14*l**2 + 2, 2)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + \ C4*(rootof(l**4 - 14*l**2 + 2, 3)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 3)))] assert dsolve(eq1) == sol1 # FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0]) # this one fails eq2 = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12)) sol2 = [Eq(x(t), 3*C1*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + 3*C2*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \ 3*C3*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + 3*C4*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) - Rational(181, 29)), \ Eq(y(t), C1*(rootof(l**4 - 15*l**2 + 29, 0)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + \ C2*(rootof(l**4 - 15*l**2 + 29, 1)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \ C3*(rootof(l**4 - 15*l**2 + 29, 2)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + \ C4*(rootof(l**4 - 15*l**2 + 29, 3)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) + Rational(183, 29))] assert dsolve(eq2) == sol2 # FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0]) # this one fails eq3 = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0)) sol3 = [Eq(x(t), C1*cos(t*(Rational(9, 2) + sqrt(109)/2)) + C2*sin(t*(Rational(9, 2) + sqrt(109)/2)) + C3*cos(t*(-sqrt(109)/2 + Rational(9, 2))) + \ C4*sin(t*(-sqrt(109)/2 + Rational(9, 2)))), Eq(y(t), -C1*sin(t*(Rational(9, 2) + sqrt(109)/2)) + C2*cos(t*(Rational(9, 2) + sqrt(109)/2)) - \ C3*sin(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*cos(t*(-sqrt(109)/2 + Rational(9, 2))))] assert dsolve(eq3) == sol3 assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t))) sol4 = [Eq(x(t), C3*t + t*Integral((9*C1*exp(3*sqrt(7)*t**2/2) + 9*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t)), \ Eq(y(t), C4*t + t*Integral((3*sqrt(7)*C1*exp(3*sqrt(7)*t**2/2) - 3*sqrt(7)*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t))] assert dsolve(eq4) == sol4 assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)), Eq(diff(y(t),t,t), \ (log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t))) sol5 = [Eq(x(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2 - \ C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4 - \ (sqrt(22) + 5)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2) + \ (-sqrt(22) + 5)*(C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C4))/88), \ Eq(y(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + \ C2 - C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4)/44)] assert dsolve(eq5) == sol5 assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t,t), log(t)*t*diff(y(t),t) - log(t)*y(t)), Eq(diff(y(t),t,t), log(t)*t*diff(x(t),t) - log(t)*x(t))) sol6 = [Eq(x(t), C3*t + t*Integral((C1*exp(Integral(t*log(t), t)) + \ C2*exp(-Integral(t*log(t), t)))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*exp(Integral(t*log(t), t)) - \ C2*exp(-Integral(t*log(t), t)))/t**2, t))] assert dsolve(eq6) == sol6 assert checksysodesol(eq6, sol6) == (True, [0, 0]) eq7 = (Eq(diff(x(t),t,t), log(t)*(t*diff(x(t),t) - x(t)) + exp(t)*(t*diff(y(t),t) - y(t))), \ Eq(diff(y(t),t,t), (t**2)*(t*diff(x(t),t) - x(t)) + (t)*(t*diff(y(t),t) - y(t)))) sol7 = [Eq(x(t), C3*t + t*Integral((C1*x0(t) + C2*x0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*\ exp(Integral(t*log(t), t))/x0(t)**2, t))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*y0(t) + \ C2*(y0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)**2, t) + \ exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)))/t**2, t))] assert dsolve(eq7) == sol7 # FIXME: assert checksysodesol(eq7, sol7) == (True, [0, 0]) eq8 = (Eq(diff(x(t),t,t), t*(4*x(t) + 9*y(t))), Eq(diff(y(t),t,t), t*(12*x(t) - 6*y(t)))) sol8 = [Eq(x(t), -sqrt(133)*(-4*C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + 4*C1*airyai(-t*(1 + \ sqrt(133))**(S(1)/3)) - 4*C2*airybi(t*(-1 + sqrt(133))**(S(1)/3)) + 4*C2*airybi(-t*(1 + sqrt(133))**(S(1)/3)) +\ (-sqrt(133) - 1)*(C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + C2*airybi(t*(-1 + sqrt(133))**(S(1)/3))) - (-1 +\ sqrt(133))*(C1*airyai(-t*(1 + sqrt(133))**(S(1)/3)) + C2*airybi(-t*(1 + sqrt(133))**(S(1)/3))))/3192), \ Eq(y(t), -sqrt(133)*(-C1*airyai(t*(-1 + sqrt(133))**(S(1)/3)) + C1*airyai(-t*(1 + sqrt(133))**(S(1)/3)) -\ C2*airybi(t*(-1 + sqrt(133))**(S(1)/3)) + C2*airybi(-t*(1 + sqrt(133))**(S(1)/3)))/266)] assert dsolve(eq8) == sol8 assert checksysodesol(eq8, sol8) == (True, [0, 0]) assert filldedent(dsolve(eq8)) == filldedent(''' [Eq(x(t), -sqrt(133)*(-4*C1*airyai(t*(-1 + sqrt(133))**(1/3)) + 4*C1*airyai(-t*(1 + sqrt(133))**(1/3)) - 4*C2*airybi(t*(-1 + sqrt(133))**(1/3)) + 4*C2*airybi(-t*(1 + sqrt(133))**(1/3)) + (-sqrt(133) - 1)*(C1*airyai(t*(-1 + sqrt(133))**(1/3)) + C2*airybi(t*(-1 + sqrt(133))**(1/3))) - (-1 + sqrt(133))*(C1*airyai(-t*(1 + sqrt(133))**(1/3)) + C2*airybi(-t*(1 + sqrt(133))**(1/3))))/3192), Eq(y(t), -sqrt(133)*(-C1*airyai(t*(-1 + sqrt(133))**(1/3)) + C1*airyai(-t*(1 + sqrt(133))**(1/3)) - C2*airybi(t*(-1 + sqrt(133))**(1/3)) + C2*airybi(-t*(1 + sqrt(133))**(1/3)))/266)]''') assert checksysodesol(eq8, sol8) == (True, [0, 0]) eq9 = (Eq(diff(x(t),t,t), t*(4*diff(x(t),t) + 9*diff(y(t),t))), Eq(diff(y(t),t,t), t*(12*diff(x(t),t) - 6*diff(y(t),t)))) sol9 = [Eq(x(t), -sqrt(133)*(4*C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + 4*C2 - \ 4*C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - 4*C4 - (-1 + sqrt(133))*(C1*Integral(exp((-sqrt(133) - \ 1)*Integral(t, t)), t) + C2) + (-sqrt(133) - 1)*(C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) + \ C4))/3192), Eq(y(t), -sqrt(133)*(C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + C2 - \ C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - C4)/266)] assert dsolve(eq9) == sol9 assert checksysodesol(eq9, sol9) == (True, [0, 0]) eq10 = (t**2*diff(x(t),t,t) + 3*t*diff(x(t),t) + 4*t*diff(y(t),t) + 12*x(t) + 9*y(t), \ t**2*diff(y(t),t,t) + 2*t*diff(x(t),t) - 5*t*diff(y(t),t) + 15*x(t) + 8*y(t)) sol10 = [Eq(x(t), -C1*(-2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 13 + 2*sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \ 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) - \ C2*(-2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 13 - 2*sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) - C3*t**(1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*(2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 13 + 2*sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))) - C4*t**(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2)*(-2*sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))) + 2*sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 13)), Eq(y(t), C1*(-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14 + (-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))))*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) + C2*(-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))) + (-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2)*exp((-sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) - 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*log(t)) + C3*t**(1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + \ 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)*(sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))) + 14 + (1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3))/2 + sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + 346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)))/2)**2) + C4*t**(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \ 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2)*(-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + \ 8 + 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))) + (-sqrt(-2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3) + 8 + \ 346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 284/sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)))/2 + 1 + sqrt(-346/(3*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + \ 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3))/2)**2 + sqrt(-346/(3*(Rational(4333, 4) + \ 5*sqrt(70771857)/36)**Rational(1, 3)) + 4 + 2*(Rational(4333, 4) + 5*sqrt(70771857)/36)**Rational(1, 3)) + 14))] assert dsolve(eq10) == sol10 # FIXME: assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this hangs or at least takes a while... def test_linear_3eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') eq1 = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t))) sol1 = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \ Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))] assert checksysodesol(eq1, sol1) == (True, [0, 0, 0]) eq2 = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t))) sol2 = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \ Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \ Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))] assert checksysodesol(eq2, sol2) == (True, [0, 0, 0]) eq3 = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t)))) sol3 = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \ Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \ Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))] assert checksysodesol(eq3, sol3) == (True, [0, 0, 0]) f = t**3 + log(t) g = t**2 + sin(t) eq4 = (Eq(diff(x(t),t),(4*f+g)*x(t)-f*y(t)-2*f*z(t)), Eq(diff(y(t),t),2*f*x(t)+(f+g)*y(t)-2*f*z(t)), Eq(diff(z(t),t),5*f*x(t)+f*y(t)+(-3*f+g)*z(t))) sol4 = [Eq(x(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 \ + cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - \ sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*exp(Integral(-t**2 - sin(t), t))), Eq(y(t), \ (C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 + cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + \ C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*\ exp(Integral(-t**2 - sin(t), t))), Eq(z(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*cos(sqrt(3)*\ Integral(t**3 + log(t), t)) + C3*sin(sqrt(3)*Integral(t**3 + log(t), t)))*exp(Integral(-t**2 - sin(t), t)))] assert dsolve(eq4) == sol4 # FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0, 0]) # this one fails eq5 = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t))) sol5 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \ Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \ Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))] assert checksysodesol(eq5, sol5) == (True, [0, 0, 0]) eq6 = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t))) sol6 = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)), Eq(y(t), C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)), Eq(z(t), C1*exp(2*t) + C2*cos(t) + C3*sin(t))] assert checksysodesol(eq6, sol6) == (True, [0, 0, 0]) def test_linear_3eq_order1_nonhomog(): e = [Eq(diff(f(x), x), -9*f(x) - 4*g(x)), Eq(diff(g(x), x), -4*g(x)), Eq(diff(h(x), x), h(x) + exp(x))] raises(NotImplementedError, lambda: dsolve(e)) @XFAIL def test_linear_3eq_order1_diagonal(): # code makes assumptions about coefficients being nonzero, breaks when assumptions are not true e = [Eq(diff(f(x), x), f(x)), Eq(diff(g(x), x), g(x)), Eq(diff(h(x), x), h(x))] s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x)), Eq(h(x), C3*exp(x))] s = dsolve(e) assert s == s1 assert checksysodesol(e, s1) == (True, [0, 0, 0]) def test_nonlinear_2eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol1 = [ Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq1) == sol1 assert checksysodesol(eq1, sol1) == (True, [0, 0]) eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5)) sol2 = [ Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq2) == sol2 assert checksysodesol(eq2, sol2) == (True, [0, 0]) eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3)) tt = Rational(2, 3) sol3 = [ Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)), Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)] assert dsolve(eq3) == sol3 # FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0]) eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2)) sol4 = set([Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))]) assert dsolve(eq4) == sol4 # FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0]) eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2)) sol5 = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)]) assert dsolve(eq5) == sol5 assert checksysodesol(eq5, sol5) == (True, [0, 0]) eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol6 = [ Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert dsolve(eq6) == sol6 assert checksysodesol(eq6, sol6) == (True, [0, 0]) def test_checksysodesol(): x, y, z = symbols('x, y, z', cls=Function) t = Symbol('t') eq = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t))) sol = [Eq(x(t), 9*C1*exp(-6*sqrt(3)*t) + 9*C2*exp(6*sqrt(3)*t)), \ Eq(y(t), -6*sqrt(3)*C1*exp(-6*sqrt(3)*t) + 6*sqrt(3)*C2*exp(6*sqrt(3)*t))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t))) sol = [Eq(x(t), 4*C1*exp(t*(-sqrt(1713)/2 + Rational(43, 2))) + 4*C2*exp(t*(sqrt(1713)/2 + \ Rational(43, 2)))), Eq(y(t), C1*(-sqrt(1713)/2 + Rational(39, 2))*exp(t*(-sqrt(1713)/2 + \ Rational(43, 2))) + C2*(Rational(39, 2) + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + Rational(43, 2))))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t))) sol = [Eq(x(t), (C1*sin(sqrt(7)*t/2) + C2*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2))), \ Eq(y(t), ((C1/2 - sqrt(7)*C2/2)*sin(sqrt(7)*t/2) + (sqrt(7)*C1/2 + \ C2/2)*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2)))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23)) sol = [Eq(x(t), C1*exp(t*(-sqrt(6) + 3)) + C2*exp(t*(sqrt(6) + 3)) - \ Rational(22, 3)), Eq(y(t), C1*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) + C2*(2 + \ sqrt(6))*exp(t*(sqrt(6) + 3)) - Rational(5, 3))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23)) sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - Rational(58, 3)), \ Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - Rational(185, 3))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t))) sol = [Eq(x(t), (C1*exp((Integral(2, t).doit())) + C2*exp(-(Integral(2, t)).doit()))*\ exp((Integral(5*t, t)).doit())), Eq(y(t), (C1*exp((Integral(2, t)).doit()) - \ C2*exp(-(Integral(2, t)).doit()))*exp((Integral(5*t, t)).doit()))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) sol = [Eq(x(t), (C1*cos((Integral(t**2, t)).doit()) + C2*sin((Integral(t**2, t)).doit()))*\ exp((Integral(5*t, t)).doit())), Eq(y(t), (-C1*sin((Integral(t**2, t)).doit()) + \ C2*cos((Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t))) sol = [Eq(x(t), (C1*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \ C2*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit())), \ Eq(y(t), (C1*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \ C2*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t))) root0 = -sqrt(-sqrt(47) + 7) root1 = sqrt(-sqrt(47) + 7) root2 = -sqrt(sqrt(47) + 7) root3 = sqrt(sqrt(47) + 7) sol = [Eq(x(t), 43*C1*exp(t*root0) + 43*C2*exp(t*root1) + 43*C3*exp(t*root2) + 43*C4*exp(t*root3)), \ Eq(y(t), C1*(root0**2 - 5)*exp(t*root0) + C2*(root1**2 - 5)*exp(t*root1) + \ C3*(root2**2 - 5)*exp(t*root2) + C4*(root3**2 - 5)*exp(t*root3))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12)) root0 = -sqrt(-sqrt(109)/2 + Rational(15, 2)) root1 = sqrt(-sqrt(109)/2 + Rational(15, 2)) root2 = -sqrt(sqrt(109)/2 + Rational(15, 2)) root3 = sqrt(sqrt(109)/2 + Rational(15, 2)) sol = [Eq(x(t), 3*C1*exp(t*root0) + 3*C2*exp(t*root1) + 3*C3*exp(t*root2) + 3*C4*exp(t*root3) - Rational(181, 29)), \ Eq(y(t), C1*(root0**2 - 8)*exp(t*root0) + C2*(root1**2 - 8)*exp(t*root1) + \ C3*(root2**2 - 8)*exp(t*root2) + C4*(root3**2 - 8)*exp(t*root3) + Rational(183, 29))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0)) sol = [Eq(x(t), C1*cos(t*(Rational(9, 2) + sqrt(109)/2)) + C2*sin(t*(Rational(9, 2) + sqrt(109)/2)) + \ C3*cos(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*sin(t*(-sqrt(109)/2 + Rational(9, 2)))), Eq(y(t), -C1*sin(t*(Rational(9, 2) + sqrt(109)/2)) \ + C2*cos(t*(Rational(9, 2) + sqrt(109)/2)) - C3*sin(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*cos(t*(-sqrt(109)/2 + Rational(9, 2))))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t))) I1 = sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erfi(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(3*sqrt(7)*t**2/2)/t I2 = -sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erf(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(-3*sqrt(7)*t**2/2)/t sol = [Eq(x(t), C3*t + t*(9*C1*I1 + 9*C2*I2)), Eq(y(t), C4*t + t*(3*sqrt(7)*C1*I1 - 3*sqrt(7)*C2*I2))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t))) sol = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \ Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t))) sol = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \ Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \ Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t)))) sol = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \ Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \ Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t))) sol = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \ Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \ Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t))) sol = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), \ Eq(y(t), C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), Eq(z(t), C1*exp(2*t) + 5*C2*cos(t) + 5*C3*sin(t))] assert checksysodesol(eq, sol) == (True, [0, 0, 0]) eq = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5)) sol = [Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5)) sol = [Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \ Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))] assert checksysodesol(eq, sol) == (True, [0, 0]) eq = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2)) sol = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)]) assert checksysodesol(eq, sol) == (True, [0, 0]) @slow def test_nonlinear_3eq_order1(): x, y, z = symbols('x, y, z', cls=Function) t, u = symbols('t u') eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t)) sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))), C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)* sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)] assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)] # FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0]) eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t)) sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 + sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)* sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)] assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)] # FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0]) @slow def test_checkodesol(): from sympy import Ei # For the most part, checkodesol is well tested in the tests below. # These tests only handle cases not checked below. raises(ValueError, lambda: checkodesol(f(x, y).diff(x), Eq(f(x, y), x))) raises(ValueError, lambda: checkodesol(f(x).diff(x), Eq(f(x, y), x), f(x, y))) assert checkodesol(f(x).diff(x), Eq(f(x, y), x)) == \ (False, -f(x).diff(x) + f(x, y).diff(x) - 1) assert checkodesol(f(x).diff(x), Eq(f(x), x)) is not True assert checkodesol(f(x).diff(x), Eq(f(x), x)) == (False, 1) sol1 = Eq(f(x)**5 + 11*f(x) - 2*f(x) + x, 0) assert checkodesol(diff(sol1.lhs, x), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x)*exp(f(x)), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 2), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 2)*exp(f(x)), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 3), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 3)*exp(f(x)), sol1) == (True, 0) assert checkodesol(diff(sol1.lhs, x, 3), Eq(f(x), x*log(x))) == \ (False, 60*x**4*((log(x) + 1)**2 + log(x))*( log(x) + 1)*log(x)**2 - 5*x**4*log(x)**4 - 9) assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0)) == \ (True, 0) assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0), solve_for_func=False) == (True, 0) assert checkodesol(f(x).diff(x, 2), [Eq(f(x), C1 + C2*x), Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)]) == \ [(True, 0), (True, 0), (False, C2)] assert checkodesol(f(x).diff(x, 2), set([Eq(f(x), C1 + C2*x), Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)])) == \ set([(True, 0), (True, 0), (False, C2)]) assert checkodesol(f(x).diff(x) - 1/f(x)/2, Eq(f(x)**2, x)) == \ [(True, 0), (True, 0)] assert checkodesol(f(x).diff(x) - f(x), Eq(C1*exp(x), f(x))) == (True, 0) # Based on test_1st_homogeneous_coeff_ode2_eq3sol. Make sure that # checkodesol tries back substituting f(x) when it can. eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x) sol3 = Eq(f(x), log(log(C1/x)**(-x))) assert not checkodesol(eq3, sol3)[1].has(f(x)) # This case was failing intermittently depending on hash-seed: eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)) sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (2*x**2 +25)*f(x) sol = Eq(f(x), C1*besselj(5*I, sqrt(2)*x) + C2*bessely(5*I, sqrt(2)*x)) assert checkodesol(eq, sol) == (True, 0) @slow def test_dsolve_options(): eq = x*f(x).diff(x) + f(x) a = dsolve(eq, hint='all') b = dsolve(eq, hint='all', simplify=False) c = dsolve(eq, hint='all_Integral') keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear', '1st_linear_Integral', 'almost_linear', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'order', 'separable', 'separable_Integral'] Integral_keys = ['1st_exact_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'nth_linear_euler_eq_homogeneous', 'order', 'separable_Integral'] assert sorted(a.keys()) == keys assert a['order'] == ode_order(eq, f(x)) assert a['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best') == Eq(f(x), C1/x) assert a['default'] == 'separable' assert a['best_hint'] == 'separable' assert not a['1st_exact'].has(Integral) assert not a['separable'].has(Integral) assert not a['1st_homogeneous_coeff_best'].has(Integral) assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not a['1st_linear'].has(Integral) assert a['1st_linear_Integral'].has(Integral) assert a['1st_exact_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert a['separable_Integral'].has(Integral) assert sorted(b.keys()) == keys assert b['order'] == ode_order(eq, f(x)) assert b['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x) assert b['default'] == 'separable' assert b['best_hint'] == '1st_linear' assert a['separable'] != b['separable'] assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \ b['1st_homogeneous_coeff_subs_dep_div_indep'] assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \ b['1st_homogeneous_coeff_subs_indep_div_dep'] assert not b['1st_exact'].has(Integral) assert not b['separable'].has(Integral) assert not b['1st_homogeneous_coeff_best'].has(Integral) assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not b['1st_linear'].has(Integral) assert b['1st_linear_Integral'].has(Integral) assert b['1st_exact_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert b['separable_Integral'].has(Integral) assert sorted(c.keys()) == Integral_keys raises(ValueError, lambda: dsolve(eq, hint='notarealhint')) raises(ValueError, lambda: dsolve(eq, hint='Liouville')) assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \ dsolve(f(x).diff(x) - 1/f(x)**2, hint='best') assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x), hint="1st_linear_Integral") == \ Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)* exp(Integral(1, x)), x))*exp(-Integral(1, x))) def test_classify_ode(): assert classify_ode(f(x).diff(x, 2), f(x)) == \ ( 'nth_algebraic', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'Liouville', '2nd_power_series_ordinary', 'nth_algebraic_Integral', 'Liouville_Integral', ) assert classify_ode(f(x), f(x)) == ('nth_algebraic', 'nth_algebraic_Integral') assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == ( 'nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') assert classify_ode(f(x).diff(x)**2, f(x)) == ('nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') # issue 4749: f(x) should be cleared from highest derivative before classifying a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x)) b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x)) c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x)) assert a == ('1st_linear', 'Bernoulli', 'almost_linear', '1st_power_series', "lie_group", 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert b == ('factorable', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert c == ('1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert classify_ode( 2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x) ) == ('Bernoulli', 'almost_linear', 'lie_group', 'Bernoulli_Integral', 'almost_linear_Integral') assert 'Riccati_special_minus2' in \ classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x)) raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff( y), f(x, y))) # issue 5176 k = Symbol('k') assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) + k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \ ('separable', '1st_exact', '1st_power_series', 'lie_group', 'separable_Integral', '1st_exact_Integral') # preprocessing ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral') # w/o f(x) given assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans # w/ f(x) and prep=True assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x), prep=True) == ans assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_linear', '1st_power_series', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral') assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_power_series', 'lie_group', 'nth_algebraic_Integral', 'separable_Integral') # test issue 13864 assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \ ('1st_power_series', 'lie_group') assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict) def test_classify_ode_ics(): # Dummy eq = f(x).diff(x, x) - f(x) # Not f(0) or f'(0) ics = {x: 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) ############################ # f(0) type (AppliedUndef) # ############################ # Wrong function ics = {g(0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(0, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(0): f(1)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(0): 1} classify_ode(eq, f(x), ics=ics) ##################### # f'(0) type (Subs) # ##################### # Wrong function ics = {g(x).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Wrong variable ics = {f(y).diff(y).subs(y, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, y).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, 0): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, 0): 1} classify_ode(eq, f(x), ics=ics) ########################### # f'(y) type (Derivative) # ########################### # Wrong function ics = {g(x).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, z).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, y): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, y): 1} classify_ode(eq, f(x), ics=ics) def test_classify_sysode(): # Here x is assumed to be x(t) and y as y(t) for simplicity. # Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively. k, l, m, n = symbols('k, l, m, n', Integer=True) k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True) P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function) P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function) x, y, z = symbols('x, y, z', cls=Function) t = symbols('t') x1 = diff(x(t),t) ; y1 = diff(y(t),t) ; z1 = diff(z(t),t) x2 = diff(x(t),t,t) ; y2 = diff(y(t),t,t) eq1 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t))) sol1 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -5*t, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): -5*t, (1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -2, (1, y(t), 1): 1}, \ 'type_of_equation': 'type3', 'func': [x(t), y(t)], 'is_linear': True, 'eq': [-5*t*x(t) - 2*y(t) + \ Derivative(x(t), t), -5*t*y(t) - 2*x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq1) == sol1 eq2 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t))) sol2 = {'order': {y(t): 2, x(t): 2}, 'type_of_equation': 'type3', 'is_linear': True, 'eq': \ [-k*x(t) + l*Derivative(y(t), t) + Derivative(x(t), t, t), -k*y(t) - l*Derivative(x(t), t) + \ Derivative(y(t), t, t)], 'no_of_equation': 2, 'func_coeff': {(0, y(t), 0): 0, (0, x(t), 2): 1, \ (1, y(t), 1): 0, (1, y(t), 2): 1, (1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -k, (1, x(t), 1): \ -l, (0, x(t), 1): 0, (0, y(t), 1): l, (1, x(t), 0): 0, (1, y(t), 0): -k}, 'func': [x(t), y(t)]} assert classify_sysode(eq2) == sol2 eq3 = (Eq(x2+4*x1+3*y1+9*x(t)+7*y(t), 11*exp(I*t)), Eq(y2+5*x1+8*y1+3*x(t)+12*y(t), 2*exp(I*t))) sol3 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): 9, \ (1, x(t), 1): 5, (0, x(t), 1): 4, (0, y(t), 1): 3, (1, x(t), 0): 3, (1, y(t), 0): 12, (0, y(t), 0): 7, \ (0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): 8}, 'type_of_equation': 'type4', 'func': [x(t), y(t)], \ 'is_linear': True, 'eq': [9*x(t) + 7*y(t) - 11*exp(I*t) + 4*Derivative(x(t), t) + 3*Derivative(y(t), t) + \ Derivative(x(t), t, t), 3*x(t) + 12*y(t) - 2*exp(I*t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + \ Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}} assert classify_sysode(eq3) == sol3 eq4 = (Eq((4*t**2 + 7*t + 1)**2*x2, 5*x(t) + 35*y(t)), Eq((4*t**2 + 7*t + 1)**2*y2, x(t) + 9*y(t))) sol4 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -5, \ (1, x(t), 1): 0, (0, x(t), 1): 0, (0, y(t), 1): 0, (1, x(t), 0): -1, (1, y(t), 0): -9, (0, y(t), 0): -35, \ (0, x(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, (1, y(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, \ (1, y(t), 1): 0}, 'type_of_equation': 'type10', 'func': [x(t), y(t)], 'is_linear': True, \ 'eq': [(4*t**2 + 7*t + 1)**2*Derivative(x(t), t, t) - 5*x(t) - 35*y(t), (4*t**2 + 7*t + 1)**2*Derivative(y(t), t, t)\ - x(t) - 9*y(t)], 'order': {y(t): 2, x(t): 2}} assert classify_sysode(eq4) == sol4 eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23)) sol5 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -1, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): -5, \ (1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type2', \ 'func': [x(t), y(t)], 'is_linear': True, 'eq': [-x(t) - y(t) + Derivative(x(t), t) - 9, -2*x(t) - 5*y(t) + \ Derivative(y(t), t) - 23], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq5) == sol5 eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t)))) sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \ [x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \ y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq6) == sol6 eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t))) sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \ 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \ Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq7) == sol7 eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t))) sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \ [-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \ Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \ (1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2} assert classify_sysode(eq8) == sol8 eq9 = (Eq(x1,3*y(t)-11*z(t)),Eq(y1,7*z(t)-3*x(t)),Eq(z1,11*x(t)-7*y(t))) sol9 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 1, \ (0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 7, (0, x(t), 1): 1, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): 3, (0, z(t), 0): 11, (0, y(t), 0): -3, (1, z(t), 0): -7, (0, z(t), 1): 0, \ (2, x(t), 0): -11, (2, z(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': [x(t), y(t), z(t)], \ 'is_linear': True, 'eq': [-3*y(t) + 11*z(t) + Derivative(x(t), t), 3*x(t) - 7*z(t) + Derivative(y(t), t), \ -11*x(t) + 7*y(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq9) == sol9 eq10 = (x2 + log(t)*(t*x1 - x(t)) + exp(t)*(t*y1 - y(t)), y2 + (t**2)*(t*x1 - x(t)) + (t)*(t*y1 - y(t))) sol10 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -log(t), \ (1, x(t), 1): t**3, (0, x(t), 1): t*log(t), (0, y(t), 1): t*exp(t), (1, x(t), 0): -t**2, (1, y(t), 0): -t, \ (0, y(t), 0): -exp(t), (0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): t**2}, 'type_of_equation': 'type11', \ 'func': [x(t), y(t)], 'is_linear': True, 'eq': [(t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - \ y(t))*exp(t) + Derivative(x(t), t, t), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) \ + Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}} assert classify_sysode(eq10) == sol10 eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5)) sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \ 'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \ -y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq11) == sol11 eq12 = (Eq(x1, y(t)), Eq(y1, x(t))) sol12 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): -1, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': \ [x(t), y(t)], 'is_linear': True, 'eq': [-y(t) + Derivative(x(t), t), -x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq12) == sol12 eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2)) sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \ 'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \ Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq13) == sol13 eq14 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t)+3*y(t)), Eq(z1, 5*x(t)+7*y(t)+9*z(t))) sol14 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -3, (2, y(t), 1): 0, (2, z(t), 1): 1, \ (0, x(t), 0): -21, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -7, (0, x(t), 1): 1, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): -17, (0, z(t), 0): 0, (0, y(t), 0): 0, (1, z(t), 0): 0, (0, z(t), 1): 0, \ (2, x(t), 0): -5, (2, z(t), 0): -9, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': [x(t), y(t), z(t)], \ 'is_linear': True, 'eq': [-21*x(t) + Derivative(x(t), t), -17*x(t) - 3*y(t) + Derivative(y(t), t), -5*x(t) - \ 7*y(t) - 9*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq14) == sol14 eq15 = (Eq(x1,4*x(t)+5*y(t)+2*z(t)),Eq(y1,x(t)+13*y(t)+9*z(t)),Eq(z1,32*x(t)+41*y(t)+11*z(t))) sol15 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -13, (2, y(t), 1): 0, (2, z(t), 1): 1, \ (0, x(t), 0): -4, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -41, (0, x(t), 1): 1, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): -1, (0, z(t), 0): -2, (0, y(t), 0): -5, (1, z(t), 0): -9, (0, z(t), 1): 0, \ (2, x(t), 0): -32, (2, z(t), 0): -11, (1, y(t), 1): 1}, 'type_of_equation': 'type6', 'func': \ [x(t), y(t), z(t)], 'is_linear': True, 'eq': [-4*x(t) - 5*y(t) - 2*z(t) + Derivative(x(t), t), -x(t) - 13*y(t) - \ 9*z(t) + Derivative(y(t), t), -32*x(t) - 41*y(t) - 11*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq15) == sol15 eq16 = (Eq(3*x1,4*5*(y(t)-z(t))),Eq(4*y1,3*5*(z(t)-x(t))),Eq(5*z1,3*4*(x(t)-y(t)))) sol16 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 5, \ (0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 12, (0, x(t), 1): 3, (1, z(t), 1): 0, \ (0, y(t), 1): 0, (1, x(t), 0): 15, (0, z(t), 0): 20, (0, y(t), 0): -20, (1, z(t), 0): -15, (0, z(t), 1): 0, \ (2, x(t), 0): -12, (2, z(t), 0): 0, (1, y(t), 1): 4}, 'type_of_equation': 'type3', 'func': [x(t), y(t), z(t)], \ 'is_linear': True, 'eq': [-20*y(t) + 20*z(t) + 3*Derivative(x(t), t), 15*x(t) - 15*z(t) + 4*Derivative(y(t), t), \ -12*x(t) + 12*y(t) + 5*Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}} assert classify_sysode(eq16) == sol16 # issue 8193: funcs parameter for classify_sysode has to actually work assert classify_sysode(eq1, funcs=[x(t), y(t)]) == sol1 def test_solve_ics(): # Basic tests that things work from dsolve. assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \ Eq(f(x), sqrt(2 * x + 2)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1, f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x)) assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)], [f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)), Eq(g(x), exp(x)*sin(x))] # Test cases where dsolve returns two solutions. eq = (x**2*f(x)**2 - x).diff(x) assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x), -sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)] assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x), -sqrt(x - S.Half)/x), Eq(f(x), sqrt(x - S.Half)/x)] eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \ {C2: 1} # Some more complicated tests Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)} K, r, f0 = symbols('K r f0') sol = Eq(f(x), K*f0*exp(r*x)/((-K + f0)*(f0*exp(r*x)/(-K + f0) - 1))) assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol #Order dependent issues Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} # XXX: Ought to be ValueError raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1})) # Degenerate case. f'(0) is identically 0. raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0})) EI, q, L = symbols('EI q L') # eq = Eq(EI*diff(f(x), x, 4), q) sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))] funcs = [f(x)] constants = [C1, C2, C3, C4] # Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)), # and Subs ics1 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, f(L).diff(L, 2): 0, f(L).diff(L, 3): 0} ics2 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, Subs(f(x).diff(x, 2), x, L): 0, Subs(f(x).diff(x, 3), x, L): 0} solved_constants1 = solve_ics(sols, funcs, constants, ics1) solved_constants2 = solve_ics(sols, funcs, constants, ics2) assert solved_constants1 == solved_constants2 == { C1: 0, C2: 0, C3: L**2*q/(4*EI), C4: -L*q/(6*EI)} def test_ode_order(): f = Function('f') g = Function('g') x = Symbol('x') assert ode_order(3*x*exp(f(x)), f(x)) == 0 assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1 assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2 assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3 assert ode_order(diff(f(x), x, x), g(x)) == 0 assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2 assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0 # issue 5835: ode_order has to also work for unevaluated derivatives # (ie, without using doit()). assert ode_order(Derivative(x*f(x), x), f(x)) == 1 assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2 assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0 assert ode_order(Derivative(f(x), x, x), g(x)) == 0 assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1 assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3 assert ode_order( x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3 # In all tests below, checkodesol has the order option set to prevent # superfluous calls to ode_order(), and the solve_for_func flag set to False # because dsolve() already tries to solve for the function, unless the # simplify=False option is set. def test_old_ode_tests(): # These are simple tests from the old ode module eq1 = Eq(f(x).diff(x), 0) eq2 = Eq(3*f(x).diff(x) - 5, 0) eq3 = Eq(3*f(x).diff(x), 5) eq4 = Eq(9*f(x).diff(x, x) + f(x), 0) eq5 = Eq(9*f(x).diff(x, x), f(x)) # Type: a(x)f'(x)+b(x)*f(x)+c(x)=0 eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0) eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0) # Type: 2nd order, constant coefficients (two real different roots) eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0) # Type: 2nd order, constant coefficients (two real equal roots) eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0) # Type: 2nd order, constant coefficients (two complex roots) eq10 = Eq(3*f(x).diff(x) - 1, 0) eq11 = Eq(x*f(x).diff(x) - 1, 0) sol1 = Eq(f(x), C1) sol2 = Eq(f(x), C1 + x*Rational(5, 3)) sol3 = Eq(f(x), C1 + x*Rational(5, 3)) sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3)) sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3)) sol6 = Eq(f(x), (C1 - cos(x))/x**3) sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x)) sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x)) sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x)) sol10 = Eq(f(x), C1 + x/3) sol11 = Eq(f(x), C1 + log(x)) assert dsolve(eq1) == sol1 assert dsolve(eq1.lhs) == sol1 assert dsolve(eq2) == sol2 assert dsolve(eq3) == sol3 assert dsolve(eq4) == sol4 assert dsolve(eq5) == sol5 assert dsolve(eq6) == sol6 assert dsolve(eq7) == sol7 assert dsolve(eq8) == sol8 assert dsolve(eq9) == sol9 assert dsolve(eq10) == sol10 assert dsolve(eq11) == sol11 assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0] def test_1st_linear(): # Type: first order linear form f'(x)+p(x)f(x)=q(x) eq = Eq(f(x).diff(x) + x*f(x), x**2) sol = Eq(f(x), (C1 + x*exp(x**2/2) - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2)) assert dsolve(eq, hint='1st_linear') == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_Bernoulli(): # Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n eq = Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0) sol = dsolve(eq, f(x), hint='Bernoulli') assert sol == Eq(f(x), 1/(x*(C1 + 1/x))) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_Riccati_special_minus2(): # Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2 eq = 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2) sol = dsolve(eq, f(x), hint='Riccati_special_minus2') assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] @slow def test_1st_exact1(): # Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0, # where dp/df == dq/dx eq1 = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) eq2 = (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x) eq3 = 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x) eq4 = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) eq5 = 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x) sol1 = [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] sol2 = Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2)))) sol2b = Eq(log(f(x)) + x/f(x) + x**2, C1) sol3 = Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1) sol4 = Eq(x*cos(f(x)) + f(x)**3/3, C1) sol5 = Eq(x**2*f(x) + f(x)**3/3, C1) assert dsolve(eq1, f(x), hint='1st_exact') == sol1 assert dsolve(eq2, f(x), hint='1st_exact') == sol2 assert dsolve(eq3, f(x), hint='1st_exact') == sol3 assert dsolve(eq4, hint='1st_exact') == sol4 assert dsolve(eq5, hint='1st_exact', simplify=False) == sol5 assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] # issue 5080 blocks the testing of this solution # FIXME: assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2b, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0] @slow @XFAIL def test_1st_exact2(): """ This is an exact equation that fails under the exact engine. It is caught by first order homogeneous albeit with a much contorted solution. The exact engine fails because of a poorly simplified integral of q(0,y)dy, where q is the function multiplying f'. The solutions should be Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is equivalent, but it is so complex that checkodesol fails, and takes a long time to do so. """ if ON_TRAVIS: skip("Too slow for travis.") eq = (x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) - sqrt(x**2 + f(x)**2)))*f(x).diff(x)) sol = dsolve(eq) assert sol == Eq(log(x), C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)* log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) + 9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) + 9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)))) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_separable1(): # test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and # Pollard, pg. 55 eq1 = f(x).diff(x) - f(x) eq2 = x*f(x).diff(x) - f(x) eq3 = f(x).diff(x) + sin(x) eq4 = f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x) eq5 = f(x).diff(x)/tan(x) - f(x) - 2 eq6 = f(x).diff(x) * (1 - sin(f(x))) - 1 sol1 = Eq(f(x), C1*exp(x)) sol2 = Eq(f(x), C1*x) sol3 = Eq(f(x), C1 + cos(x)) sol4 = Eq(f(x), tan(C1 + atan(x))) sol5 = Eq(f(x), C1/cos(x) - 2) sol6 = Eq(-x + f(x) + cos(f(x)), C1) assert dsolve(eq1, hint='separable') == sol1 assert dsolve(eq2, hint='separable') == sol2 assert dsolve(eq3, hint='separable') == sol3 assert dsolve(eq4, hint='separable') == sol4 assert dsolve(eq5, hint='separable') == sol5 assert dsolve(eq6, hint='separable') == sol6 assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] @slow def test_separable2(): a = Symbol('a') eq6 = f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x) eq7 = f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x) eq8 = x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2) eq9 = exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x) eq10 = (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) - a**2*sin(f(x))*f(x).diff(x)) sol6 = Eq(Integral((u - 2)/u**3, (u, f(x))), C1 + Integral(x**(-2), x)) sol7 = Eq(-log(-1 + f(x)**2)/2, C1 - log(2 + x)) sol8 = Eq(asinh(f(x)), C1 - log(log(x))) # integrate cannot handle the integral on the lhs (cos/tan) sol9 = Eq(Integral(cos(u)/tan(u), (u, f(x))), C1 + Integral(-exp(1)*exp(x), x)) sol10 = Eq(-log(cos(f(x))), C1 - log(- a**2 + x**2)/2) assert dsolve(eq6, hint='separable_Integral').dummy_eq(sol6) assert dsolve(eq7, hint='separable', simplify=False) == sol7 assert dsolve(eq8, hint='separable', simplify=False) == sol8 assert dsolve(eq9, hint='separable_Integral').dummy_eq(sol9) assert dsolve(eq10, hint='separable', simplify=False) == sol10 assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0] def test_separable3(): eq11 = f(x).diff(x) - f(x)*tan(x) eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)) eq13 = f(x).diff(x) - f(x)*log(f(x))/tan(x) sol11 = Eq(f(x), C1/cos(x)) sol12 = Eq(log(sin(f(x))), C1 + 2*x + 2*log(x - 1)) sol13 = Eq(log(log(f(x))), C1 + log(sin(x))) assert dsolve(eq11, hint='separable') == sol11 assert dsolve(eq12, hint='separable', simplify=False) == sol12 assert dsolve(eq13, hint='separable', simplify=False) == sol13 assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0] assert checkodesol(eq13, sol13, order=1, solve_for_func=False)[0] def test_separable4(): # This has a slow integral (1/((1 + y**2)*atan(y))), so we isolate it. eq14 = x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x)) sol14 = Eq(log(atan(f(x))), C1 - log(x)) assert dsolve(eq14, hint='separable', simplify=False) == sol14 assert checkodesol(eq14, sol14, order=1, solve_for_func=False)[0] def test_separable5(): eq15 = f(x).diff(x) + x*(f(x) + 1) eq16 = exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x) eq17 = f(x).diff(x) + f(x) eq18 = sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x) eq19 = (1 - x)*f(x).diff(x) - x*(f(x) + 1) eq20 = f(x)*diff(f(x), x) + x - 3*x*f(x)**2 eq21 = f(x).diff(x) - exp(x + f(x)) sol15 = Eq(f(x), -1 + C1*exp(-x**2/2)) sol16 = Eq(-exp(-f(x)**2)/2, C1 - x - x**2/2) sol17 = Eq(f(x), C1*exp(-x)) sol18 = Eq(-log(cos(2*f(x)))/2, C1 + log(cos(x))) sol19 = Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1)) sol20 = Eq(log(-1 + 3*f(x)**2)/6, C1 + x**2/2) sol21 = Eq(-exp(-f(x)), C1 + exp(x)) assert dsolve(eq15, hint='separable') == sol15 assert dsolve(eq16, hint='separable', simplify=False) == sol16 assert dsolve(eq17, hint='separable') == sol17 assert dsolve(eq18, hint='separable', simplify=False) == sol18 assert dsolve(eq19, hint='separable') == sol19 assert dsolve(eq20, hint='separable', simplify=False) == sol20 assert dsolve(eq21, hint='separable', simplify=False) == sol21 assert checkodesol(eq15, sol15, order=1, solve_for_func=False)[0] assert checkodesol(eq16, sol16, order=1, solve_for_func=False)[0] assert checkodesol(eq17, sol17, order=1, solve_for_func=False)[0] assert checkodesol(eq18, sol18, order=1, solve_for_func=False)[0] assert checkodesol(eq19, sol19, order=1, solve_for_func=False)[0] assert checkodesol(eq20, sol20, order=1, solve_for_func=False)[0] assert checkodesol(eq21, sol21, order=1, solve_for_func=False)[0] def test_separable_1_5_checkodesol(): eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)) sol12 = Eq(-log(1 - cos(f(x))**2)/2, C1 - 2*x - 2*log(1 - x)) assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0] def test_homogeneous_order(): assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0 assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1 assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/ (pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6) assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0 assert homogeneous_order(f(x), x, f(x)) == 1 assert homogeneous_order(f(x)**2, x, f(x)) == 2 assert homogeneous_order(x*y*z, x, y) == 2 assert homogeneous_order(x*y*z, x, y, z) == 3 assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2 assert homogeneous_order(f(x, y)**2, x, f(x), y) is None assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None assert homogeneous_order(f(y), f(x), x) is None assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0 assert homogeneous_order(log(1/y) + log(x**2), x, y) is None assert homogeneous_order(log(1/y) + log(x), x, y) == 0 assert homogeneous_order(log(x/y), x, y) == 0 assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0 a = Symbol('a') assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0 assert homogeneous_order(f(x).diff(x), x, y) is None assert homogeneous_order(-f(x).diff(x) + x, x, y) is None assert homogeneous_order(O(x), x, y) is None assert homogeneous_order(x + O(x**2), x, y) is None assert homogeneous_order(x**pi, x) == pi assert homogeneous_order(x**x, x) is None raises(ValueError, lambda: homogeneous_order(x*y)) @slow def test_1st_homogeneous_coeff_ode(): # Type: First order homogeneous, y'=f(y/x) eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x) eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x) eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x) eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x) eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x) eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x) eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x) eq8 = x + f(x) - (x - f(x))*f(x).diff(x) sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x)) sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2) sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1))) sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x))) sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x) sol6 = Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2) sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1)) sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x)) # indep_div_dep actually has a simpler solution for eq2, # but it runs too slow assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1 assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False) == sol2 assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3 assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4 assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5 assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol6 assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7 assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8 # FIXME: sol3 and sol5 don't work with checkodesol (because of LambertW?) # previous code was testing with these other solutions: sol3b = Eq(-f(x)/(1 + log(x/f(x))), C1) sol5b = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0) assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0] assert checkodesol(eq5, sol5b, order=1, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode_check2(): eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x) sol2 = Eq(x/tan(f(x)/(2*x)), C1) assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] @XFAIL def test_1st_homogeneous_coeff_ode_check3(): skip('This is a known issue.') # checker cannot determine that the following expression is zero: # (False, # x*(log(exp(-LambertW(C1*x))) + # LambertW(C1*x))*exp(-LambertW(C1*x) + 1)) # This is blocked by issue 5080. eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x) sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x))) assert checkodesol(eq3, sol3a, solve_for_func=True)[0] # Checker can't verify this form either # (False, # C1*(log(C1*LambertW(C2*x)/x) + LambertW(C2*x) - 1)*LambertW(C2*x)) # It is because a = W(a)*exp(W(a)), so log(a) == log(W(a)) + W(a) and C2 = # -E/C1 (which can be verified by solving with simplify=False). sol3b = Eq(f(x), C1*LambertW(C2*x)) assert checkodesol(eq3, sol3b, solve_for_func=True)[0] def test_1st_homogeneous_coeff_ode_check7(): eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x) sol7 = Eq(log(C1*f(x)) + 2*sqrt(1 - x/f(x)), 0) assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode2(): eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x) eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x) eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x) sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))] sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1)) sol3 = Eq(f(x), log((1/(C1 - log(x)))**x)) # specific hints are applied for speed reasons assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1 assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2 assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3 # FIXME: sol3 doesn't work with checkodesol (because of **x?) # previous code was testing with this other solution: sol3b = Eq(f(x), log(log(C1/x)**(-x))) assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0] assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode_check9(): _u2 = Dummy('u2') __a = Dummy('a') eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x) sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a, x/f(x))) + log(C1*f(x)), 0) assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0] def test_1st_homogeneous_coeff_ode3(): # The standard integration engine cannot handle one of the integrals # involved (see issue 4551). meijerg code comes up with an answer, but in # unconventional form. # checkodesol fails for this equation, so its test is in # test_1st_homogeneous_coeff_ode_check9 above. It has to compare string # expressions because u2 is a dummy variable. eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x) sol = Eq(log(f(x)), C1 + Piecewise( (acosh(f(x)/x), abs(f(x)**2)/x**2 > 1), (-I*asin(f(x)/x), True))) assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol def test_1st_homogeneous_coeff_corner_case(): eq1 = f(x).diff(x) - f(x)/x c1 = classify_ode(eq1, f(x)) eq2 = x*f(x).diff(x) - f(x) c2 = classify_ode(eq2, f(x)) sdi = "1st_homogeneous_coeff_subs_dep_div_indep" sid = "1st_homogeneous_coeff_subs_indep_div_dep" assert sid not in c1 and sdi not in c1 assert sid not in c2 and sdi not in c2 @slow def test_nth_linear_constant_coeff_homogeneous(): # From Exercise 20, in Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 220 a = Symbol('a', positive=True) k = Symbol('k', real=True) eq1 = f(x).diff(x, 2) + 2*f(x).diff(x) eq2 = f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x) eq3 = f(x).diff(x, 2) - f(x) eq4 = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x) eq5 = 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x) eq6 = Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0) eq7 = diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x) eq8 = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x) eq9 = f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \ 4*f(x).diff(x) - 2*f(x) eq10 = f(x).diff(x, 4) - a**2*f(x) eq11 = f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x) eq12 = f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x) eq13 = f(x).diff(x, 4) eq14 = f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x) eq15 = 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x) eq16 = f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x) eq17 = f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x) eq18 = f(x).diff(x, 4) + 3*f(x).diff(x, 3) eq19 = f(x).diff(x, 4) - 2*f(x).diff(x, 2) eq20 = f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \ 12*f(x).diff(x) + 36*f(x) eq21 = 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x) eq22 = f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x) eq23 = f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x) eq24 = f(x).diff(x, 2) - f(x).diff(x) + f(x) eq25 = f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x) eq26 = f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x) eq27 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x) eq28 = f(x).diff(x, 3) + 8*f(x) eq29 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) eq30 = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) eq31 = f(x).diff(x, 4) + f(x).diff(x, 2) + f(x) eq32 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x) sol1 = Eq(f(x), C1 + C2*exp(-2*x)) sol2 = Eq(f(x), (C1 + C2*exp(x))*exp(x)) sol3 = Eq(f(x), C1*exp(x) + C2*exp(-x)) sol4 = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x)) sol5 = Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3))) sol6 = Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1))) sol7 = Eq(f(x), C1*exp(3*x) + C2*exp(x*(-2 - sqrt(2))) + C3*exp(x*(-2 + sqrt(2)))) sol8 = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x)) sol9 = Eq(f(x), C1*exp(x) + C2*exp(-x) + C3*exp(x*(-2 + sqrt(2))) + C4*exp(x*(-2 - sqrt(2)))) sol10 = Eq(f(x), C1*sin(x*sqrt(a)) + C2*cos(x*sqrt(a)) + C3*exp(x*sqrt(a)) + C4*exp(-x*sqrt(a))) sol11 = Eq(f(x), C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2)))) sol12 = Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x)) sol13 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3) sol14 = Eq(f(x), (C1 + C2*x)*exp(-2*x)) sol15 = Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3)) sol16 = Eq(f(x), (C1 + C2*x + C3*x**2)*exp(2*x)) sol17 = Eq(f(x), (C1 + C2*x)*exp(a*x)) sol18 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x)) sol19 = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2))) sol20 = Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x)) sol21 = Eq(f(x), C1*exp(x/2) + C2*exp(-x) + C3*exp(-x/3) + C4*exp(x*Rational(5, 6))) sol22 = Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x)) sol23 = Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x)) sol24 = Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2)) sol25 = Eq(f(x), C1*cos(x*sqrt(3)) + C2*sin(x*sqrt(3)) + C3*sin(x*sqrt(2)) + C4*cos(x*sqrt(2))) sol26 = Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x)) sol27 = Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2))) sol28 = Eq(f(x), (C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x)) sol29 = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x) sol30 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x)) sol31 = Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))/sqrt(exp(x)) + (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*sqrt(exp(x))) sol32 = Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2)) + C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2))) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) sol6s = constant_renumber(sol6) sol7s = constant_renumber(sol7) sol8s = constant_renumber(sol8) sol9s = constant_renumber(sol9) sol10s = constant_renumber(sol10) sol11s = constant_renumber(sol11) sol12s = constant_renumber(sol12) sol13s = constant_renumber(sol13) sol14s = constant_renumber(sol14) sol15s = constant_renumber(sol15) sol16s = constant_renumber(sol16) sol17s = constant_renumber(sol17) sol18s = constant_renumber(sol18) sol19s = constant_renumber(sol19) sol20s = constant_renumber(sol20) sol21s = constant_renumber(sol21) sol22s = constant_renumber(sol22) sol23s = constant_renumber(sol23) sol24s = constant_renumber(sol24) sol25s = constant_renumber(sol25) sol26s = constant_renumber(sol26) sol27s = constant_renumber(sol27) sol28s = constant_renumber(sol28) sol29s = constant_renumber(sol29) sol30s = constant_renumber(sol30) assert dsolve(eq1) in (sol1, sol1s) assert dsolve(eq2) in (sol2, sol2s) assert dsolve(eq3) in (sol3, sol3s) assert dsolve(eq4) in (sol4, sol4s) assert dsolve(eq5) in (sol5, sol5s) assert dsolve(eq6) in (sol6, sol6s) assert dsolve(eq7) in (sol7, sol7s) assert dsolve(eq8) in (sol8, sol8s) assert dsolve(eq9) in (sol9, sol9s) assert dsolve(eq10) in (sol10, sol10s) assert dsolve(eq11) in (sol11, sol11s) assert dsolve(eq12) in (sol12, sol12s) assert dsolve(eq13) in (sol13, sol13s) assert dsolve(eq14) in (sol14, sol14s) assert dsolve(eq15) in (sol15, sol15s) assert dsolve(eq16) in (sol16, sol16s) assert dsolve(eq17) in (sol17, sol17s) assert dsolve(eq18) in (sol18, sol18s) assert dsolve(eq19) in (sol19, sol19s) assert dsolve(eq20) in (sol20, sol20s) assert dsolve(eq21) in (sol21, sol21s) assert dsolve(eq22) in (sol22, sol22s) assert dsolve(eq23) in (sol23, sol23s) assert dsolve(eq24) in (sol24, sol24s) assert dsolve(eq25) in (sol25, sol25s) assert dsolve(eq26) in (sol26, sol26s) assert dsolve(eq27) in (sol27, sol27s) assert dsolve(eq28) in (sol28, sol28s) assert dsolve(eq29) in (sol29, sol29s) assert dsolve(eq30) in (sol30, sol30s) assert dsolve(eq31) in (sol31,) assert dsolve(eq32) in (sol32,) assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0] assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0] assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0] assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0] assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0] assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0] assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0] assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0] assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0] assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0] assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0] assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0] assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0] assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0] assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0] assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0] assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0] assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0] assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0] assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0] assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0] # Issue #15237 eqn = Derivative(x*f(x), x, x, x) hint = 'nth_linear_constant_coeff_homogeneous' raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True)) raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False)) def test_nth_linear_constant_coeff_homogeneous_rootof(): # One real root, two complex conjugate pairs eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x) r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)] sol = Eq(f(x), C5*exp(r1*x) + exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x)) + exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Three real roots, one complex conjugate pair eq = f(x).diff(x,5) - 3*f(x).diff(x) + f(x) r1, r2, r3, r4, r5 = [rootof(x**5 - 3*x + 1, n) for n in range(5)] sol = Eq(f(x), C3*exp(r1*x) + C4*exp(r2*x) + C5*exp(r3*x) + exp(re(r4)*x) * (C1*sin(im(r4)*x) + C2*cos(im(r4)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Five distinct real roots eq = f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x) r1, r2, r3, r4, r5 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)] sol = Eq(f(x), C1*exp(r1*x) + C2*exp(r2*x) + C3*exp(r3*x) + C4*exp(r4*x) + C5*exp(r5*x)) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Rational root and unsolvable quintic eq = f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x) r2, r3, r4, r5, r6 = [rootof(x**5 - x**4 + 10, n) for n in range(5)] sol = Eq(f(x), C5*exp(5*x) + C6*exp(x*r2) + exp(re(r3)*x) * (C1*sin(im(r3)*x) + C2*cos(im(r3)*x)) + exp(re(r5)*x) * (C3*sin(im(r5)*x) + C4*cos(im(r5)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... # Five double roots (this is (x**5 - x + 1)**2) eq = f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x) r1, r2, r3, r4, r5 = [rootof(x**5 - x + 1, n) for n in range(5)] sol = Eq(f(x), (C1 + C2 *x)*exp(r1*x) + exp(re(r2)*x) * ((C3 + C4*x)*sin(im(r2)*x) + (C5 + C6 *x)*cos(im(r2)*x)) + exp(re(r4)*x) * ((C7 + C8*x)*sin(im(r4)*x) + (C9 + C10*x)*cos(im(r4)*x)) ) assert dsolve(eq) == sol # FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs... def test_nth_linear_constant_coeff_homogeneous_irrational(): our_hint='nth_linear_constant_coeff_homogeneous' eq = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2)) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] E = exp(1) eq = Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E))) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] eq = Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi))) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] eq = Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x)) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=3, solve_for_func=False)[0] @XFAIL @slow def test_nth_linear_constant_coeff_homogeneous_rootof_sol(): if ON_TRAVIS: skip("Too slow for travis.") eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x) sol = Eq(f(x), C1*exp(x*rootof(x**5 + 11*x - 2, 0)) + C2*exp(x*rootof(x**5 + 11*x - 2, 1)) + C3*exp(x*rootof(x**5 + 11*x - 2, 2)) + C4*exp(x*rootof(x**5 + 11*x - 2, 3)) + C5*exp(x*rootof(x**5 + 11*x - 2, 4))) assert checkodesol(eq, sol, order=5, solve_for_func=False)[0] @XFAIL def test_noncircularized_real_imaginary_parts(): # If this passes, lines numbered 3878-3882 (at the time of this commit) # of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous # should be removed. y = sqrt(1+x) i, r = im(y), re(y) assert not (i.has(atan2) and r.has(atan2)) def test_collect_respecting_exponentials(): # If this test passes, lines 1306-1311 (at the time of this commit) # of sympy/solvers/ode.py should be removed. sol = 1 + exp(x/2) assert sol == collect( sol, exp(x/3)) def test_undetermined_coefficients_match(): assert _undetermined_coefficients_match(g(x), x) == {'test': False} assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \ {'test': True, 'trialset': set([cos(2*x + sqrt(5)), sin(2*x + sqrt(5))])} assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \ {'test': False} s = set([cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)]) assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': s} assert _undetermined_coefficients_match( sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s} assert _undetermined_coefficients_match( exp(2*x)*sin(x)*(x**2 + x + 1), x ) == { 'test': True, 'trialset': set([exp(2*x)*sin(x), x**2*exp(2*x)*sin(x), cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x), x*exp(2*x)*sin(x)])} assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False} assert _undetermined_coefficients_match(log(x), x) == {'test': False} assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': set([2**x, x*2**x, x**2*2**x])} assert _undetermined_coefficients_match(x**y, x) == {'test': False} assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \ {'test': True, 'trialset': set([exp(1 + 3*x)])} assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': set([x*cos(x), x*sin(x), x**2*cos(x), x**2*sin(x), cos(x), sin(x)])} assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \ {'test': False} assert _undetermined_coefficients_match( x**2*sin(x)*exp(x) + x*sin(x) + x, x ) == { 'test': True, 'trialset': set([x**2*cos(x)*exp(x), x, cos(x), S.One, exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x), x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)])} assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == { 'trialset': set([x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)]), 'test': True, } assert _undetermined_coefficients_match(2**x*x, x) == \ {'test': True, 'trialset': set([2**x, x*2**x])} assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \ {'test': True, 'trialset': set([2**x*exp(2*x)])} assert _undetermined_coefficients_match(exp(-x)/x, x) == \ {'test': False} # Below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 assert _undetermined_coefficients_match(S(4), x) == \ {'test': True, 'trialset': set([S.One])} assert _undetermined_coefficients_match(12*exp(x), x) == \ {'test': True, 'trialset': set([exp(x)])} assert _undetermined_coefficients_match(exp(I*x), x) == \ {'test': True, 'trialset': set([exp(I*x)])} assert _undetermined_coefficients_match(sin(x), x) == \ {'test': True, 'trialset': set([cos(x), sin(x)])} assert _undetermined_coefficients_match(cos(x), x) == \ {'test': True, 'trialset': set([cos(x), sin(x)])} assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \ {'test': True, 'trialset': set([S.One, cos(x), sin(x), exp(x)])} assert _undetermined_coefficients_match(x**2, x) == \ {'test': True, 'trialset': set([S.One, x, x**2])} assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(x), exp(x), exp(-x)])} assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \ {'test': True, 'trialset': set([exp(2*x)*sin(x), cos(x)*exp(2*x)])} assert _undetermined_coefficients_match(x - sin(x), x) == \ {'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])} assert _undetermined_coefficients_match(x**2 + 2*x, x) == \ {'test': True, 'trialset': set([S.One, x, x**2])} assert _undetermined_coefficients_match(4*x*sin(x), x) == \ {'test': True, 'trialset': set([x*cos(x), x*sin(x), cos(x), sin(x)])} assert _undetermined_coefficients_match(x*sin(2*x), x) == \ {'test': True, 'trialset': set([x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)])} assert _undetermined_coefficients_match(x**2*exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])} assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])} assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \ {'test': True, 'trialset': set([S.One, x, x**2, exp(-2*x)])} assert _undetermined_coefficients_match(x*exp(-x), x) == \ {'test': True, 'trialset': set([x*exp(-x), exp(-x)])} assert _undetermined_coefficients_match(x + exp(2*x), x) == \ {'test': True, 'trialset': set([S.One, x, exp(2*x)])} assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \ {'test': True, 'trialset': set([cos(x), sin(x), exp(-x)])} assert _undetermined_coefficients_match(exp(x), x) == \ {'test': True, 'trialset': set([exp(x)])} # converted from sin(x)**2 assert _undetermined_coefficients_match(S.Half - cos(2*x)/2, x) == \ {'test': True, 'trialset': set([S.One, cos(2*x), sin(2*x)])} # converted from exp(2*x)*sin(x)**2 assert _undetermined_coefficients_match( exp(2*x)*(S.Half + cos(2*x)/2), x ) == { 'test': True, 'trialset': set([exp(2*x)*sin(2*x), cos(2*x)*exp(2*x), exp(2*x)])} assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \ {'test': True, 'trialset': set([S.One, x, cos(x), sin(x)])} # converted from sin(2*x)*sin(x) assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \ {'test': True, 'trialset': set([cos(x), cos(3*x), sin(x), sin(3*x)])} assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False} assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False} @slow def test_nth_linear_constant_coeff_undetermined_coefficients(): hint = 'nth_linear_constant_coeff_undetermined_coefficients' g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x eq1 = c - x*g eq2 = c - g # 3-27 below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 eq3 = f2 + 3*f(x).diff(x) + 2*f(x) - 4 eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x) eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x) eq6 = f2 + 3*f(x).diff(x) + 2*f(x) - sin(x) eq7 = f2 + 3*f(x).diff(x) + 2*f(x) - cos(x) eq8 = f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x)) eq9 = f2 + f(x).diff(x) + f(x) - x**2 eq10 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x) eq11 = f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x) eq12 = f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x) eq13 = f2 + f(x).diff(x) - x**2 - 2*x eq14 = f2 + f(x).diff(x) - x - sin(2*x) eq15 = f2 + f(x) - 4*x*sin(x) eq16 = f2 + 4*f(x) - x*sin(2*x) eq17 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x) eq18 = f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \ x**2*exp(-x) eq19 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2 eq20 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x) eq21 = f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x) eq22 = f2 + f(x) - sin(x) - exp(-x) eq23 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x) # sin(x)**2 eq24 = f2 + f(x) - S.Half - cos(2*x)/2 # exp(2*x)*sin(x)**2 eq25 = f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S.Half - cos(2*x)/2) eq26 = (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - sin(x) - cos(x)) # sin(2*x)*sin(x), skip 3127 for now, match bug eq27 = f2 + f(x) - cos(x)/2 + cos(3*x)/2 eq28 = f(x).diff(x) - 1 sol1 = Eq(f(x), -1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3)) sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3)) sol3 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x)) sol4 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x)) sol5 = Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(I*x)/10 - 3*I*exp(I*x)/10) sol6 = Eq(f(x), -3*cos(x)/10 + sin(x)/10 + C1*exp(-x) + C2*exp(-2*x)) sol7 = Eq(f(x), cos(x)/10 + 3*sin(x)/10 + C1*exp(-x) + C2*exp(-2*x)) sol8 = Eq(f(x), 4 - 3*cos(x)/5 + sin(x)/5 + exp(x) + C1*exp(-x) + C2*exp(-2*x)) sol9 = Eq(f(x), -2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2)) sol10 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x)) sol11 = Eq(f(x), C1 + C2*exp(3*x) + (-3*sin(x) - cos(x))*exp(2*x)/5) sol12 = Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x)) sol13 = Eq(f(x), C1 + x**3/3 + C2*exp(-x)) sol14 = Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x)) sol15 = Eq(f(x), (C1 + x)*sin(x) + (C2 - x**2)*cos(x)) sol16 = Eq(f(x), (C1 + x/16)*sin(2*x) + (C2 - x**2/8)*cos(2*x)) sol17 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x)) sol18 = Eq(f(x), (C1 + C2*x + C3*x**2 - x**5/60 + x**3/3)*exp(-x)) sol19 = Eq(f(x), Rational(7, 4) - x*Rational(3, 2) + x**2/2 + C1*exp(-x) + (C2 - x)*exp(-2*x)) sol20 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36) sol21 = Eq(f(x), Rational(-1, 36) - x/6 + C1*exp(-3*x) + (C2 + x/5)*exp(2*x)) sol22 = Eq(f(x), C1*sin(x) + (C2 - x/2)*cos(x) + exp(-x)/2) sol23 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x)) sol24 = Eq(f(x), S.Half - cos(2*x)/6 + C1*sin(x) + C2*cos(x)) sol25 = Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + (-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560) sol26 = Eq(f(x), C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2) sol27 = Eq(f(x), cos(3*x)/16 + C1*cos(x) + (C2 + x/4)*sin(x)) sol28 = Eq(f(x), C1 + x) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) sol6s = constant_renumber(sol6) sol7s = constant_renumber(sol7) sol8s = constant_renumber(sol8) sol9s = constant_renumber(sol9) sol10s = constant_renumber(sol10) sol11s = constant_renumber(sol11) sol12s = constant_renumber(sol12) sol13s = constant_renumber(sol13) sol14s = constant_renumber(sol14) sol15s = constant_renumber(sol15) sol16s = constant_renumber(sol16) sol17s = constant_renumber(sol17) sol18s = constant_renumber(sol18) sol19s = constant_renumber(sol19) sol20s = constant_renumber(sol20) sol21s = constant_renumber(sol21) sol22s = constant_renumber(sol22) sol23s = constant_renumber(sol23) sol24s = constant_renumber(sol24) sol25s = constant_renumber(sol25) sol26s = constant_renumber(sol26) sol27s = constant_renumber(sol27) assert dsolve(eq1, hint=hint) in (sol1, sol1s) assert dsolve(eq2, hint=hint) in (sol2, sol2s) assert dsolve(eq3, hint=hint) in (sol3, sol3s) assert dsolve(eq4, hint=hint) in (sol4, sol4s) assert dsolve(eq5, hint=hint) in (sol5, sol5s) assert dsolve(eq6, hint=hint) in (sol6, sol6s) assert dsolve(eq7, hint=hint) in (sol7, sol7s) assert dsolve(eq8, hint=hint) in (sol8, sol8s) assert dsolve(eq9, hint=hint) in (sol9, sol9s) assert dsolve(eq10, hint=hint) in (sol10, sol10s) assert dsolve(eq11, hint=hint) in (sol11, sol11s) assert dsolve(eq12, hint=hint) in (sol12, sol12s) assert dsolve(eq13, hint=hint) in (sol13, sol13s) assert dsolve(eq14, hint=hint) in (sol14, sol14s) assert dsolve(eq15, hint=hint) in (sol15, sol15s) assert dsolve(eq16, hint=hint) in (sol16, sol16s) assert dsolve(eq17, hint=hint) in (sol17, sol17s) assert dsolve(eq18, hint=hint) in (sol18, sol18s) assert dsolve(eq19, hint=hint) in (sol19, sol19s) assert dsolve(eq20, hint=hint) in (sol20, sol20s) assert dsolve(eq21, hint=hint) in (sol21, sol21s) assert dsolve(eq22, hint=hint) in (sol22, sol22s) assert dsolve(eq23, hint=hint) in (sol23, sol23s) assert dsolve(eq24, hint=hint) in (sol24, sol24s) assert dsolve(eq25, hint=hint) in (sol25, sol25s) assert dsolve(eq26, hint=hint) in (sol26, sol26s) assert dsolve(eq27, hint=hint) in (sol27, sol27s) assert dsolve(eq28, hint=hint) == sol28 assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0] assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0] assert checkodesol(eq13, sol13, order=2, solve_for_func=False)[0] assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0] assert checkodesol(eq15, sol15, order=2, solve_for_func=False)[0] assert checkodesol(eq16, sol16, order=2, solve_for_func=False)[0] assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0] assert checkodesol(eq18, sol18, order=3, solve_for_func=False)[0] assert checkodesol(eq19, sol19, order=2, solve_for_func=False)[0] assert checkodesol(eq20, sol20, order=2, solve_for_func=False)[0] assert checkodesol(eq21, sol21, order=2, solve_for_func=False)[0] assert checkodesol(eq22, sol22, order=2, solve_for_func=False)[0] assert checkodesol(eq23, sol23, order=3, solve_for_func=False)[0] assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0] assert checkodesol(eq25, sol25, order=3, solve_for_func=False)[0] assert checkodesol(eq26, sol26, order=5, solve_for_func=False)[0] assert checkodesol(eq27, sol27, order=2, solve_for_func=False)[0] assert checkodesol(eq28, sol28, order=1, solve_for_func=False)[0] def test_issue_5787(): # This test case is to show the classification of imaginary constants under # nth_linear_constant_coeff_undetermined_coefficients eq = Eq(diff(f(x), x), I*f(x) + S.Half - I) our_hint = 'nth_linear_constant_coeff_undetermined_coefficients' assert our_hint in classify_ode(eq) @XFAIL def test_nth_linear_constant_coeff_undetermined_coefficients_imaginary_exp(): # Equivalent to eq26 in # test_nth_linear_constant_coeff_undetermined_coefficients above. # This fails because the algorithm for undetermined coefficients # doesn't know to multiply exp(I*x) by sufficient x because it is linearly # dependent on sin(x) and cos(x). hint = 'nth_linear_constant_coeff_undetermined_coefficients' eq26a = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x) sol26 = Eq(f(x), C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2) assert dsolve(eq26a, hint=hint) == sol26 assert checkodesol(eq26a, sol26, order=5, solve_for_func=False)[0] @slow def test_nth_linear_constant_coeff_variation_of_parameters(): hint = 'nth_linear_constant_coeff_variation_of_parameters' g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x eq1 = c - x*g eq2 = c - g eq3 = f(x).diff(x) - 1 eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 4 eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x) eq6 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x) eq7 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x) eq8 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x) eq9 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x) eq10 = f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x eq11 = f2 + f(x) - 1/sin(x)*1/cos(x) eq12 = f(x).diff(x, 4) - 1/x sol1 = Eq(f(x), -1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3)) sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3)) sol3 = Eq(f(x), C1 + x) sol4 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x)) sol5 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x)) sol6 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x)) sol7 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x)) sol8 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36) sol9 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x)) sol10 = Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x)) sol11 = Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2 )*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x)) sol12 = Eq(f(x), C1 + C2*x + x**3*(C3 + log(x)/6) + C4*x**2) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) sol6s = constant_renumber(sol6) sol7s = constant_renumber(sol7) sol8s = constant_renumber(sol8) sol9s = constant_renumber(sol9) sol10s = constant_renumber(sol10) sol11s = constant_renumber(sol11) sol12s = constant_renumber(sol12) assert dsolve(eq1, hint=hint) in (sol1, sol1s) assert dsolve(eq2, hint=hint) in (sol2, sol2s) assert dsolve(eq3, hint=hint) in (sol3, sol3s) assert dsolve(eq4, hint=hint) in (sol4, sol4s) assert dsolve(eq5, hint=hint) in (sol5, sol5s) assert dsolve(eq6, hint=hint) in (sol6, sol6s) assert dsolve(eq7, hint=hint) in (sol7, sol7s) assert dsolve(eq8, hint=hint) in (sol8, sol8s) assert dsolve(eq9, hint=hint) in (sol9, sol9s) assert dsolve(eq10, hint=hint) in (sol10, sol10s) assert dsolve(eq11, hint=hint + '_Integral').doit() in (sol11, sol11s) assert dsolve(eq12, hint=hint) in (sol12, sol12s) assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0] assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0] assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0] assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0] assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0] assert checkodesol(eq9, sol9, order=3, solve_for_func=False)[0] assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0] assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0] @slow def test_nth_linear_constant_coeff_variation_of_parameters_simplify_False(): # solve_variation_of_parameters shouldn't attempt to simplify the # Wronskian if simplify=False. If wronskian() ever gets good enough # to simplify the result itself, this test might fail. our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral' eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x) sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True) sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False) assert sol_simp != sol_nsimp # /---------- # eq.subs(*sol_simp.args) doesn't simplify to zero without help (t, zero) = checkodesol(eq, sol_simp, order=5, solve_for_func=False) # if this fails because zero.is_zero, replace this block with # assert checkodesol(eq, sol_simp, order=5, solve_for_func=False)[0] assert not zero.is_zero and zero.rewrite(exp).simplify() == 0 # \----------- (t, zero) = checkodesol(eq, sol_nsimp, order=5, solve_for_func=False) # if this fails because zero.is_zero, replace this block with # assert checkodesol(eq, sol_simp, order=5, solve_for_func=False)[0] assert zero == 0 # \----------- assert t def test_Liouville_ODE(): hint = 'Liouville' # The first part here used to be test_ODE_1() from test_solvers.py eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2 eq1a = diff(x*exp(-f(x)), x, x) # compare to test_unexpanded_Liouville_ODE() below eq2 = (eq1*exp(-f(x))/exp(f(x))).expand() eq3 = diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x) eq4 = x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x) eq5 = Eq((x*exp(f(x))).diff(x, x), 0) sol1 = Eq(f(x), log(x/(C1 + C2*x))) sol1a = Eq(C1 + C2/x - exp(-f(x)), 0) sol2 = sol1 sol3 = set( [Eq(f(x), -sqrt(C1 + C2*log(x))), Eq(f(x), sqrt(C1 + C2*log(x)))]) sol4 = set([Eq(f(x), sqrt(C1 + C2*exp(x))*exp(-x/2)), Eq(f(x), -sqrt(C1 + C2*exp(x))*exp(-x/2))]) sol5 = Eq(f(x), log(C1 + C2/x)) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) sol3s = constant_renumber(sol3) sol4s = constant_renumber(sol4) sol5s = constant_renumber(sol5) assert dsolve(eq1, hint=hint) in (sol1, sol1s) assert dsolve(eq1a, hint=hint) in (sol1, sol1s) assert dsolve(eq2, hint=hint) in (sol2, sol2s) assert set(dsolve(eq3, hint=hint)) in (sol3, sol3s) assert set(dsolve(eq4, hint=hint)) in (sol4, sol4s) assert dsolve(eq5, hint=hint) in (sol5, sol5s) assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0] assert checkodesol(eq1a, sol1a, order=2, solve_for_func=False)[0] assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] assert checkodesol(eq3, sol3, order=2, solve_for_func=False) == {(True, 0)} assert checkodesol(eq4, sol4, order=2, solve_for_func=False) == {(True, 0)} assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0] not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 - diff(f(x), x)**2/2, f(x)) not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 - x*diff(f(x), x)**2/2, f(x)) assert hint not in not_Liouville1 assert hint not in not_Liouville2 assert hint + '_Integral' not in not_Liouville1 assert hint + '_Integral' not in not_Liouville2 def test_unexpanded_Liouville_ODE(): # This is the same as eq1 from test_Liouville_ODE() above. eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2 eq2 = eq1*exp(-f(x))/exp(f(x)) sol2 = Eq(f(x), log(x/(C1 + C2*x))) sol2s = constant_renumber(sol2) assert dsolve(eq2) in (sol2, sol2s) assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0] def test_issue_4785(): from sympy.abc import A eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2 assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') # issue 4864 eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x) assert classify_ode(eq, f(x)) == ('1st_exact', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', '1st_exact_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') def test_issue_4825(): raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x))) assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} # See also issue 3793, test Z13. raises(ValueError, lambda: dsolve(f(x).diff(x), f(y))) assert classify_ode(f(x).diff(x), f(y), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} def test_constant_renumber_order_issue_5308(): from sympy.utilities.iterables import variations assert constant_renumber(C1*x + C2*y) == \ constant_renumber(C1*y + C2*x) == \ C1*x + C2*y e = C1*(C2 + x)*(C3 + y) for a, b, c in variations([C1, C2, C3], 3): assert constant_renumber(a*(b + x)*(c + y)) == e def test_issue_5770(): k = Symbol("k", real=True) t = Symbol('t') w = Function('w') sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t)) assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6 assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), set([C1, C2])) == \ C1*cos(x)*exp(x) assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), set([C1, C2, C3])) == \ C1*cos(x) + C3*sin(x) assert constantsimp(exp(C1 + x), set([C1])) == C1*exp(x) assert constantsimp(x + C1 + y, set([C1, y])) == C1 + x assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), set([C1])) == C1 + x def test_issue_5112_5430(): assert homogeneous_order(-log(x) + acosh(x), x) is None assert homogeneous_order(y - log(x), x, y) is None def test_nth_order_linear_euler_eq_homogeneous(): x, t, a, b, c = symbols('x t a b c') y = Function('y') our_hint = "nth_linear_euler_eq_homogeneous" eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t) assert our_hint in classify_ode(eq) eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2) assert our_hint in classify_ode(eq) eq = Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0) sol = C1 + C2*x**Rational(5, 2) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0) sol = C1*sqrt(x) + C2*x**3 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0) sol = (C1 + C2*log(x))/x**2 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0) sol = dsolve(eq, f(x), hint=our_hint) sol = C1/x**2 + C2*x + C3*x**3 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0) sol = x**5*(C1 + C2*log(x) + C3*log(x)**2) sols = [sol, constant_renumber(sol)] sols += [sols[-1].expand()] assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in sols assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = t**2*diff(y(t), t, 2) + t*diff(y(t), t) - 9*y(t) sol = C1*t**3 + C2*t**-3 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, y(t), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x) sol = C1*sin(log(x)) + C2*cos(log(x)) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients(): x, t = symbols('x t') a, b, c, d = symbols('a b c d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x assert our_hint in classify_ode(eq, f(x)) eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x) assert our_hint in classify_ode(eq, f(x)) eq = Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1) sol = C1 + C2*log(x) + log(x)**2/2 sols = constant_renumber(sol) assert our_hint in classify_ode(eq, f(x)) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3) sol = x*(C1 + C2*x + Rational(1, 2)*x**2) sols = constant_renumber(sol) assert our_hint in classify_ode(eq, f(x)) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x) sol = C1/x + C2*x**3 - Rational(1, 16)*log(x)/x - Rational(1, 8)*log(x)**2/x sols = constant_renumber(sol) assert our_hint in classify_ode(eq, f(x)) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x)) sol = C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x)) sol = C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters(): x, t = symbols('x, t') a, b, c, d = symbols('a, b, c, d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2) assert our_hint in classify_ode(eq, f(x)) eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x)) assert our_hint in classify_ode(eq, f(x)) eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4) sol = C1*x + C2*x**2 + x**4/6 sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x)) sol = C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x)) sol = C1*x + C2*x**2 + x**2*exp(x) - 2*x*exp(x) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) sol = C1*x + C2*x**2 + log(x)/2 + Rational(3, 4) sols = constant_renumber(sol) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] eq = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert our_hint in classify_ode(eq) assert dsolve(eq, f(x), hint=our_hint) == sol assert checkodesol(eq, sol, order=2, solve_for_func=False)[0] def test_issue_5095(): f = Function('f') raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf')) def test_almost_linear(): from sympy import Ei A = Symbol('A', positive=True) our_hint = 'almost_linear' f = Function('f') d = f(x).diff(x) eq = x**2*f(x)**2*d + f(x)**3 + 1 sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol[0].rhs == (C1*exp(3/x) - 1)**Rational(1, 3) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = x*f(x)*d + 2*x*f(x)**2 + 1 sol = [ Eq(f(x), -sqrt((C1 - 2*Ei(4*x))*exp(-4*x))), Eq(f(x), sqrt((C1 - 2*Ei(4*x))*exp(-4*x))) ] assert set(dsolve(eq, f(x), hint = 'almost_linear')) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = x*d + x*f(x) + 1 sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol.rhs == (C1 - Ei(x))*exp(-x) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] assert our_hint in classify_ode(eq, f(x)) eq = x*exp(f(x))*d + exp(f(x)) + 3*x sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol.rhs == log(C1/x - x*Rational(3, 2)) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2 sol = dsolve(eq, f(x), hint = 'almost_linear') assert sol.rhs == (C1 + Piecewise( (x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_exact_enhancement(): f = Function('f')(x) df = Derivative(f, x) eq = f/x**2 + ((f*x - 1)/x)*df sol = [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] eq = (x*f - 1) + df*(x**2 - x*f) sol = [Eq(f, x - sqrt(C1 + x**2 - 2*log(x))), Eq(f, x + sqrt(C1 + x**2 - 2*log(x)))] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] eq = (x + 2)*sin(f) + df*x*cos(f) sol = [Eq(f, -asin(C1*exp(-x)/x**2) + pi), Eq(f, asin(C1*exp(-x)/x**2))] assert set(dsolve(eq, f)) == set(sol) assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)] @slow def test_separable_reduced(): f = Function('f') x = Symbol('x') df = f(x).diff(x) eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') eq = x* df + f(x)* (1 / (x**2*f(x) - 1)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') sol = dsolve(eq, hint = 'separable_reduced', simplify=False) assert sol.lhs == log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6 assert sol.rhs == C1 + log(x) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = f(x).diff(x) + (f(x) / (x**4*f(x) - x)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') sol = dsolve(eq, hint = 'separable_reduced') # FIXME: This one hangs #assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0)] * 4 assert len(sol) == 4 eq = x*df + f(x)*(x**2*f(x)) sol = dsolve(eq, hint = 'separable_reduced', simplify=False) assert sol == Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x)) assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_homogeneous_function(): f = Function('f') eq1 = tan(x + f(x)) eq2 = sin((3*x)/(4*f(x))) eq3 = cos(x*f(x)*Rational(3, 4)) eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x)) eq5 = exp((2*x**2)/(3*f(x)**2)) eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2))) eq7 = sin((3*x)/(5*f(x) + x**2)) assert homogeneous_order(eq1, x, f(x)) == None assert homogeneous_order(eq2, x, f(x)) == 0 assert homogeneous_order(eq3, x, f(x)) == None assert homogeneous_order(eq4, x, f(x)) == 0 assert homogeneous_order(eq5, x, f(x)) == 0 assert homogeneous_order(eq6, x, f(x)) == 0 assert homogeneous_order(eq7, x, f(x)) == None def test_linear_coeff_match(): from sympy.solvers.ode import _linear_coeff_match n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11) rat = n/d eq1 = sin(rat) + cos(rat.expand()) eq2 = rat eq3 = log(sin(rat)) ans = (4, Rational(-13, 3)) assert _linear_coeff_match(eq1, f(x)) == ans assert _linear_coeff_match(eq2, f(x)) == ans assert _linear_coeff_match(eq3, f(x)) == ans # no c eq4 = (3*x)/f(x) # not x and f(x) eq5 = (3*x + 2)/x # denom will be zero eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5) # not rational coefficient eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5) assert _linear_coeff_match(eq4, f(x)) is None assert _linear_coeff_match(eq5, f(x)) is None assert _linear_coeff_match(eq6, f(x)) is None assert _linear_coeff_match(eq7, f(x)) is None def test_linear_coefficients(): f = Function('f') sol = Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2)) eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3) assert dsolve(eq, hint='linear_coefficients') == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_constantsimp_take_problem(): c = exp(C1) + 2 assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2 def test_issue_6879(): f = Function('f') eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x)) sol = (C1 + C2*x)*exp(x) + cos(x)/2 assert dsolve(eq).rhs == sol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_issue_6989(): f = Function('f') k = Symbol('k') eq = f(x).diff(x) - x*exp(-k*x) csol = Eq(f(x), C1 + Piecewise( ((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)), (x**2/2, True) )) sol = dsolve(eq, f(x)) assert sol == csol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] eq = -f(x).diff(x) + x*exp(-k*x) csol = Eq(f(x), C1 + Piecewise( ((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)), (x**2/2, True) )) sol = dsolve(eq, f(x)) assert sol == csol assert checkodesol(eq, sol, order=1, solve_for_func=False)[0] def test_heuristic1(): y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0") f = Function('f') xi = Function('xi') eta = Function('eta') df = f(x).diff(x) eq = Eq(df, x**2*f(x)) eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x) eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2) eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x)) eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2) eq5 = x**2*df - f(x) + x**2*exp(x - (1/x)) eqlist = [eq, eq1, eq2, eq3, eq4, eq5] i = infinitesimals(eq, hint='abaco1_simple') assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}, {eta(x, f(x)): f(x), xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}] i1 = infinitesimals(eq1, hint='abaco1_simple') assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}] i2 = infinitesimals(eq2, hint='abaco1_simple') assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}] i3 = infinitesimals(eq3, hint='abaco1_simple') assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1}, {eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}] i4 = infinitesimals(eq4, hint='abaco1_simple') assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0}, {eta(x, f(x)): 0, xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}] i5 = infinitesimals(eq5, hint='abaco1_simple') assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}] ilist = [i, i1, i2, i3, i4, i5] for eq, i in (zip(eqlist, ilist)): check = checkinfsol(eq, i) assert check[0] def test_issue_6247(): eq = x**2*f(x)**2 + x*Derivative(f(x), x) sol = Eq(f(x), 2*C1/(C1*x**2 - 1)) assert dsolve(eq, hint = 'separable_reduced') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x, x) + 4*f(x) sol = Eq(f(x), C1*sin(2*x) + C2*cos(2*x)) assert dsolve(eq) == sol assert checkodesol(eq, sol, order=1)[0] def test_heuristic2(): xi = Function('xi') eta = Function('eta') df = f(x).diff(x) # This ODE can be solved by the Lie Group method, when there are # better assumptions eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2) i = infinitesimals(eq, hint='abaco1_product') assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}] assert checkinfsol(eq, i)[0] @slow def test_heuristic3(): xi = Function('xi') eta = Function('eta') a, b = symbols("a b") df = f(x).diff(x) eq = x**2*df + x*f(x) + f(x)**2 + x**2 i = infinitesimals(eq, hint='bivariate') assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}] assert checkinfsol(eq, i)[0] eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x i = infinitesimals(eq, hint='bivariate') assert checkinfsol(eq, i)[0] def test_heuristic_4(): y, a = symbols("y a") eq = x*(f(x).diff(x)) + 1 - f(x)**2 i = infinitesimals(eq, hint='chi') assert checkinfsol(eq, i)[0] def test_heuristic_function_sum(): xi = Function('xi') eta = Function('eta') eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x + (1 - 3*f(x))*(x/f(x)**2)) i = infinitesimals(eq, hint='function_sum') assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_similar(): xi = Function('xi') eta = Function('eta') F = Function('F') a, b = symbols("a b") eq = f(x).diff(x) - F(a*x + b*f(x)) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x))) i = infinitesimals(eq, hint='abaco2_similar') assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}] assert checkinfsol(eq, i)[0] def test_heuristic_abaco2_unique_unknown(): xi = Function('xi') eta = Function('eta') F = Function('F') a, b = symbols("a b") x = Symbol("x", positive=True) eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}] assert checkinfsol(eq, i)[0] eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x))) i = infinitesimals(eq, hint='abaco2_unique_unknown') assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}] assert checkinfsol(eq, i)[0] eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a i = infinitesimals(eq, hint='abaco2_unique_unknown') assert checkinfsol(eq, i)[0] def test_heuristic_linear(): a, b, m, n = symbols("a b m n") eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1)) i = infinitesimals(eq, hint='linear') assert checkinfsol(eq, i)[0] @XFAIL def test_kamke(): a, b, alpha, c = symbols("a b alpha c") eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c