hash
stringlengths
64
64
content
stringlengths
0
1.51M
210183cb327d582f3a48fd5c34a5d0ca38d765c1355a6dfb8a38b309aa8ae26c
from __future__ import print_function, division from sympy.combinatorics.group_constructs import DirectProduct from sympy.combinatorics.perm_groups import PermutationGroup from sympy.combinatorics.permutations import Permutation from sympy.core.compatibility import range _af_new = Permutation._af_new def AbelianGroup(*cyclic_orders): """ Returns the direct product of cyclic groups with the given orders. According to the structure theorem for finite abelian groups ([1]), every finite abelian group can be written as the direct product of finitely many cyclic groups. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> from sympy.combinatorics.named_groups import AbelianGroup >>> AbelianGroup(3, 4) PermutationGroup([ (6)(0 1 2), (3 4 5 6)]) >>> _.is_group True See Also ======== DirectProduct References ========== .. [1] http://groupprops.subwiki.org/wiki/Structure_theorem_for_finitely_generated_abelian_groups """ groups = [] degree = 0 order = 1 for size in cyclic_orders: degree += size order *= size groups.append(CyclicGroup(size)) G = DirectProduct(*groups) G._is_abelian = True G._degree = degree G._order = order return G def AlternatingGroup(n): """ Generates the alternating group on ``n`` elements as a permutation group. For ``n > 2``, the generators taken are ``(0 1 2), (0 1 2 ... n-1)`` for ``n`` odd and ``(0 1 2), (1 2 ... n-1)`` for ``n`` even (See [1], p.31, ex.6.9.). After the group is generated, some of its basic properties are set. The cases ``n = 1, 2`` are handled separately. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> G = AlternatingGroup(4) >>> G.is_group True >>> a = list(G.generate_dimino()) >>> len(a) 12 >>> all(perm.is_even for perm in a) True See Also ======== SymmetricGroup, CyclicGroup, DihedralGroup References ========== [1] Armstrong, M. "Groups and Symmetry" """ # small cases are special if n in (1, 2): return PermutationGroup([Permutation([0])]) a = list(range(n)) a[0], a[1], a[2] = a[1], a[2], a[0] gen1 = a if n % 2: a = list(range(1, n)) a.append(0) gen2 = a else: a = list(range(2, n)) a.append(1) a.insert(0, 0) gen2 = a gens = [gen1, gen2] if gen1 == gen2: gens = gens[:1] G = PermutationGroup([_af_new(a) for a in gens], dups=False) if n < 4: G._is_abelian = True G._is_nilpotent = True else: G._is_abelian = False G._is_nilpotent = False if n < 5: G._is_solvable = True else: G._is_solvable = False G._degree = n G._is_transitive = True G._is_alt = True return G def CyclicGroup(n): """ Generates the cyclic group of order ``n`` as a permutation group. The generator taken is the ``n``-cycle ``(0 1 2 ... n-1)`` (in cycle notation). After the group is generated, some of its basic properties are set. Examples ======== >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(6) >>> G.is_group True >>> G.order() 6 >>> list(G.generate_schreier_sims(af=True)) [[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1], [3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]] See Also ======== SymmetricGroup, DihedralGroup, AlternatingGroup """ a = list(range(1, n)) a.append(0) gen = _af_new(a) G = PermutationGroup([gen]) G._is_abelian = True G._is_nilpotent = True G._is_solvable = True G._degree = n G._is_transitive = True G._order = n return G def DihedralGroup(n): r""" Generates the dihedral group `D_n` as a permutation group. The dihedral group `D_n` is the group of symmetries of the regular ``n``-gon. The generators taken are the ``n``-cycle ``a = (0 1 2 ... n-1)`` (a rotation of the ``n``-gon) and ``b = (0 n-1)(1 n-2)...`` (a reflection of the ``n``-gon) in cycle rotation. It is easy to see that these satisfy ``a**n = b**2 = 1`` and ``bab = ~a`` so they indeed generate `D_n` (See [1]). After the group is generated, some of its basic properties are set. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(5) >>> G.is_group True >>> a = list(G.generate_dimino()) >>> [perm.cyclic_form for perm in a] [[], [[0, 1, 2, 3, 4]], [[0, 2, 4, 1, 3]], [[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]], [[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]], [[0, 3], [1, 2]]] See Also ======== SymmetricGroup, CyclicGroup, AlternatingGroup References ========== [1] https://en.wikipedia.org/wiki/Dihedral_group """ # small cases are special if n == 1: return PermutationGroup([Permutation([1, 0])]) if n == 2: return PermutationGroup([Permutation([1, 0, 3, 2]), Permutation([2, 3, 0, 1]), Permutation([3, 2, 1, 0])]) a = list(range(1, n)) a.append(0) gen1 = _af_new(a) a = list(range(n)) a.reverse() gen2 = _af_new(a) G = PermutationGroup([gen1, gen2]) # if n is a power of 2, group is nilpotent if n & (n-1) == 0: G._is_nilpotent = True else: G._is_nilpotent = False G._is_abelian = False G._is_solvable = True G._degree = n G._is_transitive = True G._order = 2*n return G def SymmetricGroup(n): """ Generates the symmetric group on ``n`` elements as a permutation group. The generators taken are the ``n``-cycle ``(0 1 2 ... n-1)`` and the transposition ``(0 1)`` (in cycle notation). (See [1]). After the group is generated, some of its basic properties are set. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> G = SymmetricGroup(4) >>> G.is_group True >>> G.order() 24 >>> list(G.generate_schreier_sims(af=True)) [[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1], [1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3], [2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0], [3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0], [0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]] See Also ======== CyclicGroup, DihedralGroup, AlternatingGroup References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_group#Generators_and_relations """ if n == 1: G = PermutationGroup([Permutation([0])]) elif n == 2: G = PermutationGroup([Permutation([1, 0])]) else: a = list(range(1, n)) a.append(0) gen1 = _af_new(a) a = list(range(n)) a[0], a[1] = a[1], a[0] gen2 = _af_new(a) G = PermutationGroup([gen1, gen2]) if n < 3: G._is_abelian = True G._is_nilpotent = True else: G._is_abelian = False G._is_nilpotent = False if n < 5: G._is_solvable = True else: G._is_solvable = False G._degree = n G._is_transitive = True G._is_sym = True return G def RubikGroup(n): """Return a group of Rubik's cube generators >>> from sympy.combinatorics.named_groups import RubikGroup >>> RubikGroup(2).is_group True """ from sympy.combinatorics.generators import rubik if n <= 1: raise ValueError("Invalid cube. n has to be greater than 1") return PermutationGroup(rubik(n))
9b32e7a533398d6dd8171a6429ff55b168441dfb6f3aa5f354850b981958ddf2
# -*- coding: utf-8 -*- """Finitely Presented Groups and its algorithms. """ from __future__ import print_function, division from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement, free_group) from sympy.combinatorics.rewritingsystem import RewritingSystem from sympy.combinatorics.coset_table import (CosetTable, coset_enumeration_r, coset_enumeration_c) from sympy.combinatorics import PermutationGroup from sympy.printing.defaults import DefaultPrinting from sympy.utilities import public from itertools import product @public def fp_group(fr_grp, relators=[]): _fp_group = FpGroup(fr_grp, relators) return (_fp_group,) + tuple(_fp_group._generators) @public def xfp_group(fr_grp, relators=[]): _fp_group = FpGroup(fr_grp, relators) return (_fp_group, _fp_group._generators) # Does not work. Both symbols and pollute are undefined. Never tested. @public def vfp_group(fr_grpm, relators): _fp_group = FpGroup(symbols, relators) pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators) return _fp_group def _parse_relators(rels): """Parse the passed relators.""" return rels ############################################################################### # FINITELY PRESENTED GROUPS # ############################################################################### class FpGroup(DefaultPrinting): """ The FpGroup would take a FreeGroup and a list/tuple of relators, the relators would be specified in such a way that each of them be equal to the identity of the provided free group. """ is_group = True is_FpGroup = True is_PermutationGroup = False def __init__(self, fr_grp, relators): relators = _parse_relators(relators) self.free_group = fr_grp self.relators = relators self.generators = self._generators() self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self}) # CosetTable instance on identity subgroup self._coset_table = None # returns whether coset table on identity subgroup # has been standardized self._is_standardized = False self._order = None self._center = None self._rewriting_system = RewritingSystem(self) self._perm_isomorphism = None return def _generators(self): return self.free_group.generators def make_confluent(self): ''' Try to make the group's rewriting system confluent ''' self._rewriting_system.make_confluent() return def reduce(self, word): ''' Return the reduced form of `word` in `self` according to the group's rewriting system. If it's confluent, the reduced form is the unique normal form of the word in the