i = infinitesimals(eq, hint='sum_function') assert checkinfsol(eq, i)[0] def test_series(): C1 = Symbol("C1") eq = f(x).diff(x) - f(x) sol = Eq(f(x), C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 + C1*x**5/120 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - x*f(x) sol = Eq(f(x), C1*x**4/8 + C1*x**2/2 + C1 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - sin(x*f(x)) sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3)) assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol # FIXME: The solution here should be O((x-2)**3) so is incorrect #assert checkodesol(eq, sol, order=1)[0] @XFAIL @SKIP def test_lie_group_issue17322(): eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x sol = dsolve(eq, f(x)) assert checkodesol(eq, sol) == (True, 0) eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x sol = dsolve(eq) assert checkodesol(eq, sol) == (True, 0) eq=Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0) sol = dsolve(eq) assert checkodesol(eq, sol) == (True, 0) eq=f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x) sol = dsolve(eq) assert checkodesol(eq, sol) == (True, 0) @slow def test_lie_group(): C1 = Symbol("C1") x = Symbol("x") # assuming x is real generates an error! a, b, c = symbols("a b c") eq = f(x).diff(x)**2 sol = dsolve(eq, f(x), hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = Eq(f(x).diff(x), x**2*f(x)) sol = dsolve(eq, f(x), hint='lie_group') assert sol == Eq(f(x), C1*exp(x**3)**Rational(1, 3)) assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x) + a*f(x) - c*exp(b*x) sol = dsolve(eq, f(x), hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2) sol = dsolve(eq, f(x), hint='lie_group') actual_sol = Eq(f(x), (C1 + x**2/2)*exp(-x**2)) errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol) assert sol == actual_sol, errstr assert checkodesol(eq, sol) == (True, 0) eq = (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x)) sol = dsolve(eq, f(x), hint='lie_group') assert sol == Eq(f(x), log(C1/(2*x + 1) + 2)) assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x)) sol = dsolve(eq, f(x), hint='lie_group') assert checkodesol(eq, sol)[0] eq = x**2*f(x)**2 + x*Derivative(f(x), x) sol = dsolve(eq, f(x), hint='lie_group') assert sol == Eq(f(x), 2/(C1 + x**2)) assert checkodesol(eq, sol) == (True, 0) eq=diff(f(x),x) + 2*x*f(x) - x*exp(-x**2) sol = Eq(f(x), exp(-x**2)*(C1 + x**2/2)) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = diff(f(x),x) + f(x)*cos(x) - exp(2*x) sol = Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x))) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2 sol = Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = x*diff(f(x),x) + f(x) - x*sin(x) sol = Eq(f(x), (C1 - x*cos(x) + sin(x))/x) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = x*diff(f(x),x) - f(x) - x/log(x) sol = Eq(f(x), x*(C1 + log(log(x)))) assert sol == dsolve(eq, hint='lie_group') assert checkodesol(eq, sol) == (True, 0) eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)) sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol[0]) == (True, 0) assert checkodesol(eq, sol[1]) == (True, 0) eq = f(x).diff(x) * (f(x).diff(x) - f(x)) sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1)] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol[0]) == (True, 0) assert checkodesol(eq, sol[1]) == (True, 0) @XFAIL def test_lie_group_issue15219(): eqn = exp(f(x).diff(x)-f(x)) assert 'lie_group' not in classify_ode(eqn, f(x)) def test_user_infinitesimals(): x = Symbol("x") # assuming x is real generates an error eq = x*(f(x).diff(x)) + 1 - f(x)**2 sol = Eq(f(x), (C1 + x**2)/(C1 - x**2)) infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0} assert dsolve(eq, hint='lie_group', **infinitesimals) == sol assert checkodesol(eq, sol) == (True, 0) def test_issue_7081(): eq = x*(f(x).diff(x)) + 1 - f(x)**2 s = Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2)) assert dsolve(eq) == s assert checkodesol(eq, s) == (True, 0) @slow def test_2nd_power_series_ordinary(): C1, C2 = symbols("C1 C2") eq = f(x).diff(x, 2) - x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary') == sol assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1) + C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2)) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary', x0=-2) == sol # FIXME: Solution should be O((x+2)**6) # assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*x + C1 + O(x**2)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=2) == sol assert checkodesol(eq, sol) == (True, 0) eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/24 + x**3/6 + 1) + C1*x*(x**3/24 + x**2/6 - x/2 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=7) == sol assert checkodesol(eq, sol) == (True, 0) def test_Airy_equation(): eq = f(x).diff(x, 2) - x*f(x) sol = Eq(f(x), C1*airyai(x) + C2*airybi(x)) sols = constant_renumber(sol) assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary') assert checkodesol(eq, sol) == (True, 0) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols) eq = f(x).diff(x, 2) + 2*x*f(x) sol = Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x)) sols = constant_renumber(sol) assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary') assert checkodesol(eq, sol) == (True, 0) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols) def test_2nd_power_series_regular(): C1, C2 = symbols("C1 C2") eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x) sol = Eq(f(x), C1*x**2*(-16*x**3/9 + 4*x**2 - 4*x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 + 1)*f(x) sol = Eq(f(x), C1*sqrt(x)*(x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + ( x**2 - 2)*f(x) sol = Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 + x**2/2 + x/2 + 1)/x + C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1) + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - Rational(1, 4))*f(x) sol = Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) + C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) def test_2nd_linear_bessel_equation(): eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x) sol = Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x) sol = Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x) sol = Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x) sol = Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x) sol = Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x) sol = Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x) sol = Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x)) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x) sol = Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x)))) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x) sol = Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2))) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) eq = (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x) sol = Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4))) sols = constant_renumber(sol) assert dsolve(eq, f(x)) in (sol, sols) assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols) assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) def test_issue_7093(): x = Symbol("x") # assuming x is real leads to an error sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5), Eq(f(x), C1 + 2*x*sqrt(x**3)/5)] eq = Derivative(f(x), x)**2 - x**3 assert set(dsolve(eq)) == set(sol) assert checkodesol(eq, sol) == [(True, 0)] * 2 def test_dsolve_linsystem_symbol(): eps = Symbol('epsilon', positive=True) eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x))) sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)), Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))] assert checksysodesol(eq1, sol1) == (True, [0, 0]) def test_C1_function_9239(): t = Symbol('t') C1 = Function('C1') C2 = Function('C2') C3 = Symbol('C3') C4 = Symbol('C4') eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t))) sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)), Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))] assert checksysodesol(eq, sol) == (True, [0, 0]) def test_issue_15056(): t = Symbol('t') C3 = Symbol('C3') assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3 def test_issue_10379(): t,y = symbols('t,y') eq = f(t).diff(t)-(1-51.05*y*f(t)) sol = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y) dsolve_sol = dsolve(eq, rational=False) assert str(dsolve_sol) == str(sol) assert checkodesol(eq, dsolve_sol)[0] def test_issue_10867(): x = Symbol('x') eq = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3) sol = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2) assert dsolve(eq, g(x)) == sol assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) def test_issue_11290(): eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral') sol_0 = dsolve(eq, f(x), simplify=False, hint='1st_exact') assert sol_1.dummy_eq(Eq(Subs( Integral(u**2 - x*sin(u) - Integral(-sin(u), x), u) + Integral(cos(u), x), u, f(x)), C1)) assert sol_1.doit() == sol_0 assert checkodesol(eq, sol_0, order=1, solve_for_func=False) assert checkodesol(eq, sol_1, order=1, solve_for_func=False) def test_issue_4838(): # Issue #15999 eq = f(x).diff(x) - C1*f(x) sol = Eq(f(x), C2*exp(C1*x)) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0) # Issue #13691 eq = f(x).diff(x) - C1*g(x).diff(x) sol = Eq(f(x), C2 + C1*g(x)) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, f(x), order=1, solve_for_func=False) == (True, 0) # Issue #4838 eq = f(x).diff(x) - 3*C1 - 3*x**2 sol = Eq(f(x), C2 + 3*C1*x + x**3) assert dsolve(eq, f(x)) == sol assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0) @slow def test_issue_14395(): eq = Derivative(f(x), x, x) + 9*f(x) - sec(x) sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x)) - 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x)) assert dsolve(eq, f(x)) == sol # FIXME: assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0) def test_sysode_linear_neq_order1(): from sympy.abc import t Z0 = Function('Z0') Z1 = Function('Z1') Z2 = Function('Z2') Z3 = Function('Z3') k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30') eq = (Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)), Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)), Eq(Derivative(Z2(t), t), -(k20 + k21 + k23)*Z2(t)), Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t))) sols_eq = [Eq(Z0(t), C1*k10/k01 + C2*(-k10 + k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*exp(t*(- k01 - k10)) + C4*(k10*k20 + k10*k21 - k10*k30 - k20**2 - k20*k21 - k20*k23 + k20*k30 + k23*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23))), Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*exp(t*(-k01 - k10)) + C4*(k01*k20 + k01*k21 - k01*k30 - k20*k21 - k21**2 - k21*k23 + k21*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23))), Eq(Z2(t), C4*(-k20 - k21 - k23 + k30)*exp(t*(-k20 - k21 - k23))/k23), Eq(Z3(t), C2*exp(-k30*t) + C4*exp(t*(-k20 - k21 - k23)))] assert dsolve(eq, simplify=False) == sols_eq assert checksysodesol(eq, sols_eq) == (True, [0, 0, 0, 0]) @slow def test_nth_order_reducible(): from sympy.solvers.ode import _nth_order_reducible_match eqn = Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0) sol = Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert sol == dsolve(eqn, f(x), hint='nth_order_reducible') assert sol == dsolve(eqn, f(x)) F = lambda eq: _nth_order_reducible_match(eq, f(x)) D = Derivative assert F(D(y*f(x), x, y) + D(f(x), x)) is None assert F(D(y*f(y), y, y) + D(f(y), y)) is None assert F(f(x)*D(f(x), x) + D(f(x), x, 2)) is None assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) is None # no simplification by design assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) is None assert F(D(f(x), x, 2) + D(f(x), x, 3)) == dict(n=2) eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert sol == dsolve(eqn, f(x)) assert sol == dsolve(eqn, f(x), hint='nth_order_reducible') eqn = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0) sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2)) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert sol == dsolve(eqn, f(x)) assert sol == dsolve(eqn, f(x), hint='nth_order_reducible') eqn = f(x).diff(x, 2) + 2*f(x).diff(x) sol = Eq(f(x), C1 + C2*exp(-2*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x) sol = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x) sol = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) + 3*f(x).diff(x, 3) sol = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x)) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) - 2*f(x).diff(x, 2) sol = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2))) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 4) + 4*f(x).diff(x, 2) sol = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x) sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) eqn = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) # These are equivalent: sol1 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x)) sol2 = Eq(f(x), C1 + C2*(x*sin(x) + cos(x)) + C3*(-x*cos(x) + sin(x)) + C4*sin(x) + C5*cos(x)) sol1s = constant_renumber(sol1) sol2s = constant_renumber(sol2) assert checkodesol(eqn, sol1, order=2, solve_for_func=False) == (True, 0) assert checkodesol(eqn, sol2, order=2, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x)) in (sol1, sol1s) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol2, sol2s) # In this case the reduced ODE has two distinct solutions eqn = f(x).diff(x, 2) - f(x).diff(x)**3 sol = [Eq(f(x), C2 - sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x))), Eq(f(x), C2 + sqrt(2)*I*(C1 + x)*sqrt(1/(C1 + x)))] sols = constant_renumber(sol) assert checkodesol(eqn, sol, order=2, solve_for_func=False) == [(True, 0), (True, 0)] assert dsolve(eqn, f(x)) in (sol, sols) assert dsolve(eqn, f(x), hint='nth_order_reducible') in (sol, sols) def test_nth_algebraic(): eqn = Eq(Derivative(f(x), x), Derivative(g(x), x)) sol = Eq(f(x), C1 + g(x)) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic'), dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) eqn = (diff(f(x)) - x)*(diff(f(x)) + x) sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)] assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic')) assert set(sol) == set(dsolve(eqn, f(x))) eqn = (1 - sin(f(x))) * f(x).diff(x) sol = Eq(f(x), C1) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) M, m, r, t = symbols('M m r t') phi = Function('phi') eqn = Eq(-M * phi(t).diff(t), Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t)) solns = [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))] assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0] assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0] assert set(solns) == set(dsolve(eqn, phi(t), hint='nth_algebraic')) assert set(solns) == set(dsolve(eqn, phi(t))) eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) sol = Eq(f(x), C1 + C2*x) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) sol = Eq(f(x), C1 + C2*x) assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x) solns = [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)] assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0] assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0] assert set(solns) == set(dsolve(eqn, f(x), hint='nth_algebraic')) assert set(solns) == set(dsolve(eqn, f(x))) def test_nth_algebraic_issue15999(): eqn = f(x).diff(x) - C1 sol = Eq(f(x), C1*x + C2) # Correct solution assert checkodesol(eqn, sol, order=1, solve_for_func=False) == (True, 0) assert dsolve(eqn, f(x), hint='nth_algebraic') == sol assert dsolve(eqn, f(x)) == sol def test_nth_algebraic_redundant_solutions(): # This one has a redundant solution that should be removed eqn = f(x)*f(x).diff(x) soln = Eq(f(x), C1) assert checkodesol(eqn, soln, order=1, solve_for_func=False)[0] assert soln == dsolve(eqn, f(x), hint='nth_algebraic') assert soln == dsolve(eqn, f(x)) # This has two integral solutions and no algebraic solutions eqn = (diff(f(x)) - x)*(diff(f(x)) + x) sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)] assert all(c[0] for c in checkodesol(eqn, sol, order=1, solve_for_func=False)) assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic')) assert set(sol) == set(dsolve(eqn, f(x))) eqn = f(x) + f(x)*f(x).diff(x) solns = [Eq(f(x), 0), Eq(f(x), C1 - x)] assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False)) assert set(solns) == set(dsolve(eqn, f(x))) from sympy.solvers.ode import _remove_redundant_solutions solns = [Eq(f(x), exp(x)), Eq(f(x), C1*exp(C2*x))] solns_final = _remove_redundant_solutions(eqn, solns, 2, x) assert solns_final == [Eq(f(x), C1*exp(C2*x))] # This one needs a substitution f' = g. eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x)) # # These tests can be combined with the above test if they get fixed # so that dsolve actually works in all these cases. # # prep = True breaks this def test_nth_algebraic_noprep1(): eqn = Derivative(x*f(x), x, x, x) sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x) assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic') @XFAIL def test_nth_algebraic_prep1(): eqn = Derivative(x*f(x), x, x, x) sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x) assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) # prep = True breaks this def test_nth_algebraic_noprep2(): eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)) sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic') @XFAIL def test_nth_algebraic_prep2(): eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)) sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x)) assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0] assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic') assert sol == dsolve(eqn, f(x)) # Needs to be a way to know how to combine derivatives in the expression def test_factoring_ode(): from sympy import Mul eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x) # 2-arg Mul! soln = Eq(f(x), C1 + C2*x + C3/Mul(2, (x + 1), evaluate=False)) assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0] assert soln == dsolve(eqn, f(x)) def test_issue_11542(): m = 96 g = 9.8 k = .2 f1 = g * m t = Symbol('t') v = Function('v') v_equation = dsolve(f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 0) assert str(v_equation) == \ 'Eq(v(t), -68.585712797929/tanh(C1 - 0.142886901662352*t))' def test_issue_15913(): eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x) sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x) assert checkodesol(eq, sol) == (True, 0) sol = C1 + C2*exp(-x*y) eq = Derivative(y*f(x), x) + f(x).diff(x, 2) assert checkodesol(eq, sol, f(x)) == (True, 0) def test_issue_16146(): raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)])) raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)])) def test_dsolve_remove_redundant_solutions(): eq = (f(x)-2)*f(x).diff(x) sol = Eq(f(x), C1) assert dsolve(eq) == sol eq = (f(x)-sin(x))*(f(x).diff(x, 2)) sol = {Eq(f(x), C1 + C2*x), Eq(f(x), sin(x))} assert set(dsolve(eq)) == sol eq = (f(x)**2-2*f(x)+1)*f(x).diff(x, 3) sol = Eq(f(x), C1 + C2*x + C3*x**2) assert dsolve(eq) == sol def test_factorable(): # Unable to get coverage on this without explicit testing because _desolve # already handles Pow before we get there but that should be disabled in # future so that factorable gets the raw ODE. from sympy.solvers.ode import _ode_factorable_match eq = f(x).diff(x)-1 assert _ode_factorable_match(eq**3, f(x), 1) == {'eqns':[eq], 'x0': 1} eq = f(x) + f(x)*f(x).diff(x) sols = [Eq(f(x), C1 - x), Eq(f(x), 0)] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 2*[(True, 0)] eq = f(x)*(f(x).diff(x)+f(x)*x+2) sols = [Eq(f(x), (C1 - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)) *exp(-x**2/2)), Eq(f(x), 0)] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 2*[(True, 0)] eq = (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + x*f(x)) sols = [Eq(f(x), C1*airyai(-x) + C2*airybi(-x)), Eq(f(x), C1*exp(-x**3/3))] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols[1]) == (True, 0) eq = (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + f(x)) sols = [Eq(f(x), C1*exp(-x**3/3)), Eq(f(x), C1*sin(x) + C2*cos(x))] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 2*[(True, 0)] eq = (f(x).diff(x)**2-1)*(f(x).diff(x)**2-4) sols = [Eq(f(x), C1 - x), Eq(f(x), C1 + x), Eq(f(x), C1 + 2*x), Eq(f(x), C1 - 2*x)] assert set(sols) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sols) == 4*[(True, 0)] eq = (f(x).diff(x, 2)-exp(f(x)))*f(x).diff(x) sol = Eq(f(x), C1) assert sol == dsolve(eq, f(x), hint='factorable') assert checkodesol(eq, sol) == (True, 0) eq = (f(x).diff(x)**2-1)*(f(x)*f(x).diff(x)-1) sol = [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 4*[(True, 0)] eq = Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1 sol = [Eq(f(x), C1 - x), Eq(f(x), C1 + x)] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 2*[(True, 0)] eq = f(x)**2*Derivative(f(x), x)**6 - 2*f(x)**2*Derivative(f(x), x)**4 + f(x)**2*Derivative(f(x), x)**2 - 2*f(x)*Derivative(f(x), x)**5 + 4*f(x)*Derivative(f(x), x)**3 - 2*f(x)*Derivative(f(x), x) + Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1 sol = [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 4*[(True, 0)] eq = (f(x).diff(x, 2)-exp(f(x)))*(f(x).diff(x, 2)+exp(f(x))) raises(NotImplementedError, lambda: dsolve(eq, hint = 'factorable')) eq = x**4*f(x)**2 + 2*x**4*f(x)*Derivative(f(x), (x, 2)) + x**4*Derivative(f(x), (x, 2))**2 + 2*x**3*f(x)*Derivative(f(x), x) + 2*x**3*Derivative(f(x), x)*Derivative(f(x), (x, 2)) - 7*x**2*f(x)**2 - 7*x**2*f(x)*Derivative(f(x), (x, 2)) + x**2*Derivative(f(x), x)**2 - 7*x*f(x)*Derivative(f(x), x) + 12*f(x)**2 sol = [Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)), Eq(f(x), C1*besselj(sqrt(3), x) + C2*bessely(sqrt(3), x))] assert set(sol) == set(dsolve(eq, f(x), hint='factorable')) assert checkodesol(eq, sol) == 2*[(True, 0)] def test_issue_17322(): eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)) sol = [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol) == 2*[(True, 0)] eq = f(x).diff(x)*(f(x).diff(x)+f(x)) sol = [Eq(f(x), C1), Eq(f(x), C1*exp(-x))] assert set(sol) == set(dsolve(eq, hint='lie_group')) assert checkodesol(eq, sol) == 2*[(True, 0)] def test_2nd_2F1_hypergeometric(): eq = x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x) sol = Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x)) assert sol == dsolve(eq, hint='2nd_hypergeometric') assert checkodesol(eq, sol) == (True, 0) eq = x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) + C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2)) assert sol == dsolve(eq, hint='2nd_hypergeometric') assert checkodesol(eq, sol) == (True, 0) eq = x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) + C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2)) assert sol == dsolve(eq, hint='2nd_hypergeometric') assert checkodesol(eq, sol) == (True, 0) eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 - x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x - 1), x)/4)*hyper((S(1)/2, -1), (1,), x)) assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral') assert checkodesol(eq, sol) == (True, 0) eq = -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) + x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2)) sol = Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) + C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84)) assert sol == dsolve(eq, hint='2nd_hypergeometric') # assert checkodesol(eq, sol) == (True, 0) #issue-https://github.com/sympy/sympy/issues/17702
b4f2e2d631e40a09ea671582319978b211d1a4508463c5333a835f9b84507846
from sympy import sqrt, pi, E, exp, Rational from sympy.core import S, symbols, I from sympy.discrete.convolutions import ( convolution, convolution_fft, convolution_ntt, convolution_fwht, convolution_subset, covering_product, intersecting_product) from sympy.utilities.pytest import raises from sympy.abc import x, y def test_convolution(): # fft a = [1, Rational(5, 3), sqrt(3), Rational(7, 5)] b = [9, 5, 5, 4, 3, 2] c = [3, 5, 3, 7, 8] d = [1422, 6572, 3213, 5552] assert convolution(a, b) == convolution_fft(a, b) assert convolution(a, b, dps=9) == convolution_fft(a, b, dps=9) assert convolution(a, d, dps=7) == convolution_fft(d, a, dps=7) assert convolution(a, d[1:], dps=3) == convolution_fft(d[1:], a, dps=3) # prime moduli of the form (m*2**k + 1), sequence length # should be a divisor of 2**k p = 7*17*2**23 + 1 q = 19*2**10 + 1 # ntt assert convolution(d, b, prime=q) == convolution_ntt(b, d, prime=q) assert convolution(c, b, prime=p) == convolution_ntt(b, c, prime=p) assert convolution(d, c, prime=p) == convolution_ntt(c, d, prime=p) raises(TypeError, lambda: convolution(b, d, dps=5, prime=q)) raises(TypeError, lambda: convolution(b, d, dps=6, prime=q)) # fwht assert convolution(a, b, dyadic=True) == convolution_fwht(a, b) assert convolution(a, b, dyadic=False) == convolution(a, b) raises(TypeError, lambda: convolution(b, d, dps=2, dyadic=True)) raises(TypeError, lambda: convolution(b, d, prime=p, dyadic=True)) raises(TypeError, lambda: convolution(a, b, dps=2, dyadic=True)) raises(TypeError, lambda: convolution(b, c, prime=p, dyadic=True)) # subset assert convolution(a, b, subset=True) == convolution_subset(a, b) == \ convolution(a, b, subset=True, dyadic=False) == \ convolution(a, b, subset=True) assert convolution(a, b, subset=False) == convolution(a, b) raises(TypeError, lambda: convolution(a, b, subset=True, dyadic=True)) raises(TypeError, lambda: convolution(c, d, subset=True, dps=6)) raises(TypeError, lambda: convolution(a, c, subset=True, prime=q)) def test_cyclic_convolution(): # fft a = [1, Rational(5, 3), sqrt(3), Rational(7, 5)] b = [9, 5, 5, 4, 3, 2] assert convolution([1, 2, 3], [4, 5, 6], cycle=0) == \ convolution([1, 2, 3], [4, 5, 6], cycle=5) == \ convolution([1, 2, 3], [4, 5, 6]) assert convolution([1, 2, 3], [4, 5, 6], cycle=3) == [31, 31, 28] a = [Rational(1, 3), Rational(7, 3), Rational(5, 9), Rational(2, 7), Rational(5, 8)] b = [Rational(3, 5), Rational(4, 7), Rational(7, 8), Rational(8, 9)] assert convolution(a, b, cycle=0) == \ convolution(a, b, cycle=len(a) + len(b) - 1) assert convolution(a, b, cycle=4) == [Rational(87277, 26460), Rational(30521, 11340), Rational(11125, 4032), Rational(3653, 1080)] assert convolution(a, b, cycle=6) == [Rational(20177, 20160), Rational(676, 315), Rational(47, 24), Rational(3053, 1080), Rational(16397, 5292), Rational(2497, 2268)] assert convolution(a, b, cycle=9) == \ convolution(a, b, cycle=0) + [S.Zero] # ntt a = [2313, 5323532, S(3232), 42142, 42242421] b = [S(33456), 56757, 45754, 432423] assert convolution(a, b, prime=19*2**10 + 1, cycle=0) == \ convolution(a, b, prime=19*2**10 + 1, cycle=8) == \ convolution(a, b, prime=19*2**10 + 1) assert convolution(a, b, prime=19*2**10 + 1, cycle=5) == [96, 17146, 2664, 15534, 3517] assert convolution(a, b, prime=19*2**10 + 1, cycle=7) == [4643, 3458, 1260, 15534, 3517, 16314, 13688] assert convolution(a, b, prime=19*2**10 + 1, cycle=9) == \ convolution(a, b, prime=19*2**10 + 1) + [0] # fwht u, v, w, x, y = symbols('u v w x y') p, q, r, s, t = symbols('p q r s t') c = [u, v, w, x, y] d = [p, q, r, s, t] assert convolution(a, b, dyadic=True, cycle=3) == \ [2499522285783, 19861417974796, 4702176579021] assert convolution(a, b, dyadic=True, cycle=5) == [2718149225143, 2114320852171, 20571217906407, 246166418903, 1413262436976] assert convolution(c, d, dyadic=True, cycle=4) == \ [p*u + p*y + q*v + r*w + s*x + t*u + t*y, p*v + q*u + q*y + r*x + s*w + t*v, p*w + q*x + r*u + r*y + s*v + t*w, p*x + q*w + r*v + s*u + s*y + t*x] assert convolution(c, d, dyadic=True, cycle=6) == \ [p*u + q*v + r*w + r*y + s*x + t*w + t*y, p*v + q*u + r*x + s*w + s*y + t*x, p*w + q*x + r*u + s*v, p*x + q*w + r*v + s*u, p*y + t*u, q*y + t*v] # subset assert convolution(a, b, subset=True, cycle=7) == [18266671799811, 178235365533, 213958794, 246166418903, 1413262436976, 2397553088697, 1932759730434] assert convolution(a[1:], b, subset=True, cycle=4) == \ [178104086592, 302255835516, 244982785880, 3717819845434] assert convolution(a, b[:-1], subset=True, cycle=6) == [1932837114162, 178235365533, 213958794, 245166224504, 1413262436976, 2397553088697] assert convolution(c, d, subset=True, cycle=3) == \ [p*u + p*x + q*w + r*v + r*y + s*u + t*w, p*v + p*y + q*u + s*y + t*u + t*x, p*w + q*y + r*u + t*v] assert convolution(c, d, subset=True, cycle=5) == \ [p*u + q*y + t*v, p*v + q*u + r*y + t*w, p*w + r*u + s*y + t*x, p*x + q*w + r*v + s*u, p*y + t*u] raises(ValueError, lambda: convolution([1, 2, 3], [4, 5, 6], cycle=-1)) def test_convolution_fft(): assert all(convolution_fft([], x, dps=y) == [] for x in ([], [1]) for y in (None, 3)) assert convolution_fft([1, 2, 3], [4, 5, 6]) == [4, 13, 28, 27, 18] assert convolution_fft([1], [5, 6, 7]) == [5, 6, 7] assert convolution_fft([1, 3], [5, 6, 7]) == [5, 21, 25, 21] assert convolution_fft([1 + 2*I], [2 + 3*I]) == [-4 + 7*I] assert convolution_fft([1 + 2*I, 3 + 4*I, 5 + Rational(3, 5)*I], [Rational(2, 5) + Rational(4, 7)*I]) == \ [Rational(-26, 35) + I*Rational(48, 35), Rational(-38, 35) + I*Rational(116, 35), Rational(58, 35) + I*Rational(542, 175)] assert convolution_fft([Rational(3, 4), Rational(5, 6)], [Rational(7, 8), Rational(1, 3), Rational(2, 5)]) == \ [Rational(21, 32), Rational(47, 48), Rational(26, 45), Rational(1, 3)] assert convolution_fft([Rational(1, 9), Rational(2, 3), Rational(3, 5)], [Rational(2, 5), Rational(3, 7), Rational(4, 9)]) == \ [Rational(2, 45), Rational(11, 35), Rational(8152, 14175), Rational(523, 945), Rational(4, 15)] assert convolution_fft([pi, E, sqrt(2)], [sqrt(3), 1/pi, 1/E]) == \ [sqrt(3)*pi, 1 + sqrt(3)*E, E/pi + pi*exp(-1) + sqrt(6), sqrt(2)/pi + 1, sqrt(2)*exp(-1)] assert convolution_fft([2321, 33123], [5321, 6321, 71323]) == \ [12350041, 190918524, 374911166, 2362431729] assert convolution_fft([312313, 31278232], [32139631, 319631]) == \ [10037624576503, 1005370659728895, 9997492572392] raises(TypeError, lambda: convolution_fft(x, y)) raises(ValueError, lambda: convolution_fft([x, y], [y, x])) def test_convolution_ntt(): # prime moduli of the form (m*2**k + 1), sequence length # should be a divisor of 2**k p = 7*17*2**23 + 1 q = 19*2**10 + 1 r = 2*500000003 + 1 # only for sequences of length 1 or 2 # s = 2*3*5*7 # composite modulus assert all(convolution_ntt([], x, prime=y) == [] for x in ([], [1]) for y in (p, q, r)) assert convolution_ntt([2], [3], r) == [6] assert convolution_ntt([2, 3], [4], r) == [8, 12] assert convolution_ntt([32121, 42144, 4214, 4241], [32132, 3232, 87242], p) == [33867619, 459741727, 79180879, 831885249, 381344700, 369993322] assert convolution_ntt([121913, 3171831, 31888131, 12], [17882, 21292, 29921, 312], q) == \ [8158, 3065, 3682, 7090, 1239, 2232, 3744] assert convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], p) == \ convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], q) assert convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], p) == \ convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], q) raises(ValueError, lambda: convolution_ntt([2, 3], [4, 5], r)) raises(ValueError, lambda: convolution_ntt([x, y], [y, x], q)) raises(TypeError, lambda: convolution_ntt(x, y, p)) def test_convolution_fwht(): assert convolution_fwht([], []) == [] assert convolution_fwht([], [1]) == [] assert convolution_fwht([1, 2, 3], [4, 5, 6]) == [32, 13, 18, 27] assert convolution_fwht([Rational(5, 7), Rational(6, 8), Rational(7, 3)], [2, 4, Rational(6, 7)]) == \ [Rational(45, 7), Rational(61, 14), Rational(776, 147), Rational(419, 42)] a = [1, Rational(5, 3), sqrt(3), Rational(7, 5), 4 + 5*I] b = [94, 51, 53, 45, 31, 27, 13] c = [3 + 4*I, 5 + 7*I, 3, Rational(7, 6), 8] assert convolution_fwht(a, b) == [53*sqrt(3) + 366 + 155*I, 45*sqrt(3) + Rational(5848, 15) + 135*I, 94*sqrt(3) + Rational(1257, 5) + 65*I, 51*sqrt(3) + Rational(3974, 15), 13*sqrt(3) + 452 + 470*I, Rational(4513, 15) + 255*I, 31*sqrt(3) + Rational(1314, 5) + 265*I, 27*sqrt(3) + Rational(3676, 15) + 225*I] assert convolution_fwht(b, c) == [Rational(1993, 2) + 733*I, Rational(6215, 6) + 862*I, Rational(1659, 2) + 527*I, Rational(1988, 3) + 551*I, 1019 + 313*I, Rational(3955, 6) + 325*I, Rational(1175, 2) + 52*I, Rational(3253, 6) + 91*I] assert convolution_fwht(a[3:], c) == [Rational(-54, 5) + I*Rational(293, 5), -1 + I*Rational(204, 5), Rational(133, 15) + I*Rational(35, 6), Rational(409, 30) + 15*I, Rational(56, 5), 32 + 40*I, 0, 0] u, v, w, x, y, z = symbols('u v w x y z') assert convolution_fwht([u, v], [x, y]) == [u*x + v*y, u*y + v*x] assert convolution_fwht([u, v, w], [x, y]) == \ [u*x + v*y, u*y + v*x, w*x, w*y] assert convolution_fwht([u, v, w], [x, y, z]) == \ [u*x + v*y + w*z, u*y + v*x, u*z + w*x, v*z + w*y] raises(TypeError, lambda: convolution_fwht(x, y)) raises(TypeError, lambda: convolution_fwht(x*y, u + v)) def test_convolution_subset(): assert convolution_subset([], []) == [] assert convolution_subset([], [Rational(1, 3)]) == [] assert convolution_subset([6 + I*Rational(3, 7)], [Rational(2, 3)]) == [4 + I*Rational(2, 7)] a = [1, Rational(5, 3), sqrt(3), 4 + 5*I] b = [64, 71, 55, 47, 33, 29, 15] c = [3 + I*Rational(2, 3), 5 + 7*I, 7, Rational(7, 5), 9] assert convolution_subset(a, b) == [64, Rational(533, 3), 55 + 64*sqrt(3), 71*sqrt(3) + Rational(1184, 3) + 320*I, 33, 84, 15 + 33*sqrt(3), 29*sqrt(3) + 157 + 165*I] assert convolution_subset(b, c) == [192 + I*Rational(128, 3), 533 + I*Rational(1486, 3), 613 + I*Rational(110, 3), Rational(5013, 5) + I*Rational(1249, 3), 675 + 22*I, 891 + I*Rational(751, 3), 771 + 10*I, Rational(3736, 5) + 105*I] assert convolution_subset(a, c) == convolution_subset(c, a) assert convolution_subset(a[:2], b) == \ [64, Rational(533, 3), 55, Rational(416, 3), 33, 84, 15, 25] assert convolution_subset(a[:2], c) == \ [3 + I*Rational(2, 3), 10 + I*Rational(73, 9), 7, Rational(196, 15), 9, 15, 0, 0] u, v, w, x, y, z = symbols('u v w x y z') assert convolution_subset([u, v, w], [x, y]) == [u*x, u*y + v*x, w*x, w*y] assert convolution_subset([u, v, w, x], [y, z]) == \ [u*y, u*z + v*y, w*y, w*z + x*y] assert convolution_subset([u, v], [x, y, z]) == \ convolution_subset([x, y, z], [u, v]) raises(TypeError, lambda: convolution_subset(x, z)) raises(TypeError, lambda: convolution_subset(Rational(7, 3), u)) def test_covering_product(): assert covering_product([], []) == [] assert covering_product([], [Rational(1, 3)]) == [] assert covering_product([6 + I*Rational(3, 7)], [Rational(2, 3)]) == [4 + I*Rational(2, 7)] a = [1, Rational(5, 8), sqrt(7), 4 + 9*I] b = [66, 81, 95, 49, 37, 89, 17] c = [3 + I*Rational(2, 3), 51 + 72*I, 7, Rational(7, 15), 91] assert covering_product(a, b) == [66, Rational(1383, 8), 95 + 161*sqrt(7), 130*sqrt(7) + 1303 + 2619*I, 37, Rational(671, 4), 17 + 54*sqrt(7), 89*sqrt(7) + Rational(4661, 8) + 1287*I] assert covering_product(b, c) == [198 + 44*I, 7740 + 10638*I, 1412 + I*Rational(190, 3), Rational(42684, 5) + I*Rational(31202, 3), 9484 + I*Rational(74, 3), 22163 + I*Rational(27394, 3), 10621 + I*Rational(34, 3), Rational(90236, 15) + 1224*I] assert covering_product(a, c) == covering_product(c, a) assert covering_product(b, c[:-1]) == [198 + 44*I, 7740 + 10638*I, 1412 + I*Rational(190, 3), Rational(42684, 5) + I*Rational(31202, 3), 111 + I*Rational(74, 3), 6693 + I*Rational(27394, 3), 429 + I*Rational(34, 3), Rational(23351, 15) + 1224*I] assert covering_product(a, c[:-1]) == [3 + I*Rational(2, 3), Rational(339, 4) + I*Rational(1409, 12), 7 + 10*sqrt(7) + 2*sqrt(7)*I/3, -403 + 772*sqrt(7)/15 + 72*sqrt(7)*I + I*Rational(12658, 15)] u, v, w, x, y, z = symbols('u v w x y z') assert covering_product([u, v, w], [x, y]) == \ [u*x, u*y + v*x + v*y, w*x, w*y] assert covering_product([u, v, w, x], [y, z]) == \ [u*y, u*z + v*y + v*z, w*y, w*z + x*y + x*z] assert covering_product([u, v], [x, y, z]) == \ covering_product([x, y, z], [u, v]) raises(TypeError, lambda: covering_product(x, z)) raises(TypeError, lambda: covering_product(Rational(7, 3), u)) def test_intersecting_product(): assert intersecting_product([], []) == [] assert intersecting_product([], [Rational(1, 3)]) == [] assert intersecting_product([6 + I*Rational(3, 7)], [Rational(2, 3)]) == [4 + I*Rational(2, 7)] a = [1, sqrt(5), Rational(3, 8) + 5*I, 4 + 7*I] b = [67, 51, 65, 48, 36, 79, 27] c = [3 + I*Rational(2, 5), 5 + 9*I, 7, Rational(7, 19), 13] assert intersecting_product(a, b) == [195*sqrt(5) + Rational(6979, 8) + 1886*I, 178*sqrt(5) + 520 + 910*I, Rational(841, 2) + 1344*I, 192 + 336*I, 0, 0, 0, 0] assert intersecting_product(b, c) == [Rational(128553, 19) + I*Rational(9521, 5), Rational(17820, 19) + 1602*I, Rational(19264, 19), Rational(336, 19), 1846, 0, 0, 0] assert intersecting_product(a, c) == intersecting_product(c, a) assert intersecting_product(b[1:], c[:-1]) == [Rational(64788, 19) + I*Rational(8622, 5), Rational(12804, 19) + 1152*I, Rational(11508, 19), Rational(252, 19), 0, 0, 0, 0] assert intersecting_product(a, c[:-2]) == \ [Rational(-99, 5) + 10*sqrt(5) + 2*sqrt(5)*I/5 + I*Rational(3021, 40), -43 + 5*sqrt(5) + 9*sqrt(5)*I + 71*I, Rational(245, 8) + 84*I, 0] u, v, w, x, y, z = symbols('u v w x y z') assert intersecting_product([u, v, w], [x, y]) == \ [u*x + u*y + v*x + w*x + w*y, v*y, 0, 0] assert intersecting_product([u, v, w, x], [y, z]) == \ [u*y + u*z + v*y + w*y + w*z + x*y, v*z + x*z, 0, 0] assert intersecting_product([u, v], [x, y, z]) == \ intersecting_product([x, y, z], [u, v]) raises(TypeError, lambda: intersecting_product(x, z)) raises(TypeError, lambda: intersecting_product(u, Rational(8, 3)))
e26fbbdc6ed24299cf47feb21dc355f35fbaae55af582c11f50ddc8a24ff1b90
from sympy import Symbol, exp, log, oo, S, I, sqrt, Rational from sympy.calculus.singularities import ( singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic ) from sympy.sets import Interval, FiniteSet from sympy.utilities.pytest import XFAIL, raises from sympy.abc import x, y def test_singularities(): x = Symbol('x') assert singularities(x**2, x) == S.EmptySet assert singularities(x/(x**2 + 3*x + 2), x) == FiniteSet(-2, -1) assert singularities(1/(x**2 + 1), x) == FiniteSet(I, -I) assert singularities(x/(x**3 + 1), x) == \ FiniteSet(-1, (1 - sqrt(3) * I) / 2, (1 + sqrt(3) * I) / 2) assert singularities(1/(y**2 + 2*I*y + 1), y) == \ FiniteSet(-I + sqrt(2)*I, -I - sqrt(2)*I) x = Symbol('x', real=True) assert singularities(1/(x**2 + 1), x) == S.EmptySet @XFAIL def test_singularities_non_rational(): x = Symbol('x', real=True) assert singularities(exp(1/x), x) == FiniteSet(0) assert singularities(log((x - 2)**2), x) == FiniteSet(2) def test_is_increasing(): """Test whether is_increasing returns correct value.""" a = Symbol('a', negative=True) assert is_increasing(x**3 - 3*x**2 + 4*x, S.Reals) assert is_increasing(-x**2, Interval(-oo, 0)) assert not is_increasing(-x**2, Interval(0, oo)) assert not is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) assert is_increasing(x**2 + y, Interval(1, oo), x) assert is_increasing(-x**2*a, Interval(1, oo), x) assert is_increasing(1) assert is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) is False def test_is_strictly_increasing(): """Test whether is_strictly_increasing returns correct value.""" assert is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2)) assert is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo)) assert not is_strictly_increasing( 4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) assert not is_strictly_increasing(-x**2, Interval(0, oo)) assert not is_strictly_decreasing(1) assert is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) is False def test_is_decreasing(): """Test whether is_decreasing returns correct value.""" b = Symbol('b', positive=True) assert is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert not is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2))) assert not is_decreasing(-x**2, Interval(-oo, 0)) assert not is_decreasing(-x**2*b, Interval(-oo, 0), x) def test_is_strictly_decreasing(): """Test whether is_strictly_decreasing returns correct value.""" assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert not is_strictly_decreasing( 1/(x**2 - 3*x), Interval.Ropen(-oo, Rational(3, 2))) assert not is_strictly_decreasing(-x**2, Interval(-oo, 0)) assert not is_strictly_decreasing(1) assert is_strictly_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) def test_is_monotonic(): """Test whether is_monotonic returns correct value.""" assert is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3)) assert is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo)) assert is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals) assert not is_monotonic(-x**2, S.Reals) assert is_monotonic(x**2 + y + 1, Interval(1, 2), x) raises(NotImplementedError, lambda: is_monotonic(x**2 + y + 1))
76fee25d455cbedd4df092b40b85ecdc4c507dcaff7b70fbdd4624bb344e14e8
from sympy import (Symbol, S, exp, log, sqrt, oo, E, zoo, pi, tan, sin, cos, cot, sec, csc, Abs, symbols, I, re, simplify, expint, Rational) from sympy.calculus.util import (function_range, continuous_domain, not_empty_in, periodicity, lcim, AccumBounds, is_convex, stationary_points, minimum, maximum) from sympy.core import Add, Mul, Pow from sympy.sets.sets import (Interval, FiniteSet, EmptySet, Complement, Union) from sympy.utilities.pytest import raises from sympy.abc import x a = Symbol('a', real=True) def test_function_range(): x, y, a, b = symbols('x y a b') assert function_range(sin(x), x, Interval(-pi/2, pi/2) ) == Interval(-1, 1) assert function_range(sin(x), x, Interval(0, pi) ) == Interval(0, 1) assert function_range(tan(x), x, Interval(0, pi) ) == Interval(-oo, oo) assert function_range(tan(x), x, Interval(pi/2, pi) ) == Interval(-oo, 0) assert function_range((x + 3)/(x - 2), x, Interval(-5, 5) ) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo)) assert function_range(1/(x**2), x, Interval(-1, 1) ) == Interval(1, oo) assert function_range(exp(x), x, Interval(-1, 1) ) == Interval(exp(-1), exp(1)) assert function_range(log(x) - x, x, S.Reals ) == Interval(-oo, -1) assert function_range(sqrt(3*x - 1), x, Interval(0, 2) ) == Interval(0, sqrt(5)) assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals ) == FiniteSet(0) assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals ) == FiniteSet(y) assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4)) ) == Union(Interval(-sin(3), 1), FiniteSet(sin(4))) assert function_range(cos(x), x, Interval(-oo, -4) ) == Interval(-1, 1) assert function_range(cos(x), x, S.EmptySet) == S.EmptySet raises(NotImplementedError, lambda : function_range( exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals)) raises(NotImplementedError, lambda : function_range( sin(x) + x, x, S.Reals)) # issue 13273 raises(NotImplementedError, lambda : function_range( log(x), x, S.Integers)) raises(NotImplementedError, lambda : function_range( sin(x)/2, x, S.Naturals)) def test_continuous_domain(): x = Symbol('x') assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi) assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \ Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True), Interval(pi*Rational(3, 2), 2*pi, True, False)) assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \ Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True)) assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \ Interval(Rational(1, 4), oo, True, True) assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True) assert continuous_domain(1/x - 2, x, S.Reals) == \ Union(Interval.open(-oo, 0), Interval.open(0, oo)) assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \ Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo)) def test_not_empty_in(): assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \ Interval(S.Half, 2, True, False) assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \ Union(Interval(-sqrt(2), -1), Interval(1, 2)) assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \ Union(Interval(-sqrt(17)/2 - S.Half, -2), Interval(1, Rational(-1, 2) + sqrt(17)/2), Interval(2, 4)) assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \ Interval(-oo, oo) assert not_empty_in(FiniteSet(4, x/(x - 1)).intersect(Interval(2, 3)), x) == \ Interval(S(3)/2, 2) assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(-1, 1)) assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True), Interval(4, 5))), x) == \ Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True), Interval(1, 3, True, True), Interval(4, 5)) assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \ Union(Interval(-2, -1, True, False), Interval(2, oo)) raises(ValueError, lambda: not_empty_in(x)) raises(ValueError, lambda: not_empty_in(Interval(0, 1), x)) raises(NotImplementedError, lambda: not_empty_in(FiniteSet(x).intersect(S.Reals), x, a)) def test_periodicity(): x = Symbol('x') y = Symbol('y') z = Symbol('z', real=True) assert periodicity(sin(2*x), x) == pi assert periodicity((-2)*tan(4*x), x) == pi/4 assert periodicity(sin(x)**2, x) == 2*pi assert periodicity(3**tan(3*x), x) == pi/3 assert periodicity(tan(x)*cos(x), x) == 2*pi assert periodicity(sin(x)**(tan(x)), x) == 2*pi assert periodicity(tan(x)*sec(x), x) == 2*pi assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2 assert periodicity(tan(x) + cot(x), x) == pi assert periodicity(sin(x) - cos(2*x), x) == 2*pi assert periodicity(sin(x) - 1, x) == 2*pi assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi assert periodicity(exp(sin(x)), x) == 2*pi assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi assert periodicity(tan(sin(2*x)), x) == pi assert periodicity(2*tan(x)**2, x) == pi assert periodicity(sin(x%4), x) == 4 assert periodicity(sin(x)%4, x) == 2*pi assert periodicity(tan((3*x-2)%4), x) == Rational(4, 3) assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1) assert periodicity((x**2+1) % x, x) is None assert periodicity(sin(re(x)), x) == 2*pi assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero assert periodicity(tan(x), y) is S.Zero assert periodicity(sin(x) + I*cos(x), x) == 2*pi assert periodicity(x - sin(2*y), y) == pi assert periodicity(exp(x), x) is None assert periodicity(exp(I*x), x) == 2*pi assert periodicity(exp(I*z), z) == 2*pi assert periodicity(exp(z), z) is None assert periodicity(exp(log(sin(z) + I*cos(2*z)), evaluate=False), z) == 2*pi assert periodicity(exp(log(sin(2*z) + I*cos(z)), evaluate=False), z) == 2*pi assert periodicity(exp(sin(z)), z) == 2*pi assert periodicity(exp(2*I*z), z) == pi assert periodicity(exp(z + I*sin(z)), z) is None assert periodicity(exp(cos(z/2) + sin(z)), z) == 4*pi assert periodicity(log(x), x) is None assert periodicity(exp(x)**sin(x), x) is None assert periodicity(sin(x)**y, y) is None assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi assert all(periodicity(Abs(f(x)), x) == pi for f in ( cos, sin, sec, csc, tan, cot)) assert periodicity(Abs(sin(tan(x))), x) == pi assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi assert periodicity(sin(x) > S.Half, x) == 2*pi assert periodicity(x > 2, x) is None assert periodicity(x**3 - x**2 + 1, x) is None assert periodicity(Abs(x), x) is None assert periodicity(Abs(x**2 - 1), x) is None assert periodicity((x**2 + 4)%2, x) is None assert periodicity((E**x)%3, x) is None assert periodicity(sin(expint(1, x))/expint(1, x), x) is None def test_periodicity_check(): x = Symbol('x') y = Symbol('y') assert periodicity(tan(x), x, check=True) == pi assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi assert periodicity(sec(x), x) == 2*pi assert periodicity(sin(x*y), x) == 2*pi/abs(y) assert periodicity(Abs(sec(sec(x))), x) == pi def test_lcim(): from sympy import pi assert lcim([S.Half, S(2), S(3)]) == 6 assert lcim([pi/2, pi/4, pi]) == pi assert lcim([2*pi, pi/2]) == 2*pi assert lcim([S.One, 2*pi]) is None assert lcim([S(2) + 2*E, E/3 + Rational(1, 3), S.One + E]) == S(2) + 2*E def test_is_convex(): assert is_convex(1/x, x, domain=Interval(0, oo)) == True assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False assert is_convex(x**2, x, domain=Interval(0, oo)) == True assert is_convex(log(x), x) == False raises(NotImplementedError, lambda: is_convex(log(x), x, a)) def test_stationary_points(): x, y = symbols('x y') assert stationary_points(sin(x), x, Interval(-pi/2, pi/2) ) == {-pi/2, pi/2} assert stationary_points(sin(x), x, Interval.Ropen(0, pi/4) ) == EmptySet() assert stationary_points(tan(x), x, ) == EmptySet() assert stationary_points(sin(x)*cos(x), x, Interval(0, pi) ) == {pi/4, pi*Rational(3, 4)} assert stationary_points(sec(x), x, Interval(0, pi) ) == {0, pi} assert stationary_points((x+3)*(x-2), x ) == FiniteSet(Rational(-1, 2)) assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5) ) == EmptySet() assert stationary_points((x**2+3)/(x-2), x ) == {2 - sqrt(7), 2 + sqrt(7)} assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5) ) == {2 + sqrt(7)} assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals ) == FiniteSet(-2, 0, Rational(5, 4)) assert stationary_points(exp(x), x ) == EmptySet() assert stationary_points(log(x) - x, x, S.Reals ) == {1} assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) == {0, -pi, pi} assert stationary_points(y, x, S.Reals ) == S.Reals assert stationary_points(y, x, S.EmptySet) == S.EmptySet def test_maximum(): x, y = symbols('x y') assert maximum(sin(x), x) is S.One assert maximum(sin(x), x, Interval(0, 1)) == sin(1) assert maximum(tan(x), x) is oo assert maximum(tan(x), x, Interval(-pi/4, pi/4)) is S.One assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half assert simplify(maximum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8))) ) == sqrt(2)/4 assert maximum((x+3)*(x-2), x) is oo assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14) assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(2, 7) assert simplify(maximum(-x**4-x**3+x**2+10, x) ) == 41*sqrt(41)/512 + Rational(5419, 512) assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2) assert maximum(log(x) - x, x, S.Reals) is S.NegativeOne assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) is S.One assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2) assert maximum(y, x, S.Reals) == y raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet)) raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet)) raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet)) raises(ValueError, lambda : maximum(sin(x), sin(x))) raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet)) raises(ValueError, lambda : maximum(sin(x), S.One)) def test_minimum(): x, y = symbols('x y') assert minimum(sin(x), x) is S.NegativeOne assert minimum(sin(x), x, Interval(1, 4)) == sin(4) assert minimum(tan(x), x) is -oo assert minimum(tan(x), x, Interval(-pi/4, pi/4)) is S.NegativeOne assert minimum(sin(x)*cos(x), x, S.Reals) == Rational(-1, 2) assert simplify(minimum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8))) ) == -sqrt(2)/4 assert minimum((x+3)*(x-2), x) == Rational(-25, 4) assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(-3, 2) assert minimum(x**4-x**3+x**2+10, x) == S(10) assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2) assert minimum(log(x) - x, x, S.Reals) is -oo assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) is S.NegativeOne assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2) assert minimum(y, x, S.Reals) == y raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet)) raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet)) raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet)) raises(ValueError, lambda : minimum(sin(x), sin(x))) raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet)) raises(ValueError, lambda : minimum(sin(x), S.One)) def test_AccumBounds(): assert AccumBounds(1, 2).args == (1, 2) assert AccumBounds(1, 2).delta is S.One assert AccumBounds(1, 2).mid == Rational(3, 2) assert AccumBounds(1, 3).is_real == True assert AccumBounds(1, 1) is S.One assert AccumBounds(1, 2) + 1 == AccumBounds(2, 3) assert 1 + AccumBounds(1, 2) == AccumBounds(2, 3) assert AccumBounds(1, 2) + AccumBounds(2, 3) == AccumBounds(3, 5) assert -AccumBounds(1, 2) == AccumBounds(-2, -1) assert AccumBounds(1, 2) - 1 == AccumBounds(0, 1) assert 1 - AccumBounds(1, 2) == AccumBounds(-1, 0) assert AccumBounds(2, 3) - AccumBounds(1, 2) == AccumBounds(0, 2) assert x + AccumBounds(1, 2) == Add(AccumBounds(1, 2), x) assert a + AccumBounds(1, 2) == AccumBounds(1 + a, 2 + a) assert AccumBounds(1, 2) - x == Add(AccumBounds(1, 2), -x) assert AccumBounds(-oo, 1) + oo == AccumBounds(-oo, oo) assert AccumBounds(1, oo) + oo is oo assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo) assert (-oo - AccumBounds(-1, oo)) is -oo assert AccumBounds(-oo, 1) - oo is -oo assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo) assert AccumBounds(-oo, 1) - (-oo) == AccumBounds(-oo, oo) assert (oo - AccumBounds(1, oo)) == AccumBounds(-oo, oo) assert (-oo - AccumBounds(1, oo)) is -oo assert AccumBounds(1, 2)/2 == AccumBounds(S.Half, 1) assert 2/AccumBounds(2, 3) == AccumBounds(Rational(2, 3), 1) assert 1/AccumBounds(-1, 1) == AccumBounds(-oo, oo) assert abs(AccumBounds(1, 2)) == AccumBounds(1, 2) assert abs(AccumBounds(-2, -1)) == AccumBounds(1, 2) assert abs(AccumBounds(-2, 1)) == AccumBounds(0, 2) assert abs(AccumBounds(-1, 2)) == AccumBounds(0, 2) c = Symbol('c') raises(ValueError, lambda: AccumBounds(0, c)) raises(ValueError, lambda: AccumBounds(1, -1)) def test_AccumBounds_mul(): assert AccumBounds(1, 2)*2 == AccumBounds(2, 4) assert 2*AccumBounds(1, 2) == AccumBounds(2, 4) assert AccumBounds(1, 2)*AccumBounds(2, 3) == AccumBounds(2, 6) assert AccumBounds(1, 2)*0 == 0 assert AccumBounds(1, oo)*0 == AccumBounds(0, oo) assert AccumBounds(-oo, 1)*0 == AccumBounds(-oo, 0) assert AccumBounds(-oo, oo)*0 == AccumBounds(-oo, oo) assert AccumBounds(1, 2)*x == Mul(AccumBounds(1, 2), x, evaluate=False) assert AccumBounds(0, 2)*oo == AccumBounds(0, oo) assert AccumBounds(-2, 0)*oo == AccumBounds(-oo, 0) assert AccumBounds(0, 2)*(-oo) == AccumBounds(-oo, 0) assert AccumBounds(-2, 0)*(-oo) == AccumBounds(0, oo) assert AccumBounds(-1, 1)*oo == AccumBounds(-oo, oo) assert AccumBounds(-1, 1)*(-oo) == AccumBounds(-oo, oo) assert AccumBounds(-oo, oo)*oo == AccumBounds(-oo, oo) def test_AccumBounds_div(): assert AccumBounds(-1, 3)/AccumBounds(3, 4) == AccumBounds(Rational(-1, 3), 1) assert AccumBounds(-2, 4)/AccumBounds(-3, 4) == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)/AccumBounds(-4, 0) == AccumBounds(S.Half, oo) # these two tests can have a better answer # after Union of AccumBounds is improved assert AccumBounds(-3, -2)/AccumBounds(-2, 1) == AccumBounds(-oo, oo) assert AccumBounds(2, 3)/AccumBounds(-2, 2) == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)/AccumBounds(0, 4) == AccumBounds(-oo, Rational(-1, 2)) assert AccumBounds(2, 4)/AccumBounds(-3, 0) == AccumBounds(-oo, Rational(-2, 3)) assert AccumBounds(2, 4)/AccumBounds(0, 3) == AccumBounds(Rational(2, 3), oo) assert AccumBounds(0, 1)/AccumBounds(0, 1) == AccumBounds(0, oo) assert AccumBounds(-1, 0)/AccumBounds(0, 1) == AccumBounds(-oo, 0) assert AccumBounds(-1, 2)/AccumBounds(-2, 2) == AccumBounds(-oo, oo) assert 1/AccumBounds(-1, 2) == AccumBounds(-oo, oo) assert 1/AccumBounds(0, 2) == AccumBounds(S.Half, oo) assert (-1)/AccumBounds(0, 2) == AccumBounds(-oo, Rational(-1, 2)) assert 1/AccumBounds(-oo, 0) == AccumBounds(-oo, 0) assert 1/AccumBounds(-1, 0) == AccumBounds(-oo, -1) assert (-2)/AccumBounds(-oo, 0) == AccumBounds(0, oo) assert 1/AccumBounds(-oo, -1) == AccumBounds(-1, 0) assert AccumBounds(1, 2)/a == Mul(AccumBounds(1, 2), 1/a, evaluate=False) assert AccumBounds(1, 2)/0 == AccumBounds(1, 2)*zoo assert AccumBounds(1, oo)/oo == AccumBounds(0, oo) assert AccumBounds(1, oo)/(-oo) == AccumBounds(-oo, 0) assert AccumBounds(-oo, -1)/oo == AccumBounds(-oo, 0) assert AccumBounds(-oo, -1)/(-oo) == AccumBounds(0, oo) assert AccumBounds(-oo, oo)/oo == AccumBounds(-oo, oo) assert AccumBounds(-oo, oo)/(-oo) == AccumBounds(-oo, oo) assert AccumBounds(-1, oo)/oo == AccumBounds(0, oo) assert AccumBounds(-1, oo)/(-oo) == AccumBounds(-oo, 0) assert AccumBounds(-oo, 1)/oo == AccumBounds(-oo, 0) assert AccumBounds(-oo, 1)/(-oo) == AccumBounds(0, oo) def test_AccumBounds_func(): assert (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) == AccumBounds(-1, 4) assert exp(AccumBounds(0, 1)) == AccumBounds(1, E) assert exp(AccumBounds(-oo, oo)) == AccumBounds(0, oo) assert log(AccumBounds(3, 6)) == AccumBounds(log(3), log(6)) def test_AccumBounds_pow(): assert AccumBounds(0, 2)**2 == AccumBounds(0, 4) assert AccumBounds(-1, 1)**2 == AccumBounds(0, 1) assert AccumBounds(1, 2)**2 == AccumBounds(1, 4) assert AccumBounds(-1, 2)**3 == AccumBounds(-1, 8) assert AccumBounds(-1, 1)**0 == 1 assert AccumBounds(1, 2)**Rational(5, 2) == AccumBounds(1, 4*sqrt(2)) assert AccumBounds(-1, 2)**Rational(1, 3) == AccumBounds(-1, 2**Rational(1, 3)) assert AccumBounds(0, 2)**S.Half == AccumBounds(0, sqrt(2)) assert AccumBounds(-4, 2)**Rational(2, 3) == AccumBounds(0, 2*2**Rational(1, 3)) assert AccumBounds(-1, 5)**S.Half == AccumBounds(0, sqrt(5)) assert AccumBounds(-oo, 2)**S.Half == AccumBounds(0, sqrt(2)) assert AccumBounds(-2, 3)**Rational(-1, 4) == AccumBounds(0, oo) assert AccumBounds(1, 5)**(-2) == AccumBounds(Rational(1, 25), 1) assert AccumBounds(-1, 3)**(-2) == AccumBounds(0, oo) assert AccumBounds(0, 2)**(-2) == AccumBounds(Rational(1, 4), oo) assert AccumBounds(-1, 2)**(-3) == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)**(-3) == AccumBounds(Rational(-1, 8), Rational(-1, 27)) assert AccumBounds(-3, -2)**(-2) == AccumBounds(Rational(1, 9), Rational(1, 4)) assert AccumBounds(0, oo)**S.Half == AccumBounds(0, oo) assert AccumBounds(-oo, -1)**Rational(1, 3) == AccumBounds(-oo, -1) assert AccumBounds(-2, 3)**(Rational(-1, 3)) == AccumBounds(-oo, oo) assert AccumBounds(-oo, 0)**(-2) == AccumBounds(0, oo) assert AccumBounds(-2, 0)**(-2) == AccumBounds(Rational(1, 4), oo) assert AccumBounds(Rational(1, 3), S.Half)**oo is S.Zero assert AccumBounds(0, S.Half)**oo is S.Zero assert AccumBounds(S.Half, 1)**oo == AccumBounds(0, oo) assert AccumBounds(0, 1)**oo == AccumBounds(0, oo) assert AccumBounds(2, 3)**oo is oo assert AccumBounds(1, 2)**oo == AccumBounds(0, oo) assert AccumBounds(S.Half, 3)**oo == AccumBounds(0, oo) assert AccumBounds(Rational(-1, 3), Rational(-1, 4))**oo is S.Zero assert AccumBounds(-1, Rational(-1, 2))**oo == AccumBounds(-oo, oo) assert AccumBounds(-3, -2)**oo == FiniteSet(-oo, oo) assert AccumBounds(-2, -1)**oo == AccumBounds(-oo, oo) assert AccumBounds(-2, Rational(-1, 2))**oo == AccumBounds(-oo, oo) assert AccumBounds(Rational(-1, 2), S.Half)**oo is S.Zero assert AccumBounds(Rational(-1, 2), 1)**oo == AccumBounds(0, oo) assert AccumBounds(Rational(-2, 3), 2)**oo == AccumBounds(0, oo) assert AccumBounds(-1, 1)**oo == AccumBounds(-oo, oo) assert AccumBounds(-1, S.Half)**oo == AccumBounds(-oo, oo) assert AccumBounds(-1, 2)**oo == AccumBounds(-oo, oo) assert AccumBounds(-2, S.Half)**oo == AccumBounds(-oo, oo) assert AccumBounds(1, 2)**x == Pow(AccumBounds(1, 2), x, evaluate=False) assert AccumBounds(2, 3)**(-oo) is S.Zero assert AccumBounds(0, 2)**(-oo) == AccumBounds(0, oo) assert AccumBounds(-1, 2)**(-oo) == AccumBounds(-oo, oo) assert (tan(x)**sin(2*x)).subs(x, AccumBounds(0, pi/2)) == \ Pow(AccumBounds(-oo, oo), AccumBounds(0, 1), evaluate=False) def test_comparison_AccumBounds(): assert (AccumBounds(1, 3) < 4) == S.true assert (AccumBounds(1, 3) < -1) == S.false assert (AccumBounds(1, 3) < 2).rel_op == '<' assert (AccumBounds(1, 3) <= 2).rel_op == '<=' assert (AccumBounds(1, 3) > 4) == S.false assert (AccumBounds(1, 3) > -1) == S.true assert (AccumBounds(1, 3) > 2).rel_op == '>' assert (AccumBounds(1, 3) >= 2).rel_op == '>=' assert (AccumBounds(1, 3) < AccumBounds(4, 6)) == S.true assert (AccumBounds(1, 3) < AccumBounds(2, 4)).rel_op == '<' assert (AccumBounds(1, 3) < AccumBounds(-2, 0)) == S.false assert (AccumBounds(1, 3) <= AccumBounds(4, 6)) == S.true assert (AccumBounds(1, 3) <= AccumBounds(-2, 0)) == S.false assert (AccumBounds(1, 3) > AccumBounds(4, 6)) == S.false assert (AccumBounds(1, 3) > AccumBounds(-2, 0)) == S.true assert (AccumBounds(1, 3) >= AccumBounds(4, 6)) == S.false assert (AccumBounds(1, 3) >= AccumBounds(-2, 0)) == S.true # issue 13499 assert (cos(x) > 0).subs(x, oo) == (AccumBounds(-1, 1) > 0) c = Symbol('c') raises(TypeError, lambda: (AccumBounds(0, 1) < c)) raises(TypeError, lambda: (AccumBounds(0, 1) <= c)) raises(TypeError, lambda: (AccumBounds(0, 1) > c)) raises(TypeError, lambda: (AccumBounds(0, 1) >= c)) def test_contains_AccumBounds(): assert (1 in AccumBounds(1, 2)) == S.true raises(TypeError, lambda: a in AccumBounds(1, 2)) assert 0 in AccumBounds(-1, 0) raises(TypeError, lambda: (cos(1)**2 + sin(1)**2 - 1) in AccumBounds(-1, 0)) assert (-oo in AccumBounds(1, oo)) == S.true assert (oo in AccumBounds(-oo, 0)) == S.true # issue 13159 assert Mul(0, AccumBounds(-1, 1)) == Mul(AccumBounds(-1, 1), 0) == 0 import itertools for perm in itertools.permutations([0, AccumBounds(-1, 1), x]): assert Mul(*perm) == 0 def test_intersection_AccumBounds(): assert AccumBounds(0, 3).intersection(AccumBounds(1, 2)) == AccumBounds(1, 2) assert AccumBounds(0, 3).intersection(AccumBounds(1, 4)) == AccumBounds(1, 3) assert AccumBounds(0, 3).intersection(AccumBounds(-1, 2)) == AccumBounds(0, 2) assert AccumBounds(0, 3).intersection(AccumBounds(-1, 4)) == AccumBounds(0, 3) assert AccumBounds(0, 1).intersection(AccumBounds(2, 3)) == S.EmptySet raises(TypeError, lambda: AccumBounds(0, 3).intersection(1)) def test_union_AccumBounds(): assert AccumBounds(0, 3).union(AccumBounds(1, 2)) == AccumBounds(0, 3) assert AccumBounds(0, 3).union(AccumBounds(1, 4)) == AccumBounds(0, 4) assert AccumBounds(0, 3).union(AccumBounds(-1, 2)) == AccumBounds(-1, 3) assert AccumBounds(0, 3).union(AccumBounds(-1, 4)) == AccumBounds(-1, 4) raises(TypeError, lambda: AccumBounds(0, 3).union(1)) def test_issue_16469(): x = Symbol("x", real=True) f = abs(x) assert function_range(f, x, S.Reals) == Interval(0, oo, False, True)
9cb04ce7a617b22800c935d9ddc7e22c91f2c806156df62518332753fa07588e
from . import traverse from .core import (condition, debug, multiplex, exhaust, notempty, chain, onaction, sfilter, yieldify, do_one, identity) from .tools import canon __all__ = [ 'traverse', 'condition', 'debug', 'multiplex', 'exhaust', 'notempty', 'chain', 'onaction', 'sfilter', 'yieldify', 'do_one', 'identity', 'canon', ]
160b5e14e7c8924031328981b70840f53bf5c5eac7a30736c708415f68275817
from sympy.strategies.tree import treeapply, greedy, allresults, brute from sympy.core.compatibility import reduce from functools import partial def test_treeapply(): tree = ([3, 3], [4, 1], 2) assert treeapply(tree, {list: min, tuple: max}) == 3 add = lambda *args: sum(args) mul = lambda *args: reduce(lambda a, b: a*b, args, 1) assert treeapply(tree, {list: add, tuple: mul}) == 60 def test_treeapply_leaf(): assert treeapply(3, {}, leaf=lambda x: x**2) == 9 tree = ([3, 3], [4, 1], 2) treep1 = ([4, 4], [5, 2], 3) assert treeapply(tree, {list: min, tuple: max}, leaf=lambda x: x+1) == \ treeapply(treep1, {list: min, tuple: max}) def test_treeapply_strategies(): from sympy.strategies import chain, minimize join = {list: chain, tuple: minimize} inc = lambda x: x + 1 dec = lambda x: x - 1 double = lambda x: 2*x assert treeapply(inc, join) == inc assert treeapply((inc, dec), join)(5) == minimize(inc, dec)(5) assert treeapply([inc, dec], join)(5) == chain(inc, dec)(5) tree = (inc, [dec, double]) # either inc or dec-then-double assert treeapply(tree, join)(5) == 6 assert treeapply(tree, join)(1) == 0 maximize = partial(minimize, objective=lambda x: -x) join = {list: chain, tuple: maximize} fn = treeapply(tree, join) assert fn(4) == 6 # highest value comes from the dec then double assert fn(1) == 2 # highest value comes from the inc def test_greedy(): inc = lambda x: x + 1 dec = lambda x: x - 1 double = lambda x: 2*x tree = [inc, (dec, double)] # either inc or dec-then-double fn = greedy(tree, objective=lambda x: -x) assert fn(4) == 6 # highest value comes from the dec then double assert fn(1) == 2 # highest value comes from the inc tree = [inc, dec, [inc, dec, [(inc, inc), (dec, dec)]]] lowest = greedy(tree) assert lowest(10) == 8 highest = greedy(tree, objective=lambda x: -x) assert highest(10) == 12 def test_allresults(): inc = lambda x: x+1 dec = lambda x: x-1 double = lambda x: x*2 # square = lambda x: x**2 assert set(allresults(inc)(3)) == {inc(3)} assert set(allresults([inc, dec])(3)) == {2, 4} assert set(allresults((inc, dec))(3)) == {3} assert set(allresults([inc, (dec, double)])(4)) == {5, 6} def test_brute(): inc = lambda x: x+1 dec = lambda x: x-1 square = lambda x: x**2 tree = ([inc, dec], square) fn = brute(tree, lambda x: -x) assert fn(2) == (2 + 1)**2 assert fn(-2) == (-2 - 1)**2 assert brute(inc)(1) == 2
76ce336785e057e95e3a878cb34d3aaa37b0cd47017bba7a010354aef64c9e64
from __future__ import (absolute_import, division, print_function) import os import shutil import subprocess import sys import tempfile import warnings import glob from distutils.errors import CompileError from distutils.sysconfig import get_config_var from .util import ( get_abspath, make_dirs, copy, Glob, ArbitraryDepthGlob, glob_at_depth, import_module_from_file, pyx_is_cplus, sha256_of_string, sha256_of_file ) from .runners import ( CCompilerRunner, CppCompilerRunner, FortranCompilerRunner ) sharedext = get_config_var('EXT_SUFFIX' if sys.version_info >= (3, 3) else 'SO') if os.name == 'posix': objext = '.o' elif os.name == 'nt': objext = '.obj' else: warnings.warn("Unknown os.name: {}".format(os.name)) objext = '.o' def compile_sources(files, Runner=None, destdir=None, cwd=None, keep_dir_struct=False, per_file_kwargs=None, **kwargs): """ Compile source code files to object files. Parameters ========== files : iterable of str Paths to source files, if ``cwd`` is given, the paths are taken as relative. Runner: CompilerRunner subclass (optional) Could be e.g. ``FortranCompilerRunner``. Will be inferred from filename extensions if missing. destdir: str Output directory, if cwd is given, the path is taken as relative. cwd: str Working directory. Specify to have compiler run in other directory. also used as root of relative paths. keep_dir_struct: bool Reproduce directory structure in `destdir`. default: ``False`` per_file_kwargs: dict Dict mapping instances in ``files`` to keyword arguments. \\*\\*kwargs: dict Default keyword arguments to pass to ``Runner``. """ _per_file_kwargs = {} if per_file_kwargs is not None: for k, v in per_file_kwargs.items(): if isinstance(k, Glob): for path in glob.glob(k.pathname): _per_file_kwargs[path] = v elif isinstance(k, ArbitraryDepthGlob): for path in glob_at_depth(k.filename, cwd): _per_file_kwargs[path] = v else: _per_file_kwargs[k] = v # Set up destination directory destdir = destdir or '.' if not os.path.isdir(destdir): if os.path.exists(destdir): raise IOError("{} is not a directory".format(destdir)) else: make_dirs(destdir) if cwd is None: cwd = '.' for f in files: copy(f, destdir, only_update=True, dest_is_dir=True) # Compile files and return list of paths to the objects dstpaths = [] for f in files: if keep_dir_struct: name, ext = os.path.splitext(f) else: name, ext = os.path.splitext(os.path.basename(f)) file_kwargs = kwargs.copy() file_kwargs.update(_per_file_kwargs.get(f, {})) dstpaths.append(src2obj(f, Runner, cwd=cwd, **file_kwargs)) return dstpaths def get_mixed_fort_c_linker(vendor=None, cplus=False, cwd=None): vendor = vendor or os.environ.get('SYMPY_COMPILER_VENDOR', 'gnu') if vendor.lower() == 'intel': if cplus: return (FortranCompilerRunner, {'flags': ['-nofor_main', '-cxxlib']}, vendor) else: return (FortranCompilerRunner, {'flags': ['-nofor_main']}, vendor) elif vendor.lower() == 'gnu' or 'llvm': if cplus: return (CppCompilerRunner, {'lib_options': ['fortran']}, vendor) else: return (FortranCompilerRunner, {}, vendor) else: raise ValueError("No vendor found.") def link(obj_files, out_file=None, shared=False, Runner=None, cwd=None, cplus=False, fort=False, **kwargs): """ Link object files. Parameters ========== obj_files: iterable of str Paths to object files. out_file: str (optional) Path to executable/shared library, if ``None`` it will be deduced from the last item in obj_files. shared: bool Generate a shared library? Runner: CompilerRunner subclass (optional) If not given the ``cplus`` and ``fort`` flags will be inspected (fallback is the C compiler). cwd: str Path to the root of relative paths and working directory for compiler. cplus: bool C++ objects? default: ``False``. fort: bool Fortran objects? default: ``False``. \\*\\*kwargs: dict Keyword arguments passed to ``Runner``. Returns ======= The absolute path to the generated shared object / executable. """ if out_file is None: out_file, ext = os.path.splitext(os.path.basename(obj_files[-1])) if shared: out_file += sharedext if not Runner: if fort: Runner, extra_kwargs, vendor = \ get_mixed_fort_c_linker( vendor=kwargs.get('vendor', None), cplus=cplus, cwd=cwd, ) for k, v in extra_kwargs.items(): if k in kwargs: kwargs[k].expand(v) else: kwargs[k] = v else: if cplus: Runner = CppCompilerRunner else: Runner = CCompilerRunner flags = kwargs.pop('flags', []) if shared: if '-shared' not in flags: flags.append('-shared') run_linker = kwargs.pop('run_linker', True) if not run_linker: raise ValueError("run_linker was set to False (nonsensical).") out_file = get_abspath(out_file, cwd=cwd) runner = Runner(obj_files, out_file, flags, cwd=cwd, **kwargs) runner.run() return out_file def link_py_so(obj_files, so_file=None, cwd=None, libraries=None, cplus=False, fort=False, **kwargs): """ Link python extension module (shared object) for importing Parameters ========== obj_files: iterable of str Paths to object files to be linked. so_file: str Name (path) of shared object file to create. If not specified it will have the basname of the last object file in `obj_files` but with the extension '.so' (Unix). cwd: path string Root of relative paths and working directory of linker. libraries: iterable of strings Libraries to link against, e.g. ['m']. cplus: bool Any C++ objects? default: ``False``. fort: bool Any Fortran objects? default: ``False``. kwargs**: dict Keyword arguments passed to ``link(...)``. Returns ======= Absolute path to the generate shared object. """ libraries = libraries or [] include_dirs = kwargs.pop('include_dirs', []) library_dirs = kwargs.pop('library_dirs', []) # from distutils/command/build_ext.py: if sys.platform == "win32": warnings.warn("Windows not yet supported.") elif sys.platform == 'darwin': # Don't use the default code below pass elif sys.platform[:3] == 'aix': # Don't use the default code below pass else: from distutils import sysconfig if sysconfig.get_config_var('Py_ENABLE_SHARED'): ABIFLAGS = sysconfig.get_config_var('ABIFLAGS') pythonlib = 'python{}.{}{}'.format( sys.hexversion >> 24, (sys.hexversion >> 16) & 0xff, ABIFLAGS or '') libraries += [pythonlib] else: pass flags = kwargs.pop('flags', []) needed_flags = ('-pthread',) for flag in needed_flags: if flag not in flags: flags.append(flag) return link(obj_files, shared=True, flags=flags, cwd=cwd, cplus=cplus, fort=fort, include_dirs=include_dirs, libraries=libraries, library_dirs=library_dirs, **kwargs) def simple_cythonize(src, destdir=None, cwd=None, **cy_kwargs): """ Generates a C file from a Cython source file. Parameters ========== src: str Path to Cython source. destdir: str (optional) Path to output directory (default: '.'). cwd: path string (optional) Root of relative paths (default: '.'). **cy_kwargs: Second argument passed to cy_compile. Generates a .cpp file if ``cplus=True`` in ``cy_kwargs``, else a .c file. """ from Cython.Compiler.Main import ( default_options, CompilationOptions ) from Cython.Compiler.Main import compile as cy_compile assert src.lower().endswith('.pyx') or src.lower().endswith('.py') cwd = cwd or '.' destdir = destdir or '.' ext = '.cpp' if cy_kwargs.get('cplus', False) else '.c' c_name = os.path.splitext(os.path.basename(src))[0] + ext dstfile = os.path.join(destdir, c_name) if cwd: ori_dir = os.getcwd() else: ori_dir = '.' os.chdir(cwd) try: cy_options = CompilationOptions(default_options) cy_options.__dict__.update(cy_kwargs) cy_result = cy_compile([src], cy_options) if cy_result.num_errors > 0: raise ValueError("Cython compilation failed.") if os.path.abspath(os.path.dirname(src)) != os.path.abspath(destdir): if os.path.exists(dstfile): os.unlink(dstfile) shutil.move(os.path.join(os.path.dirname(src), c_name), destdir) finally: os.chdir(ori_dir) return dstfile extension_mapping = { '.c': (CCompilerRunner, None), '.cpp': (CppCompilerRunner, None), '.cxx': (CppCompilerRunner, None), '.f': (FortranCompilerRunner, None), '.for': (FortranCompilerRunner, None), '.ftn': (FortranCompilerRunner, None), '.f90': (FortranCompilerRunner, None), # ifort only knows about .f90 '.f95': (FortranCompilerRunner, 'f95'), '.f03': (FortranCompilerRunner, 'f2003'), '.f08': (FortranCompilerRunner, 'f2008'), } def src2obj(srcpath, Runner=None, objpath=None, cwd=None, inc_py=False, **kwargs): """ Compiles a source code file to an object file. Files ending with '.pyx' assumed to be cython files and are dispatched to pyx2obj. Parameters ========== srcpath: str Path to source file. Runner: CompilerRunner subclass (optional) If ``None``: deduced from extension of srcpath. objpath : str (optional) Path to generated object. If ``None``: deduced from ``srcpath``. cwd: str (optional) Working directory and root of relative paths. If ``None``: current dir. inc_py: bool Add Python include path to kwarg "include_dirs". Default: False \\*\\*kwargs: dict keyword arguments passed to Runner or pyx2obj """ name, ext = os.path.splitext(os.path.basename(srcpath)) if objpath is None: if os.path.isabs(srcpath): objpath = '.' else: objpath = os.path.dirname(srcpath) objpath = objpath or '.' # avoid objpath == '' if os.path.isdir(objpath): objpath = os.path.join(objpath, name+objext) include_dirs = kwargs.pop('include_dirs', []) if inc_py: from distutils.sysconfig import get_python_inc py_inc_dir = get_python_inc() if py_inc_dir not in include_dirs: include_dirs.append(py_inc_dir) if ext.lower() == '.pyx': return pyx2obj(srcpath, objpath=objpath, include_dirs=include_dirs, cwd=cwd, **kwargs) if Runner is None: Runner, std = extension_mapping[ext.lower()] if 'std' not in kwargs: kwargs['std'] = std flags = kwargs.pop('flags', []) needed_flags = ('-fPIC',) for flag in needed_flags: if flag not in flags: flags.append(flag) # src2obj implies not running the linker... run_linker = kwargs.pop('run_linker', False) if run_linker: raise CompileError("src2obj called with run_linker=True") runner = Runner([srcpath], objpath, include_dirs=include_dirs, run_linker=run_linker, cwd=cwd, flags=flags, **kwargs) runner.run() return objpath def pyx2obj(pyxpath, objpath=None, destdir=None, cwd=None, include_dirs=None, cy_kwargs=None, cplus=None, **kwargs): """ Convenience function If cwd is specified, pyxpath and dst are taken to be relative If only_update is set to `True` the modification time is checked and compilation is only run if the source is newer than the destination Parameters ========== pyxpath: str Path to Cython source file. objpath: str (optional) Path to object file to generate. destdir: str (optional) Directory to put generated C file. When ``None``: directory of ``objpath``. cwd: str (optional) Working directory and root of relative paths. include_dirs: iterable of path strings (optional) Passed onto src2obj and via cy_kwargs['include_path'] to simple_cythonize. cy_kwargs: dict (optional) Keyword arguments passed onto `simple_cythonize` cplus: bool (optional) Indicate whether C++ is used. default: auto-detect using ``.util.pyx_is_cplus``. compile_kwargs: dict keyword arguments passed onto src2obj Returns ======= Absolute path of generated object file. """ assert pyxpath.endswith('.pyx') cwd = cwd or '.' objpath = objpath or '.' destdir = destdir or os.path.dirname(objpath) abs_objpath = get_abspath(objpath, cwd=cwd) if os.path.isdir(abs_objpath): pyx_fname = os.path.basename(pyxpath) name, ext = os.path.splitext(pyx_fname) objpath = os.path.join(objpath, name+objext) cy_kwargs = cy_kwargs or {} cy_kwargs['output_dir'] = cwd if cplus is None: cplus = pyx_is_cplus(pyxpath) cy_kwargs['cplus'] = cplus interm_c_file = simple_cythonize(pyxpath, destdir=destdir, cwd=cwd, **cy_kwargs) include_dirs = include_dirs or [] flags = kwargs.pop('flags', []) needed_flags = ('-fwrapv', '-pthread', '-fPIC') for flag in needed_flags: if flag not in flags: flags.append(flag) options = kwargs.pop('options', []) if kwargs.pop('strict_aliasing', False): raise CompileError("Cython requires strict aliasing to be disabled.") # Let's be explicit about standard if cplus: std = kwargs.pop('std', 'c++98') else: std = kwargs.pop('std', 'c99') return src2obj(interm_c_file, objpath=objpath, cwd=cwd, include_dirs=include_dirs, flags=flags, std=std, options=options, inc_py=True, strict_aliasing=False, **kwargs) def _any_X(srcs, cls): for src in srcs: name, ext = os.path.splitext(src) key = ext.lower() if key in extension_mapping: if extension_mapping[key][0] == cls: return True return False def any_fortran_src(srcs): return _any_X(srcs, FortranCompilerRunner) def any_cplus_src(srcs): return _any_X(srcs, CppCompilerRunner) def compile_link_import_py_ext(sources, extname=None, build_dir='.', compile_kwargs=None, link_kwargs=None): """ Compiles sources to a shared object (python extension) and imports it Sources in ``sources`` which is imported. If shared object is newer than the sources, they are not recompiled but instead it is imported. Parameters ========== sources : string List of paths to sources. extname : string Name of extension (default: ``None``). If ``None``: taken from the last file in ``sources`` without extension. build_dir: str Path to directory in which objects files etc. are generated. compile_kwargs: dict keyword arguments passed to ``compile_sources`` link_kwargs: dict keyword arguments passed to ``link_py_so`` Returns ======= The imported module from of the python extension. Examples ======== >>> mod = compile_link_import_py_ext(['fft.f90', 'conv.cpp', '_fft.pyx']) # doctest: +SKIP >>> Aprim = mod.fft(A) # doctest: +SKIP """ if extname is None: extname = os.path.splitext(os.path.basename(sources[-1]))[0] compile_kwargs = compile_kwargs or {} link_kwargs = link_kwargs or {} try: mod = import_module_from_file(os.path.join(build_dir, extname), sources) except ImportError: objs = compile_sources(list(map(get_abspath, sources)), destdir=build_dir, cwd=build_dir, **compile_kwargs) so = link_py_so(objs, cwd=build_dir, fort=any_fortran_src(sources), cplus=any_cplus_src(sources), **link_kwargs) mod = import_module_from_file(so) return mod def _write_sources_to_build_dir(sources, build_dir): build_dir = build_dir or tempfile.mkdtemp() if not os.path.isdir(build_dir): raise OSError("Non-existent directory: ", build_dir) source_files = [] for name, src in sources: dest = os.path.join(build_dir, name) differs = True sha256_in_mem = sha256_of_string(src.encode('utf-8')).hexdigest() if os.path.exists(dest): if os.path.exists(dest+'.sha256'): sha256_on_disk = open(dest+'.sha256', 'rt').read() else: sha256_on_disk = sha256_of_file(dest).hexdigest() differs = sha256_on_disk != sha256_in_mem if differs: with open(dest, 'wt') as fh: fh.write(src) open(dest+'.sha256', 'wt').write(sha256_in_mem) source_files.append(dest) return source_files, build_dir def compile_link_import_strings(sources, build_dir=None, **kwargs): """ Compiles, links and imports extension module from source. Parameters ========== sources : iterable of name/source pair tuples build_dir : string (default: None) Path. ``None`` implies use a temporary directory. **kwargs: Keyword arguments passed onto `compile_link_import_py_ext`. Returns ======= mod : module The compiled and imported extension module. info : dict Containing ``build_dir`` as 'build_dir'. """ source_files, build_dir = _write_sources_to_build_dir(sources, build_dir) mod = compile_link_import_py_ext(source_files, build_dir=build_dir, **kwargs) info = dict(build_dir=build_dir) return mod, info def compile_run_strings(sources, build_dir=None, clean=False, compile_kwargs=None, link_kwargs=None): """ Compiles, links and runs a program built from sources. Parameters ========== sources : iterable of name/source pair tuples build_dir : string (default: None) Path. ``None`` implies use a temporary directory. clean : bool Whether to remove build_dir after use. This will only have an effect if ``build_dir`` is ``None`` (which creates a temporary directory). Passing ``clean == True`` and ``build_dir != None`` raises a ``ValueError``. This will also set ``build_dir`` in returned info dictionary to ``None``. compile_kwargs: dict Keyword arguments passed onto ``compile_sources`` link_kwargs: dict Keyword arguments passed onto ``link`` Returns ======= (stdout, stderr): pair of strings info: dict Containing exit status as 'exit_status' and ``build_dir`` as 'build_dir' """ if clean and build_dir is not None: raise ValueError("Automatic removal of build_dir is only available for temporary directory.") try: source_files, build_dir = _write_sources_to_build_dir(sources, build_dir) objs = compile_sources(list(map(get_abspath, source_files)), destdir=build_dir, cwd=build_dir, **(compile_kwargs or {})) prog = link(objs, cwd=build_dir, fort=any_fortran_src(source_files), cplus=any_cplus_src(source_files), **(link_kwargs or {})) p = subprocess.Popen([prog], stdout=subprocess.PIPE, stderr=subprocess.PIPE) exit_status = p.wait() stdout, stderr = [txt.decode('utf-8') for txt in p.communicate()] finally: if clean and os.path.isdir(build_dir): shutil.rmtree(build_dir) build_dir = None info = dict(exit_status=exit_status, build_dir=build_dir) return (stdout, stderr), info
fda48404744ee353a07b45677a5ad90d118cbeaa35f21b0427925b8b61bd4df7
from __future__ import (absolute_import, division, print_function) """ This sub-module is private, i.e. external code should not depend on it. These functions are used by tests run as part of continuous integration. Once the implementation is mature (it should support the major platforms: Windows, OS X & Linux) it may become official API which may be relied upon by downstream libraries. Until then API may break without prior notice. TODO: - (optionally) clean up after tempfile.mkdtemp() - cross-platform testing - caching of compiler choice and intermediate files """ from .compilation import compile_link_import_strings, compile_run_strings from .availability import has_fortran, has_c, has_cxx __all__ = [ 'compile_link_import_strings', 'compile_run_strings', 'has_fortran', 'has_c', 'has_cxx', ]
3fe97ca48b512ad1862fad7863a2086766d10813e4e3649f7c337b584a4e7563
from __future__ import (absolute_import, division, print_function) from collections import namedtuple from hashlib import sha256 import os import shutil import sys import tempfile import fnmatch from sympy.utilities.pytest import XFAIL def may_xfail(func): if sys.platform.lower() == 'darwin' or os.name == 'nt': # sympy.utilities._compilation needs more testing on Windows and macOS # once those two platforms are reliably supported this xfail decorator # may be removed. return XFAIL(func) else: return func if sys.version_info[0] == 2: class FileNotFoundError(IOError): pass class TemporaryDirectory(object): def __init__(self): self.path = tempfile.mkdtemp() def __enter__(self): return self.path def __exit__(self, exc, value, tb): shutil.rmtree(self.path) else: FileNotFoundError = FileNotFoundError TemporaryDirectory = tempfile.TemporaryDirectory class CompilerNotFoundError(FileNotFoundError): pass def get_abspath(path, cwd='.'): """ Returns the aboslute path. Parameters ========== path : str (relative) path. cwd : str Path to root of relative path. """ if os.path.isabs(path): return path else: if not os.path.isabs(cwd): cwd = os.path.abspath(cwd) return os.path.abspath( os.path.join(cwd, path) ) def make_dirs(path): """ Create directories (equivalent of ``mkdir -p``). """ if path[-1] == '/': parent = os.path.dirname(path[:-1]) else: parent = os.path.dirname(path) if len(parent) > 0: if not os.path.exists(parent): make_dirs(parent) if not os.path.exists(path): os.mkdir(path, 0o777) else: assert os.path.isdir(path) def copy(src, dst, only_update=False, copystat=True, cwd=None, dest_is_dir=False, create_dest_dirs=False): """ Variation of ``shutil.copy`` with extra options. Parameters ========== src : str Path to source file. dst : str Path to destination. only_update : bool Only copy if source is newer than destination (returns None if it was newer), default: ``False``. copystat : bool See ``shutil.copystat``. default: ``True``. cwd : str Path to working directory (root of relative paths). dest_is_dir : bool Ensures that dst is treated as a directory. default: ``False`` create_dest_dirs : bool Creates directories if needed. Returns ======= Path to the copied file. """ if cwd: # Handle working directory if not os.path.isabs(src): src = os.path.join(cwd, src) if not os.path.isabs(dst): dst = os.path.join(cwd, dst) if not os.path.exists(src): # Make sure source file extists raise FileNotFoundError("Source: `{}` does not exist".format(src)) # We accept both (re)naming destination file _or_ # passing a (possible non-existent) destination directory if dest_is_dir: if not dst[-1] == '/': dst = dst+'/' else: if os.path.exists(dst) and os.path.isdir(dst): dest_is_dir = True if dest_is_dir: dest_dir = dst dest_fname = os.path.basename(src) dst = os.path.join(dest_dir, dest_fname) else: dest_dir = os.path.dirname(dst) dest_fname = os.path.basename(dst) if not os.path.exists(dest_dir): if create_dest_dirs: make_dirs(dest_dir) else: raise FileNotFoundError("You must create directory first.") if only_update: # This function is not defined: # XXX: This branch is clearly not tested! if not missing_or_other_newer(dst, src): # noqa return if os.path.islink(dst): dst = os.path.abspath(os.path.realpath(dst), cwd=cwd) shutil.copy(src, dst) if copystat: shutil.copystat(src, dst) return dst Glob = namedtuple('Glob', 'pathname') ArbitraryDepthGlob = namedtuple('ArbitraryDepthGlob', 'filename') def glob_at_depth(filename_glob, cwd=None): if cwd is not None: cwd = '.' globbed = [] for root, dirs, filenames in os.walk(cwd): for fn in filenames: # This is not tested: if fnmatch.fnmatch(fn, filename_glob): globbed.append(os.path.join(root, fn)) return globbed def sha256_of_file(path, nblocks=128): """ Computes the SHA256 hash of a file. Parameters ========== path : string Path to file to compute hash of. nblocks : int Number of blocks to read per iteration. Returns ======= hashlib sha256 hash object. Use ``.digest()`` or ``.hexdigest()`` on returned object to get binary or hex encoded string. """ sh = sha256() with open(path, 'rb') as f: for chunk in iter(lambda: f.read(nblocks*sh.block_size), b''): sh.update(chunk) return sh def sha256_of_string(string): """ Computes the SHA256 hash of a string. """ sh = sha256() sh.update(string) return sh def pyx_is_cplus(path): """ Inspect a Cython source file (.pyx) and look for comment line like: # distutils: language = c++ Returns True if such a file is present in the file, else False. """ for line in open(path, 'rt'): if line.startswith('#') and '=' in line: splitted = line.split('=') if len(splitted) != 2: continue lhs, rhs = splitted if lhs.strip().split()[-1].lower() == 'language' and \ rhs.strip().split()[0].lower() == 'c++': return True return False def import_module_from_file(filename, only_if_newer_than=None): """ Imports python extension (from shared object file) Provide a list of paths in `only_if_newer_than` to check timestamps of dependencies. import_ raises an ImportError if any is newer. Word of warning: The OS may cache shared objects which makes reimporting same path of an shared object file very problematic. It will not detect the new time stamp, nor new checksum, but will instead silently use old module. Use unique names for this reason. Parameters ========== filename : str Path to shared object. only_if_newer_than : iterable of strings Paths to dependencies of the shared object. Raises ====== ``ImportError`` if any of the files specified in ``only_if_newer_than`` are newer than the file given by filename. """ path, name = os.path.split(filename) name, ext = os.path.splitext(name) name = name.split('.')[0] if sys.version_info[0] == 2: from imp import find_module, load_module fobj, filename, data = find_module(name, [path]) if only_if_newer_than: for dep in only_if_newer_than: if os.path.getmtime(filename) < os.path.getmtime(dep): raise ImportError("{} is newer than {}".format(dep, filename)) mod = load_module(name, fobj, filename, data) else: import importlib.util spec = importlib.util.spec_from_file_location(name, filename) if spec is None: raise ImportError("Failed to import: '%s'" % filename) mod = importlib.util.module_from_spec(spec) spec.loader.exec_module(mod) return mod def find_binary_of_command(candidates): """ Finds binary first matching name among candidates. Calls `find_executable` from distuils for provided candidates and returns first hit. Parameters ========== candidates : iterable of str Names of candidate commands Raises ====== CompilerNotFoundError if no candidates match. """ from distutils.spawn import find_executable for c in candidates: binary_path = find_executable(c) if c and binary_path: return c, binary_path raise CompilerNotFoundError('No binary located for candidates: {}'.format(candidates)) def unique_list(l): """ Uniquify a list (skip duplicate items). """ result = [] for x in l: if x not in result: result.append(x) return result
44aafa57a5318f324fda8a5e28b8615d31e047a3147488802bd9a06a948e8f00
"""Module with some functions for MathML, like transforming MathML content in MathML presentation. To use this module, you will need lxml. """ from sympy.utilities.pkgdata import get_resource from sympy.utilities.decorator import doctest_depends_on __doctest_requires__ = {('apply_xsl', 'c2p'): ['lxml']} def add_mathml_headers(s): return """<math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.w3.org/1998/Math/MathML http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">""" + s + "</math>" @doctest_depends_on(modules=('lxml',)) def apply_xsl(mml, xsl): """Apply a xsl to a MathML string @param mml: a string with MathML code @param xsl: a string representing a path to a xsl (xml stylesheet) file. This file name is relative to the PYTHONPATH >>> from sympy.utilities.mathml import apply_xsl >>> xsl = 'mathml/data/simple_mmlctop.xsl' >>> mml = '<apply> <plus/> <ci>a</ci> <ci>b</ci> </apply>' >>> res = apply_xsl(mml,xsl) >>> ''.join(res.splitlines()) '<?xml version="1.0"?><mrow xmlns="http://www.w3.org/1998/Math/MathML"> <mi>a</mi> <mo> + </mo> <mi>b</mi></mrow>' """ from lxml import etree s = etree.XML(get_resource(xsl).read()) transform = etree.XSLT(s) doc = etree.XML(mml) result = transform(doc) s = str(result) return s @doctest_depends_on(modules=('lxml',)) def c2p(mml, simple=False): """Transforms a document in MathML content (like the one that sympy produces) in one document in MathML presentation, more suitable for printing, and more widely accepted >>> from sympy.utilities.mathml import c2p >>> mml = '<apply> <exp/> <cn>2</cn> </apply>' >>> c2p(mml,simple=True) != c2p(mml,simple=False) True """ if not mml.startswith('<math'): mml = add_mathml_headers(mml) if simple: return apply_xsl(mml, 'mathml/data/simple_mmlctop.xsl') return apply_xsl(mml, 'mathml/data/mmlctop.xsl')
066dbf077bbd29e6b7a3c7ecf28509ef0756a785fddada9985d3e98de33e32ae
from textwrap import dedent from sympy.core.compatibility import range, unichr from sympy.utilities.misc import translate, replace, ordinal, rawlines, strlines import sys from subprocess import Popen, PIPE def test_translate(): abc = 'abc' translate(abc, None, 'a') == 'bc' translate(abc, None, '') == 'abc' translate(abc, {'a': 'x'}, 'c') == 'xb' assert translate(abc, {'a': 'bc'}, 'c') == 'bcb' assert translate(abc, {'ab': 'x'}, 'c') == 'x' assert translate(abc, {'ab': ''}, 'c') == '' assert translate(abc, {'bc': 'x'}, 'c') == 'ab' assert translate(abc, {'abc': 'x', 'a': 'y'}) == 'x' u = unichr(4096) assert translate(abc, 'a', 'x', u) == 'xbc' assert (u in translate(abc, 'a', u, u)) is True def test_replace(): assert replace('abc', ('a', 'b')) == 'bbc' assert replace('abc', {'a': 'Aa'}) == 'Aabc' assert replace('abc', ('a', 'b'), ('c', 'C')) == 'bbC' def test_ordinal(): assert ordinal(-1) == '-1st' assert ordinal(0) == '0th' assert ordinal(1) == '1st' assert ordinal(2) == '2nd' assert ordinal(3) == '3rd' assert all(ordinal(i).endswith('th') for i in range(4, 21)) assert ordinal(100) == '100th' assert ordinal(101) == '101st' assert ordinal(102) == '102nd' assert ordinal(103) == '103rd' assert ordinal(104) == '104th' assert ordinal(200) == '200th' assert all(ordinal(i) == str(i) + 'th' for i in range(-220, -203)) def test_rawlines(): assert rawlines('a a\na') == "dedent('''\\\n a a\n a''')" assert rawlines('a a') == "'a a'" assert rawlines(strlines('\\le"ft')) == ( '(\n' " '(\\n'\n" ' \'r\\\'\\\\le"ft\\\'\\n\'\n' " ')'\n" ')') def test_strlines(): q = 'this quote (") is in the middle' # the following assert rhs was prepared with # print(rawlines(strlines(q, 10))) assert strlines(q, 10) == dedent('''\ ( 'this quo' 'te (") i' 's in the' ' middle' )''') assert q == ( 'this quo' 'te (") i' 's in the' ' middle' ) q = "this quote (') is in the middle" assert strlines(q, 20) == dedent('''\ ( "this quote (') is " "in the middle" )''') assert strlines('\\left') == ( '(\n' "r'\\left'\n" ')') assert strlines('\\left', short=True) == r"r'\left'" assert strlines('\\le"ft') == ( '(\n' 'r\'\\le"ft\'\n' ')') q = 'this\nother line' assert strlines(q) == rawlines(q) def test_translate_args(): try: translate(None, None, None, 'not_none') except ValueError: pass # Exception raised successfully else: assert False assert translate('s', None, None, None) == 's' try: translate('s', 'a', 'bc') except ValueError: pass # Exception raised successfully else: assert False def test_debug_output(): env = {'SYMPY_DEBUG':'True'} cmd = 'from sympy import *; x = Symbol("x"); print(integrate((1-cos(x))/x, x))' cmdline = [sys.executable, '-c', cmd] proc = Popen(cmdline, env=env, stdout=PIPE, stderr=PIPE) out, err = proc.communicate() out = out.decode('ascii') # utf-8? err = err.decode('ascii') expected = 'substituted: -x*(cos(x) - 1), u: 1/x, u_var: _u' assert expected in err
b98df60342d4c20683dac4e778b333616a48958dce3d82c8c23909255db2705f
from sympy.core import S, symbols, Eq, pi, Catalan, EulerGamma, Function from sympy.core.compatibility import StringIO from sympy import Piecewise from sympy import Equality from sympy.matrices import Matrix, MatrixSymbol from sympy.utilities.codegen import OctaveCodeGen, codegen, make_routine from sympy.utilities.pytest import raises from sympy.utilities.pytest import XFAIL import sympy x, y, z = symbols('x,y,z') def test_empty_m_code(): code_gen = OctaveCodeGen() output = StringIO() code_gen.dump_m([], output, "file", header=False, empty=False) source = output.getvalue() assert source == "" def test_m_simple_code(): name_expr = ("test", (x + y)*z) result, = codegen(name_expr, "Octave", header=False, empty=False) assert result[0] == "test.m" source = result[1] expected = ( "function out1 = test(x, y, z)\n" " out1 = z.*(x + y);\n" "end\n" ) assert source == expected def test_m_simple_code_with_header(): name_expr = ("test", (x + y)*z) result, = codegen(name_expr, "Octave", header=True, empty=False) assert result[0] == "test.m" source = result[1] expected = ( "function out1 = test(x, y, z)\n" " %TEST Autogenerated by sympy\n" " % Code generated with sympy " + sympy.__version__ + "\n" " %\n" " % See http://www.sympy.org/ for more information.\n" " %\n" " % This file is part of 'project'\n" " out1 = z.*(x + y);\n" "end\n" ) assert source == expected def test_m_simple_code_nameout(): expr = Equality(z, (x + y)) name_expr = ("test", expr) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function z = test(x, y)\n" " z = x + y;\n" "end\n" ) assert source == expected def test_m_numbersymbol(): name_expr = ("test", pi**Catalan) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function out1 = test()\n" " out1 = pi^%s;\n" "end\n" ) % Catalan.evalf(17) assert source == expected @XFAIL def test_m_numbersymbol_no_inline(): # FIXME: how to pass inline=False to the OctaveCodePrinter? name_expr = ("test", [pi**Catalan, EulerGamma]) result, = codegen(name_expr, "Octave", header=False, empty=False, inline=False) source = result[1] expected = ( "function [out1, out2] = test()\n" " Catalan = 0.915965594177219; % constant\n" " EulerGamma = 0.5772156649015329; % constant\n" " out1 = pi^Catalan;\n" " out2 = EulerGamma;\n" "end\n" ) assert source == expected def test_m_code_argument_order(): expr = x + y routine = make_routine("test", expr, argument_sequence=[z, x, y], language="octave") code_gen = OctaveCodeGen() output = StringIO() code_gen.dump_m([routine], output, "test", header=False, empty=False) source = output.getvalue() expected = ( "function out1 = test(z, x, y)\n" " out1 = x + y;\n" "end\n" ) assert source == expected def test_multiple_results_m(): # Here the output order is the input order expr1 = (x + y)*z expr2 = (x - y)*z name_expr = ("test", [expr1, expr2]) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [out1, out2] = test(x, y, z)\n" " out1 = z.*(x + y);\n" " out2 = z.*(x - y);\n" "end\n" ) assert source == expected def test_results_named_unordered(): # Here output order is based on name_expr A, B, C = symbols('A,B,C') expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, (x - y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [C, A, B] = test(x, y, z)\n" " C = z.*(x + y);\n" " A = z.*(x - y);\n" " B = 2*x;\n" "end\n" ) assert source == expected def test_results_named_ordered(): A, B, C = symbols('A,B,C') expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, (x - y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result = codegen(name_expr, "Octave", header=False, empty=False, argument_sequence=(x, z, y)) assert result[0][0] == "test.m" source = result[0][1] expected = ( "function [C, A, B] = test(x, z, y)\n" " C = z.*(x + y);\n" " A = z.*(x - y);\n" " B = 2*x;\n" "end\n" ) assert source == expected def test_complicated_m_codegen(): from sympy import sin, cos, tan name_expr = ("testlong", [ ((sin(x) + cos(y) + tan(z))**3).expand(), cos(cos(cos(cos(cos(cos(cos(cos(x + y + z)))))))) ]) result = codegen(name_expr, "Octave", header=False, empty=False) assert result[0][0] == "testlong.m" source = result[0][1] expected = ( "function [out1, out2] = testlong(x, y, z)\n" " out1 = sin(x).^3 + 3*sin(x).^2.*cos(y) + 3*sin(x).^2.*tan(z)" " + 3*sin(x).*cos(y).^2 + 6*sin(x).*cos(y).*tan(z) + 3*sin(x).*tan(z).^2" " + cos(y).^3 + 3*cos(y).^2.*tan(z) + 3*cos(y).*tan(z).^2 + tan(z).^3;\n" " out2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))));\n" "end\n" ) assert source == expected def test_m_output_arg_mixed_unordered(): # named outputs are alphabetical, unnamed output appear in the given order from sympy import sin, cos a = symbols("a") name_expr = ("foo", [cos(2*x), Equality(y, sin(x)), cos(x), Equality(a, sin(2*x))]) result, = codegen(name_expr, "Octave", header=False, empty=False) assert result[0] == "foo.m" source = result[1]; expected = ( 'function [out1, y, out3, a] = foo(x)\n' ' out1 = cos(2*x);\n' ' y = sin(x);\n' ' out3 = cos(x);\n' ' a = sin(2*x);\n' 'end\n' ) assert source == expected def test_m_piecewise_(): pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True), evaluate=False) name_expr = ("pwtest", pw) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function out1 = pwtest(x)\n" " out1 = ((x < -1).*(0) + (~(x < -1)).*( ...\n" " (x <= 1).*(x.^2) + (~(x <= 1)).*( ...\n" " (x > 1).*(2 - x) + (~(x > 1)).*(1))));\n" "end\n" ) assert source == expected @XFAIL def test_m_piecewise_no_inline(): # FIXME: how to pass inline=False to the OctaveCodePrinter? pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True)) name_expr = ("pwtest", pw) result, = codegen(name_expr, "Octave", header=False, empty=False, inline=False) source = result[1] expected = ( "function out1 = pwtest(x)\n" " if (x < -1)\n" " out1 = 0;\n" " elseif (x <= 1)\n" " out1 = x.^2;\n" " elseif (x > 1)\n" " out1 = -x + 2;\n" " else\n" " out1 = 1;\n" " end\n" "end\n" ) assert source == expected def test_m_multifcns_per_file(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result = codegen(name_expr, "Octave", header=False, empty=False) assert result[0][0] == "foo.m" source = result[0][1]; expected = ( "function [out1, out2] = foo(x, y)\n" " out1 = 2*x;\n" " out2 = 3*y;\n" "end\n" "function [out1, out2] = bar(y)\n" " out1 = y.^2;\n" " out2 = 4*y;\n" "end\n" ) assert source == expected def test_m_multifcns_per_file_w_header(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result = codegen(name_expr, "Octave", header=True, empty=False) assert result[0][0] == "foo.m" source = result[0][1]; expected = ( "function [out1, out2] = foo(x, y)\n" " %FOO Autogenerated by sympy\n" " % Code generated with sympy " + sympy.__version__ + "\n" " %\n" " % See http://www.sympy.org/ for more information.\n" " %\n" " % This file is part of 'project'\n" " out1 = 2*x;\n" " out2 = 3*y;\n" "end\n" "function [out1, out2] = bar(y)\n" " out1 = y.^2;\n" " out2 = 4*y;\n" "end\n" ) assert source == expected def test_m_filename_match_first_fcn(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] raises(ValueError, lambda: codegen(name_expr, "Octave", prefix="bar", header=False, empty=False)) def test_m_matrix_named(): e2 = Matrix([[x, 2*y, pi*z]]) name_expr = ("test", Equality(MatrixSymbol('myout1', 1, 3), e2)) result = codegen(name_expr, "Octave", header=False, empty=False) assert result[0][0] == "test.m" source = result[0][1] expected = ( "function myout1 = test(x, y, z)\n" " myout1 = [x 2*y pi*z];\n" "end\n" ) assert source == expected def test_m_matrix_named_matsym(): myout1 = MatrixSymbol('myout1', 1, 3) e2 = Matrix([[x, 2*y, pi*z]]) name_expr = ("test", Equality(myout1, e2, evaluate=False)) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function myout1 = test(x, y, z)\n" " myout1 = [x 2*y pi*z];\n" "end\n" ) assert source == expected def test_m_matrix_output_autoname(): expr = Matrix([[x, x+y, 3]]) name_expr = ("test", expr) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function out1 = test(x, y)\n" " out1 = [x x + y 3];\n" "end\n" ) assert source == expected def test_m_matrix_output_autoname_2(): e1 = (x + y) e2 = Matrix([[2*x, 2*y, 2*z]]) e3 = Matrix([[x], [y], [z]]) e4 = Matrix([[x, y], [z, 16]]) name_expr = ("test", (e1, e2, e3, e4)) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [out1, out2, out3, out4] = test(x, y, z)\n" " out1 = x + y;\n" " out2 = [2*x 2*y 2*z];\n" " out3 = [x; y; z];\n" " out4 = [x y; z 16];\n" "end\n" ) assert source == expected def test_m_results_matrix_named_ordered(): B, C = symbols('B,C') A = MatrixSymbol('A', 1, 3) expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, Matrix([[1, 2, x]])) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result, = codegen(name_expr, "Octave", header=False, empty=False, argument_sequence=(x, z, y)) source = result[1] expected = ( "function [C, A, B] = test(x, z, y)\n" " C = z.*(x + y);\n" " A = [1 2 x];\n" " B = 2*x;\n" "end\n" ) assert source == expected def test_m_matrixsymbol_slice(): A = MatrixSymbol('A', 2, 3) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 1, 3) D = MatrixSymbol('D', 2, 1) name_expr = ("test", [Equality(B, A[0, :]), Equality(C, A[1, :]), Equality(D, A[:, 2])]) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [B, C, D] = test(A)\n" " B = A(1, :);\n" " C = A(2, :);\n" " D = A(:, 3);\n" "end\n" ) assert source == expected def test_m_matrixsymbol_slice2(): A = MatrixSymbol('A', 3, 4) B = MatrixSymbol('B', 2, 2) C = MatrixSymbol('C', 2, 2) name_expr = ("test", [Equality(B, A[0:2, 0:2]), Equality(C, A[0:2, 1:3])]) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [B, C] = test(A)\n" " B = A(1:2, 1:2);\n" " C = A(1:2, 2:3);\n" "end\n" ) assert source == expected def test_m_matrixsymbol_slice3(): A = MatrixSymbol('A', 8, 7) B = MatrixSymbol('B', 2, 2) C = MatrixSymbol('C', 4, 2) name_expr = ("test", [Equality(B, A[6:, 1::3]), Equality(C, A[::2, ::3])]) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [B, C] = test(A)\n" " B = A(7:end, 2:3:end);\n" " C = A(1:2:end, 1:3:end);\n" "end\n" ) assert source == expected def test_m_matrixsymbol_slice_autoname(): A = MatrixSymbol('A', 2, 3) B = MatrixSymbol('B', 1, 3) name_expr = ("test", [Equality(B, A[0,:]), A[1,:], A[:,0], A[:,1]]) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [B, out2, out3, out4] = test(A)\n" " B = A(1, :);\n" " out2 = A(2, :);\n" " out3 = A(:, 1);\n" " out4 = A(:, 2);\n" "end\n" ) assert source == expected def test_m_loops(): # Note: an Octave programmer would probably vectorize this across one or # more dimensions. Also, size(A) would be used rather than passing in m # and n. Perhaps users would expect us to vectorize automatically here? # Or is it possible to represent such things using IndexedBase? from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) result, = codegen(('mat_vec_mult', Eq(y[i], A[i, j]*x[j])), "Octave", header=False, empty=False) source = result[1] expected = ( 'function y = mat_vec_mult(A, m, n, x)\n' ' for i = 1:m\n' ' y(i) = 0;\n' ' end\n' ' for i = 1:m\n' ' for j = 1:n\n' ' y(i) = %(rhs)s + y(i);\n' ' end\n' ' end\n' 'end\n' ) assert (source == expected % {'rhs': 'A(%s, %s).*x(j)' % (i, j)} or source == expected % {'rhs': 'x(j).*A(%s, %s)' % (i, j)}) def test_m_tensor_loops_multiple_contractions(): # see comments in previous test about vectorizing from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) A = IndexedBase('A') B = IndexedBase('B') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) result, = codegen(('tensorthing', Eq(y[i], B[j, k, l]*A[i, j, k, l])), "Octave", header=False, empty=False) source = result[1] expected = ( 'function y = tensorthing(A, B, m, n, o, p)\n' ' for i = 1:m\n' ' y(i) = 0;\n' ' end\n' ' for i = 1:m\n' ' for j = 1:n\n' ' for k = 1:o\n' ' for l = 1:p\n' ' y(i) = A(i, j, k, l).*B(j, k, l) + y(i);\n' ' end\n' ' end\n' ' end\n' ' end\n' 'end\n' ) assert source == expected def test_m_InOutArgument(): expr = Equality(x, x**2) name_expr = ("mysqr", expr) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function x = mysqr(x)\n" " x = x.^2;\n" "end\n" ) assert source == expected def test_m_InOutArgument_order(): # can specify the order as (x, y) expr = Equality(x, x**2 + y) name_expr = ("test", expr) result, = codegen(name_expr, "Octave", header=False, empty=False, argument_sequence=(x,y)) source = result[1] expected = ( "function x = test(x, y)\n" " x = x.^2 + y;\n" "end\n" ) assert source == expected # make sure it gives (x, y) not (y, x) expr = Equality(x, x**2 + y) name_expr = ("test", expr) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function x = test(x, y)\n" " x = x.^2 + y;\n" "end\n" ) assert source == expected def test_m_not_supported(): f = Function('f') name_expr = ("test", [f(x).diff(x), S.ComplexInfinity]) result, = codegen(name_expr, "Octave", header=False, empty=False) source = result[1] expected = ( "function [out1, out2] = test(x)\n" " % unsupported: Derivative(f(x), x)\n" " % unsupported: zoo\n" " out1 = Derivative(f(x), x);\n" " out2 = zoo;\n" "end\n" ) assert source == expected def test_global_vars_octave(): x, y, z, t = symbols("x y z t") result = codegen(('f', x*y), "Octave", header=False, empty=False, global_vars=(y,)) source = result[0][1] expected = ( "function out1 = f(x)\n" " global y\n" " out1 = x.*y;\n" "end\n" ) assert source == expected result = codegen(('f', x*y+z), "Octave", header=False, empty=False, argument_sequence=(x, y), global_vars=(z, t)) source = result[0][1] expected = ( "function out1 = f(x, y)\n" " global t z\n" " out1 = x.*y + z;\n" "end\n" ) assert source == expected
d0784fca5d0a30b31280f55c6a680bd312ca5da3b7abc3d411c85a4c1466bb3b
import sys import inspect import copy import pickle from sympy.physics.units import meter from sympy.utilities.pytest import XFAIL from sympy.core.basic import Atom, Basic from sympy.core.core import BasicMeta from sympy.core.singleton import SingletonRegistry from sympy.core.symbol import Dummy, Symbol, Wild from sympy.core.numbers import (E, I, pi, oo, zoo, nan, Integer, Rational, Float) from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational, StrictGreaterThan, StrictLessThan, Unequality) from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.function import Derivative, Function, FunctionClass, Lambda, \ WildFunction from sympy.sets.sets import Interval from sympy.core.multidimensional import vectorize from sympy.core.compatibility import HAS_GMPY from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy import symbols, S from sympy.external import import_module cloudpickle = import_module('cloudpickle') excluded_attrs = set([ '_assumptions', # This is a local cache that isn't automatically filled on creation '_mhash', # Cached after __hash__ is called but set to None after creation 'message', # This is an exception attribute that is present but deprecated in Py2 (can be removed when Py2 support is dropped 'is_EmptySet', # Deprecated from SymPy 1.5. This can be removed when is_EmptySet is removed. ]) def check(a, exclude=[], check_attr=True): """ Check that pickling and copying round-trips. """ protocols = [0, 1, 2, copy.copy, copy.deepcopy] # Python 2.x doesn't support the third pickling protocol if sys.version_info >= (3,): protocols.extend([3, 4]) if cloudpickle: protocols.extend([cloudpickle]) for protocol in protocols: if protocol in exclude: continue if callable(protocol): if isinstance(a, BasicMeta): # Classes can't be copied, but that's okay. continue b = protocol(a) elif inspect.ismodule(protocol): b = protocol.loads(protocol.dumps(a)) else: b = pickle.loads(pickle.dumps(a, protocol)) d1 = dir(a) d2 = dir(b) assert set(d1) == set(d2) if not check_attr: continue def c(a, b, d): for i in d: if i in excluded_attrs: continue if not hasattr(a, i): continue attr = getattr(a, i) if not hasattr(attr, "__call__"): assert hasattr(b, i), i assert getattr(b, i) == attr, "%s != %s, protocol: %s" % (getattr(b, i), attr, protocol) c(a, b, d1) c(b, a, d2) #================== core ========================= def test_core_basic(): for c in (Atom, Atom(), Basic, Basic(), # XXX: dynamically created types are not picklable # BasicMeta, BasicMeta("test", (), {}), SingletonRegistry, S): check(c) def test_core_symbol(): # make the Symbol a unique name that doesn't class with any other # testing variable in this file since after this test the symbol # having the same name will be cached as noncommutative for c in (Dummy, Dummy("x", commutative=False), Symbol, Symbol("_issue_3130", commutative=False), Wild, Wild("x")): check(c) def test_core_numbers(): for c in (Integer(2), Rational(2, 3), Float("1.2")): check(c) def test_core_float_copy(): # See gh-7457 y = Symbol("x") + 1.0 check(y) # does not raise TypeError ("argument is not an mpz") def test_core_relational(): x = Symbol("x") y = Symbol("y") for c in (Equality, Equality(x, y), GreaterThan, GreaterThan(x, y), LessThan, LessThan(x, y), Relational, Relational(x, y), StrictGreaterThan, StrictGreaterThan(x, y), StrictLessThan, StrictLessThan(x, y), Unequality, Unequality(x, y)): check(c) def test_core_add(): x = Symbol("x") for c in (Add, Add(x, 4)): check(c) def test_core_mul(): x = Symbol("x") for c in (Mul, Mul(x, 4)): check(c) def test_core_power(): x = Symbol("x") for c in (Pow, Pow(x, 4)): check(c) def test_core_function(): x = Symbol("x") for f in (Derivative, Derivative(x), Function, FunctionClass, Lambda, WildFunction): check(f) def test_core_undefinedfunctions(): f = Function("f") # Full XFAILed test below exclude = list(range(5)) # https://github.com/cloudpipe/cloudpickle/issues/65 # https://github.com/cloudpipe/cloudpickle/issues/190 exclude.append(cloudpickle) check(f, exclude=exclude) @XFAIL def test_core_undefinedfunctions_fail(): # This fails because f is assumed to be a class at sympy.basic.function.f f = Function("f") check(f) def test_core_interval(): for c in (Interval, Interval(0, 2)): check(c) def test_core_multidimensional(): for c in (vectorize, vectorize(0)): check(c) def test_Singletons(): protocols = [0, 1, 2] if sys.version_info >= (3,): protocols.extend([3, 4]) copiers = [copy.copy, copy.deepcopy] copiers += [lambda x: pickle.loads(pickle.dumps(x, proto)) for proto in protocols] if cloudpickle: copiers += [lambda x: cloudpickle.loads(cloudpickle.dumps(x))] for obj in (Integer(-1), Integer(0), Integer(1), Rational(1, 2), pi, E, I, oo, -oo, zoo, nan, S.GoldenRatio, S.TribonacciConstant, S.EulerGamma, S.Catalan, S.EmptySet, S.IdentityFunction): for func in copiers: assert func(obj) is obj #================== functions =================== from sympy.functions import (Piecewise, lowergamma, acosh, chebyshevu, chebyshevt, ln, chebyshevt_root, legendre, Heaviside, bernoulli, coth, tanh, assoc_legendre, sign, arg, asin, DiracDelta, re, rf, Abs, uppergamma, binomial, sinh, cos, cot, acos, acot, gamma, bell, hermite, harmonic, LambertW, zeta, log, factorial, asinh, acoth, cosh, dirichlet_eta, Eijk, loggamma, erf, ceiling, im, fibonacci, tribonacci, conjugate, tan, chebyshevu_root, floor, atanh, sqrt, sin, atan, ff, lucas, atan2, polygamma, exp) def test_functions(): one_var = (acosh, ln, Heaviside, factorial, bernoulli, coth, tanh, sign, arg, asin, DiracDelta, re, Abs, sinh, cos, cot, acos, acot, gamma, bell, harmonic, LambertW, zeta, log, factorial, asinh, acoth, cosh, dirichlet_eta, loggamma, erf, ceiling, im, fibonacci, tribonacci, conjugate, tan, floor, atanh, sin, atan, lucas, exp) two_var = (rf, ff, lowergamma, chebyshevu, chebyshevt, binomial, atan2, polygamma, hermite, legendre, uppergamma) x, y, z = symbols("x,y,z") others = (chebyshevt_root, chebyshevu_root, Eijk(x, y, z), Piecewise( (0, x < -1), (x**2, x <= 1), (x**3, True)), assoc_legendre) for cls in one_var: check(cls) c = cls(x) check(c) for cls in two_var: check(cls) c = cls(x, y) check(c) for cls in others: check(cls) #================== geometry ==================== from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point from sympy.geometry.ellipse import Circle, Ellipse from sympy.geometry.line import Line, LinearEntity, Ray, Segment from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle def test_geometry(): p1 = Point(1, 2) p2 = Point(2, 3) p3 = Point(0, 0) p4 = Point(0, 1) for c in ( GeometryEntity, GeometryEntity(), Point, p1, Circle, Circle(p1, 2), Ellipse, Ellipse(p1, 3, 4), Line, Line(p1, p2), LinearEntity, LinearEntity(p1, p2), Ray, Ray(p1, p2), Segment, Segment(p1, p2), Polygon, Polygon(p1, p2, p3, p4), RegularPolygon, RegularPolygon(p1, 4, 5), Triangle, Triangle(p1, p2, p3)): check(c, check_attr=False) #================== integrals ==================== from sympy.integrals.integrals import Integral def test_integrals(): x = Symbol("x") for c in (Integral, Integral(x)): check(c) #==================== logic ===================== from sympy.core.logic import Logic def test_logic(): for c in (Logic, Logic(1)): check(c) #================== matrices ==================== from sympy.matrices import Matrix, SparseMatrix def test_matrices(): for c in (Matrix, Matrix([1, 2, 3]), SparseMatrix, SparseMatrix([[1, 2], [3, 4]])): check(c) #================== ntheory ===================== from sympy.ntheory.generate import Sieve def test_ntheory(): for c in (Sieve, Sieve()): check(c) #================== physics ===================== from sympy.physics.paulialgebra import Pauli from sympy.physics.units import Unit def test_physics(): for c in (Unit, meter, Pauli, Pauli(1)): check(c) #================== plotting ==================== # XXX: These tests are not complete, so XFAIL them @XFAIL def test_plotting(): from sympy.plotting.color_scheme import ColorGradient, ColorScheme from sympy.plotting.managed_window import ManagedWindow from sympy.plotting.plot import Plot, ScreenShot from sympy.plotting.plot_axes import PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate from sympy.plotting.plot_camera import PlotCamera from sympy.plotting.plot_controller import PlotController from sympy.plotting.plot_curve import PlotCurve from sympy.plotting.plot_interval import PlotInterval from sympy.plotting.plot_mode import PlotMode from sympy.plotting.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \ ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical from sympy.plotting.plot_object import PlotObject from sympy.plotting.plot_surface import PlotSurface from sympy.plotting.plot_window import PlotWindow for c in ( ColorGradient, ColorGradient(0.2, 0.4), ColorScheme, ManagedWindow, ManagedWindow, Plot, ScreenShot, PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate, PlotCamera, PlotController, PlotCurve, PlotInterval, PlotMode, Cartesian2D, Cartesian3D, Cylindrical, ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical, PlotObject, PlotSurface, PlotWindow): check(c) @XFAIL def test_plotting2(): #from sympy.plotting.color_scheme import ColorGradient from sympy.plotting.color_scheme import ColorScheme #from sympy.plotting.managed_window import ManagedWindow from sympy.plotting.plot import Plot #from sympy.plotting.plot import ScreenShot from sympy.plotting.plot_axes import PlotAxes #from sympy.plotting.plot_axes import PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate #from sympy.plotting.plot_camera import PlotCamera #from sympy.plotting.plot_controller import PlotController #from sympy.plotting.plot_curve import PlotCurve #from sympy.plotting.plot_interval import PlotInterval #from sympy.plotting.plot_mode import PlotMode #from sympy.plotting.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \ # ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical #from sympy.plotting.plot_object import PlotObject #from sympy.plotting.plot_surface import PlotSurface # from sympy.plotting.plot_window import PlotWindow check(ColorScheme("rainbow")) check(Plot(1, visible=False)) check(PlotAxes()) #================== polys ======================= from sympy import Poly, ZZ, QQ, lex def test_pickling_polys_polytools(): from sympy.polys.polytools import PurePoly # from sympy.polys.polytools import GroebnerBasis x = Symbol('x') for c in (Poly, Poly(x, x)): check(c) for c in (PurePoly, PurePoly(x)): check(c) # TODO: fix pickling of Options class (see GroebnerBasis._options) # for c in (GroebnerBasis, GroebnerBasis([x**2 - 1], x, order=lex)): # check(c) def test_pickling_polys_polyclasses(): from sympy.polys.polyclasses import DMP, DMF, ANP for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)): check(c) for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)): check(c) for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)): check(c) @XFAIL def test_pickling_polys_rings(): # NOTE: can't use protocols < 2 because we have to execute __new__ to # make sure caching of rings works properly. from sympy.polys.rings import PolyRing ring = PolyRing("x,y,z", ZZ, lex) for c in (PolyRing, ring): check(c, exclude=[0, 1]) for c in (ring.dtype, ring.one): check(c, exclude=[0, 1], check_attr=False) # TODO: Py3k def test_pickling_polys_fields(): pass # NOTE: can't use protocols < 2 because we have to execute __new__ to # make sure caching of fields works properly. # from sympy.polys.fields import FracField # field = FracField("x,y,z", ZZ, lex) # TODO: AssertionError: assert id(obj) not in self.memo # for c in (FracField, field): # check(c, exclude=[0, 1]) # TODO: AssertionError: assert id(obj) not in self.memo # for c in (field.dtype, field.one): # check(c, exclude=[0, 1]) def test_pickling_polys_elements(): from sympy.polys.domains.pythonrational import PythonRational #from sympy.polys.domains.pythonfinitefield import PythonFiniteField #from sympy.polys.domains.mpelements import MPContext for c in (PythonRational, PythonRational(1, 7)): check(c) #gf = PythonFiniteField(17) # TODO: fix pickling of ModularInteger # for c in (gf.dtype, gf(5)): # check(c) #mp = MPContext() # TODO: fix pickling of RealElement # for c in (mp.mpf, mp.mpf(1.0)): # check(c) # TODO: fix pickling of ComplexElement # for c in (mp.mpc, mp.mpc(1.0, -1.5)): # check(c) def test_pickling_polys_domains(): # from sympy.polys.domains.pythonfinitefield import PythonFiniteField from sympy.polys.domains.pythonintegerring import PythonIntegerRing from sympy.polys.domains.pythonrationalfield import PythonRationalField # TODO: fix pickling of ModularInteger # for c in (PythonFiniteField, PythonFiniteField(17)): # check(c) for c in (PythonIntegerRing, PythonIntegerRing()): check(c, check_attr=False) for c in (PythonRationalField, PythonRationalField()): check(c, check_attr=False) if HAS_GMPY: # from sympy.polys.domains.gmpyfinitefield import GMPYFiniteField from sympy.polys.domains.gmpyintegerring import GMPYIntegerRing from sympy.polys.domains.gmpyrationalfield import GMPYRationalField # TODO: fix pickling of ModularInteger # for c in (GMPYFiniteField, GMPYFiniteField(17)): # check(c) for c in (GMPYIntegerRing, GMPYIntegerRing()): check(c, check_attr=False) for c in (GMPYRationalField, GMPYRationalField()): check(c, check_attr=False) #from sympy.polys.domains.realfield import RealField #from sympy.polys.domains.complexfield import ComplexField from sympy.polys.domains.algebraicfield import AlgebraicField #from sympy.polys.domains.polynomialring import PolynomialRing #from sympy.polys.domains.fractionfield import FractionField from sympy.polys.domains.expressiondomain import ExpressionDomain # TODO: fix pickling of RealElement # for c in (RealField, RealField(100)): # check(c) # TODO: fix pickling of ComplexElement # for c in (ComplexField, ComplexField(100)): # check(c) for c in (AlgebraicField, AlgebraicField(QQ, sqrt(3))): check(c, check_attr=False) # TODO: AssertionError # for c in (PolynomialRing, PolynomialRing(ZZ, "x,y,z")): # check(c) # TODO: AttributeError: 'PolyElement' object has no attribute 'ring' # for c in (FractionField, FractionField(ZZ, "x,y,z")): # check(c) for c in (ExpressionDomain, ExpressionDomain()): check(c, check_attr=False) def test_pickling_polys_numberfields(): from sympy.polys.numberfields import AlgebraicNumber for c in (AlgebraicNumber, AlgebraicNumber(sqrt(3))): check(c, check_attr=False) def test_pickling_polys_orderings(): from sympy.polys.orderings import (LexOrder, GradedLexOrder, ReversedGradedLexOrder, InverseOrder) # from sympy.polys.orderings import ProductOrder for c in (LexOrder, LexOrder()): check(c) for c in (GradedLexOrder, GradedLexOrder()): check(c) for c in (ReversedGradedLexOrder, ReversedGradedLexOrder()): check(c) # TODO: Argh, Python is so naive. No lambdas nor inner function support in # pickling module. Maybe someone could figure out what to do with this. # # for c in (ProductOrder, ProductOrder((LexOrder(), lambda m: m[:2]), # (GradedLexOrder(), lambda m: m[2:]))): # check(c) for c in (InverseOrder, InverseOrder(LexOrder())): check(c) def test_pickling_polys_monomials(): from sympy.polys.monomials import MonomialOps, Monomial x, y, z = symbols("x,y,z") for c in (MonomialOps, MonomialOps(3)): check(c) for c in (Monomial, Monomial((1, 2, 3), (x, y, z))): check(c) def test_pickling_polys_errors(): from sympy.polys.polyerrors import (HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors, EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible, NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError, GeneratorsNeeded, UnivariatePolynomialError, MultivariatePolynomialError, OptionError, FlagError) # from sympy.polys.polyerrors import (ExactQuotientFailed, # OperationNotSupported, ComputationFailed, PolificationFailed) # x = Symbol('x') # TODO: TypeError: __init__() takes at least 3 arguments (1 given) # for c in (ExactQuotientFailed, ExactQuotientFailed(x, 3*x, ZZ)): # check(c) # TODO: TypeError: can't pickle instancemethod objects # for c in (OperationNotSupported, OperationNotSupported(Poly(x), Poly.gcd)): # check(c) for c in (HeuristicGCDFailed, HeuristicGCDFailed()): check(c) for c in (HomomorphismFailed, HomomorphismFailed()): check(c) for c in (IsomorphismFailed, IsomorphismFailed()): check(c) for c in (ExtraneousFactors, ExtraneousFactors()): check(c) for c in (EvaluationFailed, EvaluationFailed()): check(c) for c in (RefinementFailed, RefinementFailed()): check(c) for c in (CoercionFailed, CoercionFailed()): check(c) for c in (NotInvertible, NotInvertible()): check(c) for c in (NotReversible, NotReversible()): check(c) for c in (NotAlgebraic, NotAlgebraic()): check(c) for c in (DomainError, DomainError()): check(c) for c in (PolynomialError, PolynomialError()): check(c) for c in (UnificationFailed, UnificationFailed()): check(c) for c in (GeneratorsError, GeneratorsError()): check(c) for c in (GeneratorsNeeded, GeneratorsNeeded()): check(c) # TODO: PicklingError: Can't pickle <function <lambda> at 0x38578c0>: it's not found as __main__.<lambda> # for c in (ComputationFailed, ComputationFailed(lambda t: t, 3, None)): # check(c) for c in (UnivariatePolynomialError, UnivariatePolynomialError()): check(c) for c in (MultivariatePolynomialError, MultivariatePolynomialError()): check(c) # TODO: TypeError: __init__() takes at least 3 arguments (1 given) # for c in (PolificationFailed, PolificationFailed({}, x, x, False)): # check(c) for c in (OptionError, OptionError()): check(c) for c in (FlagError, FlagError()): check(c) #def test_pickling_polys_options(): #from sympy.polys.polyoptions import Options # TODO: fix pickling of `symbols' flag # for c in (Options, Options((), dict(domain='ZZ', polys=False))): # check(c) # TODO: def test_pickling_polys_rootisolation(): # RealInterval # ComplexInterval def test_pickling_polys_rootoftools(): from sympy.polys.rootoftools import CRootOf, RootSum x = Symbol('x') f = x**3 + x + 3 for c in (CRootOf, CRootOf(f, 0)): check(c) for c in (RootSum, RootSum(f, exp)): check(c) #================== printing ==================== from sympy.printing.latex import LatexPrinter from sympy.printing.mathml import MathMLContentPrinter, MathMLPresentationPrinter from sympy.printing.pretty.pretty import PrettyPrinter from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.printer import Printer from sympy.printing.python import PythonPrinter def test_printing(): for c in (LatexPrinter, LatexPrinter(), MathMLContentPrinter, MathMLPresentationPrinter, PrettyPrinter, prettyForm, stringPict, stringPict("a"), Printer, Printer(), PythonPrinter, PythonPrinter()): check(c) @XFAIL def test_printing1(): check(MathMLContentPrinter()) @XFAIL def test_printing2(): check(MathMLPresentationPrinter()) @XFAIL def test_printing3(): check(PrettyPrinter()) #================== series ====================== from sympy.series.limits import Limit from sympy.series.order import Order def test_series(): e = Symbol("e") x = Symbol("x") for c in (Limit, Limit(e, x, 1), Order, Order(e)): check(c) #================== concrete ================== from sympy.concrete.products import Product from sympy.concrete.summations import Sum def test_concrete(): x = Symbol("x") for c in (Product, Product(x, (x, 2, 4)), Sum, Sum(x, (x, 2, 4))): check(c) def test_deprecation_warning(): w = SymPyDeprecationWarning('value', 'feature', issue=12345, deprecated_since_version='1.0') check(w)
2762cb345597f3f9182847fef39297d4f26ffb55305b769e7c80d992cebb22ea
"""Tests for simple tools for timing functions' execution. """ from sympy.utilities.timeutils import timed def test_timed(): result = timed(lambda: 1 + 1, limit=100000) assert result[0] == 100000 and result[3] == "ns" result = timed("1 + 1", limit=100000) assert result[0] == 100000 and result[3] == "ns"
ad3db932cec4689a01b6ced0b0ef8761a369c373b440bedc86da2319a0d1e6c5
from sympy.core import S, symbols, pi, Catalan, EulerGamma, Function from sympy.core.compatibility import StringIO from sympy import Piecewise from sympy import Equality from sympy.utilities.codegen import RustCodeGen, codegen, make_routine from sympy.utilities.pytest import XFAIL import sympy x, y, z = symbols('x,y,z') def test_empty_rust_code(): code_gen = RustCodeGen() output = StringIO() code_gen.dump_rs([], output, "file", header=False, empty=False) source = output.getvalue() assert source == "" def test_simple_rust_code(): name_expr = ("test", (x + y)*z) result, = codegen(name_expr, "Rust", header=False, empty=False) assert result[0] == "test.rs" source = result[1] expected = ( "fn test(x: f64, y: f64, z: f64) -> f64 {\n" " let out1 = z*(x + y);\n" " out1\n" "}\n" ) assert source == expected def test_simple_code_with_header(): name_expr = ("test", (x + y)*z) result, = codegen(name_expr, "Rust", header=True, empty=False) assert result[0] == "test.rs" source = result[1] version_str = "Code generated with sympy %s" % sympy.__version__ version_line = version_str.center(76).rstrip() expected = ( "/*\n" " *%(version_line)s\n" " *\n" " * See http://www.sympy.org/ for more information.\n" " *\n" " * This file is part of 'project'\n" " */\n" "fn test(x: f64, y: f64, z: f64) -> f64 {\n" " let out1 = z*(x + y);\n" " out1\n" "}\n" ) % {'version_line': version_line} assert source == expected def test_simple_code_nameout(): expr = Equality(z, (x + y)) name_expr = ("test", expr) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn test(x: f64, y: f64) -> f64 {\n" " let z = x + y;\n" " z\n" "}\n" ) assert source == expected def test_numbersymbol(): name_expr = ("test", pi**Catalan) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn test() -> f64 {\n" " const Catalan: f64 = %s;\n" " let out1 = PI.powf(Catalan);\n" " out1\n" "}\n" ) % Catalan.evalf(17) assert source == expected @XFAIL def test_numbersymbol_inline(): # FIXME: how to pass inline to the RustCodePrinter? name_expr = ("test", [pi**Catalan, EulerGamma]) result, = codegen(name_expr, "Rust", header=False, empty=False, inline=True) source = result[1] expected = ( "fn test() -> (f64, f64) {\n" " const Catalan: f64 = %s;\n" " const EulerGamma: f64 = %s;\n" " let out1 = PI.powf(Catalan);\n" " let out2 = EulerGamma);\n" " (out1, out2)\n" "}\n" ) % (Catalan.evalf(17), EulerGamma.evalf(17)) assert source == expected def test_argument_order(): expr = x + y routine = make_routine("test", expr, argument_sequence=[z, x, y], language="rust") code_gen = RustCodeGen() output = StringIO() code_gen.dump_rs([routine], output, "test", header=False, empty=False) source = output.getvalue() expected = ( "fn test(z: f64, x: f64, y: f64) -> f64 {\n" " let out1 = x + y;\n" " out1\n" "}\n" ) assert source == expected def test_multiple_results_rust(): # Here the output order is the input order expr1 = (x + y)*z expr2 = (x - y)*z name_expr = ("test", [expr1, expr2]) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn test(x: f64, y: f64, z: f64) -> (f64, f64) {\n" " let out1 = z*(x + y);\n" " let out2 = z*(x - y);\n" " (out1, out2)\n" "}\n" ) assert source == expected def test_results_named_unordered(): # Here output order is based on name_expr A, B, C = symbols('A,B,C') expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, (x - y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn test(x: f64, y: f64, z: f64) -> (f64, f64, f64) {\n" " let C = z*(x + y);\n" " let A = z*(x - y);\n" " let B = 2*x;\n" " (C, A, B)\n" "}\n" ) assert source == expected def test_results_named_ordered(): A, B, C = symbols('A,B,C') expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, (x - y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result = codegen(name_expr, "Rust", header=False, empty=False, argument_sequence=(x, z, y)) assert result[0][0] == "test.rs" source = result[0][1] expected = ( "fn test(x: f64, z: f64, y: f64) -> (f64, f64, f64) {\n" " let C = z*(x + y);\n" " let A = z*(x - y);\n" " let B = 2*x;\n" " (C, A, B)\n" "}\n" ) assert source == expected def test_complicated_rs_codegen(): from sympy import sin, cos, tan name_expr = ("testlong", [ ((sin(x) + cos(y) + tan(z))**3).expand(), cos(cos(cos(cos(cos(cos(cos(cos(x + y + z)))))))) ]) result = codegen(name_expr, "Rust", header=False, empty=False) assert result[0][0] == "testlong.rs" source = result[0][1] expected = ( "fn testlong(x: f64, y: f64, z: f64) -> (f64, f64) {\n" " let out1 = x.sin().powi(3) + 3*x.sin().powi(2)*y.cos()" " + 3*x.sin().powi(2)*z.tan() + 3*x.sin()*y.cos().powi(2)" " + 6*x.sin()*y.cos()*z.tan() + 3*x.sin()*z.tan().powi(2)" " + y.cos().powi(3) + 3*y.cos().powi(2)*z.tan()" " + 3*y.cos()*z.tan().powi(2) + z.tan().powi(3);\n" " let out2 = (x + y + z).cos().cos().cos().cos()" ".cos().cos().cos().cos();\n" " (out1, out2)\n" "}\n" ) assert source == expected def test_output_arg_mixed_unordered(): # named outputs are alphabetical, unnamed output appear in the given order from sympy import sin, cos a = symbols("a") name_expr = ("foo", [cos(2*x), Equality(y, sin(x)), cos(x), Equality(a, sin(2*x))]) result, = codegen(name_expr, "Rust", header=False, empty=False) assert result[0] == "foo.rs" source = result[1]; expected = ( "fn foo(x: f64) -> (f64, f64, f64, f64) {\n" " let out1 = (2*x).cos();\n" " let y = x.sin();\n" " let out3 = x.cos();\n" " let a = (2*x).sin();\n" " (out1, y, out3, a)\n" "}\n" ) assert source == expected def test_piecewise_(): pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True), evaluate=False) name_expr = ("pwtest", pw) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn pwtest(x: f64) -> f64 {\n" " let out1 = if (x < -1) {\n" " 0\n" " } else if (x <= 1) {\n" " x.powi(2)\n" " } else if (x > 1) {\n" " 2 - x\n" " } else {\n" " 1\n" " };\n" " out1\n" "}\n" ) assert source == expected @XFAIL def test_piecewise_inline(): # FIXME: how to pass inline to the RustCodePrinter? pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True)) name_expr = ("pwtest", pw) result, = codegen(name_expr, "Rust", header=False, empty=False, inline=True) source = result[1] expected = ( "fn pwtest(x: f64) -> f64 {\n" " let out1 = if (x < -1) { 0 } else if (x <= 1) { x.powi(2) }" " else if (x > 1) { -x + 2 } else { 1 };\n" " out1\n" "}\n" ) assert source == expected def test_multifcns_per_file(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result = codegen(name_expr, "Rust", header=False, empty=False) assert result[0][0] == "foo.rs" source = result[0][1]; expected = ( "fn foo(x: f64, y: f64) -> (f64, f64) {\n" " let out1 = 2*x;\n" " let out2 = 3*y;\n" " (out1, out2)\n" "}\n" "fn bar(y: f64) -> (f64, f64) {\n" " let out1 = y.powi(2);\n" " let out2 = 4*y;\n" " (out1, out2)\n" "}\n" ) assert source == expected def test_multifcns_per_file_w_header(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result = codegen(name_expr, "Rust", header=True, empty=False) assert result[0][0] == "foo.rs" source = result[0][1]; version_str = "Code generated with sympy %s" % sympy.__version__ version_line = version_str.center(76).rstrip() expected = ( "/*\n" " *%(version_line)s\n" " *\n" " * See http://www.sympy.org/ for more information.\n" " *\n" " * This file is part of 'project'\n" " */\n" "fn foo(x: f64, y: f64) -> (f64, f64) {\n" " let out1 = 2*x;\n" " let out2 = 3*y;\n" " (out1, out2)\n" "}\n" "fn bar(y: f64) -> (f64, f64) {\n" " let out1 = y.powi(2);\n" " let out2 = 4*y;\n" " (out1, out2)\n" "}\n" ) % {'version_line': version_line} assert source == expected def test_filename_match_prefix(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result, = codegen(name_expr, "Rust", prefix="baz", header=False, empty=False) assert result[0] == "baz.rs" def test_InOutArgument(): expr = Equality(x, x**2) name_expr = ("mysqr", expr) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn mysqr(x: f64) -> f64 {\n" " let x = x.powi(2);\n" " x\n" "}\n" ) assert source == expected def test_InOutArgument_order(): # can specify the order as (x, y) expr = Equality(x, x**2 + y) name_expr = ("test", expr) result, = codegen(name_expr, "Rust", header=False, empty=False, argument_sequence=(x,y)) source = result[1] expected = ( "fn test(x: f64, y: f64) -> f64 {\n" " let x = x.powi(2) + y;\n" " x\n" "}\n" ) assert source == expected # make sure it gives (x, y) not (y, x) expr = Equality(x, x**2 + y) name_expr = ("test", expr) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn test(x: f64, y: f64) -> f64 {\n" " let x = x.powi(2) + y;\n" " x\n" "}\n" ) assert source == expected def test_not_supported(): f = Function('f') name_expr = ("test", [f(x).diff(x), S.ComplexInfinity]) result, = codegen(name_expr, "Rust", header=False, empty=False) source = result[1] expected = ( "fn test(x: f64) -> (f64, f64) {\n" " // unsupported: Derivative(f(x), x)\n" " // unsupported: zoo\n" " let out1 = Derivative(f(x), x);\n" " let out2 = zoo;\n" " (out1, out2)\n" "}\n" ) assert source == expected def test_global_vars_rust(): x, y, z, t = symbols("x y z t") result = codegen(('f', x*y), "Rust", header=False, empty=False, global_vars=(y,)) source = result[0][1] expected = ( "fn f(x: f64) -> f64 {\n" " let out1 = x*y;\n" " out1\n" "}\n" ) assert source == expected result = codegen(('f', x*y+z), "Rust", header=False, empty=False, argument_sequence=(x, y), global_vars=(z, t)) source = result[0][1] expected = ( "fn f(x: f64, y: f64) -> f64 {\n" " let out1 = x*y + z;\n" " out1\n" "}\n" ) assert source == expected
4efd336a3d2a48657704eb0d8ee8f1505a6ae7c96995ca0f03122f6392f29086
from sympy.core.compatibility import range, zip_longest from sympy.utilities.enumerative import ( list_visitor, MultisetPartitionTraverser, multiset_partitions_taocp ) from sympy.utilities.iterables import _set_partitions # first some functions only useful as test scaffolding - these provide # straightforward, but slow reference implementations against which to # compare the real versions, and also a comparison to verify that # different versions are giving identical results. def part_range_filter(partition_iterator, lb, ub): """ Filters (on the number of parts) a multiset partition enumeration Arguments ========= lb, and ub are a range (in the python slice sense) on the lpart variable returned from a multiset partition enumeration. Recall that lpart is 0-based (it points to the topmost part on the part stack), so if you want to return parts of sizes 2,3,4,5 you would use lb=1 and ub=5. """ for state in partition_iterator: f, lpart, pstack = state if lpart >= lb and lpart < ub: yield state def multiset_partitions_baseline(multiplicities, components): """Enumerates partitions of a multiset Parameters ========== multiplicities list of integer multiplicities of the components of the multiset. components the components (elements) themselves Returns ======= Set of partitions. Each partition is tuple of parts, and each part is a tuple of components (with repeats to indicate multiplicity) Notes ===== Multiset partitions can be created as equivalence classes of set partitions, and this function does just that. This approach is slow and memory intensive compared to the more advanced algorithms available, but the code is simple and easy to understand. Hence this routine is strictly for testing -- to provide a straightforward baseline against which to regress the production versions. (This code is a simplified version of an earlier production implementation.) """ canon = [] # list of components with repeats for ct, elem in zip(multiplicities, components): canon.extend([elem]*ct) # accumulate the multiset partitions in a set to eliminate dups cache = set() n = len(canon) for nc, q in _set_partitions(n): rv = [[] for i in range(nc)] for i in range(n): rv[q[i]].append(canon[i]) canonical = tuple( sorted([tuple(p) for p in rv])) cache.add(canonical) return cache def compare_multiset_w_baseline(multiplicities): """ Enumerates the partitions of multiset with AOCP algorithm and baseline implementation, and compare the results. """ letters = "abcdefghijklmnopqrstuvwxyz" bl_partitions = multiset_partitions_baseline(multiplicities, letters) # The partitions returned by the different algorithms may have # their parts in different orders. Also, they generate partitions # in different orders. Hence the sorting, and set comparison. aocp_partitions = set() for state in multiset_partitions_taocp(multiplicities): p1 = tuple(sorted( [tuple(p) for p in list_visitor(state, letters)])) aocp_partitions.add(p1) assert bl_partitions == aocp_partitions def compare_multiset_states(s1, s2): """compare for equality two instances of multiset partition states This is useful for comparing different versions of the algorithm to verify correctness.""" # Comparison is physical, the only use of semantics is to ignore # trash off the top of the stack. f1, lpart1, pstack1 = s1 f2, lpart2, pstack2 = s2 if (lpart1 == lpart2) and (f1[0:lpart1+1] == f2[0:lpart2+1]): if pstack1[0:f1[lpart1+1]] == pstack2[0:f2[lpart2+1]]: return True return False def test_multiset_partitions_taocp(): """Compares the output of multiset_partitions_taocp with a baseline (set partition based) implementation.""" # Test cases should not be too large, since the baseline # implementation is fairly slow. multiplicities = [2,2] compare_multiset_w_baseline(multiplicities) multiplicities = [4,3,1] compare_multiset_w_baseline(multiplicities) def test_multiset_partitions_versions(): """Compares Knuth-based versions of multiset_partitions""" multiplicities = [5,2,2,1] m = MultisetPartitionTraverser() for s1, s2 in zip_longest(m.enum_all(multiplicities), multiset_partitions_taocp(multiplicities)): assert compare_multiset_states(s1, s2) def subrange_exercise(mult, lb, ub): """Compare filter-based and more optimized subrange implementations Helper for tests, called with both small and larger multisets. """ m = MultisetPartitionTraverser() assert m.count_partitions(mult) == \ m.count_partitions_slow(mult) # Note - multiple traversals from the same # MultisetPartitionTraverser object cannot execute at the same # time, hence make several instances here. ma = MultisetPartitionTraverser() mc = MultisetPartitionTraverser() md = MultisetPartitionTraverser() # Several paths to compute just the size two partitions a_it = ma.enum_range(mult, lb, ub) b_it = part_range_filter(multiset_partitions_taocp(mult), lb, ub) c_it = part_range_filter(mc.enum_small(mult, ub), lb, sum(mult)) d_it = part_range_filter(md.enum_large(mult, lb), 0, ub) for sa, sb, sc, sd in zip_longest(a_it, b_it, c_it, d_it): assert compare_multiset_states(sa, sb) assert compare_multiset_states(sa, sc) assert compare_multiset_states(sa, sd) def test_subrange(): # Quick, but doesn't hit some of the corner cases mult = [4,4,2,1] # mississippi lb = 1 ub = 2 subrange_exercise(mult, lb, ub) def test_subrange_large(): # takes a second or so, depending on cpu, Python version, etc. mult = [6,3,2,1] lb = 4 ub = 7 subrange_exercise(mult, lb, ub)
a2912cd7ead75fc26f3c978b6fa299c7aee31c103666c436470ee13e81a27468
from distutils.version import LooseVersion as V from itertools import product import math import inspect import mpmath from sympy.utilities.pytest import raises from sympy import ( symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational, Float, Matrix, Lambda, Piecewise, exp, E, Integral, oo, I, Abs, Function, true, false, And, Or, Not, ITE, Min, Max, floor, diff, IndexedBase, Sum, DotProduct, Eq, Dummy, sinc, erf, erfc, factorial, gamma, loggamma, digamma, RisingFactorial, besselj, bessely, besseli, besselk, S, beta, MatrixSymbol, fresnelc, fresnels) from sympy.functions.elementary.complexes import re, im, Abs, arg from sympy.functions.special.polynomials import \ chebyshevt, chebyshevu, legendre, hermite, laguerre, gegenbauer, \ assoc_legendre, assoc_laguerre, jacobi from sympy.printing.lambdarepr import LambdaPrinter from sympy.printing.pycode import NumPyPrinter from sympy.utilities.lambdify import implemented_function, lambdastr from sympy.utilities.pytest import skip from sympy.utilities.decorator import conserve_mpmath_dps from sympy.external import import_module from sympy.functions.special.gamma_functions import uppergamma, lowergamma import sympy MutableDenseMatrix = Matrix numpy = import_module('numpy') scipy = import_module('scipy') numexpr = import_module('numexpr') tensorflow = import_module('tensorflow') if tensorflow: # Hide Tensorflow warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' w, x, y, z = symbols('w,x,y,z') #================== Test different arguments ======================= def test_no_args(): f = lambdify([], 1) raises(TypeError, lambda: f(-1)) assert f() == 1 def test_single_arg(): f = lambdify(x, 2*x) assert f(1) == 2 def test_list_args(): f = lambdify([x, y], x + y) assert f(1, 2) == 3 def test_nested_args(): f1 = lambdify([[w, x]], [w, x]) assert f1([91, 2]) == [91, 2] raises(TypeError, lambda: f1(1, 2)) f2 = lambdify([(w, x), (y, z)], [w, x, y, z]) assert f2((18, 12), (73, 4)) == [18, 12, 73, 4] raises(TypeError, lambda: f2(3, 4)) f3 = lambdify([w, [[[x]], y], z], [w, x, y, z]) assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44] def test_str_args(): f = lambdify('x,y,z', 'z,y,x') assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_own_namespace_1(): myfunc = lambda x: 1 f = lambdify(x, sin(x), {"sin": myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_namespace_2(): def myfunc(x): return 1 f = lambdify(x, sin(x), {'sin': myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_module(): f = lambdify(x, sin(x), math) assert f(0) == 0.0 def test_bad_args(): # no vargs given raises(TypeError, lambda: lambdify(1)) # same with vector exprs raises(TypeError, lambda: lambdify([1, 2])) def test_atoms(): # Non-Symbol atoms should not be pulled out from the expression namespace f = lambdify(x, pi + x, {"pi": 3.14}) assert f(0) == 3.14 f = lambdify(x, I + x, {"I": 1j}) assert f(1) == 1 + 1j #================== Test different modules ========================= # high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted @conserve_mpmath_dps def test_sympy_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "sympy") assert f(x) == sin(x) prec = 1e-15 assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec # arctan is in numpy module and should not be available # The arctan below gives NameError. What is this supposed to test? # raises(NameError, lambda: lambdify(x, arctan(x), "sympy")) @conserve_mpmath_dps def test_math_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "math") prec = 1e-15 assert -prec < f(0.2) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a python math function @conserve_mpmath_dps def test_mpmath_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a mpmath function @conserve_mpmath_dps def test_number_precision(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin02, "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(0) - sin02 < prec @conserve_mpmath_dps def test_mpmath_precision(): mpmath.mp.dps = 100 assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100)) #================== Test Translations ============================== # We can only check if all translated functions are valid. It has to be checked # by hand if they are complete. def test_math_transl(): from sympy.utilities.lambdify import MATH_TRANSLATIONS for sym, mat in MATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert mat in math.__dict__ def test_mpmath_transl(): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS for sym, mat in MPMATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ or sym == 'Matrix' assert mat in mpmath.__dict__ def test_numpy_transl(): if not numpy: skip("numpy not installed.") from sympy.utilities.lambdify import NUMPY_TRANSLATIONS for sym, nump in NUMPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert nump in numpy.__dict__ def test_scipy_transl(): if not scipy: skip("scipy not installed.") from sympy.utilities.lambdify import SCIPY_TRANSLATIONS for sym, scip in SCIPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert scip in scipy.__dict__ or scip in scipy.special.__dict__ def test_numpy_translation_abs(): if not numpy: skip("numpy not installed.") f = lambdify(x, Abs(x), "numpy") assert f(-1) == 1 assert f(1) == 1 def test_numexpr_printer(): if not numexpr: skip("numexpr not installed.") # if translation/printing is done incorrectly then evaluating # a lambdified numexpr expression will throw an exception from sympy.printing.lambdarepr import NumExprPrinter blacklist = ('where', 'complex', 'contains') arg_tuple = (x, y, z) # some functions take more than one argument for sym in NumExprPrinter._numexpr_functions.keys(): if sym in blacklist: continue ssym = S(sym) if hasattr(ssym, '_nargs'): nargs = ssym._nargs[0] else: nargs = 1 args = arg_tuple[:nargs] f = lambdify(args, ssym(*args), modules='numexpr') assert f(*(1, )*nargs) is not None def test_issue_9334(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") expr = S('b*a - sqrt(a**2)') a, b = sorted(expr.free_symbols, key=lambda s: s.name) func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False) foo, bar = numpy.random.random((2, 4)) func_numexpr(foo, bar) def test_issue_12984(): import warnings if not numexpr: skip("numexpr not installed.") func_numexpr = lambdify((x,y,z), Piecewise((y, x >= 0), (z, x > -1)), numexpr) assert func_numexpr(1, 24, 42) == 24 with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) assert str(func_numexpr(-1, 24, 42)) == 'nan' #================== Test some functions ============================ def test_exponentiation(): f = lambdify(x, x**2) assert f(-1) == 1 assert f(0) == 0 assert f(1) == 1 assert f(-2) == 4 assert f(2) == 4 assert f(2.5) == 6.25 def test_sqrt(): f = lambdify(x, sqrt(x)) assert f(0) == 0.0 assert f(1) == 1.0 assert f(4) == 2.0 assert abs(f(2) - 1.414) < 0.001 assert f(6.25) == 2.5 def test_trig(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) prec = 1e-11 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec d = f(3.14159) prec = 1e-5 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec #================== Test vectors =================================== def test_vector_simple(): f = lambdify((x, y, z), (z, y, x)) assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_vector_discontinuous(): f = lambdify(x, (-1/x, 1/x)) raises(ZeroDivisionError, lambda: f(0)) assert f(1) == (-1.0, 1.0) assert f(2) == (-0.5, 0.5) assert f(-2) == (0.5, -0.5) def test_trig_symbolic(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_trig_float(): f = lambdify([x], [cos(x), sin(x)]) d = f(3.14159) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_docs(): f = lambdify(x, x**2) assert f(2) == 4 f = lambdify([x, y, z], [z, y, x]) assert f(1, 2, 3) == [3, 2, 1] f = lambdify(x, sqrt(x)) assert f(4) == 2.0 f = lambdify((x, y), sin(x*y)**2) assert f(0, 5) == 0 def test_math(): f = lambdify((x, y), sin(x), modules="math") assert f(0, 5) == 0 def test_sin(): f = lambdify(x, sin(x)**2) assert isinstance(f(2), float) f = lambdify(x, sin(x)**2, modules="math") assert isinstance(f(2), float) def test_matrix(): A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol = Matrix([[1, 2], [sin(3) + 4, 1]]) f = lambdify((x, y, z), A, modules="sympy") assert f(1, 2, 3) == sol f = lambdify((x, y, z), (A, [A]), modules="sympy") assert f(1, 2, 3) == (sol, [sol]) J = Matrix((x, x + y)).jacobian((x, y)) v = Matrix((x, y)) sol = Matrix([[1, 0], [1, 1]]) assert lambdify(v, J, modules='sympy')(1, 2) == sol assert lambdify(v.T, J, modules='sympy')(1, 2) == sol def test_numpy_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) #Lambdify array first, to ensure return to array as default f = lambdify((x, y, z), A, ['numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) #Check that the types are arrays and matrices assert isinstance(f(1, 2, 3), numpy.ndarray) # gh-15071 class dot(Function): pass x_dot_mtx = dot(x, Matrix([[2], [1], [0]])) f_dot1 = lambdify(x, x_dot_mtx) inp = numpy.zeros((17, 3)) assert numpy.all(f_dot1(inp) == 0) strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False) p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw)) f_dot2 = lambdify(x, x_dot_mtx, printer=p2) assert numpy.all(f_dot2(inp) == 0) p3 = NumPyPrinter(strict_kw) # The line below should probably fail upon construction (before calling with "(inp)"): raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp)) def test_numpy_transpose(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A.T, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]])) def test_numpy_dotproduct(): if not numpy: skip("numpy not installed") A = Matrix([x, y, z]) f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy') f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy') f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') assert f1(1, 2, 3) == \ f2(1, 2, 3) == \ f3(1, 2, 3) == \ f4(1, 2, 3) == \ numpy.array([14]) def test_numpy_inverse(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A**-1, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]])) def test_numpy_old_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) assert isinstance(f(1, 2, 3), numpy.matrix) def test_python_div_zero_issue_11306(): if not numpy: skip("numpy not installed.") p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True)) f = lambdify([x, y], p, modules='numpy') numpy.seterr(divide='ignore') assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0 assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf' numpy.seterr(divide='warn') def test_issue9474(): mods = [None, 'math'] if numpy: mods.append('numpy') if mpmath: mods.append('mpmath') for mod in mods: f = lambdify(x, S.One/x, modules=mod) assert f(2) == 0.5 f = lambdify(x, floor(S.One/x), modules=mod) assert f(2) == 0 for absfunc, modules in product([Abs, abs], mods): f = lambdify(x, absfunc(x), modules=modules) assert f(-1) == 1 assert f(1) == 1 assert f(3+4j) == 5 def test_issue_9871(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") r = sqrt(x**2 + y**2) expr = diff(1/r, x) xn = yn = numpy.linspace(1, 10, 16) # expr(xn, xn) = -xn/(sqrt(2)*xn)^3 fv_exact = -numpy.sqrt(2.)**-3 * xn**-2 fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn) fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn) numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10) numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10) def test_numpy_piecewise(): if not numpy: skip("numpy not installed.") pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True)) f = lambdify(x, pieces, modules="numpy") numpy.testing.assert_array_equal(f(numpy.arange(10)), numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81])) # If we evaluate somewhere all conditions are False, we should get back NaN nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0))) numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])), numpy.array([1, numpy.nan, 1])) def test_numpy_logical_ops(): if not numpy: skip("numpy not installed.") and_func = lambdify((x, y), And(x, y), modules="numpy") and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy") or_func = lambdify((x, y), Or(x, y), modules="numpy") or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy") not_func = lambdify((x), Not(x), modules="numpy") arr1 = numpy.array([True, True]) arr2 = numpy.array([False, True]) arr3 = numpy.array([True, False]) numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True])) numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False])) numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True])) numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True])) numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False])) def test_numpy_matmul(): if not numpy: skip("numpy not installed.") xmat = Matrix([[x, y], [z, 1+z]]) ymat = Matrix([[x**2], [Abs(x)]]) mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy") numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]])) numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]])) # Multiple matrices chained together in multiplication f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy") numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25], [159, 251]])) def test_numpy_numexpr(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b, c = numpy.random.randn(3, 128, 128) # ensure that numpy and numexpr return same value for complicated expression expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \ Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2) npfunc = lambdify((x, y, z), expr, modules='numpy') nefunc = lambdify((x, y, z), expr, modules='numexpr') assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c)) def test_numexpr_userfunctions(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b = numpy.random.randn(2, 10) uf = type('uf', (Function, ), {'eval' : classmethod(lambda x, y : y**2+1)}) func = lambdify(x, 1-uf(x), modules='numexpr') assert numpy.allclose(func(a), -(a**2)) uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1) func = lambdify((x, y), uf(x, y), modules='numexpr') assert numpy.allclose(func(a, b), 2*a*b+1) def test_tensorflow_basic_math(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.constant(0, dtype=tensorflow.float32) assert func(a).eval(session=s) == 0.5 def test_tensorflow_placeholders(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.compat.v1.placeholder(dtype=tensorflow.float32) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_variables(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.Variable(0, dtype=tensorflow.float32) s.run(a.initializer) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_logical_operations(): if not tensorflow: skip("tensorflow not installed.") expr = Not(And(Or(x, y), y)) func = lambdify([x, y], expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(False, True).eval(session=s) == False def test_tensorflow_piecewise(): if not tensorflow: skip("tensorflow not installed.") expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0)) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-1).eval(session=s) == -1 assert func(0).eval(session=s) == 0 assert func(1).eval(session=s) == 1 def test_tensorflow_multi_max(): if not tensorflow: skip("tensorflow not installed.") expr = Max(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == 4 def test_tensorflow_multi_min(): if not tensorflow: skip("tensorflow not installed.") expr = Min(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == -2 def test_tensorflow_relational(): if not tensorflow: skip("tensorflow not installed.") expr = x >= 0 func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(1).eval(session=s) == True def test_tensorflow_complexes(): if not tensorflow: skip("tensorflow not installed") func1 = lambdify(x, re(x), modules="tensorflow") func2 = lambdify(x, im(x), modules="tensorflow") func3 = lambdify(x, Abs(x), modules="tensorflow") func4 = lambdify(x, arg(x), modules="tensorflow") with tensorflow.compat.v1.Session() as s: # For versions before # https://github.com/tensorflow/tensorflow/issues/30029 # resolved, using python numeric types may not work a = tensorflow.constant(1+2j) assert func1(a).eval(session=s) == 1 assert func2(a).eval(session=s) == 2 tensorflow_result = func3(a).eval(session=s) sympy_result = Abs(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 tensorflow_result = func4(a).eval(session=s) sympy_result = arg(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 def test_tensorflow_array_arg(): # Test for issue 14655 (tensorflow part) if not tensorflow: skip("tensorflow not installed.") f = lambdify([[x, y]], x*x + y, 'tensorflow') with tensorflow.compat.v1.Session() as s: fcall = f(tensorflow.constant([2.0, 1.0])) assert fcall.eval(session=s) == 5.0 #================== Test symbolic ================================== def test_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(x) == Integral(exp(-x**2), (x, -oo, oo)) def test_sym_single_arg(): f = lambdify(x, x * y) assert f(z) == z * y def test_sym_list_args(): f = lambdify([x, y], x + y + z) assert f(1, 2) == 3 + z def test_sym_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(y).doit() == sqrt(pi) def test_namespace_order(): # lambdify had a bug, such that module dictionaries or cached module # dictionaries would pull earlier namespaces into themselves. # Because the module dictionaries form the namespace of the # generated lambda, this meant that the behavior of a previously # generated lambda function could change as a result of later calls # to lambdify. n1 = {'f': lambda x: 'first f'} n2 = {'f': lambda x: 'second f', 'g': lambda x: 'function g'} f = sympy.Function('f') g = sympy.Function('g') if1 = lambdify(x, f(x), modules=(n1, "sympy")) assert if1(1) == 'first f' if2 = lambdify(x, g(x), modules=(n2, "sympy")) # previously gave 'second f' assert if1(1) == 'first f' assert if2(1) == 'function g' def test_namespace_type(): # lambdify had a bug where it would reject modules of type unicode # on Python 2. x = sympy.Symbol('x') lambdify(x, x, modules=u'math') def test_imps(): # Here we check if the default returned functions are anonymous - in # the sense that we can have more than one function with the same name f = implemented_function('f', lambda x: 2*x) g = implemented_function('f', lambda x: math.sqrt(x)) l1 = lambdify(x, f(x)) l2 = lambdify(x, g(x)) assert str(f(x)) == str(g(x)) assert l1(3) == 6 assert l2(3) == math.sqrt(3) # check that we can pass in a Function as input func = sympy.Function('myfunc') assert not hasattr(func, '_imp_') my_f = implemented_function(func, lambda x: 2*x) assert hasattr(my_f, '_imp_') # Error for functions with same name and different implementation f2 = implemented_function("f", lambda x: x + 101) raises(ValueError, lambda: lambdify(x, f(f2(x)))) def test_imps_errors(): # Test errors that implemented functions can return, and still be able to # form expressions. # See: https://github.com/sympy/sympy/issues/10810 # # XXX: Removed AttributeError here. This test was added due to issue 10810 # but that issue was about ValueError. It doesn't seem reasonable to # "support" catching AttributeError in the same context... for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)): def myfunc(a): if a == 0: raise error_class return 1 f = implemented_function('f', myfunc) expr = f(val) assert expr == f(val) def test_imps_wrong_args(): raises(ValueError, lambda: implemented_function(sin, lambda x: x)) def test_lambdify_imps(): # Test lambdify with implemented functions # first test basic (sympy) lambdify f = sympy.cos assert lambdify(x, f(x))(0) == 1 assert lambdify(x, 1 + f(x))(0) == 2 assert lambdify((x, y), y + f(x))(0, 1) == 2 # make an implemented function and test f = implemented_function("f", lambda x: x + 100) assert lambdify(x, f(x))(0) == 100 assert lambdify(x, 1 + f(x))(0) == 101 assert lambdify((x, y), y + f(x))(0, 1) == 101 # Can also handle tuples, lists, dicts as expressions lam = lambdify(x, (f(x), x)) assert lam(3) == (103, 3) lam = lambdify(x, [f(x), x]) assert lam(3) == [103, 3] lam = lambdify(x, [f(x), (f(x), x)]) assert lam(3) == [103, (103, 3)] lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {x: f(x)}) assert lam(3) == {3: 103} # Check that imp preferred to other namespaces by default d = {'f': lambda x: x + 99} lam = lambdify(x, f(x), d) assert lam(3) == 103 # Unless flag passed lam = lambdify(x, f(x), d, use_imps=False) assert lam(3) == 102 def test_dummification(): t = symbols('t') F = Function('F') G = Function('G') #"\alpha" is not a valid python variable name #lambdify should sub in a dummy for it, and return #without a syntax error alpha = symbols(r'\alpha') some_expr = 2 * F(t)**2 / G(t) lam = lambdify((F(t), G(t)), some_expr) assert lam(3, 9) == 2 lam = lambdify(sin(t), 2 * sin(t)**2) assert lam(F(t)) == 2 * F(t)**2 #Test that \alpha was properly dummified lam = lambdify((alpha, t), 2*alpha + t) assert lam(2, 1) == 5 raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5)) def test_curly_matrix_symbol(): # Issue #15009 curlyv = sympy.MatrixSymbol("{v}", 2, 1) lam = lambdify(curlyv, curlyv) assert lam(1)==1 lam = lambdify(curlyv, curlyv, dummify=True) assert lam(1)==1 def test_python_keywords(): # Test for issue 7452. The automatic dummification should ensure use of # Python reserved keywords as symbol names will create valid lambda # functions. This is an additional regression test. python_if = symbols('if') expr = python_if / 2 f = lambdify(python_if, expr) assert f(4.0) == 2.0 def test_lambdify_docstring(): func = lambdify((w, x, y, z), w + x + y + z) ref = ( "Created with lambdify. Signature:\n\n" "func(w, x, y, z)\n\n" "Expression:\n\n" "w + x + y + z" ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref syms = symbols('a1:26') func = lambdify(syms, sum(syms)) ref = ( "Created with lambdify. Signature:\n\n" "func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n" " a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n" "Expression:\n\n" "a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..." ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref #================== Test special printers ========================== def test_special_printers(): from sympy.polys.numberfields import IntervalPrinter def intervalrepr(expr): return IntervalPrinter().doprint(expr) expr = sqrt(sqrt(2) + sqrt(3)) + S.Half func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr) func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter) func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter()) mpi = type(mpmath.mpi(1, 2)) assert isinstance(func0(), mpi) assert isinstance(func1(), mpi) assert isinstance(func2(), mpi) def test_true_false(): # We want exact is comparison here, not just == assert lambdify([], true)() is True assert lambdify([], false)() is False def test_issue_2790(): assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3 assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10 assert lambdify(x, x + 1, dummify=False)(1) == 2 def test_issue_12092(): f = implemented_function('f', lambda x: x**2) assert f(f(2)).evalf() == Float(16) def test_issue_14911(): class Variable(sympy.Symbol): def _sympystr(self, printer): return printer.doprint(self.name) _lambdacode = _sympystr _numpycode = _sympystr x = Variable('x') y = 2 * x code = LambdaPrinter().doprint(y) assert code.replace(' ', '') == '2*x' def test_ITE(): assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5 assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3 def test_Min_Max(): # see gh-10375 assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1 assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3 def test_Indexed(): # Issue #10934 if not numpy: skip("numpy not installed") a = IndexedBase('a') i, j = symbols('i j') b = numpy.array([[1, 2], [3, 4]]) assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10 def test_issue_12173(): #test for issue 12173 exp1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2) exp2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2) assert exp1 == uppergamma(1, 2).evalf() assert exp2 == lowergamma(1, 2).evalf() def test_issue_13642(): if not numpy: skip("numpy not installed") f = lambdify(x, sinc(x)) assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_sinc_mpmath(): f = lambdify(x, sinc(x), "mpmath") assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_lambdify_dummy_arg(): d1 = Dummy() f1 = lambdify(d1, d1 + 1, dummify=False) assert f1(2) == 3 f1b = lambdify(d1, d1 + 1) assert f1b(2) == 3 d2 = Dummy('x') f2 = lambdify(d2, d2 + 1) assert f2(2) == 3 f3 = lambdify([[d2]], d2 + 1) assert f3([2]) == 3 def test_lambdify_mixed_symbol_dummy_args(): d = Dummy() # Contrived example of name clash dsym = symbols(str(d)) f = lambdify([d, dsym], d - dsym) assert f(4, 1) == 3 def test_numpy_array_arg(): # Test for issue 14655 (numpy part) if not numpy: skip("numpy not installed") f = lambdify([[x, y]], x*x + y, 'numpy') assert f(numpy.array([2.0, 1.0])) == 5 def test_scipy_fns(): if not scipy: skip("scipy not installed") single_arg_sympy_fns = [erf, erfc, factorial, gamma, loggamma, digamma] single_arg_scipy_fns = [scipy.special.erf, scipy.special.erfc, scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln, scipy.special.psi] numpy.random.seed(0) for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns): f = lambdify(x, sympy_fn(x), modules="scipy") for i in range(20): tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy thinks that factorial(z) is 0 when re(z) < 0 and # does not support complex numbers. # SymPy does not think so. if sympy_fn == factorial: tv = numpy.abs(tv) # SciPy supports gammaln for real arguments only, # and there is also a branch cut along the negative real axis if sympy_fn == loggamma: tv = numpy.abs(tv) # SymPy's digamma evaluates as polygamma(0, z) # which SciPy supports for real arguments only if sympy_fn == digamma: tv = numpy.real(tv) sympy_result = sympy_fn(tv).evalf() assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv) - scipy_fn(tv)) < 1e-13*(1 + abs(sympy_result)) double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli, besselk] double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv, scipy.special.yv, scipy.special.iv, scipy.special.kv] for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns): f = lambdify((x, y), sympy_fn(x, y), modules="scipy") for i in range(20): # SciPy supports only real orders of Bessel functions tv1 = numpy.random.uniform(-10, 10) tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy supports poch for real arguments only if sympy_fn == RisingFactorial: tv2 = numpy.real(tv2) sympy_result = sympy_fn(tv1, tv2).evalf() assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result)) def test_scipy_polys(): if not scipy: skip("scipy not installed") numpy.random.seed(0) params = symbols('n k a b') # list polynomials with the number of parameters polys = [ (chebyshevt, 1), (chebyshevu, 1), (legendre, 1), (hermite, 1), (laguerre, 1), (gegenbauer, 2), (assoc_legendre, 2), (assoc_laguerre, 2), (jacobi, 3) ] msg = \ "The random test of the function {func} with the arguments " \ "{args} had failed because the SymPy result {sympy_result} " \ "and SciPy result {scipy_result} had failed to converge " \ "within the tolerance {tol} " \ "(Actual absolute difference : {diff})" for sympy_fn, num_params in polys: args = params[:num_params] + (x,) f = lambdify(args, sympy_fn(*args)) for _ in range(10): tn = numpy.random.randint(3, 10) tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1)) tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy supports hermite for real arguments only if sympy_fn == hermite: tv = numpy.real(tv) # assoc_legendre needs x in (-1, 1) and integer param at most n if sympy_fn == assoc_legendre: tv = numpy.random.uniform(-1, 1) tparams = tuple(numpy.random.randint(1, tn, size=1)) vals = (tn,) + tparams + (tv,) scipy_result = f(*vals) sympy_result = sympy_fn(*vals).evalf() atol = 1e-9*(1 + abs(sympy_result)) diff = abs(scipy_result - sympy_result) try: assert diff < atol except TypeError: raise AssertionError( msg.format( func=repr(sympy_fn), args=repr(vals), sympy_result=repr(sympy_result), scipy_result=repr(scipy_result), diff=diff, tol=atol) ) def test_lambdify_inspect(): f = lambdify(x, x**2) # Test that inspect.getsource works but don't hard-code implementation # details assert 'x**2' in inspect.getsource(f) def test_issue_14941(): x, y = Dummy(), Dummy() # test dict f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy') assert f1(2, 3) == {2: 3, 3: 3} # test tuple f2 = lambdify([x, y], (y, x), 'sympy') assert f2(2, 3) == (3, 2) # test list f3 = lambdify([x, y], [y, x], 'sympy') assert f3(2, 3) == [3, 2] def test_lambdify_Derivative_arg_issue_16468(): f = Function('f')(x) fx = f.diff() assert lambdify((f, fx), f + fx)(10, 5) == 15 assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2 raises(SyntaxError, lambda: eval(lambdastr((f, fx), f/fx, dummify=False))) assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2 assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half assert lambdify(fx, 1 + fx)(41) == 42 assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42 def test_imag_real(): f_re = lambdify([z], sympy.re(z)) val = 3+2j assert f_re(val) == val.real f_im = lambdify([z], sympy.im(z)) # see #15400 assert f_im(val) == val.imag def test_MatrixSymbol_issue_15578(): if not numpy: skip("numpy not installed") A = MatrixSymbol('A', 2, 2) A0 = numpy.array([[1, 2], [3, 4]]) f = lambdify(A, A**(-1)) assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]])) g = lambdify(A, A**3) assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]])) def test_issue_15654(): if not scipy: skip("scipy not installed") from sympy.abc import n, l, r, Z from sympy.physics import hydrogen nv, lv, rv, Zv = 1, 0, 3, 1 sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf() f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z)) scipy_value = f(nv, lv, rv, Zv) assert abs(sympy_value - scipy_value) < 1e-15 def test_issue_15827(): if not numpy: skip("numpy not installed") A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 2, 3) C = MatrixSymbol("C", 3, 4) D = MatrixSymbol("D", 4, 5) k=symbols("k") f = lambdify(A, (2*k)*A) g = lambdify(A, (2+k)*A) h = lambdify(A, 2*A) i = lambdify((B, C, D), 2*B*C*D) assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object)) assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \ [k + 2, 2*k + 4, 3*k + 6]], dtype=object)) assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]])) assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \ numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \ [ 120, 240, 360, 480, 600]])) def test_issue_16930(): if not scipy: skip("scipy not installed") x = symbols("x") f = lambda x: S.GoldenRatio * x**2 f_ = lambdify(x, f(x), modules='scipy') assert f_(1) == scipy.constants.golden_ratio def test_issue_17898(): if not scipy: skip("scipy not installed") x = symbols("x") f_ = lambdify([x], sympy.LambertW(x,-1), modules='scipy') assert f_(0.1) == mpmath.lambertw(0.1, -1) def test_single_e(): f = lambdify(x, E) assert f(23) == exp(1.0) def test_issue_16536(): if not scipy: skip("scipy not installed") a = symbols('a') f1 = lowergamma(a, x) F = lambdify((a, x), f1, modules='scipy') assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10 f2 = uppergamma(a, x) F = lambdify((a, x), f2, modules='scipy') assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10 def test_fresnel_integrals_scipy(): if not scipy: skip("scipy not installed") f1 = fresnelc(x) f2 = fresnels(x) F1 = lambdify(x, f1, modules='scipy') F2 = lambdify(x, f2, modules='scipy') assert abs(fresnelc(1.3) - F1(1.3)) <= 1e-10 assert abs(fresnels(1.3) - F2(1.3)) <= 1e-10 def test_beta_scipy(): if not scipy: skip("scipy not installed") f = beta(x, y) F = lambdify((x, y), f, modules='scipy') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10 def test_beta_math(): f = beta(x, y) F = lambdify((x, y), f, modules='math') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
77c82e69c7deec03b064594e1cd6e25250f0f867cd41520f9d2899e5501e9d04
""" Tests from Michael Wester's 1999 paper "Review of CAS mathematical capabilities". http://www.math.unm.edu/~wester/cas/book/Wester.pdf See also http://math.unm.edu/~wester/cas_review.html for detailed output of each tested system. """ from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo, product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp, npartitions, totient, primerange, factor, simplify, gcd, resultant, expand, I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma, bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re, im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O, atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec, LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ, Poly, expand_func, E, Q, And, Lt, Min, ask, refine, AlgebraicNumber, continued_fraction_iterator as cf_i, continued_fraction_periodic as cf_p, continued_fraction_convergents as cf_c, continued_fraction_reduce as cf_r, FiniteSet, elliptic_e, elliptic_f, powsimp, hessian, wronskian, fibonacci, sign, Lambda, Piecewise, Subs, residue, Derivative, logcombine, Symbol, Intersection, Union, EmptySet, Interval, idiff, ImageSet, acos, Max, MatMul, conjugate) import mpmath from sympy.functions.combinatorial.numbers import stirling from sympy.functions.special.delta_functions import Heaviside from sympy.functions.special.error_functions import Ci, Si, erf from sympy.functions.special.zeta_functions import zeta from sympy.utilities.pytest import (XFAIL, slow, SKIP, skip, ON_TRAVIS, raises, nocache_fail) from sympy.utilities.iterables import partitions from mpmath import mpi, mpc from sympy.matrices import Matrix, GramSchmidt, eye from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix from sympy.physics.quantum import Commutator from sympy.assumptions import assuming from sympy.polys.rings import PolyRing from sympy.polys.fields import FracField from sympy.polys.solvers import solve_lin_sys from sympy.concrete import Sum from sympy.concrete.products import Product from sympy.integrals import integrate from sympy.integrals.transforms import laplace_transform,\ inverse_laplace_transform, LaplaceTransform, fourier_transform,\ mellin_transform from sympy.solvers.recurr import rsolve from sympy.solvers.solveset import solveset, solveset_real, linsolve from sympy.solvers.ode import dsolve from sympy.core.relational import Equality from sympy.core.compatibility import range, PY3 from itertools import islice, takewhile from sympy.series.formal import fps from sympy.series.fourier import fourier_series from sympy.calculus.util import minimum R = Rational x, y, z = symbols('x y z') i, j, k, l, m, n = symbols('i j k l m n', integer=True) f = Function('f') g = Function('g') # A. Boolean Logic and Quantifier Elimination # Not implemented. # B. Set Theory def test_B1(): assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) | FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m) def test_B2(): assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) & FiniteSet(j, m, j)) == Intersection({j, m}, {i, j, k}, {j, k, l}) # Previous output below. Not sure why that should be the expected output. # There should probably be a way to rewrite Intersections that way but I # don't see why an Intersection should evaluate like that: # # == Union({j}, Intersection({m}, Union({j, k}, Intersection({i}, {l})))) def test_B3(): assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) == FiniteSet(i, k, l, m)) def test_B4(): assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) == FiniteSet((i, k), (i, l), (j, k), (j, l))) # C. Numbers def test_C1(): assert (factorial(50) == 30414093201713378043612608166064768844377641568960512000000000000) def test_C2(): assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8, 11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1, 41: 1, 43: 1, 47: 1}) def test_C3(): assert (factorial2(10), factorial2(9)) == (3840, 945) # Base conversions; not really implemented by sympy # Whatever. Take credit! def test_C4(): assert 0xABC == 2748 def test_C5(): assert 123 == int('234', 7) def test_C6(): assert int('677', 8) == int('1BF', 16) == 447 def test_C7(): assert log(32768, 8) == 5 def test_C8(): # Modular multiplicative inverse. Would be nice if divmod could do this. assert ZZ.invert(5, 7) == 3 assert ZZ.invert(5, 6) == 5 def test_C9(): assert igcd(igcd(1776, 1554), 5698) == 74 def test_C10(): x = 0 for n in range(2, 11): x += R(1, n) assert x == R(4861, 2520) def test_C11(): assert R(1, 7) == S('0.[142857]') def test_C12(): assert R(7, 11) * R(22, 7) == 2 def test_C13(): test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3) good = 3 ** R(1, 3) assert test == good def test_C14(): assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3) def test_C15(): test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2)))))) good = sqrt(2) + 3 assert test == good def test_C16(): test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15))) good = sqrt(2) + sqrt(3) + sqrt(5) assert test == good def test_C17(): test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2))) good = 5 + 2*sqrt(6) assert test == good def test_C18(): assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3 @XFAIL def test_C19(): assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7) def test_C20(): inside = (135 + 78*sqrt(3)) test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3)) assert simplify(test) == AlgebraicNumber(12) def test_C21(): assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \ AlgebraicNumber(1 + sqrt(2)) @XFAIL def test_C22(): test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17 - 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72)) good = sqrt(2)/3 - log(sqrt(2) - 1)/3 assert test == good def test_C23(): assert 2 * oo - 3 is oo @XFAIL def test_C24(): raise NotImplementedError("2**aleph_null == aleph_1") # D. Numerical Analysis def test_D1(): assert 0.0 / sqrt(2) == 0.0 def test_D2(): assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295' def test_D3(): assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744) def test_D4(): assert floor(R(-5, 3)) == -2 assert ceiling(R(-5, 3)) == -1 @XFAIL def test_D5(): raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8") @XFAIL def test_D6(): raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN") @XFAIL def test_D7(): raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C") @XFAIL def test_D8(): # One way is to cheat by converting the sum to a string, # and replacing the '[' and ']' with ''. # E.g., horner(S(str(_).replace('[','').replace(']',''))) raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))") @XFAIL def test_D9(): raise NotImplementedError("translate D8 to FORTRAN") @XFAIL def test_D10(): raise NotImplementedError("translate D8 to C") @XFAIL def test_D11(): #Is there a way to use count_ops? raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))") @XFAIL def test_D12(): assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9) @XFAIL def test_D13(): raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)") # E. Statistics # See scipy; all of this is numerical. # F. Combinatorial Theory. def test_F1(): assert rf(x, 3) == x*(1 + x)*(2 + x) def test_F2(): assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6 @XFAIL def test_F3(): assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n) @XFAIL def test_F4(): assert combsimp((2**n * factorial(n) * product(2*k - 1, (k, 1, n)))) == factorial(2*n) @XFAIL def test_F5(): assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2 def test_F6(): partTest = [p.copy() for p in partitions(4)] partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}] assert partTest == partDesired def test_F7(): assert npartitions(4) == 5 def test_F8(): assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1 def test_F9(): assert totient(1776) == 576 # G. Number Theory def test_G1(): assert list(primerange(999983, 1000004)) == [999983, 1000003] @XFAIL def test_G2(): raise NotImplementedError("find the primitive root of 191 == 19") @XFAIL def test_G3(): raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime") # ... G14 Modular equations are not implemented. def test_G15(): assert Rational(sqrt(3).evalf()).limit_denominator(15) == R(26, 15) assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \ R(26, 15) def test_G16(): assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1] def test_G17(): assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]] def test_G18(): assert cf_p(1, 2, 5) == [[1]] assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2 @XFAIL def test_G19(): s = symbols('s', integer=True, positive=True) it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1)) assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s] def test_G20(): s = symbols('s', integer=True, positive=True) # Wester erroneously has this as -s + sqrt(s**2 + 1) assert cf_r([[2*s]]) == s + sqrt(s**2 + 1) @XFAIL def test_G20b(): s = symbols('s', integer=True, positive=True) assert cf_p(s, 1, s**2 + 1) == [[2*s]] # H. Algebra def test_H1(): assert simplify(2*2**n) == simplify(2**(n + 1)) assert powdenest(2*2**n) == simplify(2**(n + 1)) def test_H2(): assert powsimp(4 * 2**n) == 2**(n + 2) def test_H3(): assert (-1)**(n*(n + 1)) == 1 def test_H4(): expr = factor(6*x - 10) assert type(expr) is Mul assert expr.args[0] == 2 assert expr.args[1] == 3*x - 5 p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81 p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81 q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86 def test_H5(): assert gcd(p1, p2, x) == 1 def test_H6(): assert gcd(expand(p1 * q), expand(p2 * q)) == q def test_H7(): p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z assert gcd(p1, p2, x, y, z) == 1 def test_H8(): p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8 assert gcd(p1 * q, p2 * q, x, y, z) == q def test_H9(): p1 = 2*x**(n + 4) - x**(n + 2) p2 = 4*x**(n + 1) + 3*x**n assert gcd(p1, p2) == x**n def test_H10(): p1 = 3*x**4 + 3*x**3 + x**2 - x - 2 p2 = x**3 - 3*x**2 + x + 5 assert resultant(p1, p2, x) == 0 def test_H11(): assert resultant(p1 * q, p2 * q, x) == 0 def test_H12(): num = x**2 - 4 den = x**2 + 4*x + 4 assert simplify(num/den) == (x - 2)/(x + 2) @XFAIL def test_H13(): assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1 def test_H14(): p = (x + 1) ** 20 ep = expand(p) assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5 + 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10 + 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15 + 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20) dep = diff(ep, x) assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4 + 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9 + 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13 + 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18 + 20*x**19) assert factor(dep) == 20*(1 + x)**19 def test_H15(): assert simplify((Mul(*[x - r for r in solveset(x**3 + x**2 - 7)]))) == x**3 + x**2 - 7 def test_H16(): assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3 + x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4 - x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10 + x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1)) def test_H17(): assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0 @XFAIL def test_H18(): # Factor over complex rationals. test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153) good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I) assert test == good def test_H19(): a = symbols('a') # The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1") assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1 @XFAIL def test_H20(): raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - " + "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)") @XFAIL def test_H21(): raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \ Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9") def test_H22(): assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2 def test_H23(): f = x**11 + x + 1 g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1) assert factor(f, modulus=65537) == g def test_H24(): phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi') assert factor(x**4 - 3*x**2 + 1, extension=phi) == \ (x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi) def test_H25(): e = (x - 2*y**2 + 3*z**3) ** 20 assert factor(expand(e)) == e def test_H26(): g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20) assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20 def test_H27(): f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5 g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z h = -2*z*y**7 \ *(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \ *(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5) assert factor(expand(f*g)) == h @XFAIL def test_H28(): raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * " + "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.") @XFAIL def test_H29(): assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y) def test_H30(): test = factor(x**3 + y**3, extension=sqrt(-3)) answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I)) assert answer == test def test_H31(): f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2) g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2) assert apart(f) == g @XFAIL def test_H32(): # issue 6558 raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \ of a non-commuting product and its inverse)") def test_H33(): A, B, C = symbols('A, B, C', commutative=False) assert (Commutator(A, Commutator(B, C)) + Commutator(B, Commutator(C, A)) + Commutator(C, Commutator(A, B))).doit().expand() == 0 # I. Trigonometry def test_I1(): assert tan(pi*R(7, 10)) == -sqrt(1 + 2/sqrt(5)) @XFAIL def test_I2(): assert sqrt((1 + cos(6))/2) == -cos(3) def test_I3(): assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1 def test_I4(): assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1 @XFAIL def test_I5(): assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0 @XFAIL def test_I6(): raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)") @XFAIL def test_I7(): assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2 @XFAIL def test_I8(): assert cos(3*x)/cos(x) == 2*cos(2*x) - 1 @XFAIL def test_I9(): # Supposed to do this with rewrite rules. assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2 def test_I10(): assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) is nan @SKIP("hangs") @XFAIL def test_I11(): assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0 @XFAIL def test_I12(): # This should fail or return nan or something. res = diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x) assert res is nan # trigsimp(res) gives nan # J. Special functions. def test_J1(): assert bernoulli(16) == R(-3617, 510) def test_J2(): assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y @XFAIL def test_J3(): raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)") def test_J4(): assert gamma(R(-1, 2)) == -2*sqrt(pi) def test_J5(): assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)) def test_J6(): assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632')) def test_J7(): assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2) def test_J8(): p = besselj(R(3,2), z) q = (sin(z)/z - cos(z))/sqrt(pi*z/2) assert simplify(expand_func(p) -q) == 0 def test_J9(): assert besselj(0, z).diff(z) == - besselj(1, z) def test_J10(): mu, nu = symbols('mu, nu', integer=True) assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2) def test_J11(): assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1)) @slow def test_J12(): assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0 def test_J13(): a = symbols('a', integer=True, negative=False) assert chebyshevt(a, -1) == (-1)**a def test_J14(): p = hyper([S.Half, S.Half], [R(3, 2)], z**2) assert hyperexpand(p) == asin(z)/z @XFAIL def test_J15(): raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function") @XFAIL def test_J16(): raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2") def test_J17(): assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(R(4, 5)) + Subs(Derivative(g(x), x), x, 1) @XFAIL def test_J18(): raise NotImplementedError("define an antisymmetric function") # K. The Complex Domain def test_K1(): z1, z2 = symbols('z1, z2', complex=True) assert re(z1 + I*z2) == -im(z2) + re(z1) assert im(z1 + I*z2) == im(z1) + re(z2) def test_K2(): assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1 @XFAIL def test_K3(): a, b = symbols('a, b', real=True) assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2) def test_K4(): assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3)) def test_K5(): x, y = symbols('x, y', real=True) assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) + cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y))) def test_K6(): assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x) assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y) def test_K7(): y = symbols('y', real=True, negative=False) expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) sexpr = simplify(expr) assert sexpr == sqrt(y) @XFAIL def test_K8(): z = symbols('z', complex=True) assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes z = symbols('z', complex=True, negative=False) assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails def test_K9(): z = symbols('z', real=True, positive=True) assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 def test_K10(): z = symbols('z', real=True, negative=True) assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0 # This goes up to K25 # L. Determining Zero Equivalence def test_L1(): assert sqrt(997) - (997**3)**R(1, 6) == 0 def test_L2(): assert sqrt(999983) - (999983**3)**R(1, 6) == 0 def test_L3(): assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0 def test_L4(): assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0 @XFAIL def test_L5(): assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0 def test_L6(): assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0 @XFAIL def test_L7(): assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0 @XFAIL def test_L8(): assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \ *(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0 @XFAIL def test_L9(): z = symbols('z', complex=True) assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0 # M. Equations @XFAIL def test_M1(): assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2) def test_M2(): # The roots of this equation should all be real. Note that this # doesn't test that they are correct. sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x) assert all(s.expand(complex=True).is_real for s in sol) @XFAIL def test_M5(): assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3)) def test_M6(): assert set(solveset(x**7 - 1, x)) == \ {cos(n*pi*R(2, 7)) + I*sin(n*pi*R(2, 7)) for n in range(0, 7)} # The paper asks for exp terms, but sin's and cos's may be acceptable; # if the results are simplified, exp terms appear for all but # -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which # will simplify if you apply the transformation foo.rewrite(exp).expand() def test_M7(): # TODO: Replace solve with solveset, as of now test fails for solveset sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 + 226*x**2 - 140*x + 46, x) assert [s.simplify() for s in sol] == [ 1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2, 1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2, 1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2, 1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2, 1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2, 1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2, 1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2, 1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2] @XFAIL # There are an infinite number of solutions. def test_M8(): x = Symbol('x') z = symbols('z', complex=True) assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \ FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2) # This one could be simplified better (the 1/2 could be pulled into the log # as a sqrt, and the function inside the log can be factored as a square, # giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an # infinite number of solutions. # x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i] # where n is an arbitrary integer. See url of detailed output above. @XFAIL def test_M9(): # x = symbols('x') raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.") def test_M10(): # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(exp(x) - x, x) == [-LambertW(-1)] @XFAIL def test_M11(): assert solveset(x**x - x, x) == FiniteSet(-1, 1) def test_M12(): # TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)] # TODO: Replace solve with solveset, as of now test fails for solveset assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [ -1, pi/6, pi/2, - I*log(1 + sqrt(2)), I*log(1 + sqrt(2)), pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)), ] @XFAIL def test_M13(): n = Dummy('n') assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - pi*R(7, 4)), S.Integers) @XFAIL def test_M14(): n = Dummy('n') assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers) @nocache_fail def test_M15(): if PY3: n = Dummy('n') # This test fails when running with the cache off: assert solveset(sin(x) - S.Half) in (Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers)), Union(ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers))) @XFAIL def test_M16(): n = Dummy('n') assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers) @XFAIL def test_M17(): assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0) @XFAIL def test_M18(): assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2)) def test_M19(): # TODO: Replace solve with solveset, as of now test fails for solveset assert solve((x - 2)/x**R(1, 3), x) == [2] def test_M20(): assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet def test_M21(): assert solveset(x + sqrt(x) - 2) == FiniteSet(1) def test_M22(): assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16)) def test_M23(): x = symbols('x', complex=True) # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(x - 1/sqrt(1 + x**2)) == [ -I*sqrt(S.Half + sqrt(5)/2), sqrt(Rational(-1, 2) + sqrt(5)/2)] def test_M24(): # TODO: Replace solve with solveset, as of now test fails for solveset solution = solve(1 - binomial(m, 2)*2**k, k) answer = log(2/(m*(m - 1)), 2) assert solution[0].expand() == answer.expand() def test_M25(): a, b, c, d = symbols(':d', positive=True) x = symbols('x') # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand() def test_M26(): # TODO: Replace solve with solveset, as of now test fails for solveset assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)] def test_M27(): x = symbols('x', real=True) b = symbols('b', real=True) with assuming(Q.is_true(sin(cos(1/E**2) + 1) + b > 0)): # TODO: Replace solve with solveset solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/E**2))**R(3/2), b + sin(1 + cos(1/E**2))**R(3/2)] @XFAIL def test_M28(): assert solveset_real(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557] def test_M29(): x = symbols('x') assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3) def