group. ''' return self._rewriting_system.reduce(word) def equals(self, word1, word2): ''' Compare `word1` and `word2` for equality in the group using the group's rewriting system. If the system is confluent, the returned answer is necessarily correct. (If it isn't, `False` could be returned in some cases where in fact `word1 == word2`) ''' if self.reduce(word1*word2**-1) == self.identity: return True elif self._rewriting_system.is_confluent: return False return None @property def identity(self): return self.free_group.identity def __contains__(self, g): return g in self.free_group def subgroup(self, gens, C=None, homomorphism=False): ''' Return the subgroup generated by `gens` using the Reidemeister-Schreier algorithm homomorphism -- When set to True, return a dictionary containing the images of the presentation generators in the original group. Examples ======== >>> from sympy.combinatorics.fp_groups import (FpGroup, FpSubgroup) >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]) >>> H = [x*y, x**-1*y**-1*x*y*x] >>> K, T = f.subgroup(H, homomorphism=True) >>> T(K.generators) [x*y, x**-1*y**2*x**-1] ''' if not all([isinstance(g, FreeGroupElement) for g in gens]): raise ValueError("Generators must be `FreeGroupElement`s") if not all([g.group == self.free_group for g in gens]): raise ValueError("Given generators are not members of the group") if homomorphism: g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True) else: g, rels = reidemeister_presentation(self, gens, C=C) if g: g = FpGroup(g[0].group, rels) else: g = FpGroup(free_group('')[0], []) if homomorphism: from sympy.combinatorics.homomorphisms import homomorphism return g, homomorphism(g, self, g.generators, _gens, check=False) return g def coset_enumeration(self, H, strategy="relator_based", max_cosets=None, draft=None, incomplete=False): """ Return an instance of ``coset table``, when Todd-Coxeter algorithm is run over the ``self`` with ``H`` as subgroup, using ``strategy`` argument as strategy. The returned coset table is compressed but not standardized. An instance of `CosetTable` for `fp_grp` can be passed as the keyword argument `draft` in which case the coset enumeration will start with that instance and attempt to complete it. When `incomplete` is `True` and the function is unable to complete for some reason, the partially complete table will be returned. """ if not max_cosets: max_cosets = CosetTable.coset_table_max_limit if strategy == 'relator_based': C = coset_enumeration_r(self, H, max_cosets=max_cosets, draft=draft, incomplete=incomplete) else: C = coset_enumeration_c(self, H, max_cosets=max_cosets, draft=draft, incomplete=incomplete) if C.is_complete(): C.compress() return C def standardize_coset_table(self): """ Standardized the coset table ``self`` and makes the internal variable ``_is_standardized`` equal to ``True``. """ self._coset_table.standardize() self._is_standardized = True def coset_table(self, H, strategy="relator_based", max_cosets=None, draft=None, incomplete=False): """ Return the mathematical coset table of ``self`` in ``H``. """ if not H: if self._coset_table != None: if not self._is_standardized: self.standardize_coset_table() else: C = self.coset_enumeration([], strategy, max_cosets=max_cosets, draft=draft, incomplete=incomplete) self._coset_table = C self.standardize_coset_table() return self._coset_table.table else: C = self.coset_enumeration(H, strategy, max_cosets=max_cosets, draft=draft, incomplete=incomplete) C.standardize() return C.table def order(self, strategy="relator_based"): """ Returns the order of the finitely presented group ``self``. It uses the coset enumeration with identity group as subgroup, i.e ``H=[]``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x, y**2]) >>> f.order(strategy="coset_table_based") 2 """ from sympy import S, gcd if self._order != None: return self._order if self._coset_table != None: self._order = len(self._coset_table.table) elif len(self.relators) == 0: self._order = self.free_group.order() elif len(self.generators) == 1: self._order = abs(gcd([r.array_form[0][1] for r in self.relators])) elif self._is_infinite(): self._order = S.Infinity else: gens, C = self._finite_index_subgroup() if C: ind = len(C.table) self._order = ind*self.subgroup(gens, C=C).order() else: self._order = self.index([]) return self._order def _is_infinite(self): ''' Test if the group is infinite. Return `True` if the test succeeds and `None` otherwise ''' used_gens = set() for r in self.relators: used_gens.update(r.contains_generators()) if any([g not in used_gens for g in