test_M30(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions # assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7] assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7) def test_M31(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions # assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2] assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(R(-3, 2), R(3, 2)) @XFAIL def test_M32(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3) @XFAIL def test_M33(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports assumptions # Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1). assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3) @XFAIL def test_M34(): z = symbols('z', complex=True) assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I) def test_M35(): x, y = symbols('x y', real=True) assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2)) def test_M36(): # TODO: Replace solve with solveset, as of now # solveset doesn't supports solving for function # assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)] assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1) def test_M37(): assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \ FiniteSet((-z + 4, 2, z)) def test_M38(): a, b, c = symbols('a, b, c') domain = FracField([a, b, c], ZZ).to_domain() ring = PolyRing('k1:50', domain) (k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, k49) = ring.gens system = [ -b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a, -b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a, -b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a, b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a, b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4, -b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c, b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b), -k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b, a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11, b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b, -k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b, -a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b, a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b), a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2, -k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c, -k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c, -a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18, -a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c, a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c, -k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c, -a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c), a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18, -k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44, -k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42, -2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a, k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b, a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c, -a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7, k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a, k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37, k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b, a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c, -k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8, -k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6, -k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46, b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b, -k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b, -a*k49/c + b*k49/c ] solution = { k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0, k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0, k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0, k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0, k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0, k2: 0, k1: 0, k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39 } assert solve_lin_sys(system, ring) == solution def test_M39(): x, y, z = symbols('x y z', complex=True) # TODO: Replace solve with solveset, as of now # solveset doesn't supports non-linear multivariate assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\ [{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\ {y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\ {y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\ {y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\ {y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}] # N. Inequalities def test_N1(): assert ask(Q.is_true(E**pi > pi**E)) @XFAIL def test_N2(): x = symbols('x', real=True) assert ask(Q.is_true(x**4 - x + 1 > 0)) is True assert ask(Q.is_true(x**4 - x + 1 > 1)) is False @XFAIL def test_N3(): x = symbols('x', real=True) assert ask(Q.is_true(And(Lt(-1, x), Lt(x, 1))), Q.is_true(abs(x) < 1 )) @XFAIL def test_N4(): x, y = symbols('x y', real=True) assert ask(Q.is_true(2*x**2 > 2*y**2), Q.is_true((x > y) & (y > 0))) is True @XFAIL def test_N5(): x, y, k = symbols('x y k', real=True) assert ask(Q.is_true(k*x**2 > k*y**2), Q.is_true((x > y) & (y > 0) & (k > 0))) is True @XFAIL def test_N6(): x, y, k, n = symbols('x y k n', real=True) assert ask(Q.is_true(k*x**n > k*y**n), Q.is_true((x > y) & (y > 0) & (k > 0) & (n > 0))) is True @XFAIL def test_N7(): x, y = symbols('x y', real=True) assert ask(Q.is_true(y > 0), Q.is_true((x > 1) & (y >= x - 1))) is True @XFAIL def test_N8(): x, y, z = symbols('x y z', real=True) assert ask(Q.is_true((x == y) & (y == z)), Q.is_true((x >= y) & (y >= z) & (z >= x))) def test_N9(): x = Symbol('x') assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True), Interval(3, oo, True)) def test_N10(): x = Symbol('x') p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5) assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True), Interval(2, 3, True, True), Interval(4, 5, True, True)) def test_N11(): x = Symbol('x') assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo)) def test_N12(): x = Symbol('x') assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True) def test_N13(): x = Symbol('x') assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals @XFAIL def test_N14(): x = Symbol('x') # Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true), # Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))' # which is not the correct answer, but the provided also seems wrong. assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True), Interval(pi/2, oo, True, True)) def test_N15(): r, t = symbols('r t') # raises NotImplementedError: only univariate inequalities are supported solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals) def test_N16(): r, t = symbols('r t') solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals) @XFAIL def test_N17(): # currently only univariate inequalities are supported assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y) def test_O1(): M = Matrix((1 + I, -2, 3*I)) assert sqrt(expand(M.dot(M.H))) == sqrt(15) def test_O2(): assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11], [-5], [4]]) # The vector module has no way of representing vectors symbolically (without # respect to a basis) @XFAIL def test_O3(): # assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc) raise NotImplementedError("""The vector module has no way of representing vectors symbolically (without respect to a basis)""") def test_O4(): from sympy.vector import CoordSys3D, Del N = CoordSys3D("N") delop = Del() i, j, k = N.base_vectors() x, y, z = N.base_scalars() F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3)) assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k @XFAIL def test_O5(): #assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0 raise NotImplementedError("""The vector module has no way of representing vectors symbolically (without respect to a basis)""") #testO8-O9 MISSING!! def test_O10(): L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])] assert GramSchmidt(L) == [Matrix([ [2], [3], [5]]), Matrix([ [R(23, 19)], [R(63, 19)], [R(-47, 19)]]), Matrix([ [R(1692, 353)], [R(-1551, 706)], [R(-423, 706)]])] def test_P1(): assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix( 1, 2, [-1, -1]) def test_P2(): M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) M.row_del(1) M.col_del(2) assert M == Matrix([[1, 2], [7, 8]]) def test_P3(): A = Matrix([ [11, 12, 13, 14], [21, 22, 23, 24], [31, 32, 33, 34], [41, 42, 43, 44]]) A11 = A[0:3, 1:4] A12 = A[(0, 1, 3), (2, 0, 3)] A21 = A A221 = -A[0:2, 2:4] A222 = -A[(3, 0), (2, 1)] A22 = BlockMatrix([[A221, A222]]).T rows = [[-A11, A12], [A21, A22]] raises(ValueError, lambda: BlockMatrix(rows)) B = Matrix(rows) assert B == Matrix([ [-12, -13, -14, 13, 11, 14], [-22, -23, -24, 23, 21, 24], [-32, -33, -34, 43, 41, 44], [11, 12, 13, 14, -13, -23], [21, 22, 23, 24, -14, -24], [31, 32, 33, 34, -43, -13], [41, 42, 43, 44, -42, -12]]) @XFAIL def test_P4(): raise NotImplementedError("Block matrix diagonalization not supported") def test_P5(): M = Matrix([[7, 11], [3, 8]]) assert M % 2 == Matrix([[1, 1], [1, 0]]) def test_P6(): M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)], [sin(x), -cos(x)]]) def test_P7(): M = Matrix([[x, y]])*( z*Matrix([[1, 3, 5], [2, 4, 6]]) + Matrix([[7, -9, 11], [-8, 10, -12]])) assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10), x*(5*z + 11) + y*(6*z - 12)]]) def test_P8(): M = Matrix([[1, -2*I], [-3*I, 4]]) assert M.norm(ord=S.Infinity) == 7 def test_P9(): a, b, c = symbols('a b c', nonzero=True) M = Matrix([[a/(b*c), 1/c, 1/b], [1/c, b/(a*c), 1/a], [1/b, 1/a, c/(a*b)]]) assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c)) @XFAIL def test_P10(): M = Matrix([[1, 2 + 3*I], [f(4 - 5*I), 6]]) # conjugate(f(4 - 5*i)) is not simplified to f(4+5*I) assert M.H == Matrix([[1, f(4 + 5*I)], [2 + 3*I, 6]]) @XFAIL def test_P11(): # raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv() # not simplifying to extract common factor") assert Matrix([[x, y], [1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1], [-1/y, x/y]]) def test_P11_workaround(): M = Matrix([[x, y], [1, x*y]]).inv() c = gcd(tuple(M)) assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([ [-x*y, y], [ 1, -x]]), evaluate=False) def test_P12(): A11 = MatrixSymbol('A11', n, n) A12 = MatrixSymbol('A12', n, n) A22 = MatrixSymbol('A22', n, n) B = BlockMatrix([[A11, A12], [ZeroMatrix(n, n), A22]]) assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I], [ZeroMatrix(n, n), A22.I]]) def test_P13(): M = Matrix([[1, x - 2, x - 3], [x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2], [x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]]) L, U, _ = M.LUdecomposition() assert simplify(L) == Matrix([[1, 0, 0], [x - 1, 1, 0], [x - 2, x - 3, 1]]) assert simplify(U) == Matrix([[1, x - 2, x - 3], [0, 4, x - 5], [0, 0, x - 7]]) def test_P14(): M = Matrix([[1, 2, 3, 1, 3], [3, 2, 1, 1, 7], [0, 2, 4, 1, 1], [1, 1, 1, 1, 4]]) R, _ = M.rref() assert R == Matrix([[1, 0, -1, 0, 2], [0, 1, 2, 0, -1], [0, 0, 0, 1, 3], [0, 0, 0, 0, 0]]) def test_P15(): M = Matrix([[-1, 3, 7, -5], [4, -2, 1, 3], [2, 4, 15, -7]]) assert M.rank() == 2 def test_P16(): M = Matrix([[2*sqrt(2), 8], [6*sqrt(6), 24*sqrt(3)]]) assert M.rank() == 1 def test_P17(): t = symbols('t', real=True) M=Matrix([ [sin(2*t), cos(2*t)], [2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]]) assert M.rank() == 1 def test_P18(): M = Matrix([[1, 0, -2, 0], [-2, 1, 0, 3], [-1, 2, -6, 6]]) assert M.nullspace() == [Matrix([[2], [4], [1], [0]]), Matrix([[0], [-3], [0], [1]])] def test_P19(): w = symbols('w') M = Matrix([[1, 1, 1, 1], [w, x, y, z], [w**2, x**2, y**2, z**2], [w**3, x**3, y**3, z**3]]) assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2 + w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z + w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3 + w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3 + w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2 + x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3 ) @XFAIL def test_P20(): raise NotImplementedError("Matrix minimal polynomial not supported") def test_P21(): M = Matrix([[5, -3, -7], [-2, 1, 2], [2, -3, -4]]) assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6 def test_P22(): d = 100 M = (2 - x)*eye(d) assert M.eigenvals() == {-x + 2: d} def test_P23(): M = Matrix([ [2, 1, 0, 0, 0], [1, 2, 1, 0, 0], [0, 1, 2, 1, 0], [0, 0, 1, 2, 1], [0, 0, 0, 1, 2]]) assert M.eigenvals() == { S('1'): 1, S('2'): 1, S('3'): 1, S('sqrt(3) + 2'): 1, S('-sqrt(3) + 2'): 1} def test_P24(): M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29], [196, 899, 113, -192, -71, -43, -8, -44], [-192, 113, 899, 196, 61, 49, 8, 52], [ 407, -192, 196, 611, 8, 44, 59, -23], [ -8, -71, 61, 8, 411, -599, 208, 208], [ -52, -43, 49, 44, -599, 411, 208, 208], [ -49, -8, 8, 59, 208, 208, 99, -911], [ 29, -44, 52, -23, 208, 208, -911, 99]]) assert M.eigenvals() == { S('0'): 1, S('10*sqrt(10405)'): 1, S('100*sqrt(26) + 510'): 1, S('1000'): 2, S('-100*sqrt(26) + 510'): 1, S('-10*sqrt(10405)'): 1, S('1020'): 1} def test_P25(): MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29], [ 196, 899, 113, -192, -71, -43, -8, -44], [-192, 113, 899, 196, 61, 49, 8, 52], [ 407, -192, 196, 611, 8, 44, 59, -23], [ -8, -71, 61, 8, 411, -599, 208, 208], [ -52, -43, 49, 44, -599, 411, 208, 208], [ -49, -8, 8, 59, 208, 208, 99, -911], [ 29, -44, 52, -23, 208, 208, -911, 99]])) assert (Matrix(sorted(MF.eigenvals())) - Matrix( [-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0, 1019.9019513592784, 1020.0, 1020.0490184299969])).norm() < 1e-13 def test_P26(): a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4') M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0], [ 1, 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 1, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 1, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 1, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, -1, -1, 0, 0], [ 0, 0, 0, 0, 0, 1, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 1, -1, -1], [ 0, 0, 0, 0, 0, 0, 0, 1, 0]]) assert M.eigenvals(error_when_incomplete=False) == { S('-1/2 - sqrt(3)*I/2'): 2, S('-1/2 + sqrt(3)*I/2'): 2} def test_P27(): a = symbols('a') M = Matrix([[a, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 0, a, 0, 0], [0, 0, 0, a, 0], [0, -2, 0, 0, 2]]) assert M.eigenvects() == [(a, 3, [Matrix([[1], [0], [0], [0], [0]]), Matrix([[0], [0], [1], [0], [0]]), Matrix([[0], [0], [0], [1], [0]])]), (1 - I, 1, [Matrix([[ 0], [-1/(-1 + I)], [ 0], [ 0], [ 1]])]), (1 + I, 1, [Matrix([[ 0], [-1/(-1 - I)], [ 0], [ 0], [ 1]])])] @XFAIL def test_P28(): raise NotImplementedError("Generalized eigenvectors not supported \ https://github.com/sympy/sympy/issues/5293") @XFAIL def test_P29(): raise NotImplementedError("Generalized eigenvectors not supported \ https://github.com/sympy/sympy/issues/5293") def test_P30(): M = Matrix([[1, 0, 0, 1, -1], [0, 1, -2, 3, -3], [0, 0, -1, 2, -2], [1, -1, 1, 0, 1], [1, -1, 1, -1, 2]]) _, J = M.jordan_form() assert J == Matrix([[-1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1], [0, 0, 0, 0, 1]]) @XFAIL def test_P31(): raise NotImplementedError("Smith normal form not implemented") def test_P32(): M = Matrix([[1, -2], [2, 1]]) assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)], [E*sin(2), E*cos(2)]]) def test_P33(): w, t = symbols('w t') M = Matrix([[0, 1, 0, 0], [0, 0, 0, 2*w], [0, 0, 0, 1], [0, -2*w, 3*w**2, 0]]) assert exp(M*t).rewrite(cos).expand() == Matrix([ [1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w], [0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)], [0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w], [0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]]) @XFAIL def test_P34(): a, b, c = symbols('a b c', real=True) M = Matrix([[a, 1, 0, 0, 0, 0], [0, a, 0, 0, 0, 0], [0, 0, b, 0, 0, 0], [0, 0, 0, c, 1, 0], [0, 0, 0, 0, c, 1], [0, 0, 0, 0, 0, c]]) # raises exception, sin(M) not supported. exp(M*I) also not supported # https://github.com/sympy/sympy/issues/6218 assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0], [0, sin(a), 0, 0, 0, 0], [0, 0, sin(b), 0, 0, 0], [0, 0, 0, sin(c), cos(c), -sin(c)/2], [0, 0, 0, 0, sin(c), cos(c)], [0, 0, 0, 0, 0, sin(c)]]) @XFAIL def test_P35(): M = pi/2*Matrix([[2, 1, 1], [2, 3, 2], [1, 1, 2]]) # raises exception, sin(M) not supported. exp(M*I) also not supported # https://github.com/sympy/sympy/issues/6218 assert sin(M) == eye(3) @XFAIL def test_P36(): M = Matrix([[10, 7], [7, 17]]) assert sqrt(M) == Matrix([[3, 1], [1, 4]]) def test_P37(): M = Matrix([[1, 1, 0], [0, 1, 0], [0, 0, 1]]) assert M**S.Half == Matrix([[1, R(1, 2), 0], [0, 1, 0], [0, 0, 1]]) @XFAIL def test_P38(): M=Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) #raises ValueError: Matrix det == 0; not invertible M**S.Half @XFAIL def test_P39(): """ M=Matrix([ [1, 1], [2, 2], [3, 3]]) M.SVD() """ raise NotImplementedError("Singular value decomposition not implemented") def test_P40(): r, t = symbols('r t', real=True) M = Matrix([r*cos(t), r*sin(t)]) assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)], [sin(t), r*cos(t)]]) def test_P41(): r, t = symbols('r t', real=True) assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)], [2*r*cos(t), -r**2*sin(t)]]) def test_P42(): assert wronskian([cos(x), sin(x)], x).simplify() == 1 def test_P43(): def __my_jacobian(M, Y): return Matrix([M.diff(v).T for v in Y]).T r, t = symbols('r t', real=True) M = Matrix([r*cos(t), r*sin(t)]) assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)], [sin(t), r*cos(t)]]) def test_P44(): def __my_hessian(f, Y): V = Matrix([diff(f, v) for v in Y]) return Matrix([V.T.diff(v) for v in Y]) r, t = symbols('r t', real=True) assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([ [ 2*sin(t), 2*r*cos(t)], [2*r*cos(t), -r**2*sin(t)]]) def test_P45(): def __my_wronskian(Y, v): M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))]) return M.det() assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1 # Q1-Q6 Tensor tests missing @XFAIL def test_R1(): i, j, n = symbols('i j n', integer=True, positive=True) xn = MatrixSymbol('xn', n, 1) Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1)) # sum does not calculate # Unknown result Sm.doit() raise NotImplementedError('Unknown result') @XFAIL def test_R2(): m, b = symbols('m b') i, n = symbols('i n', integer=True, positive=True) xn = MatrixSymbol('xn', n, 1) yn = MatrixSymbol('yn', n, 1) f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1)) f1 = diff(f, m) f2 = diff(f, b) # raises TypeError: solveset() takes at most 2 arguments (3 given) solveset((f1, f2), (m, b), domain=S.Reals) @XFAIL def test_R3(): n, k = symbols('n k', integer=True, positive=True) sk = ((-1)**k) * (binomial(2*n, k))**2 Sm = Sum(sk, (k, 1, oo)) T = Sm.doit() T2 = T.combsimp() # returns -((-1)**n*factorial(2*n) # - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2 assert T2 == (-1)**n*binomial(2*n, n) @XFAIL def test_R4(): # Macsyma indefinite sum test case: #(c15) /* Check whether the full Gosper algorithm is implemented # => 1/2^(n + 1) binomial(n, k - 1) */ #closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k)); #Time= 2690 msecs # (- n + k - 1) binomial(n + 1, k) #(d15) - -------------------------------- # n # 2 2 (n + 1) # #(c16) factcomb(makefact(%)); #Time= 220 msecs # n! #(d16) ---------------- # n # 2 k! 2 (n - k)! # Might be possible after fixing https://github.com/sympy/sympy/pull/1879 raise NotImplementedError("Indefinite sum not supported") @XFAIL def test_R5(): a, b, c, n, k = symbols('a b c n k', integer=True, positive=True) sk = ((-1)**k)*(binomial(a + b, a + k) *binomial(b + c, b + k)*binomial(c + a, c + k)) Sm = Sum(sk, (k, 1, oo)) T = Sm.doit() # hypergeometric series not calculated assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c)) def test_R6(): n, k = symbols('n k', integer=True, positive=True) gn = MatrixSymbol('gn', n + 2, 1) Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1)) assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0] def test_R7(): n, k = symbols('n k', integer=True, positive=True) T = Sum(k**3,(k,1,n)).doit() assert T.factor() == n**2*(n + 1)**2/4 @XFAIL def test_R8(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(k**2*binomial(n, k), (k, 1, n)) T = Sm.doit() #returns Piecewise function assert T.combsimp() == n*(n + 1)*2**(n - 2) def test_R9(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1)) assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1) @XFAIL def test_R10(): n, m, r, k = symbols('n m r k', integer=True, positive=True) Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r)) T = Sm.doit() T2 = T.combsimp().rewrite(factorial) assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r)) assert T2 == binomial(m + n, r).rewrite(factorial) # rewrite(binomial) is not working. # https://github.com/sympy/sympy/issues/7135 T3 = T2.rewrite(binomial) assert T3 == binomial(m + n, r) @XFAIL def test_R11(): n, k = symbols('n k', integer=True, positive=True) sk = binomial(n, k)*fibonacci(k) Sm = Sum(sk, (k, 0, n)) T = Sm.doit() # Fibonacci simplification not implemented # https://github.com/sympy/sympy/issues/7134 assert T == fibonacci(2*n) @XFAIL def test_R12(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(fibonacci(k)**2, (k, 0, n)) T = Sm.doit() assert T == fibonacci(n)*fibonacci(n + 1) @XFAIL def test_R13(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(sin(k*x), (k, 1, n)) T = Sm.doit() # Sum is not calculated assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2)) @XFAIL def test_R14(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(sin((2*k - 1)*x), (k, 1, n)) T = Sm.doit() # Sum is not calculated assert T.simplify() == sin(n*x)**2/sin(x) @XFAIL def test_R15(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2))) T = Sm.doit() # Sum is not calculated assert T.simplify() == fibonacci(n + 1) def test_R16(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo)) assert Sm.doit() == zeta(3) + pi**2/6 def test_R17(): k = symbols('k', integer=True, positive=True) assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo))) - 2.8469909700078206) < 1e-15 def test_R18(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/(2**k*k**2), (k, 1, oo)) T = Sm.doit() assert T.simplify() == -log(2)**2/2 + pi**2/12 @slow @XFAIL def test_R19(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo)) T = Sm.doit() # assert fails, T not simplified assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12 @XFAIL def test_R20(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(binomial(n, 4*k), (k, 0, oo)) T = Sm.doit() # assert fails, T not simplified assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2 @XFAIL def test_R21(): k = symbols('k', integer=True, positive=True) Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo)) T = Sm.doit() # Sum not calculated assert T.simplify() == 1 # test_R22 answer not available in Wester samples # Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k), # (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1? @XFAIL def test_R23(): n, k = symbols('n k', integer=True, positive=True) Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))* (x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo)) # Missing how to express constraint abs(x*y)<1? T = Sm.doit() # Sum not calculated assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1) def test_R24(): m, k = symbols('m k', integer=True, positive=True) Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo)) assert Sm.doit() == pi/2 def test_S1(): k = symbols('k', integer=True, positive=True) Pr = Product(gamma(k/3), (k, 1, 8)) assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561 def test_S2(): n, k = symbols('n k', integer=True, positive=True) assert Product(k, (k, 1, n)).doit() == factorial(n) def test_S3(): n, k = symbols('n k', integer=True, positive=True) assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2) def test_S4(): n, k = symbols('n k', integer=True, positive=True) assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n def test_S5(): n, k = symbols('n k', integer=True, positive=True) assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() == gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1))) @XFAIL def test_S6(): n, k = symbols('n k', integer=True, positive=True) # Product does not evaluate assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify() == (x**(2*n) - 1)/(x**2 - 1)) @XFAIL def test_S7(): k = symbols('k', integer=True, positive=True) Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == R(2, 3) @XFAIL def test_S8(): k = symbols('k', integer=True, positive=True) Pr = Product(1 - 1/(2*k)**2, (k, 1, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == 2/pi @XFAIL def test_S9(): k = symbols('k', integer=True, positive=True) Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo)) T = Pr.doit() # Product produces 0 # https://github.com/sympy/sympy/issues/7133 assert T.simplify() == sqrt(2) @XFAIL def test_S10(): k = symbols('k', integer=True, positive=True) Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo)) T = Pr.doit() # Product does not evaluate assert T.simplify() == -1 def test_T1(): assert limit((1 + 1/n)**n, n, oo) == E assert limit((1 - cos(x))/x**2, x, 0) == S.Half def test_T2(): assert limit((3**x + 5**x)**(1/x), x, oo) == 5 def test_T3(): assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1 def test_T4(): assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1)))) - exp(x))/x, x, oo) == -exp(2) def test_T5(): assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2 + 2*exp(exp(3*x**3*log(x))))), x, oo) == R(1, 3) def test_T6(): assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1) def test_T7(): limit(1/n * gamma(n + 1)**(1/n), n, oo) def test_T8(): a, z = symbols('a z', real=True, positive=True) assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1 @XFAIL def test_T9(): z, k = symbols('z k', real=True, positive=True) # raises NotImplementedError: # Don't know how to calculate the mrv of '(1, k)' assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z) @XFAIL def test_T10(): # No longer raises PoleError, but should return euler-mascheroni constant assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo)) @XFAIL def test_T11(): n, k = symbols('n k', integer=True, positive=True) # evaluates to 0 assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x) @XFAIL def test_T12(): x, t = symbols('x t', real=True) # Does not evaluate the limit but returns an expression with erf assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)), x, 0) == 1 def test_T13(): x = symbols('x', real=True) assert [limit(x/abs(x), x, 0, dir='-'), limit(x/abs(x), x, 0, dir='+')] == [-1, 1] def test_T14(): x = symbols('x', real=True) assert limit(atan(-log(x)), x, 0, dir='+') == pi/2 def test_U1(): x = symbols('x', real=True) assert diff(abs(x), x) == sign(x) def test_U2(): f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0))) assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0)) def test_U3(): f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1))) f1 = Lambda(x, diff(f(x), x)) assert f1(x) == 3*x**2 assert f1(1) == 3 @XFAIL def test_U4(): n = symbols('n', integer=True, positive=True) x = symbols('x', real=True) d = diff(x**n, x, n) assert d.rewrite(factorial) == factorial(n) def test_U5(): # issue 6681 t = symbols('t') ans = ( Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) + Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2) assert f(g(t)).diff(t, 2) == ans assert ans.doit() == ans def test_U6(): h = Function('h') T = integrate(f(y), (y, h(x), g(x))) assert T.diff(x) == ( f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x)) @XFAIL def test_U7(): p, t = symbols('p t', real=True) # Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT # raises ValueError: Since there is more than one variable in the # expression, the variable(s) of differentiation must be supplied to # differentiate f(p,t) diff(f(p, t)) def test_U8(): x, y = symbols('x y', real=True) eq = cos(x*y) + x # If SymPy had implicit_diff() function this hack could be avoided # TODO: Replace solve with solveset, current test fails for solveset assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1) def test_U9(): # Wester sample case for Maple: # O29 := diff(f(x, y), x) + diff(f(x, y), y); # /d \ /d \ # |-- f(x, y)| + |-- f(x, y)| # \dx / \dy / # # O30 := factor(subs(f(x, y) = g(x^2 + y^2), %)); # 2 2 # 2 D(g)(x + y ) (x + y) x, y = symbols('x y', real=True) su = diff(f(x, y), x) + diff(f(x, y), y) s2 = su.subs(f(x, y), g(x**2 + y**2)) s3 = s2.doit().factor() # Subs not performed, s3 = 2*(x + y)*Subs(Derivative( # g(_xi_1), _xi_1), _xi_1, x**2 + y**2) # Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy, # and probably will remain that way. You can take derivatives with respect # to other expressions only if they are atomic, like a symbol or a # function. # D operator should be added to SymPy # See https://github.com/sympy/sympy/issues/4719. assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2 def test_U10(): # see issue 2519: assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == R(-9, 4) @XFAIL def test_U11(): # assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz raise NotImplementedError @XFAIL def test_U12(): # Wester sample case: # (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy) # => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */ # factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy)); # 4 # (d41) (10 x y + 15 x + 8) dx dy dz raise NotImplementedError( "External diff of differential form not supported") def test_U13(): assert minimum(x**4 - x + 1, x) == -3*2**R(1,3)/8 + 1 @XFAIL def test_U14(): #f = 1/(x**2 + y**2 + 1) #assert [minimize(f), maximize(f)] == [0,1] raise NotImplementedError("minimize(), maximize() not supported") @XFAIL def test_U15(): raise NotImplementedError("minimize() not supported and also solve does \ not support multivariate inequalities") @XFAIL def test_U16(): raise NotImplementedError("minimize() not supported in SymPy and also \ solve does not support multivariate inequalities") @XFAIL def test_U17(): raise NotImplementedError("Linear programming, symbolic simplex not \ supported in SymPy") def test_V1(): x = symbols('x', real=True) assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True)) def test_V2(): assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x ) == Piecewise((-x**2/2, x < 0), (x**2/2, True)) def test_V3(): assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2) def test_V4(): assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2) @XFAIL def test_V5(): # Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1)) assert (integrate((3*x - 5)**2/(2*x - 1)**R(7, 2), x).simplify() == (-41 + 80*x - 45*x**2)/(5*(2*x - 1)**R(5, 2))) @XFAIL def test_V6(): # returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*( log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m)) def test_V7(): r1 = integrate(sinh(x)**4/cosh(x)**2) assert r1.simplify() == x*R(-3, 2) + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2 @XFAIL def test_V8_V9(): #Macsyma test case: #(c27) /* This example involves several symbolic parameters # => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/ # [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2) # [Gradshteyn and Ryzhik 2.553(3)] */ #assume(b^2 > a^2)$ #(c28) integrate(1/(a + b*cos(x)), x); #(c29) trigsimp(ratsimp(diff(%, x))); # 1 #(d29) ------------ # b cos(x) + a raise NotImplementedError( "Integrate with assumption not supported") def test_V10(): assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + R(3, 4))/4 def test_V11(): r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x) r2 = factor(r1) assert (logcombine(r2, force=True) == log(((tan(x/2) + 1)/(tan(x/2) + 7))**R(1, 3))) @XFAIL def test_V12(): r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x) # Correct result in python2.7.4, wrong result in python3.5 # https://github.com/sympy/sympy/issues/7157 assert r1 == -1/(tan(x/2) + 2) @XFAIL def test_V13(): r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x) # expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3 # - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11 assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11 @slow @XFAIL def test_V14(): r1 = integrate(log(abs(x**2 - y**2)), x) # Piecewise result does not simplify to the desired result. assert (r1.simplify() == x*log(abs(x**2 - y**2)) + y*log(x + y) - y*log(x - y) - 2*x) def test_V15(): r1 = integrate(x*acot(x/y), x) assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0 @XFAIL def test_V16(): # Integral not calculated assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10 @XFAIL def test_V17(): r1 = integrate((diff(f(x), x)*g(x) - f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x) # integral not calculated assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0 @XFAIL def test_W1(): # The function has a pole at y. # The integral has a Cauchy principal value of zero but SymPy returns -I*pi # https://github.com/sympy/sympy/issues/7159 assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0 @XFAIL def test_W2(): # The function has a pole at y. # The integral is divergent but SymPy returns -2 # https://github.com/sympy/sympy/issues/7160 # Test case in Macsyma: # (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1)); # Integral is divergent assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) is zoo @XFAIL @slow def test_W3(): # integral is not calculated # https://github.com/sympy/sympy/issues/7161 assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == R(4, 3) @XFAIL @slow def test_W4(): # integral is not calculated assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + R(4, 3) @XFAIL @slow def test_W5(): # integral is not calculated assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + R(8, 3) @XFAIL @slow def test_W6(): # integral is not calculated assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, pi*R(-3, 4), -pi/4)) == sqrt(2) def test_W7(): a = symbols('a', real=True, positive=True) r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo)) assert r1.simplify() == pi*exp(-a)/a @XFAIL def test_W8(): # Test case in Mathematica: # In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity}, # Assumptions -> 0 < a < 1] # Out[19]= Pi Csc[a Pi] raise NotImplementedError( "Integrate with assumption 0 < a < 1 not supported") @XFAIL def test_W9(): # Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)] # (principal value) [Levinson and Redheffer, p. 234] *) r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo)) r2 = r1.doit() assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8)) @XFAIL def test_W10(): # integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) = # 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1]) # [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */ r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo)) r2 = r1.doit() assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(pi*R(2, 5))/5 @XFAIL def test_W11(): # integral not calculated assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) == pi*(-1 + sqrt(2))) def test_W12(): p = symbols('p', real=True, positive=True) q = symbols('q', real=True) r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo)) assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**R(3, 2) @XFAIL def test_W13(): # Integral not calculated. Expected result is 2*(Euler_mascheroni_constant) r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1)) assert r1 == 2*EulerGamma def test_W14(): assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0 @XFAIL def test_W15(): # integral not calculated assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == R(1, 12) def test_W16(): assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x), (x, -1, 1)) == R(36, 35) def test_W17(): a, b = symbols('a b', real=True, positive=True) assert integrate(exp(-a*x)*besselj(0, b*x), (x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1)) def test_W18(): assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi) @XFAIL def test_W19(): # Integral not calculated # Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)] assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7 @XFAIL def test_W20(): # integral not calculated assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) == -pi**2/36 - R(17, 108) + zeta(3)/4 + (-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9) def test_W21(): assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1))) - 0.210882859565594) < 1e-15 def test_W22(): t, u = symbols('t u', real=True) s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True))) assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise( (0, u < 0), (-sin(Min(1, u)) + sin(Min(2, u)), True)) @slow def test_W23(): a, b = symbols('a b', real=True, positive=True) r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo)) assert r1.collect(pi) == pi*(-a + b) def test_W23b(): # like W23 but limits are reversed a, b = symbols('a b', real=True, positive=True) r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b)) assert r2.collect(pi) == pi*(-a + b) @XFAIL @slow def test_W24(): if ON_TRAVIS: skip("Too slow for travis.") # Not that slow, but does not fully evaluate so simplify is slow. # Maybe also require doit() x, y = symbols('x y', real=True) r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1)) assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0 @XFAIL @slow def test_W25(): if ON_TRAVIS: skip("Too slow for travis.") a, x, y = symbols('a x y', real=True) i1 = integrate( sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2), (x, 0, pi/2)) i2 = integrate(i1, (y, 0, pi/2)) assert (i2 - pi*a/2).simplify() == 0 def test_W26(): x, y = symbols('x y', real=True) assert integrate(integrate(abs(y - x**2), (y, 0, 2)), (x, -1, 1)) == R(46, 15) def test_W27(): a, b, c = symbols('a b c') assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))), (y, 0, b*(1 - x/a))), (x, 0, a)) == a*b*c/6 def test_X1(): v, c = symbols('v c', real=True) assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) == 5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8)) def test_X2(): v, c = symbols('v c', real=True) s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8) def test_X3(): s1 = (sin(x).series()/cos(x).series()).series() s2 = tan(x).series() assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6) assert s1 == s2 def test_X4(): s1 = log(sin(x)/x).series() assert s1 == -x**2/6 - x**4/180 + O(x**6) assert log(series(sin(x)/x)).series() == s1 @XFAIL def test_X5(): # test case in Mathematica syntax: # In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)] # + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *) # In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}] # Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x] # In[23]:= Series[%, {x, d, 1}] # Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) + # 2 2 # (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x] h = Function('h') a, b, c, d = symbols('a b c d', real=True) # series() raises NotImplementedError: # The _eval_nseries method should be added to <class # 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0 series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)), x, x0=d, n=2) # assert missing, until exception is removed def test_X6(): # Taylor series of nonscalar objects (noncommutative multiplication) # expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg] a, b = symbols('a b', commutative=False, scalar=False) assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) == x**2*(-a*b/2 + b*a/2) + O(x**3)) def test_X7(): # => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity ) # = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6) # [Levinson and Redheffer, p. 173] assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) + R(1, 12) - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7)) def test_X8(): # Puiseux series (terms with fractional degree): # => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2)) # see issue 7167: x = symbols('x', real=True) assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) == 1/sqrt(x - pi*R(3, 2)) + (x - pi*R(3, 2))**R(3, 2)/12 + (x - pi*R(3, 2))**R(7, 2)/160 + O((x - pi*R(3, 2))**4, (x, pi*R(3, 2)))) def test_X9(): assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 + x**3*log(x)**3/6 + O(x**4*log(x)**4)) def test_X10(): z, w = symbols('z w') assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) == log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2)) def test_X11(): z, w = symbols('z w') assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) == log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2)) @XFAIL def test_X12(): # Look at the generalized Taylor series around x = 1 # Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)] a, b, x = symbols('a b x', real=True) # series returns O(log(x-1)**2) # https://github.com/sympy/sympy/issues/7168 assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) == (x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2))) def test_X13(): assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo)) @XFAIL def test_X14(): # Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385] assert series(1/2**(2*n)*binomial(2*n, n), n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo)) @SKIP("https://github.com/sympy/sympy/issues/7164") def test_X15(): # => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544] x, t = symbols('x t', real=True) # raises RuntimeError: maximum recursion depth exceeded # https://github.com/sympy/sympy/issues/7164 # 2019-02-17: Raises # PoleError: # Asymptotic expansion of Ei around [-oo] is not implemented. e1 = integrate(exp(-t)/t, (t, x, oo)) assert (series(e1, x, x0=oo, n=5) == 6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo))) def test_X16(): # Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4) assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 + O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y)) @XFAIL def test_X17(): # Power series (compute the general formula) # (c41) powerseries(log(sin(x)/x), x, 0); # /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded. # inf # ==== i1 2 i1 2 i1 # \ (- 1) 2 bern(2 i1) x # (d41) > ------------------------------ # / 2 i1 (2 i1)! # ==== # i1 = 1 # fps does not calculate assert fps(log(sin(x)/x)) == \ Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo)) @XFAIL def test_X18(): # Power series (compute the general formula). Maple FPS: # > FormalPowerSeries(exp(-x)*sin(x), x = 0); # infinity # ----- (1/2 k) k # \ 2 sin(3/4 k Pi) x # ) ------------------------- # / k! # ----- # # Now, sympy returns # oo # _____ # \ ` # \ / k k\ # \ k |I*(-1 - I) I*(-1 + I) | # \ x *|----------- - -----------| # / \ 2 2 / # / ------------------------------ # / k! # /____, # k = 0 k = Dummy('k') assert fps(exp(-x)*sin(x)) == \ Sum(2**(S.Half*k)*sin(R(3, 4)*k*pi)*x**k/factorial(k), (k, 0, oo)) @XFAIL def test_X19(): # (c45) /* Derive an explicit Taylor series solution of y as a function of # x from the following implicit relation: # y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 + # 17/10 (x - 1)^5 + ... # */ # x = sin(y) + cos(y); # Time= 0 msecs # (d45) x = sin(y) + cos(y) # # (c46) taylor_revert(%, y, 7); raise NotImplementedError("Solve using series not supported. \ Inverse Taylor series expansion also not supported") @XFAIL def test_X20(): # Pade (rational function) approximation => (2 - x)/(2 + x) # > numapprox[pade](exp(-x), x = 0, [1, 1]); # bytes used=9019816, alloc=3669344, time=13.12 # 1 - 1/2 x # --------- # 1 + 1/2 x # mpmath support numeric Pade approximant but there is # no symbolic implementation in SymPy # https://en.wikipedia.org/wiki/Pad%C3%A9_approximant raise NotImplementedError("Symbolic Pade approximant not supported") def test_X21(): """ Test whether `fourier_series` of x periodical on the [-p, p] interval equals `- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`. """ p = symbols('p', positive=True) n = symbols('n', positive=True, integer=True) s = fourier_series(x, (x, -p, p)) # All cosine coefficients are equal to 0 assert s.an.formula == 0 # Check for sine coefficients assert s.bn.formula.subs(s.bn.variables[0], 0) == 0 assert s.bn.formula.subs(s.bn.variables[0], n) == \ -2*p/pi * (-1)**n / n * sin(n*pi*x/p) @XFAIL def test_X22(): # (c52) /* => p / 2 # - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2, # n = 1..infinity ) */ # fourier_series(abs(x), x, p); # p # (e52) a = - # 0 2 # # %nn # (2 (- 1) - 2) p # (e53) a = ------------------ # %nn 2 2 # %pi %nn # # (e54) b = 0 # %nn # # Time= 5290 msecs # inf %nn %pi %nn x # ==== (2 (- 1) - 2) cos(---------) # \ p # p > ------------------------------- # / 2 # ==== %nn # %nn = 1 p # (d54) ----------------------------------------- + - # 2 2 # %pi raise NotImplementedError("Fourier series not supported") def test_Y1(): t = symbols('t', real=True, positive=True) w = symbols('w', real=True) s = symbols('s') F, _, _ = laplace_transform(cos((w - 1)*t), t, s) assert F == s/(s**2 + (w - 1)**2) def test_Y2(): t = symbols('t', real=True, positive=True) w = symbols('w', real=True) s = symbols('s') f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t) assert f == cos(t*w - t) def test_Y3(): t = symbols('t', real=True, positive=True) w = symbols('w', real=True) s = symbols('s') F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s) assert F == w/(s**2 - 4*w**2) def test_Y4(): t = symbols('t', real=True, positive=True) s = symbols('s') F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s) assert F == (1 - exp(-6*sqrt(s)))/s @XFAIL def test_Y5_Y6(): # Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the # Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and # duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T. # Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing # Company, 1983, p. 211. First, take the Laplace transform of the ODE # => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)] # where Y(s) is the Laplace transform of y(t) t = symbols('t', real=True, positive=True) s = symbols('s') y = Function('y') F, _, _ = laplace_transform(diff(y(t), t, 2) + y(t) - 4*(Heaviside(t - 1) - Heaviside(t - 2)), t, s) # Laplace transform for diff() not calculated # https://github.com/sympy/sympy/issues/7176 assert (F == s**2*LaplaceTransform(y(t), t, s) - s + LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s) # TODO implement second part of test case # Now, solve for Y(s) and then take the inverse Laplace transform # => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)] # => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)} @XFAIL def test_Y7(): # What is the Laplace transform of an infinite square wave? # => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity ) # [Sanchez, Allen and Kyner, p. 213] t = symbols('t', real=True, positive=True) a = symbols('a', real=True) s = symbols('s') F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a), (n, 1, oo)), t, s) # returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t), # (n, 1, oo)), t, s) + 1/s # https://github.com/sympy/sympy/issues/7177 assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s @XFAIL def test_Y8(): assert fourier_transform(1, x, z) == DiracDelta(z) def test_Y9(): assert (fourier_transform(exp(-9*x**2), x, z) == sqrt(pi)*exp(-pi**2*z**2/9)/3) def test_Y10(): assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z) == (-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81)) @SKIP("https://github.com/sympy/sympy/issues/7181") @slow def test_Y11(): # => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)] x, s = symbols('x s') # raises RuntimeError: maximum recursion depth exceeded # https://github.com/sympy/sympy/issues/7181 # Update 2019-02-17 raises: # TypeError: cannot unpack non-iterable MellinTransform object F, _, _ = mellin_transform(1/(1 - x), x, s) assert F == pi*cot(pi*s) @XFAIL def test_Y12(): # => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1) # [Gradshteyn and Ryzhik 17.43(16)] x, s = symbols('x s') # returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1) # https://github.com/sympy/sympy/issues/7182 F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s) assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4) @XFAIL def test_Y13(): # Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z raise NotImplementedError("z-transform not supported") @XFAIL def test_Y14(): # Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) raise NotImplementedError("z-transform not supported") def test_Z1(): r = Function('r') assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n), {r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1) def test_Z2(): r = Function('r') assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1}) == -2**n + 3**n) def test_Z3(): # => r(n) = Fibonacci[n + 1] [Cohen, p. 83] r = Function('r') # recurrence solution is correct, Wester expects it to be simplified to # fibonacci(n+1), but that is quite hard assert (rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n), {r(1): 1, r(2): 2}).simplify() == 2**(-n)*((1 + sqrt(5))**n*(sqrt(5) + 5) + (-sqrt(5) + 1)**n*(-sqrt(5) + 5))/10) @XFAIL def test_Z4(): # => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)] # [Joan Z. Yu and Robert Israel in sci.math.symbolic] r = Function('r') c = symbols('c') # raises ValueError: Polynomial or rational function expected, # got '(c**2 - c**n)/(c - c**n) s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1) - c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1), r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)}) assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) + (n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0) @XFAIL def test_Z5(): # Second order ODE with initial conditions---solve directly # transform: f(t) = sin(2 t)/8 - t cos(2 t)/4 C1, C2 = symbols('C1 C2') # initial conditions not supported, this is a manual workaround # https://github.com/sympy/sympy/issues/4720 eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x) sol = dsolve(eq, f(x)) f0 = Lambda(x, sol.rhs) assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x) f1 = Lambda(x, diff(f0(x), x)) # TODO: Replace solve with solveset, when it works for solveset const_dict = solve((f0(0), f1(0))) result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2]) assert result == -x*cos(2*x)/4 + sin(2*x)/8 # Result is OK, but ODE solving with initial conditions should be # supported without all this manual work raise NotImplementedError('ODE solving with initial conditions \ not supported') @XFAIL def test_Z6(): # Second order ODE with initial conditions---solve using Laplace # transform: f(t) = sin(2 t)/8 - t cos(2 t)/4 t = symbols('t', real=True, positive=True) s = symbols('s') eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t) F, _, _ = laplace_transform(eq, t, s) # Laplace transform for diff() not calculated # https://github.com/sympy/sympy/issues/7176 assert (F == s**2*LaplaceTransform(f(t), t, s) + 4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4)) # rest of test case not implemented
ccb207a57aaf39025f420a9e31176c698702e4bee0ad692cc8c01bba064eb084
from __future__ import print_function from textwrap import dedent from itertools import islice, product from sympy import ( symbols, Integer, Integral, Tuple, Dummy, Basic, default_sort_key, Matrix, factorial, true) from sympy.combinatorics import RGS_enum, RGS_unrank, Permutation from sympy.core.compatibility import iterable, range from sympy.utilities.iterables import ( _partition, _set_partitions, binary_partitions, bracelets, capture, cartes, common_prefix, common_suffix, connected_components, dict_merge, filter_symbols, flatten, generate_bell, generate_derangements, generate_involutions, generate_oriented_forest, group, has_dups, ibin, iproduct, kbins, minlex, multiset, multiset_combinations, multiset_partitions, multiset_permutations, necklaces, numbered_symbols, ordered, partitions, permutations, postfixes, postorder_traversal, prefixes, reshape, rotate_left, rotate_right, runs, sift, strongly_connected_components, subsets, take, topological_sort, unflatten, uniq, variations, ordered_partitions, rotations) from sympy.utilities.enumerative import ( factoring_visitor, multiset_partitions_taocp ) from sympy.core.singleton import S from sympy.functions.elementary.piecewise import Piecewise, ExprCondPair from sympy.utilities.pytest import raises w, x, y, z = symbols('w,x,y,z') def test_postorder_traversal(): expr = z + w*(x + y) expected = [z, w, x, y, x + y, w*(x + y), w*(x + y) + z] assert list(postorder_traversal(expr, keys=default_sort_key)) == expected assert list(postorder_traversal(expr, keys=True)) == expected expr = Piecewise((x, x < 1), (x**2, True)) expected = [ x, 1, x, x < 1, ExprCondPair(x, x < 1), 2, x, x**2, true, ExprCondPair(x**2, True), Piecewise((x, x < 1), (x**2, True)) ] assert list(postorder_traversal(expr, keys=default_sort_key)) == expected assert list(postorder_traversal( [expr], keys=default_sort_key)) == expected + [[expr]] assert list(postorder_traversal(Integral(x**2, (x, 0, 1)), keys=default_sort_key)) == [ 2, x, x**2, 0, 1, x, Tuple(x, 0, 1), Integral(x**2, Tuple(x, 0, 1)) ] assert list(postorder_traversal(('abc', ('d', 'ef')))) == [ 'abc', 'd', 'ef', ('d', 'ef'), ('abc', ('d', 'ef'))] def test_flatten(): assert flatten((1, (1,))) == [1, 1] assert flatten((x, (x,))) == [x, x] ls = [[(-2, -1), (1, 2)], [(0, 0)]] assert flatten(ls, levels=0) == ls assert flatten(ls, levels=1) == [(-2, -1), (1, 2), (0, 0)] assert flatten(ls, levels=2) == [-2, -1, 1, 2, 0, 0] assert flatten(ls, levels=3) == [-2, -1, 1, 2, 0, 0] raises(ValueError, lambda: flatten(ls, levels=-1)) class MyOp(Basic): pass assert flatten([MyOp(x, y), z]) == [MyOp(x, y), z] assert flatten([MyOp(x, y), z], cls=MyOp) == [x, y, z] assert flatten({1, 11, 2}) == list({1, 11, 2}) def test_iproduct(): assert list(iproduct()) == [()] assert list(iproduct([])) == [] assert list(iproduct([1,2,3])) == [(1,),(2,),(3,)] assert sorted(iproduct([1, 2], [3, 4, 5])) == [ (1,3),(1,4),(1,5),(2,3),(2,4),(2,5)] assert sorted(iproduct([0,1],[0,1],[0,1])) == [ (0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)] assert iterable(iproduct(S.Integers)) is True assert iterable(iproduct(S.Integers, S.Integers)) is True assert (3,) in iproduct(S.Integers) assert (4, 5) in iproduct(S.Integers, S.Integers) assert (1, 2, 3) in iproduct(S.Integers, S.Integers, S.Integers) triples = set(islice(iproduct(S.Integers, S.Integers, S.Integers), 1000)) for n1, n2, n3 in triples: assert isinstance(n1, Integer) assert isinstance(n2, Integer) assert isinstance(n3, Integer) for t in set(product(*([range(-2, 3)]*3))): assert t in iproduct(S.Integers, S.Integers, S.Integers) def test_group(): assert group([]) == [] assert group([], multiple=False) == [] assert group([1]) == [[1]] assert group([1], multiple=False) == [(1, 1)] assert group([1, 1]) == [[1, 1]] assert group([1, 1], multiple=False) == [(1, 2)] assert group([1, 1, 1]) == [[1, 1, 1]] assert group([1, 1, 1], multiple=False) == [(1, 3)] assert group([1, 2, 1]) == [[1], [2], [1]] assert group([1, 2, 1], multiple=False) == [(1, 1), (2, 1), (1, 1)] assert group([1, 1, 2, 2, 2, 1, 3, 3]) == [[1, 1], [2, 2, 2], [1], [3, 3]] assert group([1, 1, 2, 2, 2, 1, 3, 3], multiple=False) == [(1, 2), (2, 3), (1, 1), (3, 2)] def test_subsets(): # combinations assert list(subsets([1, 2, 3], 0)) == [()] assert list(subsets([1, 2, 3], 1)) == [(1,), (2,), (3,)] assert list(subsets([1, 2, 3], 2)) == [(1, 2), (1, 3), (2, 3)] assert list(subsets([1, 2, 3], 3)) == [(1, 2, 3)] l = list(range(4)) assert list(subsets(l, 0, repetition=True)) == [()] assert list(subsets(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)] assert list(subsets(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)] assert list(subsets(l, 3, repetition=True)) == [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 2, 2), (0, 2, 3), (0, 3, 3), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), (2, 2, 2), (2, 2, 3), (2, 3, 3), (3, 3, 3)] assert len(list(subsets(l, 4, repetition=True))) == 35 assert list(subsets(l[:2], 3, repetition=False)) == [] assert list(subsets(l[:2], 3, repetition=True)) == [(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)] assert list(subsets([1, 2], repetition=True)) == \ [(), (1,), (2,), (1, 1), (1, 2), (2, 2)] assert list(subsets([1, 2], repetition=False)) == \ [(), (1,), (2,), (1, 2)] assert list(subsets([1, 2, 3], 2)) == \ [(1, 2), (1, 3), (2, 3)] assert list(subsets([1, 2, 3], 2, repetition=True)) == \ [(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)] def test_variations(): # permutations l = list(range(4)) assert list(variations(l, 0, repetition=False)) == [()] assert list(variations(l, 1, repetition=False)) == [(0,), (1,), (2,), (3,)] assert list(variations(l, 2, repetition=False)) == [(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)] assert list(variations(l, 3, repetition=False)) == [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)] assert list(variations(l, 0, repetition=True)) == [()] assert list(variations(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)] assert list(variations(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)] assert len(list(variations(l, 3, repetition=True))) == 64 assert len(list(variations(l, 4, repetition=True))) == 256 assert list(variations(l[:2], 3, repetition=False)) == [] assert list(variations(l[:2], 3, repetition=True)) == [ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) ] def test_cartes(): assert list(cartes([1, 2], [3, 4, 5])) == \ [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)] assert list(cartes()) == [()] assert list(cartes('a')) == [('a',)] assert list(cartes('a', repeat=2)) == [('a', 'a')] assert list(cartes(list(range(2)))) == [(0,), (1,)] def test_filter_symbols(): s = numbered_symbols() filtered = filter_symbols(s, symbols("x0 x2 x3")) assert take(filtered, 3) == list(symbols("x1 x4 x5")) def test_numbered_symbols(): s = numbered_symbols(cls=Dummy) assert isinstance(next(s), Dummy) assert next(numbered_symbols('C', start=1, exclude=[symbols('C1')])) == \ symbols('C2') def test_sift(): assert sift(list(range(5)), lambda _: _ % 2) == {1: [1, 3], 0: [0, 2, 4]} assert sift([x, y], lambda _: _.has(x)) == {False: [y], True: [x]} assert sift([S.One], lambda _: _.has(x)) == {False: [1]} assert sift([0, 1, 2, 3], lambda x: x % 2, binary=True) == ( [1, 3], [0, 2]) assert sift([0, 1, 2, 3], lambda x: x % 3 == 1, binary=True) == ( [1], [0, 2, 3]) raises(ValueError, lambda: sift([0, 1, 2, 3], lambda x: x % 3, binary=True)) def test_take(): X = numbered_symbols() assert take(X, 5) == list(symbols('x0:5')) assert take(X, 5) == list(symbols('x5:10')) assert take([1, 2, 3, 4, 5], 5) == [1, 2, 3, 4, 5] def test_dict_merge(): assert dict_merge({}, {1: x, y: z}) == {1: x, y: z} assert dict_merge({1: x, y: z}, {}) == {1: x, y: z} assert dict_merge({2: z}, {1: x, y: z}) == {1: x, 2: z, y: z} assert dict_merge({1: x, y: z}, {2: z}) == {1: x, 2: z, y: z} assert dict_merge({1: y, 2: z}, {1: x, y: z}) == {1: x, 2: z, y: z} assert dict_merge({1: x, y: z}, {1: y, 2: z}) == {1: y, 2: z, y: z} def test_prefixes(): assert list(prefixes([])) == [] assert list(prefixes([1])) == [[1]] assert list(prefixes([1, 2])) == [[1], [1, 2]] assert list(prefixes([1, 2, 3, 4, 5])) == \ [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]] def test_postfixes(): assert list(postfixes([])) == [] assert list(postfixes([1])) == [[1]] assert list(postfixes([1, 2])) == [[2], [1, 2]] assert list(postfixes([1, 2, 3, 4, 5])) == \ [[5], [4, 5], [3, 4, 5], [2, 3, 4, 5], [1, 2, 3, 4, 5]] def test_topological_sort(): V = [2, 3, 5, 7, 8, 9, 10, 11] E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10), (11, 2), (11, 9), (11, 10), (8, 9)] assert topological_sort((V, E)) == [3, 5, 7, 8, 11, 2, 9, 10] assert topological_sort((V, E), key=lambda v: -v) == \ [7, 5, 11, 3, 10, 8, 9, 2] raises(ValueError, lambda: topological_sort((V, E + [(10, 7)]))) def test_strongly_connected_components(): assert strongly_connected_components(([], [])) == [] assert strongly_connected_components(([1, 2, 3], [])) == [[1], [2], [3]] V = [1, 2, 3] E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)] assert strongly_connected_components((V, E)) == [[1, 2, 3]] V = [1, 2, 3, 4] E = [(1, 2), (2, 3), (3, 2), (3, 4)] assert strongly_connected_components((V, E)) == [[4], [2, 3], [1]] V = [1, 2, 3, 4] E = [(1, 2), (2, 1), (3, 4), (4, 3)] assert strongly_connected_components((V, E)) == [[1, 2], [3, 4]] def test_connected_components(): assert connected_components(([], [])) == [] assert connected_components(([1, 2, 3], [])) == [[1], [2], [3]] V = [1, 2, 3] E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)] assert connected_components((V, E)) == [[1, 2, 3]] V = [1, 2, 3, 4] E = [(1, 2), (2, 3), (3, 2), (3, 4)] assert connected_components((V, E)) == [[1, 2, 3, 4]] V = [1, 2, 3, 4] E = [(1, 2), (3, 4)] assert connected_components((V, E)) == [[1, 2], [3, 4]] def test_rotate(): A = [0, 1, 2, 3, 4] assert rotate_left(A, 2) == [2, 3, 4, 0, 1] assert rotate_right(A, 1) == [4, 0, 1, 2, 3] A = [] B = rotate_right(A, 1) assert B == [] B.append(1) assert A == [] B = rotate_left(A, 1) assert B == [] B.append(1) assert A == [] def test_multiset_partitions(): A = [0, 1, 2, 3, 4] assert list(multiset_partitions(A, 5)) == [[[0], [1], [2], [3], [4]]] assert len(list(multiset_partitions(A, 4))) == 10 assert len(list(multiset_partitions(A, 3))) == 25 assert list(multiset_partitions([1, 1, 1, 2, 2], 2)) == [ [[1, 1, 1, 2], [2]], [[1, 1, 1], [2, 2]], [[1, 1, 2, 2], [1]], [[1, 1, 2], [1, 2]], [[1, 1], [1, 2, 2]]] assert list(multiset_partitions([1, 1, 2, 2], 2)) == [ [[1, 1, 2], [2]], [[1, 1], [2, 2]], [[1, 2, 2], [1]], [[1, 2], [1, 2]]] assert list(multiset_partitions([1, 2, 3, 4], 2)) == [ [[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]], [[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]], [[1], [2, 3, 4]]] assert list(multiset_partitions([1, 2, 2], 2)) == [ [[1, 2], [2]], [[1], [2, 2]]] assert list(multiset_partitions(3)) == [ [[0, 1, 2]], [[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]], [[0], [1], [2]]] assert list(multiset_partitions(3, 2)) == [ [[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]]] assert list(multiset_partitions([1] * 3, 2)) == [[[1], [1, 1]]] assert list(multiset_partitions([1] * 3)) == [ [[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]] a = [3, 2, 1] assert list(multiset_partitions(a)) == \ list(multiset_partitions(sorted(a))) assert list(multiset_partitions(a, 5)) == [] assert list(multiset_partitions(a, 1)) == [[[1, 2, 3]]] assert list(multiset_partitions(a + [4], 5)) == [] assert list(multiset_partitions(a + [4], 1)) == [[[1, 2, 3, 4]]] assert list(multiset_partitions(2, 5)) == [] assert list(multiset_partitions(2, 1)) == [[[0, 1]]] assert list(multiset_partitions('a')) == [[['a']]] assert list(multiset_partitions('a', 2)) == [] assert list(multiset_partitions('ab')) == [[['a', 'b']], [['a'], ['b']]] assert list(multiset_partitions('ab', 1)) == [[['a', 'b']]] assert list(multiset_partitions('aaa', 1)) == [['aaa']] assert list(multiset_partitions([1, 1], 1)) == [[[1, 1]]] ans = [('mpsyy',), ('mpsy', 'y'), ('mps', 'yy'), ('mps', 'y', 'y'), ('mpyy', 's'), ('mpy', 'sy'), ('mpy', 's', 'y'), ('mp', 'syy'), ('mp', 'sy', 'y'), ('mp', 's', 'yy'), ('mp', 's', 'y', 'y'), ('msyy', 'p'), ('msy', 'py'), ('msy', 'p', 'y'), ('ms', 'pyy'), ('ms', 'py', 'y'), ('ms', 'p', 'yy'), ('ms', 'p', 'y', 'y'), ('myy', 'ps'), ('myy', 'p', 's'), ('my', 'psy'), ('my', 'ps', 'y'), ('my', 'py', 's'), ('my', 'p', 'sy'), ('my', 'p', 's', 'y'), ('m', 'psyy'), ('m', 'psy', 'y'), ('m', 'ps', 'yy'), ('m', 'ps', 'y', 'y'), ('m', 'pyy', 's'), ('m', 'py', 'sy'), ('m', 'py', 's', 'y'), ('m', 'p', 'syy'), ('m', 'p', 'sy', 'y'), ('m', 'p', 's', 'yy'), ('m', 'p', 's', 'y', 'y')] assert list(tuple("".join(part) for part in p) for p in multiset_partitions('sympy')) == ans factorings = [[24], [8, 3], [12, 2], [4, 6], [4, 2, 3], [6, 2, 2], [2, 2, 2, 3]] assert list(factoring_visitor(p, [2,3]) for p in multiset_partitions_taocp([3, 1])) == factorings def test_multiset_combinations(): ans = ['iii', 'iim', 'iip', 'iis', 'imp', 'ims', 'ipp', 'ips', 'iss', 'mpp', 'mps', 'mss', 'pps', 'pss', 'sss'] assert [''.join(i) for i in list(multiset_combinations('mississippi', 3))] == ans M = multiset('mississippi') assert [''.join(i) for i in list(multiset_combinations(M, 3))] == ans assert [''.join(i) for i in multiset_combinations(M, 30)] == [] assert list(multiset_combinations([[1], [2, 3]], 2)) == [[[1], [2, 3]]] assert len(list(multiset_combinations('a', 3))) == 0 assert len(list(multiset_combinations('a', 0))) == 1 assert list(multiset_combinations('abc', 1)) == [['a'], ['b'], ['c']] def test_multiset_permutations(): ans = ['abby', 'abyb', 'aybb', 'baby', 'bayb', 'bbay', 'bbya', 'byab', 'byba', 'yabb', 'ybab', 'ybba'] assert [''.join(i) for i in multiset_permutations('baby')] == ans assert [''.join(i) for i in multiset_permutations(multiset('baby'))] == ans assert list(multiset_permutations([0, 0, 0], 2)) == [[0, 0]] assert list(multiset_permutations([0, 2, 1], 2)) == [ [0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]] assert len(list(multiset_permutations('a', 0))) == 1 assert len(list(multiset_permutations('a', 3))) == 0 def test(): for i in range(1, 7): print(i) for p in multiset_permutations([0, 0, 1, 0, 1], i): print(p) assert capture(lambda: test()) == dedent('''\ 1 [0] [1] 2 [0, 0] [0, 1] [1, 0] [1, 1] 3 [0, 0, 0] [0, 0, 1] [0, 1, 0] [0, 1, 1] [1, 0, 0] [1, 0, 1] [1, 1, 0] 4 [0, 0, 0, 1] [0, 0, 1, 0] [0, 0, 1, 1] [0, 1, 0, 0] [0, 1, 0, 1] [0, 1, 1, 0] [1, 0, 0, 0] [1, 0, 0, 1] [1, 0, 1, 0] [1, 1, 0, 0] 5 [0, 0, 0, 1, 1] [0, 0, 1, 0, 1] [0, 0, 1, 1, 0] [0, 1, 0, 0, 1] [0, 1, 0, 1, 0] [0, 1, 1, 0, 0] [1, 0, 0, 0, 1] [1, 0, 0, 1, 0] [1, 0, 1, 0, 0] [1, 1, 0, 0, 0] 6\n''') def test_partitions(): ans = [[{}], [(0, {})]] for i in range(2): assert list(partitions(0, size=i)) == ans[i] assert list(partitions(1, 0, size=i)) == ans[i] assert list(partitions(6, 2, 2, size=i)) == ans[i] assert list(partitions(6, 2, None, size=i)) != ans[i] assert list(partitions(6, None, 2, size=i)) != ans[i] assert list(partitions(6, 2, 0, size=i)) == ans[i] assert [p.copy() for p in partitions(6, k=2)] == [ {2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}] assert [p.copy() for p in partitions(6, k=3)] == [ {3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}] assert [p.copy() for p in partitions(8, k=4, m=3)] == [ {4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [ i.copy() for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i) and sum(i.values()) <=3] assert [p.copy() for p in partitions(S(3), m=2)] == [ {3: 1}, {1: 1, 2: 1}] assert [i.copy() for i in partitions(4, k=3)] == [ {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [ i.copy() for i in partitions(4) if all(k <= 3 for k in i)] # Consistency check on output of _partitions and RGS_unrank. # This provides a sanity test on both routines. Also verifies that # the total number of partitions is the same in each case. # (from pkrathmann2) for n in range(2, 6): i = 0 for m, q in _set_partitions(n): assert q == RGS_unrank(i, n) i += 1 assert i == RGS_enum(n) def test_binary_partitions(): assert [i[:] for i in binary_partitions(10)] == [[8, 2], [8, 1, 1], [4, 4, 2], [4, 4, 1, 1], [4, 2, 2, 2], [4, 2, 2, 1, 1], [4, 2, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] assert len([j[:] for j in binary_partitions(16)]) == 36 def test_bell_perm(): assert [len(set(generate_bell(i))) for i in range(1, 7)] == [ factorial(i) for i in range(1, 7)] assert list(generate_bell(3)) == [ (0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)] # generate_bell and trotterjohnson are advertised to return the same # permutations; this is not technically necessary so this test could # be removed for n in range(1, 5): p = Permutation(range(n)) b = generate_bell(n) for bi in b: assert bi == tuple(p.array_form) p = p.next_trotterjohnson() raises(ValueError, lambda: list(generate_bell(0))) # XXX is this consistent with other permutation algorithms? def test_involutions(): lengths = [1, 2, 4, 10, 26, 76] for n, N in enumerate(lengths): i = list(generate_involutions(n + 1)) assert len(i) == N assert len({Permutation(j)**2 for j in i}) == 1 def test_derangements(): assert len(list(generate_derangements(list(range(6))))) == 265 assert ''.join(''.join(i) for i in generate_derangements('abcde')) == ( 'badecbaecdbcaedbcdeabceadbdaecbdeacbdecabeacdbedacbedcacabedcadebcaebd' 'cdaebcdbeacdeabcdebaceabdcebadcedabcedbadabecdaebcdaecbdcaebdcbeadceab' 'dcebadeabcdeacbdebacdebcaeabcdeadbceadcbecabdecbadecdabecdbaedabcedacb' 'edbacedbca') assert list(generate_derangements([0, 1, 2, 3])) == [ [1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1], [2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], [3, 2, 1, 0]] assert list(generate_derangements([0, 1, 2, 2])) == [ [2, 2, 0, 1], [2, 2, 1, 0]] def test_necklaces(): def count(n, k, f): return len(list(necklaces(n, k, f))) m = [] for i in range(1, 8): m.append(( i, count(i, 2, 0), count(i, 2, 1), count(i, 3, 1))) assert Matrix(m) == Matrix([ [1, 2, 2, 3], [2, 3, 3, 6], [3, 4, 4, 10], [4, 6, 6, 21], [5, 8, 8, 39], [6, 14, 13, 92], [7, 20, 18, 198]]) def test_bracelets(): bc = [i for i in bracelets(2, 4)] assert Matrix(bc) == Matrix([ [0, 0], [0, 1], [0, 2], [0, 3], [1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3, 3] ]) bc = [i for i in bracelets(4, 2)] assert Matrix(bc) == Matrix([ [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 1], [1, 1, 1, 1] ]) def test_generate_oriented_forest(): assert list(generate_oriented_forest(5)) == [[0, 1, 2, 3, 4], [0, 1, 2, 3, 3], [0, 1, 2, 3, 2], [0, 1, 2, 3, 1], [0, 1, 2, 3, 0], [0, 1, 2, 2, 2], [0, 1, 2, 2, 1], [0, 1, 2, 2, 0], [0, 1, 2, 1, 2], [0, 1, 2, 1, 1], [0, 1, 2, 1, 0], [0, 1, 2, 0, 1], [0, 1, 2, 0, 0], [0, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 1, 1, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0]] assert len(list(generate_oriented_forest(10))) == 1842 def test_unflatten(): r = list(range(10)) assert unflatten(r) == list(zip(r[::2], r[1::2])) assert unflatten(r, 5) == [tuple(r[:5]), tuple(r[5:])] raises(ValueError, lambda: unflatten(list(range(10)), 3)) raises(ValueError, lambda: unflatten(list(range(10)), -2)) def test_common_prefix_suffix(): assert common_prefix([], [1]) == [] assert common_prefix(list(range(3))) == [0, 1, 2] assert common_prefix(list(range(3)), list(range(4))) == [0, 1, 2] assert common_prefix([1, 2, 3], [1, 2, 5]) == [1, 2] assert common_prefix([1, 2, 3], [1, 3, 5]) == [1] assert common_suffix([], [1]) == [] assert common_suffix(list(range(3))) == [0, 1, 2] assert common_suffix(list(range(3)), list(range(3))) == [0, 1, 2] assert common_suffix(list(range(3)), list(range(4))) == [] assert common_suffix([1, 2, 3], [9, 2, 3]) == [2, 3] assert common_suffix([1, 2, 3], [9, 7, 3]) == [3] def test_minlex(): assert minlex([1, 2, 0]) == (0, 1, 2) assert minlex((1, 2, 0)) == (0, 1, 2) assert minlex((1, 0, 2)) == (0, 2, 1) assert minlex((1, 0, 2), directed=False) == (0, 1, 2) assert minlex('aba') == 'aab' def test_ordered(): assert list(ordered((x, y), hash, default=False)) in [[x, y], [y, x]] assert list(ordered((x, y), hash, default=False)) == \ list(ordered((y, x), hash, default=False)) assert list(ordered((x, y))) == [x, y] seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]], (lambda x: len(x), lambda x: sum(x))] assert list(ordered(seq, keys, default=False, warn=False)) == \ [[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]] raises(ValueError, lambda: list(ordered(seq, keys, default=False, warn=True))) def test_runs(): assert runs([]) == [] assert runs([1]) == [[1]] assert runs([1, 1]) == [[1], [1]] assert runs([1, 1, 2]) == [[1], [1, 2]] assert runs([1, 2, 1]) == [[1, 2], [1]] assert runs([2, 1, 1]) == [[2], [1], [1]] from operator import lt assert runs([2, 1, 1], lt) == [[2, 1], [1]] def test_reshape(): seq = list(range(1, 9)) assert reshape(seq, [4]) == \ [[1, 2, 3, 4], [5, 6, 7, 8]] assert reshape(seq, (4,)) == \ [(1, 2, 3, 4), (5, 6, 7, 8)] assert reshape(seq, (2, 2)) == \ [(1, 2, 3, 4), (5, 6, 7, 8)] assert reshape(seq, (2, [2])) == \ [(1, 2, [3, 4]), (5, 6, [7, 8])] assert reshape(seq, ((2,), [2])) == \ [((1, 2), [3, 4]), ((5, 6), [7, 8])] assert reshape(seq, (1, [2], 1)) == \ [(1, [2, 3], 4), (5, [6, 7], 8)] assert reshape(tuple(seq), ([[1], 1, (2,)],)) == \ (([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],)) assert reshape(tuple(seq), ([1], 1, (2,))) == \ (([1], 2, (3, 4)), ([5], 6, (7, 8))) assert reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)]) == \ [[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]] raises(ValueError, lambda: reshape([0, 1], [-1])) raises(ValueError, lambda: reshape([0, 1], [3])) def test_uniq(): assert list(uniq(p.copy() for p in partitions(4))) == \ [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] assert list(uniq(x % 2 for x in range(5))) == [0, 1] assert list(uniq('a')) == ['a'] assert list(uniq('ababc')) == list('abc') assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]] assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \ [([1], 2, 2), (2, [1], 2), (2, 2, [1])] assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == \ [2, 3, 4, [2], [1], [3]] def test_kbins(): assert len(list(kbins('1123', 2, ordered=1))) == 24 assert len(list(kbins('1123', 2, ordered=11))) == 36 assert len(list(kbins('1123', 2, ordered=10))) == 10 assert len(list(kbins('1123', 2, ordered=0))) == 5 assert len(list(kbins('1123', 2, ordered=None))) == 3 def test(): for orderedval in [None, 0, 1, 10, 11]: print('ordered =', orderedval) for p in kbins([0, 0, 1], 2, ordered=orderedval): print(' ', p) assert capture(lambda : test()) == dedent('''\ ordered = None [[0], [0, 1]] [[0, 0], [1]] ordered = 0 [[0, 0], [1]] [[0, 1], [0]] ordered = 1 [[0], [0, 1]] [[0], [1, 0]] [[1], [0, 0]] ordered = 10 [[0, 0], [1]] [[1], [0, 0]] [[0, 1], [0]] [[0], [0, 1]] ordered = 11 [[0], [0, 1]] [[0, 0], [1]] [[0], [1, 0]] [[0, 1], [0]] [[1], [0, 0]] [[1, 0], [0]]\n''') def test(): for orderedval in [None, 0, 1, 10, 11]: print('ordered =', orderedval) for p in kbins(list(range(3)), 2, ordered=orderedval): print(' ', p) assert capture(lambda : test()) == dedent('''\ ordered = None [[0], [1, 2]] [[0, 1], [2]] ordered = 0 [[0, 1], [2]] [[0, 2], [1]] [[0], [1, 2]] ordered = 1 [[0], [1, 2]] [[0], [2, 1]] [[1], [0, 2]] [[1], [2, 0]] [[2], [0, 1]] [[2], [1, 0]] ordered = 10 [[0, 1], [2]] [[2], [0, 1]] [[0, 2], [1]] [[1], [0, 2]] [[0], [1, 2]] [[1, 2], [0]] ordered = 11 [[0], [1, 2]] [[0, 1], [2]] [[0], [2, 1]] [[0, 2], [1]] [[1], [0, 2]] [[1, 0], [2]] [[1], [2, 0]] [[1, 2], [0]] [[2], [0, 1]] [[2, 0], [1]] [[2], [1, 0]] [[2, 1], [0]]\n''') def test_has_dups(): assert has_dups(set()) is False assert has_dups(list(range(3))) is False assert has_dups([1, 2, 1]) is True def test__partition(): assert _partition('abcde', [1, 0, 1, 2, 0]) == [ ['b', 'e'], ['a', 'c'], ['d']] assert _partition('abcde', [1, 0, 1, 2, 0], 3) == [ ['b', 'e'], ['a', 'c'], ['d']] output = (3, [1, 0, 1, 2, 0]) assert _partition('abcde', *output) == [['b', 'e'], ['a', 'c'], ['d']] def test_ordered_partitions(): from sympy.functions.combinatorial.numbers import nT f = ordered_partitions assert list(f(0, 1)) == [[]] assert list(f(1, 0)) == [[]] for i in range(1, 7): for j in [None] + list(range(1, i)): assert ( sum(1 for p in f(i, j, 1)) == sum(1 for p in f(i, j, 0)) == nT(i, j)) def test_rotations(): assert list(rotations('ab')) == [['a', 'b'], ['b', 'a']] assert list(rotations(range(3))) == [[0, 1, 2], [1, 2, 0], [2, 0, 1]] assert list(rotations(range(3), dir=-1)) == [[0, 1, 2], [2, 0, 1], [1, 2, 0]] def test_ibin(): assert ibin(3) == [1, 1] assert ibin(3, 3) == [0, 1, 1] assert ibin(3, str=True) == '11' assert ibin(3, 3, str=True) == '011' assert list(ibin(2, 'all')) == [(0, 0), (0, 1), (1, 0), (1, 1)] assert list(ibin(2, 'all', str=True)) == ['00', '01', '10', '11']
f4c9b0e1072dacf5677ed272e00df34aa9ec2d325de9f9d7df5e50f39bd860ce
# coding=utf-8 from os import walk, sep, pardir from os.path import split, join, abspath, exists, isfile from glob import glob import re import fnmatch import random import ast from sympy.core.compatibility import PY3 from sympy.utilities.pytest import raises from sympy.utilities.quality_unicode import test_this_file_encoding # System path separator (usually slash or backslash) to be # used with excluded files, e.g. # exclude = set([ # "%(sep)smpmath%(sep)s" % sepd, # ]) sepd = {"sep": sep} # path and sympy_path SYMPY_PATH = abspath(join(split(__file__)[0], pardir, pardir)) # go to sympy/ assert exists(SYMPY_PATH) TOP_PATH = abspath(join(SYMPY_PATH, pardir)) BIN_PATH = join(TOP_PATH, "bin") EXAMPLES_PATH = join(TOP_PATH, "examples") # Error messages message_space = "File contains trailing whitespace: %s, line %s." message_implicit = "File contains an implicit import: %s, line %s." message_tabs = "File contains tabs instead of spaces: %s, line %s." message_carriage = "File contains carriage returns at end of line: %s, line %s" message_str_raise = "File contains string exception: %s, line %s" message_gen_raise = "File contains generic exception: %s, line %s" message_old_raise = "File contains old-style raise statement: %s, line %s, \"%s\"" message_eof = "File does not end with a newline: %s, line %s" message_multi_eof = "File ends with more than 1 newline: %s, line %s" message_test_suite_def = "Function should start with 'test_' or '_': %s, line %s" message_duplicate_test = "This is a duplicate test function: %s, line %s" message_self_assignments = "File contains assignments to self/cls: %s, line %s." message_func_is = "File contains '.func is': %s, line %s." implicit_test_re = re.compile(r'^\s*(>>> )?(\.\.\. )?from .* import .*\*') str_raise_re = re.compile( r'^\s*(>>> )?(\.\.\. )?raise(\s+(\'|\")|\s*(\(\s*)+(\'|\"))') gen_raise_re = re.compile( r'^\s*(>>> )?(\.\.\. )?raise(\s+Exception|\s*(\(\s*)+Exception)') old_raise_re = re.compile(r'^\s*(>>> )?(\.\.\. )?raise((\s*\(\s*)|\s+)\w+\s*,') test_suite_def_re = re.compile(r'^def\s+(?!(_|test))[^(]*\(\s*\)\s*:$') test_ok_def_re = re.compile(r'^def\s+test_.*:$') test_file_re = re.compile(r'.*[/\\]test_.*\.py$') func_is_re = re.compile(r'\.\s*func\s+is') def tab_in_leading(s): """Returns True if there are tabs in the leading whitespace of a line, including the whitespace of docstring code samples.""" n = len(s) - len(s.lstrip()) if not s[n:n + 3] in ['...', '>>>']: check = s[:n] else: smore = s[n + 3:] check = s[:n] + smore[:len(smore) - len(smore.lstrip())] return not (check.expandtabs() == check) def find_self_assignments(s): """Returns a list of "bad" assignments: if there are instances of assigning to the first argument of the class method (except for staticmethod's). """ t = [n for n in ast.parse(s).body if isinstance(n, ast.ClassDef)] bad = [] for c in t: for n in c.body: if not isinstance(n, ast.FunctionDef): continue if any(d.id == 'staticmethod' for d in n.decorator_list if isinstance(d, ast.Name)): continue if n.name == '__new__': continue if not n.args.args: continue if PY3: first_arg = n.args.args[0].arg else: first_arg = n.args.args[0].id for m in ast.walk(n): if isinstance(m, ast.Assign): for a in m.targets: if isinstance(a, ast.Name) and a.id == first_arg: bad.append(m) elif (isinstance(a, ast.Tuple) and any(q.id == first_arg for q in a.elts if isinstance(q, ast.Name))): bad.append(m) return bad def check_directory_tree(base_path, file_check, exclusions=set(), pattern="*.py"): """ Checks all files in the directory tree (with base_path as starting point) with the file_check function provided, skipping files that contain any of the strings in the set provided by exclusions. """ if not base_path: return for root, dirs, files in walk(base_path): check_files(glob(join(root, pattern)), file_check, exclusions) def check_files(files, file_check, exclusions=set(), pattern=None): """ Checks all files with the file_check function provided, skipping files that contain any of the strings in the set provided by exclusions. """ if not files: return for fname in files: if not exists(fname) or not isfile(fname): continue if any(ex in fname for ex in exclusions): continue if pattern is None or re.match(pattern, fname): file_check(fname) def test_files(): """ This test tests all files in sympy and checks that: o no lines contains a trailing whitespace o no lines end with \r\n o no line uses tabs instead of spaces o that the file ends with a single newline o there are no general or string exceptions o there are no old style raise statements o name of arg-less test suite functions start with _ or test_ o no duplicate function names that start with test_ o no assignments to self variable in class methods o no lines contain ".func is" except in the test suite """ def test(fname): if PY3: with open(fname, "rt", encoding="utf8") as test_file: test_this_file(fname, test_file) with open(fname, 'rt', encoding='utf8') as test_file: test_this_file_encoding(fname, test_file) else: with open(fname, "rt") as test_file: test_this_file(fname, test_file) with open(fname, 'rt') as test_file: test_this_file_encoding(fname, test_file) with open(fname, "rt") as test_file: source = test_file.read() result = find_self_assignments(source) if result: assert False, message_self_assignments % (fname, result[0].lineno) def test_this_file(fname, test_file): line = None # to flag the case where there were no lines in file tests = 0 test_set = set() for idx, line in enumerate(test_file): if test_file_re.match(fname): if test_suite_def_re.match(line): assert False, message_test_suite_def % (fname, idx + 1) if test_ok_def_re.match(line): tests += 1 test_set.add(line[3:].split('(')[0].strip()) if len(test_set) != tests: assert False, message_duplicate_test % (fname, idx + 1) if line.endswith(" \n") or line.endswith("\t\n"): assert False, message_space % (fname, idx + 1) if line.endswith("\r\n"): assert False, message_carriage % (fname, idx + 1) if tab_in_leading(line): assert False, message_tabs % (fname, idx + 1) if str_raise_re.search(line): assert False, message_str_raise % (fname, idx + 1) if gen_raise_re.search(line): assert False, message_gen_raise % (fname, idx + 1) if (implicit_test_re.search(line) and not list(filter(lambda ex: ex in fname, import_exclude))): assert False, message_implicit % (fname, idx + 1) if func_is_re.search(line) and not test_file_re.search(fname): assert False, message_func_is % (fname, idx + 1) result = old_raise_re.search(line) if result is not None: assert False, message_old_raise % ( fname, idx + 1, result.group(2)) if line is not None: if line == '\n' and idx > 0: assert False, message_multi_eof % (fname, idx + 1) elif not line.endswith('\n'): # eof newline check assert False, message_eof % (fname, idx + 1) # Files to test at top level top_level_files = [join(TOP_PATH, file) for file in [ "isympy.py", "build.py", "setup.py", "setupegg.py", ]] # Files to exclude from all tests exclude = set([ "%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevparser.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevlexer.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevlistener.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)slatex%(sep)s_antlr%(sep)slatexparser.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)slatex%(sep)s_antlr%(sep)slatexlexer.py" % sepd, ]) # Files to exclude from the implicit import test import_exclude = set([ # glob imports are allowed in top-level __init__.py: "%(sep)ssympy%(sep)s__init__.py" % sepd, # these __init__.py should be fixed: # XXX: not really, they use useful import pattern (DRY) "%(sep)svector%(sep)s__init__.py" % sepd, "%(sep)smechanics%(sep)s__init__.py" % sepd, "%(sep)squantum%(sep)s__init__.py" % sepd, "%(sep)spolys%(sep)s__init__.py" % sepd, "%(sep)spolys%(sep)sdomains%(sep)s__init__.py" % sepd, # interactive sympy executes ``from sympy import *``: "%(sep)sinteractive%(sep)ssession.py" % sepd, # isympy.py executes ``from sympy import *``: "%(sep)sisympy.py" % sepd, # these two are import timing tests: "%(sep)sbin%(sep)ssympy_time.py" % sepd, "%(sep)sbin%(sep)ssympy_time_cache.py" % sepd, # Taken from Python stdlib: "%(sep)sparsing%(sep)ssympy_tokenize.py" % sepd, # this one should be fixed: "%(sep)splotting%(sep)spygletplot%(sep)s" % sepd, # False positive in the docstring "%(sep)sbin%(sep)stest_external_imports.py" % sepd, ]) check_files(top_level_files, test) check_directory_tree(BIN_PATH, test, set(["~", ".pyc", ".sh"]), "*") check_directory_tree(SYMPY_PATH, test, exclude) check_directory_tree(EXAMPLES_PATH, test, exclude) def _with_space(c): # return c with a random amount of leading space return random.randint(0, 10)*' ' + c def test_raise_statement_regular_expression(): candidates_ok = [ "some text # raise Exception, 'text'", "raise ValueError('text') # raise Exception, 'text'", "raise ValueError('text')", "raise ValueError", "raise ValueError('text')", "raise ValueError('text') #,", # Talking about an exception in a docstring ''''"""This function will raise ValueError, except when it doesn't"""''', "raise (ValueError('text')", ] str_candidates_fail = [ "raise 'exception'", "raise 'Exception'", 'raise "exception"', 'raise "Exception"', "raise 'ValueError'", ] gen_candidates_fail = [ "raise Exception('text') # raise Exception, 'text'", "raise Exception('text')", "raise Exception", "raise Exception('text')", "raise Exception('text') #,", "raise Exception, 'text'", "raise Exception, 'text' # raise Exception('text')", "raise Exception, 'text' # raise Exception, 'text'", ">>> raise Exception, 'text'", ">>> raise Exception, 'text' # raise Exception('text')", ">>> raise Exception, 'text' # raise Exception, 'text'", ] old_candidates_fail = [ "raise Exception, 'text'", "raise Exception, 'text' # raise Exception('text')", "raise Exception, 'text' # raise Exception, 'text'", ">>> raise Exception, 'text'", ">>> raise Exception, 'text' # raise Exception('text')", ">>> raise Exception, 'text' # raise Exception, 'text'", "raise ValueError, 'text'", "raise ValueError, 'text' # raise Exception('text')", "raise ValueError, 'text' # raise Exception, 'text'", ">>> raise ValueError, 'text'", ">>> raise ValueError, 'text' # raise Exception('text')", ">>> raise ValueError, 'text' # raise Exception, 'text'", "raise(ValueError,", "raise (ValueError,", "raise( ValueError,", "raise ( ValueError,", "raise(ValueError ,", "raise (ValueError ,", "raise( ValueError ,", "raise ( ValueError ,", ] for c in candidates_ok: assert str_raise_re.search(_with_space(c)) is None, c assert gen_raise_re.search(_with_space(c)) is None, c assert old_raise_re.search(_with_space(c)) is None, c for c in str_candidates_fail: assert str_raise_re.search(_with_space(c)) is not None, c for c in gen_candidates_fail: assert gen_raise_re.search(_with_space(c)) is not None, c for c in old_candidates_fail: assert old_raise_re.search(_with_space(c)) is not None, c def test_implicit_imports_regular_expression(): candidates_ok = [ "from sympy import something", ">>> from sympy import something", "from sympy.somewhere import something", ">>> from sympy.somewhere import something", "import sympy", ">>> import sympy", "import sympy.something.something", "... import sympy", "... import sympy.something.something", "... from sympy import something", "... from sympy.somewhere import something", ">> from sympy import *", # To allow 'fake' docstrings "# from sympy import *", "some text # from sympy import *", ] candidates_fail = [ "from sympy import *", ">>> from sympy import *", "from sympy.somewhere import *", ">>> from sympy.somewhere import *", "... from sympy import *", "... from sympy.somewhere import *", ] for c in candidates_ok: assert implicit_test_re.search(_with_space(c)) is None, c for c in candidates_fail: assert implicit_test_re.search(_with_space(c)) is not None, c def test_test_suite_defs(): candidates_ok = [ " def foo():\n", "def foo(arg):\n", "def _foo():\n", "def test_foo():\n", ] candidates_fail = [ "def foo():\n", "def foo() :\n", "def foo( ):\n", "def foo():\n", ] for c in candidates_ok: assert test_suite_def_re.search(c) is None, c for c in candidates_fail: assert test_suite_def_re.search(c) is not None, c def test_test_duplicate_defs(): candidates_ok = [ "def foo():\ndef foo():\n", "def test():\ndef test_():\n", "def test_():\ndef test__():\n", ] candidates_fail = [ "def test_():\ndef test_ ():\n", "def test_1():\ndef test_1():\n", ] ok = (None, 'check') def check(file): tests = 0 test_set = set() for idx, line in enumerate(file.splitlines()): if test_ok_def_re.match(line): tests += 1 test_set.add(line[3:].split('(')[0].strip()) if len(test_set) != tests: return False, message_duplicate_test % ('check', idx + 1) return None, 'check' for c in candidates_ok: assert check(c) == ok for c in candidates_fail: assert check(c) != ok def test_find_self_assignments(): candidates_ok = [ "class A(object):\n def foo(self, arg): arg = self\n", "class A(object):\n def foo(self, arg): self.prop = arg\n", "class A(object):\n def foo(self, arg): obj, obj2 = arg, self\n", "class A(object):\n @classmethod\n def bar(cls, arg): arg = cls\n", "class A(object):\n def foo(var, arg): arg = var\n", ] candidates_fail = [ "class A(object):\n def foo(self, arg): self = arg\n", "class A(object):\n def foo(self, arg): obj, self = arg, arg\n", "class A(object):\n def foo(self, arg):\n if arg: self = arg", "class A(object):\n @classmethod\n def foo(cls, arg): cls = arg\n", "class A(object):\n def foo(var, arg): var = arg\n", ] for c in candidates_ok: assert find_self_assignments(c) == [] for c in candidates_fail: assert find_self_assignments(c) != [] def test_test_unicode_encoding(): unicode_whitelist = ['foo'] unicode_strict_whitelist = ['bar'] fname = 'abc' test_file = ['α'] raises(AssertionError, lambda: test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'abc' test_file = ['# coding=utf-8', 'α'] raises(AssertionError, lambda: test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'abc' test_file = ['# coding=utf-8', 'abc'] raises(AssertionError, lambda: test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'abc' test_file = ['abc'] test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'foo' test_file = ['α'] raises(AssertionError, lambda: test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'foo' test_file = ['# coding=utf-8', 'α'] test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'foo' test_file = ['# coding=utf-8', 'abc'] raises(AssertionError, lambda: test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'foo' test_file = ['abc'] raises(AssertionError, lambda: test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'bar' test_file = ['α'] raises(AssertionError, lambda: test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'bar' test_file = ['# coding=utf-8', 'α'] test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'bar' test_file = ['# coding=utf-8', 'abc'] test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'bar' test_file = ['abc'] test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)
a436e605b1dcfb2b51859da2a1f326c7bf9c666ce9da4896a2edc6b6c5f69620
from sympy.utilities.decorator import threaded, xthreaded, memoize_property from sympy import Eq, Matrix, Basic from sympy.abc import x, y from sympy.core.decorators import wraps def test_threaded(): @threaded def function(expr, *args): return 2*expr + sum(args) assert function(Matrix([[x, y], [1, x]]), 1, 2) == \ Matrix([[2*x + 3, 2*y + 3], [5, 2*x + 3]]) assert function(Eq(x, y), 1, 2) == Eq(2*x + 3, 2*y + 3) assert function([x, y], 1, 2) == [2*x + 3, 2*y + 3] assert function((x, y), 1, 2) == (2*x + 3, 2*y + 3) assert function({x, y}, 1, 2) == {2*x + 3, 2*y + 3} @threaded def function(expr, n): return expr**n assert function(x + y, 2) == x**2 + y**2 assert function(x, 2) == x**2 def test_xthreaded(): @xthreaded def function(expr, n): return expr**n assert function(x + y, 2) == (x + y)**2 def test_wraps(): def my_func(x): """My function. """ my_func.is_my_func = True new_my_func = threaded(my_func) new_my_func = wraps(my_func)(new_my_func) assert new_my_func.__name__ == 'my_func' assert new_my_func.__doc__ == 'My function. ' assert hasattr(new_my_func, 'is_my_func') assert new_my_func.is_my_func is True def test_memoize_property(): class TestMemoize(Basic): @memoize_property def prop(self): return Basic() member = TestMemoize() obj1 = member.prop obj2 = member.prop assert obj1 is obj2
472e782930849ad95f2b6f1e2aa11a5d602cd6f078868452ab7ce63a3441ad2d
import sys from sympy.utilities.source import get_mod_func, get_class, source from sympy.utilities.pytest import warns_deprecated_sympy from sympy.geometry import point def test_source(): # Dummy stdout class StdOut(object): def write(self, x): pass # Test SymPyDeprecationWarning from source() with warns_deprecated_sympy(): # Redirect stdout temporarily so print out is not seen stdout = sys.stdout try: sys.stdout = StdOut() source(point) finally: sys.stdout = stdout def test_get_mod_func(): assert get_mod_func( 'sympy.core.basic.Basic') == ('sympy.core.basic', 'Basic') def test_get_class(): _basic = get_class('sympy.core.basic.Basic') assert _basic.__name__ == 'Basic'
c57465b91fe9574e426ead53bffe26d768130d15f953d116188d6c3ea953a564
from sympy.core import S, symbols, Eq, pi, Catalan, EulerGamma, Function from sympy.core.compatibility import StringIO from sympy import Piecewise from sympy import Equality from sympy.matrices import Matrix, MatrixSymbol from sympy.utilities.codegen import JuliaCodeGen, codegen, make_routine from sympy.utilities.pytest import XFAIL import sympy x, y, z = symbols('x,y,z') def test_empty_jl_code(): code_gen = JuliaCodeGen() output = StringIO() code_gen.dump_jl([], output, "file", header=False, empty=False) source = output.getvalue() assert source == "" def test_jl_simple_code(): name_expr = ("test", (x + y)*z) result, = codegen(name_expr, "Julia", header=False, empty=False) assert result[0] == "test.jl" source = result[1] expected = ( "function test(x, y, z)\n" " out1 = z.*(x + y)\n" " return out1\n" "end\n" ) assert source == expected def test_jl_simple_code_with_header(): name_expr = ("test", (x + y)*z) result, = codegen(name_expr, "Julia", header=True, empty=False) assert result[0] == "test.jl" source = result[1] expected = ( "# Code generated with sympy " + sympy.__version__ + "\n" "#\n" "# See http://www.sympy.org/ for more information.\n" "#\n" "# This file is part of 'project'\n" "function test(x, y, z)\n" " out1 = z.*(x + y)\n" " return out1\n" "end\n" ) assert source == expected def test_jl_simple_code_nameout(): expr = Equality(z, (x + y)) name_expr = ("test", expr) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x, y)\n" " z = x + y\n" " return z\n" "end\n" ) assert source == expected def test_jl_numbersymbol(): name_expr = ("test", pi**Catalan) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test()\n" " out1 = pi^catalan\n" " return out1\n" "end\n" ) assert source == expected @XFAIL def test_jl_numbersymbol_no_inline(): # FIXME: how to pass inline=False to the JuliaCodePrinter? name_expr = ("test", [pi**Catalan, EulerGamma]) result, = codegen(name_expr, "Julia", header=False, empty=False, inline=False) source = result[1] expected = ( "function test()\n" " Catalan = 0.915965594177219\n" " EulerGamma = 0.5772156649015329\n" " out1 = pi^Catalan\n" " out2 = EulerGamma\n" " return out1, out2\n" "end\n" ) assert source == expected def test_jl_code_argument_order(): expr = x + y routine = make_routine("test", expr, argument_sequence=[z, x, y], language="julia") code_gen = JuliaCodeGen() output = StringIO() code_gen.dump_jl([routine], output, "test", header=False, empty=False) source = output.getvalue() expected = ( "function test(z, x, y)\n" " out1 = x + y\n" " return out1\n" "end\n" ) assert source == expected def test_multiple_results_m(): # Here the output order is the input order expr1 = (x + y)*z expr2 = (x - y)*z name_expr = ("test", [expr1, expr2]) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x, y, z)\n" " out1 = z.*(x + y)\n" " out2 = z.*(x - y)\n" " return out1, out2\n" "end\n" ) assert source == expected def test_results_named_unordered(): # Here output order is based on name_expr A, B, C = symbols('A,B,C') expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, (x - y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x, y, z)\n" " C = z.*(x + y)\n" " A = z.*(x - y)\n" " B = 2*x\n" " return C, A, B\n" "end\n" ) assert source == expected def test_results_named_ordered(): A, B, C = symbols('A,B,C') expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, (x - y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result = codegen(name_expr, "Julia", header=False, empty=False, argument_sequence=(x, z, y)) assert result[0][0] == "test.jl" source = result[0][1] expected = ( "function test(x, z, y)\n" " C = z.*(x + y)\n" " A = z.*(x - y)\n" " B = 2*x\n" " return C, A, B\n" "end\n" ) assert source == expected def test_complicated_jl_codegen(): from sympy import sin, cos, tan name_expr = ("testlong", [ ((sin(x) + cos(y) + tan(z))**3).expand(), cos(cos(cos(cos(cos(cos(cos(cos(x + y + z)))))))) ]) result = codegen(name_expr, "Julia", header=False, empty=False) assert result[0][0] == "testlong.jl" source = result[0][1] expected = ( "function testlong(x, y, z)\n" " out1 = sin(x).^3 + 3*sin(x).^2.*cos(y) + 3*sin(x).^2.*tan(z)" " + 3*sin(x).*cos(y).^2 + 6*sin(x).*cos(y).*tan(z) + 3*sin(x).*tan(z).^2" " + cos(y).^3 + 3*cos(y).^2.*tan(z) + 3*cos(y).*tan(z).^2 + tan(z).^3\n" " out2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n" " return out1, out2\n" "end\n" ) assert source == expected def test_jl_output_arg_mixed_unordered(): # named outputs are alphabetical, unnamed output appear in the given order from sympy import sin, cos a = symbols("a") name_expr = ("foo", [cos(2*x), Equality(y, sin(x)), cos(x), Equality(a, sin(2*x))]) result, = codegen(name_expr, "Julia", header=False, empty=False) assert result[0] == "foo.jl" source = result[1]; expected = ( 'function foo(x)\n' ' out1 = cos(2*x)\n' ' y = sin(x)\n' ' out3 = cos(x)\n' ' a = sin(2*x)\n' ' return out1, y, out3, a\n' 'end\n' ) assert source == expected def test_jl_piecewise_(): pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True), evaluate=False) name_expr = ("pwtest", pw) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function pwtest(x)\n" " out1 = ((x < -1) ? (0) :\n" " (x <= 1) ? (x.^2) :\n" " (x > 1) ? (2 - x) : (1))\n" " return out1\n" "end\n" ) assert source == expected @XFAIL def test_jl_piecewise_no_inline(): # FIXME: how to pass inline=False to the JuliaCodePrinter? pw = Piecewise((0, x < -1), (x**2, x <= 1), (-x+2, x > 1), (1, True)) name_expr = ("pwtest", pw) result, = codegen(name_expr, "Julia", header=False, empty=False, inline=False) source = result[1] expected = ( "function pwtest(x)\n" " if (x < -1)\n" " out1 = 0\n" " elseif (x <= 1)\n" " out1 = x.^2\n" " elseif (x > 1)\n" " out1 = -x + 2\n" " else\n" " out1 = 1\n" " end\n" " return out1\n" "end\n" ) assert source == expected def test_jl_multifcns_per_file(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result = codegen(name_expr, "Julia", header=False, empty=False) assert result[0][0] == "foo.jl" source = result[0][1]; expected = ( "function foo(x, y)\n" " out1 = 2*x\n" " out2 = 3*y\n" " return out1, out2\n" "end\n" "function bar(y)\n" " out1 = y.^2\n" " out2 = 4*y\n" " return out1, out2\n" "end\n" ) assert source == expected def test_jl_multifcns_per_file_w_header(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result = codegen(name_expr, "Julia", header=True, empty=False) assert result[0][0] == "foo.jl" source = result[0][1]; expected = ( "# Code generated with sympy " + sympy.__version__ + "\n" "#\n" "# See http://www.sympy.org/ for more information.\n" "#\n" "# This file is part of 'project'\n" "function foo(x, y)\n" " out1 = 2*x\n" " out2 = 3*y\n" " return out1, out2\n" "end\n" "function bar(y)\n" " out1 = y.^2\n" " out2 = 4*y\n" " return out1, out2\n" "end\n" ) assert source == expected def test_jl_filename_match_prefix(): name_expr = [ ("foo", [2*x, 3*y]), ("bar", [y**2, 4*y]) ] result, = codegen(name_expr, "Julia", prefix="baz", header=False, empty=False) assert result[0] == "baz.jl" def test_jl_matrix_named(): e2 = Matrix([[x, 2*y, pi*z]]) name_expr = ("test", Equality(MatrixSymbol('myout1', 1, 3), e2)) result = codegen(name_expr, "Julia", header=False, empty=False) assert result[0][0] == "test.jl" source = result[0][1] expected = ( "function test(x, y, z)\n" " myout1 = [x 2*y pi*z]\n" " return myout1\n" "end\n" ) assert source == expected def test_jl_matrix_named_matsym(): myout1 = MatrixSymbol('myout1', 1, 3) e2 = Matrix([[x, 2*y, pi*z]]) name_expr = ("test", Equality(myout1, e2, evaluate=False)) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x, y, z)\n" " myout1 = [x 2*y pi*z]\n" " return myout1\n" "end\n" ) assert source == expected def test_jl_matrix_output_autoname(): expr = Matrix([[x, x+y, 3]]) name_expr = ("test", expr) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x, y)\n" " out1 = [x x + y 3]\n" " return out1\n" "end\n" ) assert source == expected def test_jl_matrix_output_autoname_2(): e1 = (x + y) e2 = Matrix([[2*x, 2*y, 2*z]]) e3 = Matrix([[x], [y], [z]]) e4 = Matrix([[x, y], [z, 16]]) name_expr = ("test", (e1, e2, e3, e4)) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x, y, z)\n" " out1 = x + y\n" " out2 = [2*x 2*y 2*z]\n" " out3 = [x, y, z]\n" " out4 = [x y;\n" " z 16]\n" " return out1, out2, out3, out4\n" "end\n" ) assert source == expected def test_jl_results_matrix_named_ordered(): B, C = symbols('B,C') A = MatrixSymbol('A', 1, 3) expr1 = Equality(C, (x + y)*z) expr2 = Equality(A, Matrix([[1, 2, x]])) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result, = codegen(name_expr, "Julia", header=False, empty=False, argument_sequence=(x, z, y)) source = result[1] expected = ( "function test(x, z, y)\n" " C = z.*(x + y)\n" " A = [1 2 x]\n" " B = 2*x\n" " return C, A, B\n" "end\n" ) assert source == expected def test_jl_matrixsymbol_slice(): A = MatrixSymbol('A', 2, 3) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 1, 3) D = MatrixSymbol('D', 2, 1) name_expr = ("test", [Equality(B, A[0, :]), Equality(C, A[1, :]), Equality(D, A[:, 2])]) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(A)\n" " B = A[1,:]\n" " C = A[2,:]\n" " D = A[:,3]\n" " return B, C, D\n" "end\n" ) assert source == expected def test_jl_matrixsymbol_slice2(): A = MatrixSymbol('A', 3, 4) B = MatrixSymbol('B', 2, 2) C = MatrixSymbol('C', 2, 2) name_expr = ("test", [Equality(B, A[0:2, 0:2]), Equality(C, A[0:2, 1:3])]) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(A)\n" " B = A[1:2,1:2]\n" " C = A[1:2,2:3]\n" " return B, C\n" "end\n" ) assert source == expected def test_jl_matrixsymbol_slice3(): A = MatrixSymbol('A', 8, 7) B = MatrixSymbol('B', 2, 2) C = MatrixSymbol('C', 4, 2) name_expr = ("test", [Equality(B, A[6:, 1::3]), Equality(C, A[::2, ::3])]) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(A)\n" " B = A[7:end,2:3:end]\n" " C = A[1:2:end,1:3:end]\n" " return B, C\n" "end\n" ) assert source == expected def test_jl_matrixsymbol_slice_autoname(): A = MatrixSymbol('A', 2, 3) B = MatrixSymbol('B', 1, 3) name_expr = ("test", [Equality(B, A[0,:]), A[1,:], A[:,0], A[:,1]]) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(A)\n" " B = A[1,:]\n" " out2 = A[2,:]\n" " out3 = A[:,1]\n" " out4 = A[:,2]\n" " return B, out2, out3, out4\n" "end\n" ) assert source == expected def test_jl_loops(): # Note: an Julia programmer would probably vectorize this across one or # more dimensions. Also, size(A) would be used rather than passing in m # and n. Perhaps users would expect us to vectorize automatically here? # Or is it possible to represent such things using IndexedBase? from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) result, = codegen(('mat_vec_mult', Eq(y[i], A[i, j]*x[j])), "Julia", header=False, empty=False) source = result[1] expected = ( 'function mat_vec_mult(y, A, m, n, x)\n' ' for i = 1:m\n' ' y[i] = 0\n' ' end\n' ' for i = 1:m\n' ' for j = 1:n\n' ' y[i] = %(rhs)s + y[i]\n' ' end\n' ' end\n' ' return y\n' 'end\n' ) assert (source == expected % {'rhs': 'A[%s,%s].*x[j]' % (i, j)} or source == expected % {'rhs': 'x[j].*A[%s,%s]' % (i, j)}) def test_jl_tensor_loops_multiple_contractions(): # see comments in previous test about vectorizing from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) A = IndexedBase('A') B = IndexedBase('B') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) result, = codegen(('tensorthing', Eq(y[i], B[j, k, l]*A[i, j, k, l])), "Julia", header=False, empty=False) source = result[1] expected = ( 'function tensorthing(y, A, B, m, n, o, p)\n' ' for i = 1:m\n' ' y[i] = 0\n' ' end\n' ' for i = 1:m\n' ' for j = 1:n\n' ' for k = 1:o\n' ' for l = 1:p\n' ' y[i] = A[i,j,k,l].*B[j,k,l] + y[i]\n' ' end\n' ' end\n' ' end\n' ' end\n' ' return y\n' 'end\n' ) assert source == expected def test_jl_InOutArgument(): expr = Equality(x, x**2) name_expr = ("mysqr", expr) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function mysqr(x)\n" " x = x.^2\n" " return x\n" "end\n" ) assert source == expected def test_jl_InOutArgument_order(): # can specify the order as (x, y) expr = Equality(x, x**2 + y) name_expr = ("test", expr) result, = codegen(name_expr, "Julia", header=False, empty=False, argument_sequence=(x,y)) source = result[1] expected = ( "function test(x, y)\n" " x = x.^2 + y\n" " return x\n" "end\n" ) assert source == expected # make sure it gives (x, y) not (y, x) expr = Equality(x, x**2 + y) name_expr = ("test", expr) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x, y)\n" " x = x.^2 + y\n" " return x\n" "end\n" ) assert source == expected def test_jl_not_supported(): f = Function('f') name_expr = ("test", [f(x).diff(x), S.ComplexInfinity]) result, = codegen(name_expr, "Julia", header=False, empty=False) source = result[1] expected = ( "function test(x)\n" " # unsupported: Derivative(f(x), x)\n" " # unsupported: zoo\n" " out1 = Derivative(f(x), x)\n" " out2 = zoo\n" " return out1, out2\n" "end\n" ) assert source == expected def test_global_vars_octave(): x, y, z, t = symbols("x y z t") result = codegen(('f', x*y), "Julia", header=False, empty=False, global_vars=(y,)) source = result[0][1] expected = ( "function f(x)\n" " out1 = x.*y\n" " return out1\n" "end\n" ) assert source == expected result = codegen(('f', x*y+z), "Julia", header=False, empty=False, argument_sequence=(x, y), global_vars=(z, t)) source = result[0][1] expected = ( "function f(x, y)\n" " out1 = x.*y + z\n" " return out1\n" "end\n" ) assert source == expected
2c16c65a7cfc352d8b029093c9ba225e972d3572507fe8887195d53c02fecba5
from sympy.core import symbols, Eq, pi, Catalan, Lambda, Dummy from sympy.core.compatibility import StringIO from sympy import erf, Integral, Symbol from sympy import Equality from sympy.matrices import Matrix, MatrixSymbol from sympy.utilities.codegen import ( codegen, make_routine, CCodeGen, C89CodeGen, C99CodeGen, InputArgument, CodeGenError, FCodeGen, CodeGenArgumentListError, OutputArgument, InOutArgument) from sympy.utilities.pytest import raises from sympy.utilities.lambdify import implemented_function #FIXME: Fails due to circular import in with core # from sympy import codegen def get_string(dump_fn, routines, prefix="file", header=False, empty=False): """Wrapper for dump_fn. dump_fn writes its results to a stream object and this wrapper returns the contents of that stream as a string. This auxiliary function is used by many tests below. The header and the empty lines are not generated to facilitate the testing of the output. """ output = StringIO() dump_fn(routines, output, prefix, header, empty) source = output.getvalue() output.close() return source def test_Routine_argument_order(): a, x, y, z = symbols('a x y z') expr = (x + y)*z raises(CodeGenArgumentListError, lambda: make_routine("test", expr, argument_sequence=[z, x])) raises(CodeGenArgumentListError, lambda: make_routine("test", Eq(a, expr), argument_sequence=[z, x, y])) r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y]) assert [ arg.name for arg in r.arguments ] == [z, x, a, y] assert [ type(arg) for arg in r.arguments ] == [ InputArgument, InputArgument, OutputArgument, InputArgument ] r = make_routine('test', Eq(z, expr), argument_sequence=[z, x, y]) assert [ type(arg) for arg in r.arguments ] == [ InOutArgument, InputArgument, InputArgument ] from sympy.tensor import IndexedBase, Idx A, B = map(IndexedBase, ['A', 'B']) m = symbols('m', integer=True) i = Idx('i', m) r = make_routine('test', Eq(A[i], B[i]), argument_sequence=[B, A, m]) assert [ arg.name for arg in r.arguments ] == [B.label, A.label, m] expr = Integral(x*y*z, (x, 1, 2), (y, 1, 3)) r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y]) assert [ arg.name for arg in r.arguments ] == [z, x, a, y] def test_empty_c_code(): code_gen = C89CodeGen() source = get_string(code_gen.dump_c, []) assert source == "#include \"file.h\"\n#include <math.h>\n" def test_empty_c_code_with_comment(): code_gen = C89CodeGen() source = get_string(code_gen.dump_c, [], header=True) assert source[:82] == ( "/******************************************************************************\n *" ) # " Code generated with sympy 0.7.2-git " assert source[158:] == ( "*\n" " * *\n" " * See http://www.sympy.org/ for more information. *\n" " * *\n" " * This file is part of 'project' *\n" " ******************************************************************************/\n" "#include \"file.h\"\n" "#include <math.h>\n" ) def test_empty_c_header(): code_gen = C99CodeGen() source = get_string(code_gen.dump_h, []) assert source == "#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n#endif\n" def test_simple_c_code(): x, y, z = symbols('x,y,z') expr = (x + y)*z routine = make_routine("test", expr) code_gen = C89CodeGen() source = get_string(code_gen.dump_c, [routine]) expected = ( "#include \"file.h\"\n" "#include <math.h>\n" "double test(double x, double y, double z) {\n" " double test_result;\n" " test_result = z*(x + y);\n" " return test_result;\n" "}\n" ) assert source == expected def test_c_code_reserved_words(): x, y, z = symbols('if, typedef, while') expr = (x + y) * z routine = make_routine("test", expr) code_gen = C99CodeGen() source = get_string(code_gen.dump_c, [routine]) expected = ( "#include \"file.h\"\n" "#include <math.h>\n" "double test(double if_, double typedef_, double while_) {\n" " double test_result;\n" " test_result = while_*(if_ + typedef_);\n" " return test_result;\n" "}\n" ) assert source == expected def test_numbersymbol_c_code(): routine = make_routine("test", pi**Catalan) code_gen = C89CodeGen() source = get_string(code_gen.dump_c, [routine]) expected = ( "#include \"file.h\"\n" "#include <math.h>\n" "double test() {\n" " double test_result;\n" " double const Catalan = %s;\n" " test_result = pow(M_PI, Catalan);\n" " return test_result;\n" "}\n" ) % Catalan.evalf(17) assert source == expected def test_c_code_argument_order(): x, y, z = symbols('x,y,z') expr = x + y routine = make_routine("test", expr, argument_sequence=[z, x, y]) code_gen = C89CodeGen() source = get_string(code_gen.dump_c, [routine]) expected = ( "#include \"file.h\"\n" "#include <math.h>\n" "double test(double z, double x, double y) {\n" " double test_result;\n" " test_result = x + y;\n" " return test_result;\n" "}\n" ) assert source == expected def test_simple_c_header(): x, y, z = symbols('x,y,z') expr = (x + y)*z routine = make_routine("test", expr) code_gen = C89CodeGen() source = get_string(code_gen.dump_h, [routine]) expected = ( "#ifndef PROJECT__FILE__H\n" "#define PROJECT__FILE__H\n" "double test(double x, double y, double z);\n" "#endif\n" ) assert source == expected def test_simple_c_codegen(): x, y, z = symbols('x,y,z') expr = (x + y)*z expected = [ ("file.c", "#include \"file.h\"\n" "#include <math.h>\n" "double test(double x, double y, double z) {\n" " double test_result;\n" " test_result = z*(x + y);\n" " return test_result;\n" "}\n"), ("file.h", "#ifndef PROJECT__FILE__H\n" "#define PROJECT__FILE__H\n" "double test(double x, double y, double z);\n" "#endif\n") ] result = codegen(("test", expr), "C", "file", header=False, empty=False) assert result == expected def test_multiple_results_c(): x, y, z = symbols('x,y,z') expr1 = (x + y)*z expr2 = (x - y)*z routine = make_routine( "test", [expr1, expr2] ) code_gen = C99CodeGen() raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine])) def test_no_results_c(): raises(ValueError, lambda: make_routine("test", [])) def test_ansi_math1_codegen(): # not included: log10 from sympy import (acos, asin, atan, ceiling, cos, cosh, floor, log, ln, sin, sinh, sqrt, tan, tanh, Abs) x = symbols('x') name_expr = [ ("test_fabs", Abs(x)), ("test_acos", acos(x)), ("test_asin", asin(x)), ("test_atan", atan(x)), ("test_ceil", ceiling(x)), ("test_cos", cos(x)), ("test_cosh", cosh(x)), ("test_floor", floor(x)), ("test_log", log(x)), ("test_ln", ln(x)), ("test_sin", sin(x)), ("test_sinh", sinh(x)), ("test_sqrt", sqrt(x)), ("test_tan", tan(x)), ("test_tanh", tanh(x)), ] result = codegen(name_expr, "C89", "file", header=False, empty=False) assert result[0][0] == "file.c" assert result[0][1] == ( '#include "file.h"\n#include <math.h>\n' 'double test_fabs(double x) {\n double test_fabs_result;\n test_fabs_result = fabs(x);\n return test_fabs_result;\n}\n' 'double test_acos(double x) {\n double test_acos_result;\n test_acos_result = acos(x);\n return test_acos_result;\n}\n' 'double test_asin(double x) {\n double test_asin_result;\n test_asin_result = asin(x);\n return test_asin_result;\n}\n' 'double test_atan(double x) {\n double test_atan_result;\n test_atan_result = atan(x);\n return test_atan_result;\n}\n' 'double test_ceil(double x) {\n double test_ceil_result;\n test_ceil_result = ceil(x);\n return test_ceil_result;\n}\n' 'double test_cos(double x) {\n double test_cos_result;\n test_cos_result = cos(x);\n return test_cos_result;\n}\n' 'double test_cosh(double x) {\n double test_cosh_result;\n test_cosh_result = cosh(x);\n return test_cosh_result;\n}\n' 'double test_floor(double x) {\n double test_floor_result;\n test_floor_result = floor(x);\n return test_floor_result;\n}\n' 'double test_log(double x) {\n double test_log_result;\n test_log_result = log(x);\n return test_log_result;\n}\n' 'double test_ln(double x) {\n double test_ln_result;\n test_ln_result = log(x);\n return test_ln_result;\n}\n' 'double test_sin(double x) {\n double test_sin_result;\n test_sin_result = sin(x);\n return test_sin_result;\n}\n' 'double test_sinh(double x) {\n double test_sinh_result;\n test_sinh_result = sinh(x);\n return test_sinh_result;\n}\n' 'double test_sqrt(double x) {\n double test_sqrt_result;\n test_sqrt_result = sqrt(x);\n return test_sqrt_result;\n}\n' 'double test_tan(double x) {\n double test_tan_result;\n test_tan_result = tan(x);\n return test_tan_result;\n}\n' 'double test_tanh(double x) {\n double test_tanh_result;\n test_tanh_result = tanh(x);\n return test_tanh_result;\n}\n' ) assert result[1][0] == "file.h" assert result[1][1] == ( '#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n' 'double test_fabs(double x);\ndouble test_acos(double x);\n' 'double test_asin(double x);\ndouble test_atan(double x);\n' 'double test_ceil(double x);\ndouble test_cos(double x);\n' 'double test_cosh(double x);\ndouble test_floor(double x);\n' 'double test_log(double x);\ndouble test_ln(double x);\n' 'double test_sin(double x);\ndouble test_sinh(double x);\n' 'double test_sqrt(double x);\ndouble test_tan(double x);\n' 'double test_tanh(double x);\n#endif\n' ) def test_ansi_math2_codegen(): # not included: frexp, ldexp, modf, fmod from sympy import atan2 x, y = symbols('x,y') name_expr = [ ("test_atan2", atan2(x, y)), ("test_pow", x**y), ] result = codegen(name_expr, "C89", "file", header=False, empty=False) assert result[0][0] == "file.c" assert result[0][1] == ( '#include "file.h"\n#include <math.h>\n' 'double test_atan2(double x, double y) {\n double test_atan2_result;\n test_atan2_result = atan2(x, y);\n return test_atan2_result;\n}\n' 'double test_pow(double x, double y) {\n double test_pow_result;\n test_pow_result = pow(x, y);\n return test_pow_result;\n}\n' ) assert result[1][0] == "file.h" assert result[1][1] == ( '#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n' 'double test_atan2(double x, double y);\n' 'double test_pow(double x, double y);\n' '#endif\n' ) def test_complicated_codegen(): from sympy import sin, cos, tan x, y, z = symbols('x,y,z') name_expr = [ ("test1", ((sin(x) + cos(y) + tan(z))**7).expand()), ("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))), ] result = codegen(name_expr, "C89", "file", header=False, empty=False) assert result[0][0] == "file.c" assert result[0][1] == ( '#include "file.h"\n#include <math.h>\n' 'double test1(double x, double y, double z) {\n' ' double test1_result;\n' ' test1_result = ' 'pow(sin(x), 7) + ' '7*pow(sin(x), 6)*cos(y) + ' '7*pow(sin(x), 6)*tan(z) + ' '21*pow(sin(x), 5)*pow(cos(y), 2) + ' '42*pow(sin(x), 5)*cos(y)*tan(z) + ' '21*pow(sin(x), 5)*pow(tan(z), 2) + ' '35*pow(sin(x), 4)*pow(cos(y), 3) + ' '105*pow(sin(x), 4)*pow(cos(y), 2)*tan(z) + ' '105*pow(sin(x), 4)*cos(y)*pow(tan(z), 2) + ' '35*pow(sin(x), 4)*pow(tan(z), 3) + ' '35*pow(sin(x), 3)*pow(cos(y), 4) + ' '140*pow(sin(x), 3)*pow(cos(y), 3)*tan(z) + ' '210*pow(sin(x), 3)*pow(cos(y), 2)*pow(tan(z), 2) + ' '140*pow(sin(x), 3)*cos(y)*pow(tan(z), 3) + ' '35*pow(sin(x), 3)*pow(tan(z), 4) + ' '21*pow(sin(x), 2)*pow(cos(y), 5) + ' '105*pow(sin(x), 2)*pow(cos(y), 4)*tan(z) + ' '210*pow(sin(x), 2)*pow(cos(y), 3)*pow(tan(z), 2) + ' '210*pow(sin(x), 2)*pow(cos(y), 2)*pow(tan(z), 3) + ' '105*pow(sin(x), 2)*cos(y)*pow(tan(z), 4) + ' '21*pow(sin(x), 2)*pow(tan(z), 5) + ' '7*sin(x)*pow(cos(y), 6) + ' '42*sin(x)*pow(cos(y), 5)*tan(z) + ' '105*sin(x)*pow(cos(y), 4)*pow(tan(z), 2) + ' '140*sin(x)*pow(cos(y), 3)*pow(tan(z), 3) + ' '105*sin(x)*pow(cos(y), 2)*pow(tan(z), 4) + ' '42*sin(x)*cos(y)*pow(tan(z), 5) + ' '7*sin(x)*pow(tan(z), 6) + ' 'pow(cos(y), 7) + ' '7*pow(cos(y), 6)*tan(z) + ' '21*pow(cos(y), 5)*pow(tan(z), 2) + ' '35*pow(cos(y), 4)*pow(tan(z), 3) + ' '35*pow(cos(y), 3)*pow(tan(z), 4) + ' '21*pow(cos(y), 2)*pow(tan(z), 5) + ' '7*cos(y)*pow(tan(z), 6) + ' 'pow(tan(z), 7);\n' ' return test1_result;\n' '}\n' 'double test2(double x, double y, double z) {\n' ' double test2_result;\n' ' test2_result = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))));\n' ' return test2_result;\n' '}\n' ) assert result[1][0] == "file.h" assert result[1][1] == ( '#ifndef PROJECT__FILE__H\n' '#define PROJECT__FILE__H\n' 'double test1(double x, double y, double z);\n' 'double test2(double x, double y, double z);\n' '#endif\n' ) def test_loops_c(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) (f1, code), (f2, interface) = codegen( ('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False) assert f1 == 'file.c' expected = ( '#include "file.h"\n' '#include <math.h>\n' 'void matrix_vector(double *A, int m, int n, double *x, double *y) {\n' ' for (int i=0; i<m; i++){\n' ' y[i] = 0;\n' ' }\n' ' for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = %(rhs)s + y[i];\n' ' }\n' ' }\n' '}\n' ) assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*n + j)} or code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*n)} or code == expected % {'rhs': 'x[j]*A[%s]' % (i*n + j)} or code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*n)}) assert f2 == 'file.h' assert interface == ( '#ifndef PROJECT__FILE__H\n' '#define PROJECT__FILE__H\n' 'void matrix_vector(double *A, int m, int n, double *x, double *y);\n' '#endif\n' ) def test_dummy_loops_c(): from sympy.tensor import IndexedBase, Idx i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( '#include "file.h"\n' '#include <math.h>\n' 'void test_dummies(int m_%(mno)i, double *x, double *y) {\n' ' for (int i_%(ino)i=0; i_%(ino)i<m_%(mno)i; i_%(ino)i++){\n' ' y[i_%(ino)i] = x[i_%(ino)i];\n' ' }\n' '}\n' ) % {'ino': i.label.dummy_index, 'mno': m.dummy_index} r = make_routine('test_dummies', Eq(y[i], x[i])) c89 = C89CodeGen() c99 = C99CodeGen() code = get_string(c99.dump_c, [r]) assert code == expected with raises(NotImplementedError): get_string(c89.dump_c, [r]) def test_partial_loops_c(): # check that loop boundaries are determined by Idx, and array strides # determined by shape of IndexedBase object. from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) A = IndexedBase('A', shape=(m, p)) x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', (o, m - 5)) # Note: bounds are inclusive j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1) (f1, code), (f2, interface) = codegen( ('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False) assert f1 == 'file.c' expected = ( '#include "file.h"\n' '#include <math.h>\n' 'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y) {\n' ' for (int i=o; i<%(upperi)s; i++){\n' ' y[i] = 0;\n' ' }\n' ' for (int i=o; i<%(upperi)s; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = %(rhs)s + y[i];\n' ' }\n' ' }\n' '}\n' ) % {'upperi': m - 4, 'rhs': '%(rhs)s'} assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*p + j)} or code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*p)} or code == expected % {'rhs': 'x[j]*A[%s]' % (i*p + j)} or code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*p)}) assert f2 == 'file.h' assert interface == ( '#ifndef PROJECT__FILE__H\n' '#define PROJECT__FILE__H\n' 'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y);\n' '#endif\n' ) def test_output_arg_c(): from sympy import sin, cos, Equality x, y, z = symbols("x,y,z") r = make_routine("foo", [Equality(y, sin(x)), cos(x)]) c = C89CodeGen() result = c.write([r], "test", header=False, empty=False) assert result[0][0] == "test.c" expected = ( '#include "test.h"\n' '#include <math.h>\n' 'double foo(double x, double *y) {\n' ' (*y) = sin(x);\n' ' double foo_result;\n' ' foo_result = cos(x);\n' ' return foo_result;\n' '}\n' ) assert result[0][1] == expected def test_output_arg_c_reserved_words(): from sympy import sin, cos, Equality x, y, z = symbols("if, while, z") r = make_routine("foo", [Equality(y, sin(x)), cos(x)]) c = C89CodeGen() result = c.write([r], "test", header=False, empty=False) assert result[0][0] == "test.c" expected = ( '#include "test.h"\n' '#include <math.h>\n' 'double foo(double if_, double *while_) {\n' ' (*while_) = sin(if_);\n' ' double foo_result;\n' ' foo_result = cos(if_);\n' ' return foo_result;\n' '}\n' ) assert result[0][1] == expected def test_ccode_results_named_ordered(): x, y, z = symbols('x,y,z') B, C = symbols('B,C') A = MatrixSymbol('A', 1, 3) expr1 = Equality(A, Matrix([[1, 2, x]])) expr2 = Equality(C, (x + y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) expected = ( '#include "test.h"\n' '#include <math.h>\n' 'void test(double x, double *C, double z, double y, double *A, double *B) {\n' ' (*C) = z*(x + y);\n' ' A[0] = 1;\n' ' A[1] = 2;\n' ' A[2] = x;\n' ' (*B) = 2*x;\n' '}\n' ) result = codegen(name_expr, "c", "test", header=False, empty=False, argument_sequence=(x, C, z, y, A, B)) source = result[0][1] assert source == expected def test_ccode_matrixsymbol_slice(): A = MatrixSymbol('A', 5, 3) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 1, 3) D = MatrixSymbol('D', 5, 1) name_expr = ("test", [Equality(B, A[0, :]), Equality(C, A[1, :]), Equality(D, A[:, 2])]) result = codegen(name_expr, "c99", "test", header=False, empty=False) source = result[0][1] expected = ( '#include "test.h"\n' '#include <math.h>\n' 'void test(double *A, double *B, double *C, double *D) {\n' ' B[0] = A[0];\n' ' B[1] = A[1];\n' ' B[2] = A[2];\n' ' C[0] = A[3];\n' ' C[1] = A[4];\n' ' C[2] = A[5];\n' ' D[0] = A[2];\n' ' D[1] = A[5];\n' ' D[2] = A[8];\n' ' D[3] = A[11];\n' ' D[4] = A[14];\n' '}\n' ) assert source == expected def test_ccode_cse(): a, b, c, d = symbols('a b c d') e = MatrixSymbol('e', 3, 1) name_expr = ("test", [Equality(e, Matrix([[a*b], [a*b + c*d], [a*b*c*d]]))]) generator = CCodeGen(cse=True) result = codegen(name_expr, code_gen=generator, header=False, empty=False) source = result[0][1] expected = ( '#include "test.h"\n' '#include <math.h>\n' 'void test(double a, double b, double c, double d, double *e) {\n' ' const double x0 = a*b;\n' ' const double x1 = c*d;\n' ' e[0] = x0;\n' ' e[1] = x0 + x1;\n' ' e[2] = x0*x1;\n' '}\n' ) assert source == expected def test_ccode_unused_array_arg(): x = MatrixSymbol('x', 2, 1) # x does not appear in output name_expr = ("test", 1.0) generator = CCodeGen() result = codegen(name_expr, code_gen=generator, header=False, empty=False, argument_sequence=(x,)) source = result[0][1] # note: x should appear as (double *) expected = ( '#include "test.h"\n' '#include <math.h>\n' 'double test(double *x) {\n' ' double test_result;\n' ' test_result = 1.0;\n' ' return test_result;\n' '}\n' ) assert source == expected def test_empty_f_code(): code_gen = FCodeGen() source = get_string(code_gen.dump_f95, []) assert source == "" def test_empty_f_code_with_header(): code_gen = FCodeGen() source = get_string(code_gen.dump_f95, [], header=True) assert source[:82] == ( "!******************************************************************************\n!*" ) # " Code generated with sympy 0.7.2-git " assert source[158:] == ( "*\n" "!* *\n" "!* See http://www.sympy.org/ for more information. *\n" "!* *\n" "!* This file is part of 'project' *\n" "!******************************************************************************\n" ) def test_empty_f_header(): code_gen = FCodeGen() source = get_string(code_gen.dump_h, []) assert source == "" def test_simple_f_code(): x, y, z = symbols('x,y,z') expr = (x + y)*z routine = make_routine("test", expr) code_gen = FCodeGen() source = get_string(code_gen.dump_f95, [routine]) expected = ( "REAL*8 function test(x, y, z)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "REAL*8, intent(in) :: z\n" "test = z*(x + y)\n" "end function\n" ) assert source == expected def test_numbersymbol_f_code(): routine = make_routine("test", pi**Catalan) code_gen = FCodeGen() source = get_string(code_gen.dump_f95, [routine]) expected = ( "REAL*8 function test()\n" "implicit none\n" "REAL*8, parameter :: Catalan = %sd0\n" "REAL*8, parameter :: pi = %sd0\n" "test = pi**Catalan\n" "end function\n" ) % (Catalan.evalf(17), pi.evalf(17)) assert source == expected def test_erf_f_code(): x = symbols('x') routine = make_routine("test", erf(x) - erf(-2 * x)) code_gen = FCodeGen() source = get_string(code_gen.dump_f95, [routine]) expected = ( "REAL*8 function test(x)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "test = erf(x) + erf(2.0d0*x)\n" "end function\n" ) assert source == expected, source def test_f_code_argument_order(): x, y, z = symbols('x,y,z') expr = x + y routine = make_routine("test", expr, argument_sequence=[z, x, y]) code_gen = FCodeGen() source = get_string(code_gen.dump_f95, [routine]) expected = ( "REAL*8 function test(z, x, y)\n" "implicit none\n" "REAL*8, intent(in) :: z\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "test = x + y\n" "end function\n" ) assert source == expected def test_simple_f_header(): x, y, z = symbols('x,y,z') expr = (x + y)*z routine = make_routine("test", expr) code_gen = FCodeGen() source = get_string(code_gen.dump_h, [routine]) expected = ( "interface\n" "REAL*8 function test(x, y, z)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "REAL*8, intent(in) :: z\n" "end function\n" "end interface\n" ) assert source == expected def test_simple_f_codegen(): x, y, z = symbols('x,y,z') expr = (x + y)*z result = codegen( ("test", expr), "F95", "file", header=False, empty=False) expected = [ ("file.f90", "REAL*8 function test(x, y, z)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "REAL*8, intent(in) :: z\n" "test = z*(x + y)\n" "end function\n"), ("file.h", "interface\n" "REAL*8 function test(x, y, z)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "REAL*8, intent(in) :: z\n" "end function\n" "end interface\n") ] assert result == expected def test_multiple_results_f(): x, y, z = symbols('x,y,z') expr1 = (x + y)*z expr2 = (x - y)*z routine = make_routine( "test", [expr1, expr2] ) code_gen = FCodeGen() raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine])) def test_no_results_f(): raises(ValueError, lambda: make_routine("test", [])) def test_intrinsic_math_codegen(): # not included: log10 from sympy import (acos, asin, atan, cos, cosh, log, ln, sin, sinh, sqrt, tan, tanh, Abs) x = symbols('x') name_expr = [ ("test_abs", Abs(x)), ("test_acos", acos(x)), ("test_asin", asin(x)), ("test_atan", atan(x)), ("test_cos", cos(x)), ("test_cosh", cosh(x)), ("test_log", log(x)), ("test_ln", ln(x)), ("test_sin", sin(x)), ("test_sinh", sinh(x)), ("test_sqrt", sqrt(x)), ("test_tan", tan(x)), ("test_tanh", tanh(x)), ] result = codegen(name_expr, "F95", "file", header=False, empty=False) assert result[0][0] == "file.f90" expected = ( 'REAL*8 function test_abs(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_abs = abs(x)\n' 'end function\n' 'REAL*8 function test_acos(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_acos = acos(x)\n' 'end function\n' 'REAL*8 function test_asin(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_asin = asin(x)\n' 'end function\n' 'REAL*8 function test_atan(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_atan = atan(x)\n' 'end function\n' 'REAL*8 function test_cos(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_cos = cos(x)\n' 'end function\n' 'REAL*8 function test_cosh(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_cosh = cosh(x)\n' 'end function\n' 'REAL*8 function test_log(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_log = log(x)\n' 'end function\n' 'REAL*8 function test_ln(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_ln = log(x)\n' 'end function\n' 'REAL*8 function test_sin(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_sin = sin(x)\n' 'end function\n' 'REAL*8 function test_sinh(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_sinh = sinh(x)\n' 'end function\n' 'REAL*8 function test_sqrt(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_sqrt = sqrt(x)\n' 'end function\n' 'REAL*8 function test_tan(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_tan = tan(x)\n' 'end function\n' 'REAL*8 function test_tanh(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'test_tanh = tanh(x)\n' 'end function\n' ) assert result[0][1] == expected assert result[1][0] == "file.h" expected = ( 'interface\n' 'REAL*8 function test_abs(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_acos(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_asin(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_atan(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_cos(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_cosh(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_log(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_ln(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_sin(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_sinh(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_sqrt(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_tan(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_tanh(x)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'end function\n' 'end interface\n' ) assert result[1][1] == expected def test_intrinsic_math2_codegen(): # not included: frexp, ldexp, modf, fmod from sympy import atan2 x, y = symbols('x,y') name_expr = [ ("test_atan2", atan2(x, y)), ("test_pow", x**y), ] result = codegen(name_expr, "F95", "file", header=False, empty=False) assert result[0][0] == "file.f90" expected = ( 'REAL*8 function test_atan2(x, y)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'test_atan2 = atan2(x, y)\n' 'end function\n' 'REAL*8 function test_pow(x, y)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'test_pow = x**y\n' 'end function\n' ) assert result[0][1] == expected assert result[1][0] == "file.h" expected = ( 'interface\n' 'REAL*8 function test_atan2(x, y)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test_pow(x, y)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'end function\n' 'end interface\n' ) assert result[1][1] == expected def test_complicated_codegen_f95(): from sympy import sin, cos, tan x, y, z = symbols('x,y,z') name_expr = [ ("test1", ((sin(x) + cos(y) + tan(z))**7).expand()), ("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))), ] result = codegen(name_expr, "F95", "file", header=False, empty=False) assert result[0][0] == "file.f90" expected = ( 'REAL*8 function test1(x, y, z)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'REAL*8, intent(in) :: z\n' 'test1 = sin(x)**7 + 7*sin(x)**6*cos(y) + 7*sin(x)**6*tan(z) + 21*sin(x) &\n' ' **5*cos(y)**2 + 42*sin(x)**5*cos(y)*tan(z) + 21*sin(x)**5*tan(z) &\n' ' **2 + 35*sin(x)**4*cos(y)**3 + 105*sin(x)**4*cos(y)**2*tan(z) + &\n' ' 105*sin(x)**4*cos(y)*tan(z)**2 + 35*sin(x)**4*tan(z)**3 + 35*sin( &\n' ' x)**3*cos(y)**4 + 140*sin(x)**3*cos(y)**3*tan(z) + 210*sin(x)**3* &\n' ' cos(y)**2*tan(z)**2 + 140*sin(x)**3*cos(y)*tan(z)**3 + 35*sin(x) &\n' ' **3*tan(z)**4 + 21*sin(x)**2*cos(y)**5 + 105*sin(x)**2*cos(y)**4* &\n' ' tan(z) + 210*sin(x)**2*cos(y)**3*tan(z)**2 + 210*sin(x)**2*cos(y) &\n' ' **2*tan(z)**3 + 105*sin(x)**2*cos(y)*tan(z)**4 + 21*sin(x)**2*tan &\n' ' (z)**5 + 7*sin(x)*cos(y)**6 + 42*sin(x)*cos(y)**5*tan(z) + 105* &\n' ' sin(x)*cos(y)**4*tan(z)**2 + 140*sin(x)*cos(y)**3*tan(z)**3 + 105 &\n' ' *sin(x)*cos(y)**2*tan(z)**4 + 42*sin(x)*cos(y)*tan(z)**5 + 7*sin( &\n' ' x)*tan(z)**6 + cos(y)**7 + 7*cos(y)**6*tan(z) + 21*cos(y)**5*tan( &\n' ' z)**2 + 35*cos(y)**4*tan(z)**3 + 35*cos(y)**3*tan(z)**4 + 21*cos( &\n' ' y)**2*tan(z)**5 + 7*cos(y)*tan(z)**6 + tan(z)**7\n' 'end function\n' 'REAL*8 function test2(x, y, z)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'REAL*8, intent(in) :: z\n' 'test2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n' 'end function\n' ) assert result[0][1] == expected assert result[1][0] == "file.h" expected = ( 'interface\n' 'REAL*8 function test1(x, y, z)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'REAL*8, intent(in) :: z\n' 'end function\n' 'end interface\n' 'interface\n' 'REAL*8 function test2(x, y, z)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(in) :: y\n' 'REAL*8, intent(in) :: z\n' 'end function\n' 'end interface\n' ) assert result[1][1] == expected def test_loops(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n,m', integer=True) A, x, y = map(IndexedBase, 'Axy') i = Idx('i', m) j = Idx('j', n) (f1, code), (f2, interface) = codegen( ('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False) assert f1 == 'file.f90' expected = ( 'subroutine matrix_vector(A, m, n, x, y)\n' 'implicit none\n' 'INTEGER*4, intent(in) :: m\n' 'INTEGER*4, intent(in) :: n\n' 'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n' 'REAL*8, intent(in), dimension(1:n) :: x\n' 'REAL*8, intent(out), dimension(1:m) :: y\n' 'INTEGER*4 :: i\n' 'INTEGER*4 :: j\n' 'do i = 1, m\n' ' y(i) = 0\n' 'end do\n' 'do i = 1, m\n' ' do j = 1, n\n' ' y(i) = %(rhs)s + y(i)\n' ' end do\n' 'end do\n' 'end subroutine\n' ) assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\ code == expected % {'rhs': 'x(j)*A(i, j)'} assert f2 == 'file.h' assert interface == ( 'interface\n' 'subroutine matrix_vector(A, m, n, x, y)\n' 'implicit none\n' 'INTEGER*4, intent(in) :: m\n' 'INTEGER*4, intent(in) :: n\n' 'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n' 'REAL*8, intent(in), dimension(1:n) :: x\n' 'REAL*8, intent(out), dimension(1:m) :: y\n' 'end subroutine\n' 'end interface\n' ) def test_dummy_loops_f95(): from sympy.tensor import IndexedBase, Idx i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( 'subroutine test_dummies(m_%(mcount)i, x, y)\n' 'implicit none\n' 'INTEGER*4, intent(in) :: m_%(mcount)i\n' 'REAL*8, intent(in), dimension(1:m_%(mcount)i) :: x\n' 'REAL*8, intent(out), dimension(1:m_%(mcount)i) :: y\n' 'INTEGER*4 :: i_%(icount)i\n' 'do i_%(icount)i = 1, m_%(mcount)i\n' ' y(i_%(icount)i) = x(i_%(icount)i)\n' 'end do\n' 'end subroutine\n' ) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} r = make_routine('test_dummies', Eq(y[i], x[i])) c = FCodeGen() code = get_string(c.dump_f95, [r]) assert code == expected def test_loops_InOut(): from sympy.tensor import IndexedBase, Idx from sympy import symbols i, j, n, m = symbols('i,j,n,m', integer=True) A, x, y = symbols('A,x,y') A = IndexedBase(A)[Idx(i, m), Idx(j, n)] x = IndexedBase(x)[Idx(j, n)] y = IndexedBase(y)[Idx(i, m)] (f1, code), (f2, interface) = codegen( ('matrix_vector', Eq(y, y + A*x)), "F95", "file", header=False, empty=False) assert f1 == 'file.f90' expected = ( 'subroutine matrix_vector(A, m, n, x, y)\n' 'implicit none\n' 'INTEGER*4, intent(in) :: m\n' 'INTEGER*4, intent(in) :: n\n' 'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n' 'REAL*8, intent(in), dimension(1:n) :: x\n' 'REAL*8, intent(inout), dimension(1:m) :: y\n' 'INTEGER*4 :: i\n' 'INTEGER*4 :: j\n' 'do i = 1, m\n' ' do j = 1, n\n' ' y(i) = %(rhs)s + y(i)\n' ' end do\n' 'end do\n' 'end subroutine\n' ) assert (code == expected % {'rhs': 'A(i, j)*x(j)'} or code == expected % {'rhs': 'x(j)*A(i, j)'}) assert f2 == 'file.h' assert interface == ( 'interface\n' 'subroutine matrix_vector(A, m, n, x, y)\n' 'implicit none\n' 'INTEGER*4, intent(in) :: m\n' 'INTEGER*4, intent(in) :: n\n' 'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n' 'REAL*8, intent(in), dimension(1:n) :: x\n' 'REAL*8, intent(inout), dimension(1:m) :: y\n' 'end subroutine\n' 'end interface\n' ) def test_partial_loops_f(): # check that loop boundaries are determined by Idx, and array strides # determined by shape of IndexedBase object. from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) A = IndexedBase('A', shape=(m, p)) x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', (o, m - 5)) # Note: bounds are inclusive j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1) (f1, code), (f2, interface) = codegen( ('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False) expected = ( 'subroutine matrix_vector(A, m, n, o, p, x, y)\n' 'implicit none\n' 'INTEGER*4, intent(in) :: m\n' 'INTEGER*4, intent(in) :: n\n' 'INTEGER*4, intent(in) :: o\n' 'INTEGER*4, intent(in) :: p\n' 'REAL*8, intent(in), dimension(1:m, 1:p) :: A\n' 'REAL*8, intent(in), dimension(1:n) :: x\n' 'REAL*8, intent(out), dimension(1:%(iup-ilow)s) :: y\n' 'INTEGER*4 :: i\n' 'INTEGER*4 :: j\n' 'do i = %(ilow)s, %(iup)s\n' ' y(i) = 0\n' 'end do\n' 'do i = %(ilow)s, %(iup)s\n' ' do j = 1, n\n' ' y(i) = %(rhs)s + y(i)\n' ' end do\n' 'end do\n' 'end subroutine\n' ) % { 'rhs': '%(rhs)s', 'iup': str(m - 4), 'ilow': str(1 + o), 'iup-ilow': str(m - 4 - o) } assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\ code == expected % {'rhs': 'x(j)*A(i, j)'} def test_output_arg_f(): from sympy import sin, cos, Equality x, y, z = symbols("x,y,z") r = make_routine("foo", [Equality(y, sin(x)), cos(x)]) c = FCodeGen() result = c.write([r], "test", header=False, empty=False) assert result[0][0] == "test.f90" assert result[0][1] == ( 'REAL*8 function foo(x, y)\n' 'implicit none\n' 'REAL*8, intent(in) :: x\n' 'REAL*8, intent(out) :: y\n' 'y = sin(x)\n' 'foo = cos(x)\n' 'end function\n' ) def test_inline_function(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A, x, y = map(IndexedBase, 'Axy') i = Idx('i', m) p = FCodeGen() func = implemented_function('func', Lambda(n, n*(n + 1))) routine = make_routine('test_inline', Eq(y[i], func(x[i]))) code = get_string(p.dump_f95, [routine]) expected = ( 'subroutine test_inline(m, x, y)\n' 'implicit none\n' 'INTEGER*4, intent(in) :: m\n' 'REAL*8, intent(in), dimension(1:m) :: x\n' 'REAL*8, intent(out), dimension(1:m) :: y\n' 'INTEGER*4 :: i\n' 'do i = 1, m\n' ' y(i) = %s*%s\n' 'end do\n' 'end subroutine\n' ) args = ('x(i)', '(x(i) + 1)') assert code == expected % args or\ code == expected % args[::-1] def test_f_code_call_signature_wrap(): # Issue #7934 x = symbols('x:20') expr = 0 for sym in x: expr += sym routine = make_routine("test", expr) code_gen = FCodeGen() source = get_string(code_gen.dump_f95, [routine]) expected = """\ REAL*8 function test(x0, x1, x10, x11, x12, x13, x14, x15, x16, x17, x18, & x19, x2, x3, x4, x5, x6, x7, x8, x9) implicit none REAL*8, intent(in) :: x0 REAL*8, intent(in) :: x1 REAL*8, intent(in) :: x10 REAL*8, intent(in) :: x11 REAL*8, intent(in) :: x12 REAL*8, intent(in) :: x13 REAL*8, intent(in) :: x14 REAL*8, intent(in) :: x15 REAL*8, intent(in) :: x16 REAL*8, intent(in) :: x17 REAL*8, intent(in) :: x18 REAL*8, intent(in) :: x19 REAL*8, intent(in) :: x2 REAL*8, intent(in) :: x3 REAL*8, intent(in) :: x4 REAL*8, intent(in) :: x5 REAL*8, intent(in) :: x6 REAL*8, intent(in) :: x7 REAL*8, intent(in) :: x8 REAL*8, intent(in) :: x9 test = x0 + x1 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + & x19 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 end function """ assert source == expected def test_check_case(): x, X = symbols('x,X') raises(CodeGenError, lambda: codegen(('test', x*X), 'f95', 'prefix')) def test_check_case_false_positive(): # The upper case/lower case exception should not be triggered by SymPy # objects that differ only because of assumptions. (It may be useful to # have a check for that as well, but here we only want to test against # false positives with respect to case checking.) x1 = symbols('x') x2 = symbols('x', my_assumption=True) try: codegen(('test', x1*x2), 'f95', 'prefix') except CodeGenError as e: if e.args[0].startswith("Fortran ignores case."): raise AssertionError("This exception should not be raised!") def test_c_fortran_omit_routine_name(): x, y = symbols("x,y") name_expr = [("foo", 2*x)] result = codegen(name_expr, "F95", header=False, empty=False) expresult = codegen(name_expr, "F95", "foo", header=False, empty=False) assert result[0][1] == expresult[0][1] name_expr = ("foo", x*y) result = codegen(name_expr, "F95", header=False, empty=False) expresult = codegen(name_expr, "F95", "foo", header=False, empty=False) assert result[0][1] == expresult[0][1] name_expr = ("foo", Matrix([[x, y], [x+y, x-y]])) result = codegen(name_expr, "C89", header=False, empty=False) expresult = codegen(name_expr, "C89", "foo", header=False, empty=False) assert result[0][1] == expresult[0][1] def test_fcode_matrix_output(): x, y, z = symbols('x,y,z') e1 = x + y e2 = Matrix([[x, y], [z, 16]]) name_expr = ("test", (e1, e2)) result = codegen(name_expr, "f95", "test", header=False, empty=False) source = result[0][1] expected = ( "REAL*8 function test(x, y, z, out_%(hash)s)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "REAL*8, intent(in) :: z\n" "REAL*8, intent(out), dimension(1:2, 1:2) :: out_%(hash)s\n" "out_%(hash)s(1, 1) = x\n" "out_%(hash)s(2, 1) = z\n" "out_%(hash)s(1, 2) = y\n" "out_%(hash)s(2, 2) = 16\n" "test = x + y\n" "end function\n" ) # look for the magic number a = source.splitlines()[5] b = a.split('_') out = b[1] expected = expected % {'hash': out} assert source == expected def test_fcode_results_named_ordered(): x, y, z = symbols('x,y,z') B, C = symbols('B,C') A = MatrixSymbol('A', 1, 3) expr1 = Equality(A, Matrix([[1, 2, x]])) expr2 = Equality(C, (x + y)*z) expr3 = Equality(B, 2*x) name_expr = ("test", [expr1, expr2, expr3]) result = codegen(name_expr, "f95", "test", header=False, empty=False, argument_sequence=(x, z, y, C, A, B)) source = result[0][1] expected = ( "subroutine test(x, z, y, C, A, B)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: z\n" "REAL*8, intent(in) :: y\n" "REAL*8, intent(out) :: C\n" "REAL*8, intent(out) :: B\n" "REAL*8, intent(out), dimension(1:1, 1:3) :: A\n" "C = z*(x + y)\n" "A(1, 1) = 1\n" "A(1, 2) = 2\n" "A(1, 3) = x\n" "B = 2*x\n" "end subroutine\n" ) assert source == expected def test_fcode_matrixsymbol_slice(): A = MatrixSymbol('A', 2, 3) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 1, 3) D = MatrixSymbol('D', 2, 1) name_expr = ("test", [Equality(B, A[0, :]), Equality(C, A[1, :]), Equality(D, A[:, 2])]) result = codegen(name_expr, "f95", "test", header=False, empty=False) source = result[0][1] expected = ( "subroutine test(A, B, C, D)\n" "implicit none\n" "REAL*8, intent(in), dimension(1:2, 1:3) :: A\n" "REAL*8, intent(out), dimension(1:1, 1:3) :: B\n" "REAL*8, intent(out), dimension(1:1, 1:3) :: C\n" "REAL*8, intent(out), dimension(1:2, 1:1) :: D\n" "B(1, 1) = A(1, 1)\n" "B(1, 2) = A(1, 2)\n" "B(1, 3) = A(1, 3)\n" "C(1, 1) = A(2, 1)\n" "C(1, 2) = A(2, 2)\n" "C(1, 3) = A(2, 3)\n" "D(1, 1) = A(1, 3)\n" "D(2, 1) = A(2, 3)\n" "end subroutine\n" ) assert source == expected def test_fcode_matrixsymbol_slice_autoname(): # see issue #8093 A = MatrixSymbol('A', 2, 3) name_expr = ("test", A[:, 1]) result = codegen(name_expr, "f95", "test", header=False, empty=False) source = result[0][1] expected = ( "subroutine test(A, out_%(hash)s)\n" "implicit none\n" "REAL*8, intent(in), dimension(1:2, 1:3) :: A\n" "REAL*8, intent(out), dimension(1:2, 1:1) :: out_%(hash)s\n" "out_%(hash)s(1, 1) = A(1, 2)\n" "out_%(hash)s(2, 1) = A(2, 2)\n" "end subroutine\n" ) # look for the magic number a = source.splitlines()[3] b = a.split('_') out = b[1] expected = expected % {'hash': out} assert source == expected def test_global_vars(): x, y, z, t = symbols("x y z t") result = codegen(('f', x*y), "F95", header=False, empty=False, global_vars=(y,)) source = result[0][1] expected = ( "REAL*8 function f(x)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "f = x*y\n" "end function\n" ) assert source == expected expected = ( '#include "f.h"\n' '#include <math.h>\n' 'double f(double x, double y) {\n' ' double f_result;\n' ' f_result = x*y + z;\n' ' return f_result;\n' '}\n' ) result = codegen(('f', x*y+z), "C", header=False, empty=False, global_vars=(z, t)) source = result[0][1] assert source == expected def test_custom_codegen(): from sympy.printing.ccode import C99CodePrinter from sympy.functions.elementary.exponential import exp printer = C99CodePrinter(settings={'user_functions': {'exp': 'fastexp'}}) x, y = symbols('x y') expr = exp(x + y) # replace math.h with a different header gen = C99CodeGen(printer=printer, preprocessor_statements=['#include "fastexp.h"']) expected = ( '#include "expr.h"\n' '#include "fastexp.h"\n' 'double expr(double x, double y) {\n' ' double expr_result;\n' ' expr_result = fastexp(x + y);\n' ' return expr_result;\n' '}\n' ) result = codegen(('expr', expr), header=False, empty=False, code_gen=gen) source = result[0][1] assert source == expected # use both math.h and an external header gen = C99CodeGen(printer=printer) gen.preprocessor_statements.append('#include "fastexp.h"') expected = ( '#include "expr.h"\n' '#include <math.h>\n' '#include "fastexp.h"\n' 'double expr(double x, double y) {\n' ' double expr_result;\n' ' expr_result = fastexp(x + y);\n' ' return expr_result;\n' '}\n' ) result = codegen(('expr', expr), header=False, empty=False, code_gen=gen) source = result[0][1] assert source == expected def test_c_with_printer(): #issue 13586 from sympy.printing.ccode import C99CodePrinter class CustomPrinter(C99CodePrinter): def _print_Pow(self, expr): return "fastpow({}, {})".format(self._print(expr.base), self._print(expr.exp)) x = symbols('x') expr = x**3 expected =[ ("file.c", "#include \"file.h\"\n" "#include <math.h>\n" "double test(double x) {\n" " double test_result;\n" " test_result = fastpow(x, 3);\n" " return test_result;\n" "}\n"), ("file.h", "#ifndef PROJECT__FILE__H\n" "#define PROJECT__FILE__H\n" "double test(double x);\n" "#endif\n") ] result = codegen(("test", expr), "C","file", header=False, empty=False, printer = CustomPrinter()) assert result == expected def test_fcode_complex(): import sympy.utilities.codegen sympy.utilities.codegen.COMPLEX_ALLOWED = True x = Symbol('x', real=True) y = Symbol('y',real=True) result = codegen(('test',x+y), 'f95', 'test', header=False, empty=False) source = (result[0][1]) expected = ( "REAL*8 function test(x, y)\n" "implicit none\n" "REAL*8, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "test = x + y\n" "end function\n") assert source == expected x = Symbol('x') y = Symbol('y',real=True) result = codegen(('test',x+y), 'f95', 'test', header=False, empty=False) source = (result[0][1]) expected = ( "COMPLEX*16 function test(x, y)\n" "implicit none\n" "COMPLEX*16, intent(in) :: x\n" "REAL*8, intent(in) :: y\n" "test = x + y\n" "end function\n" ) assert source==expected sympy.utilities.codegen.COMPLEX_ALLOWED = False
a494def833b872d4e59e383552fab2a1e058e74079ce7163706be2bd74613365
"""ASCII-ART 2D pretty-printer""" from .pretty import (pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode, pager_print) # if unicode output is available -- let's use it pprint_try_use_unicode() __all__ = [ 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode', 'pprint_try_use_unicode', 'pager_print', ]
3765e26a36f2138ef0b7a08cbc39076393ee3c7ed0dda65e6950e4ebb4c6b782
from __future__ import print_function, division import itertools from sympy.core import S from sympy.core.compatibility import range, string_types from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.core.sympify import SympifyError from sympy.printing.conventions import requires_partial from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional from sympy.printing.printer import Printer from sympy.printing.str import sstr from sympy.utilities import default_sort_key from sympy.utilities.iterables import has_variety from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import xstr, hobj, vobj, xobj, \ xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \ pretty_try_use_unicode, annotated # rename for usage from outside pprint_use_unicode = pretty_use_unicode pprint_try_use_unicode = pretty_try_use_unicode class PrettyPrinter(Printer): """Printer, which converts an expression into 2D ASCII-art figure.""" printmethod = "_pretty" _default_settings = { "order": None, "full_prec": "auto", "use_unicode": None, "wrap_line": True, "num_columns": None, "use_unicode_sqrt_char": True, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "perm_cyclic": True } def __init__(self, settings=None): Printer.__init__(self, settings) if not isinstance(self._settings['imaginary_unit'], string_types): raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit'])) elif self._settings['imaginary_unit'] not in ["i", "j"]: raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit'])) self.emptyPrinter = lambda x: prettyForm(xstr(x)) @property def _use_unicode(self): if self._settings['use_unicode']: return True else: return pretty_use_unicode() def doprint(self, expr): return self._print(expr).render(**self._settings) # empty op so _print(stringPict) returns the same def _print_stringPict(self, e): return e def _print_basestring(self, e): return prettyForm(e) def _print_atan2(self, e): pform = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm(*pform.left('atan2')) return pform def _print_Symbol(self, e, bold_name=False): symb = pretty_symbol(e.name, bold_name) return prettyForm(symb) _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, e): return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold") def _print_Float(self, e): # we will use StrPrinter's Float printer, but we need to handle the # full_prec ourselves, according to the self._print_level full_prec = self._settings["full_prec"] if full_prec == "auto": full_prec = self._print_level == 1 return prettyForm(sstr(e, full_prec=full_prec)) def _print_Cross(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Curl(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Divergence(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Dot(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Gradient(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Laplacian(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('INCREMENT')))) return pform def _print_Atom(self, e): try: # print atoms like Exp1 or Pi return prettyForm(pretty_atom(e.__class__.__name__, printer=self)) except KeyError: return self.emptyPrinter(e) # Infinity inherits from Number, so we have to override _print_XXX order _print_Infinity = _print_Atom _print_NegativeInfinity = _print_Atom _print_EmptySet = _print_Atom _print_Naturals = _print_Atom _print_Naturals0 = _print_Atom _print_Integers = _print_Atom _print_Rationals = _print_Atom _print_Complexes = _print_Atom _print_EmptySequence = _print_Atom def _print_Reals(self, e): if self._use_unicode: return self._print_Atom(e) else: inf_list = ['-oo', 'oo'] return self._print_seq(inf_list, '(', ')') def _print_subfactorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('!')) return pform def _print_factorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!')) return pform def _print_factorial2(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!!')) return pform def _print_binomial(self, e): n, k = e.args n_pform = self._print(n) k_pform = self._print(k) bar = ' '*max(n_pform.width(), k_pform.width()) pform = prettyForm(*k_pform.above(bar)) pform = prettyForm(*pform.above(n_pform)) pform = prettyForm(*pform.parens('(', ')')) pform.baseline = (pform.baseline + 1)//2 return pform def _print_Relational(self, e): op = prettyForm(' ' + xsym(e.rel_op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Not(self, e): from sympy import Equivalent, Implies if self._use_unicode: arg = e.args[0] pform = self._print(arg) if isinstance(arg, Equivalent): return self._print_Equivalent(arg, altchar=u"\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}") if isinstance(arg, Implies): return self._print_Implies(arg, altchar=u"\N{RIGHTWARDS ARROW WITH STROKE}") if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) return prettyForm(*pform.left(u"\N{NOT SIGN}")) else: return self._print_Function(e) def __print_Boolean(self, e, char, sort=True): args = e.args if sort: args = sorted(e.args, key=default_sort_key) arg = args[0] pform = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) for arg in args[1:]: pform_arg = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform_arg = prettyForm(*pform_arg.parens()) pform = prettyForm(*pform.right(u' %s ' % char)) pform = prettyForm(*pform.right(pform_arg)) return pform def _print_And(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{LOGICAL AND}") else: return self._print_Function(e, sort=True) def _print_Or(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{LOGICAL OR}") else: return self._print_Function(e, sort=True) def _print_Xor(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{XOR}") else: return self._print_Function(e, sort=True) def _print_Nand(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{NAND}") else: return self._print_Function(e, sort=True) def _print_Nor(self, e): if self._use_unicode: return self.__print_Boolean(e, u"\N{NOR}") else: return self._print_Function(e, sort=True) def _print_Implies(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or u"\N{RIGHTWARDS ARROW}", sort=False) else: return self._print_Function(e) def _print_Equivalent(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or u"\N{LEFT RIGHT DOUBLE ARROW}") else: return self._print_Function(e, sort=True) def _print_conjugate(self, e): pform = self._print(e.args[0]) return prettyForm( *pform.above( hobj('_', pform.width())) ) def _print_Abs(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('|', '|')) return pform _print_Determinant = _print_Abs def _print_floor(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lfloor', 'rfloor')) return pform else: return self._print_Function(e) def _print_ceiling(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lceil', 'rceil')) return pform else: return self._print_Function(e) def _print_Derivative(self, deriv): if requires_partial(deriv.expr) and self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None count_total_deriv = 0 for sym, num in reversed(deriv.variable_count): s = self._print(sym) ds = prettyForm(*s.left(deriv_symbol)) count_total_deriv += num if (not num.is_Integer) or (num > 1): ds = ds**prettyForm(str(num)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if (count_total_deriv > 1) != False: pform = pform**prettyForm(str(count_total_deriv)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Cycle(self, dc): from sympy.combinatorics.permutations import Permutation, Cycle # for Empty Cycle if dc == Cycle(): cyc = stringPict('') return prettyForm(*cyc.parens()) dc_list = Permutation(dc.list()).cyclic_form # for Identity Cycle if dc_list == []: cyc = self._print(dc.size - 1) return prettyForm(*cyc.parens()) cyc = stringPict('') for i in dc_list: l = self._print(str(tuple(i)).replace(',', '')) cyc = prettyForm(*cyc.right(l)) return cyc def _print_Permutation(self, expr): from ..str import sstr from sympy.combinatorics.permutations import Permutation, Cycle perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: return self._print_Cycle(Cycle(expr)) lower = expr.array_form upper = list(range(len(lower))) result = stringPict('') first = True for u, l in zip(upper, lower): s1 = self._print(u) s2 = self._print(l) col = prettyForm(*s1.below(s2)) if first: first = False else: col = prettyForm(*col.left(" ")) result = prettyForm(*result.right(col)) return prettyForm(*result.parens()) def _print_Integral(self, integral): f = integral.function # Add parentheses if arg involves addition of terms and # create a pretty form for the argument prettyF = self._print(f) # XXX generalize parens if f.is_Add: prettyF = prettyForm(*prettyF.parens()) # dx dy dz ... arg = prettyF for x in integral.limits: prettyArg = self._print(x[0]) # XXX qparens (parens if needs-parens) if prettyArg.width() > 1: prettyArg = prettyForm(*prettyArg.parens()) arg = prettyForm(*arg.right(' d', prettyArg)) # \int \int \int ... firstterm = True s = None for lim in integral.limits: x = lim[0] # Create bar based on the height of the argument h = arg.height() H = h + 2 # XXX hack! ascii_mode = not self._use_unicode if ascii_mode: H += 2 vint = vobj('int', H) # Construct the pretty form with the integral sign and the argument pform = prettyForm(vint) pform.baseline = arg.baseline + ( H - h)//2 # covering the whole argument if len(lim) > 1: # Create pretty forms for endpoints, if definite integral. # Do not print empty endpoints. if len(lim) == 2: prettyA = prettyForm("") prettyB = self._print(lim[1]) if len(lim) == 3: prettyA = self._print(lim[1]) prettyB = self._print(lim[2]) if ascii_mode: # XXX hack # Add spacing so that endpoint can more easily be # identified with the correct integral sign spc = max(1, 3 - prettyB.width()) prettyB = prettyForm(*prettyB.left(' ' * spc)) spc = max(1, 4 - prettyA.width()) prettyA = prettyForm(*prettyA.right(' ' * spc)) pform = prettyForm(*pform.above(prettyB)) pform = prettyForm(*pform.below(prettyA)) if not ascii_mode: # XXX hack pform = prettyForm(*pform.right(' ')) if firstterm: s = pform # first term firstterm = False else: s = prettyForm(*s.left(pform)) pform = prettyForm(*arg.left(s)) pform.binding = prettyForm.MUL return pform def _print_Product(self, expr): func = expr.term pretty_func = self._print(func) horizontal_chr = xobj('_', 1) corner_chr = xobj('_', 1) vertical_chr = xobj('|', 1) if self._use_unicode: # use unicode corners horizontal_chr = xobj('-', 1) corner_chr = u'\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}' func_height = pretty_func.height() first = True max_upper = 0 sign_height = 0 for lim in expr.limits: pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim) width = (func_height + 2) * 5 // 3 - 2 sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr] for _ in range(func_height + 1): sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ') pretty_sign = stringPict('') pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines)) max_upper = max(max_upper, pretty_upper.height()) if first: sign_height = pretty_sign.height() pretty_sign = prettyForm(*pretty_sign.above(pretty_upper)) pretty_sign = prettyForm(*pretty_sign.below(pretty_lower)) if first: pretty_func.baseline = 0 first = False height = pretty_sign.height() padding = stringPict('') padding = prettyForm(*padding.stack(*[' ']*(height - 1))) pretty_sign = prettyForm(*pretty_sign.right(padding)) pretty_func = prettyForm(*pretty_sign.right(pretty_func)) pretty_func.baseline = max_upper + sign_height//2 pretty_func.binding = prettyForm.MUL return pretty_func def __print_SumProduct_Limits(self, lim): def print_start(lhs, rhs): op = prettyForm(' ' + xsym("==") + ' ') l = self._print(lhs) r = self._print(rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform prettyUpper = self._print(lim[2]) prettyLower = print_start(lim[0], lim[1]) return prettyLower, prettyUpper def _print_Sum(self, expr): ascii_mode = not self._use_unicode def asum(hrequired, lower, upper, use_ascii): def adjust(s, wid=None, how='<^>'): if not wid or len(s) > wid: return s need = wid - len(s) if how == '<^>' or how == "<" or how not in list('<^>'): return s + ' '*need half = need//2 lead = ' '*half if how == ">": return " "*need + s return lead + s + ' '*(need - len(lead)) h = max(hrequired, 2) d = h//2 w = d + 1 more = hrequired % 2 lines = [] if use_ascii: lines.append("_"*(w) + ' ') lines.append(r"\%s`" % (' '*(w - 1))) for i in range(1, d): lines.append('%s\\%s' % (' '*i, ' '*(w - i))) if more: lines.append('%s)%s' % (' '*(d), ' '*(w - d))) for i in reversed(range(1, d)): lines.append('%s/%s' % (' '*i, ' '*(w - i))) lines.append("/" + "_"*(w - 1) + ',') return d, h + more, lines, more else: w = w + more d = d + more vsum = vobj('sum', 4) lines.append("_"*(w)) for i in range(0, d): lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1))) for i in reversed(range(0, d)): lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1))) lines.append(vsum[8]*(w)) return d, h + 2*more, lines, more f = expr.function prettyF = self._print(f) if f.is_Add: # add parens prettyF = prettyForm(*prettyF.parens()) H = prettyF.height() + 2 # \sum \sum \sum ... first = True max_upper = 0 sign_height = 0 for lim in expr.limits: prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim) max_upper = max(max_upper, prettyUpper.height()) # Create sum sign based on the height of the argument d, h, slines, adjustment = asum( H, prettyLower.width(), prettyUpper.width(), ascii_mode) prettySign = stringPict('') prettySign = prettyForm(*prettySign.stack(*slines)) if first: sign_height = prettySign.height() prettySign = prettyForm(*prettySign.above(prettyUpper)) prettySign = prettyForm(*prettySign.below(prettyLower)) if first: # change F baseline so it centers on the sign prettyF.baseline -= d - (prettyF.height()//2 - prettyF.baseline) first = False # put padding to the right pad = stringPict('') pad = prettyForm(*pad.stack(*[' ']*h)) prettySign = prettyForm(*prettySign.right(pad)) # put the present prettyF to the right prettyF = prettyForm(*prettySign.right(prettyF)) # adjust baseline of ascii mode sigma with an odd height so that it is # exactly through the center ascii_adjustment = ascii_mode if not adjustment else 0 prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment prettyF.binding = prettyForm.MUL return prettyF def _print_Limit(self, l): e, z, z0, dir = l.args E = self._print(e) if precedence(e) <= PRECEDENCE["Mul"]: E = prettyForm(*E.parens('(', ')')) Lim = prettyForm('lim') LimArg = self._print(z) if self._use_unicode: LimArg = prettyForm(*LimArg.right(u'\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}')) else: LimArg = prettyForm(*LimArg.right('->')) LimArg = prettyForm(*LimArg.right(self._print(z0))) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): dir = "" else: if self._use_unicode: dir = u'\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else u'\N{SUPERSCRIPT MINUS}' LimArg = prettyForm(*LimArg.right(self._print(dir))) Lim = prettyForm(*Lim.below(LimArg)) Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL) return Lim def _print_matrix_contents(self, e): """ This method factors out what is essentially grid printing. """ M = e # matrix Ms = {} # i,j -> pretty(M[i,j]) for i in range(M.rows): for j in range(M.cols): Ms[i, j] = self._print(M[i, j]) # h- and v- spacers hsep = 2 vsep = 1 # max width for columns maxw = [-1] * M.cols for j in range(M.cols): maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0]) # drawing result D = None for i in range(M.rows): D_row = None for j in range(M.cols): s = Ms[i, j] # reshape s to maxw # XXX this should be generalized, and go to stringPict.reshape ? assert s.width() <= maxw[j] # hcenter it, +0.5 to the right 2 # ( it's better to align formula starts for say 0 and r ) # XXX this is not good in all cases -- maybe introduce vbaseline? wdelta = maxw[j] - s.width() wleft = wdelta // 2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) # we don't need vcenter cells -- this is automatically done in # a pretty way because when their baselines are taking into # account in .right() if D_row is None: D_row = s # first box in a row continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) if D is None: D = prettyForm('') # Empty Matrix return D def _print_MatrixBase(self, e): D = self._print_matrix_contents(e) D.baseline = D.height()//2 D = prettyForm(*D.parens('[', ']')) return D _print_ImmutableMatrix = _print_MatrixBase _print_Matrix = _print_MatrixBase def _print_TensorProduct(self, expr): # This should somehow share the code with _print_WedgeProduct: circled_times = "\u2297" return self._print_seq(expr.args, None, None, circled_times, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_WedgeProduct(self, expr): # This should somehow share the code with _print_TensorProduct: wedge_symbol = u"\u2227" return self._print_seq(expr.args, None, None, wedge_symbol, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_Trace(self, e): D = self._print(e.arg) D = prettyForm(*D.parens('(',')')) D.baseline = D.height()//2 D = prettyForm(*D.left('\n'*(0) + 'tr')) return D def _print_MatrixElement(self, expr): from sympy.matrices import MatrixSymbol from sympy import Symbol if (isinstance(expr.parent, MatrixSymbol) and expr.i.is_number and expr.j.is_number): return self._print( Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j))) else: prettyFunc = self._print(expr.parent) prettyFunc = prettyForm(*prettyFunc.parens()) prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', ' ).parens(left='[', right=']')[0] pform = prettyForm(binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyIndices)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyIndices return pform def _print_MatrixSlice(self, m): # XXX works only for applied functions prettyFunc = self._print(m.parent) def ppslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return prettyForm(*self._print_seq(x, delimiter=':')) prettyArgs = self._print_seq((ppslice(m.rowslice), ppslice(m.colslice)), delimiter=', ').parens(left='[', right=']')[0] pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_Transpose(self, expr): pform = self._print(expr.arg) from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(prettyForm('T')) return pform def _print_Adjoint(self, expr): pform = self._print(expr.arg) if self._use_unicode: dag = prettyForm(u'\N{DAGGER}') else: dag = prettyForm('+') from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**dag return pform def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): return self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_MatAdd(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: coeff = item.as_coeff_mmul()[0] if _coeff_isneg(S(coeff)): s = prettyForm(*stringPict.next(s, ' ')) pform = self._print(item) else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_MatMul(self, expr): args = list(expr.args) from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct for i, a in enumerate(args): if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct)) and len(expr.args) > 1): args[i] = prettyForm(*self._print(a).parens()) else: args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_Identity(self, expr): if self._use_unicode: return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}') else: return prettyForm('I') def _print_ZeroMatrix(self, expr): if self._use_unicode: return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}') else: return prettyForm('0') def _print_OneMatrix(self, expr): if self._use_unicode: return prettyForm(u'\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}') else: return prettyForm('1') def _print_DotProduct(self, expr): args = list(expr.args) for i, a in enumerate(args): args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_MatPow(self, expr): pform = self._print(expr.base) from sympy.matrices import MatrixSymbol if not isinstance(expr.base, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(self._print(expr.exp)) return pform def _print_HadamardProduct(self, expr): from sympy import MatAdd, MatMul, HadamardProduct if self._use_unicode: delim = pretty_atom('Ring') else: delim = '.*' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct))) def _print_HadamardPower(self, expr): # from sympy import MatAdd, MatMul if self._use_unicode: circ = pretty_atom('Ring') else: circ = self._print('.') pretty_base = self._print(expr.base) pretty_exp = self._print(expr.exp) if precedence(expr.exp) < PRECEDENCE["Mul"]: pretty_exp = prettyForm(*pretty_exp.parens()) pretty_circ_exp = prettyForm( binding=prettyForm.LINE, *stringPict.next(circ, pretty_exp) ) return pretty_base**pretty_circ_exp def _print_KroneckerProduct(self, expr): from sympy import MatAdd, MatMul if self._use_unicode: delim = u' \N{N-ARY CIRCLED TIMES OPERATOR} ' else: delim = ' x ' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul))) def _print_FunctionMatrix(self, X): D = self._print(X.lamda.expr) D = prettyForm(*D.parens('[', ']')) return D def _print_BasisDependent(self, expr): from sympy.vector import Vector if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented") if expr == expr.zero: return prettyForm(expr.zero._pretty_form) o1 = [] vectstrs = [] if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x: x[0].__str__()) for k, v in inneritems: #if the coef of the basis vector is 1 #we skip the 1 if v == 1: o1.append(u"" + k._pretty_form) #Same for -1 elif v == -1: o1.append(u"(-1) " + k._pretty_form) #For a general expr else: #We always wrap the measure numbers in #parentheses arg_str = self._print( v).parens()[0] o1.append(arg_str + ' ' + k._pretty_form) vectstrs.append(k._pretty_form) #outstr = u("").join(o1) if o1[0].startswith(u" + "): o1[0] = o1[0][3:] elif o1[0].startswith(" "): o1[0] = o1[0][1:] #Fixing the newlines lengths = [] strs = [''] flag = [] for i, partstr in enumerate(o1): flag.append(0) # XXX: What is this hack? if '\n' in partstr: tempstr = partstr tempstr = tempstr.replace(vectstrs[i], '') if u'\N{right parenthesis extension}' in tempstr: # If scalar is a fraction for paren in range(len(tempstr)): flag[i] = 1 if tempstr[paren] == u'\N{right parenthesis extension}': tempstr = tempstr[:paren] + u'\N{right parenthesis extension}'\ + ' ' + vectstrs[i] + tempstr[paren + 1:] break elif u'\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr: flag[i] = 1 tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS LOWER HOOK}', u'\N{RIGHT PARENTHESIS LOWER HOOK}' + ' ' + vectstrs[i]) else: tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS UPPER HOOK}', u'\N{RIGHT PARENTHESIS UPPER HOOK}' + ' ' + vectstrs[i]) o1[i] = tempstr o1 = [x.split('\n') for x in o1] n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form if 1 in flag: # If there was a fractional scalar for i, parts in enumerate(o1): if len(parts) == 1: # If part has no newline parts.insert(0, ' ' * (len(parts[0]))) flag[i] = 1 for i, parts in enumerate(o1): lengths.append(len(parts[flag[i]])) for j in range(n_newlines): if j+1 <= len(parts): if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) if j == flag[i]: strs[flag[i]] += parts[flag[i]] + ' + ' else: strs[j] += parts[j] + ' '*(lengths[-1] - len(parts[j])+ 3) else: if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) strs[j] += ' '*(lengths[-1]+3) return prettyForm(u'\n'.join([s[:-3] for s in strs])) def _print_NDimArray(self, expr): from sympy import ImmutableMatrix if expr.rank() == 0: return self._print(expr[()]) level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] # leave eventual matrix elements unflattened mat = lambda x: ImmutableMatrix(x, evaluate=False) for outer_i in itertools.product(*shape_ranges): level_str[-1].append(expr[outer_i]) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append(level_str[back_outer_i+1]) else: level_str[back_outer_i].append(mat( level_str[back_outer_i+1])) if len(level_str[back_outer_i + 1]) == 1: level_str[back_outer_i][-1] = mat( [[level_str[back_outer_i][-1]]]) even = not even level_str[back_outer_i+1] = [] out_expr = level_str[0][0] if expr.rank() % 2 == 1: out_expr = mat([out_expr]) return self._print(out_expr) _print_ImmutableDenseNDimArray = _print_NDimArray _print_ImmutableSparseNDimArray = _print_NDimArray _print_MutableDenseNDimArray = _print_NDimArray _print_MutableSparseNDimArray = _print_NDimArray def _printer_tensor_indices(self, name, indices, index_map={}): center = stringPict(name) top = stringPict(" "*center.width()) bot = stringPict(" "*center.width()) last_valence = None prev_map = None for i, index in enumerate(indices): indpic = self._print(index.args[0]) if ((index in index_map) or prev_map) and last_valence == index.is_up: if index.is_up: top = prettyForm(*stringPict.next(top, ",")) else: bot = prettyForm(*stringPict.next(bot, ",")) if index in index_map: indpic = prettyForm(*stringPict.next(indpic, "=")) indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index]))) prev_map = True else: prev_map = False if index.is_up: top = stringPict(*top.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) bot = stringPict(*bot.right(" "*indpic.width())) else: bot = stringPict(*bot.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) top = stringPict(*top.right(" "*indpic.width())) last_valence = index.is_up pict = prettyForm(*center.above(top)) pict = prettyForm(*pict.below(bot)) return pict def _print_Tensor(self, expr): name = expr.args[0].name indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].name indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): sign, args = expr._get_args_for_traditional_printer() args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in args ] pform = prettyForm.__mul__(*args) if sign: return prettyForm(*pform.left(sign)) else: return pform def _print_TensAdd(self, expr): args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in expr.args ] return prettyForm.__add__(*args) def _print_TensorIndex(self, expr): sym = expr.args[0] if not expr.is_up: sym = -sym return self._print(sym) def _print_PartialDerivative(self, deriv): if self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None for variable in reversed(deriv.variables): s = self._print(variable) ds = prettyForm(*s.left(deriv_symbol)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if len(deriv.variables) > 1: pform = pform**self._print(len(deriv.variables)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Piecewise(self, pexpr): P = {} for n, ec in enumerate(pexpr.args): P[n, 0] = self._print(ec.expr) if ec.cond == True: P[n, 1] = prettyForm('otherwise') else: P[n, 1] = prettyForm( *prettyForm('for ').right(self._print(ec.cond))) hsep = 2 vsep = 1 len_args = len(pexpr.args) # max widths maxw = [max([P[i, j].width() for i in range(len_args)]) for j in range(2)] # FIXME: Refactor this code and matrix into some tabular environment. # drawing result D = None for i in range(len_args): D_row = None for j in range(2): p = P[i, j] assert p.width() <= maxw[j] wdelta = maxw[j] - p.width() wleft = wdelta // 2 wright = wdelta - wleft p = prettyForm(*p.right(' '*wright)) p = prettyForm(*p.left(' '*wleft)) if D_row is None: D_row = p continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(p)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens('{', '')) D.baseline = D.height()//2 D.binding = prettyForm.OPEN return D def _print_ITE(self, ite): from sympy.functions.elementary.piecewise import Piecewise return self._print(ite.rewrite(Piecewise)) def _hprint_vec(self, v): D = None for a in v: p = a if D is None: D = p else: D = prettyForm(*D.right(', ')) D = prettyForm(*D.right(p)) if D is None: D = stringPict(' ') return D def _hprint_vseparator(self, p1, p2): tmp = prettyForm(*p1.right(p2)) sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline) return prettyForm(*p1.right(sep, p2)) def _print_hyper(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment ap = [self._print(a) for a in e.ap] bq = [self._print(b) for b in e.bq] P = self._print(e.argument) P.baseline = P.height()//2 # Drawing result - first create the ap, bq vectors D = None for v in [ap, bq]: D_row = self._hprint_vec(v) if D is None: D = D_row # first row in a picture else: D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the F symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('F') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) add = (sz + 1)//2 F = prettyForm(*F.left(self._print(len(e.ap)))) F = prettyForm(*F.right(self._print(len(e.bq)))) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_meijerg(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment v = {} v[(0, 0)] = [self._print(a) for a in e.an] v[(0, 1)] = [self._print(a) for a in e.aother] v[(1, 0)] = [self._print(b) for b in e.bm] v[(1, 1)] = [self._print(b) for b in e.bother] P = self._print(e.argument) P.baseline = P.height()//2 vp = {} for idx in v: vp[idx] = self._hprint_vec(v[idx]) for i in range(2): maxw = max(vp[(0, i)].width(), vp[(1, i)].width()) for j in range(2): s = vp[(j, i)] left = (maxw - s.width()) // 2 right = maxw - left - s.width() s = prettyForm(*s.left(' ' * left)) s = prettyForm(*s.right(' ' * right)) vp[(j, i)] = s D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)])) D1 = prettyForm(*D1.below(' ')) D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)])) D = prettyForm(*D1.below(D2)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the G symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('G') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) pp = self._print(len(e.ap)) pq = self._print(len(e.bq)) pm = self._print(len(e.bm)) pn = self._print(len(e.an)) def adjust(p1, p2): diff = p1.width() - p2.width() if diff == 0: return p1, p2 elif diff > 0: return p1, prettyForm(*p2.left(' '*diff)) else: return prettyForm(*p1.left(' '*-diff)), p2 pp, pm = adjust(pp, pm) pq, pn = adjust(pq, pn) pu = prettyForm(*pm.right(', ', pn)) pl = prettyForm(*pp.right(', ', pq)) ht = F.baseline - above - 2 if ht > 0: pu = prettyForm(*pu.below('\n'*ht)) p = prettyForm(*pu.below(pl)) F.baseline = above F = prettyForm(*F.right(p)) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_ExpBase(self, e): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? base = prettyForm(pretty_atom('Exp1', 'e')) return base ** self._print(e.args[0]) def _print_Function(self, e, sort=False, func_name=None): # optional argument func_name for supplying custom names # XXX works only for applied functions return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name) def _print_mathieuc(self, e): return self._print_Function(e, func_name='C') def _print_mathieus(self, e): return self._print_Function(e, func_name='S') def _print_mathieucprime(self, e): return self._print_Function(e, func_name="C'") def _print_mathieusprime(self, e): return self._print_Function(e, func_name="S'") def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False): if sort: args = sorted(args, key=default_sort_key) if not func_name and hasattr(func, "__name__"): func_name = func.__name__ if func_name: prettyFunc = self._print(Symbol(func_name)) else: prettyFunc = prettyForm(*self._print(func).parens()) if elementwise: if self._use_unicode: circ = pretty_atom('Modifier Letter Low Ring') else: circ = '.' circ = self._print(circ) prettyFunc = prettyForm( binding=prettyForm.LINE, *stringPict.next(prettyFunc, circ) ) prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_ElementwiseApplyFunction(self, e): func = e.function arg = e.expr args = [arg] return self._helper_print_function(func, args, delimiter="", elementwise=True) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.zeta_functions import lerchphi from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: [greek_unicode['delta'], 'delta'], gamma: [greek_unicode['Gamma'], 'Gamma'], lerchphi: [greek_unicode['Phi'], 'lerchphi'], lowergamma: [greek_unicode['gamma'], 'gamma'], beta: [greek_unicode['Beta'], 'B'], DiracDelta: [greek_unicode['delta'], 'delta'], Chi: ['Chi', 'Chi']} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: if self._use_unicode: return prettyForm(self._special_function_classes[cls][0]) else: return prettyForm(self._special_function_classes[cls][1]) func_name = expr.__name__ return prettyForm(pretty_symbol(func_name)) def _print_GeometryEntity(self, expr): # GeometryEntity is based on Tuple but should not print like a Tuple return self.emptyPrinter(expr) def _print_lerchphi(self, e): func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi' return self._print_Function(e, func_name=func_name) def _print_dirichlet_eta(self, e): func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta' return self._print_Function(e, func_name=func_name) def _print_Heaviside(self, e): func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside' return self._print_Function(e, func_name=func_name) def _print_fresnels(self, e): return self._print_Function(e, func_name="S") def _print_fresnelc(self, e): return self._print_Function(e, func_name="C") def _print_airyai(self, e): return self._print_Function(e, func_name="Ai") def _print_airybi(self, e): return self._print_Function(e, func_name="Bi") def _print_airyaiprime(self, e): return self._print_Function(e, func_name="Ai'") def _print_airybiprime(self, e): return self._print_Function(e, func_name="Bi'") def _print_LambertW(self, e): return self._print_Function(e, func_name="W") def _print_Lambda(self, e): expr = e.expr sig = e.signature if self._use_unicode: arrow = u" \N{RIGHTWARDS ARROW FROM BAR} " else: arrow = " -> " if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] var_form = self._print(sig) return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8) def _print_Order(self, expr): pform = self._print(expr.expr) if (expr.point and any(p != S.Zero for p in expr.point)) or \ len(expr.variables) > 1: pform = prettyForm(*pform.right("; ")) if len(expr.variables) > 1: pform = prettyForm(*pform.right(self._print(expr.variables))) elif len(expr.variables): pform = prettyForm(*pform.right(self._print(expr.variables[0]))) if self._use_unicode: pform = prettyForm(*pform.right(u" \N{RIGHTWARDS ARROW} ")) else: pform = prettyForm(*pform.right(" -> ")) if len(expr.point) > 1: pform = prettyForm(*pform.right(self._print(expr.point))) else: pform = prettyForm(*pform.right(self._print(expr.point[0]))) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left("O")) return pform def _print_SingularityFunction(self, e): if self._use_unicode: shift = self._print(e.args[0]-e.args[1]) n = self._print(e.args[2]) base = prettyForm("<") base = prettyForm(*base.right(shift)) base = prettyForm(*base.right(">")) pform = base**n return pform else: n = self._print(e.args[2]) shift = self._print(e.args[0]-e.args[1]) base = self._print_seq(shift, "<", ">", ' ') return base**n def _print_beta(self, e): func_name = greek_unicode['Beta'] if self._use_unicode else 'B' return self._print_Function(e, func_name=func_name) def _print_gamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_uppergamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_lowergamma(self, e): func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma' return self._print_Function(e, func_name=func_name) def _print_DiracDelta(self, e): if self._use_unicode: if len(e.args) == 2: a = prettyForm(greek_unicode['delta']) b = self._print(e.args[1]) b = prettyForm(*b.parens()) c = self._print(e.args[0]) c = prettyForm(*c.parens()) pform = a**b pform = prettyForm(*pform.right(' ')) pform = prettyForm(*pform.right(c)) return pform pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(greek_unicode['delta'])) return pform else: return self._print_Function(e) def _print_expint(self, e): from sympy import Function if e.args[0].is_Integer and self._use_unicode: return self._print_Function(Function('E_%s' % e.args[0])(e.args[1])) return self._print_Function(e) def _print_Chi(self, e): # This needs a special case since otherwise it comes out as greek # letter chi... prettyFunc = prettyForm("Chi") prettyArgs = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_elliptic_e(self, e): pforma0 = self._print(e.args[0]) if len(e.args) == 1: pform = pforma0 else: pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('E')) return pform def _print_elliptic_k(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('K')) return pform def _print_elliptic_f(self, e): pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('F')) return pform def _print_elliptic_pi(self, e): name = greek_unicode['Pi'] if self._use_unicode else 'Pi' pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) if len(e.args) == 2: pform = self._hprint_vseparator(pforma0, pforma1) else: pforma2 = self._print(e.args[2]) pforma = self._hprint_vseparator(pforma1, pforma2) pforma = prettyForm(*pforma.left('; ')) pform = prettyForm(*pforma.left(pforma0)) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(name)) return pform def _print_GoldenRatio(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('phi')) return self._print(Symbol("GoldenRatio")) def _print_EulerGamma(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('gamma')) return self._print(Symbol("EulerGamma")) def _print_Mod(self, expr): pform = self._print(expr.args[0]) if pform.binding > prettyForm.MUL: pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right(' mod ')) pform = prettyForm(*pform.right(self._print(expr.args[1]))) pform.binding = prettyForm.OPEN return pform def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) pforms, indices = [], [] def pretty_negative(pform, index): """Prepend a minus sign to a pretty form. """ #TODO: Move this code to prettyForm if index == 0: if pform.height() > 1: pform_neg = '- ' else: pform_neg = '-' else: pform_neg = ' - ' if (pform.binding > prettyForm.NEG or pform.binding == prettyForm.ADD): p = stringPict(*pform.parens()) else: p = pform p = stringPict.next(pform_neg, p) # Lower the binding to NEG, even if it was higher. Otherwise, it # will print as a + ( - (b)), instead of a - (b). return prettyForm(binding=prettyForm.NEG, *p) for i, term in enumerate(terms): if term.is_Mul and _coeff_isneg(term): coeff, other = term.as_coeff_mul(rational=False) pform = self._print(Mul(-coeff, *other, evaluate=False)) pforms.append(pretty_negative(pform, i)) elif term.is_Rational and term.q > 1: pforms.append(None) indices.append(i) elif term.is_Number and term < 0: pform = self._print(-term) pforms.append(pretty_negative(pform, i)) elif term.is_Relational: pforms.append(prettyForm(*self._print(term).parens())) else: pforms.append(self._print(term)) if indices: large = True for pform in pforms: if pform is not None and pform.height() > 1: break else: large = False for i in indices: term, negative = terms[i], False if term < 0: term, negative = -term, True if large: pform = prettyForm(str(term.p))/prettyForm(str(term.q)) else: pform = self._print(term) if negative: pform = pretty_negative(pform, i) pforms[i] = pform return prettyForm.__add__(*pforms) def _print_Mul(self, product): from sympy.physics.units import Quantity a = [] # items in the numerator b = [] # items that are in the denominator (if any) if self.order not in ('old', 'none'): args = product.as_ordered_factors() else: args = list(product.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) # Gather terms for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append( Rational(item.p) ) if item.q != 1: b.append( Rational(item.q) ) else: a.append(item) from sympy import Integral, Piecewise, Product, Sum # Convert to pretty forms. Add parens to Add instances if there # is more than one term in the numer/denom for i in range(0, len(a)): if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and isinstance(a[i], (Integral, Piecewise, Product, Sum))): a[i] = prettyForm(*self._print(a[i]).parens()) elif a[i].is_Relational: a[i] = prettyForm(*self._print(a[i]).parens()) else: a[i] = self._print(a[i]) for i in range(0, len(b)): if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and isinstance(b[i], (Integral, Piecewise, Product, Sum))): b[i] = prettyForm(*self._print(b[i]).parens()) else: b[i] = self._print(b[i]) # Construct a pretty form if len(b) == 0: return prettyForm.__mul__(*a) else: if len(a) == 0: a.append( self._print(S.One) ) return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) # A helper function for _print_Pow to print x**(1/n) def _print_nth_root(self, base, expt): bpretty = self._print(base) # In very simple cases, use a single-char root sign if (self._settings['use_unicode_sqrt_char'] and self._use_unicode and expt is S.Half and bpretty.height() == 1 and (bpretty.width() == 1 or (base.is_Integer and base.is_nonnegative))): return prettyForm(*bpretty.left(u'\N{SQUARE ROOT}')) # Construct root sign, start with the \/ shape _zZ = xobj('/', 1) rootsign = xobj('\\', 1) + _zZ # Make exponent number to put above it if isinstance(expt, Rational): exp = str(expt.q) if exp == '2': exp = '' else: exp = str(expt.args[0]) exp = exp.ljust(2) if len(exp) > 2: rootsign = ' '*(len(exp) - 2) + rootsign # Stack the exponent rootsign = stringPict(exp + '\n' + rootsign) rootsign.baseline = 0 # Diagonal: length is one less than height of base linelength = bpretty.height() - 1 diagonal = stringPict('\n'.join( ' '*(linelength - i - 1) + _zZ + ' '*i for i in range(linelength) )) # Put baseline just below lowest line: next to exp diagonal.baseline = linelength - 1 # Make the root symbol rootsign = prettyForm(*rootsign.right(diagonal)) # Det the baseline to match contents to fix the height # but if the height of bpretty is one, the rootsign must be one higher rootsign.baseline = max(1, bpretty.baseline) #build result s = prettyForm(hobj('_', 2 + bpretty.width())) s = prettyForm(*bpretty.above(s)) s = prettyForm(*s.left(rootsign)) return s def _print_Pow(self, power): from sympy.simplify.simplify import fraction b, e = power.as_base_exp() if power.is_commutative: if e is S.NegativeOne: return prettyForm("1")/self._print(b) n, d = fraction(e) if n is S.One and d.is_Atom and not e.is_Integer and self._settings['root_notation']: return self._print_nth_root(b, e) if e.is_Rational and e < 0: return prettyForm("1")/self._print(Pow(b, -e, evaluate=False)) if b.is_Relational: return prettyForm(*self._print(b).parens()).__pow__(self._print(e)) return self._print(b)**self._print(e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def __print_numer_denom(self, p, q): if q == 1: if p < 0: return prettyForm(str(p), binding=prettyForm.NEG) else: return prettyForm(str(p)) elif abs(p) >= 10 and abs(q) >= 10: # If more than one digit in numer and denom, print larger fraction if p < 0: return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q)) # Old printing method: #pform = prettyForm(str(-p))/prettyForm(str(q)) #return prettyForm(binding=prettyForm.NEG, *pform.left('- ')) else: return prettyForm(str(p))/prettyForm(str(q)) else: return None def _print_Rational(self, expr): result = self.__print_numer_denom(expr.p, expr.q) if result is not None: return result else: return self.emptyPrinter(expr) def _print_Fraction(self, expr): result = self.__print_numer_denom(expr.numerator, expr.denominator) if result is not None: return result else: return self.emptyPrinter(expr) def _print_ProductSet(self, p): if len(p.sets) >= 1 and not has_variety(p.sets): from sympy import Pow return self._print(Pow(p.sets[0], len(p.sets), evaluate=False)) else: prod_char = u"\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x' return self._print_seq(p.sets, None, None, ' %s ' % prod_char, parenthesize=lambda set: set.is_Union or set.is_Intersection or set.is_ProductSet) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_seq(items, '{', '}', ', ' ) def _print_Range(self, s): if self._use_unicode: dots = u"\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return self._print_seq(printset, '{', '}', ', ' ) def _print_Interval(self, i): if i.start == i.end: return self._print_seq(i.args[:1], '{', '}') else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return self._print_seq(i.args[:2], left, right) def _print_AccumulationBounds(self, i): left = '<' right = '>' return self._print_seq(i.args[:2], left, right) def _print_Intersection(self, u): delimiter = ' %s ' % pretty_atom('Intersection', 'n') return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Union or set.is_Complement) def _print_Union(self, u): union_delimiter = ' %s ' % pretty_atom('Union', 'U') return self._print_seq(u.args, None, None, union_delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Complement) def _print_SymmetricDifference(self, u): if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented") sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference') return self._print_seq(u.args, None, None, sym_delimeter) def _print_Complement(self, u): delimiter = r' \ ' return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Union) def _print_ImageSet(self, ts): if self._use_unicode: inn = u"\N{SMALL ELEMENT OF}" else: inn = 'in' fun = ts.lamda sets = ts.base_sets signature = fun.signature expr = self._print(fun.expr) bar = self._print("|") if len(signature) == 1: return self._print_seq((expr, bar, signature[0], inn, sets[0]), "{", "}", ' ') else: pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, inn, setv, ",")) return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ') def _print_ConditionSet(self, ts): if self._use_unicode: inn = u"\N{SMALL ELEMENT OF}" # using _and because and is a keyword and it is bad practice to # overwrite them _and = u"\N{LOGICAL AND}" else: inn = 'in' _and = 'and' variables = self._print_seq(Tuple(ts.sym)) as_expr = getattr(ts.condition, 'as_expr', None) if as_expr is not None: cond = self._print(ts.condition.as_expr()) else: cond = self._print(ts.condition) if self._use_unicode: cond = self._print_seq(cond, "(", ")") bar = self._print("|") if ts.base_set is S.UniversalSet: return self._print_seq((variables, bar, cond), "{", "}", ' ') base = self._print(ts.base_set) return self._print_seq((variables, bar, variables, inn, base, _and, cond), "{", "}", ' ') def _print_ComplexRegion(self, ts): if self._use_unicode: inn = u"\N{SMALL ELEMENT OF}" else: inn = 'in' variables = self._print_seq(ts.variables) expr = self._print(ts.expr) bar = self._print("|") prodsets = self._print(ts.sets) return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ') def _print_Contains(self, e): var, set = e.args if self._use_unicode: el = u" \N{ELEMENT OF} " return prettyForm(*stringPict.next(self._print(var), el, self._print(set)), binding=8) else: return prettyForm(sstr(e)) def _print_FourierSeries(self, s): if self._use_unicode: dots = u"\N{HORIZONTAL ELLIPSIS}" else: dots = '...' return self._print_Add(s.truncate()) + self._print(dots) def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_SetExpr(self, se): pretty_set = prettyForm(*self._print(se.set).parens()) pretty_name = self._print(Symbol("SetExpr")) return prettyForm(*pretty_name.right(pretty_set)) def _print_SeqFormula(self, s): if self._use_unicode: dots = u"\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented") if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) printset = tuple(printset) else: printset = tuple(s) return self._print_list(printset) _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_seq(self, seq, left=None, right=None, delimiter=', ', parenthesize=lambda x: False): s = None try: for item in seq: pform = self._print(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else: # XXX: Under the tests from #15686 this raises: # AttributeError: 'Fake' object has no attribute 'baseline' # This is caught below but that is not the right way to # fix it. s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') except AttributeError: s = None for item in seq: pform = self.doprint(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else : s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') s = prettyForm(*s.parens(left, right, ifascii_nougly=True)) return s def join(self, delimiter, args): pform = None for arg in args: if pform is None: pform = arg else: pform = prettyForm(*pform.right(delimiter)) pform = prettyForm(*pform.right(arg)) if pform is None: return prettyForm("") else: return pform def _print_list(self, l): return self._print_seq(l, '[', ']') def _print_tuple(self, t): if len(t) == 1: ptuple = prettyForm(*stringPict.next(self._print(t[0]), ',')) return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True)) else: return self._print_seq(t, '(', ')') def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}') def _print_Dict(self, d): return self._print_dict(d) def _print_set(self, s): if not s: return prettyForm('set()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) return pretty def _print_frozenset(self, s): if not s: return prettyForm('frozenset()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True)) pretty = prettyForm(*stringPict.next(type(s).__name__, pretty)) return pretty def _print_UniversalSet(self, s): if self._use_unicode: return prettyForm(u"\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}") else: return prettyForm('UniversalSet') def _print_PolyRing(self, ring): return prettyForm(sstr(ring)) def _print_FracField(self, field): return prettyForm(sstr(field)) def _print_FreeGroupElement(self, elm): return prettyForm(str(elm)) def _print_PolyElement(self, poly): return prettyForm(sstr(poly)) def _print_FracElement(self, frac): return prettyForm(sstr(frac)) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_ComplexRootOf(self, expr): args = [self._print_Add(expr.expr, order='lex'), expr.index] pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('CRootOf')) return pform def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('RootSum')) return pform def _print_FiniteField(self, expr): if self._use_unicode: form = u'\N{DOUBLE-STRUCK CAPITAL Z}_%d' else: form = 'GF(%d)' return prettyForm(pretty_symbol(form % expr.mod)) def _print_IntegerRing(self, expr): if self._use_unicode: return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Z}') else: return prettyForm('ZZ') def _print_RationalField(self, expr): if self._use_unicode: return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Q}') else: return prettyForm('QQ') def _print_RealField(self, domain): if self._use_unicode: prefix = u'\N{DOUBLE-STRUCK CAPITAL R}' else: prefix = 'RR' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_ComplexField(self, domain): if self._use_unicode: prefix = u'\N{DOUBLE-STRUCK CAPITAL C}' else: prefix = 'CC' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_PolynomialRing(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_FractionField(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '(', ')') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_PolynomialRingBase(self, expr): g = expr.symbols if str(expr.order) != str(expr.default_order): g = g + ("order=" + str(expr.order),) pform = self._print_seq(g, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_GroebnerBasis(self, basis): exprs = [ self._print_Add(arg, order=basis.order) for arg in basis.exprs ] exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]")) gens = [ self._print(gen) for gen in basis.gens ] domain = prettyForm( *prettyForm("domain=").right(self._print(basis.domain))) order = prettyForm( *prettyForm("order=").right(self._print(basis.order))) pform = self.join(", ", [exprs] + gens + [domain, order]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(basis.__class__.__name__)) return pform def _print_Subs(self, e): pform = self._print(e.expr) pform = prettyForm(*pform.parens()) h = pform.height() if pform.height() > 1 else 2 rvert = stringPict(vobj('|', h), baseline=pform.baseline) pform = prettyForm(*pform.right(rvert)) b = pform.baseline pform.baseline = pform.height() - 1 pform = prettyForm(*pform.right(self._print_seq([ self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])), delimiter='') for v in zip(e.variables, e.point) ]))) pform.baseline = b return pform def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument pform = prettyForm(name) arg = self._print(e.args[0]) pform_arg = prettyForm(" "*arg.width()) pform_arg = prettyForm(*pform_arg.below(arg)) pform = prettyForm(*pform.right(pform_arg)) if len(e.args) == 1: return pform m, x = e.args # TODO: copy-pasted from _print_Function: can we do better? prettyFunc = pform prettyArgs = prettyForm(*self._print_seq([x]).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_euler(self, e): return self._print_number_function(e, "E") def _print_catalan(self, e): return self._print_number_function(e, "C") def _print_bernoulli(self, e): return self._print_number_function(e, "B") _print_bell = _print_bernoulli def _print_lucas(self, e): return self._print_number_function(e, "L") def _print_fibonacci(self, e): return self._print_number_function(e, "F") def _print_tribonacci(self, e): return self._print_number_function(e, "T") def _print_stieltjes(self, e): if self._use_unicode: return self._print_number_function(e, u'\N{GREEK SMALL LETTER GAMMA}') else: return self._print_number_function(e, "stieltjes") def _print_KroneckerDelta(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.right((prettyForm(',')))) pform = prettyForm(*pform.right((self._print(e.args[1])))) if self._use_unicode: a = stringPict(pretty_symbol('delta')) else: a = stringPict('d') b = pform top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.as_boolean()))) return pform elif hasattr(d, 'set'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.symbols))) pform = prettyForm(*pform.right(self._print(' in '))) pform = prettyForm(*pform.right(self._print(d.set))) return pform elif hasattr(d, 'symbols'): pform = self._print('Domain on ') pform = prettyForm(*pform.right(self._print(d.symbols))) return pform else: return self._print(None) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(pretty_symbol(object.name)) def _print_Morphism(self, morphism): arrow = xsym("-->") domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) tail = domain.right(arrow, codomain)[0] return prettyForm(tail) def _print_NamedMorphism(self, morphism): pretty_name = self._print(pretty_symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(":", pretty_morphism)[0]) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism( NamedMorphism(morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): circle = xsym(".") # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [pretty_symbol(component.name) for component in morphism.components] component_names_list.reverse() component_names = circle.join(component_names_list) + ":" pretty_name = self._print(component_names) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(pretty_morphism)[0]) def _print_Category(self, category): return self._print(pretty_symbol(category.name)) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) pretty_result = self._print(diagram.premises) if diagram.conclusions: results_arrow = " %s " % xsym("==>") pretty_conclusions = self._print(diagram.conclusions)[0] pretty_result = pretty_result.right( results_arrow, pretty_conclusions) return prettyForm(pretty_result[0]) def _print_DiagramGrid(self, grid): from sympy.matrices import Matrix from sympy import Symbol matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ") for j in range(grid.width)] for i in range(grid.height)]) return self._print_matrix_contents(matrix) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return self._print_seq(m, '[', ']') def _print_SubModule(self, M): return self._print_seq(M.gens, '<', '>') def _print_FreeModule(self, M): return self._print(M.ring)**self._print(M.rank) def _print_ModuleImplementedIdeal(self, M): return self._print_seq([x for [x] in M._module.gens], '<', '>') def _print_QuotientRing(self, R): return self._print(R.ring) / self._print(R.base_ideal) def _print_QuotientRingElement(self, R): return self._print(R.data) + self._print(R.ring.base_ideal) def _print_QuotientModuleElement(self, m): return self._print(m.data) + self._print(m.module.killed_module) def _print_QuotientModule(self, M): return self._print(M.base) / self._print(M.killed_module) def _print_MatrixHomomorphism(self, h): matrix = self._print(h._sympy_matrix()) matrix.baseline = matrix.height() // 2 pform = prettyForm(*matrix.right(' : ', self._print(h.domain), ' %s> ' % hobj('-', 2), self._print(h.codomain))) return pform def _print_BaseScalarField(self, field): string = field._coord_sys._names[field._index] return self._print(pretty_symbol(string)) def _print_BaseVectorField(self, field): s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys._names[field._index] return self._print(pretty_symbol(s)) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys._names[field._index] return self._print(u'\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string)) else: pform = self._print(field) pform = prettyForm(*pform.parens()) return prettyForm(*pform.left(u"\N{DOUBLE-STRUCK ITALIC SMALL D}")) def _print_Tr(self, p): #TODO: Handle indices pform = self._print(p.args[0]) pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__))) pform = prettyForm(*pform.right(')')) return pform def _print_primenu(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['nu'])) else: pform = prettyForm(*pform.left('nu')) return pform def _print_primeomega(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['Omega'])) else: pform = prettyForm(*pform.left('Omega')) return pform def _print_Quantity(self, e): if e.name.name == 'degree': pform = self._print(u"\N{DEGREE SIGN}") return pform else: return self.emptyPrinter(e) def _print_AssignmentBase(self, e): op = prettyForm(' ' + xsym(e.op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def pretty(expr, **settings): """Returns a string containing the prettified form of expr. For information on keyword arguments see pretty_print function. """ pp = PrettyPrinter(settings) # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def pretty_print(expr, **kwargs): """Prints expr in pretty form. pprint is just a shortcut for this function. Parameters ========== expr : expression The expression to print. wrap_line : bool, optional (default=True) Line wrapping enabled/disabled. num_columns : int or None, optional (default=None) Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal. use_unicode : bool or None, optional (default=None) Use unicode characters, such as the Greek letter pi instead of the string pi. full_prec : bool or string, optional (default="auto") Use full precision. order : bool or string, optional (default=None) Set to 'none' for long expressions if slow; default is None. use_unicode_sqrt_char : bool, optional (default=True) Use compact single-character square root symbol (when unambiguous). root_notation : bool, optional (default=True) Set to 'False' for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form. mat_symbol_style : string, optional (default="plain") Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used. imaginary_unit : string, optional (default="i") Letter to use for imaginary unit when use_unicode is True. Can be "i" (default) or "j". """ print(pretty(expr, **kwargs)) pprint = pretty_print def pager_print(expr, **settings): """Prints expr using the pager, in pretty form. This invokes a pager command using pydoc. Lines are not wrapped automatically. This routine is meant to be used with a pager that allows sideways scrolling, like ``less -S``. Parameters are the same as for ``pretty_print``. If you wish to wrap lines, pass ``num_columns=None`` to auto-detect the width of the terminal. """ from pydoc import pager from locale import getpreferredencoding if 'num_columns' not in settings: settings['num_columns'] = 500000 # disable line wrap pager(pretty(expr, **settings).encode(getpreferredencoding()))