self.generators]): return True # Abelianisation test: check is the abelianisation is infinite abelian_rels = [] from sympy.polys.solvers import RawMatrix as Matrix from sympy.polys.domains import ZZ from sympy.matrices.normalforms import invariant_factors for rel in self.relators: abelian_rels.append([rel.exponent_sum(g) for g in self.generators]) m = Matrix(abelian_rels) setattr(m, "ring", ZZ) if 0 in invariant_factors(m): return True else: return None def _finite_index_subgroup(self, s=[]): ''' Find the elements of `self` that generate a finite index subgroup and, if found, return the list of elements and the coset table of `self` by the subgroup, otherwise return `(None, None)` ''' gen = self.most_frequent_generator() rels = list(self.generators) rels.extend(self.relators) if not s: if len(self.generators) == 2: s = [gen] + [g for g in self.generators if g != gen] else: rand = self.free_group.identity i = 0 while ((rand in rels or rand**-1 in rels or rand.is_identity) and i<10): rand = self.random() i += 1 s = [gen, rand] + [g for g in self.generators if g != gen] mid = (len(s)+1)//2 half1 = s[:mid] half2 = s[mid:] draft1 = None draft2 = None m = 200 C = None while not C and (m/2 < CosetTable.coset_table_max_limit): m = min(m, CosetTable.coset_table_max_limit) draft1 = self.coset_enumeration(half1, max_cosets=m, draft=draft1, incomplete=True) if draft1.is_complete(): C = draft1 half = half1 else: draft2 = self.coset_enumeration(half2, max_cosets=m, draft=draft2, incomplete=True) if draft2.is_complete(): C = draft2 half = half2 if not C: m *= 2 if not C: return None, None C.compress() return half, C def most_frequent_generator(self): gens = self.generators rels = self.relators freqs = [sum([r.generator_count(g) for r in rels]) for g in gens] return gens[freqs.index(max(freqs))] def random(self): import random r = self.free_group.identity for i in range(random.randint(2,3)): r = r*random.choice(self.generators)**random.choice([1,-1]) return r def index(self, H, strategy="relator_based"): """ Return the index of subgroup ``H`` in group ``self``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3]) >>> f.index([x]) 4 """ # TODO: use |G:H| = |G|/|H| (currently H can't be made into a group) # when we know |G| and |H| if H == []: return self.order() else: C = self.coset_enumeration(H, strategy) return len(C.table) def __str__(self): if self.free_group.rank > 30: str_form = "<fp group with %s generators>" % self.free_group.rank else: str_form = "<fp group on the generators %s>" % str(self.generators) return str_form __repr__ = __str__ #============================================================================== # PERMUTATION GROUP METHODS #============================================================================== def _to_perm_group(self): ''' Return an isomorphic permutation group and the isomorphism. The implementation is dependent on coset enumeration so will only terminate for finite groups. ''' from sympy.combinatorics import Permutation, PermutationGroup from sympy.combinatorics.homomorphisms import homomorphism from sympy import S if self.order() == S.Infinity: raise NotImplementedError("Permutation presentation of infinite " "groups is not implemented") if self._perm_isomorphism: T = self._perm_isomorphism P = T.image() else: C = self.coset_table([]) gens = self.generators images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens] images = [Permutation(i) for i in images] P = PermutationGroup(images) T = homomorphism(self, P, gens, images, check=False) self._perm_isomorphism = T return P, T def _perm_group_list(self, method_name, *args): ''' Given the name of a `PermutationGroup` method (returning a subgroup or a list of subgroups) and (optionally) additional arguments it takes, return a list or a list of lists containing the generators of this (or these) subgroups in terms of the generators of `self`. ''' P, T = self._to_perm_group() perm_result = getattr(P, method_name)(*args) single = False if isinstance(perm_result, PermutationGroup): perm_result, single = [perm_result], True result = [] for group in perm_result: gens = group.generators result.append(T.invert(gens)) return result[0] if single else result def derived_series(self): ''' Return the list of lists containing the generators of the subgroups in the derived series of `self`. ''' return self._perm_group_list('derived_series') def lower_central_series(self): ''' Return the list of lists containing the generators of the subgroups in the lower central series of `self`. ''' return self._perm_group_list('lower_central_series') def