57eb3e2cd31857db425f3bb13f60793a892c5047473968a2d88a2a00ff16bd2b
"""Symbolic primitives + unicode/ASCII abstraction for pretty.py""" from __future__ import print_function, division import sys import warnings from string import ascii_lowercase, ascii_uppercase unicode_warnings = '' from sympy.core.compatibility import unicode, range # first, setup unicodedate environment try: import unicodedata def U(name): """unicode character by name or None if not found""" try: u = unicodedata.lookup(name) except KeyError: u = None global unicode_warnings unicode_warnings += 'No \'%s\' in unicodedata\n' % name return u except ImportError: unicode_warnings += 'No unicodedata available\n' U = lambda name: None from sympy.printing.conventions import split_super_sub from sympy.core.alphabets import greeks # prefix conventions when constructing tables # L - LATIN i # G - GREEK beta # D - DIGIT 0 # S - SYMBOL + __all__ = ['greek_unicode', 'sub', 'sup', 'xsym', 'vobj', 'hobj', 'pretty_symbol', 'annotated'] _use_unicode = False def pretty_use_unicode(flag=None): """Set whether pretty-printer should use unicode by default""" global _use_unicode global unicode_warnings if flag is None: return _use_unicode # we know that some letters are not supported in Python 2.X so # ignore those warnings. Remove this when 2.X support is dropped. if unicode_warnings: known = ['LATIN SUBSCRIPT SMALL LETTER %s' % i for i in 'HKLMNPST'] unicode_warnings = '\n'.join([ l for l in unicode_warnings.splitlines() if not any( i in l for i in known)]) # ------------ end of 2.X warning filtering if flag and unicode_warnings: # print warnings (if any) on first unicode usage warnings.warn(unicode_warnings) unicode_warnings = '' use_unicode_prev = _use_unicode _use_unicode = flag return use_unicode_prev def pretty_try_use_unicode(): """See if unicode output is available and leverage it if possible""" try: symbols = [] # see, if we can represent greek alphabet symbols.extend(greek_unicode.values()) # and atoms symbols += atoms_table.values() for s in symbols: if s is None: return # common symbols not present! encoding = getattr(sys.stdout, 'encoding', None) # this happens when e.g. stdout is redirected through a pipe, or is # e.g. a cStringIO.StringO if encoding is None: return # sys.stdout has no encoding # try to encode s.encode(encoding) except UnicodeEncodeError: pass else: pretty_use_unicode(True) def xstr(*args): """call str or unicode depending on current mode""" if _use_unicode: return unicode(*args) else: return str(*args) # GREEK g = lambda l: U('GREEK SMALL LETTER %s' % l.upper()) G = lambda l: U('GREEK CAPITAL LETTER %s' % l.upper()) greek_letters = list(greeks) # make a copy # deal with Unicode's funny spelling of lambda greek_letters[greek_letters.index('lambda')] = 'lamda' # {} greek letter -> (g,G) greek_unicode = {l: (g(l), G(l)) for l in greek_letters} greek_unicode = dict((L, g(L)) for L in greek_letters) greek_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_letters) # aliases greek_unicode['lambda'] = greek_unicode['lamda'] greek_unicode['Lambda'] = greek_unicode['Lamda'] greek_unicode['varsigma'] = u'\N{GREEK SMALL LETTER FINAL SIGMA}' # BOLD b = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper()) B = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper()) bold_unicode = dict((l, b(l)) for l in ascii_lowercase) bold_unicode.update((L, B(L)) for L in ascii_uppercase) # GREEK BOLD gb = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper()) GB = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper()) greek_bold_letters = list(greeks) # make a copy, not strictly required here # deal with Unicode's funny spelling of lambda greek_bold_letters[greek_bold_letters.index('lambda')] = 'lamda' # {} greek letter -> (g,G) greek_bold_unicode = {l: (g(l), G(l)) for l in greek_bold_letters} greek_bold_unicode = dict((L, g(L)) for L in greek_bold_letters) greek_bold_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_bold_letters) greek_bold_unicode['lambda'] = greek_unicode['lamda'] greek_bold_unicode['Lambda'] = greek_unicode['Lamda'] greek_bold_unicode['varsigma'] = u'\N{MATHEMATICAL BOLD SMALL FINAL SIGMA}' digit_2txt = { '0': 'ZERO', '1': 'ONE', '2': 'TWO', '3': 'THREE', '4': 'FOUR', '5': 'FIVE', '6': 'SIX', '7': 'SEVEN', '8': 'EIGHT', '9': 'NINE', } symb_2txt = { '+': 'PLUS SIGN', '-': 'MINUS', '=': 'EQUALS SIGN', '(': 'LEFT PARENTHESIS', ')': 'RIGHT PARENTHESIS', '[': 'LEFT SQUARE BRACKET', ']': 'RIGHT SQUARE BRACKET', '{': 'LEFT CURLY BRACKET', '}': 'RIGHT CURLY BRACKET', # non-std '{}': 'CURLY BRACKET', 'sum': 'SUMMATION', 'int': 'INTEGRAL', } # SUBSCRIPT & SUPERSCRIPT LSUB = lambda letter: U('LATIN SUBSCRIPT SMALL LETTER %s' % letter.upper()) GSUB = lambda letter: U('GREEK SUBSCRIPT SMALL LETTER %s' % letter.upper()) DSUB = lambda digit: U('SUBSCRIPT %s' % digit_2txt[digit]) SSUB = lambda symb: U('SUBSCRIPT %s' % symb_2txt[symb]) LSUP = lambda letter: U('SUPERSCRIPT LATIN SMALL LETTER %s' % letter.upper()) DSUP = lambda digit: U('SUPERSCRIPT %s' % digit_2txt[digit]) SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb]) sub = {} # symb -> subscript symbol sup = {} # symb -> superscript symbol # latin subscripts for l in 'aeioruvxhklmnpst': sub[l] = LSUB(l) for l in 'in': sup[l] = LSUP(l) for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']: sub[gl] = GSUB(gl) for d in [str(i) for i in range(10)]: sub[d] = DSUB(d) sup[d] = DSUP(d) for s in '+-=()': sub[s] = SSUB(s) sup[s] = SSUP(s) # Variable modifiers # TODO: Make brackets adjust to height of contents modifier_dict = { # Accents 'mathring': lambda s: center_accent(s, u'\N{COMBINING RING ABOVE}'), 'ddddot': lambda s: center_accent(s, u'\N{COMBINING FOUR DOTS ABOVE}'), 'dddot': lambda s: center_accent(s, u'\N{COMBINING THREE DOTS ABOVE}'), 'ddot': lambda s: center_accent(s, u'\N{COMBINING DIAERESIS}'), 'dot': lambda s: center_accent(s, u'\N{COMBINING DOT ABOVE}'), 'check': lambda s: center_accent(s, u'\N{COMBINING CARON}'), 'breve': lambda s: center_accent(s, u'\N{COMBINING BREVE}'), 'acute': lambda s: center_accent(s, u'\N{COMBINING ACUTE ACCENT}'), 'grave': lambda s: center_accent(s, u'\N{COMBINING GRAVE ACCENT}'), 'tilde': lambda s: center_accent(s, u'\N{COMBINING TILDE}'), 'hat': lambda s: center_accent(s, u'\N{COMBINING CIRCUMFLEX ACCENT}'), 'bar': lambda s: center_accent(s, u'\N{COMBINING OVERLINE}'), 'vec': lambda s: center_accent(s, u'\N{COMBINING RIGHT ARROW ABOVE}'), 'prime': lambda s: s+u'\N{PRIME}', 'prm': lambda s: s+u'\N{PRIME}', # # Faces -- these are here for some compatibility with latex printing # 'bold': lambda s: s, # 'bm': lambda s: s, # 'cal': lambda s: s, # 'scr': lambda s: s, # 'frak': lambda s: s, # Brackets 'norm': lambda s: u'\N{DOUBLE VERTICAL LINE}'+s+u'\N{DOUBLE VERTICAL LINE}', 'avg': lambda s: u'\N{MATHEMATICAL LEFT ANGLE BRACKET}'+s+u'\N{MATHEMATICAL RIGHT ANGLE BRACKET}', 'abs': lambda s: u'\N{VERTICAL LINE}'+s+u'\N{VERTICAL LINE}', 'mag': lambda s: u'\N{VERTICAL LINE}'+s+u'\N{VERTICAL LINE}', } # VERTICAL OBJECTS HUP = lambda symb: U('%s UPPER HOOK' % symb_2txt[symb]) CUP = lambda symb: U('%s UPPER CORNER' % symb_2txt[symb]) MID = lambda symb: U('%s MIDDLE PIECE' % symb_2txt[symb]) EXT = lambda symb: U('%s EXTENSION' % symb_2txt[symb]) HLO = lambda symb: U('%s LOWER HOOK' % symb_2txt[symb]) CLO = lambda symb: U('%s LOWER CORNER' % symb_2txt[symb]) TOP = lambda symb: U('%s TOP' % symb_2txt[symb]) BOT = lambda symb: U('%s BOTTOM' % symb_2txt[symb]) # {} '(' -> (extension, start, end, middle) 1-character _xobj_unicode = { # vertical symbols # (( ext, top, bot, mid ), c1) '(': (( EXT('('), HUP('('), HLO('(') ), '('), ')': (( EXT(')'), HUP(')'), HLO(')') ), ')'), '[': (( EXT('['), CUP('['), CLO('[') ), '['), ']': (( EXT(']'), CUP(']'), CLO(']') ), ']'), '{': (( EXT('{}'), HUP('{'), HLO('{'), MID('{') ), '{'), '}': (( EXT('{}'), HUP('}'), HLO('}'), MID('}') ), '}'), '|': U('BOX DRAWINGS LIGHT VERTICAL'), '<': ((U('BOX DRAWINGS LIGHT VERTICAL'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT')), '<'), '>': ((U('BOX DRAWINGS LIGHT VERTICAL'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), '>'), 'lfloor': (( EXT('['), EXT('['), CLO('[') ), U('LEFT FLOOR')), 'rfloor': (( EXT(']'), EXT(']'), CLO(']') ), U('RIGHT FLOOR')), 'lceil': (( EXT('['), CUP('['), EXT('[') ), U('LEFT CEILING')), 'rceil': (( EXT(']'), CUP(']'), EXT(']') ), U('RIGHT CEILING')), 'int': (( EXT('int'), U('TOP HALF INTEGRAL'), U('BOTTOM HALF INTEGRAL') ), U('INTEGRAL')), 'sum': (( U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), '_', U('OVERLINE'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), U('N-ARY SUMMATION')), # horizontal objects #'-': '-', '-': U('BOX DRAWINGS LIGHT HORIZONTAL'), '_': U('LOW LINE'), # We used to use this, but LOW LINE looks better for roots, as it's a # little lower (i.e., it lines up with the / perfectly. But perhaps this # one would still be wanted for some cases? # '_': U('HORIZONTAL SCAN LINE-9'), # diagonal objects '\' & '/' ? '/': U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'), '\\': U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), } _xobj_ascii = { # vertical symbols # (( ext, top, bot, mid ), c1) '(': (( '|', '/', '\\' ), '('), ')': (( '|', '\\', '/' ), ')'), # XXX this looks ugly # '[': (( '|', '-', '-' ), '['), # ']': (( '|', '-', '-' ), ']'), # XXX not so ugly :( '[': (( '[', '[', '[' ), '['), ']': (( ']', ']', ']' ), ']'), '{': (( '|', '/', '\\', '<' ), '{'), '}': (( '|', '\\', '/', '>' ), '}'), '|': '|', '<': (( '|', '/', '\\' ), '<'), '>': (( '|', '\\', '/' ), '>'), 'int': ( ' | ', ' /', '/ ' ), # horizontal objects '-': '-', '_': '_', # diagonal objects '\' & '/' ? '/': '/', '\\': '\\', } def xobj(symb, length): """Construct spatial object of given length. return: [] of equal-length strings """ if length <= 0: raise ValueError("Length should be greater than 0") # TODO robustify when no unicodedat available if _use_unicode: _xobj = _xobj_unicode else: _xobj = _xobj_ascii vinfo = _xobj[symb] c1 = top = bot = mid = None if not isinstance(vinfo, tuple): # 1 entry ext = vinfo else: if isinstance(vinfo[0], tuple): # (vlong), c1 vlong = vinfo[0] c1 = vinfo[1] else: # (vlong), c1 vlong = vinfo ext = vlong[0] try: top = vlong[1] bot = vlong[2] mid = vlong[3] except IndexError: pass if c1 is None: c1 = ext if top is None: top = ext if bot is None: bot = ext if mid is not None: if (length % 2) == 0: # even height, but we have to print it somehow anyway... # XXX is it ok? length += 1 else: mid = ext if length == 1: return c1 res = [] next = (length - 2)//2 nmid = (length - 2) - next*2 res += [top] res += [ext]*next res += [mid]*nmid res += [ext]*next res += [bot] return res def vobj(symb, height): """Construct vertical object of a given height see: xobj """ return '\n'.join( xobj(symb, height) ) def hobj(symb, width): """Construct horizontal object of a given width see: xobj """ return ''.join( xobj(symb, width) ) # RADICAL # n -> symbol root = { 2: U('SQUARE ROOT'), # U('RADICAL SYMBOL BOTTOM') 3: U('CUBE ROOT'), 4: U('FOURTH ROOT'), } # RATIONAL VF = lambda txt: U('VULGAR FRACTION %s' % txt) # (p,q) -> symbol frac = { (1, 2): VF('ONE HALF'), (1, 3): VF('ONE THIRD'), (2, 3): VF('TWO THIRDS'), (1, 4): VF('ONE QUARTER'), (3, 4): VF('THREE QUARTERS'), (1, 5): VF('ONE FIFTH'), (2, 5): VF('TWO FIFTHS'), (3, 5): VF('THREE FIFTHS'), (4, 5): VF('FOUR FIFTHS'), (1, 6): VF('ONE SIXTH'), (5, 6): VF('FIVE SIXTHS'), (1, 8): VF('ONE EIGHTH'), (3, 8): VF('THREE EIGHTHS'), (5, 8): VF('FIVE EIGHTHS'), (7, 8): VF('SEVEN EIGHTHS'), } # atom symbols _xsym = { '==': ('=', '='), '<': ('<', '<'), '>': ('>', '>'), '<=': ('<=', U('LESS-THAN OR EQUAL TO')), '>=': ('>=', U('GREATER-THAN OR EQUAL TO')), '!=': ('!=', U('NOT EQUAL TO')), ':=': (':=', ':='), '+=': ('+=', '+='), '-=': ('-=', '-='), '*=': ('*=', '*='), '/=': ('/=', '/='), '%=': ('%=', '%='), '*': ('*', U('DOT OPERATOR')), '-->': ('-->', U('EM DASH') + U('EM DASH') + U('BLACK RIGHT-POINTING TRIANGLE') if U('EM DASH') and U('BLACK RIGHT-POINTING TRIANGLE') else None), '==>': ('==>', U('BOX DRAWINGS DOUBLE HORIZONTAL') + U('BOX DRAWINGS DOUBLE HORIZONTAL') + U('BLACK RIGHT-POINTING TRIANGLE') if U('BOX DRAWINGS DOUBLE HORIZONTAL') and U('BOX DRAWINGS DOUBLE HORIZONTAL') and U('BLACK RIGHT-POINTING TRIANGLE') else None), '.': ('*', U('RING OPERATOR')), } def xsym(sym): """get symbology for a 'character'""" op = _xsym[sym] if _use_unicode: return op[1] else: return op[0] # SYMBOLS atoms_table = { # class how-to-display 'Exp1': U('SCRIPT SMALL E'), 'Pi': U('GREEK SMALL LETTER PI'), 'Infinity': U('INFINITY'), 'NegativeInfinity': U('INFINITY') and ('-' + U('INFINITY')), # XXX what to do here #'ImaginaryUnit': U('GREEK SMALL LETTER IOTA'), #'ImaginaryUnit': U('MATHEMATICAL ITALIC SMALL I'), 'ImaginaryUnit': U('DOUBLE-STRUCK ITALIC SMALL I'), 'EmptySet': U('EMPTY SET'), 'Naturals': U('DOUBLE-STRUCK CAPITAL N'), 'Naturals0': (U('DOUBLE-STRUCK CAPITAL N') and (U('DOUBLE-STRUCK CAPITAL N') + U('SUBSCRIPT ZERO'))), 'Integers': U('DOUBLE-STRUCK CAPITAL Z'), 'Rationals': U('DOUBLE-STRUCK CAPITAL Q'), 'Reals': U('DOUBLE-STRUCK CAPITAL R'), 'Complexes': U('DOUBLE-STRUCK CAPITAL C'), 'Union': U('UNION'), 'SymmetricDifference': U('INCREMENT'), 'Intersection': U('INTERSECTION'), 'Ring': U('RING OPERATOR'), 'Modifier Letter Low Ring':U('Modifier Letter Low Ring'), 'EmptySequence': 'EmptySequence', } def pretty_atom(atom_name, default=None, printer=None): """return pretty representation of an atom""" if _use_unicode: if printer is not None and atom_name == 'ImaginaryUnit' and printer._settings['imaginary_unit'] == 'j': return U('DOUBLE-STRUCK ITALIC SMALL J') else: return atoms_table[atom_name] else: if default is not None: return default raise KeyError('only unicode') # send it default printer def pretty_symbol(symb_name, bold_name=False): """return pretty representation of a symbol""" # let's split symb_name into symbol + index # UC: beta1 # UC: f_beta if not _use_unicode: return symb_name name, sups, subs = split_super_sub(symb_name) def translate(s, bold_name) : if bold_name: gG = greek_bold_unicode.get(s) else: gG = greek_unicode.get(s) if gG is not None: return gG for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True) : if s.lower().endswith(key) and len(s)>len(key): return modifier_dict[key](translate(s[:-len(key)], bold_name)) if bold_name: return ''.join([bold_unicode[c] for c in s]) return s name = translate(name, bold_name) # Let's prettify sups/subs. If it fails at one of them, pretty sups/subs are # not used at all. def pretty_list(l, mapping): result = [] for s in l: pretty = mapping.get(s) if pretty is None: try: # match by separate characters pretty = ''.join([mapping[c] for c in s]) except (TypeError, KeyError): return None result.append(pretty) return result pretty_sups = pretty_list(sups, sup) if pretty_sups is not None: pretty_subs = pretty_list(subs, sub) else: pretty_subs = None # glue the results into one string if pretty_subs is None: # nice formatting of sups/subs did not work if subs: name += '_'+'_'.join([translate(s, bold_name) for s in subs]) if sups: name += '__'+'__'.join([translate(s, bold_name) for s in sups]) return name else: sups_result = ' '.join(pretty_sups) subs_result = ' '.join(pretty_subs) return ''.join([name, sups_result, subs_result]) def annotated(letter): """ Return a stylised drawing of the letter ``letter``, together with information on how to put annotations (super- and subscripts to the left and to the right) on it. See pretty.py functions _print_meijerg, _print_hyper on how to use this information. """ ucode_pics = { 'F': (2, 0, 2, 0, u'\N{BOX DRAWINGS LIGHT DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n' u'\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n' u'\N{BOX DRAWINGS LIGHT UP}'), 'G': (3, 0, 3, 1, u'\N{BOX DRAWINGS LIGHT ARC DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC DOWN AND LEFT}\n' u'\N{BOX DRAWINGS LIGHT VERTICAL}\N{BOX DRAWINGS LIGHT RIGHT}\N{BOX DRAWINGS LIGHT DOWN AND LEFT}\n' u'\N{BOX DRAWINGS LIGHT ARC UP AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC UP AND LEFT}') } ascii_pics = { 'F': (3, 0, 3, 0, ' _\n|_\n|\n'), 'G': (3, 0, 3, 1, ' __\n/__\n\\_|') } if _use_unicode: return ucode_pics[letter] else: return ascii_pics[letter] def is_combining(sym): """Check whether symbol is a unicode modifier. See stringPict.width on usage. """ return True if (u'\N{COMBINING GRAVE ACCENT}' <= sym <= u'\N{COMBINING LATIN SMALL LETTER X}' or u'\N{COMBINING LEFT HARPOON ABOVE}' <= sym <= u'\N{COMBINING ASTERISK ABOVE}') else False def center_accent(string, accent): """ Returns a string with accent inserted on the middle character. Useful to put combining accents on symbol names, including multi-character names. Parameters ========== string : string The string to place the accent in. accent : string The combining accent to insert References ========== .. [1] https://en.wikipedia.org/wiki/Combining_character .. [2] https://en.wikipedia.org/wiki/Combining_Diacritical_Marks """ # Accent is placed on the previous character, although it may not always look # like that depending on console midpoint = len(string) // 2 + 1 firstpart = string[:midpoint] secondpart = string[midpoint:] return firstpart + accent + secondpart
9fdbb11cb0590a24d420c7c04ada20bf426fbae45386aa7a73756cfe846ed749
"""Prettyprinter by Jurjen Bos. (I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay). All objects have a method that create a "stringPict", that can be used in the str method for pretty printing. Updates by Jason Gedge (email <my last name> at cs mun ca) - terminal_string() method - minor fixes and changes (mostly to prettyForm) TODO: - Allow left/center/right alignment options for above/below and top/center/bottom alignment options for left/right """ from __future__ import print_function, division from .pretty_symbology import hobj, vobj, xsym, xobj, pretty_use_unicode, is_combining from sympy.core.compatibility import string_types, range, unicode class stringPict(object): """An ASCII picture. The pictures are represented as a list of equal length strings. """ #special value for stringPict.below LINE = 'line' def __init__(self, s, baseline=0): """Initialize from string. Multiline strings are centered. """ self.s = s #picture is a string that just can be printed self.picture = stringPict.equalLengths(s.splitlines()) #baseline is the line number of the "base line" self.baseline = baseline self.binding = None @staticmethod def line_width(line): """Unicode combining symbols (modifiers) are not ever displayed as separate symbols and thus shouldn't be counted """ return sum(1 for sym in line if not is_combining(sym)) @staticmethod def equalLengths(lines): # empty lines if not lines: return [''] width = max(stringPict.line_width(line) for line in lines) return [line.center(width) for line in lines] def height(self): """The height of the picture in characters.""" return len(self.picture) def width(self): """The width of the picture in characters.""" return stringPict.line_width(self.picture[0]) @staticmethod def next(*args): """Put a string of stringPicts next to each other. Returns string, baseline arguments for stringPict. """ #convert everything to stringPicts objects = [] for arg in args: if isinstance(arg, string_types): arg = stringPict(arg) objects.append(arg) #make a list of pictures, with equal height and baseline newBaseline = max(obj.baseline for obj in objects) newHeightBelowBaseline = max( obj.height() - obj.baseline for obj in objects) newHeight = newBaseline + newHeightBelowBaseline pictures = [] for obj in objects: oneEmptyLine = [' '*obj.width()] basePadding = newBaseline - obj.baseline totalPadding = newHeight - obj.height() pictures.append( oneEmptyLine * basePadding + obj.picture + oneEmptyLine * (totalPadding - basePadding)) result = [''.join(lines) for lines in zip(*pictures)] return '\n'.join(result), newBaseline def right(self, *args): r"""Put pictures next to this one. Returns string, baseline arguments for stringPict. (Multiline) strings are allowed, and are given a baseline of 0. Examples ======== >>> from sympy.printing.pretty.stringpict import stringPict >>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0]) 1 10 + - 2 """ return stringPict.next(self, *args) def left(self, *args): """Put pictures (left to right) at left. Returns string, baseline arguments for stringPict. """ return stringPict.next(*(args + (self,))) @staticmethod def stack(*args): """Put pictures on top of each other, from top to bottom. Returns string, baseline arguments for stringPict. The baseline is the baseline of the second picture. Everything is centered. Baseline is the baseline of the second picture. Strings are allowed. The special value stringPict.LINE is a row of '-' extended to the width. """ #convert everything to stringPicts; keep LINE objects = [] for arg in args: if arg is not stringPict.LINE and isinstance(arg, string_types): arg = stringPict(arg) objects.append(arg) #compute new width newWidth = max( obj.width() for obj in objects if obj is not stringPict.LINE) lineObj = stringPict(hobj('-', newWidth)) #replace LINE with proper lines for i, obj in enumerate(objects): if obj is stringPict.LINE: objects[i] = lineObj #stack the pictures, and center the result newPicture = [] for obj in objects: newPicture.extend(obj.picture) newPicture = [line.center(newWidth) for line in newPicture] newBaseline = objects[0].height() + objects[1].baseline return '\n'.join(newPicture), newBaseline def below(self, *args): """Put pictures under this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of top picture Examples ======== >>> from sympy.printing.pretty.stringpict import stringPict >>> print(stringPict("x+3").below( ... stringPict.LINE, '3')[0]) #doctest: +NORMALIZE_WHITESPACE x+3 --- 3 """ s, baseline = stringPict.stack(self, *args) return s, self.baseline def above(self, *args): """Put pictures above this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of bottom picture. """ string, baseline = stringPict.stack(*(args + (self,))) baseline = len(string.splitlines()) - self.height() + self.baseline return string, baseline def parens(self, left='(', right=')', ifascii_nougly=False): """Put parentheses around self. Returns string, baseline arguments for stringPict. left or right can be None or empty string which means 'no paren from that side' """ h = self.height() b = self.baseline # XXX this is a hack -- ascii parens are ugly! if ifascii_nougly and not pretty_use_unicode(): h = 1 b = 0 res = self if left: lparen = stringPict(vobj(left, h), baseline=b) res = stringPict(*lparen.right(self)) if right: rparen = stringPict(vobj(right, h), baseline=b) res = stringPict(*res.right(rparen)) return ('\n'.join(res.picture), res.baseline) def leftslash(self): """Precede object by a slash of the proper size. """ # XXX not used anywhere ? height = max( self.baseline, self.height() - 1 - self.baseline)*2 + 1 slash = '\n'.join( ' '*(height - i - 1) + xobj('/', 1) + ' '*i for i in range(height) ) return self.left(stringPict(slash, height//2)) def root(self, n=None): """Produce a nice root symbol. Produces ugly results for big n inserts. """ # XXX not used anywhere # XXX duplicate of root drawing in pretty.py #put line over expression result = self.above('_'*self.width()) #construct right half of root symbol height = self.height() slash = '\n'.join( ' ' * (height - i - 1) + '/' + ' ' * i for i in range(height) ) slash = stringPict(slash, height - 1) #left half of root symbol if height > 2: downline = stringPict('\\ \n \\', 1) else: downline = stringPict('\\') #put n on top, as low as possible if n is not None and n.width() > downline.width(): downline = downline.left(' '*(n.width() - downline.width())) downline = downline.above(n) #build root symbol root = downline.right(slash) #glue it on at the proper height #normally, the root symbel is as high as self #which is one less than result #this moves the root symbol one down #if the root became higher, the baseline has to grow too root.baseline = result.baseline - result.height() + root.height() return result.left(root) def render(self, * args, **kwargs): """Return the string form of self. Unless the argument line_break is set to False, it will break the expression in a form that can be printed on the terminal without being broken up. """ if kwargs["wrap_line"] is False: return "\n".join(self.picture) if kwargs["num_columns"] is not None: # Read the argument num_columns if it is not None ncols = kwargs["num_columns"] else: # Attempt to get a terminal width ncols = self.terminal_width() ncols -= 2 if ncols <= 0: ncols = 78 # If smaller than the terminal width, no need to correct if self.width() <= ncols: return type(self.picture[0])(self) # for one-line pictures we don't need v-spacers. on the other hand, for # multiline-pictures, we need v-spacers between blocks, compare: # # 2 2 3 | a*c*e + a*c*f + a*d | a*c*e + a*c*f + a*d | 3.14159265358979323 # 6*x *y + 4*x*y + | | *e + a*d*f + b*c*e | 84626433832795 # | *e + a*d*f + b*c*e | + b*c*f + b*d*e + b | # 3 4 4 | | *d*f | # 4*y*x + x + y | + b*c*f + b*d*e + b | | # | | | # | *d*f i = 0 svals = [] do_vspacers = (self.height() > 1) while i < self.width(): svals.extend([ sval[i:i + ncols] for sval in self.picture ]) if do_vspacers: svals.append("") # a vertical spacer i += ncols if svals[-1] == '': del svals[-1] # Get rid of the last spacer return "\n".join(svals) def terminal_width(self): """Return the terminal width if possible, otherwise return 0. """ ncols = 0 try: import curses import io try: curses.setupterm() ncols = curses.tigetnum('cols') except AttributeError: # windows curses doesn't implement setupterm or tigetnum # code below from # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/440694 from ctypes import windll, create_string_buffer # stdin handle is -10 # stdout handle is -11 # stderr handle is -12 h = windll.kernel32.GetStdHandle(-12) csbi = create_string_buffer(22) res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) if res: import struct (bufx, bufy, curx, cury, wattr, left, top, right, bottom, maxx, maxy) = struct.unpack("hhhhHhhhhhh", csbi.raw) ncols = right - left + 1 except curses.error: pass except io.UnsupportedOperation: pass except (ImportError, TypeError): pass return ncols def __eq__(self, o): if isinstance(o, string_types): return '\n'.join(self.picture) == o elif isinstance(o, stringPict): return o.picture == self.picture return False def __hash__(self): return super(stringPict, self).__hash__() def __str__(self): return str.join('\n', self.picture) def __unicode__(self): return unicode.join(u'\n', self.picture) def __repr__(self): return "stringPict(%r,%d)" % ('\n'.join(self.picture), self.baseline) def __getitem__(self, index): return self.picture[index] def __len__(self): return len(self.s) class prettyForm(stringPict): """ Extension of the stringPict class that knows about basic math applications, optimizing double minus signs. "Binding" is interpreted as follows:: ATOM this is an atom: never needs to be parenthesized FUNC this is a function application: parenthesize if added (?) DIV this is a division: make wider division if divided POW this is a power: only parenthesize if exponent MUL this is a multiplication: parenthesize if powered ADD this is an addition: parenthesize if multiplied or powered NEG this is a negative number: optimize if added, parenthesize if multiplied or powered OPEN this is an open object: parenthesize if added, multiplied, or powered (example: Piecewise) """ ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8) def __init__(self, s, baseline=0, binding=0, unicode=None): """Initialize from stringPict and binding power.""" stringPict.__init__(self, s, baseline) self.binding = binding self.unicode = unicode or s # Note: code to handle subtraction is in _print_Add def __add__(self, *others): """Make a pretty addition. Addition of negative numbers is simplified. """ arg = self if arg.binding > prettyForm.NEG: arg = stringPict(*arg.parens()) result = [arg] for arg in others: #add parentheses for weak binders if arg.binding > prettyForm.NEG: arg = stringPict(*arg.parens()) #use existing minus sign if available if arg.binding != prettyForm.NEG: result.append(' + ') result.append(arg) return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result)) def __div__(self, den, slashed=False): """Make a pretty division; stacked or slashed. """ if slashed: raise NotImplementedError("Can't do slashed fraction yet") num = self if num.binding == prettyForm.DIV: num = stringPict(*num.parens()) if den.binding == prettyForm.DIV: den = stringPict(*den.parens()) if num.binding==prettyForm.NEG: num = num.right(" ")[0] return prettyForm(binding=prettyForm.DIV, *stringPict.stack( num, stringPict.LINE, den)) def __truediv__(self, o): return self.__div__(o) def __mul__(self, *others): """Make a pretty multiplication. Parentheses are needed around +, - and neg. """ quantity = { 'degree': u"\N{DEGREE SIGN}" } if len(others) == 0: return self # We aren't actually multiplying... So nothing to do here. args = self if args.binding > prettyForm.MUL: arg = stringPict(*args.parens()) result = [args] for arg in others: if arg.picture[0] not in quantity.values(): result.append(xsym('*')) #add parentheses for weak binders if arg.binding > prettyForm.MUL: arg = stringPict(*arg.parens()) result.append(arg) len_res = len(result) for i in range(len_res): if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym('*'): # substitute -1 by -, like in -1*x -> -x result.pop(i) result.pop(i) result.insert(i, '-') if result[0][0] == '-': # if there is a - sign in front of all # This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative bin = prettyForm.NEG if result[0] == '-': right = result[1] if right.picture[right.baseline][0] == '-': result[0] = '- ' else: bin = prettyForm.MUL return prettyForm(binding=bin, *stringPict.next(*result)) def __repr__(self): return "prettyForm(%r,%d,%d)" % ( '\n'.join(self.picture), self.baseline, self.binding) def __pow__(self, b): """Make a pretty power. """ a = self use_inline_func_form = False if b.binding == prettyForm.POW: b = stringPict(*b.parens()) if a.binding > prettyForm.FUNC: a = stringPict(*a.parens()) elif a.binding == prettyForm.FUNC: # heuristic for when to use inline power if b.height() > 1: a = stringPict(*a.parens()) else: use_inline_func_form = True if use_inline_func_form: # 2 # sin + + (x) b.baseline = a.prettyFunc.baseline + b.height() func = stringPict(*a.prettyFunc.right(b)) return prettyForm(*func.right(a.prettyArgs)) else: # 2 <-- top # (x+y) <-- bot top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.above(top)) simpleFunctions = ["sin", "cos", "tan"] @staticmethod def apply(function, *args): """Functions of one or more variables. """ if function in prettyForm.simpleFunctions: #simple function: use only space if possible assert len( args) == 1, "Simple function %s must have 1 argument" % function arg = args[0].__pretty__() if arg.binding <= prettyForm.DIV: #optimization: no parentheses necessary return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' ')) argumentList = [] for arg in args: argumentList.append(',') argumentList.append(arg.__pretty__()) argumentList = stringPict(*stringPict.next(*argumentList[1:])) argumentList = stringPict(*argumentList.parens()) return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function))
4332750723f6e5edbfee6dfe8716d7de1b1b5d8248cea149b74f29ca7e81510b
from sympy.utilities.pytest import raises from sympy import (symbols, Function, Integer, Matrix, Abs, Rational, Float, S, WildFunction, ImmutableDenseMatrix, sin, true, false, ones, sqrt, root, AlgebraicNumber, Symbol, Dummy, Wild, MatrixSymbol) from sympy.combinatorics import Cycle, Permutation from sympy.core.compatibility import exec_ from sympy.geometry import Point, Ellipse from sympy.printing import srepr from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly from sympy.polys.polyclasses import DMP from sympy.polys.agca.extensions import FiniteExtension x, y = symbols('x,y') # eval(srepr(expr)) == expr has to succeed in the right environment. The right # environment is the scope of "from sympy import *" for most cases. ENV = {} exec_("from sympy import *", ENV) def sT(expr, string, import_stmt=None): """ sT := sreprTest Tests that srepr delivers the expected string and that the condition eval(srepr(expr))==expr holds. """ if import_stmt is None: ENV2 = ENV else: ENV2 = ENV.copy() exec_(import_stmt, ENV2) assert srepr(expr) == string assert eval(string, ENV2) == expr def test_printmethod(): class R(Abs): def _sympyrepr(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert srepr(R(x)) == "foo(Symbol('x'))" def test_Add(): sT(x + y, "Add(Symbol('x'), Symbol('y'))") assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))" assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))" def test_more_than_255_args_issue_10259(): from sympy import Add, Mul for op in (Add, Mul): expr = op(*symbols('x:256')) assert eval(srepr(expr)) == expr def test_Function(): sT(Function("f")(x), "Function('f')(Symbol('x'))") # test unapplied Function sT(Function('f'), "Function('f')") sT(sin(x), "sin(Symbol('x'))") sT(sin, "sin") def test_Geometry(): sT(Point(0, 0), "Point2D(Integer(0), Integer(0))") sT(Ellipse(Point(0, 0), 5, 1), "Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))") # TODO more tests def test_Singletons(): sT(S.Catalan, 'Catalan') sT(S.ComplexInfinity, 'zoo') sT(S.EulerGamma, 'EulerGamma') sT(S.Exp1, 'E') sT(S.GoldenRatio, 'GoldenRatio') sT(S.TribonacciConstant, 'TribonacciConstant') sT(S.Half, 'Rational(1, 2)') sT(S.ImaginaryUnit, 'I') sT(S.Infinity, 'oo') sT(S.NaN, 'nan') sT(S.NegativeInfinity, '-oo') sT(S.NegativeOne, 'Integer(-1)') sT(S.One, 'Integer(1)') sT(S.Pi, 'pi') sT(S.Zero, 'Integer(0)') def test_Integer(): sT(Integer(4), "Integer(4)") def test_list(): sT([x, Integer(4)], "[Symbol('x'), Integer(4)]") def test_Matrix(): for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]: sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) sT(cls(), "%s([])" % name) sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) def test_empty_Matrix(): sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])") sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])") sT(ones(0, 0), "MutableDenseMatrix([])") def test_Rational(): sT(Rational(1, 3), "Rational(1, 3)") sT(Rational(-1, 3), "Rational(-1, 3)") def test_Float(): sT(Float('1.23', dps=3), "Float('1.22998', precision=13)") sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)") sT(Float('1.234567890123456789', dps=19), "Float('1.234567890123456789013', precision=66)") sT(Float('0.60038617995049726', dps=15), "Float('0.60038617995049726', precision=53)") sT(Float('1.23', precision=13), "Float('1.22998', precision=13)") sT(Float('1.23456789', precision=33), "Float('1.23456788994', precision=33)") sT(Float('1.234567890123456789', precision=66), "Float('1.234567890123456789013', precision=66)") sT(Float('0.60038617995049726', precision=53), "Float('0.60038617995049726', precision=53)") sT(Float('0.60038617995049726', 15), "Float('0.60038617995049726', precision=53)") def test_Symbol(): sT(x, "Symbol('x')") sT(y, "Symbol('y')") sT(Symbol('x', negative=True), "Symbol('x', negative=True)") def test_Symbol_two_assumptions(): x = Symbol('x', negative=0, integer=1) # order could vary s1 = "Symbol('x', integer=True, negative=False)" s2 = "Symbol('x', negative=False, integer=True)" assert srepr(x) in (s1, s2) assert eval(srepr(x), ENV) == x def test_Symbol_no_special_commutative_treatment(): sT(Symbol('x'), "Symbol('x')") sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)") sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)") sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)") sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)") def test_Wild(): sT(Wild('x', even=True), "Wild('x', even=True)") def test_Dummy(): d = Dummy('d') sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index)) def test_Dummy_assumption(): d = Dummy('d', nonzero=True) assert d == eval(srepr(d)) s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index) s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index) assert srepr(d) in (s1, s2) def test_Dummy_from_Symbol(): # should not get the full dictionary of assumptions n = Symbol('n', integer=True) d = n.as_dummy() assert srepr(d ) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index) def test_tuple(): sT((x,), "(Symbol('x'),)") sT((x, y), "(Symbol('x'), Symbol('y'))") def test_WildFunction(): sT(WildFunction('w'), "WildFunction('w')") def test_settins(): raises(TypeError, lambda: srepr(x, method="garbage")) def test_Mul(): sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))") assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))" def test_AlgebraicNumber(): a = AlgebraicNumber(sqrt(2)) sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])") a = AlgebraicNumber(root(-2, 3)) sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])") def test_PolyRing(): assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)" assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)" assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" def test_FracField(): assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)" assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)" assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" def test_PolyElement(): R, x, y = ring("x,y", ZZ) assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])" def test_FracElement(): F, x, y = field("x,y", ZZ) assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])" def test_FractionField(): assert srepr(QQ.frac_field(x)) == \ "FractionField(FracField((Symbol('x'),), QQ, lex))" assert srepr(QQ.frac_field(x, y, order=grlex)) == \ "FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))" def test_PolynomialRingBase(): assert srepr(ZZ.old_poly_ring(x)) == \ "GlobalPolynomialRing(ZZ, Symbol('x'))" assert srepr(ZZ[x].old_poly_ring(y)) == \ "GlobalPolynomialRing(ZZ[x], Symbol('y'))" assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \ "GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))" def test_DMP(): assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)' assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \ "DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))" def test_FiniteExtension(): assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \ "FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))" def test_ExtensionElement(): A = FiniteExtension(Poly(x**2 + 1, x)) assert srepr(A.generator) == \ "ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))" def test_BooleanAtom(): assert srepr(true) == "true" assert srepr(false) == "false" def test_Integers(): sT(S.Integers, "Integers") def test_Naturals(): sT(S.Naturals, "Naturals") def test_Naturals0(): sT(S.Naturals0, "Naturals0") def test_Reals(): sT(S.Reals, "Reals") def test_matrix_expressions(): n = symbols('n', integer=True) A = MatrixSymbol("A", n, n) B = MatrixSymbol("B", n, n) sT(A, "MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True))") sT(A*B, "MatMul(MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Symbol('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") sT(A + B, "MatAdd(MatrixSymbol(Symbol('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Symbol('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") def test_Cycle(): # FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2)) # adds keys to the Cycle dict (GH-17661) #import_stmt = "from sympy.combinatorics import Cycle" #sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt) assert srepr(Cycle(1, 2)) == "Cycle(1, 2)" def test_Permutation(): import_stmt = "from sympy.combinatorics import Permutation" sT(Permutation(1, 2), "Permutation(1, 2)", import_stmt)
f6341a348d5e63be770f2b8df58df7399e0666ef41d7ce5d5f9497b4026be1b8
from __future__ import absolute_import from sympy.codegen import Assignment from sympy.codegen.ast import none from sympy.codegen.matrix_nodes import MatrixSolve from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational from sympy.core.numbers import pi from sympy.core.singleton import S from sympy.functions import acos, Piecewise, sign, sqrt from sympy.logic import And, Or from sympy.matrices import SparseMatrix, MatrixSymbol, Identity from sympy.printing.pycode import ( MpmathPrinter, NumPyPrinter, PythonCodePrinter, pycode, SciPyPrinter, SymPyPrinter ) from sympy.utilities.pytest import raises from sympy.tensor import IndexedBase x, y, z = symbols('x y z') p = IndexedBase("p") def test_PythonCodePrinter(): prntr = PythonCodePrinter() assert not prntr.module_imports assert prntr.doprint(x**y) == 'x**y' assert prntr.doprint(Mod(x, 2)) == 'x % 2' assert prntr.doprint(And(x, y)) == 'x and y' assert prntr.doprint(Or(x, y)) == 'x or y' assert not prntr.module_imports assert prntr.doprint(pi) == 'math.pi' assert prntr.module_imports == {'math': {'pi'}} assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)' assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)' assert prntr.module_imports == {'math': {'pi', 'sqrt'}} assert prntr.doprint(acos(x)) == 'math.acos(x)' assert prntr.doprint(Assignment(x, 2)) == 'x = 2' assert prntr.doprint(Piecewise((1, Eq(x, 0)), (2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)' assert prntr.doprint(Piecewise((2, Le(x, 0)), (3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\ ' (3) if (x > 0) else None)' assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))' assert prntr.doprint(p[0, 1]) == 'p[0, 1]' def test_PythonCodePrinter_standard(): import sys prntr = PythonCodePrinter({'standard':None}) python_version = sys.version_info.major if python_version == 2: assert prntr.standard == 'python2' if python_version == 3: assert prntr.standard == 'python3' raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'})) def test_MpmathPrinter(): p = MpmathPrinter() assert p.doprint(sign(x)) == 'mpmath.sign(x)' assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)' assert p.doprint(S.Exp1) == 'mpmath.e' assert p.doprint(S.Pi) == 'mpmath.pi' assert p.doprint(S.GoldenRatio) == 'mpmath.phi' assert p.doprint(S.EulerGamma) == 'mpmath.euler' assert p.doprint(S.NaN) == 'mpmath.nan' assert p.doprint(S.Infinity) == 'mpmath.inf' assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf' def test_NumPyPrinter(): p = NumPyPrinter() assert p.doprint(sign(x)) == 'numpy.sign(x)' A = MatrixSymbol("A", 2, 2) assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)" assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)" assert p.doprint(Identity(3)) == "numpy.eye(3)" u = MatrixSymbol('x', 2, 1) v = MatrixSymbol('y', 2, 1) assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)' assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y' # Workaround for numpy negative integer power errors assert p.doprint(x**-1) == 'x**(-1.0)' assert p.doprint(x**-2) == 'x**(-2.0)' assert p.doprint(S.Exp1) == 'numpy.e' assert p.doprint(S.Pi) == 'numpy.pi' assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma' assert p.doprint(S.NaN) == 'numpy.nan' assert p.doprint(S.Infinity) == 'numpy.PINF' assert p.doprint(S.NegativeInfinity) == 'numpy.NINF' def test_SciPyPrinter(): p = SciPyPrinter() expr = acos(x) assert 'numpy' not in p.module_imports assert p.doprint(expr) == 'numpy.arccos(x)' assert 'numpy' in p.module_imports assert not any(m.startswith('scipy') for m in p.module_imports) smat = SparseMatrix(2, 5, {(0, 1): 3}) assert p.doprint(smat) == 'scipy.sparse.coo_matrix([3], ([0], [1]), shape=(2, 5))' assert 'scipy.sparse' in p.module_imports assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio' assert p.doprint(S.Pi) == 'scipy.constants.pi' assert p.doprint(S.Exp1) == 'numpy.e' def test_pycode_reserved_words(): s1, s2 = symbols('if else') raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True)) py_str = pycode(s1 + s2) assert py_str in ('else_ + if_', 'if_ + else_') def test_sqrt(): prntr = PythonCodePrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)' assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)' prntr = PythonCodePrinter({'standard' : 'python2'}) assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1./2.)' assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1./2.)' prntr = PythonCodePrinter({'standard' : 'python3'}) assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)' prntr = MpmathPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == \ "x**(mpmath.mpf(1)/mpmath.mpf(2))" prntr = NumPyPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' prntr = SciPyPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' prntr = SymPyPrinter() assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' class CustomPrintedObject(Expr): def _numpycode(self, printer): return 'numpy' def _mpmathcode(self, printer): return 'mpmath' def test_printmethod(): obj = CustomPrintedObject() assert NumPyPrinter().doprint(obj) == 'numpy' assert MpmathPrinter().doprint(obj) == 'mpmath' def test_codegen_ast_nodes(): assert pycode(none) == 'None' def test_issue_14283(): prntr = PythonCodePrinter() assert prntr.doprint(zoo) == "float('nan')" assert prntr.doprint(-oo) == "float('-inf')" def test_NumPyPrinter_print_seq(): n = NumPyPrinter() assert n._print_seq(range(2)) == '(0, 1,)' def test_issue_16535_16536(): from sympy import lowergamma, uppergamma a = symbols('a') expr1 = lowergamma(a, x) expr2 = uppergamma(a, x) prntr = SciPyPrinter() assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)' assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)' prntr = NumPyPrinter() assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # lowergamma\nlowergamma(a, x)' assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # uppergamma\nuppergamma(a, x)' prntr = PythonCodePrinter() assert prntr.doprint(expr1) == ' # Not supported in Python:\n # lowergamma\nlowergamma(a, x)' assert prntr.doprint(expr2) == ' # Not supported in Python:\n # uppergamma\nuppergamma(a, x)' def test_fresnel_integrals(): from sympy import fresnelc, fresnels expr1 = fresnelc(x) expr2 = fresnels(x) prntr = SciPyPrinter() assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]' assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]' prntr = NumPyPrinter() assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # fresnelc\nfresnelc(x)' assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # fresnels\nfresnels(x)' prntr = PythonCodePrinter() assert prntr.doprint(expr1) == ' # Not supported in Python:\n # fresnelc\nfresnelc(x)' assert prntr.doprint(expr2) == ' # Not supported in Python:\n # fresnels\nfresnels(x)' prntr = MpmathPrinter() assert prntr.doprint(expr1) == 'mpmath.fresnelc(x)' assert prntr.doprint(expr2) == 'mpmath.fresnels(x)' def test_beta(): from sympy import beta expr = beta(x, y) prntr = SciPyPrinter() assert prntr.doprint(expr) == 'scipy.special.beta(x, y)' prntr = NumPyPrinter() assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)' prntr = PythonCodePrinter() assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)' prntr = PythonCodePrinter({'allow_unknown_functions': True}) assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)' prntr = MpmathPrinter() assert prntr.doprint(expr) == 'mpmath.beta(x, y)'
794fd106ca8d2e5b335977c677e3d859f27cc49cb317b32bb19bb67bbe211d15
from sympy import (Abs, Catalan, cos, Derivative, E, EulerGamma, exp, factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I, Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow, Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol, symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor, subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference, AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, MatrixSymbol) from sympy.core import Expr, Mul from sympy.physics.units import second, joule from sympy.polys import Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, lex, grlex from sympy.geometry import Point, Circle from sympy.utilities.pytest import raises from sympy.core.compatibility import range from sympy.printing import sstr, sstrrepr, StrPrinter from sympy.core.trace import Tr x, y, z, w, t = symbols('x,y,z,w,t') d = Dummy('d') def test_printmethod(): class R(Abs): def _sympystr(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert sstr(R(x)) == "foo(x)" class R(Abs): def _sympystr(self, printer): return "foo" assert sstr(R(x)) == "foo" def test_Abs(): assert str(Abs(x)) == "Abs(x)" assert str(Abs(Rational(1, 6))) == "1/6" assert str(Abs(Rational(-1, 6))) == "1/6" def test_Add(): assert str(x + y) == "x + y" assert str(x + 1) == "x + 1" assert str(x + x**2) == "x**2 + x" assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5" assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1" assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2" assert str(x - y) == "x - y" assert str(2 - x) == "2 - x" assert str(x - 2) == "x - 2" assert str(x - y - z - w) == "-w + x - y - z" assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x" assert str(x - 1*y*x*y) == "-x*y**2 + x" assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)" def test_Catalan(): assert str(Catalan) == "Catalan" def test_ComplexInfinity(): assert str(zoo) == "zoo" def test_Derivative(): assert str(Derivative(x, y)) == "Derivative(x, y)" assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)" assert str(Derivative( x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)" def test_dict(): assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}" assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}" def test_Dict(): assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}" assert str(Dict({1: x**2, 2: y*x})) in ( "{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}" def test_Dummy(): assert str(d) == "_d" assert str(d + x) == "_d + x" def test_EulerGamma(): assert str(EulerGamma) == "EulerGamma" def test_Exp(): assert str(E) == "E" def test_factorial(): n = Symbol('n', integer=True) assert str(factorial(-2)) == "zoo" assert str(factorial(0)) == "1" assert str(factorial(7)) == "5040" assert str(factorial(n)) == "factorial(n)" assert str(factorial(2*n)) == "factorial(2*n)" assert str(factorial(factorial(n))) == 'factorial(factorial(n))' assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))' assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))' assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))' assert str(subfactorial(3)) == "2" assert str(subfactorial(n)) == "subfactorial(n)" assert str(subfactorial(2*n)) == "subfactorial(2*n)" def test_Function(): f = Function('f') fx = f(x) w = WildFunction('w') assert str(f) == "f" assert str(fx) == "f(x)" assert str(w) == "w_" def test_Geometry(): assert sstr(Point(0, 0)) == 'Point2D(0, 0)' assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)' # TODO test other Geometry entities def test_GoldenRatio(): assert str(GoldenRatio) == "GoldenRatio" def test_TribonacciConstant(): assert str(TribonacciConstant) == "TribonacciConstant" def test_ImaginaryUnit(): assert str(I) == "I" def test_Infinity(): assert str(oo) == "oo" assert str(oo*I) == "oo*I" def test_Integer(): assert str(Integer(-1)) == "-1" assert str(Integer(1)) == "1" assert str(Integer(-3)) == "-3" assert str(Integer(0)) == "0" assert str(Integer(25)) == "25" def test_Integral(): assert str(Integral(sin(x), y)) == "Integral(sin(x), y)" assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))" def test_Interval(): n = (S.NegativeInfinity, 1, 2, S.Infinity) for i in range(len(n)): for j in range(i + 1, len(n)): for l in (True, False): for r in (True, False): ival = Interval(n[i], n[j], l, r) assert S(str(ival)) == ival def test_AccumBounds(): a = Symbol('a', real=True) assert str(AccumBounds(0, a)) == "AccumBounds(0, a)" assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)" def test_Lambda(): assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)" # issue 2908 assert str(Lambda((), 1)) == "Lambda((), 1)" assert str(Lambda((), x)) == "Lambda((), x)" assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)" assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)" def test_Limit(): assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)" assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)" assert str( Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')" def test_list(): assert str([x]) == sstr([x]) == "[x]" assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]" assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]" def test_Matrix_str(): M = Matrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" M = Matrix([[1]]) assert str(M) == sstr(M) == "Matrix([[1]])" M = Matrix([[1, 2]]) assert str(M) == sstr(M) == "Matrix([[1, 2]])" M = Matrix() assert str(M) == sstr(M) == "Matrix(0, 0, [])" M = Matrix(0, 1, lambda i, j: 0) assert str(M) == sstr(M) == "Matrix(0, 1, [])" def test_Mul(): assert str(x/y) == "x/y" assert str(y/x) == "y/x" assert str(x/y/z) == "x/(y*z)" assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)" assert str(2*x/3) == '2*x/3' assert str(-2*x/3) == '-2*x/3' assert str(-1.0*x) == '-1.0*x' assert str(1.0*x) == '1.0*x' # For issue 14160 assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x/(y*y)' class CustomClass1(Expr): is_commutative = True class CustomClass2(Expr): is_commutative = True cc1 = CustomClass1() cc2 = CustomClass2() assert str(Rational(2)*cc1) == '2*CustomClass1()' assert str(cc1*Rational(2)) == '2*CustomClass1()' assert str(cc1*Float("1.5")) == '1.5*CustomClass1()' assert str(cc2*Rational(2)) == '2*CustomClass2()' assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()' assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()' def test_NaN(): assert str(nan) == "nan" def test_NegativeInfinity(): assert str(-oo) == "-oo" def test_Order(): assert str(O(x)) == "O(x)" assert str(O(x**2)) == "O(x**2)" assert str(O(x*y)) == "O(x*y, x, y)" assert str(O(x, x)) == "O(x)" assert str(O(x, (x, 0))) == "O(x)" assert str(O(x, (x, oo))) == "O(x, (x, oo))" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, x, y)) == "O(x, x, y)" assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))" def test_Permutation_Cycle(): from sympy.combinatorics import Permutation, Cycle # general principle: economically, canonically show all moved elements # and the size of the permutation. for p, s in [ (Cycle(), '()'), (Cycle(2), '(2)'), (Cycle(2, 1), '(1 2)'), (Cycle(1, 2)(5)(6, 7)(10), '(1 2)(6 7)(10)'), (Cycle(3, 4)(1, 2)(3, 4), '(1 2)(4)'), ]: assert sstr(p) == s for p, s in [ (Permutation([]), 'Permutation([])'), (Permutation([], size=1), 'Permutation([0])'), (Permutation([], size=2), 'Permutation([0, 1])'), (Permutation([], size=10), 'Permutation([], size=10)'), (Permutation([1, 0, 2]), 'Permutation([1, 0, 2])'), (Permutation([1, 0, 2, 3, 4, 5]), 'Permutation([1, 0], size=6)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), 'Permutation([1, 0], size=10)'), ]: assert sstr(p, perm_cyclic=False) == s for p, s in [ (Permutation([]), '()'), (Permutation([], size=1), '(0)'), (Permutation([], size=2), '(1)'), (Permutation([], size=10), '(9)'), (Permutation([1, 0, 2]), '(2)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5]), '(5)(0 1)'), (Permutation([1, 0, 2, 3, 4, 5], size=10), '(9)(0 1)'), (Permutation([0, 1, 3, 2, 4, 5], size=10), '(9)(2 3)'), ]: assert sstr(p) == s def test_Pi(): assert str(pi) == "pi" def test_Poly(): assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')" assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')" assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')" assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')" assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')" assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')" assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')" assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')" assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')" assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')" assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')" assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')" assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')" assert str(Poly((x + y)**3, (x + y), expand=False) ) == "Poly((x + y)**3, x + y, domain='ZZ')" assert str(Poly((x - 1)**2, (x - 1), expand=False) ) == "Poly((x - 1)**2, x - 1, domain='ZZ')" assert str( Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')" assert str( Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')" assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='EX')" assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='EX')" assert str(Poly(-x*y*z + x*y - 1, x, y, z) ) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')" assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \ "Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')" assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)" assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)" def test_PolyRing(): assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order" assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order" assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order" def test_FracField(): assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order" assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order" assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order" def test_PolyElement(): Ruv, u,v = ring("u,v", ZZ) Rxyz, x,y,z = ring("x,y,z", Ruv) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x**2) == "x**2" assert str(x**(-2)) == "x**(-2)" assert str(x**QQ(1, 2)) == "x**(1/2)" assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x" assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1" assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1" assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1" assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1" def test_FracElement(): Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) assert str(x - x) == "0" assert str(x - 1) == "x - 1" assert str(x + 1) == "x + 1" assert str(x/3) == "x/3" assert str(x/z) == "x/z" assert str(x*y/z) == "x*y/z" assert str(x/(z*t)) == "x/(z*t)" assert str(x*y/(z*t)) == "x*y/(z*t)" assert str((x - 1)/y) == "(x - 1)/y" assert str((x + 1)/y) == "(x + 1)/y" assert str((-x - 1)/y) == "(-x - 1)/y" assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)" assert str(-y/(x + 1)) == "-y/(x + 1)" assert str(y*z/(x + 1)) == "y*z/(x + 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)" assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)" def test_Pow(): assert str(x**-1) == "1/x" assert str(x**-2) == "x**(-2)" assert str(x**2) == "x**2" assert str((x + y)**-1) == "1/(x + y)" assert str((x + y)**-2) == "(x + y)**(-2)" assert str((x + y)**2) == "(x + y)**2" assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)" assert str(x**Rational(1, 3)) == "x**(1/3)" assert str(1/x**Rational(1, 3)) == "x**(-1/3)" assert str(sqrt(sqrt(x))) == "x**(1/4)" # not the same as x**-1 assert str(x**-1.0) == 'x**(-1.0)' # see issue #2860 assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)' def test_sqrt(): assert str(sqrt(x)) == "sqrt(x)" assert str(sqrt(x**2)) == "sqrt(x**2)" assert str(1/sqrt(x)) == "1/sqrt(x)" assert str(1/sqrt(x**2)) == "1/sqrt(x**2)" assert str(y/sqrt(x)) == "y/sqrt(x)" assert str(x**0.5) == "x**0.5" assert str(1/x**0.5) == "x**(-0.5)" def test_Rational(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n7 = Rational(3) n8 = Rational(-3) assert str(n1*n2) == "1/12" assert str(n1*n2) == "1/12" assert str(n3) == "1/2" assert str(n1*n3) == "1/8" assert str(n1 + n3) == "3/4" assert str(n1 + n2) == "7/12" assert str(n1 + n4) == "-1/4" assert str(n4*n4) == "1/4" assert str(n4 + n2) == "-1/6" assert str(n4 + n5) == "-1/2" assert str(n4*n5) == "0" assert str(n3 + n4) == "0" assert str(n1**n7) == "1/64" assert str(n2**n7) == "1/27" assert str(n2**n8) == "27" assert str(n7**n8) == "1/27" assert str(Rational("-25")) == "-25" assert str(Rational("1.25")) == "5/4" assert str(Rational("-2.6e-2")) == "-13/500" assert str(S("25/7")) == "25/7" assert str(S("-123/569")) == "-123/569" assert str(S("0.1[23]", rational=1)) == "61/495" assert str(S("5.1[666]", rational=1)) == "31/6" assert str(S("-5.1[666]", rational=1)) == "-31/6" assert str(S("0.[9]", rational=1)) == "1" assert str(S("-0.[9]", rational=1)) == "-1" assert str(sqrt(Rational(1, 4))) == "1/2" assert str(sqrt(Rational(1, 36))) == "1/6" assert str((123**25) ** Rational(1, 25)) == "123" assert str((123**25 + 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "123" assert str((123**25 - 1)**Rational(1, 25)) != "122" assert str(sqrt(Rational(81, 36))**3) == "27/8" assert str(1/sqrt(Rational(81, 36))**3) == "8/27" assert str(sqrt(-4)) == str(2*I) assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)" assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3" x = Symbol("x") assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)" assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)" assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \ "Limit(x, x, S(7)/2)" def test_Float(): # NOTE dps is the whole number of decimal digits assert str(Float('1.23', dps=1 + 2)) == '1.23' assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789' assert str( Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789' assert str(pi.evalf(1 + 2)) == '3.14' assert str(pi.evalf(1 + 14)) == '3.14159265358979' assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279' '5028841971693993751058209749445923') assert str(pi.round(-1)) == '0.0' assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88' def test_Relational(): assert str(Rel(x, y, "<")) == "x < y" assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)" assert str(Rel(x, y, "!=")) == "Ne(x, y)" assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)" assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)" def test_CRootOf(): assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)" def test_RootSum(): f = x**5 + 2*x - 1 assert str( RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)" assert str(RootSum(f, Lambda( z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))" def test_GroebnerBasis(): assert str(groebner( [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')" F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] assert str(groebner(F, order='grlex')) == \ "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')" assert str(groebner(F, order='lex')) == \ "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')" def test_set(): assert sstr(set()) == 'set()' assert sstr(frozenset()) == 'frozenset()' assert sstr(set([1])) == '{1}' assert sstr(frozenset([1])) == 'frozenset({1})' assert sstr(set([1, 2, 3])) == '{1, 2, 3}' assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})' assert sstr( set([1, x, x**2, x**3, x**4])) == '{1, x, x**2, x**3, x**4}' assert sstr( frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})' def test_SparseMatrix(): M = SparseMatrix([[x**+1, 1], [y, x + y]]) assert str(M) == "Matrix([[x, 1], [y, x + y]])" assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" def test_Sum(): assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))" assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ "Sum(x*y**2, (x, -2, 2), (y, -5, 5))" def test_Symbol(): assert str(y) == "y" assert str(x) == "x" e = x assert str(e) == "x" def test_tuple(): assert str((x,)) == sstr((x,)) == "(x,)" assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)" assert str((x + y, ( 1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))" def test_Quaternion_str_printer(): q = Quaternion(x, y, z, t) assert str(q) == "x + y*i + z*j + t*k" q = Quaternion(x,y,z,x*t) assert str(q) == "x + y*i + z*j + t*x*k" q = Quaternion(x,y,z,x+t) assert str(q) == "x + y*i + z*j + (t + x)*k" def test_Quantity_str(): assert sstr(second, abbrev=True) == "s" assert sstr(joule, abbrev=True) == "J" assert str(second) == "second" assert str(joule) == "joule" def test_wild_str(): # Check expressions containing Wild not causing infinite recursion w = Wild('x') assert str(w + 1) == 'x_ + 1' assert str(exp(2**w) + 5) == 'exp(2**x_) + 5' assert str(3*w + 1) == '3*x_ + 1' assert str(1/w + 1) == '1 + 1/x_' assert str(w**2 + 1) == 'x_**2 + 1' assert str(1/(1 - w)) == '1/(1 - x_)' def test_zeta(): assert str(zeta(3)) == "zeta(3)" def test_issue_3101(): e = x - y a = str(e) b = str(e) assert a == b def test_issue_3103(): e = -2*sqrt(x) - y/sqrt(x)/2 assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"] assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))" def test_issue_4021(): e = Integral(x, x) + 1 assert str(e) == 'Integral(x, x) + 1' def test_sstrrepr(): assert sstr('abc') == 'abc' assert sstrrepr('abc') == "'abc'" e = ['a', 'b', 'c', x] assert sstr(e) == "[a, b, c, x]" assert sstrrepr(e) == "['a', 'b', 'c', x]" def test_infinity(): assert sstr(oo*I) == "oo*I" def test_full_prec(): assert sstr(S("0.3"), full_prec=True) == "0.300000000000000" assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000" assert sstr(S("0.3"), full_prec=False) == "0.3" assert sstr(S("0.3")*x, full_prec=True) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert sstr(S("0.3")*x, full_prec="auto") in [ "0.3*x", "x*0.3" ] assert sstr(S("0.3")*x, full_prec=False) in [ "0.3*x", "x*0.3" ] def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert sstr(A*B*C**-1) == "A*B*C**(-1)" assert sstr(C**-1*A*B) == "C**(-1)*A*B" assert sstr(A*C**-1*B) == "A*C**(-1)*B" assert sstr(sqrt(A)) == "sqrt(A)" assert sstr(1/sqrt(A)) == "A**(-1/2)" def test_empty_printer(): str_printer = StrPrinter() assert str_printer.emptyPrinter("foo") == "foo" assert str_printer.emptyPrinter(x*y) == "x*y" assert str_printer.emptyPrinter(32) == "32" def test_settings(): raises(TypeError, lambda: sstr(S(4), method="garbage")) def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)" D = Die('d1', 6) assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)" A = Exponential('a', 1) B = Exponential('b', 1) assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)" def test_FiniteSet(): assert str(FiniteSet(*range(1, 51))) == ( 'FiniteSet(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,' ' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,' ' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)' ) assert str(FiniteSet(*range(1, 6))) == 'FiniteSet(1, 2, 3, 4, 5)' def test_UniversalSet(): assert str(S.UniversalSet) == 'UniversalSet' def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y)) assert sstr(R.convert(x + y)) == sstr(x + y) def test_categories(): from sympy.categories import (Object, NamedMorphism, IdentityMorphism, Category) A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") id_A = IdentityMorphism(A) K = Category("K") assert str(A) == 'Object("A")' assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")' assert str(id_A) == 'IdentityMorphism(Object("A"))' assert str(K) == 'Category("K")' def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert str(t) == 'Tr(A*B)' def test_issue_6387(): assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)' def test_MatMul_MatAdd(): from sympy import MatrixSymbol assert str(2*(MatrixSymbol("X", 2, 2) + MatrixSymbol("Y", 2, 2))) == \ "2*(X + Y)" def test_MatrixSlice(): from sympy.matrices.expressions import MatrixSymbol assert str(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == 'X[:5, 1:9:2]' assert str(MatrixSymbol('X', 10, 10)[5, :5:2]) == 'X[5, :5:2]' def test_true_false(): assert str(true) == repr(true) == sstr(true) == "True" assert str(false) == repr(false) == sstr(false) == "False" def test_Equivalent(): assert str(Equivalent(y, x)) == "Equivalent(x, y)" def test_Xor(): assert str(Xor(y, x, evaluate=False)) == "x ^ y" def test_Complement(): assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)' def test_SymmetricDifference(): assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \ 'SymmetricDifference(Interval(2, 3), Interval(3, 4))' def test_UnevaluatedExpr(): a, b = symbols("a b") expr1 = 2*UnevaluatedExpr(a+b) assert str(expr1) == "2*(a + b)" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(str(A[0, 0]) == "A[0, 0]") assert(str(3 * A[0, 0]) == "3*A[0, 0]") F = C[0, 0].subs(C, A - B) assert str(F) == "(A - B)[0, 0]" def test_MatrixSymbol_printing(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert str(A - A*B - B) == "A - A*B - B" assert str(A*B - (A+B)) == "-(A + B) + A*B" assert str(A**(-1)) == "A**(-1)" assert str(A**3) == "A**3" def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert str(X) == "X" Y = X[1:2:3, 4:5:6] assert str(Y) == "X[1:3, 4:6]" Z = X[1:10:2] assert str(Z) == "X[1:10:2, :n]" # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)' lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) assert str(expr) == 'Lambda(_d, 1/_d).(n*X)' def test_Subs_printing(): assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)' assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))' def test_issue_15716(): e = Integral(factorial(x), (x, -oo, oo)) assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e]) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert str(Identity(4)) == 'I' assert str(ZeroMatrix(2, 2)) == '0' assert str(OneMatrix(2, 2)) == '1' def test_issue_14567(): assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
3ed457371c5156de6f05969a5f7ea631ff81648db3f1ef4d8d2b74ba94e2ced6
from sympy import symbols, sin, Matrix, Interval, Piecewise, Sum, lambdify, \ Expr, sqrt from sympy.utilities.pytest import raises from sympy.printing.tensorflow import TensorflowPrinter from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter x, y, z = symbols("x,y,z") i, a, b = symbols("i,a,b") j, c, d = symbols("j,c,d") def test_basic(): assert lambdarepr(x*y) == "x*y" assert lambdarepr(x + y) in ["y + x", "x + y"] assert lambdarepr(x**y) == "x**y" def test_matrix(): A = Matrix([[x, y], [y*x, z**2]]) # assert lambdarepr(A) == "ImmutableDenseMatrix([[x, y], [x*y, z**2]])" # Test printing a Matrix that has an element that is printed differently # with the LambdaPrinter than in the StrPrinter. p = Piecewise((x, True), evaluate=False) A = Matrix([p]) assert lambdarepr(A) == "ImmutableDenseMatrix([[((x))]])" def test_piecewise(): # In each case, test eval() the lambdarepr() to make sure there are a # correct number of parentheses. It will give a SyntaxError if there aren't. h = "lambda x: " p = Piecewise((x, True), evaluate=False) l = lambdarepr(p) eval(h + l) assert l == "((x))" p = Piecewise((x, x < 0)) l = lambdarepr(p) eval(h + l) assert l == "((x) if (x < 0) else None)" p = Piecewise( (1, x < 1), (2, x < 2), (0, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))" p = Piecewise( (1, x < 1), (2, x < 2), ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else None)" p = Piecewise( (x, x < 1), (x**2, Interval(3, 4, True, False).contains(x)), (0, True), ) l = lambdarepr(p) eval(h + l) assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))" p = Piecewise( (x**2, x < 0), (x, x < 1), (2 - x, x >= 1), (0, True), evaluate=False ) l = lambdarepr(p) eval(h + l) assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ " else (2 - x) if (x >= 1) else (0))" p = Piecewise( (x**2, x < 0), (x, x < 1), (2 - x, x >= 1), evaluate=False ) l = lambdarepr(p) eval(h + l) assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ " else (2 - x) if (x >= 1) else None)" p = Piecewise( (1, x >= 1), (2, x >= 2), (3, x >= 3), (4, x >= 4), (5, x >= 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\ " else (4) if (x >= 4) else (5) if (x >= 5) else (6))" p = Piecewise( (1, x <= 1), (2, x <= 2), (3, x <= 3), (4, x <= 4), (5, x <= 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\ " else (4) if (x <= 4) else (5) if (x <= 5) else (6))" p = Piecewise( (1, x > 1), (2, x > 2), (3, x > 3), (4, x > 4), (5, x > 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\ " else (4) if (x > 4) else (5) if (x > 5) else (6))" p = Piecewise( (1, x < 1), (2, x < 2), (3, x < 3), (4, x < 4), (5, x < 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\ " else (4) if (x < 4) else (5) if (x < 5) else (6))" p = Piecewise( (Piecewise( (1, x > 0), (2, True) ), y > 0), (3, True) ) l = lambdarepr(p) eval(h + l) assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))" def test_sum__1(): # In each case, test eval() the lambdarepr() to make sure that # it evaluates to the same results as the symbolic expression s = Sum(x ** i, (i, a, b)) l = lambdarepr(s) assert l == "(builtins.sum(x**i for i in range(a, b+1)))" args = x, a, b f = lambdify(args, s) v = 2, 3, 8 assert f(*v) == s.subs(zip(args, v)).doit() def test_sum__2(): s = Sum(i * x, (i, a, b)) l = lambdarepr(s) assert l == "(builtins.sum(i*x for i in range(a, b+1)))" args = x, a, b f = lambdify(args, s) v = 2, 3, 8 assert f(*v) == s.subs(zip(args, v)).doit() def test_multiple_sums(): s = Sum(i * x + j, (i, a, b), (j, c, d)) l = lambdarepr(s) assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))" args = x, a, b, c, d f = lambdify(args, s) vals = 2, 3, 4, 5, 6 f_ref = s.subs(zip(args, vals)).doit() f_res = f(*vals) assert f_res == f_ref def test_sqrt(): prntr = LambdaPrinter({'standard' : 'python2'}) assert prntr._print_Pow(sqrt(x), rational=False) == 'sqrt(x)' assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1./2.)' prntr = LambdaPrinter({'standard' : 'python3'}) assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' def test_settings(): raises(TypeError, lambda: lambdarepr(sin(x), method="garbage")) class CustomPrintedObject(Expr): def _lambdacode(self, printer): return 'lambda' def _tensorflowcode(self, printer): return 'tensorflow' def _numpycode(self, printer): return 'numpy' def _numexprcode(self, printer): return 'numexpr' def _mpmathcode(self, printer): return 'mpmath' def test_printmethod(): # In each case, printmethod is called to test # its working obj = CustomPrintedObject() assert LambdaPrinter().doprint(obj) == 'lambda' assert TensorflowPrinter().doprint(obj) == 'tensorflow' assert NumExprPrinter().doprint(obj) == "evaluate('numexpr', truediv=True)" assert NumExprPrinter().doprint(Piecewise((y, x >= 0), (z, x < 0))) == \ "evaluate('where((x >= 0), y, z)', truediv=True)"
df54b3c5da29ca86ed01292a397ce5f84cf7c540f193dc229041229e0ae31b53
from sympy import symbols, Derivative, Integral, exp, cos, oo, Function from sympy.functions.special.bessel import besselj from sympy.functions.special.polynomials import legendre from sympy.functions.combinatorial.numbers import bell from sympy.printing.conventions import split_super_sub, requires_partial from sympy.utilities.pytest import XFAIL def test_super_sub(): assert split_super_sub("beta_13_2") == ("beta", [], ["13", "2"]) assert split_super_sub("beta_132_20") == ("beta", [], ["132", "20"]) assert split_super_sub("beta_13") == ("beta", [], ["13"]) assert split_super_sub("x_a_b") == ("x", [], ["a", "b"]) assert split_super_sub("x_1_2_3") == ("x", [], ["1", "2", "3"]) assert split_super_sub("x_a_b1") == ("x", [], ["a", "b1"]) assert split_super_sub("x_a_1") == ("x", [], ["a", "1"]) assert split_super_sub("x_1_a") == ("x", [], ["1", "a"]) assert split_super_sub("x_1^aa") == ("x", ["aa"], ["1"]) assert split_super_sub("x_1__aa") == ("x", ["aa"], ["1"]) assert split_super_sub("x_11^a") == ("x", ["a"], ["11"]) assert split_super_sub("x_11__a") == ("x", ["a"], ["11"]) assert split_super_sub("x_a_b_c_d") == ("x", [], ["a", "b", "c", "d"]) assert split_super_sub("x_a_b^c^d") == ("x", ["c", "d"], ["a", "b"]) assert split_super_sub("x_a_b__c__d") == ("x", ["c", "d"], ["a", "b"]) assert split_super_sub("x_a^b_c^d") == ("x", ["b", "d"], ["a", "c"]) assert split_super_sub("x_a__b_c__d") == ("x", ["b", "d"], ["a", "c"]) assert split_super_sub("x^a^b_c_d") == ("x", ["a", "b"], ["c", "d"]) assert split_super_sub("x__a__b_c_d") == ("x", ["a", "b"], ["c", "d"]) assert split_super_sub("x^a^b^c^d") == ("x", ["a", "b", "c", "d"], []) assert split_super_sub("x__a__b__c__d") == ("x", ["a", "b", "c", "d"], []) assert split_super_sub("alpha_11") == ("alpha", [], ["11"]) assert split_super_sub("alpha_11_11") == ("alpha", [], ["11", "11"]) assert split_super_sub("") == ("", [], []) def test_requires_partial(): x, y, z, t, nu = symbols('x y z t nu') n = symbols('n', integer=True) f = x * y assert requires_partial(Derivative(f, x)) is True assert requires_partial(Derivative(f, y)) is True ## integrating out one of the variables assert requires_partial(Derivative(Integral(exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False ## bessel function with smooth parameter f = besselj(nu, x) assert requires_partial(Derivative(f, x)) is True assert requires_partial(Derivative(f, nu)) is True ## bessel function with integer parameter f = besselj(n, x) assert requires_partial(Derivative(f, x)) is False # this is not really valid (differentiating with respect to an integer) # but there's no reason to use the partial derivative symbol there. make # sure we don't throw an exception here, though assert requires_partial(Derivative(f, n)) is False ## bell polynomial f = bell(n, x) assert requires_partial(Derivative(f, x)) is False # again, invalid assert requires_partial(Derivative(f, n)) is False ## legendre polynomial f = legendre(0, x) assert requires_partial(Derivative(f, x)) is False f = legendre(n, x) assert requires_partial(Derivative(f, x)) is False # again, invalid assert requires_partial(Derivative(f, n)) is False f = x ** n assert requires_partial(Derivative(f, x)) is False assert requires_partial(Derivative(Integral((x*y) ** n * exp(-x * y), (x, 0, oo)), y, evaluate=False)) is False # parametric equation f = (exp(t), cos(t)) g = sum(f) assert requires_partial(Derivative(g, t)) is False f = symbols('f', cls=Function) assert requires_partial(Derivative(f(x), x)) is False assert requires_partial(Derivative(f(x), y)) is False assert requires_partial(Derivative(f(x, y), x)) is True assert requires_partial(Derivative(f(x, y), y)) is True assert requires_partial(Derivative(f(x, y), z)) is True assert requires_partial(Derivative(f(x, y), x, y)) is True @XFAIL def test_requires_partial_unspecified_variables(): x, y = symbols('x y') # function of unspecified variables f = symbols('f', cls=Function) assert requires_partial(Derivative(f, x)) is False assert requires_partial(Derivative(f, x, y)) is True
094dd559dd16a05fbbbab64bdee7850ec5ecd7428f702f58bbff11df2f33247e
from sympy.tensor.toperators import PartialDerivative from sympy import ( Add, Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial, FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral, Interval, InverseCosineTransform, InverseFourierTransform, Derivative, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul, Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational, RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs, Sum, Symbol, ImageSet, Tuple, Ynm, Znm, arg, asin, acsc, Mod, assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling, chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler, exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite, hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac, meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols, uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not, Contains, divisor_sigma, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps, AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction, stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime, UnevaluatedExpr, Quaternion, I, KroneckerProduct, LambertW) from sympy.ntheory.factor_ import udivisor_sigma from sympy.abc import mu, tau from sympy.printing.latex import (latex, translate, greek_letters_set, tex_greek_dictionary, multiline_latex) from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray, MutableDenseNDimArray, tensorproduct) from sympy.utilities.pytest import XFAIL, raises from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \ fibonacci, tribonacci from sympy.logic import Implies from sympy.logic.boolalg import And, Or, Xor from sympy.physics.quantum import Commutator, Operator from sympy.physics.units import meter, gibibyte, microgram, second from sympy.core.trace import Tr from sympy.core.compatibility import range from sympy.combinatorics.permutations import \ Cycle, Permutation, AppliedPermutation from sympy.matrices.expressions.permutation import PermutationMatrix from sympy import MatrixSymbol, ln from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian from sympy.sets.setexpr import SetExpr from sympy.sets.sets import \ Union, Intersection, Complement, SymmetricDifference, ProductSet import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name x, y, z, t, a, b, c = symbols('x y z t a b c') k, m, n = symbols('k m n', integer=True) def test_printmethod(): class R(Abs): def _latex(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert latex(R(x)) == "foo(x)" class R(Abs): def _latex(self, printer): return "foo" assert latex(R(x)) == "foo" def test_latex_basic(): assert latex(1 + x) == "x + 1" assert latex(x**2) == "x^{2}" assert latex(x**(1 + x)) == "x^{x + 1}" assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1" assert latex(2*x*y) == "2 x y" assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y" assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y" assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}" assert latex(1/x) == r"\frac{1}{x}" assert latex(1/x, fold_short_frac=True) == "1 / x" assert latex(-S(3)/2) == r"- \frac{3}{2}" assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2" assert latex(1/x**2) == r"\frac{1}{x^{2}}" assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}" assert latex(x/2) == r"\frac{x}{2}" assert latex(x/2, fold_short_frac=True) == "x / 2" assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}" assert latex((x + y)/(2*x), fold_short_frac=True) == \ r"\left(x + y\right) / 2 x" assert latex((x + y)/(2*x), long_frac_ratio=0) == \ r"\frac{1}{2 x} \left(x + y\right)" assert latex((x + y)/x) == r"\frac{x + y}{x}" assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}" assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}" assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \ r"\frac{2 x}{3} \sqrt{2}" assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}" assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \ r"\left(2 \int x\, dx\right) / 3" assert latex(sqrt(x)) == r"\sqrt{x}" assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}" assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}" assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}" assert latex(sqrt(x), itex=True) == r"\sqrt{x}" assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}" assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}" assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}" assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}" assert latex((x + 1)**Rational(3, 4)) == \ r"\left(x + 1\right)^{\frac{3}{4}}" assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \ r"\left(x + 1\right)^{3/4}" assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x" assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x" assert latex(1.5e20*x, mul_symbol='times') == \ r"1.5 \times 10^{20} \times x" assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}" assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}" assert latex(sin(x)**Rational(3, 2)) == \ r"\sin^{\frac{3}{2}}{\left(x \right)}" assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \ r"\sin^{3/2}{\left(x \right)}" assert latex(~x) == r"\neg x" assert latex(x & y) == r"x \wedge y" assert latex(x & y & z) == r"x \wedge y \wedge z" assert latex(x | y) == r"x \vee y" assert latex(x | y | z) == r"x \vee y \vee z" assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)" assert latex(Implies(x, y)) == r"x \Rightarrow y" assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y" assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z" assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)" assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)" assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i" assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \wedge y_i" assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \wedge y_i \wedge z_i" assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i" assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \vee y_i \vee z_i" assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"z_i \vee \left(x_i \wedge y_i\right)" assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \Rightarrow y_i" p = Symbol('p', positive=True) assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}" def test_latex_builtins(): assert latex(True) == r"\text{True}" assert latex(False) == r"\text{False}" assert latex(None) == r"\text{None}" assert latex(true) == r"\text{True}" assert latex(false) == r'\text{False}' def test_latex_SingularityFunction(): assert latex(SingularityFunction(x, 4, 5)) == \ r"{\left\langle x - 4 \right\rangle}^{5}" assert latex(SingularityFunction(x, -3, 4)) == \ r"{\left\langle x + 3 \right\rangle}^{4}" assert latex(SingularityFunction(x, 0, 4)) == \ r"{\left\langle x \right\rangle}^{4}" assert latex(SingularityFunction(x, a, n)) == \ r"{\left\langle - a + x \right\rangle}^{n}" assert latex(SingularityFunction(x, 4, -2)) == \ r"{\left\langle x - 4 \right\rangle}^{-2}" assert latex(SingularityFunction(x, 4, -1)) == \ r"{\left\langle x - 4 \right\rangle}^{-1}" def test_latex_cycle(): assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Cycle(1, 2)(4, 5, 6)) == \ r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Cycle()) == r"\left( \right)" def test_latex_permutation(): assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Permutation(1, 2)(4, 5, 6)) == \ r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Permutation()) == r"\left( \right)" assert latex(Permutation(2, 4)*Permutation(5)) == \ r"\left( 2\; 4\right)\left( 5\right)" assert latex(Permutation(5)) == r"\left( 5\right)" assert latex(Permutation(0, 1), perm_cyclic=False) == \ r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}" assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \ r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}" assert latex(Permutation(), perm_cyclic=False) == \ r"\left( \right)" def test_latex_Float(): assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}" assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}" assert latex(Float(1.0e-100), mul_symbol="times") == \ r"1.0 \times 10^{-100}" def test_latex_vector_expressions(): A = CoordSys3D('A') assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \ r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Cross(A.i, A.j)) == \ r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}" assert latex(x*Cross(A.i, A.j)) == \ r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)" assert latex(Cross(x*A.i, A.j)) == \ r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)' assert latex(Curl(3*A.x*A.j)) == \ r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*A.x*A.j+A.i)) == \ r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*x*A.x*A.j)) == \ r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)" assert latex(x*Curl(3*A.x*A.j)) == \ r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Divergence(3*A.x*A.j+A.i)) == \ r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Divergence(3*A.x*A.j)) == \ r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(x*Divergence(3*A.x*A.j)) == \ r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \ r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Dot(A.i, A.j)) == \ r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}" assert latex(Dot(x*A.i, A.j)) == \ r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)" assert latex(x*Dot(A.i, A.j)) == \ r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)" assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}" assert latex(Gradient(A.x + 3*A.y)) == \ r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)" assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)" assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}" assert latex(Laplacian(A.x + 3*A.y)) == \ r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)" assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)" def test_latex_symbols(): Gamma, lmbda, rho = symbols('Gamma, lambda, rho') tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU') assert latex(tau) == r"\tau" assert latex(Tau) == "T" assert latex(TAU) == r"\tau" assert latex(taU) == r"\tau" # Check that all capitalized greek letters are handled explicitly capitalized_letters = set(l.capitalize() for l in greek_letters_set) assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0 assert latex(Gamma + lmbda) == r"\Gamma + \lambda" assert latex(Gamma * lmbda) == r"\Gamma \lambda" assert latex(Symbol('q1')) == r"q_{1}" assert latex(Symbol('q21')) == r"q_{21}" assert latex(Symbol('epsilon0')) == r"\epsilon_{0}" assert latex(Symbol('omega1')) == r"\omega_{1}" assert latex(Symbol('91')) == r"91" assert latex(Symbol('alpha_new')) == r"\alpha_{new}" assert latex(Symbol('C^orig')) == r"C^{orig}" assert latex(Symbol('x^alpha')) == r"x^{\alpha}" assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}" assert latex(Symbol('e^Alpha')) == r"e^{A}" assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}" assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}" @XFAIL def test_latex_symbols_failing(): rho, mass, volume = symbols('rho, mass, volume') assert latex( volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}" assert latex(volume / mass * rho == 1) == \ r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1" assert latex(mass**3 * volume**3) == \ r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}" def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == r'f{\left(x \right)}' assert latex(f) == r'f' g = Function('g') assert latex(g(x, y)) == r'g{\left(x,y \right)}' assert latex(g) == r'g' h = Function('h') assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}' assert latex(h) == r'h' Li = Function('Li') assert latex(Li) == r'\operatorname{Li}' assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}' mybeta = Function('beta') # not to be confused with the beta function assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}" assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)' assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)' assert latex(mybeta(x)) == r"\beta{\left(x \right)}" assert latex(mybeta) == r"\beta" g = Function('gamma') # not to be confused with the gamma function assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}" assert latex(g(x)) == r"\gamma{\left(x \right)}" assert latex(g) == r"\gamma" a1 = Function('a_1') assert latex(a1) == r"\operatorname{a_{1}}" assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}" # issue 5868 omega1 = Function('omega1') assert latex(omega1) == r"\omega_{1}" assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}" assert latex(sin(x)) == r"\sin{\left(x \right)}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left(x \right)}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left(x \right)}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(acsc(x), inv_trig_style="full") == \ r"\operatorname{arccsc}{\left(x \right)}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(factorial(k)**2) == r"k!^{2}" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(factorial2(k)**2) == r"k!!^{2}" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}" assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}" assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor" assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil" assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}" assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}" assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}" assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\left|{x}\right|" assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}" assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}" assert latex(re(x + y)) == \ r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}" assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(conjugate(x)**2) == r"\overline{x}^{2}" assert latex(conjugate(x**2)) == r"\overline{x}^{2}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" w = Wild('w') assert latex(gamma(w)) == r"\Gamma\left(w\right)" assert latex(Order(x)) == r"O\left(x\right)" assert latex(Order(x, x)) == r"O\left(x\right)" assert latex(Order(x, (x, 0))) == r"O\left(x\right)" assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)" assert latex(Order(x - y, (x, y))) == \ r"O\left(x - y; x\rightarrow y\right)" assert latex(Order(x, x, y)) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" assert latex(Order(x, x, y)) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" assert latex(Order(x, (x, oo), (y, oo))) == \ r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left(x \right)}' assert latex(coth(x)) == r'\coth{\left(x \right)}' assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}' assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left(x \right)}' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex( polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(stieltjes(x)) == r"\gamma_{x}" assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}" assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)" assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}" assert latex(elliptic_k(z)) == r"K\left(z\right)" assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" assert latex(elliptic_e(z)) == r"E\left(z\right)" assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y, z)**2) == \ r"\Pi^{2}\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}' assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)' assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)' assert latex(jacobi(n, a, b, x)) == \ r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi(n, a, b, x)**2) == \ r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex(gegenbauer(n, a, x)) == \ r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer(n, a, x)**2) == \ r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex(chebyshevt(n, x)**2) == \ r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex(chebyshevu(n, x)**2) == \ r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex(assoc_legendre(n, a, x)) == \ r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre(n, a, x)**2) == \ r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex(assoc_laguerre(n, a, x)) == \ r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre(n, a, x)**2) == \ r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' theta = Symbol("theta", real=True) phi = Symbol("phi", real=True) assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' assert latex(Ynm(n, m, theta, phi)**3) == \ r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' assert latex(Znm(n, m, theta, phi)**3) == \ r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' # Test latex printing of function names with "_" assert latex(polar_lift(0)) == \ r"\operatorname{polar\_lift}{\left(0 \right)}" assert latex(polar_lift(0)**3) == \ r"\operatorname{polar\_lift}^{3}{\left(0 \right)}" assert latex(totient(n)) == r'\phi\left(n\right)' assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}' assert latex(reduced_totient(n)) == r'\lambda\left(n\right)' assert latex(reduced_totient(n) ** 2) == \ r'\left(\lambda\left(n\right)\right)^{2}' assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)" assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)" assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)" assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)" assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)" assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)" assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)" assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)" assert latex(primenu(n)) == r'\nu\left(n\right)' assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}' assert latex(primeomega(n)) == r'\Omega\left(n\right)' assert latex(primeomega(n) ** 2) == \ r'\left(\Omega\left(n\right)\right)^{2}' assert latex(LambertW(n)) == r'W\left(n\right)' assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)' assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)' assert latex(Mod(x, 7)) == r'x\bmod{7}' assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}' assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}' assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1' assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)' # some unknown function name should get rendered with \operatorname fjlkd = Function('fjlkd') assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}' # even when it is referred to without an argument assert latex(fjlkd) == r'\operatorname{fjlkd}' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert latex(mygamma) == r"\operatorname{mygamma}" assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}" def test_hyper_printing(): from sympy import pi from sympy.abc import x, z assert latex(meijerg(Tuple(pi, pi, x), Tuple(1), (0, 1), Tuple(1, 2, 3/pi), z)) == \ r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\ r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}' assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \ r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}' assert latex(hyper((x, 2), (3,), z)) == \ r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \ r'\\ 3 \end{matrix}\middle| {z} \right)}' assert latex(hyper(Tuple(), Tuple(1), z)) == \ r'{{}_{0}F_{1}\left(\begin{matrix} ' \ r'\\ 1 \end{matrix}\middle| {z} \right)}' def test_latex_bessel(): from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, hn1, hn2) from sympy.abc import z assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)' assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)' assert latex(besseli(n, z)) == r'I_{n}\left(z\right)' assert latex(besselk(n, z)) == r'K_{n}\left(z\right)' assert latex(hankel1(n, z**2)**2) == \ r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}' assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)' assert latex(jn(n, z)) == r'j_{n}\left(z\right)' assert latex(yn(n, z)) == r'y_{n}\left(z\right)' assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)' assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)' def test_latex_fresnel(): from sympy.functions.special.error_functions import (fresnels, fresnelc) from sympy.abc import z assert latex(fresnels(z)) == r'S\left(z\right)' assert latex(fresnelc(z)) == r'C\left(z\right)' assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)' assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)' def test_latex_brackets(): assert latex((-1)**x) == r"\left(-1\right)^{x}" def test_latex_indexed(): Psi_symbol = Symbol('Psi_0', complex=True, real=False) Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False)) symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol)) indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0])) # \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}} assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}' assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}' # Symbol('gamma') gives r'\gamma' assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}' assert latex(IndexedBase('gamma')) == r'\gamma' assert latex(IndexedBase('a b')) == 'a b' assert latex(IndexedBase('a_b')) == 'a_{b}' def test_latex_derivatives(): # regular "d" for ordinary derivatives assert latex(diff(x**3, x, evaluate=False)) == \ r"\frac{d}{d x} x^{3}" assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \ r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)" assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\ == \ r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)" assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \ r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)" # \partial for partial derivatives assert latex(diff(sin(x * y), x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \sin{\left(x y \right)}" assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)" assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)" assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)" # mixed partial derivatives f = Function("f") assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y)) assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y)) # use ordinary d when one of the variables has been integrated out assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \ r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx" # Derivative wrapped in power: assert latex(diff(x, x, evaluate=False)**2) == \ r"\left(\frac{d}{d x} x\right)^{2}" assert latex(diff(f(x), x)**2) == \ r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}" assert latex(diff(f(x), (x, n))) == \ r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}" x1 = Symbol('x1') x2 = Symbol('x2') assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}' n1 = Symbol('n1') assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}' n2 = Symbol('n2') assert latex(diff(f(x), (x, Max(n1, n2)))) == \ r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}' def test_latex_subs(): assert latex(Subs(x*y, ( x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}' def test_latex_integrals(): assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx" assert latex(Integral(x**2, (x, 0, 1))) == \ r"\int\limits_{0}^{1} x^{2}\, dx" assert latex(Integral(x**2, (x, 10, 20))) == \ r"\int\limits_{10}^{20} x^{2}\, dx" assert latex(Integral(y*x**2, (x, 0, 1), y)) == \ r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \ r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \ == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$" assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx" assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy" assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz" assert latex(Integral(x*y*z*t, x, y, z, t)) == \ r"\iiiint t x y z\, dx\, dy\, dz\, dt" assert latex(Integral(x, x, x, x, x, x, x)) == \ r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx" assert latex(Integral(x, x, y, (z, 0, 1))) == \ r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz" # fix issue #10806 assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}" assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz" assert latex(Integral(x+z/2, z)) == \ r"\int \left(x + \frac{z}{2}\right)\, dz" assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz" def test_latex_sets(): for s in (frozenset, set): assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" s = FiniteSet assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(*range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" def test_latex_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)" def test_latex_Range(): assert latex(Range(1, 51)) == \ r'\left\{1, 2, \ldots, 50\right\}' assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}' assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}' assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}' assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}' assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}' assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}' assert latex(Range(-2, -oo, -1)) == \ r'\left\{-2, -3, \ldots\right\}' def test_latex_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) latex_str = r'\left[0, 1, 4, 9, \ldots\right]' assert latex(s1) == latex_str latex_str = r'\left[1, 2, 1, 2, \ldots\right]' assert latex(s2) == latex_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) latex_str = r'\left[0, 1, 4\right]' assert latex(s3) == latex_str latex_str = r'\left[1, 2, 1\right]' assert latex(s4) == latex_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) latex_str = r'\left[\ldots, 9, 4, 1, 0\right]' assert latex(s5) == latex_str latex_str = r'\left[\ldots, 2, 1, 2, 1\right]' assert latex(s6) == latex_str latex_str = r'\left[1, 3, 5, 11, \ldots\right]' assert latex(SeqAdd(s1, s2)) == latex_str latex_str = r'\left[1, 3, 5\right]' assert latex(SeqAdd(s3, s4)) == latex_str latex_str = r'\left[\ldots, 11, 5, 3, 1\right]' assert latex(SeqAdd(s5, s6)) == latex_str latex_str = r'\left[0, 2, 4, 18, \ldots\right]' assert latex(SeqMul(s1, s2)) == latex_str latex_str = r'\left[0, 2, 4\right]' assert latex(SeqMul(s3, s4)) == latex_str latex_str = r'\left[\ldots, 18, 4, 2, 0\right]' assert latex(SeqMul(s5, s6)) == latex_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}' assert latex(s7) == latex_str b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) latex_str = r'\left[0, b, 4 b\right]' assert latex(s8) == latex_str def test_latex_FourierSeries(): latex_str = \ r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots' assert latex(fourier_series(x, (x, -pi, pi))) == latex_str def test_latex_FormalPowerSeries(): latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}' assert latex(fps(log(1 + x))) == latex_str def test_latex_intervals(): a = Symbol('a', real=True) assert latex(Interval(0, 0)) == r"\left\{0\right\}" assert latex(Interval(0, a)) == r"\left[0, a\right]" assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]" assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]" assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)" assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)" def test_latex_AccumuBounds(): a = Symbol('a', real=True) assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle" assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle" assert latex(AccumBounds(a + 1, a + 2)) == \ r"\left\langle a + 1, a + 2\right\rangle" def test_latex_emptyset(): assert latex(S.EmptySet) == r"\emptyset" def test_latex_universalset(): assert latex(S.UniversalSet) == r"\mathbb{U}" def test_latex_commutator(): A = Operator('A') B = Operator('B') comm = Commutator(B, A) assert latex(comm.doit()) == r"- (A B - B A)" def test_latex_union(): assert latex(Union(Interval(0, 1), Interval(2, 3))) == \ r"\left[0, 1\right] \cup \left[2, 3\right]" assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \ r"\left\{1, 2\right\} \cup \left[3, 4\right]" def test_latex_intersection(): assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \ r"\left[0, 1\right] \cap \left[x, y\right]" def test_latex_symmetric_difference(): assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7), evaluate=False)) == \ r'\left[2, 5\right] \triangle \left[4, 7\right]' def test_latex_Complement(): assert latex(Complement(S.Reals, S.Naturals)) == \ r"\mathbb{R} \setminus \mathbb{N}" def test_latex_productset(): line = Interval(0, 1) bigline = Interval(0, 10) fset = FiniteSet(1, 2, 3) assert latex(line**2) == r"%s^{2}" % latex(line) assert latex(line**10) == r"%s^{10}" % latex(line) assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % ( latex(line), latex(bigline), latex(fset)) def test_set_operators_parenthesis(): a, b, c, d = symbols('a:d') A = FiniteSet(a) B = FiniteSet(b) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(A, B, evaluate=False) U2 = Union(C, D, evaluate=False) I1 = Intersection(A, B, evaluate=False) I2 = Intersection(C, D, evaluate=False) C1 = Complement(A, B, evaluate=False) C2 = Complement(C, D, evaluate=False) D1 = SymmetricDifference(A, B, evaluate=False) D2 = SymmetricDifference(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(A, B) P2 = ProductSet(C, D) assert latex(Intersection(A, U2, evaluate=False)) == \ '\\left\\{a\\right\\} \\cap ' \ '\\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)' assert latex(Intersection(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\cap \\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)' assert latex(Intersection(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Intersection(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(Intersection(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\cap \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' assert latex(Union(A, I2, evaluate=False)) == \ '\\left\\{a\\right\\} \\cup ' \ '\\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)' assert latex(Union(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap ''\\left\\{b\\right\\}\\right) ' \ '\\cup \\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)' assert latex(Union(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Union(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(Union(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\cup \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(A, C2, evaluate=False)) == \ '\\left\\{a\\right\\} \\setminus \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(Complement(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\setminus \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\setminus \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(Complement(D1, D2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\setminus ' \ '\\left(\\left\\{c\\right\\} \\triangle \\left\\{d\\right\\}\\right)' assert latex(Complement(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) '\ '\\setminus \\left(\\left\\{c\\right\\} \\times '\ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(A, D2, evaluate=False)) == \ '\\left\\{a\\right\\} \\triangle \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\triangle ' \ '\\left(\\left\\{c\\right\\} \\setminus \\left\\{d\\right\\}\\right)' assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \ '\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \ '\\triangle \\left(\\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}\\right)' # XXX This can be incorrect since cartesian product is not associative assert latex(ProductSet(A, P2).flatten()) == \ '\\left\\{a\\right\\} \\times \\left\\{c\\right\\} \\times ' \ '\\left\\{d\\right\\}' assert latex(ProductSet(U1, U2)) == \ '\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \ '\\times \\left(\\left\\{c\\right\\} \\cup ' \ '\\left\\{d\\right\\}\\right)' assert latex(ProductSet(I1, I2)) == \ '\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \ '\\times \\left(\\left\\{c\\right\\} \\cap ' \ '\\left\\{d\\right\\}\\right)' assert latex(ProductSet(C1, C2)) == \ '\\left(\\left\\{a\\right\\} \\setminus ' \ '\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \ '\\setminus \\left\\{d\\right\\}\\right)' assert latex(ProductSet(D1, D2)) == \ '\\left(\\left\\{a\\right\\} \\triangle ' \ '\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \ '\\triangle \\left\\{d\\right\\}\\right)' def test_latex_Complexes(): assert latex(S.Complexes) == r"\mathbb{C}" def test_latex_Naturals(): assert latex(S.Naturals) == r"\mathbb{N}" def test_latex_Naturals0(): assert latex(S.Naturals0) == r"\mathbb{N}_0" def test_latex_Integers(): assert latex(S.Integers) == r"\mathbb{Z}" def test_latex_ImageSet(): x = Symbol('x') assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \ r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}" y = Symbol('y') imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) assert latex(imgset) == \ r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\} , y \in \left\{3, 4\right\}\right\}" imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) assert latex(imgset) == \ r"\left\{x + y\; |\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}" def test_latex_ConditionSet(): x = Symbol('x') assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \ r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}" assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \ r"\left\{x \mid x^{2} = 1 \right\}" def test_latex_ComplexRegion(): assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \ r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}" assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \ r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\ r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}" def test_latex_Contains(): x = Symbol('x') assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}" def test_latex_sum(): assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Sum(x**2, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} x^{2}" assert latex(Sum(x**2 + y, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \ r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}" def test_latex_product(): assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Product(x**2, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} x^{2}" assert latex(Product(x**2 + y, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Product(x, (x, -2, 2))**2) == \ r"\left(\prod_{x=-2}^{2} x\right)^{2}" def test_latex_limits(): assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x" # issue 8175 f = Function('f') assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}" assert latex(Limit(f(x), x, 0, "-")) == \ r"\lim_{x \to 0^-} f{\left(x \right)}" # issue #10806 assert latex(Limit(f(x), x, 0)**2) == \ r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}" # bi-directional limit assert latex(Limit(f(x), x, 0, dir='+-')) == \ r"\lim_{x \to 0} f{\left(x \right)}" def test_latex_log(): assert latex(log(x)) == r"\log{\left(x \right)}" assert latex(ln(x)) == r"\log{\left(x \right)}" assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}" assert latex(log(x)+log(y)) == \ r"\log{\left(x \right)} + \log{\left(y \right)}" assert latex(log(x)+log(y), ln_notation=True) == \ r"\ln{\left(x \right)} + \ln{\left(y \right)}" assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}" assert latex(pow(log(x), x), ln_notation=True) == \ r"\ln{\left(x \right)}^{x}" def test_issue_3568(): beta = Symbol(r'\beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] beta = Symbol(r'beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] def test_latex(): assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}" assert latex((2*mu)**Rational(7, 2), mode='equation*') == \ "\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}" assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \ "$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$" assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]" def test_latex_dict(): d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4} assert latex(d) == \ r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' D = Dict(d) assert latex(D) == \ r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' def test_latex_list(): ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')] assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]' def test_latex_rational(): # tests issue 3973 assert latex(-Rational(1, 2)) == "- \\frac{1}{2}" assert latex(Rational(-1, 2)) == "- \\frac{1}{2}" assert latex(Rational(1, -2)) == "- \\frac{1}{2}" assert latex(-Rational(-1, 2)) == "\\frac{1}{2}" assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}" assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \ "- \\frac{x}{2} - \\frac{2 y}{3}" def test_latex_inverse(): # tests issue 4129 assert latex(1/x) == "\\frac{1}{x}" assert latex(1/(x + y)) == "\\frac{1}{x + y}" def test_latex_DiracDelta(): assert latex(DiracDelta(x)) == r"\delta\left(x\right)" assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}" assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)" assert latex(DiracDelta(x, 5)) == \ r"\delta^{\left( 5 \right)}\left( x \right)" assert latex(DiracDelta(x, 5)**2) == \ r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}" def test_latex_Heaviside(): assert latex(Heaviside(x)) == r"\theta\left(x\right)" assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}" def test_latex_KroneckerDelta(): assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}" assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}" # issue 6578 assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}" assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \ r"\left(\delta_{x y}\right)^{2}" def test_latex_LeviCivita(): assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}" assert latex(LeviCivita(x, y, z)**2) == \ r"\left(\varepsilon_{x y z}\right)^{2}" assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}" assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}" assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}" def test_mode(): expr = x + y assert latex(expr) == 'x + y' assert latex(expr, mode='plain') == 'x + y' assert latex(expr, mode='inline') == '$x + y$' assert latex( expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}' assert latex( expr, mode='equation') == '\\begin{equation}x + y\\end{equation}' raises(ValueError, lambda: latex(expr, mode='foo')) def test_latex_mathieu(): assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)" assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)" assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}" assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}" assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)" assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)" assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}" assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}" def test_latex_Piecewise(): p = Piecewise((x, x < 1), (x**2, True)) assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" assert latex(p, itex=True) == \ "\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" p = Piecewise((x, x < 0), (0, x >= 0)) assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \ ' \\text{otherwise} \\end{cases}' A, B = symbols("A B", commutative=False) p = Piecewise((A**2, Eq(A, B)), (A*B, True)) s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}" assert latex(p) == s assert latex(A*p) == r"A \left(%s\right)" % s assert latex(p*A) == r"\left(%s\right) A" % s assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \ '\\begin{cases} x & ' \ '\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}' def test_latex_Matrix(): M = Matrix([[1 + x, y], [y, x - 1]]) assert latex(M) == \ r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]' assert latex(M, mode='inline') == \ r'$\left[\begin{smallmatrix}x + 1 & y\\' \ r'y & x - 1\end{smallmatrix}\right]$' assert latex(M, mat_str='array') == \ r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]' assert latex(M, mat_str='bmatrix') == \ r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]' assert latex(M, mat_delim=None, mat_str='bmatrix') == \ r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}' M2 = Matrix(1, 11, range(11)) assert latex(M2) == \ r'\left[\begin{array}{ccccccccccc}' \ r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]' def test_latex_matrix_with_functions(): t = symbols('t') theta1 = symbols('theta1', cls=Function) M = Matrix([[sin(theta1(t)), cos(theta1(t))], [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]]) expected = (r'\left[\begin{matrix}\sin{\left(' r'\theta_{1}{\left(t \right)} \right)} & ' r'\cos{\left(\theta_{1}{\left(t \right)} \right)' r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t ' r'\right)} \right)} & \sin{\left(\frac{d}{d t} ' r'\theta_{1}{\left(t \right)} \right' r')}\end{matrix}\right]') assert latex(M) == expected def test_latex_NDimArray(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert latex(M) == "x" M = ArrayType([[1 / x, y], [z, w]]) M1 = ArrayType([1 / x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) assert latex(M) == \ '\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]' assert latex(M1) == \ "\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]" assert latex(M2) == \ r"\left[\begin{matrix}" \ r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \ r"\end{matrix}\right]" assert latex(M3) == \ r"""\left[\begin{matrix}"""\ r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\ r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\ r"""\end{matrix}\right]""" Mrow = ArrayType([[x, y, 1/z]]) Mcolumn = ArrayType([[x], [y], [1/z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) assert latex(Mrow) == \ r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]" assert latex(Mcolumn) == \ r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]" assert latex(Mcol2) == \ r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]' def test_latex_mul_symbol(): assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}" assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}" assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}" assert latex(4*x, mul_symbol='times') == "4 \\times x" assert latex(4*x, mul_symbol='dot') == "4 \\cdot x" assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x" def test_latex_issue_4381(): y = 4*4**log(2) assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}' assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}' def test_latex_issue_4576(): assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}" assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}" assert latex(Symbol("beta_13")) == r"\beta_{13}" assert latex(Symbol("x_a_b")) == r"x_{a b}" assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}" assert latex(Symbol("x_a_b1")) == r"x_{a b1}" assert latex(Symbol("x_a_1")) == r"x_{a 1}" assert latex(Symbol("x_1_a")) == r"x_{1 a}" assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_11^a")) == r"x^{a}_{11}" assert latex(Symbol("x_11__a")) == r"x^{a}_{11}" assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}" assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}" assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}" assert latex(Symbol("alpha_11")) == r"\alpha_{11}" assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}" assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}" assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}" assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}" def test_latex_pow_fraction(): x = Symbol('x') # Testing exp assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace # Testing e^{-x} in case future changes alter behavior of muls or fracs # In particular current output is \frac{1}{2}e^{- x} but perhaps this will # change to \frac{e^{-x}}{2} # Testing general, non-exp, power assert '3^{-x}' in latex(3**-x/2).replace(' ', '') def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert latex(A*B*C**-1) == "A B C^{-1}" assert latex(C**-1*A*B) == "C^{-1} A B" assert latex(A*C**-1*B) == "A C^{-1} B" def test_latex_order(): expr = x**3 + x**2*y + y**4 + 3*x*y**3 assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}" assert latex( expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}" assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}" def test_latex_Lambda(): assert latex(Lambda(x, x + 1)) == \ r"\left( x \mapsto x + 1 \right)" assert latex(Lambda((x, y), x + 1)) == \ r"\left( \left( x, \ y\right) \mapsto x + 1 \right)" def test_latex_PolyElement(): Ruv, u, v = ring("u,v", ZZ) Rxyz, x, y, z = ring("x,y,z", Ruv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \ r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1" assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \ r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1" assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \ r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1" assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \ r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1" def test_latex_FracElement(): Fuv, u, v = field("u,v", ZZ) Fxyzt, x, y, z, t = field("x,y,z,t", Fuv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex(x/3) == r"\frac{x}{3}" assert latex(x/z) == r"\frac{x}{z}" assert latex(x*y/z) == r"\frac{x y}{z}" assert latex(x/(z*t)) == r"\frac{x}{z t}" assert latex(x*y/(z*t)) == r"\frac{x y}{z t}" assert latex((x - 1)/y) == r"\frac{x - 1}{y}" assert latex((x + 1)/y) == r"\frac{x + 1}{y}" assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}" assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}" assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}" assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \ r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \ r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}" def test_latex_Poly(): assert latex(Poly(x**2 + 2 * x, x)) == \ r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}" assert latex(Poly(x/y, x)) == \ r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}" assert latex(Poly(2.0*x + y)) == \ r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}" def test_latex_Poly_order(): assert latex(Poly([a, 1, b, 2, c, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\ ' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly([a, 1, b+c, 2, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\ 'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b, (x, y))) == \ '\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\ 'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' def test_latex_ComplexRootOf(): assert latex(rootof(x**5 + x + 3, 0)) == \ r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}" def test_latex_RootSum(): assert latex(RootSum(x**5 + x + 3, sin)) == \ r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}" def test_settings(): raises(TypeError, lambda: latex(x*y, method="garbage")) def test_latex_numbers(): assert latex(catalan(n)) == r"C_{n}" assert latex(catalan(n)**2) == r"C_{n}^{2}" assert latex(bernoulli(n)) == r"B_{n}" assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)" assert latex(bernoulli(n)**2) == r"B_{n}^{2}" assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)" assert latex(bell(n)) == r"B_{n}" assert latex(bell(n, x)) == r"B_{n}\left(x\right)" assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)" assert latex(bell(n)**2) == r"B_{n}^{2}" assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)" assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)" assert latex(fibonacci(n)) == r"F_{n}" assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)" assert latex(fibonacci(n)**2) == r"F_{n}^{2}" assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)" assert latex(lucas(n)) == r"L_{n}" assert latex(lucas(n)**2) == r"L_{n}^{2}" assert latex(tribonacci(n)) == r"T_{n}" assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)" assert latex(tribonacci(n)**2) == r"T_{n}^{2}" assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)" def test_latex_euler(): assert latex(euler(n)) == r"E_{n}" assert latex(euler(n, x)) == r"E_{n}\left(x\right)" assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)" def test_lamda(): assert latex(Symbol('lamda')) == r"\lambda" assert latex(Symbol('Lamda')) == r"\Lambda" def test_custom_symbol_names(): x = Symbol('x') y = Symbol('y') assert latex(x) == "x" assert latex(x, symbol_names={x: "x_i"}) == "x_i" assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y" assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}" assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j" def test_matAdd(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter C = MatrixSymbol('C', 5, 5) B = MatrixSymbol('B', 5, 5) l = LatexPrinter() assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B'] assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B'] assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B'] assert l._print(B + 2*C) in ['B + 2 C', '2 C + B'] def test_matMul(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter A = MatrixSymbol('A', 5, 5) B = MatrixSymbol('B', 5, 5) x = Symbol('x') lp = LatexPrinter() assert lp._print_MatMul(2*A) == '2 A' assert lp._print_MatMul(2*x*A) == '2 x A' assert lp._print_MatMul(-2*A) == '- 2 A' assert lp._print_MatMul(1.5*A) == '1.5 A' assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A' assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A' assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A' assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)', r'- 2 A \left(2 B + A\right)'] def test_latex_MatrixSlice(): from sympy.matrices.expressions import MatrixSymbol assert latex(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == \ r'X\left[:5, 1:9:2\right]' assert latex(MatrixSymbol('X', 10, 10)[5, :5:2]) == \ r'X\left[5, :5:2\right]' def test_latex_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where from sympy.stats.rv import RandomDomain X = Normal('x1', 0, 1) assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty" D = Die('d1', 6) assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6" A = Exponential('a', 1) B = Exponential('b', 1) assert latex( pspace(Tuple(A, B)).domain) == \ r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty" assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \ r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}' def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert latex(F.convert(x/(x + y))) == latex(x/(x + y)) assert latex(R.convert(x + y)) == latex(x + y) def test_integral_transforms(): x = Symbol("x") k = Symbol("k") f = Function("f") a = Symbol("a") b = Symbol("b") assert latex(MellinTransform(f(x), x, k)) == \ r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \ r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(LaplaceTransform(f(x), x, k)) == \ r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \ r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(FourierTransform(f(x), x, k)) == \ r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseFourierTransform(f(k), k, x)) == \ r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(CosineTransform(f(x), x, k)) == \ r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseCosineTransform(f(k), k, x)) == \ r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" assert latex(SineTransform(f(x), x, k)) == \ r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)" assert latex(InverseSineTransform(f(k), k, x)) == \ r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" def test_PolynomialRingBase(): from sympy.polys.domains import QQ assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]" assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \ r"S_<^{-1}\mathbb{Q}\left[x, y\right]" def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert latex(A1) == "A_{1}" assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}" assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}" assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}" assert latex(K1) == r"\mathbf{K_{1}}" d = Diagram() assert latex(d) == r"\emptyset" d = Diagram({f1: "unique", f2: S.EmptySet}) assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \ r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \ r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \ r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \left\{unique\right\}\right\}" # A linear diagram. A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d = Diagram([f, g]) grid = DiagramGrid(d) assert latex(grid) == "\\begin{array}{cc}\n" \ "A & B \\\\\n" \ " & C \n" \ "\\end{array}\n" def test_Modules(): from sympy.polys.domains import QQ from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}" assert latex(M) == \ r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle" I = R.ideal(x**2, y) assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle" Q = F / M assert latex(Q) == \ r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\ r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}" assert latex(Q.submodule([1, x**3/2], [2, y])) == \ r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\ r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\ r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\ r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle" h = homomorphism(QQ.old_poly_ring(x).free_module(2), QQ.old_poly_ring(x).free_module(2), [0, 0]) assert latex(h) == \ r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\ r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}" def test_QuotientRing(): from sympy.polys.domains import QQ R = QQ.old_poly_ring(x)/[x**2 + 1] assert latex(R) == \ r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}" assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}" def test_Tr(): #TODO: Handle indices A, B = symbols('A B', commutative=False) t = Tr(A*B) assert latex(t) == r'\operatorname{tr}\left(A B\right)' def test_Adjoint(): from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(Adjoint(X)) == r'X^{\dagger}' assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}' assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}' assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}' assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}' assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}' assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}' assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}' assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}' assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}' assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}' assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}' def test_Transpose(): from sympy.matrices import Transpose, MatPow, HadamardPower X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(Transpose(X)) == r'X^{T}' assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}' assert latex(Transpose(HadamardPower(X, 2))) == \ r'\left(X^{\circ {2}}\right)^{T}' assert latex(HadamardPower(Transpose(X), 2)) == \ r'\left(X^{T}\right)^{\circ {2}}' assert latex(Transpose(MatPow(X, 2))) == \ r'\left(X^{2}\right)^{T}' assert latex(MatPow(Transpose(X), 2)) == \ r'\left(X^{T}\right)^{2}' def test_Hadamard(): from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower from sympy.matrices.expressions import MatAdd, MatMul, MatPow X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}' assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y' assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}' assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}' assert latex(HadamardPower(MatAdd(X, Y), 2)) == \ r'\left(X + Y\right)^{\circ {2}}' assert latex(HadamardPower(MatMul(X, Y), 2)) == \ r'\left(X Y\right)^{\circ {2}}' assert latex(HadamardPower(MatPow(X, -1), -1)) == \ r'\left(X^{-1}\right)^{\circ \left({-1}\right)}' assert latex(MatPow(HadamardPower(X, -1), -1)) == \ r'\left(X^{\circ \left({-1}\right)}\right)^{-1}' assert latex(HadamardPower(X, n+1)) == \ r'X^{\circ \left({n + 1}\right)}' def test_ElementwiseApplyFunction(): from sympy.matrices import MatrixSymbol X = MatrixSymbol('X', 2, 2) expr = (X.T*X).applyfunc(sin) assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)" expr = X.applyfunc(Lambda(x, 1/x)) assert latex(expr) == r'{\left( d \mapsto \frac{1}{d} \right)}_{\circ}\left({X}\right)' def test_ZeroMatrix(): from sympy import ZeroMatrix assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}" assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}" def test_OneMatrix(): from sympy import OneMatrix assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}" assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}" def test_Identity(): from sympy import Identity assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}" assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}" def test_boolean_args_order(): syms = symbols('a:f') expr = And(*syms) assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f' expr = Or(*syms) assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f' expr = Equivalent(*syms) assert latex(expr) == \ 'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f' expr = Xor(*syms) assert latex(expr) == \ 'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f' def test_imaginary(): i = sqrt(-1) assert latex(i) == r'i' def test_builtins_without_args(): assert latex(sin) == r'\sin' assert latex(cos) == r'\cos' assert latex(tan) == r'\tan' assert latex(log) == r'\log' assert latex(Ei) == r'\operatorname{Ei}' assert latex(zeta) == r'\zeta' def test_latex_greek_functions(): # bug because capital greeks that have roman equivalents should not use # \Alpha, \Beta, \Eta, etc. s = Function('Alpha') assert latex(s) == r'A' assert latex(s(x)) == r'A{\left(x \right)}' s = Function('Beta') assert latex(s) == r'B' s = Function('Eta') assert latex(s) == r'H' assert latex(s(x)) == r'H{\left(x \right)}' # bug because sympy.core.numbers.Pi is special p = Function('Pi') # assert latex(p(x)) == r'\Pi{\left(x \right)}' assert latex(p) == r'\Pi' # bug because not all greeks are included c = Function('chi') assert latex(c(x)) == r'\chi{\left(x \right)}' assert latex(c) == r'\chi' def test_translate(): s = 'Alpha' assert translate(s) == 'A' s = 'Beta' assert translate(s) == 'B' s = 'Eta' assert translate(s) == 'H' s = 'omicron' assert translate(s) == 'o' s = 'Pi' assert translate(s) == r'\Pi' s = 'pi' assert translate(s) == r'\pi' s = 'LamdaHatDOT' assert translate(s) == r'\dot{\hat{\Lambda}}' def test_other_symbols(): from sympy.printing.latex import other_symbols for s in other_symbols: assert latex(symbols(s)) == "\\"+s def test_modifiers(): # Test each modifier individually in the simplest case # (with funny capitalizations) assert latex(symbols("xMathring")) == r"\mathring{x}" assert latex(symbols("xCheck")) == r"\check{x}" assert latex(symbols("xBreve")) == r"\breve{x}" assert latex(symbols("xAcute")) == r"\acute{x}" assert latex(symbols("xGrave")) == r"\grave{x}" assert latex(symbols("xTilde")) == r"\tilde{x}" assert latex(symbols("xPrime")) == r"{x}'" assert latex(symbols("xddDDot")) == r"\ddddot{x}" assert latex(symbols("xDdDot")) == r"\dddot{x}" assert latex(symbols("xDDot")) == r"\ddot{x}" assert latex(symbols("xBold")) == r"\boldsymbol{x}" assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|" assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle" assert latex(symbols("xHat")) == r"\hat{x}" assert latex(symbols("xDot")) == r"\dot{x}" assert latex(symbols("xBar")) == r"\bar{x}" assert latex(symbols("xVec")) == r"\vec{x}" assert latex(symbols("xAbs")) == r"\left|{x}\right|" assert latex(symbols("xMag")) == r"\left|{x}\right|" assert latex(symbols("xPrM")) == r"{x}'" assert latex(symbols("xBM")) == r"\boldsymbol{x}" # Test strings that are *only* the names of modifiers assert latex(symbols("Mathring")) == r"Mathring" assert latex(symbols("Check")) == r"Check" assert latex(symbols("Breve")) == r"Breve" assert latex(symbols("Acute")) == r"Acute" assert latex(symbols("Grave")) == r"Grave" assert latex(symbols("Tilde")) == r"Tilde" assert latex(symbols("Prime")) == r"Prime" assert latex(symbols("DDot")) == r"\dot{D}" assert latex(symbols("Bold")) == r"Bold" assert latex(symbols("NORm")) == r"NORm" assert latex(symbols("AVG")) == r"AVG" assert latex(symbols("Hat")) == r"Hat" assert latex(symbols("Dot")) == r"Dot" assert latex(symbols("Bar")) == r"Bar" assert latex(symbols("Vec")) == r"Vec" assert latex(symbols("Abs")) == r"Abs" assert latex(symbols("Mag")) == r"Mag" assert latex(symbols("PrM")) == r"PrM" assert latex(symbols("BM")) == r"BM" assert latex(symbols("hbar")) == r"\hbar" # Check a few combinations assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}" assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}" assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|" # Check a couple big, ugly combinations assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \ r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}" assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \ r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}" def test_greek_symbols(): assert latex(Symbol('alpha')) == r'\alpha' assert latex(Symbol('beta')) == r'\beta' assert latex(Symbol('gamma')) == r'\gamma' assert latex(Symbol('delta')) == r'\delta' assert latex(Symbol('epsilon')) == r'\epsilon' assert latex(Symbol('zeta')) == r'\zeta' assert latex(Symbol('eta')) == r'\eta' assert latex(Symbol('theta')) == r'\theta' assert latex(Symbol('iota')) == r'\iota' assert latex(Symbol('kappa')) == r'\kappa' assert latex(Symbol('lambda')) == r'\lambda' assert latex(Symbol('mu')) == r'\mu' assert latex(Symbol('nu')) == r'\nu' assert latex(Symbol('xi')) == r'\xi' assert latex(Symbol('omicron')) == r'o' assert latex(Symbol('pi')) == r'\pi' assert latex(Symbol('rho')) == r'\rho' assert latex(Symbol('sigma')) == r'\sigma' assert latex(Symbol('tau')) == r'\tau' assert latex(Symbol('upsilon')) == r'\upsilon' assert latex(Symbol('phi')) == r'\phi' assert latex(Symbol('chi')) == r'\chi' assert latex(Symbol('psi')) == r'\psi' assert latex(Symbol('omega')) == r'\omega' assert latex(Symbol('Alpha')) == r'A' assert latex(Symbol('Beta')) == r'B' assert latex(Symbol('Gamma')) == r'\Gamma' assert latex(Symbol('Delta')) == r'\Delta' assert latex(Symbol('Epsilon')) == r'E' assert latex(Symbol('Zeta')) == r'Z' assert latex(Symbol('Eta')) == r'H' assert latex(Symbol('Theta')) == r'\Theta' assert latex(Symbol('Iota')) == r'I' assert latex(Symbol('Kappa')) == r'K' assert latex(Symbol('Lambda')) == r'\Lambda' assert latex(Symbol('Mu')) == r'M' assert latex(Symbol('Nu')) == r'N' assert latex(Symbol('Xi')) == r'\Xi' assert latex(Symbol('Omicron')) == r'O' assert latex(Symbol('Pi')) == r'\Pi' assert latex(Symbol('Rho')) == r'P' assert latex(Symbol('Sigma')) == r'\Sigma' assert latex(Symbol('Tau')) == r'T' assert latex(Symbol('Upsilon')) == r'\Upsilon' assert latex(Symbol('Phi')) == r'\Phi' assert latex(Symbol('Chi')) == r'X' assert latex(Symbol('Psi')) == r'\Psi' assert latex(Symbol('Omega')) == r'\Omega' assert latex(Symbol('varepsilon')) == r'\varepsilon' assert latex(Symbol('varkappa')) == r'\varkappa' assert latex(Symbol('varphi')) == r'\varphi' assert latex(Symbol('varpi')) == r'\varpi' assert latex(Symbol('varrho')) == r'\varrho' assert latex(Symbol('varsigma')) == r'\varsigma' assert latex(Symbol('vartheta')) == r'\vartheta' def test_fancyset_symbols(): assert latex(S.Rationals) == '\\mathbb{Q}' assert latex(S.Naturals) == '\\mathbb{N}' assert latex(S.Naturals0) == '\\mathbb{N}_0' assert latex(S.Integers) == '\\mathbb{Z}' assert latex(S.Reals) == '\\mathbb{R}' assert latex(S.Complexes) == '\\mathbb{C}' @XFAIL def test_builtin_without_args_mismatched_names(): assert latex(CosineTransform) == r'\mathcal{COS}' def test_builtin_no_args(): assert latex(Chi) == r'\operatorname{Chi}' assert latex(beta) == r'\operatorname{B}' assert latex(gamma) == r'\Gamma' assert latex(KroneckerDelta) == r'\delta' assert latex(DiracDelta) == r'\delta' assert latex(lowergamma) == r'\gamma' def test_issue_6853(): p = Function('Pi') assert latex(p(x)) == r"\Pi{\left(x \right)}" def test_Mul(): e = Mul(-2, x + 1, evaluate=False) assert latex(e) == r'- 2 \left(x + 1\right)' e = Mul(2, x + 1, evaluate=False) assert latex(e) == r'2 \left(x + 1\right)' e = Mul(S.Half, x + 1, evaluate=False) assert latex(e) == r'\frac{x + 1}{2}' e = Mul(y, x + 1, evaluate=False) assert latex(e) == r'y \left(x + 1\right)' e = Mul(-y, x + 1, evaluate=False) assert latex(e) == r'- y \left(x + 1\right)' e = Mul(-2, x + 1) assert latex(e) == r'- 2 x - 2' e = Mul(2, x + 1) assert latex(e) == r'2 x + 2' def test_Pow(): e = Pow(2, 2, evaluate=False) assert latex(e) == r'2^{2}' assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}' x2 = Symbol(r'x^2') assert latex(x2**2) == r'\left(x^{2}\right)^{2}' def test_issue_7180(): assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y" assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y" def test_issue_8409(): assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}" def test_issue_8470(): from sympy.parsing.sympy_parser import parse_expr e = parse_expr("-B*A", evaluate=False) assert latex(e) == r"A \left(- B\right)" def test_issue_7117(): # See also issue #5031 (hence the evaluate=False in these). e = Eq(x + 1, 2*x) q = Mul(2, e, evaluate=False) assert latex(q) == r"2 \left(x + 1 = 2 x\right)" q = Add(6, e, evaluate=False) assert latex(q) == r"6 + \left(x + 1 = 2 x\right)" q = Pow(e, 2, evaluate=False) assert latex(q) == r"\left(x + 1 = 2 x\right)^{2}" def test_issue_15439(): x = MatrixSymbol('x', 2, 2) y = MatrixSymbol('y', 2, 2) assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)" assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)" assert latex((x * y).subs(x, -x)) == r"- x y" def test_issue_2934(): assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}' def test_issue_10489(): latexSymbolWithBrace = 'C_{x_{0}}' s = Symbol(latexSymbolWithBrace) assert latex(s) == latexSymbolWithBrace assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}' def test_issue_12886(): m__1, l__1 = symbols('m__1, l__1') assert latex(m__1**2 + l__1**2) == \ r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}' def test_issue_13559(): from sympy.parsing.sympy_parser import parse_expr expr = parse_expr('5/1', evaluate=False) assert latex(expr) == r"\frac{5}{1}" def test_issue_13651(): expr = c + Mul(-1, a + b, evaluate=False) assert latex(expr) == r"c - \left(a + b\right)" def test_latex_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) assert latex(he) == latex(1/x) == r"\frac{1}{x}" assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}" assert latex(he + 1) == r"1 + \frac{1}{x}" assert latex(x*he) == r"x \frac{1}{x}" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert latex(A[0, 0]) == r"A_{0, 0}" assert latex(3 * A[0, 0]) == r"3 A_{0, 0}" F = C[0, 0].subs(C, A - B) assert latex(F) == r"\left(A - B\right)_{0, 0}" i, j, k = symbols("i j k") M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) assert latex((M*N)[i, j]) == \ r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}' def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert latex(-A) == r"- A" assert latex(A - A*B - B) == r"A - A B - B" assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B" def test_KroneckerProduct_printing(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 2, 2) assert latex(KroneckerProduct(A, B)) == r'A \otimes B' def test_Quaternion_latex_printing(): q = Quaternion(x, y, z, t) assert latex(q) == "x + y i + z j + t k" q = Quaternion(x, y, z, x*t) assert latex(q) == "x + y i + z j + t x k" q = Quaternion(x, y, z, x + t) assert latex(q) == r"x + y i + z j + \left(t + x\right) k" def test_TensorProduct_printing(): from sympy.tensor.functions import TensorProduct A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert latex(TensorProduct(A, B)) == r"A \otimes B" def test_WedgeProduct_printing(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y" def test_issue_14041(): import sympy.physics.mechanics as me A_frame = me.ReferenceFrame('A') thetad, phid = me.dynamicsymbols('theta, phi', 1) L = Symbol('L') assert latex(L*(phid + thetad)**2*A_frame.x) == \ r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert latex((phid + thetad)**2*A_frame.x) == \ r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert latex((phid*thetad)**a*A_frame.x) == \ r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}" def test_issue_9216(): expr_1 = Pow(1, -1, evaluate=False) assert latex(expr_1) == r"1^{-1}" expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False) assert latex(expr_2) == r"1^{1^{-1}}" expr_3 = Pow(3, -2, evaluate=False) assert latex(expr_3) == r"\frac{1}{9}" expr_4 = Pow(1, -2, evaluate=False) assert latex(expr_4) == r"1^{-2}" def test_latex_printer_tensor(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads L = TensorIndexType("L") i, j, k, l = tensor_indices("i j k l", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) K = TensorHead("K", [L, L, L, L]) assert latex(i) == "{}^{i}" assert latex(-i) == "{}_{i}" expr = A(i) assert latex(expr) == "A{}^{i}" expr = A(i0) assert latex(expr) == "A{}^{i_{0}}" expr = A(-i) assert latex(expr) == "A{}_{i}" expr = -3*A(i) assert latex(expr) == r"-3A{}^{i}" expr = K(i, j, -k, -i0) assert latex(expr) == "K{}^{ij}{}_{ki_{0}}" expr = K(i, -j, -k, i0) assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}" expr = K(i, -j, k, -i0) assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}" expr = H(i, -j) assert latex(expr) == "H{}^{i}{}_{j}" expr = H(i, j) assert latex(expr) == "H{}^{ij}" expr = H(-i, -j) assert latex(expr) == "H{}_{ij}" expr = (1+x)*A(i) assert latex(expr) == r"\left(x + 1\right)A{}^{i}" expr = H(i, -i) assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}" expr = H(i, -j)*A(j)*B(k) assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}" expr = A(i) + 3*B(i) assert latex(expr) == "3B{}^{i} + A{}^{i}" # Test ``TensorElement``: from sympy.tensor.tensor import TensorElement expr = TensorElement(K(i, j, k, l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3,j,k=2,l}' expr = TensorElement(K(i, j, k, l), {i: 3}) assert latex(expr) == 'K{}^{i=3,jkl}' expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}' expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}' expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2}) assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}' expr = TensorElement(K(i, j, -k, -l), {i: 3}) assert latex(expr) == 'K{}^{i=3,j}{}_{kl}' expr = PartialDerivative(A(i), A(i)) assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}" expr = PartialDerivative(A(-i), A(-j)) assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}" expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n)) assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}" expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}" expr = PartialDerivative(3*A(-i), A(-j), A(-n)) assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}" def test_multiline_latex(): a, b, c, d, e, f = symbols('a b c d e f') expr = -a + 2*b -3*c +4*d -5*e expected = r"\begin{eqnarray}" + "\n"\ r"f & = &- a \nonumber\\" + "\n"\ r"& & + 2 b \nonumber\\" + "\n"\ r"& & - 3 c \nonumber\\" + "\n"\ r"& & + 4 d \nonumber\\" + "\n"\ r"& & - 5 e " + "\n"\ r"\end{eqnarray}" assert multiline_latex(f, expr, environment="eqnarray") == expected expected2 = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b \nonumber\\' + '\n'\ r'& & - 3 c + 4 d \nonumber\\' + '\n'\ r'& & - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2 expected3 = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\ r'& & + 4 d - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3 expected3dots = r'\begin{eqnarray}' + '\n'\ r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\ r'& & + 4 d - 5 e ' + '\n'\ r'\end{eqnarray}' assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots expected3align = r'\begin{align*}' + '\n'\ r'f = &- a + 2 b - 3 c \\'+ '\n'\ r'& + 4 d - 5 e ' + '\n'\ r'\end{align*}' assert multiline_latex(f, expr, 3) == expected3align assert multiline_latex(f, expr, 3, environment='align*') == expected3align expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\ r'f & = &- a + 2 b \nonumber\\' + '\n'\ r'& & - 3 c + 4 d \nonumber\\' + '\n'\ r'& & - 5 e ' + '\n'\ r'\end{IEEEeqnarray}' assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee raises(ValueError, lambda: multiline_latex(f, expr, environment="foo")) def test_issue_15353(): from sympy import ConditionSet, Tuple, S, sin, cos a, x = symbols('a x') # Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a]) sol = ConditionSet( Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2) assert latex(sol) == \ r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in ' \ r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \ r'\cos{\left(a x \right)} = 0 \right\}' def test_trace(): # Issue 15303 from sympy import trace A = MatrixSymbol("A", 2, 2) assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)" assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)" def test_print_basic(): # Issue 15303 from sympy import Basic, Expr # dummy class for testing printing where the function is not # implemented in latex.py class UnimplementedExpr(Expr): def __new__(cls, e): return Basic.__new__(cls, e) # dummy function for testing def unimplemented_expr(expr): return UnimplementedExpr(expr).doit() # override class name to use superscript / subscript def unimplemented_expr_sup_sub(expr): result = UnimplementedExpr(expr) result.__class__.__name__ = 'UnimplementedExpr_x^1' return result assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)' assert latex(unimplemented_expr(x**2)) == \ r'UnimplementedExpr\left(x^{2}\right)' assert latex(unimplemented_expr_sup_sub(x)) == \ r'UnimplementedExpr^{1}_{x}\left(x\right)' def test_MatrixSymbol_bold(): # Issue #15871 from sympy import trace A = MatrixSymbol("A", 2, 2) assert latex(trace(A), mat_symbol_style='bold') == \ r"\operatorname{tr}\left(\mathbf{A} \right)" assert latex(trace(A), mat_symbol_style='plain') == \ r"\operatorname{tr}\left(A \right)" A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}" assert latex(A - A*B - B, mat_symbol_style='bold') == \ r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}" assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \ r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}" A = MatrixSymbol("A_k", 3, 3) assert latex(A, mat_symbol_style='bold') == r"\mathbf{A_{k}}" def test_AppliedPermutation(): p = Permutation(0, 1, 2) x = Symbol('x') assert latex(AppliedPermutation(p, x)) == \ r'\sigma_{\left( 0\; 1\; 2\right)}(x)' def test_PermutationMatrix(): p = Permutation(0, 1, 2) assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}' p = Permutation(0, 3)(1, 2) assert latex(PermutationMatrix(p)) == \ r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}' def test_imaginary_unit(): assert latex(1 + I) == '1 + i' assert latex(1 + I, imaginary_unit='i') == '1 + i' assert latex(1 + I, imaginary_unit='j') == '1 + j' assert latex(1 + I, imaginary_unit='foo') == '1 + foo' assert latex(I, imaginary_unit="ti") == '\\text{i}' assert latex(I, imaginary_unit="tj") == '\\text{j}' def test_text_re_im(): assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}' assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}' assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}' assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}' def test_DiffGeomMethods(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential from sympy.diffgeom.rn import R2 m = Manifold('M', 2) assert latex(m) == r'\text{M}' p = Patch('P', m) assert latex(p) == r'\text{P}_{\text{M}}' rect = CoordSystem('rect', p) assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}' b = BaseScalarField(rect, 0) assert latex(b) == r'\mathbf{rect_{0}}' g = Function('g') s_field = g(R2.x, R2.y) assert latex(Differential(s_field)) == \ r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)' def test_unit_printing(): assert latex(5*meter) == r'5 \text{m}' assert latex(3*gibibyte) == r'3 \text{gibibyte}' assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}' def test_issue_17092(): x_star = Symbol('x^*') assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}' def test_latex_decimal_separator(): x, y, z, t = symbols('x y z t') k, m, n = symbols('k m n', integer=True) f, g, h = symbols('f g h', cls=Function) # comma decimal_separator assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]') assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}') assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)') # period decimal_separator assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' ) assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}') assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)') # default decimal_separator assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]') assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}') assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)') assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') ==r'18{,}02') assert(latex(3.4*5.3, decimal_separator = 'comma')==r'18{,}02') x = symbols('x') y = symbols('y') z = symbols('z') assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma')== r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5') assert(latex(0.987, decimal_separator='comma') == r'0{,}987') assert(latex(S(0.987), decimal_separator='comma')== r'0{,}987') assert(latex(.3, decimal_separator='comma')== r'0{,}3') assert(latex(S(.3), decimal_separator='comma')== r'0{,}3') assert(latex(5.8*10**(-7), decimal_separator='comma') ==r'5{,}8e-07') assert(latex(S(5.7)*10**(-7), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}') assert(latex(S(5.7*10**(-7)), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}') x = symbols('x') assert(latex(1.2*x+3.4, decimal_separator='comma')==r'1{,}2 x + 3{,}4') assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period')==r'\left\{1, 2.3, 4.5\right\}') # Error Handling tests raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list')) raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set')) raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple')) def test_issue_17857(): assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}' assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
9b4c84f356bff84cb5f9a5a1b271e444d34844231a21475570ac81826a64df99
from sympy.core import (S, pi, oo, Symbol, symbols, Rational, Integer, GoldenRatio, EulerGamma, Catalan, Lambda, Dummy, Eq) from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt, gamma, sign, Max, Min, factorial, beta) from sympy.sets import Range from sympy.logic import ITE from sympy.codegen import For, aug_assign, Assignment from sympy.utilities.pytest import raises from sympy.printing.rcode import RCodePrinter from sympy.utilities.lambdify import implemented_function from sympy.tensor import IndexedBase, Idx from sympy.matrices import Matrix, MatrixSymbol from sympy import rcode x, y, z = symbols('x,y,z') def test_printmethod(): class fabs(Abs): def _rcode(self, printer): return "abs(%s)" % printer._print(self.args[0]) assert rcode(fabs(x)) == "abs(x)" def test_rcode_sqrt(): assert rcode(sqrt(x)) == "sqrt(x)" assert rcode(x**0.5) == "sqrt(x)" assert rcode(sqrt(x)) == "sqrt(x)" def test_rcode_Pow(): assert rcode(x**3) == "x^3" assert rcode(x**(y**3)) == "x^(y^3)" g = implemented_function('g', Lambda(x, 2*x)) assert rcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*2*x)^(-x + y^x)/(x^2 + y)" assert rcode(x**-1.0) == '1.0/x' assert rcode(x**Rational(2, 3)) == 'x^(2.0/3.0)' _cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"), (lambda base, exp: not exp.is_integer, "pow")] assert rcode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)' assert rcode(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 3.2)' def test_rcode_Max(): # Test for gh-11926 assert rcode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))' def test_rcode_constants_mathh(): assert rcode(exp(1)) == "exp(1)" assert rcode(pi) == "pi" assert rcode(oo) == "Inf" assert rcode(-oo) == "-Inf" def test_rcode_constants_other(): assert rcode(2*GoldenRatio) == "GoldenRatio = 1.61803398874989;\n2*GoldenRatio" assert rcode( 2*Catalan) == "Catalan = 0.915965594177219;\n2*Catalan" assert rcode(2*EulerGamma) == "EulerGamma = 0.577215664901533;\n2*EulerGamma" def test_rcode_Rational(): assert rcode(Rational(3, 7)) == "3.0/7.0" assert rcode(Rational(18, 9)) == "2" assert rcode(Rational(3, -7)) == "-3.0/7.0" assert rcode(Rational(-3, -7)) == "3.0/7.0" assert rcode(x + Rational(3, 7)) == "x + 3.0/7.0" assert rcode(Rational(3, 7)*x) == "(3.0/7.0)*x" def test_rcode_Integer(): assert rcode(Integer(67)) == "67" assert rcode(Integer(-1)) == "-1" def test_rcode_functions(): assert rcode(sin(x) ** cos(x)) == "sin(x)^cos(x)" assert rcode(factorial(x) + gamma(y)) == "factorial(x) + gamma(y)" assert rcode(beta(Min(x, y), Max(x, y))) == "beta(min(x, y), max(x, y))" def test_rcode_inline_function(): x = symbols('x') g = implemented_function('g', Lambda(x, 2*x)) assert rcode(g(x)) == "2*x" g = implemented_function('g', Lambda(x, 2*x/Catalan)) assert rcode( g(x)) == "Catalan = %s;\n2*x/Catalan" % Catalan.n() A = IndexedBase('A') i = Idx('i', symbols('n', integer=True)) g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) res=rcode(g(A[i]), assign_to=A[i]) ref=( "for (i in 1:n){\n" " A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" "}" ) assert res == ref def test_rcode_exceptions(): assert rcode(ceiling(x)) == "ceiling(x)" assert rcode(Abs(x)) == "abs(x)" assert rcode(gamma(x)) == "gamma(x)" def test_rcode_user_functions(): x = symbols('x', integer=False) n = symbols('n', integer=True) custom_functions = { "ceiling": "myceil", "Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], } assert rcode(ceiling(x), user_functions=custom_functions) == "myceil(x)" assert rcode(Abs(x), user_functions=custom_functions) == "fabs(x)" assert rcode(Abs(n), user_functions=custom_functions) == "abs(n)" def test_rcode_boolean(): assert rcode(True) == "True" assert rcode(S.true) == "True" assert rcode(False) == "False" assert rcode(S.false) == "False" assert rcode(x & y) == "x & y" assert rcode(x | y) == "x | y" assert rcode(~x) == "!x" assert rcode(x & y & z) == "x & y & z" assert rcode(x | y | z) == "x | y | z" assert rcode((x & y) | z) == "z | x & y" assert rcode((x | y) & z) == "z & (x | y)" def test_rcode_Relational(): from sympy import Eq, Ne, Le, Lt, Gt, Ge assert rcode(Eq(x, y)) == "x == y" assert rcode(Ne(x, y)) == "x != y" assert rcode(Le(x, y)) == "x <= y" assert rcode(Lt(x, y)) == "x < y" assert rcode(Gt(x, y)) == "x > y" assert rcode(Ge(x, y)) == "x >= y" def test_rcode_Piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) res=rcode(expr) ref="ifelse(x < 1,x,x^2)" assert res == ref tau=Symbol("tau") res=rcode(expr,tau) ref="tau = ifelse(x < 1,x,x^2);" assert res == ref expr = 2*Piecewise((x, x < 1), (x**2, x<2), (x**3,True)) assert rcode(expr) == "2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3))" res = rcode(expr, assign_to='c') assert res == "c = 2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3));" # Check that Piecewise without a True (default) condition error #expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) #raises(ValueError, lambda: rcode(expr)) expr = 2*Piecewise((x, x < 1), (x**2, x<2)) assert(rcode(expr))== "2*ifelse(x < 1,x,ifelse(x < 2,x^2,NA))" def test_rcode_sinc(): from sympy import sinc expr = sinc(x) res = rcode(expr) ref = "ifelse(x != 0,sin(x)/x,1)" assert res == ref def test_rcode_Piecewise_deep(): p = rcode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))) assert p == "2*ifelse(x < 1,x,ifelse(x < 2,x + 1,x^2))" expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1 p = rcode(expr) ref="x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1" assert p == ref ref="c = x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1;" p = rcode(expr, assign_to='c') assert p == ref def test_rcode_ITE(): expr = ITE(x < 1, y, z) p = rcode(expr) ref="ifelse(x < 1,y,z)" assert p == ref def test_rcode_settings(): raises(TypeError, lambda: rcode(sin(x), method="garbage")) def test_rcode_Indexed(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o = symbols('n m o', integer=True) i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) p = RCodePrinter() p._not_r = set() x = IndexedBase('x')[j] assert p._print_Indexed(x) == 'x[j]' A = IndexedBase('A')[i, j] assert p._print_Indexed(A) == 'A[i, j]' B = IndexedBase('B')[i, j, k] assert p._print_Indexed(B) == 'B[i, j, k]' assert p._not_r == set() def test_rcode_Indexed_without_looking_for_contraction(): len_y = 5 y = IndexedBase('y', shape=(len_y,)) x = IndexedBase('x', shape=(len_y,)) Dy = IndexedBase('Dy', shape=(len_y-1,)) i = Idx('i', len_y-1) e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i])) code0 = rcode(e.rhs, assign_to=e.lhs, contract=False) assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1) def test_rcode_loops_matrix_vector(): n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) s = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' y[i] = A[i, j]*x[j] + y[i];\n' ' }\n' '}' ) c = rcode(A[i, j]*x[j], assign_to=y[i]) assert c == s def test_dummy_loops(): # the following line could also be # [Dummy(s, integer=True) for s in 'im'] # or [Dummy(integer=True) for s in 'im'] i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( 'for (i_%(icount)i in 1:m_%(mcount)i){\n' ' y[i_%(icount)i] = x[i_%(icount)i];\n' '}' ) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} code = rcode(x[i], assign_to=y[i]) assert code == expected def test_rcode_loops_add(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') z = IndexedBase('z') i = Idx('i', m) j = Idx('j', n) s = ( 'for (i in 1:m){\n' ' y[i] = x[i] + z[i];\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' y[i] = A[i, j]*x[j] + y[i];\n' ' }\n' '}' ) c = rcode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) assert c == s def test_rcode_loops_multiple_contractions(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' for (k in 1:o){\n' ' for (l in 1:p){\n' ' y[i] = a[i, j, k, l]*b[j, k, l] + y[i];\n' ' }\n' ' }\n' ' }\n' '}' ) c = rcode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) assert c == s def test_rcode_loops_addfactor(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' for (k in 1:o){\n' ' for (l in 1:p){\n' ' y[i] = (a[i, j, k, l] + b[i, j, k, l])*c[j, k, l] + y[i];\n' ' }\n' ' }\n' ' }\n' '}' ) c = rcode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) assert c == s def test_rcode_loops_multiple_terms(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) s0 = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' ) s1 = ( 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' for (k in 1:o){\n' ' y[i] = b[j]*b[k]*c[i, j, k] + y[i];\n' ' }\n' ' }\n' '}\n' ) s2 = ( 'for (i in 1:m){\n' ' for (k in 1:o){\n' ' y[i] = a[i, k]*b[k] + y[i];\n' ' }\n' '}\n' ) s3 = ( 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' y[i] = a[i, j]*b[j] + y[i];\n' ' }\n' '}\n' ) c = rcode( b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) ref=dict() ref[0] = s0 + s1 + s2 + s3[:-1] ref[1] = s0 + s1 + s3 + s2[:-1] ref[2] = s0 + s2 + s1 + s3[:-1] ref[3] = s0 + s2 + s3 + s1[:-1] ref[4] = s0 + s3 + s1 + s2[:-1] ref[5] = s0 + s3 + s2 + s1[:-1] assert (c == ref[0] or c == ref[1] or c == ref[2] or c == ref[3] or c == ref[4] or c == ref[5]) def test_dereference_printing(): expr = x + y + sin(z) + z assert rcode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))" def test_Matrix_printing(): # Test returning a Matrix mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) A = MatrixSymbol('A', 3, 1) p = rcode(mat, A) assert p == ( "A[0] = x*y;\n" "A[1] = ifelse(y > 0,x + 2,y);\n" "A[2] = sin(z);") # Test using MatrixElements in expressions expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] p = rcode(expr) assert p == ("ifelse(x > 0,2*A[2],A[2]) + sin(A[1]) + A[0]") # Test using MatrixElements in a Matrix q = MatrixSymbol('q', 5, 1) M = MatrixSymbol('M', 3, 3) m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], [q[1,0] + q[2,0], q[3, 0], 5], [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) assert rcode(m, M) == ( "M[0] = sin(q[1]);\n" "M[1] = 0;\n" "M[2] = cos(q[2]);\n" "M[3] = q[1] + q[2];\n" "M[4] = q[3];\n" "M[5] = 5;\n" "M[6] = 2*q[4]/q[1];\n" "M[7] = sqrt(q[0]) + 4;\n" "M[8] = 0;") def test_rcode_sgn(): expr = sign(x) * y assert rcode(expr) == 'y*sign(x)' p = rcode(expr, 'z') assert p == 'z = y*sign(x);' p = rcode(sign(2 * x + x**2) * x + x**2) assert p == "x^2 + x*sign(x^2 + 2*x)" expr = sign(cos(x)) p = rcode(expr) assert p == 'sign(cos(x))' def test_rcode_Assignment(): assert rcode(Assignment(x, y + z)) == 'x = y + z;' assert rcode(aug_assign(x, '+', y + z)) == 'x += y + z;' def test_rcode_For(): f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)]) sol = rcode(f) assert sol == ("for (x = 0; x < 10; x += 2) {\n" " y *= x;\n" "}") def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(rcode(A[0, 0]) == "A[0]") assert(rcode(3 * A[0, 0]) == "3*A[0]") F = C[0, 0].subs(C, A - B) assert(rcode(F) == "(A - B)[0]")
0dd4327def8fe873fbe14c9284ef1906fd50fea3f84fae23858d9fd06b3a48f6
from sympy.printing.tree import tree from sympy.utilities.pytest import XFAIL # Remove this flag after making _assumptions cache deterministic. @XFAIL def test_print_tree_MatAdd(): from sympy.matrices.expressions import MatrixSymbol A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) test_str = [ 'MatAdd: A + B\n', 'algebraic: False\n', 'commutative: False\n', 'complex: False\n', 'composite: False\n', 'even: False\n', 'extended_negative: False\n', 'extended_nonnegative: False\n', 'extended_nonpositive: False\n', 'extended_nonzero: False\n', 'extended_positive: False\n', 'extended_real: False\n', 'imaginary: False\n', 'integer: False\n', 'irrational: False\n', 'negative: False\n', 'noninteger: False\n', 'nonnegative: False\n', 'nonpositive: False\n', 'nonzero: False\n', 'odd: False\n', 'positive: False\n', 'prime: False\n', 'rational: False\n', 'real: False\n', 'transcendental: False\n', 'zero: False\n', '+-MatrixSymbol: A\n', '| algebraic: False\n', '| commutative: False\n', '| complex: False\n', '| composite: False\n', '| even: False\n', '| extended_negative: False\n', '| extended_nonnegative: False\n', '| extended_nonpositive: False\n', '| extended_nonzero: False\n', '| extended_positive: False\n', '| extended_real: False\n', '| imaginary: False\n', '| integer: False\n', '| irrational: False\n', '| negative: False\n', '| noninteger: False\n', '| nonnegative: False\n', '| nonpositive: False\n', '| nonzero: False\n', '| odd: False\n', '| positive: False\n', '| prime: False\n', '| rational: False\n', '| real: False\n', '| transcendental: False\n', '| zero: False\n', '| +-Symbol: A\n', '| | commutative: True\n', '| +-Integer: 3\n', '| | algebraic: True\n', '| | commutative: True\n', '| | complex: True\n', '| | extended_negative: False\n', '| | extended_nonnegative: True\n', '| | extended_real: True\n', '| | finite: True\n', '| | hermitian: True\n', '| | imaginary: False\n', '| | infinite: False\n', '| | integer: True\n', '| | irrational: False\n', '| | negative: False\n', '| | noninteger: False\n', '| | nonnegative: True\n', '| | rational: True\n', '| | real: True\n', '| | transcendental: False\n', '| +-Integer: 3\n', '| algebraic: True\n', '| commutative: True\n', '| complex: True\n', '| extended_negative: False\n', '| extended_nonnegative: True\n', '| extended_real: True\n', '| finite: True\n', '| hermitian: True\n', '| imaginary: False\n', '| infinite: False\n', '| integer: True\n', '| irrational: False\n', '| negative: False\n', '| noninteger: False\n', '| nonnegative: True\n', '| rational: True\n', '| real: True\n', '| transcendental: False\n', '+-MatrixSymbol: B\n', ' algebraic: False\n', ' commutative: False\n', ' complex: False\n', ' composite: False\n', ' even: False\n', ' extended_negative: False\n', ' extended_nonnegative: False\n', ' extended_nonpositive: False\n', ' extended_nonzero: False\n', ' extended_positive: False\n', ' extended_real: False\n', ' imaginary: False\n', ' integer: False\n', ' irrational: False\n', ' negative: False\n', ' noninteger: False\n', ' nonnegative: False\n', ' nonpositive: False\n', ' nonzero: False\n', ' odd: False\n', ' positive: False\n', ' prime: False\n', ' rational: False\n', ' real: False\n', ' transcendental: False\n', ' zero: False\n', ' +-Symbol: B\n', ' | commutative: True\n', ' +-Integer: 3\n', ' | algebraic: True\n', ' | commutative: True\n', ' | complex: True\n', ' | extended_negative: False\n', ' | extended_nonnegative: True\n', ' | extended_real: True\n', ' | finite: True\n', ' | hermitian: True\n', ' | imaginary: False\n', ' | infinite: False\n', ' | integer: True\n', ' | irrational: False\n', ' | negative: False\n', ' | noninteger: False\n', ' | nonnegative: True\n', ' | rational: True\n', ' | real: True\n', ' | transcendental: False\n', ' +-Integer: 3\n', ' algebraic: True\n', ' commutative: True\n', ' complex: True\n', ' extended_negative: False\n', ' extended_nonnegative: True\n', ' extended_real: True\n', ' finite: True\n', ' hermitian: True\n', ' imaginary: False\n', ' infinite: False\n', ' integer: True\n', ' irrational: False\n', ' negative: False\n', ' noninteger: False\n', ' nonnegative: True\n', ' rational: True\n', ' real: True\n', ' transcendental: False\n' ] assert tree(A + B) == "".join(test_str) def test_print_tree_MatAdd_noassumptions(): from sympy.matrices.expressions import MatrixSymbol A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) test_str = \ """MatAdd: A + B +-MatrixSymbol: A | +-Symbol: A | +-Integer: 3 | +-Integer: 3 +-MatrixSymbol: B +-Symbol: B +-Integer: 3 +-Integer: 3 """ assert tree(A + B, assumptions=False) == test_str
925718ded73ce085af2e3a8b1bffd1482c4dcedc0bbd2a1beee26c341aa82866
from sympy import (Symbol, symbols, oo, limit, Rational, Integral, Derivative, log, exp, sqrt, pi, Function, sin, Eq, Ge, Le, Gt, Lt, Ne, Abs, conjugate, I, Matrix) from sympy.printing.python import python from sympy.utilities.pytest import raises, XFAIL x, y = symbols('x,y') th = Symbol('theta') ph = Symbol('phi') def test_python_basic(): # Simple numbers/symbols assert python(-Rational(1)/2) == "e = Rational(-1, 2)" assert python(-Rational(13)/22) == "e = Rational(-13, 22)" assert python(oo) == "e = oo" # Powers assert python((x**2)) == "x = Symbol(\'x\')\ne = x**2" assert python(1/x) == "x = Symbol('x')\ne = 1/x" assert python(y*x**-2) == "y = Symbol('y')\nx = Symbol('x')\ne = y/x**2" assert python( x**Rational(-5, 2)) == "x = Symbol('x')\ne = x**Rational(-5, 2)" # Sums of terms assert python((x**2 + x + 1)) in [ "x = Symbol('x')\ne = 1 + x + x**2", "x = Symbol('x')\ne = x + x**2 + 1", "x = Symbol('x')\ne = x**2 + x + 1", ] assert python(1 - x) in [ "x = Symbol('x')\ne = 1 - x", "x = Symbol('x')\ne = -x + 1"] assert python(1 - 2*x) in [ "x = Symbol('x')\ne = 1 - 2*x", "x = Symbol('x')\ne = -2*x + 1"] assert python(1 - Rational(3, 2)*y/x) in [ "y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3/2*y/x", "y = Symbol('y')\nx = Symbol('x')\ne = -3/2*y/x + 1", "y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3*y/(2*x)"] # Multiplication assert python(x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = x/y" assert python(-x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = -x/y" assert python((x + 2)/y) in [ "y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(2 + x)", "y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(x + 2)", "x = Symbol('x')\ny = Symbol('y')\ne = 1/y*(2 + x)", "x = Symbol('x')\ny = Symbol('y')\ne = (2 + x)/y", "x = Symbol('x')\ny = Symbol('y')\ne = (x + 2)/y"] assert python((1 + x)*y) in [ "y = Symbol('y')\nx = Symbol('x')\ne = y*(1 + x)", "y = Symbol('y')\nx = Symbol('x')\ne = y*(x + 1)", ] # Check for proper placement of negative sign assert python(-5*x/(x + 10)) == "x = Symbol('x')\ne = -5*x/(x + 10)" assert python(1 - Rational(3, 2)*(x + 1)) in [ "x = Symbol('x')\ne = Rational(-3, 2)*x + Rational(-1, 2)", "x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)", "x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)" ] def test_python_keyword_symbol_name_escaping(): # Check for escaping of keywords assert python( 5*Symbol("lambda")) == "lambda_ = Symbol('lambda')\ne = 5*lambda_" assert (python(5*Symbol("lambda") + 7*Symbol("lambda_")) == "lambda__ = Symbol('lambda')\nlambda_ = Symbol('lambda_')\ne = 7*lambda_ + 5*lambda__") assert (python(5*Symbol("for") + Function("for_")(8)) == "for__ = Symbol('for')\nfor_ = Function('for_')\ne = 5*for__ + for_(8)") def test_python_keyword_function_name_escaping(): assert python( 5*Function("for")(8)) == "for_ = Function('for')\ne = 5*for_(8)" def test_python_relational(): assert python(Eq(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = Eq(x, y)" assert python(Ge(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x >= y" assert python(Le(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x <= y" assert python(Gt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x > y" assert python(Lt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x < y" assert python(Ne(x/(y + 1), y**2)) in [ "x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(1 + y), y**2)", "x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(y + 1), y**2)"] def test_python_functions(): # Simple assert python((2*x + exp(x))) in "x = Symbol('x')\ne = 2*x + exp(x)" assert python(sqrt(2)) == 'e = sqrt(2)' assert python(2**Rational(1, 3)) == 'e = 2**Rational(1, 3)' assert python(sqrt(2 + pi)) == 'e = sqrt(2 + pi)' assert python((2 + pi)**Rational(1, 3)) == 'e = (2 + pi)**Rational(1, 3)' assert python(2**Rational(1, 4)) == 'e = 2**Rational(1, 4)' assert python(Abs(x)) == "x = Symbol('x')\ne = Abs(x)" assert python( Abs(x/(x**2 + 1))) in ["x = Symbol('x')\ne = Abs(x/(1 + x**2))", "x = Symbol('x')\ne = Abs(x/(x**2 + 1))"] # Univariate/Multivariate functions f = Function('f') assert python(f(x)) == "x = Symbol('x')\nf = Function('f')\ne = f(x)" assert python(f(x, y)) == "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x, y)" assert python(f(x/(y + 1), y)) in [ "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(1 + y), y)", "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(y + 1), y)"] # Nesting of square roots assert python(sqrt((sqrt(x + 1)) + 1)) in [ "x = Symbol('x')\ne = sqrt(1 + sqrt(1 + x))", "x = Symbol('x')\ne = sqrt(sqrt(x + 1) + 1)"] # Nesting of powers assert python((((x + 1)**Rational(1, 3)) + 1)**Rational(1, 3)) in [ "x = Symbol('x')\ne = (1 + (1 + x)**Rational(1, 3))**Rational(1, 3)", "x = Symbol('x')\ne = ((x + 1)**Rational(1, 3) + 1)**Rational(1, 3)"] # Function powers assert python(sin(x)**2) == "x = Symbol('x')\ne = sin(x)**2" @XFAIL def test_python_functions_conjugates(): a, b = map(Symbol, 'ab') assert python( conjugate(a + b*I) ) == '_ _\na - I*b' assert python( conjugate(exp(a + b*I)) ) == ' _ _\n a - I*b\ne ' def test_python_derivatives(): # Simple f_1 = Derivative(log(x), x, evaluate=False) assert python(f_1) == "x = Symbol('x')\ne = Derivative(log(x), x)" f_2 = Derivative(log(x), x, evaluate=False) + x assert python(f_2) == "x = Symbol('x')\ne = x + Derivative(log(x), x)" # Multiple symbols f_3 = Derivative(log(x) + x**2, x, y, evaluate=False) assert python(f_3) == \ "x = Symbol('x')\ny = Symbol('y')\ne = Derivative(x**2 + log(x), x, y)" f_4 = Derivative(2*x*y, y, x, evaluate=False) + x**2 assert python(f_4) in [ "x = Symbol('x')\ny = Symbol('y')\ne = x**2 + Derivative(2*x*y, y, x)", "x = Symbol('x')\ny = Symbol('y')\ne = Derivative(2*x*y, y, x) + x**2"] def test_python_integrals(): # Simple f_1 = Integral(log(x), x) assert python(f_1) == "x = Symbol('x')\ne = Integral(log(x), x)" f_2 = Integral(x**2, x) assert python(f_2) == "x = Symbol('x')\ne = Integral(x**2, x)" # Double nesting of pow f_3 = Integral(x**(2**x), x) assert python(f_3) == "x = Symbol('x')\ne = Integral(x**(2**x), x)" # Definite integrals f_4 = Integral(x**2, (x, 1, 2)) assert python(f_4) == "x = Symbol('x')\ne = Integral(x**2, (x, 1, 2))" f_5 = Integral(x**2, (x, Rational(1, 2), 10)) assert python( f_5) == "x = Symbol('x')\ne = Integral(x**2, (x, Rational(1, 2), 10))" # Nested integrals f_6 = Integral(x**2*y**2, x, y) assert python(f_6) == "x = Symbol('x')\ny = Symbol('y')\ne = Integral(x**2*y**2, x, y)" def test_python_matrix(): p = python(Matrix([[x**2+1, 1], [y, x+y]])) s = "x = Symbol('x')\ny = Symbol('y')\ne = MutableDenseMatrix([[x**2 + 1, 1], [y, x + y]])" assert p == s def test_python_limits(): assert python(limit(x, x, oo)) == 'e = oo' assert python(limit(x**2, x, 0)) == 'e = 0' def test_settings(): raises(TypeError, lambda: python(x, method="garbage"))
f4b11f7bd3639f70134133efb0df691f43aed7f677fe8ff7e9a7e7289239bb0c
from sympy import diff, Integral, Limit, sin, Symbol, Integer, Rational, cos, \ tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, E, I, oo, \ pi, GoldenRatio, EulerGamma, Sum, Eq, Ne, Ge, Lt, Float, Matrix, Basic, \ S, MatrixSymbol, Function, Derivative, log, true, false, Range, Min, Max, \ Lambda, IndexedBase, symbols, zoo, elliptic_f, elliptic_e, elliptic_pi, Ei, \ expint, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, assoc_legendre, \ laguerre, assoc_laguerre, hermite, euler, stieltjes, mathieuc, mathieus, \ mathieucprime, mathieusprime, TribonacciConstant, Contains, LambertW, \ cot, coth, acot, acoth, csc, acsc, csch, acsch, sec, asec, sech, asech from sympy import elliptic_k, totient, reduced_totient, primenu, primeomega, \ fresnelc, fresnels, Heaviside from sympy.calculus.util import AccumBounds from sympy.core.containers import Tuple from sympy.functions.combinatorial.factorials import factorial, factorial2, \ binomial from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \ fibonacci, tribonacci, catalan from sympy.functions.elementary.complexes import re, im, Abs, conjugate from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.special.gamma_functions import gamma, lowergamma, uppergamma from sympy.functions.special.singularity_functions import SingularityFunction from sympy.functions.special.zeta_functions import polylog, lerchphi, zeta, dirichlet_eta from sympy.logic.boolalg import And, Or, Implies, Equivalent, Xor, Not from sympy.matrices.expressions.determinant import Determinant from sympy.physics.quantum import ComplexSpace, HilbertSpace, FockSpace, hbar, Dagger from sympy.printing.mathml import mathml, MathMLContentPrinter, \ MathMLPresentationPrinter, MathMLPrinter from sympy.sets.sets import FiniteSet, Union, Intersection, Complement, \ SymmetricDifference, Interval, EmptySet, ProductSet from sympy.stats.rv import RandomSymbol from sympy.utilities.pytest import raises from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian x, y, z, a, b, c, d, e, n = symbols('x:z a:e n') mp = MathMLContentPrinter() mpp = MathMLPresentationPrinter() def test_mathml_printer(): m = MathMLPrinter() assert m.doprint(1+x) == mp.doprint(1+x) def test_content_printmethod(): assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>' def test_content_mathml_core(): mml_1 = mp._print(1 + x) assert mml_1.nodeName == 'apply' nodes = mml_1.childNodes assert len(nodes) == 3 assert nodes[0].nodeName == 'plus' assert nodes[0].hasChildNodes() is False assert nodes[0].nodeValue is None assert nodes[1].nodeName in ['cn', 'ci'] if nodes[1].nodeName == 'cn': assert nodes[1].childNodes[0].nodeValue == '1' assert nodes[2].childNodes[0].nodeValue == 'x' else: assert nodes[1].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '1' mml_2 = mp._print(x**2) assert mml_2.nodeName == 'apply' nodes = mml_2.childNodes assert nodes[1].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '2' mml_3 = mp._print(2*x) assert mml_3.nodeName == 'apply' nodes = mml_3.childNodes assert nodes[0].nodeName == 'times' assert nodes[1].childNodes[0].nodeValue == '2' assert nodes[2].childNodes[0].nodeValue == 'x' mml = mp._print(Float(1.0, 2)*x) assert mml.nodeName == 'apply' nodes = mml.childNodes assert nodes[0].nodeName == 'times' assert nodes[1].childNodes[0].nodeValue == '1.0' assert nodes[2].childNodes[0].nodeValue == 'x' def test_content_mathml_functions(): mml_1 = mp._print(sin(x)) assert mml_1.nodeName == 'apply' assert mml_1.childNodes[0].nodeName == 'sin' assert mml_1.childNodes[1].nodeName == 'ci' mml_2 = mp._print(diff(sin(x), x, evaluate=False)) assert mml_2.nodeName == 'apply' assert mml_2.childNodes[0].nodeName == 'diff' assert mml_2.childNodes[1].nodeName == 'bvar' assert mml_2.childNodes[1].childNodes[ 0].nodeName == 'ci' # below bvar there's <ci>x/ci> mml_3 = mp._print(diff(cos(x*y), x, evaluate=False)) assert mml_3.nodeName == 'apply' assert mml_3.childNodes[0].nodeName == 'partialdiff' assert mml_3.childNodes[1].nodeName == 'bvar' assert mml_3.childNodes[1].childNodes[ 0].nodeName == 'ci' # below bvar there's <ci>x/ci> def test_content_mathml_limits(): # XXX No unevaluated limits lim_fun = sin(x)/x mml_1 = mp._print(Limit(lim_fun, x, 0)) assert mml_1.childNodes[0].nodeName == 'limit' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml() def test_content_mathml_integrals(): integrand = x mml_1 = mp._print(Integral(integrand, (x, 0, 1))) assert mml_1.childNodes[0].nodeName == 'int' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].nodeName == 'uplimit' assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml() def test_content_mathml_matrices(): A = Matrix([1, 2, 3]) B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) mll_1 = mp._print(A) assert mll_1.childNodes[0].nodeName == 'matrixrow' assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1' assert mll_1.childNodes[1].nodeName == 'matrixrow' assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mll_1.childNodes[2].nodeName == 'matrixrow' assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn' assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3' mll_2 = mp._print(B) assert mll_2.childNodes[0].nodeName == 'matrixrow' assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0' assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5' assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4' assert mll_2.childNodes[1].nodeName == 'matrixrow' assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3' assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1' assert mll_2.childNodes[2].nodeName == 'matrixrow' assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9' assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7' assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn' assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9' def test_content_mathml_sums(): summand = x mml_1 = mp._print(Sum(summand, (x, 1, 10))) assert mml_1.childNodes[0].nodeName == 'sum' assert mml_1.childNodes[1].nodeName == 'bvar' assert mml_1.childNodes[2].nodeName == 'lowlimit' assert mml_1.childNodes[3].nodeName == 'uplimit' assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml() def test_content_mathml_tuples(): mml_1 = mp._print([2]) assert mml_1.nodeName == 'list' assert mml_1.childNodes[0].nodeName == 'cn' assert len(mml_1.childNodes) == 1 mml_2 = mp._print([2, Integer(1)]) assert mml_2.nodeName == 'list' assert mml_2.childNodes[0].nodeName == 'cn' assert mml_2.childNodes[1].nodeName == 'cn' assert len(mml_2.childNodes) == 2 def test_content_mathml_add(): mml = mp._print(x**5 - x**4 + x) assert mml.childNodes[0].nodeName == 'plus' assert mml.childNodes[1].childNodes[0].nodeName == 'minus' assert mml.childNodes[1].childNodes[1].nodeName == 'apply' def test_content_mathml_Rational(): mml_1 = mp._print(Rational(1, 1)) """should just return a number""" assert mml_1.nodeName == 'cn' mml_2 = mp._print(Rational(2, 5)) assert mml_2.childNodes[0].nodeName == 'divide' def test_content_mathml_constants(): mml = mp._print(I) assert mml.nodeName == 'imaginaryi' mml = mp._print(E) assert mml.nodeName == 'exponentiale' mml = mp._print(oo) assert mml.nodeName == 'infinity' mml = mp._print(pi) assert mml.nodeName == 'pi' assert mathml(GoldenRatio) == '<cn>&#966;</cn>' mml = mathml(EulerGamma) assert mml == '<eulergamma/>' mml = mathml(EmptySet()) assert mml == '<emptyset/>' mml = mathml(S.true) assert mml == '<true/>' mml = mathml(S.false) assert mml == '<false/>' mml = mathml(S.NaN) assert mml == '<notanumber/>' def test_content_mathml_trig(): mml = mp._print(sin(x)) assert mml.childNodes[0].nodeName == 'sin' mml = mp._print(cos(x)) assert mml.childNodes[0].nodeName == 'cos' mml = mp._print(tan(x)) assert mml.childNodes[0].nodeName == 'tan' mml = mp._print(cot(x)) assert mml.childNodes[0].nodeName == 'cot' mml = mp._print(csc(x)) assert mml.childNodes[0].nodeName == 'csc' mml = mp._print(sec(x)) assert mml.childNodes[0].nodeName == 'sec' mml = mp._print(asin(x)) assert mml.childNodes[0].nodeName == 'arcsin' mml = mp._print(acos(x)) assert mml.childNodes[0].nodeName == 'arccos' mml = mp._print(atan(x)) assert mml.childNodes[0].nodeName == 'arctan' mml = mp._print(acot(x)) assert mml.childNodes[0].nodeName == 'arccot' mml = mp._print(acsc(x)) assert mml.childNodes[0].nodeName == 'arccsc' mml = mp._print(asec(x)) assert mml.childNodes[0].nodeName == 'arcsec' mml = mp._print(sinh(x)) assert mml.childNodes[0].nodeName == 'sinh' mml = mp._print(cosh(x)) assert mml.childNodes[0].nodeName == 'cosh' mml = mp._print(tanh(x)) assert mml.childNodes[0].nodeName == 'tanh' mml = mp._print(coth(x)) assert mml.childNodes[0].nodeName == 'coth' mml = mp._print(csch(x)) assert mml.childNodes[0].nodeName == 'csch' mml = mp._print(sech(x)) assert mml.childNodes[0].nodeName == 'sech' mml = mp._print(asinh(x)) assert mml.childNodes[0].nodeName == 'arcsinh' mml = mp._print(atanh(x)) assert mml.childNodes[0].nodeName == 'arctanh' mml = mp._print(acosh(x)) assert mml.childNodes[0].nodeName == 'arccosh' mml = mp._print(acoth(x)) assert mml.childNodes[0].nodeName == 'arccoth' mml = mp._print(acsch(x)) assert mml.childNodes[0].nodeName == 'arccsch' mml = mp._print(asech(x)) assert mml.childNodes[0].nodeName == 'arcsech' def test_content_mathml_relational(): mml_1 = mp._print(Eq(x, 1)) assert mml_1.nodeName == 'apply' assert mml_1.childNodes[0].nodeName == 'eq' assert mml_1.childNodes[1].nodeName == 'ci' assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' assert mml_1.childNodes[2].nodeName == 'cn' assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' mml_2 = mp._print(Ne(1, x)) assert mml_2.nodeName == 'apply' assert mml_2.childNodes[0].nodeName == 'neq' assert mml_2.childNodes[1].nodeName == 'cn' assert mml_2.childNodes[1].childNodes[0].nodeValue == '1' assert mml_2.childNodes[2].nodeName == 'ci' assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' mml_3 = mp._print(Ge(1, x)) assert mml_3.nodeName == 'apply' assert mml_3.childNodes[0].nodeName == 'geq' assert mml_3.childNodes[1].nodeName == 'cn' assert mml_3.childNodes[1].childNodes[0].nodeValue == '1' assert mml_3.childNodes[2].nodeName == 'ci' assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' mml_4 = mp._print(Lt(1, x)) assert mml_4.nodeName == 'apply' assert mml_4.childNodes[0].nodeName == 'lt' assert mml_4.childNodes[1].nodeName == 'cn' assert mml_4.childNodes[1].childNodes[0].nodeValue == '1' assert mml_4.childNodes[2].nodeName == 'ci' assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' def test_content_symbol(): mml = mp._print(x) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeValue == 'x' del mml mml = mp._print(Symbol("x^2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x__2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msub' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mp._print(Symbol("x^3_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msubsup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mp._print(Symbol("x__3_2")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msubsup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mp._print(Symbol("x_2_a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msub' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml mml = mp._print(Symbol("x^2^a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml mml = mp._print(Symbol("x__2__a")) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeName == 'mml:msup' assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ 0].nodeValue == '2' assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ 0].nodeValue == ' ' assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ 0].nodeValue == 'a' del mml def test_content_mathml_greek(): mml = mp._print(Symbol('alpha')) assert mml.nodeName == 'ci' assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}' assert mp.doprint(Symbol('alpha')) == '<ci>&#945;</ci>' assert mp.doprint(Symbol('beta')) == '<ci>&#946;</ci>' assert mp.doprint(Symbol('gamma')) == '<ci>&#947;</ci>' assert mp.doprint(Symbol('delta')) == '<ci>&#948;</ci>' assert mp.doprint(Symbol('epsilon')) == '<ci>&#949;</ci>' assert mp.doprint(Symbol('zeta')) == '<ci>&#950;</ci>' assert mp.doprint(Symbol('eta')) == '<ci>&#951;</ci>' assert mp.doprint(Symbol('theta')) == '<ci>&#952;</ci>' assert mp.doprint(Symbol('iota')) == '<ci>&#953;</ci>' assert mp.doprint(Symbol('kappa')) == '<ci>&#954;</ci>' assert mp.doprint(Symbol('lambda')) == '<ci>&#955;</ci>' assert mp.doprint(Symbol('mu')) == '<ci>&#956;</ci>' assert mp.doprint(Symbol('nu')) == '<ci>&#957;</ci>' assert mp.doprint(Symbol('xi')) == '<ci>&#958;</ci>' assert mp.doprint(Symbol('omicron')) == '<ci>&#959;</ci>' assert mp.doprint(Symbol('pi')) == '<ci>&#960;</ci>' assert mp.doprint(Symbol('rho')) == '<ci>&#961;</ci>' assert mp.doprint(Symbol('varsigma')) == '<ci>&#962;</ci>' assert mp.doprint(Symbol('sigma')) == '<ci>&#963;</ci>' assert mp.doprint(Symbol('tau')) == '<ci>&#964;</ci>' assert mp.doprint(Symbol('upsilon')) == '<ci>&#965;</ci>' assert mp.doprint(Symbol('phi')) == '<ci>&#966;</ci>' assert mp.doprint(Symbol('chi')) == '<ci>&#967;</ci>' assert mp.doprint(Symbol('psi')) == '<ci>&#968;</ci>' assert mp.doprint(Symbol('omega')) == '<ci>&#969;</ci>' assert mp.doprint(Symbol('Alpha')) == '<ci>&#913;</ci>' assert mp.doprint(Symbol('Beta')) == '<ci>&#914;</ci>' assert mp.doprint(Symbol('Gamma')) == '<ci>&#915;</ci>' assert mp.doprint(Symbol('Delta')) == '<ci>&#916;</ci>' assert mp.doprint(Symbol('Epsilon')) == '<ci>&#917;</ci>' assert mp.doprint(Symbol('Zeta')) == '<ci>&#918;</ci>' assert mp.doprint(Symbol('Eta')) == '<ci>&#919;</ci>' assert mp.doprint(Symbol('Theta')) == '<ci>&#920;</ci>' assert mp.doprint(Symbol('Iota')) == '<ci>&#921;</ci>' assert mp.doprint(Symbol('Kappa')) == '<ci>&#922;</ci>' assert mp.doprint(Symbol('Lambda')) == '<ci>&#923;</ci>' assert mp.doprint(Symbol('Mu')) == '<ci>&#924;</ci>' assert mp.doprint(Symbol('Nu')) == '<ci>&#925;</ci>' assert mp.doprint(Symbol('Xi')) == '<ci>&#926;</ci>' assert mp.doprint(Symbol('Omicron')) == '<ci>&#927;</ci>' assert mp.doprint(Symbol('Pi')) == '<ci>&#928;</ci>' assert mp.doprint(Symbol('Rho')) == '<ci>&#929;</ci>' assert mp.doprint(Symbol('Sigma')) == '<ci>&#931;</ci>' assert mp.doprint(Symbol('Tau')) == '<ci>&#932;</ci>' assert mp.doprint(Symbol('Upsilon')) == '<ci>&#933;</ci>' assert mp.doprint(Symbol('Phi')) == '<ci>&#934;</ci>' assert mp.doprint(Symbol('Chi')) == '<ci>&#935;</ci>' assert mp.doprint(Symbol('Psi')) == '<ci>&#936;</ci>' assert mp.doprint(Symbol('Omega')) == '<ci>&#937;</ci>' def test_content_mathml_order(): expr = x**3 + x**2*y + 3*x*y**3 + y**4 mp = MathMLContentPrinter({'order': 'lex'}) mml = mp._print(expr) assert mml.childNodes[1].childNodes[0].nodeName == 'power' assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x' assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3' assert mml.childNodes[4].childNodes[0].nodeName == 'power' assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y' assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4' mp = MathMLContentPrinter({'order': 'rev-lex'}) mml = mp._print(expr) assert mml.childNodes[1].childNodes[0].nodeName == 'power' assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y' assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4' assert mml.childNodes[4].childNodes[0].nodeName == 'power' assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x' assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3' def test_content_settings(): raises(TypeError, lambda: mathml(x, method="garbage")) def test_content_mathml_logic(): assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>' assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>' assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>' assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>' assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>' def test_content_finite_sets(): assert mathml(FiniteSet(a)) == '<set><ci>a</ci></set>' assert mathml(FiniteSet(a, b)) == '<set><ci>a</ci><ci>b</ci></set>' assert mathml(FiniteSet(FiniteSet(a, b), c)) == \ '<set><ci>c</ci><set><ci>a</ci><ci>b</ci></set></set>' A = FiniteSet(a) B = FiniteSet(b) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(A, B, evaluate=False) U2 = Union(C, D, evaluate=False) I1 = Intersection(A, B, evaluate=False) I2 = Intersection(C, D, evaluate=False) C1 = Complement(A, B, evaluate=False) C2 = Complement(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(A, B) P2 = ProductSet(C, D) assert mathml(U1) == \ '<apply><union/><set><ci>a</ci></set><set><ci>b</ci></set></apply>' assert mathml(I1) == \ '<apply><intersect/><set><ci>a</ci></set><set><ci>b</ci></set>' \ '</apply>' assert mathml(C1) == \ '<apply><setdiff/><set><ci>a</ci></set><set><ci>b</ci></set></apply>' assert mathml(P1) == \ '<apply><cartesianproduct/><set><ci>a</ci></set><set><ci>b</ci>' \ '</set></apply>' assert mathml(Intersection(A, U2, evaluate=False)) == \ '<apply><intersect/><set><ci>a</ci></set><apply><union/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Intersection(U1, U2, evaluate=False)) == \ '<apply><intersect/><apply><union/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' # XXX Does the parenthesis appear correctly for these examples in mathjax? assert mathml(Intersection(C1, C2, evaluate=False)) == \ '<apply><intersect/><apply><setdiff/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Intersection(P1, P2, evaluate=False)) == \ '<apply><intersect/><apply><cartesianproduct/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Union(A, I2, evaluate=False)) == \ '<apply><union/><set><ci>a</ci></set><apply><intersect/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Union(I1, I2, evaluate=False)) == \ '<apply><union/><apply><intersect/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Union(C1, C2, evaluate=False)) == \ '<apply><union/><apply><setdiff/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Union(P1, P2, evaluate=False)) == \ '<apply><union/><apply><cartesianproduct/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Complement(A, C2, evaluate=False)) == \ '<apply><setdiff/><set><ci>a</ci></set><apply><setdiff/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(Complement(U1, U2, evaluate=False)) == \ '<apply><setdiff/><apply><union/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Complement(I1, I2, evaluate=False)) == \ '<apply><setdiff/><apply><intersect/><set><ci>a</ci></set><set>' \ '<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(Complement(P1, P2, evaluate=False)) == \ '<apply><setdiff/><apply><cartesianproduct/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(A, P2)) == \ '<apply><cartesianproduct/><set><ci>a</ci></set>' \ '<apply><cartesianproduct/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(U1, U2)) == \ '<apply><cartesianproduct/><apply><union/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \ '<set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(I1, I2)) == \ '<apply><cartesianproduct/><apply><intersect/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><intersect/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' assert mathml(ProductSet(C1, C2)) == \ '<apply><cartesianproduct/><apply><setdiff/><set><ci>a</ci></set>' \ '<set><ci>b</ci></set></apply><apply><setdiff/><set>' \ '<ci>c</ci></set><set><ci>d</ci></set></apply></apply>' def test_presentation_printmethod(): assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>' assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>' assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>' assert mpp.doprint(x**-2) == \ '<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>' assert mpp.doprint(2*x) == \ '<mrow><mn>2</mn><mo>&InvisibleTimes;</mo><mi>x</mi></mrow>' def test_presentation_mathml_core(): mml_1 = mpp._print(1 + x) assert mml_1.nodeName == 'mrow' nodes = mml_1.childNodes assert len(nodes) == 3 assert nodes[0].nodeName in ['mi', 'mn'] assert nodes[1].nodeName == 'mo' if nodes[0].nodeName == 'mn': assert nodes[0].childNodes[0].nodeValue == '1' assert nodes[2].childNodes[0].nodeValue == 'x' else: assert nodes[0].childNodes[0].nodeValue == 'x' assert nodes[2].childNodes[0].nodeValue == '1' mml_2 = mpp._print(x**2) assert mml_2.nodeName == 'msup' nodes = mml_2.childNodes assert nodes[0].childNodes[0].nodeValue == 'x' assert nodes[1].childNodes[0].nodeValue == '2' mml_3 = mpp._print(2*x) assert mml_3.nodeName == 'mrow' nodes = mml_3.childNodes assert nodes[0].childNodes[0].nodeValue == '2' assert nodes[1].childNodes[0].nodeValue == '&InvisibleTimes;' assert nodes[2].childNodes[0].nodeValue == 'x' mml = mpp._print(Float(1.0, 2)*x) assert mml.nodeName == 'mrow' nodes = mml.childNodes assert nodes[0].childNodes[0].nodeValue == '1.0' assert nodes[1].childNodes[0].nodeValue == '&InvisibleTimes;' assert nodes[2].childNodes[0].nodeValue == 'x' def test_presentation_mathml_functions(): mml_1 = mpp._print(sin(x)) assert mml_1.childNodes[0].childNodes[0 ].nodeValue == 'sin' assert mml_1.childNodes[1].childNodes[0 ].childNodes[0].nodeValue == 'x' mml_2 = mpp._print(diff(sin(x), x, evaluate=False)) assert mml_2.nodeName == 'mrow' assert mml_2.childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '&dd;' assert mml_2.childNodes[1].childNodes[1 ].nodeName == 'mfenced' assert mml_2.childNodes[0].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '&dd;' mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False)) assert mml_3.childNodes[0].nodeName == 'mfrac' assert mml_3.childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '&#x2202;' assert mml_3.childNodes[1].childNodes[0 ].childNodes[0].nodeValue == 'cos' def test_print_derivative(): f = Function('f') d = Derivative(f(x, y, z), x, z, x, z, z, y) assert mathml(d) == \ '<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>' assert mathml(d, printer='presentation') == \ '<mrow><mfrac><mrow><msup><mo>&#x2202;</mo><mn>6</mn></msup></mrow><mrow><mo>&#x2202;</mo><mi>y</mi><msup><mo>&#x2202;</mo><mn>2</mn></msup><mi>z</mi><mo>&#x2202;</mo><mi>x</mi><mo>&#x2202;</mo><mi>z</mi><mo>&#x2202;</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>' def test_presentation_mathml_limits(): lim_fun = sin(x)/x mml_1 = mpp._print(Limit(lim_fun, x, 0)) assert mml_1.childNodes[0].nodeName == 'munder' assert mml_1.childNodes[0].childNodes[0 ].childNodes[0].nodeValue == 'lim' assert mml_1.childNodes[0].childNodes[1 ].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml_1.childNodes[0].childNodes[1 ].childNodes[1].childNodes[0 ].nodeValue == '&#x2192;' assert mml_1.childNodes[0].childNodes[1 ].childNodes[2].childNodes[0 ].nodeValue == '0' def test_presentation_mathml_integrals(): assert mpp.doprint(Integral(x, (x, 0, 1))) == \ '<mrow><msubsup><mo>&#x222B;</mo><mn>0</mn><mn>1</mn></msubsup>'\ '<mi>x</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(log(x), x)) == \ '<mrow><mo>&#x222B;</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\ '</mfenced></mrow><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x*y, x, y)) == \ '<mrow><mo>&#x222C;</mo><mrow><mi>x</mi><mo>&InvisibleTimes;</mo>'\ '<mi>y</mi></mrow><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' z, w = symbols('z w') assert mpp.doprint(Integral(x*y*z, x, y, z)) == \ '<mrow><mo>&#x222D;</mo><mrow><mi>x</mi><mo>&InvisibleTimes;</mo>'\ '<mi>y</mi><mo>&InvisibleTimes;</mo><mi>z</mi></mrow><mo>&dd;</mo>'\ '<mi>z</mi><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \ '<mrow><mo>&#x222B;</mo><mo>&#x222B;</mo><mo>&#x222B;</mo>'\ '<mo>&#x222B;</mo><mrow><mi>w</mi><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi>'\ '<mo>&InvisibleTimes;</mo><mi>z</mi></mrow><mo>&dd;</mo><mi>w</mi>'\ '<mo>&dd;</mo><mi>z</mi><mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \ '<mrow><msubsup><mo>&#x222B;</mo><mn>0</mn><mn>1</mn></msubsup>'\ '<mo>&#x222B;</mo><mo>&#x222B;</mo><mi>x</mi><mo>&dd;</mo><mi>z</mi>'\ '<mo>&dd;</mo><mi>y</mi><mo>&dd;</mo><mi>x</mi></mrow>' assert mpp.doprint(Integral(x, (x, 0))) == \ '<mrow><msup><mo>&#x222B;</mo><mn>0</mn></msup><mi>x</mi><mo>&dd;</mo>'\ '<mi>x</mi></mrow>' def test_presentation_mathml_matrices(): A = Matrix([1, 2, 3]) B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) mll_1 = mpp._print(A) assert mll_1.childNodes[0].nodeName == 'mtable' assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr' assert len(mll_1.childNodes[0].childNodes) == 3 assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1 assert mll_1.childNodes[0].childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '1' assert mll_1.childNodes[0].childNodes[1].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '2' assert mll_1.childNodes[0].childNodes[2].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '3' mll_2 = mpp._print(B) assert mll_2.childNodes[0].nodeName == 'mtable' assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr' assert len(mll_2.childNodes[0].childNodes) == 3 assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3 assert mll_2.childNodes[0].childNodes[0].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '0' assert mll_2.childNodes[0].childNodes[0].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '5' assert mll_2.childNodes[0].childNodes[0].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '4' assert mll_2.childNodes[0].childNodes[1].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '2' assert mll_2.childNodes[0].childNodes[1].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '3' assert mll_2.childNodes[0].childNodes[1].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '1' assert mll_2.childNodes[0].childNodes[2].childNodes[0 ].childNodes[0].childNodes[0].nodeValue == '9' assert mll_2.childNodes[0].childNodes[2].childNodes[1 ].childNodes[0].childNodes[0].nodeValue == '7' assert mll_2.childNodes[0].childNodes[2].childNodes[2 ].childNodes[0].childNodes[0].nodeValue == '9' def test_presentation_mathml_sums(): summand = x mml_1 = mpp._print(Sum(summand, (x, 1, 10))) assert mml_1.childNodes[0].nodeName == 'munderover' assert len(mml_1.childNodes[0].childNodes) == 3 assert mml_1.childNodes[0].childNodes[0].childNodes[0 ].nodeValue == '&#x2211;' assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3 assert mml_1.childNodes[0].childNodes[2].childNodes[0 ].nodeValue == '10' assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' def test_presentation_mathml_add(): mml = mpp._print(x**5 - x**4 + x) assert len(mml.childNodes) == 5 assert mml.childNodes[0].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].childNodes[0 ].nodeValue == '5' assert mml.childNodes[1].childNodes[0].nodeValue == '-' assert mml.childNodes[2].childNodes[0].childNodes[0 ].nodeValue == 'x' assert mml.childNodes[2].childNodes[1].childNodes[0 ].nodeValue == '4' assert mml.childNodes[3].childNodes[0].nodeValue == '+' assert mml.childNodes[4].childNodes[0].nodeValue == 'x' def test_presentation_mathml_Rational(): mml_1 = mpp._print(Rational(1, 1)) assert mml_1.nodeName == 'mn' mml_2 = mpp._print(Rational(2, 5)) assert mml_2.nodeName == 'mfrac' assert mml_2.childNodes[0].childNodes[0].nodeValue == '2' assert mml_2.childNodes[1].childNodes[0].nodeValue == '5' def test_presentation_mathml_constants(): mml = mpp._print(I) assert mml.childNodes[0].nodeValue == '&ImaginaryI;' mml = mpp._print(E) assert mml.childNodes[0].nodeValue == '&ExponentialE;' mml = mpp._print(oo) assert mml.childNodes[0].nodeValue == '&#x221E;' mml = mpp._print(pi) assert mml.childNodes[0].nodeValue == '&pi;' assert mathml(GoldenRatio, printer='presentation') == '<mi>&#x3A6;</mi>' assert mathml(zoo, printer='presentation') == \ '<mover><mo>&#x221E;</mo><mo>~</mo></mover>' assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>' def test_presentation_mathml_trig(): mml = mpp._print(sin(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'sin' mml = mpp._print(cos(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'cos' mml = mpp._print(tan(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'tan' mml = mpp._print(asin(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin' mml = mpp._print(acos(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos' mml = mpp._print(atan(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan' mml = mpp._print(sinh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh' mml = mpp._print(cosh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh' mml = mpp._print(tanh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh' mml = mpp._print(asinh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh' mml = mpp._print(atanh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh' mml = mpp._print(acosh(x)) assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh' def test_presentation_mathml_relational(): mml_1 = mpp._print(Eq(x, 1)) assert len(mml_1.childNodes) == 3 assert mml_1.childNodes[0].nodeName == 'mi' assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x' assert mml_1.childNodes[1].nodeName == 'mo' assert mml_1.childNodes[1].childNodes[0].nodeValue == '=' assert mml_1.childNodes[2].nodeName == 'mn' assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' mml_2 = mpp._print(Ne(1, x)) assert len(mml_2.childNodes) == 3 assert mml_2.childNodes[0].nodeName == 'mn' assert mml_2.childNodes[0].childNodes[0].nodeValue == '1' assert mml_2.childNodes[1].nodeName == 'mo' assert mml_2.childNodes[1].childNodes[0].nodeValue == '&#x2260;' assert mml_2.childNodes[2].nodeName == 'mi' assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' mml_3 = mpp._print(Ge(1, x)) assert len(mml_3.childNodes) == 3 assert mml_3.childNodes[0].nodeName == 'mn' assert mml_3.childNodes[0].childNodes[0].nodeValue == '1' assert mml_3.childNodes[1].nodeName == 'mo' assert mml_3.childNodes[1].childNodes[0].nodeValue == '&#x2265;' assert mml_3.childNodes[2].nodeName == 'mi' assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' mml_4 = mpp._print(Lt(1, x)) assert len(mml_4.childNodes) == 3 assert mml_4.childNodes[0].nodeName == 'mn' assert mml_4.childNodes[0].childNodes[0].nodeValue == '1' assert mml_4.childNodes[1].nodeName == 'mo' assert mml_4.childNodes[1].childNodes[0].nodeValue == '<' assert mml_4.childNodes[2].nodeName == 'mi' assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' def test_presentation_symbol(): mml = mpp._print(x) assert mml.nodeName == 'mi' assert mml.childNodes[0].nodeValue == 'x' del mml mml = mpp._print(Symbol("x^2")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x__2")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x_2")) assert mml.nodeName == 'msub' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' del mml mml = mpp._print(Symbol("x^3_2")) assert mml.nodeName == 'msubsup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[2].nodeName == 'mi' assert mml.childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mpp._print(Symbol("x__3_2")) assert mml.nodeName == 'msubsup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].nodeValue == '2' assert mml.childNodes[2].nodeName == 'mi' assert mml.childNodes[2].childNodes[0].nodeValue == '3' del mml mml = mpp._print(Symbol("x_2_a")) assert mml.nodeName == 'msub' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml mml = mpp._print(Symbol("x^2^a")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml mml = mpp._print(Symbol("x__2__a")) assert mml.nodeName == 'msup' assert mml.childNodes[0].nodeName == 'mi' assert mml.childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[1].nodeName == 'mrow' assert mml.childNodes[1].childNodes[0].nodeName == 'mi' assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' assert mml.childNodes[1].childNodes[1].nodeName == 'mo' assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' assert mml.childNodes[1].childNodes[2].nodeName == 'mi' assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' del mml def test_presentation_mathml_greek(): mml = mpp._print(Symbol('alpha')) assert mml.nodeName == 'mi' assert mml.childNodes[0].nodeValue == u'\N{GREEK SMALL LETTER ALPHA}' assert mpp.doprint(Symbol('alpha')) == '<mi>&#945;</mi>' assert mpp.doprint(Symbol('beta')) == '<mi>&#946;</mi>' assert mpp.doprint(Symbol('gamma')) == '<mi>&#947;</mi>' assert mpp.doprint(Symbol('delta')) == '<mi>&#948;</mi>' assert mpp.doprint(Symbol('epsilon')) == '<mi>&#949;</mi>' assert mpp.doprint(Symbol('zeta')) == '<mi>&#950;</mi>' assert mpp.doprint(Symbol('eta')) == '<mi>&#951;</mi>' assert mpp.doprint(Symbol('theta')) == '<mi>&#952;</mi>' assert mpp.doprint(Symbol('iota')) == '<mi>&#953;</mi>' assert mpp.doprint(Symbol('kappa')) == '<mi>&#954;</mi>' assert mpp.doprint(Symbol('lambda')) == '<mi>&#955;</mi>' assert mpp.doprint(Symbol('mu')) == '<mi>&#956;</mi>' assert mpp.doprint(Symbol('nu')) == '<mi>&#957;</mi>' assert mpp.doprint(Symbol('xi')) == '<mi>&#958;</mi>' assert mpp.doprint(Symbol('omicron')) == '<mi>&#959;</mi>' assert mpp.doprint(Symbol('pi')) == '<mi>&#960;</mi>' assert mpp.doprint(Symbol('rho')) == '<mi>&#961;</mi>' assert mpp.doprint(Symbol('varsigma')) == '<mi>&#962;</mi>' assert mpp.doprint(Symbol('sigma')) == '<mi>&#963;</mi>' assert mpp.doprint(Symbol('tau')) == '<mi>&#964;</mi>' assert mpp.doprint(Symbol('upsilon')) == '<mi>&#965;</mi>' assert mpp.doprint(Symbol('phi')) == '<mi>&#966;</mi>' assert mpp.doprint(Symbol('chi')) == '<mi>&#967;</mi>' assert mpp.doprint(Symbol('psi')) == '<mi>&#968;</mi>' assert mpp.doprint(Symbol('omega')) == '<mi>&#969;</mi>' assert mpp.doprint(Symbol('Alpha')) == '<mi>&#913;</mi>' assert mpp.doprint(Symbol('Beta')) == '<mi>&#914;</mi>' assert mpp.doprint(Symbol('Gamma')) == '<mi>&#915;</mi>' assert mpp.doprint(Symbol('Delta')) == '<mi>&#916;</mi>' assert mpp.doprint(Symbol('Epsilon')) == '<mi>&#917;</mi>' assert mpp.doprint(Symbol('Zeta')) == '<mi>&#918;</mi>' assert mpp.doprint(Symbol('Eta')) == '<mi>&#919;</mi>' assert mpp.doprint(Symbol('Theta')) == '<mi>&#920;</mi>' assert mpp.doprint(Symbol('Iota')) == '<mi>&#921;</mi>' assert mpp.doprint(Symbol('Kappa')) == '<mi>&#922;</mi>' assert mpp.doprint(Symbol('Lambda')) == '<mi>&#923;</mi>' assert mpp.doprint(Symbol('Mu')) == '<mi>&#924;</mi>' assert mpp.doprint(Symbol('Nu')) == '<mi>&#925;</mi>' assert mpp.doprint(Symbol('Xi')) == '<mi>&#926;</mi>' assert mpp.doprint(Symbol('Omicron')) == '<mi>&#927;</mi>' assert mpp.doprint(Symbol('Pi')) == '<mi>&#928;</mi>' assert mpp.doprint(Symbol('Rho')) == '<mi>&#929;</mi>' assert mpp.doprint(Symbol('Sigma')) == '<mi>&#931;</mi>' assert mpp.doprint(Symbol('Tau')) == '<mi>&#932;</mi>' assert mpp.doprint(Symbol('Upsilon')) == '<mi>&#933;</mi>' assert mpp.doprint(Symbol('Phi')) == '<mi>&#934;</mi>' assert mpp.doprint(Symbol('Chi')) == '<mi>&#935;</mi>' assert mpp.doprint(Symbol('Psi')) == '<mi>&#936;</mi>' assert mpp.doprint(Symbol('Omega')) == '<mi>&#937;</mi>' def test_presentation_mathml_order(): expr = x**3 + x**2*y + 3*x*y**3 + y**4 mp = MathMLPresentationPrinter({'order': 'lex'}) mml = mp._print(expr) assert mml.childNodes[0].nodeName == 'msup' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3' assert mml.childNodes[6].nodeName == 'msup' assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y' assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4' mp = MathMLPresentationPrinter({'order': 'rev-lex'}) mml = mp._print(expr) assert mml.childNodes[0].nodeName == 'msup' assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y' assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4' assert mml.childNodes[6].nodeName == 'msup' assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x' assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3' def test_print_intervals(): a = Symbol('a', real=True) assert mpp.doprint(Interval(0, a)) == \ '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, False, False)) == \ '<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, True, False)) == \ '<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, False, True)) == \ '<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Interval(0, a, True, True)) == \ '<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>' def test_print_tuples(): assert mpp.doprint(Tuple(0,)) == \ '<mrow><mfenced><mn>0</mn></mfenced></mrow>' assert mpp.doprint(Tuple(0, a)) == \ '<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Tuple(0, a, a)) == \ '<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>' assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \ '<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>' assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \ '<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\ '</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>' def test_print_re_im(): assert mpp.doprint(re(x)) == \ '<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(im(x)) == \ '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(re(x + 1)) == \ '<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\ '</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>' assert mpp.doprint(im(x + 1)) == \ '<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_print_Abs(): assert mpp.doprint(Abs(x)) == \ '<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>' assert mpp.doprint(Abs(x + 1)) == \ '<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>' def test_print_Determinant(): assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \ '<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>' def test_presentation_settings(): raises(TypeError, lambda: mathml(x, printer='presentation', method="garbage")) def test_toprettyxml_hooking(): # test that the patch doesn't influence the behavior of the standard # library import xml.dom.minidom doc1 = xml.dom.minidom.parseString( "<apply><plus/><ci>x</ci><cn>1</cn></apply>") doc2 = xml.dom.minidom.parseString( "<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>") prettyxml_old1 = doc1.toprettyxml() prettyxml_old2 = doc2.toprettyxml() mp.apply_patch() mp.restore_patch() assert prettyxml_old1 == doc1.toprettyxml() assert prettyxml_old2 == doc2.toprettyxml() def test_print_domains(): from sympy import Complexes, Integers, Naturals, Naturals0, Reals assert mpp.doprint(Complexes) == '<mi mathvariant="normal">&#x2102;</mi>' assert mpp.doprint(Integers) == '<mi mathvariant="normal">&#x2124;</mi>' assert mpp.doprint(Naturals) == '<mi mathvariant="normal">&#x2115;</mi>' assert mpp.doprint(Naturals0) == \ '<msub><mi mathvariant="normal">&#x2115;</mi><mn>0</mn></msub>' assert mpp.doprint(Reals) == '<mi mathvariant="normal">&#x211D;</mi>' def test_print_expression_with_minus(): assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>' assert mpp.doprint(-x/y) == \ '<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>' assert mpp.doprint(-Rational(1, 2)) == \ '<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>' def test_print_AssocOp(): from sympy.core.operations import AssocOp class TestAssocOp(AssocOp): identity = 0 expr = TestAssocOp(1, 2) mpp.doprint(expr) == \ '<mrow><mi>testassocop</mi><mn>2</mn><mn>1</mn></mrow>' def test_print_basic(): expr = Basic(1, 2) assert mpp.doprint(expr) == \ '<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>' assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>' def test_mat_delim_print(): expr = Matrix([[1, 2], [3, 4]]) assert mathml(expr, printer='presentation', mat_delim='[') == \ '<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\ '<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\ '</mtd></mtr></mtable></mfenced>' assert mathml(expr, printer='presentation', mat_delim='(') == \ '<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\ '</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>' assert mathml(expr, printer='presentation', mat_delim='') == \ '<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\ '<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>' def test_ln_notation_print(): expr = log(x) assert mathml(expr, printer='presentation') == \ '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(expr, printer='presentation', ln_notation=False) == \ '<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(expr, printer='presentation', ln_notation=True) == \ '<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_mul_symbol_print(): expr = x * y assert mathml(expr, printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol=None) == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='dot') == \ '<mrow><mi>x</mi><mo>&#xB7;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='ldot') == \ '<mrow><mi>x</mi><mo>&#x2024;</mo><mi>y</mi></mrow>' assert mathml(expr, printer='presentation', mul_symbol='times') == \ '<mrow><mi>x</mi><mo>&#xD7;</mo><mi>y</mi></mrow>' def test_print_lerchphi(): assert mpp.doprint(lerchphi(1, 2, 3)) == \ '<mrow><mi>&#x3A6;</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>' def test_print_polylog(): assert mp.doprint(polylog(x, y)) == \ '<apply><polylog/><ci>x</ci><ci>y</ci></apply>' assert mpp.doprint(polylog(x, y)) == \ '<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' def test_print_set_frozenset(): f = frozenset({1, 5, 3}) assert mpp.doprint(f) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>' s = set({1, 2, 3}) assert mpp.doprint(s) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' def test_print_FiniteSet(): f1 = FiniteSet(x, 1, 3) assert mpp.doprint(f1) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>' def test_print_LambertW(): assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' def test_print_EmptySet(): assert mpp.doprint(EmptySet()) == '<mo>&#x2205;</mo>' def test_print_UniversalSet(): assert mpp.doprint(S.UniversalSet) == '<mo>&#x1D54C;</mo>' def test_print_spaces(): assert mpp.doprint(HilbertSpace()) == '<mi>&#x210B;</mi>' assert mpp.doprint(ComplexSpace(2)) == '<msup>&#x1D49E;<mn>2</mn></msup>' assert mpp.doprint(FockSpace()) == '<mi>&#x2131;</mi>' def test_print_constants(): assert mpp.doprint(hbar) == '<mi>&#x210F;</mi>' assert mpp.doprint(TribonacciConstant) == '<mi>TribonacciConstant</mi>' assert mpp.doprint(EulerGamma) == '<mi>&#x3B3;</mi>' def test_print_Contains(): assert mpp.doprint(Contains(x, S.Naturals)) == \ '<mrow><mi>x</mi><mo>&#x2208;</mo><mi mathvariant="normal">&#x2115;</mi></mrow>' def test_print_Dagger(): assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>&#x2020;</msup>' def test_print_SetOp(): f1 = FiniteSet(x, 1, 3) f2 = FiniteSet(y, 2, 4) prntr = lambda x: mathml(x, printer='presentation') assert prntr(Union(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x222A;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(Intersection(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2229;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(Complement(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2216;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\ '</mfenced><mo>&#x2206;</mo><mfenced close="}" open="{"><mn>2</mn>'\ '<mn>4</mn><mi>y</mi></mfenced></mrow>' A = FiniteSet(a) C = FiniteSet(c) D = FiniteSet(d) U1 = Union(C, D, evaluate=False) I1 = Intersection(C, D, evaluate=False) C1 = Complement(C, D, evaluate=False) D1 = SymmetricDifference(C, D, evaluate=False) # XXX ProductSet does not support evaluate keyword P1 = ProductSet(C, D) assert prntr(Union(A, I1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x222A;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2229;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(Intersection(A, C1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2229;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2216;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(Complement(A, D1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2216;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x2206;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x2206;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x00d7;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' assert prntr(ProductSet(A, U1)) == \ '<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \ '<mo>&#x00d7;</mo><mfenced><mrow><mfenced close="}" open="{">' \ '<mi>c</mi></mfenced><mo>&#x222A;</mo><mfenced close="}" open="{">' \ '<mi>d</mi></mfenced></mrow></mfenced></mrow>' def test_print_logic(): assert mpp.doprint(And(x, y)) == \ '<mrow><mi>x</mi><mo>&#x2227;</mo><mi>y</mi></mrow>' assert mpp.doprint(Or(x, y)) == \ '<mrow><mi>x</mi><mo>&#x2228;</mo><mi>y</mi></mrow>' assert mpp.doprint(Xor(x, y)) == \ '<mrow><mi>x</mi><mo>&#x22BB;</mo><mi>y</mi></mrow>' assert mpp.doprint(Implies(x, y)) == \ '<mrow><mi>x</mi><mo>&#x21D2;</mo><mi>y</mi></mrow>' assert mpp.doprint(Equivalent(x, y)) == \ '<mrow><mi>x</mi><mo>&#x21D4;</mo><mi>y</mi></mrow>' assert mpp.doprint(And(Eq(x, y), x > 4)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>&#x2227;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>&#x2227;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\ '</mrow><mo>&#x2227;</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>' assert mpp.doprint(Or(Eq(x, y), x > 4)) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>&#x2228;</mo>'\ '<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>' assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \ '<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>&#x2227;</mo>'\ '<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\ '<mn>1</mn></mrow></mrow><mo>&#x2228;</mo><mrow><mi>y</mi><mo><</mo>'\ '<mn>3</mn></mrow></mrow></mfenced></mrow>' assert mpp.doprint(Not(x)) == '<mrow><mo>&#xAC;</mo><mi>x</mi></mrow>' assert mpp.doprint(Not(And(x, y))) == \ '<mrow><mo>&#xAC;</mo><mfenced><mrow><mi>x</mi><mo>&#x2227;</mo>'\ '<mi>y</mi></mrow></mfenced></mrow>' def test_root_notation_print(): assert mathml(x**(S.One/3), printer='presentation') == \ '<mroot><mi>x</mi><mn>3</mn></mroot>' assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\ '<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>' assert mathml(x**(S.One/3), printer='content') == \ '<apply><root/><degree><ci>3</ci></degree><ci>x</ci></apply>' assert mathml(x**(S.One/3), printer='content', root_notation=False) == \ '<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>' assert mathml(x**(Rational(-1, 3)), printer='presentation') == \ '<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>' assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \ == '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>' def test_fold_frac_powers_print(): expr = x ** Rational(5, 2) assert mathml(expr, printer='presentation') == \ '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' assert mathml(expr, printer='presentation', fold_frac_powers=True) == \ '<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>' assert mathml(expr, printer='presentation', fold_frac_powers=False) == \ '<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>' def test_fold_short_frac_print(): expr = Rational(2, 5) assert mathml(expr, printer='presentation') == \ '<mfrac><mn>2</mn><mn>5</mn></mfrac>' assert mathml(expr, printer='presentation', fold_short_frac=True) == \ '<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>' assert mathml(expr, printer='presentation', fold_short_frac=False) == \ '<mfrac><mn>2</mn><mn>5</mn></mfrac>' def test_print_factorials(): assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>' assert mpp.doprint(factorial(x + 1)) == \ '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>' assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>' assert mpp.doprint(factorial2(x + 1)) == \ '<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>' assert mpp.doprint(binomial(x, y)) == \ '<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>' assert mpp.doprint(binomial(4, x + y)) == \ '<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\ '<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>' def test_print_floor(): expr = floor(x) assert mathml(expr, printer='presentation') == \ '<mrow><mfenced close="&#8971;" open="&#8970;"><mi>x</mi></mfenced></mrow>' def test_print_ceiling(): expr = ceiling(x) assert mathml(expr, printer='presentation') == \ '<mrow><mfenced close="&#8969;" open="&#8968;"><mi>x</mi></mfenced></mrow>' def test_print_Lambda(): expr = Lambda(x, x+1) assert mathml(expr, printer='presentation') == \ '<mfenced><mrow><mi>x</mi><mo>&#x21A6;</mo><mrow><mi>x</mi><mo>+</mo>'\ '<mn>1</mn></mrow></mrow></mfenced>' expr = Lambda((x, y), x + y) assert mathml(expr, printer='presentation') == \ '<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\ '<mo>&#x21A6;</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>' def test_print_conjugate(): assert mpp.doprint(conjugate(x)) == \ '<menclose notation="top"><mi>x</mi></menclose>' assert mpp.doprint(conjugate(x + 1)) == \ '<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>' def test_print_AccumBounds(): a = Symbol('a', real=True) assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="&#10217;" open="&#10216;"><mn>0</mn><mn>1</mn></mfenced>' assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="&#10217;" open="&#10216;"><mn>0</mn><mi>a</mi></mfenced>' assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="&#10217;" open="&#10216;"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>' def test_print_Float(): assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>' assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>&#xB7;</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>' assert mpp.doprint(Float(1.0*oo)) == '<mi>&#x221E;</mi>' assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>&#x221E;</mi></mrow>' def test_print_different_functions(): assert mpp.doprint(gamma(x)) == '<mrow><mi>&#x393;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>&#x3B3;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>&#x393;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(zeta(x)) == '<mrow><mi>&#x3B6;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(zeta(x, y)) == '<mrow><mi>&#x3B6;</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>&#x3B7;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>&#x39A;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(totient(x)) == '<mrow><mi>&#x3D5;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>&#x3BB;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(primenu(x)) == '<mrow><mi>&#x3BD;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(primeomega(x)) == '<mrow><mi>&#x3A9;</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mpp.doprint(Heaviside(x)) == '<mrow><mi>&#x398;</mi><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_builtins(): assert mpp.doprint(None) == '<mi>None</mi>' assert mpp.doprint(true) == '<mi>True</mi>' assert mpp.doprint(false) == '<mi>False</mi>' def test_mathml_Range(): assert mpp.doprint(Range(1, 51)) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>&#8230;</mi><mn>50</mn></mfenced>' assert mpp.doprint(Range(1, 4)) == \ '<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>' assert mpp.doprint(Range(0, 3, 1)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>' assert mpp.doprint(Range(0, 30, 1)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>&#8230;</mi><mn>29</mn></mfenced>' assert mpp.doprint(Range(30, 1, -1)) == \ '<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>&#8230;</mi>'\ '<mn>2</mn></mfenced>' assert mpp.doprint(Range(0, oo, 2)) == \ '<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>&#8230;</mi></mfenced>' assert mpp.doprint(Range(oo, -2, -2)) == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>2</mn><mn>0</mn></mfenced>' assert mpp.doprint(Range(-2, -oo, -1)) == \ '<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>&#8230;</mi></mfenced>' def test_print_exp(): assert mpp.doprint(exp(x)) == \ '<msup><mi>&ExponentialE;</mi><mi>x</mi></msup>' assert mpp.doprint(exp(1) + exp(2)) == \ '<mrow><mi>&ExponentialE;</mi><mo>+</mo><msup><mi>&ExponentialE;</mi><mn>2</mn></msup></mrow>' def test_print_MinMax(): assert mpp.doprint(Min(x, y)) == \ '<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(Min(x, 2, x**3)) == \ '<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ '<mn>3</mn></msup></mfenced></mrow>' assert mpp.doprint(Max(x, y)) == \ '<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mpp.doprint(Max(x, 2, x**3)) == \ '<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\ '<mn>3</mn></msup></mfenced></mrow>' def test_mathml_presentation_numbers(): n = Symbol('n') assert mathml(catalan(n), printer='presentation') == \ '<msub><mi>C</mi><mi>n</mi></msub>' assert mathml(bernoulli(n), printer='presentation') == \ '<msub><mi>B</mi><mi>n</mi></msub>' assert mathml(bell(n), printer='presentation') == \ '<msub><mi>B</mi><mi>n</mi></msub>' assert mathml(euler(n), printer='presentation') == \ '<msub><mi>E</mi><mi>n</mi></msub>' assert mathml(fibonacci(n), printer='presentation') == \ '<msub><mi>F</mi><mi>n</mi></msub>' assert mathml(lucas(n), printer='presentation') == \ '<msub><mi>L</mi><mi>n</mi></msub>' assert mathml(tribonacci(n), printer='presentation') == \ '<msub><mi>T</mi><mi>n</mi></msub>' assert mathml(bernoulli(n, x), printer='presentation') == \ '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(bell(n, x), printer='presentation') == \ '<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(euler(n, x), printer='presentation') == \ '<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(fibonacci(n, x), printer='presentation') == \ '<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(tribonacci(n, x), printer='presentation') == \ '<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_presentation_mathieu(): assert mathml(mathieuc(x, y, z), printer='presentation') == \ '<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieus(x, y, z), printer='presentation') == \ '<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieucprime(x, y, z), printer='presentation') == \ '<mrow><mi>C&#x2032;</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' assert mathml(mathieusprime(x, y, z), printer='presentation') == \ '<mrow><mi>S&#x2032;</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' def test_mathml_presentation_stieltjes(): assert mathml(stieltjes(n), printer='presentation') == \ '<msub><mi>&#x03B3;</mi><mi>n</mi></msub>' assert mathml(stieltjes(n, x), printer='presentation') == \ '<mrow><msub><mi>&#x03B3;</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_matrix_symbol(): A = MatrixSymbol('A', 1, 2) assert mpp.doprint(A) == '<mi>A</mi>' assert mp.doprint(A) == '<ci>A</ci>' assert mathml(A, printer='presentation', mat_symbol_style="bold") == \ '<mi mathvariant="bold">A</mi>' # No effect in content printer assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>' def test_print_hadamard(): from sympy.matrices.expressions import HadamardProduct from sympy.matrices.expressions import Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \ '<mrow>' \ '<mi>X</mi>' \ '<mo>&#x2218;</mo>' \ '<msup><mi>Y</mi><mn>2</mn></msup>' \ '</mrow>' assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \ '<mrow>' \ '<mfenced>' \ '<mrow><mi>X</mi><mo>&#x2218;</mo><mi>Y</mi></mrow>' \ '</mfenced>' \ '<mo>&InvisibleTimes;</mo><mi>Y</mi>' \ '</mrow>' assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \ '<mrow>' \ '<mi>X</mi><mo>&#x2218;</mo>' \ '<mi>Y</mi><mo>&#x2218;</mo>' \ '<mi>Y</mi>' \ '</mrow>' assert mathml( Transpose(HadamardProduct(X, Y)), printer="presentation") == \ '<msup>' \ '<mfenced>' \ '<mrow><mi>X</mi><mo>&#x2218;</mo><mi>Y</mi></mrow>' \ '</mfenced>' \ '<mo>T</mo>' \ '</msup>' def test_print_random_symbol(): R = RandomSymbol(Symbol('R')) assert mpp.doprint(R) == '<mi>R</mi>' assert mp.doprint(R) == '<ci>R</ci>' def test_print_IndexedBase(): assert mathml(IndexedBase(a)[b], printer='presentation') == \ '<msub><mi>a</mi><mi>b</mi></msub>' assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \ '<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>' assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e), printer='presentation') == \ '<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>&InvisibleTimes;'\ '</mo><msub><mi>c</mi><mi>d</mi></msub><mo>&InvisibleTimes;</mo><mi>e</mi></mrow>' def test_print_Indexed(): assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>' assert mathml(IndexedBase(a/b), printer='presentation') == \ '<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>' assert mathml(IndexedBase((a, b)), printer='presentation') == \ '<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>' def test_print_MatrixElement(): i, j = symbols('i j') A = MatrixSymbol('A', i, j) assert mathml(A[0,0],printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>' assert mathml(A[i,j], printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>' assert mathml(A[i*j,0], printer = 'presentation') == \ '<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>&InvisibleTimes;</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>' def test_print_Vector(): ACS = CoordSys3D('A') assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><mfenced><mrow>'\ '<mfenced><mrow><mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ '<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\ 'A</mi></msub></mrow></mfenced></mrow>' assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \ '<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\ '<mo>&#xD7;</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">i</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mrow>' assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<mo>&#xD7;</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mfenced></mrow>' assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xD7;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xB7;</mo><mfenced><mrow><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x'\ '</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<mo>&#xB7;</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\ '</mfenced></mrow></mfenced></mrow>' assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mo>&#xB7;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\ '<mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '<mo>&InvisibleTimes;</mo><mi>x</mi></mrow></mfenced>'\ '<mo>&InvisibleTimes;</mo><msub><mover><mi mathvariant="bold">j</mi>'\ '<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><mfenced><mrow>'\ '<mfenced><mrow><mn>3</mn><mo>&InvisibleTimes;</mo><msub>'\ '<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\ '</mrow></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\ '<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \ '<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><mfenced><mrow>'\ '<mfenced><mi>x</mi></mfenced><mo>&InvisibleTimes;</mo><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><msub><mover>'\ '<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xB7;</mo><msub><mover>'\ '<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>' assert mathml(Gradient(ACS.x), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">y</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' assert mathml(x*Gradient(ACS.x), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2207;</mo>'\ '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ '</msub></mrow></mfenced></mrow>' assert mathml(Gradient(x*ACS.x), printer='presentation') == \ '<mrow><mo>&#x2207;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced></mrow>' assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \ '<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>' assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \ '<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub><mo>&#xD7;</mo><msub>'\ '<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>' assert mathml(Laplacian(ACS.x), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><msub><mi mathvariant="bold">x</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow>' assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\ '<mo>&InvisibleTimes;</mo><msub><mi mathvariant="bold">y</mi>'\ '<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>' assert mathml(x*Laplacian(ACS.x), printer='presentation') == \ '<mrow><mi>x</mi><mo>&InvisibleTimes;</mo><mfenced><mrow><mo>&#x2206;</mo>'\ '<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\ '</msub></mrow></mfenced></mrow>' assert mathml(Laplacian(x*ACS.x), printer='presentation') == \ '<mrow><mo>&#x2206;</mo><mfenced><mrow><msub><mi mathvariant="bold">'\ 'x</mi><mi mathvariant="bold">A</mi></msub><mo>&InvisibleTimes;</mo>'\ '<mi>x</mi></mrow></mfenced></mrow>' def test_print_elliptic_f(): assert mathml(elliptic_f(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a5;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a5;</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>' def test_print_elliptic_e(): assert mathml(elliptic_e(x), printer = 'presentation') == \ '<mrow><mi>&#x1d5a4;</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>' assert mathml(elliptic_e(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d5a4;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' def test_print_elliptic_pi(): assert mathml(elliptic_pi(x, y), printer = 'presentation') == \ '<mrow><mi>&#x1d6f1;</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>' assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \ '<mrow><mi>&#x1d6f1;</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>' def test_print_Ei(): assert mathml(Ei(x), printer = 'presentation') == \ '<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>' assert mathml(Ei(x**y), printer = 'presentation') == \ '<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>' def test_print_expint(): assert mathml(expint(x, y), printer = 'presentation') == \ '<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>' assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \ '<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>' def test_print_jacobi(): assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \ '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_gegenbauer(): assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_chebyshevt(): assert mathml(chebyshevt(n, x), printer = 'presentation') == \ '<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_chebyshevu(): assert mathml(chebyshevu(n, x), printer = 'presentation') == \ '<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_legendre(): assert mathml(legendre(n, x), printer = 'presentation') == \ '<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_assoc_legendre(): assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_laguerre(): assert mathml(laguerre(n, x), printer = 'presentation') == \ '<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_print_assoc_laguerre(): assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \ '<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>' def test_print_hermite(): assert mathml(hermite(n, x), printer = 'presentation') == \ '<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>' def test_mathml_SingularityFunction(): assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>' assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>' assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mi>x</mi></mfenced>' \ '<mn>4</mn></msup>' assert mathml(SingularityFunction(x, a, n), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mrow>' \ '<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \ '<mi>n</mi></msup>' assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>' assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \ '<msup><mfenced close="&#10217;" open="&#10216;"><mrow><mi>x</mi>' \ '<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>' def test_mathml_matrix_functions(): from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert mathml(Adjoint(X), printer='presentation') == \ '<msup><mi>X</mi><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X + Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \ '<mrow><msup><mi>X</mi><mo>&#x2020;</mo></msup><mo>+</mo><msup>' \ '<mi>Y</mi><mo>&#x2020;</mo></msup></mrow>' assert mathml(Adjoint(X*Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>&InvisibleTimes;</mo>' \ '<mi>Y</mi></mrow></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \ '<mrow><msup><mi>Y</mi><mo>&#x2020;</mo></msup><mo>&InvisibleTimes;' \ '</mo><msup><mi>X</mi><mo>&#x2020;</mo></msup></mrow>' assert mathml(Adjoint(X**2), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Adjoint(X)**2, printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mn>2</mn></msup>' assert mathml(Adjoint(Inverse(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Inverse(Adjoint(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mn>-1</mn></msup>' assert mathml(Adjoint(Transpose(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>&#x2020;</mo></msup>' assert mathml(Transpose(Adjoint(X)), printer='presentation') == \ '<msup><mfenced><msup><mi>X</mi><mo>&#x2020;</mo></msup></mfenced><mo>T</mo></msup>' assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \ '<msup><mfenced><mrow><msup><mi>X</mi><mo>&#x2020;</mo></msup>' \ '<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' assert mathml(Transpose(X), printer='presentation') == \ '<msup><mi>X</mi><mo>T</mo></msup>' assert mathml(Transpose(X + Y), printer='presentation') == \ '<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>' def test_mathml_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert mathml(Identity(4), printer='presentation') == '<mi>&#x1D540;</mi>' assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>&#x1D7D8</mn>' assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>&#x1D7D9</mn>' def test_mathml_piecewise(): from sympy import Piecewise # Content MathML assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \ '<piecewise><piece><ci>x</ci><apply><leq/><ci>x</ci><cn>1</cn></apply></piece><otherwise><apply><power/><ci>x</ci><cn>2</cn></apply></otherwise></piecewise>' raises(ValueError, lambda: mathml(Piecewise((x, x <= 1)))) def test_issue_17857(): assert mathml(Range(-oo, oo), printer='presentation') == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>-1</mn><mn>0</mn><mn>1</mn><mi>&#8230;</mi></mfenced>' assert mathml(Range(oo, -oo, -1), printer='presentation') == \ '<mfenced close="}" open="{"><mi>&#8230;</mi><mn>1</mn><mn>0</mn><mn>-1</mn><mi>&#8230;</mi></mfenced>'
027fe7a79b47df96a9af08fc344018aacf04a6e1b0b4d36c0533942fce647426
""" Important note on tests in this module - the Theano printing functions use a global cache by default, which means that tests using it will modify global state and thus not be independent from each other. Instead of using the "cache" keyword argument each time, this module uses the theano_code_ and theano_function_ functions defined below which default to using a new, empty cache instead. """ import logging from sympy.external import import_module from sympy.utilities.pytest import raises, SKIP theanologger = logging.getLogger('theano.configdefaults') theanologger.setLevel(logging.CRITICAL) theano = import_module('theano') theanologger.setLevel(logging.WARNING) if theano: import numpy as np ts = theano.scalar tt = theano.tensor xt, yt, zt = [tt.scalar(name, 'floatX') for name in 'xyz'] Xt, Yt, Zt = [tt.tensor('floatX', (False, False), name=n) for n in 'XYZ'] else: #bin/test will not execute any tests now disabled = True import sympy as sy from sympy import S from sympy.abc import x, y, z, t from sympy.printing.theanocode import (theano_code, dim_handling, theano_function) # Default set of matrix symbols for testing - make square so we can both # multiply and perform elementwise operations between them. X, Y, Z = [sy.MatrixSymbol(n, 4, 4) for n in 'XYZ'] # For testing AppliedUndef f_t = sy.Function('f')(t) def theano_code_(expr, **kwargs): """ Wrapper for theano_code that uses a new, empty cache by default. """ kwargs.setdefault('cache', {}) return theano_code(expr, **kwargs) def theano_function_(inputs, outputs, **kwargs): """ Wrapper for theano_function that uses a new, empty cache by default. """ kwargs.setdefault('cache', {}) return theano_function(inputs, outputs, **kwargs) def fgraph_of(*exprs): """ Transform SymPy expressions into Theano Computation. Parameters ========== exprs Sympy expressions Returns ======= theano.gof.FunctionGraph """ outs = list(map(theano_code_, exprs)) ins = theano.gof.graph.inputs(outs) ins, outs = theano.gof.graph.clone(ins, outs) return theano.gof.FunctionGraph(ins, outs) def theano_simplify(fgraph): """ Simplify a Theano Computation. Parameters ========== fgraph : theano.gof.FunctionGraph Returns ======= theano.gof.FunctionGraph """ mode = theano.compile.get_default_mode().excluding("fusion") fgraph = fgraph.clone() mode.optimizer.optimize(fgraph) return fgraph def theq(a, b): """ Test two Theano objects for equality. Also accepts numeric types and lists/tuples of supported types. Note - debugprint() has a bug where it will accept numeric types but does not respect the "file" argument and in this case and instead prints the number to stdout and returns an empty string. This can lead to tests passing where they should fail because any two numbers will always compare as equal. To prevent this we treat numbers as a separate case. """ numeric_types = (int, float, np.number) a_is_num = isinstance(a, numeric_types) b_is_num = isinstance(b, numeric_types) # Compare numeric types using regular equality if a_is_num or b_is_num: if not (a_is_num and b_is_num): return False return a == b # Compare sequences element-wise a_is_seq = isinstance(a, (tuple, list)) b_is_seq = isinstance(b, (tuple, list)) if a_is_seq or b_is_seq: if not (a_is_seq and b_is_seq) or type(a) != type(b): return False return list(map(theq, a)) == list(map(theq, b)) # Otherwise, assume debugprint() can handle it astr = theano.printing.debugprint(a, file='str') bstr = theano.printing.debugprint(b, file='str') # Check for bug mentioned above for argname, argval, argstr in [('a', a, astr), ('b', b, bstr)]: if argstr == '': raise TypeError( 'theano.printing.debugprint(%s) returned empty string ' '(%s is instance of %r)' % (argname, argname, type(argval)) ) return astr == bstr def test_example_symbols(): """ Check that the example symbols in this module print to their Theano equivalents, as many of the other tests depend on this. """ assert theq(xt, theano_code_(x)) assert theq(yt, theano_code_(y)) assert theq(zt, theano_code_(z)) assert theq(Xt, theano_code_(X)) assert theq(Yt, theano_code_(Y)) assert theq(Zt, theano_code_(Z)) def test_Symbol(): """ Test printing a Symbol to a theano variable. """ xx = theano_code_(x) assert isinstance(xx, (tt.TensorVariable, ts.ScalarVariable)) assert xx.broadcastable == () assert xx.name == x.name xx2 = theano_code_(x, broadcastables={x: (False,)}) assert xx2.broadcastable == (False,) assert xx2.name == x.name def test_MatrixSymbol(): """ Test printing a MatrixSymbol to a theano variable. """ XX = theano_code_(X) assert isinstance(XX, tt.TensorVariable) assert XX.broadcastable == (False, False) @SKIP # TODO - this is currently not checked but should be implemented def test_MatrixSymbol_wrong_dims(): """ Test MatrixSymbol with invalid broadcastable. """ bcs = [(), (False,), (True,), (True, False), (False, True,), (True, True)] for bc in bcs: with raises(ValueError): theano_code_(X, broadcastables={X: bc}) def test_AppliedUndef(): """ Test printing AppliedUndef instance, which works similarly to Symbol. """ ftt = theano_code_(f_t) assert isinstance(ftt, tt.TensorVariable) assert ftt.broadcastable == () assert ftt.name == 'f_t' def test_add(): expr = x + y comp = theano_code_(expr) assert comp.owner.op == theano.tensor.add def test_trig(): assert theq(theano_code_(sy.sin(x)), tt.sin(xt)) assert theq(theano_code_(sy.tan(x)), tt.tan(xt)) def test_many(): """ Test printing a complex expression with multiple symbols. """ expr = sy.exp(x**2 + sy.cos(y)) * sy.log(2*z) comp = theano_code_(expr) expected = tt.exp(xt**2 + tt.cos(yt)) * tt.log(2*zt) assert theq(comp, expected) def test_dtype(): """ Test specifying specific data types through the dtype argument. """ for dtype in ['float32', 'float64', 'int8', 'int16', 'int32', 'int64']: assert theano_code_(x, dtypes={x: dtype}).type.dtype == dtype # "floatX" type assert theano_code_(x, dtypes={x: 'floatX'}).type.dtype in ('float32', 'float64') # Type promotion assert theano_code_(x + 1, dtypes={x: 'float32'}).type.dtype == 'float32' assert theano_code_(x + y, dtypes={x: 'float64', y: 'float32'}).type.dtype == 'float64' def test_broadcastables(): """ Test the "broadcastables" argument when printing symbol-like objects. """ # No restrictions on shape for s in [x, f_t]: for bc in [(), (False,), (True,), (False, False), (True, False)]: assert theano_code_(s, broadcastables={s: bc}).broadcastable == bc # TODO - matrix broadcasting? def test_broadcasting(): """ Test "broadcastable" attribute after applying element-wise binary op. """ expr = x + y cases = [ [(), (), ()], [(False,), (False,), (False,)], [(True,), (False,), (False,)], [(False, True), (False, False), (False, False)], [(True, False), (False, False), (False, False)], ] for bc1, bc2, bc3 in cases: comp = theano_code_(expr, broadcastables={x: bc1, y: bc2}) assert comp.broadcastable == bc3 def test_MatMul(): expr = X*Y*Z expr_t = theano_code_(expr) assert isinstance(expr_t.owner.op, tt.Dot) assert theq(expr_t, Xt.dot(Yt).dot(Zt)) def test_Transpose(): assert isinstance(theano_code_(X.T).owner.op, tt.DimShuffle) def test_MatAdd(): expr = X+Y+Z assert isinstance(theano_code_(expr).owner.op, tt.Elemwise) def test_Rationals(): assert theq(theano_code_(sy.Integer(2) / 3), tt.true_div(2, 3)) assert theq(theano_code_(S.Half), tt.true_div(1, 2)) def test_Integers(): assert theano_code_(sy.Integer(3)) == 3 def test_factorial(): n = sy.Symbol('n') assert theano_code_(sy.factorial(n)) def test_Derivative(): simp = lambda expr: theano_simplify(fgraph_of(expr)) assert theq(simp(theano_code_(sy.Derivative(sy.sin(x), x, evaluate=False))), simp(theano.grad(tt.sin(xt), xt))) def test_theano_function_simple(): """ Test theano_function() with single output. """ f = theano_function_([x, y], [x+y]) assert f(2, 3) == 5 def test_theano_function_multi(): """ Test theano_function() with multiple outputs. """ f = theano_function_([x, y], [x+y, x-y]) o1, o2 = f(2, 3) assert o1 == 5 assert o2 == -1 def test_theano_function_numpy(): """ Test theano_function() vs Numpy implementation. """ f = theano_function_([x, y], [x+y], dim=1, dtypes={x: 'float64', y: 'float64'}) assert np.linalg.norm(f([1, 2], [3, 4]) - np.asarray([4, 6])) < 1e-9 f = theano_function_([x, y], [x+y], dtypes={x: 'float64', y: 'float64'}, dim=1) xx = np.arange(3).astype('float64') yy = 2*np.arange(3).astype('float64') assert np.linalg.norm(f(xx, yy) - 3*np.arange(3)) < 1e-9 def test_theano_function_matrix(): m = sy.Matrix([[x, y], [z, x + y + z]]) expected = np.array([[1.0, 2.0], [3.0, 1.0 + 2.0 + 3.0]]) f = theano_function_([x, y, z], [m]) np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected) f = theano_function_([x, y, z], [m], scalar=True) np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected) f = theano_function_([x, y, z], [m, m]) assert isinstance(f(1.0, 2.0, 3.0), type([])) np.testing.assert_allclose(f(1.0, 2.0, 3.0)[0], expected) np.testing.assert_allclose(f(1.0, 2.0, 3.0)[1], expected) def test_dim_handling(): assert dim_handling([x], dim=2) == {x: (False, False)} assert dim_handling([x, y], dims={x: 1, y: 2}) == {x: (False, True), y: (False, False)} assert dim_handling([x], broadcastables={x: (False,)}) == {x: (False,)} def test_theano_function_kwargs(): """ Test passing additional kwargs from theano_function() to theano.function(). """ import numpy as np f = theano_function_([x, y, z], [x+y], dim=1, on_unused_input='ignore', dtypes={x: 'float64', y: 'float64', z: 'float64'}) assert np.linalg.norm(f([1, 2], [3, 4], [0, 0]) - np.asarray([4, 6])) < 1e-9 f = theano_function_([x, y, z], [x+y], dtypes={x: 'float64', y: 'float64', z: 'float64'}, dim=1, on_unused_input='ignore') xx = np.arange(3).astype('float64') yy = 2*np.arange(3).astype('float64') zz = 2*np.arange(3).astype('float64') assert np.linalg.norm(f(xx, yy, zz) - 3*np.arange(3)) < 1e-9 def test_theano_function_scalar(): """ Test the "scalar" argument to theano_function(). """ args = [ ([x, y], [x + y], None, [0]), # Single 0d output ([X, Y], [X + Y], None, [2]), # Single 2d output ([x, y], [x + y], {x: 0, y: 1}, [1]), # Single 1d output ([x, y], [x + y, x - y], None, [0, 0]), # Two 0d outputs ([x, y, X, Y], [x + y, X + Y], None, [0, 2]), # One 0d output, one 2d ] # Create and test functions with and without the scalar setting for inputs, outputs, in_dims, out_dims in args: for scalar in [False, True]: f = theano_function_(inputs, outputs, dims=in_dims, scalar=scalar) # Check the theano_function attribute is set whether wrapped or not assert isinstance(f.theano_function, theano.compile.function_module.Function) # Feed in inputs of the appropriate size and get outputs in_values = [ np.ones([1 if bc else 5 for bc in i.type.broadcastable]) for i in f.theano_function.input_storage ] out_values = f(*in_values) if not isinstance(out_values, list): out_values = [out_values] # Check output types and shapes assert len(out_dims) == len(out_values) for d, value in zip(out_dims, out_values): if scalar and d == 0: # Should have been converted to a scalar value assert isinstance(value, np.number) else: # Otherwise should be an array assert isinstance(value, np.ndarray) assert value.ndim == d def test_theano_function_bad_kwarg(): """ Passing an unknown keyword argument to theano_function() should raise an exception. """ raises(Exception, lambda : theano_function_([x], [x+1], foobar=3)) def test_slice(): assert theano_code_(slice(1, 2, 3)) == slice(1, 2, 3) def theq_slice(s1, s2): for attr in ['start', 'stop', 'step']: a1 = getattr(s1, attr) a2 = getattr(s2, attr) if a1 is None or a2 is None: if not (a1 is None or a2 is None): return False elif not theq(a1, a2): return False return True dtypes = {x: 'int32', y: 'int32'} assert theq_slice(theano_code_(slice(x, y), dtypes=dtypes), slice(xt, yt)) assert theq_slice(theano_code_(slice(1, x, 3), dtypes=dtypes), slice(1, xt, 3)) def test_MatrixSlice(): from theano import Constant cache = {} n = sy.Symbol('n', integer=True) X = sy.MatrixSymbol('X', n, n) Y = X[1:2:3, 4:5:6] Yt = theano_code_(Y, cache=cache) s = ts.Scalar('int64') assert tuple(Yt.owner.op.idx_list) == (slice(s, s, s), slice(s, s, s)) assert Yt.owner.inputs[0] == theano_code_(X, cache=cache) # == doesn't work in theano like it does in SymPy. You have to use # equals. assert all(Yt.owner.inputs[i].equals(Constant(s, i)) for i in range(1, 7)) k = sy.Symbol('k') theano_code_(k, dtypes={k: 'int32'}) start, stop, step = 4, k, 2 Y = X[start:stop:step] Yt = theano_code_(Y, dtypes={n: 'int32', k: 'int32'}) # assert Yt.owner.op.idx_list[0].stop == kt def test_BlockMatrix(): n = sy.Symbol('n', integer=True) A, B, C, D = [sy.MatrixSymbol(name, n, n) for name in 'ABCD'] At, Bt, Ct, Dt = map(theano_code_, (A, B, C, D)) Block = sy.BlockMatrix([[A, B], [C, D]]) Blockt = theano_code_(Block) solutions = [tt.join(0, tt.join(1, At, Bt), tt.join(1, Ct, Dt)), tt.join(1, tt.join(0, At, Ct), tt.join(0, Bt, Dt))] assert any(theq(Blockt, solution) for solution in solutions) @SKIP def test_BlockMatrix_Inverse_execution(): k, n = 2, 4 dtype = 'float32' A = sy.MatrixSymbol('A', n, k) B = sy.MatrixSymbol('B', n, n) inputs = A, B output = B.I*A cutsizes = {A: [(n//2, n//2), (k//2, k//2)], B: [(n//2, n//2), (n//2, n//2)]} cutinputs = [sy.blockcut(i, *cutsizes[i]) for i in inputs] cutoutput = output.subs(dict(zip(inputs, cutinputs))) dtypes = dict(zip(inputs, [dtype]*len(inputs))) f = theano_function_(inputs, [output], dtypes=dtypes, cache={}) fblocked = theano_function_(inputs, [sy.block_collapse(cutoutput)], dtypes=dtypes, cache={}) ninputs = [np.random.rand(*x.shape).astype(dtype) for x in inputs] ninputs = [np.arange(n*k).reshape(A.shape).astype(dtype), np.eye(n).astype(dtype)] ninputs[1] += np.ones(B.shape)*1e-5 assert np.allclose(f(*ninputs), fblocked(*ninputs), rtol=1e-5) def test_DenseMatrix(): t = sy.Symbol('theta') for MatrixType in [sy.Matrix, sy.ImmutableMatrix]: X = MatrixType([[sy.cos(t), -sy.sin(t)], [sy.sin(t), sy.cos(t)]]) tX = theano_code_(X) assert isinstance(tX, tt.TensorVariable) assert tX.owner.op == tt.join_ def test_cache_basic(): """ Test single symbol-like objects are cached when printed by themselves. """ # Pairs of objects which should be considered equivalent with respect to caching pairs = [ (x, sy.Symbol('x')), (X, sy.MatrixSymbol('X', *X.shape)), (f_t, sy.Function('f')(sy.Symbol('t'))), ] for s1, s2 in pairs: cache = {} st = theano_code_(s1, cache=cache) # Test hit with same instance assert theano_code_(s1, cache=cache) is st # Test miss with same instance but new cache assert theano_code_(s1, cache={}) is not st # Test hit with different but equivalent instance assert theano_code_(s2, cache=cache) is st def test_global_cache(): """ Test use of the global cache. """ from sympy.printing.theanocode import global_cache backup = dict(global_cache) try: # Temporarily empty global cache global_cache.clear() for s in [x, X, f_t]: st = theano_code(s) assert theano_code(s) is st finally: # Restore global cache global_cache.update(backup) def test_cache_types_distinct(): """ Test that symbol-like objects of different types (Symbol, MatrixSymbol, AppliedUndef) are distinguished by the cache even if they have the same name. """ symbols = [sy.Symbol('f_t'), sy.MatrixSymbol('f_t', 4, 4), f_t] cache = {} # Single shared cache printed = {} for s in symbols: st = theano_code_(s, cache=cache) assert st not in printed.values() printed[s] = st # Check all printed objects are distinct assert len(set(map(id, printed.values()))) == len(symbols) # Check retrieving for s, st in printed.items(): assert theano_code(s, cache=cache) is st def test_symbols_are_created_once(): """ Test that a symbol is cached and reused when it appears in an expression more than once. """ expr = sy.Add(x, x, evaluate=False) comp = theano_code_(expr) assert theq(comp, xt + xt) assert not theq(comp, xt + theano_code_(x)) def test_cache_complex(): """ Test caching on a complicated expression with multiple symbols appearing multiple times. """ expr = x ** 2 + (y - sy.exp(x)) * sy.sin(z - x * y) symbol_names = {s.name for s in expr.free_symbols} expr_t = theano_code_(expr) # Iterate through variables in the Theano computational graph that the # printed expression depends on seen = set() for v in theano.gof.graph.ancestors([expr_t]): # Owner-less, non-constant variables should be our symbols if v.owner is None and not isinstance(v, theano.gof.graph.Constant): # Check it corresponds to a symbol and appears only once assert v.name in symbol_names assert v.name not in seen seen.add(v.name) # Check all were present assert seen == symbol_names def test_Piecewise(): # A piecewise linear expr = sy.Piecewise((0, x<0), (x, x<2), (1, True)) # ___/III result = theano_code_(expr) assert result.owner.op == tt.switch expected = tt.switch(xt<0, 0, tt.switch(xt<2, xt, 1)) assert theq(result, expected) expr = sy.Piecewise((x, x < 0)) result = theano_code_(expr) expected = tt.switch(xt < 0, xt, np.nan) assert theq(result, expected) expr = sy.Piecewise((0, sy.And(x>0, x<2)), \ (x, sy.Or(x>2, x<0))) result = theano_code_(expr) expected = tt.switch(tt.and_(xt>0,xt<2), 0, \ tt.switch(tt.or_(xt>2, xt<0), xt, np.nan)) assert theq(result, expected) def test_Relationals(): assert theq(theano_code_(sy.Eq(x, y)), tt.eq(xt, yt)) # assert theq(theano_code_(sy.Ne(x, y)), tt.neq(xt, yt)) # TODO - implement assert theq(theano_code_(x > y), xt > yt) assert theq(theano_code_(x < y), xt < yt) assert theq(theano_code_(x >= y), xt >= yt) assert theq(theano_code_(x <= y), xt <= yt) def test_complexfunctions(): xt, yt = theano_code(x, dtypes={x:'complex128'}), theano_code(y, dtypes={y: 'complex128'}) from sympy import conjugate from theano.tensor import as_tensor_variable as atv from theano.tensor import complex as cplx assert theq(theano_code(y*conjugate(x)), yt*(xt.conj())) assert theq(theano_code((1+2j)*x), xt*(atv(1.0)+atv(2.0)*cplx(0,1))) def test_constantfunctions(): tf = theano_function([],[1+1j]) assert(tf()==1+1j)
6cc74022787c8407180df067781c1792af52435f35a1c8ab73ec582823f3690a
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge) from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos from sympy.utilities.pytest import raises from sympy.utilities.lambdify import implemented_function from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity, HadamardProduct, SparseMatrix) from sympy.functions.special.bessel import besseli from sympy import maple_code x, y, z = symbols('x,y,z') def test_Integer(): assert maple_code(Integer(67)) == "67" assert maple_code(Integer(-1)) == "-1" def test_Rational(): assert maple_code(Rational(3, 7)) == "3/7" assert maple_code(Rational(18, 9)) == "2" assert maple_code(Rational(3, -7)) == "-3/7" assert maple_code(Rational(-3, -7)) == "3/7" assert maple_code(x + Rational(3, 7)) == "x + 3/7" assert maple_code(Rational(3, 7) * x) == '(3/7)*x' def test_Relational(): assert maple_code(Eq(x, y)) == "x = y" assert maple_code(Ne(x, y)) == "x <> y" assert maple_code(Le(x, y)) == "x <= y" assert maple_code(Lt(x, y)) == "x < y" assert maple_code(Gt(x, y)) == "x > y" assert maple_code(Ge(x, y)) == "x >= y" def test_Function(): assert maple_code(sin(x) ** cos(x)) == "sin(x)^cos(x)" assert maple_code(abs(x)) == "abs(x)" assert maple_code(ceiling(x)) == "ceil(x)" def test_Pow(): assert maple_code(x ** 3) == "x^3" assert maple_code(x ** (y ** 3)) == "x^(y^3)" assert maple_code((x ** 3) ** y) == "(x^3)^y" assert maple_code(x ** Rational(2, 3)) == 'x^(2/3)' g = implemented_function('g', Lambda(x, 2 * x)) assert maple_code(1 / (g(x) * 3.5) ** (x - y ** x) / (x ** 2 + y)) == \ "(3.5*2*x)^(-x + y^x)/(x^2 + y)" # For issue 14160 assert maple_code(Mul(-2, x, Pow(Mul(y, y, evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x/(y*y)' def test_basic_ops(): assert maple_code(x * y) == "x*y" assert maple_code(x + y) == "x + y" assert maple_code(x - y) == "x - y" assert maple_code(-x) == "-x" def test_1_over_x_and_sqrt(): # 1.0 and 0.5 would do something different in regular StrPrinter, # but these are exact in IEEE floating point so no different here. assert maple_code(1 / x) == '1/x' assert maple_code(x ** -1) == maple_code(x ** -1.0) == '1/x' assert maple_code(1 / sqrt(x)) == '1/sqrt(x)' assert maple_code(x ** -S.Half) == maple_code(x ** -0.5) == '1/sqrt(x)' assert maple_code(sqrt(x)) == 'sqrt(x)' assert maple_code(x ** S.Half) == maple_code(x ** 0.5) == 'sqrt(x)' assert maple_code(1 / pi) == '1/Pi' assert maple_code(pi ** -1) == maple_code(pi ** -1.0) == '1/Pi' assert maple_code(pi ** -0.5) == '1/sqrt(Pi)' def test_mix_number_mult_symbols(): assert maple_code(3 * x) == "3*x" assert maple_code(pi * x) == "Pi*x" assert maple_code(3 / x) == "3/x" assert maple_code(pi / x) == "Pi/x" assert maple_code(x / 3) == '(1/3)*x' assert maple_code(x / pi) == "x/Pi" assert maple_code(x * y) == "x*y" assert maple_code(3 * x * y) == "3*x*y" assert maple_code(3 * pi * x * y) == "3*Pi*x*y" assert maple_code(x / y) == "x/y" assert maple_code(3 * x / y) == "3*x/y" assert maple_code(x * y / z) == "x*y/z" assert maple_code(x / y * z) == "x*z/y" assert maple_code(1 / x / y) == "1/(x*y)" assert maple_code(2 * pi * x / y / z) == "2*Pi*x/(y*z)" assert maple_code(3 * pi / x) == "3*Pi/x" assert maple_code(S(3) / 5) == "3/5" assert maple_code(S(3) / 5 * x) == '(3/5)*x' assert maple_code(x / y / z) == "x/(y*z)" assert maple_code((x + y) / z) == "(x + y)/z" assert maple_code((x + y) / (z + x)) == "(x + y)/(x + z)" assert maple_code((x + y) / EulerGamma) == '(x + y)/gamma' assert maple_code(x / 3 / pi) == '(1/3)*x/Pi' assert maple_code(S(3) / 5 * x * y / pi) == '(3/5)*x*y/Pi' def test_mix_number_pow_symbols(): assert maple_code(pi ** 3) == 'Pi^3' assert maple_code(x ** 2) == 'x^2' assert maple_code(x ** (pi ** 3)) == 'x^(Pi^3)' assert maple_code(x ** y) == 'x^y' assert maple_code(x ** (y ** z)) == 'x^(y^z)' assert maple_code((x ** y) ** z) == '(x^y)^z' def test_imag(): I = S('I') assert maple_code(I) == "I" assert maple_code(5 * I) == "5*I" assert maple_code((S(3) / 2) * I) == "(3/2)*I" assert maple_code(3 + 4 * I) == "3 + 4*I" def test_constants(): assert maple_code(pi) == "Pi" assert maple_code(oo) == "infinity" assert maple_code(-oo) == "-infinity" assert maple_code(S.NegativeInfinity) == "-infinity" assert maple_code(S.NaN) == "undefined" assert maple_code(S.Exp1) == "exp(1)" assert maple_code(exp(1)) == "exp(1)" def test_constants_other(): assert maple_code(2 * GoldenRatio) == '2*(1/2 + (1/2)*sqrt(5))' assert maple_code(2 * Catalan) == '2*Catalan' assert maple_code(2 * EulerGamma) == "2*gamma" def test_boolean(): assert maple_code(x & y) == "x && y" assert maple_code(x | y) == "x || y" assert maple_code(~x) == "!x" assert maple_code(x & y & z) == "x && y && z" assert maple_code(x | y | z) == "x || y || z" assert maple_code((x & y) | z) == "z || x && y" assert maple_code((x | y) & z) == "z && (x || y)" def test_Matrices(): assert maple_code(Matrix(1, 1, [10])) == \ 'Matrix([[10]], storage = rectangular)' A = Matrix([[1, sin(x / 2), abs(x)], [0, 1, pi], [0, exp(1), ceiling(x)]]) expected = \ 'Matrix(' \ '[[1, sin((1/2)*x), abs(x)],' \ ' [0, 1, Pi],' \ ' [0, exp(1), ceil(x)]], ' \ 'storage = rectangular)' assert maple_code(A) == expected # row and columns assert maple_code(A[:, 0]) == \ 'Matrix([[1], [0], [0]], storage = rectangular)' assert maple_code(A[0, :]) == \ 'Matrix([[1, sin((1/2)*x), abs(x)]], storage = rectangular)' assert maple_code(Matrix([[x, x - y, -y]])) == \ 'Matrix([[x, x - y, -y]], storage = rectangular)' # empty matrices assert maple_code(Matrix(0, 0, [])) == \ 'Matrix([], storage = rectangular)' assert maple_code(Matrix(0, 3, [])) == \ 'Matrix([], storage = rectangular)' def test_SparseMatrices(): assert maple_code(SparseMatrix(Identity(2))) == 'Matrix([[1, 0], [0, 1]], storage = sparse)' def test_vector_entries_hadamard(): # For a row or column, user might to use the other dimension A = Matrix([[1, sin(2 / x), 3 * pi / x / 5]]) assert maple_code(A) == \ 'Matrix([[1, sin(2/x), (3/5)*Pi/x]], storage = rectangular)' assert maple_code(A.T) == \ 'Matrix([[1], [sin(2/x)], [(3/5)*Pi/x]], storage = rectangular)' def test_Matrices_entries_not_hadamard(): A = Matrix([[1, sin(2 / x), 3 * pi / x / 5], [1, 2, x * y]]) expected = \ 'Matrix([[1, sin(2/x), (3/5)*Pi/x], [1, 2, x*y]], ' \ 'storage = rectangular)' assert maple_code(A) == expected def test_MatrixSymbol(): n = Symbol('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) assert maple_code(A * B) == "A.B" assert maple_code(B * A) == "B.A" assert maple_code(2 * A * B) == "2*A.B" assert maple_code(B * 2 * A) == "2*B.A" assert maple_code( A * (B + 3 * Identity(n))) == "A.(3*Matrix(n, shape = identity) + B)" assert maple_code(A ** (x ** 2)) == "MatrixPower(A, x^2)" assert maple_code(A ** 3) == "MatrixPower(A, 3)" assert maple_code(A ** (S.Half)) == "MatrixPower(A, 1/2)" def test_special_matrices(): assert maple_code(6 * Identity(3)) == "6*Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = sparse)" assert maple_code(Identity(x)) == 'Matrix(x, shape = identity)' def test_containers(): assert maple_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ "[1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]" assert maple_code((1, 2, (3, 4))) == "[1, 2, [3, 4]]" assert maple_code([1]) == "[1]" assert maple_code((1,)) == "[1]" assert maple_code(Tuple(*[1, 2, 3])) == "[1, 2, 3]" assert maple_code((1, x * y, (3, x ** 2))) == "[1, x*y, [3, x^2]]" # scalar, matrix, empty matrix and empty list assert maple_code((1, eye(3), Matrix(0, 0, []), [])) == \ "[1, Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], storage = rectangular), Matrix([], storage = rectangular), []]" def test_maple_noninline(): source = maple_code((x + y)/Catalan, assign_to='me', inline=False) expected = "me := (x + y)/Catalan" assert source == expected def test_maple_matrix_assign_to(): A = Matrix([[1, 2, 3]]) assert maple_code(A, assign_to='a') == "a := Matrix([[1, 2, 3]], storage = rectangular)" A = Matrix([[1, 2], [3, 4]]) assert maple_code(A, assign_to='A') == "A := Matrix([[1, 2], [3, 4]], storage = rectangular)" def test_maple_matrix_assign_to_more(): # assigning to Symbol or MatrixSymbol requires lhs/rhs match A = Matrix([[1, 2, 3]]) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 2, 3) assert maple_code(A, assign_to=B) == "B := Matrix([[1, 2, 3]], storage = rectangular)" raises(ValueError, lambda: maple_code(A, assign_to=x)) raises(ValueError, lambda: maple_code(A, assign_to=C)) def test_maple_matrix_1x1(): A = Matrix([[3]]) assert maple_code(A, assign_to='B') == "B := Matrix([[3]], storage = rectangular)" def test_maple_matrix_elements(): A = Matrix([[x, 2, x * y]]) assert maple_code(A[0, 0] ** 2 + A[0, 1] + A[0, 2]) == "x^2 + x*y + 2" AA = MatrixSymbol('AA', 1, 3) assert maple_code(AA) == "AA" assert maple_code(AA[0, 0] ** 2 + sin(AA[0, 1]) + AA[0, 2]) == \ "sin(AA[1, 2]) + AA[1, 1]^2 + AA[1, 3]" assert maple_code(sum(AA)) == "AA[1, 1] + AA[1, 2] + AA[1, 3]" def test_maple_boolean(): assert maple_code(True) == "true" assert maple_code(S.true) == "true" assert maple_code(False) == "false" assert maple_code(S.false) == "false" def test_sparse(): M = SparseMatrix(5, 6, {}) M[2, 2] = 10 M[1, 2] = 20 M[1, 3] = 22 M[0, 3] = 30 M[3, 0] = x * y assert maple_code(M) == \ 'Matrix([[0, 0, 0, 30, 0, 0],' \ ' [0, 0, 20, 22, 0, 0],' \ ' [0, 0, 10, 0, 0, 0],' \ ' [x*y, 0, 0, 0, 0, 0],' \ ' [0, 0, 0, 0, 0, 0]], ' \ 'storage = sparse)' # Not an important point. def test_maple_not_supported(): assert maple_code(S.ComplexInfinity) == ( "# Not supported in maple:\n" "# ComplexInfinity\n" "zoo" ) # PROBLEM def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) assert (maple_code(A[0, 0]) == "A[1, 1]") assert (maple_code(3 * A[0, 0]) == "3*A[1, 1]") F = A-B assert (maple_code(F[0,0]) == "A[1, 1] - B[1, 1]") def test_hadamard(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) v = MatrixSymbol('v', 3, 1) h = MatrixSymbol('h', 1, 3) C = HadamardProduct(A, B) assert maple_code(C) == "A*B" assert maple_code(C * v) == "(A*B).v" # HadamardProduct is higher than dot product. assert maple_code(h * C * v) == "h.(A*B).v" assert maple_code(C * A) == "(A*B).A" # mixing Hadamard and scalar strange b/c we vectorize scalars assert maple_code(C * x * y) == "x*y*(A*B)" def test_maple_piecewise(): expr = Piecewise((x, x < 1), (x ** 2, True)) assert maple_code(expr) == "piecewise(x < 1, x, x^2)" assert maple_code(expr, assign_to="r") == ( "r := piecewise(x < 1, x, x^2)") expr = Piecewise((x ** 2, x < 1), (x ** 3, x < 2), (x ** 4, x < 3), (x ** 5, True)) expected = "piecewise(x < 1, x^2, x < 2, x^3, x < 3, x^4, x^5)" assert maple_code(expr) == expected assert maple_code(expr, assign_to="r") == "r := " + expected # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x ** 2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: maple_code(expr)) def test_maple_piecewise_times_const(): pw = Piecewise((x, x < 1), (x ** 2, True)) assert maple_code(2 * pw) == "2*piecewise(x < 1, x, x^2)" assert maple_code(pw / x) == "piecewise(x < 1, x, x^2)/x" assert maple_code(pw / (x * y)) == "piecewise(x < 1, x, x^2)/(x*y)" assert maple_code(pw / 3) == "(1/3)*piecewise(x < 1, x, x^2)" def test_maple_derivatives(): f = Function('f') assert maple_code(f(x).diff(x)) == 'diff(f(x), x)' assert maple_code(f(x).diff(x, 2)) == 'diff(f(x), x$2)' def test_specfun(): assert maple_code('asin(x)') == 'arcsin(x)' assert maple_code(besseli(x, y)) == 'BesselI(x, y)'
6ba728a106db205409c0e1a622c6bfec6533f0c003adf9dcd726f5c352cf4679
from sympy import symbols from sympy.functions import beta, Ei, zeta, Max, Min, sqrt from sympy.printing.cxxcode import CXX98CodePrinter, CXX11CodePrinter, CXX17CodePrinter, cxxcode from sympy.codegen.cfunctions import log1p x, y = symbols('x y') def test_CXX98CodePrinter(): assert CXX98CodePrinter().doprint(Max(x, 3)) in ('std::max(x, 3)', 'std::max(3, x)') assert CXX98CodePrinter().doprint(Min(x, 3, sqrt(x))) == 'std::min(3, std::min(x, std::sqrt(x)))' cxx98printer = CXX98CodePrinter() assert cxx98printer.language == 'C++' assert cxx98printer.standard == 'C++98' assert 'template' in cxx98printer.reserved_words assert 'alignas' not in cxx98printer.reserved_words def test_CXX11CodePrinter(): assert CXX11CodePrinter().doprint(log1p(x)) == 'std::log1p(x)' cxx11printer = CXX11CodePrinter() assert cxx11printer.language == 'C++' assert cxx11printer.standard == 'C++11' assert 'operator' in cxx11printer.reserved_words assert 'noexcept' in cxx11printer.reserved_words assert 'concept' not in cxx11printer.reserved_words def test_subclass_print_method(): class MyPrinter(CXX11CodePrinter): def _print_log1p(self, expr): return 'my_library::log1p(%s)' % ', '.join(map(self._print, expr.args)) assert MyPrinter().doprint(log1p(x)) == 'my_library::log1p(x)' def test_subclass_print_method__ns(): class MyPrinter(CXX11CodePrinter): _ns = 'my_library::' p = CXX11CodePrinter() myp = MyPrinter() assert p.doprint(log1p(x)) == 'std::log1p(x)' assert myp.doprint(log1p(x)) == 'my_library::log1p(x)' def test_CXX17CodePrinter(): assert CXX17CodePrinter().doprint(beta(x, y)) == 'std::beta(x, y)' assert CXX17CodePrinter().doprint(Ei(x)) == 'std::expint(x)' assert CXX17CodePrinter().doprint(zeta(x)) == 'std::riemann_zeta(x)' def test_cxxcode(): assert sorted(cxxcode(sqrt(x)*.5).split('*')) == sorted(['0.5', 'std::sqrt(x)'])
adad715c7f31cf8c9de0e4df546d9707c8bbfd3e5779456896d5591ea24b1578
import random from sympy import symbols, Derivative from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayElementwiseAdd, CodegenArrayPermuteDims, CodegenArrayDiagonal) from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt from sympy.external import import_module from sympy.functions import \ Abs, ceiling, exp, floor, sign, sin, asin, sqrt, cos, \ acos, tan, atan, atan2, cosh, acosh, sinh, asinh, tanh, atanh, \ re, im, arg, erf, loggamma, log from sympy.matrices import Matrix, MatrixBase, eye, randMatrix from sympy.matrices.expressions import \ Determinant, HadamardProduct, Inverse, MatrixSymbol, Trace from sympy.printing.tensorflow import tensorflow_code from sympy.utilities.lambdify import lambdify from sympy.utilities.pytest import skip tf = tensorflow = import_module("tensorflow") if tensorflow: # Hide Tensorflow warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' M = MatrixSymbol("M", 3, 3) N = MatrixSymbol("N", 3, 3) P = MatrixSymbol("P", 3, 3) Q = MatrixSymbol("Q", 3, 3) x, y, z, t = symbols("x y z t") if tf is not None: llo = [[j for j in range(i, i+3)] for i in range(0, 9, 3)] m3x3 = tf.constant(llo) m3x3sympy = Matrix(llo) def _compare_tensorflow_matrix(variables, expr, use_float=False): f = lambdify(variables, expr, 'tensorflow') if not use_float: random_matrices = [randMatrix(v.rows, v.cols) for v in variables] else: random_matrices = [randMatrix(v.rows, v.cols)/100. for v in variables] graph = tf.Graph() r = None with graph.as_default(): random_variables = [eval(tensorflow_code(i)) for i in random_matrices] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) e = e.doit() if e.is_Matrix: if not isinstance(e, MatrixBase): e = e.as_explicit() e = e.tolist() if not use_float: assert (r == e).all() else: r = [i for row in r for i in row] e = [i for row in e for i in row] assert all( abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) def _compare_tensorflow_matrix_scalar(variables, expr): f = lambdify(variables, expr, 'tensorflow') random_matrices = [ randMatrix(v.rows, v.cols).evalf() / 100 for v in variables] graph = tf.Graph() r = None with graph.as_default(): random_variables = [eval(tensorflow_code(i)) for i in random_matrices] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) e = e.doit() assert abs(r-e) < 10**-6 def _compare_tensorflow_scalar( variables, expr, rng=lambda: random.randint(0, 10)): f = lambdify(variables, expr, 'tensorflow') rvs = [rng() for v in variables] graph = tf.Graph() r = None with graph.as_default(): tf_rvs = [eval(tensorflow_code(i)) for i in rvs] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*tf_rvs)) e = expr.subs({k: v for k, v in zip(variables, rvs)}).evalf().doit() assert abs(r-e) < 10**-6 def _compare_tensorflow_relational( variables, expr, rng=lambda: random.randint(0, 10)): f = lambdify(variables, expr, 'tensorflow') rvs = [rng() for v in variables] graph = tf.Graph() r = None with graph.as_default(): tf_rvs = [eval(tensorflow_code(i)) for i in rvs] session = tf.compat.v1.Session(graph=graph) r = session.run(f(*tf_rvs)) e = expr.subs({k: v for k, v in zip(variables, rvs)}).doit() assert r == e def test_tensorflow_printing(): assert tensorflow_code(eye(3)) == \ "tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" expr = Matrix([[x, sin(y)], [exp(z), -t]]) assert tensorflow_code(expr) == \ "tensorflow.Variable(" \ "[[x, tensorflow.math.sin(y)]," \ " [tensorflow.math.exp(z), -t]])" def test_tensorflow_math(): if not tf: skip("TensorFlow not installed") expr = Abs(x) assert tensorflow_code(expr) == "tensorflow.math.abs(x)" _compare_tensorflow_scalar((x,), expr) expr = sign(x) assert tensorflow_code(expr) == "tensorflow.math.sign(x)" _compare_tensorflow_scalar((x,), expr) expr = ceiling(x) assert tensorflow_code(expr) == "tensorflow.math.ceil(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = floor(x) assert tensorflow_code(expr) == "tensorflow.math.floor(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = exp(x) assert tensorflow_code(expr) == "tensorflow.math.exp(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = sqrt(x) assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = x ** 4 assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = cos(x) assert tensorflow_code(expr) == "tensorflow.math.cos(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = acos(x) assert tensorflow_code(expr) == "tensorflow.math.acos(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = sin(x) assert tensorflow_code(expr) == "tensorflow.math.sin(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = asin(x) assert tensorflow_code(expr) == "tensorflow.math.asin(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = tan(x) assert tensorflow_code(expr) == "tensorflow.math.tan(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = atan(x) assert tensorflow_code(expr) == "tensorflow.math.atan(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = atan2(y, x) assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)" _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random()) expr = cosh(x) assert tensorflow_code(expr) == "tensorflow.math.cosh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) expr = acosh(x) assert tensorflow_code(expr) == "tensorflow.math.acosh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = sinh(x) assert tensorflow_code(expr) == "tensorflow.math.sinh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = asinh(x) assert tensorflow_code(expr) == "tensorflow.math.asinh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = tanh(x) assert tensorflow_code(expr) == "tensorflow.math.tanh(x)" _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) expr = atanh(x) assert tensorflow_code(expr) == "tensorflow.math.atanh(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.uniform(-.5, .5)) expr = erf(x) assert tensorflow_code(expr) == "tensorflow.math.erf(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.random()) expr = loggamma(x) assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)" _compare_tensorflow_scalar( (x,), expr, rng=lambda: random.random()) def test_tensorflow_complexes(): assert tensorflow_code(re(x)) == "tensorflow.math.real(x)" assert tensorflow_code(im(x)) == "tensorflow.math.imag(x)" assert tensorflow_code(arg(x)) == "tensorflow.math.angle(x)" def test_tensorflow_relational(): if not tf: skip("TensorFlow not installed") expr = Eq(x, y) assert tensorflow_code(expr) == "tensorflow.math.equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Ne(x, y) assert tensorflow_code(expr) == "tensorflow.math.not_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Ge(x, y) assert tensorflow_code(expr) == "tensorflow.math.greater_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Gt(x, y) assert tensorflow_code(expr) == "tensorflow.math.greater(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Le(x, y) assert tensorflow_code(expr) == "tensorflow.math.less_equal(x, y)" _compare_tensorflow_relational((x, y), expr) expr = Lt(x, y) assert tensorflow_code(expr) == "tensorflow.math.less(x, y)" _compare_tensorflow_relational((x, y), expr) def test_tensorflow_matrices(): if not tf: skip("TensorFlow not installed") expr = M assert tensorflow_code(expr) == "M" _compare_tensorflow_matrix((M,), expr) expr = M + N assert tensorflow_code(expr) == "tensorflow.math.add(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M * N assert tensorflow_code(expr) == "tensorflow.linalg.matmul(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = HadamardProduct(M, N) assert tensorflow_code(expr) == "tensorflow.math.multiply(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M*N*P*Q assert tensorflow_code(expr) == \ "tensorflow.linalg.matmul(" \ "tensorflow.linalg.matmul(" \ "tensorflow.linalg.matmul(M, N), P), Q)" _compare_tensorflow_matrix((M, N, P, Q), expr) expr = M**3 assert tensorflow_code(expr) == \ "tensorflow.linalg.matmul(tensorflow.linalg.matmul(M, M), M)" _compare_tensorflow_matrix((M,), expr) expr = Trace(M) assert tensorflow_code(expr) == "tensorflow.linalg.trace(M)" _compare_tensorflow_matrix((M,), expr) expr = Determinant(M) assert tensorflow_code(expr) == "tensorflow.linalg.det(M)" _compare_tensorflow_matrix_scalar((M,), expr) expr = Inverse(M) assert tensorflow_code(expr) == "tensorflow.linalg.inv(M)" _compare_tensorflow_matrix((M,), expr, use_float=True) expr = M.T assert tensorflow_code(expr, tensorflow_version='1.14') == \ "tensorflow.linalg.matrix_transpose(M)" assert tensorflow_code(expr, tensorflow_version='1.13') == \ "tensorflow.matrix_transpose(M)" _compare_tensorflow_matrix((M,), expr) def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session(graph=graph) M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'tensorflow') ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all() def test_codegen_extra(): if not tf: skip("TensorFlow not installed") graph = tf.Graph() with graph.as_default(): session = tf.compat.v1.Session() M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) mc = tf.constant([[2, 0], [1, 2]]) md = tf.constant([[1,-1], [4, 7]]) cg = CodegenArrayTensorProduct(M, N) assert tensorflow_code(cg) == \ 'tensorflow.linalg.einsum("ab,cd", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ij,kl", ma, mb)) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N) assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(ma + mb) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N, P) assert tensorflow_code(cg) == \ 'tensorflow.math.add(tensorflow.math.add(M, N), P)' f = lambdify((M, N, P), cg, 'tensorflow') y = session.run(f(ma, mb, mc)) c = session.run(ma + mb + mc) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N, P, Q) assert tensorflow_code(cg) == \ 'tensorflow.math.add(' \ 'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)' f = lambdify((M, N, P, Q), cg, 'tensorflow') y = session.run(f(ma, mb, mc, md)) c = session.run(ma + mb + mc + md) assert (y == c).all() cg = CodegenArrayPermuteDims(M, [1, 0]) assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])' f = lambdify((M,), cg, 'tensorflow') y = session.run(f(ma)) c = session.run(tf.transpose(ma)) assert (y == c).all() cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0]) assert tensorflow_code(cg) == \ 'tensorflow.transpose(' \ 'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0])) assert (y == c).all() cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)) assert tensorflow_code(cg) == \ 'tensorflow.linalg.einsum("ab,bc->acb", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ab,bc->acb", ma, mb)) assert (y == c).all() def test_MatrixElement_printing(): A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert tensorflow_code(A[0, 0]) == "A[0, 0]" assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]" F = C[0, 0].subs(C, A - B) assert tensorflow_code(F) == "(tensorflow.math.add((-1)*B, A))[0, 0]" def test_tensorflow_Derivative(): expr = Derivative(sin(x), x) assert tensorflow_code(expr) == \ "tensorflow.gradients(tensorflow.math.sin(x), x)[0]"