center(self): ''' Return the list of generators of the center of `self`. ''' return self._perm_group_list('center') def derived_subgroup(self): ''' Return the list of generators of the derived subgroup of `self`. ''' return self._perm_group_list('derived_subgroup') def centralizer(self, other): ''' Return the list of generators of the centralizer of `other` (a list of elements of `self`) in `self`. ''' T = self._to_perm_group()[1] other = T(other) return self._perm_group_list('centralizer', other) def normal_closure(self, other): ''' Return the list of generators of the normal closure of `other` (a list of elements of `self`) in `self`. ''' T = self._to_perm_group()[1] other = T(other) return self._perm_group_list('normal_closure', other) def _perm_property(self, attr): ''' Given an attribute of a `PermutationGroup`, return its value for a permutation group isomorphic to `self`. ''' P = self._to_perm_group()[0] return getattr(P, attr) @property def is_abelian(self): ''' Check if `self` is abelian. ''' return self._perm_property("is_abelian") @property def is_nilpotent(self): ''' Check if `self` is nilpotent. ''' return self._perm_property("is_nilpotent") @property def is_solvable(self): ''' Check if `self` is solvable. ''' return self._perm_property("is_solvable") @property def elements(self): ''' List the elements of `self`. ''' P, T = self._to_perm_group() return T.invert(P._elements) class FpSubgroup(DefaultPrinting): ''' The class implementing a subgroup of an FpGroup or a FreeGroup (only finite index subgroups are supported at this point). This is to be used if one wishes to check if an element of the original group belongs to the subgroup ''' def __init__(self, G, gens, normal=False): super(FpSubgroup,self).__init__() self.parent = G self.generators = list(set([g for g in gens if g != G.identity])) self._min_words = None #for use in __contains__ self.C = None self.normal = normal def __contains__(self, g): if isinstance(self.parent, FreeGroup): if self._min_words is None: # make _min_words - a list of subwords such that # g is in the subgroup if and only if it can be # partitioned into these subwords. Infinite families of # subwords are presented by tuples, e.g. (r, w) # stands for the family of subwords r*w**n*r**-1 def _process(w): # this is to be used before adding new words # into _min_words; if the word w is not cyclically # reduced, it will generate an infinite family of # subwords so should be written as a tuple; # if it is, w**-1 should be added to the list # as well p, r = w.cyclic_reduction(removed=True) if not r.is_identity: return [(r, p)] else: return [w, w**-1] # make the initial list gens = [] for w in self.generators: if self.normal: w = w.cyclic_reduction() gens.extend(_process(w)) for w1 in gens: for w2 in gens: # if w1 and w2 are equal or are inverses, continue if w1 == w2 or (not isinstance(w1, tuple) and w1**-1 == w2): continue # if the start of one word is the inverse of the # end of the other, their multiple should be added # to _min_words because of cancellation if isinstance(w1, tuple): # start, end s1, s2 = w1[0][0], w1[0][0]**-1 else: s1, s2 = w1[0], w1[len(w1)-1] if isinstance(w2, tuple): # start, end r1, r2 = w2[0][0], w2[0][0]**-1 else: r1, r2 = w2[0], w2[len(w1)-1] # p1 and p2 are w1 and w2 or, in case when # w1 or w2 is an infinite family, a representative p1, p2 = w1, w2 if isinstance(w1, tuple): p1 = w1[0]*w1[1]*w1[0]**-1 if isinstance(w2, tuple): p2 = w2[0]*w2[1]*w2[0]**-1 # add the product of the words to the list is necessary if r1**-1 == s2 and not (p1*p2).is_identity: new = _process(p1*p2) if not new in gens: gens.extend(new) if r2**-1 == s1 and not (p2*p1).is_identity: new = _process(p2*p1) if not new in gens: gens.extend(new) self._min_words = gens min_words = self._min_words def _is_subword(w): # check if w is a word in _min_words or one of # the infinite families in it w, r = w.cyclic_reduction(removed=True) if r.is_identity or self.normal: return w in min_words else: t = [s[1] for s in min_words if isinstance(s, tuple) and s[0] == r] return [s for s in t if w.power_of(s)] != [] # store the solution of words for which the result of # _word_break (below) is known known = {} def _word_break(w): # check if w can be written as a product of words # in min_words if len(w) == 0: return True i = 0 while i < len(w): i += 1 prefix = w.subword(0, i) if not _is_subword(prefix): continue rest = w.subword(i, len(w)) if rest not in known: known[rest] = _word_break(rest) if known[rest]: return True return False if self.normal: g = g.cyclic_reduction() return _word_break(g) else: if self.C is None: C = self.parent.coset_enumeration(self.generators) self.C = C i = 0 C = self.C for j in range(len(g)): i = C.table[i][C.A_dict[g[j]]] return i == 0 def order(self): from sympy import S if not self.generators: return 1 if isinstance(self.parent, FreeGroup): return S.Infinity if self.C is None: C = self.parent.coset_enumeration(self.generators) self.C = C # This is valid because `len(self.C.table)` (the index of the subgroup) # will always be finite - otherwise coset enumeration doesn't terminate return self.parent.order()/len(self.C.table) def to_FpGroup(self): if isinstance(self.parent, FreeGroup): gen_syms = [('x_%d'%i) for i in range(len(self.generators))] return free_group(', '.join(gen_syms))[0] return self.parent.subgroup(C=self.C) def __str__(self): if len(self.generators) > 30: str_form = "<fp subgroup with %s generators>" % len(self.generators) else: str_form = "<fp subgroup on the generators %s>" % str(self.generators) return str_form __repr__ = __str__ ############################################################################### # LOW INDEX SUBGROUPS # ############################################################################### def low_index_subgroups(G, N, Y=[]): """ Implements the Low Index Subgroups algorithm, i.e find all subgroups of ``G`` upto a given index ``N``. This implements the method described in [Sim94]. This procedure involves a backtrack search over incomplete Coset Tables, rather than over forced coincidences. Parameters ========== G: An FpGroup < X|R > N: positive integer, representing the maximum index value for subgroups Y: (an optional argument) specifying a list of subgroup generators, such that each of the resulting subgroup contains the subgroup generated by Y. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**4]) >>> L = low_index_subgroups(f, 4) >>> for coset_table in L: ... print(coset_table.table) [[0, 0, 0, 0]] [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]] [[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]] [[1, 1, 0, 0], [0, 0, 1, 1]] References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" Section 5.4 .. [2] Marston Conder and Peter Dobcsanyi "Applications and Adaptions of the Low Index Subgroups Procedure" """ C = CosetTable(G, []) R = G.relators # length chosen for the length of the short relators len_short_rel = 5 # elements of R2 only checked at the last step for complete # coset tables R2 = set([rel for rel in R if len(rel) > len_short_rel]) # elements of R1 are used in inner parts of the process to prune # branches of the search tree, R1 = set([rel.identity_cyclic_reduction() for rel in set(R) - R2]) R1_c_list = C.conjugates(R1) S = [] descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y) return S def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y): A_dict = C.A_dict A_dict_inv = C.A_dict_inv if C.is_complete(): # if C is complete then it only needs to test # whether the relators in R2 are satisfied for w, alpha in product(R2, C.omega): if not C.scan_check(alpha, w): return # relators in R2 are satisfied, append the table to list S.append(C) else: # find the first undefined entry in Coset Table for alpha, x in product(range(len(C.table)), C.A): if C.table[alpha][A_dict[x]] is None: # this is "x" in pseudo-code (using "y" makes it clear) undefined_coset, undefined_gen = alpha, x break # for filling up the undefine entry we try all possible values # of β ∈ Ω or β = n where β^(undefined_gen^-1) is undefined reach = C.omega + [C.n] for beta in reach: if beta < N: if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None: try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \ undefined_gen, beta, Y) def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y): r""" Solves the problem of trying out each individual possibility for `\alpha^x. """ D = C.copy() if beta == D.n and beta < N: D.table.append([None]*len(D.A)) D.p.append(beta) D.table[alpha][D.A_dict[x]] = beta D.table[beta][D.A_dict_inv[x]] = alpha D.deduction_stack.append((alpha, x)) if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \ R1_c_list[D.A_dict_inv[x]]): return for w in Y: if not D.scan_check(0, w): return if first_in_class(D, Y): descendant_subgroups(S, D, R1_c_list, x, R2, N, Y) def first_in_class(C, Y=[]): """ Checks whether the subgroup ``H=G1`` corresponding to the Coset Table could possibly be the canonical representative of its conjugacy class. Parameters ========== C: CosetTable Returns ======= bool: True/False If this returns False, then no descendant of C can have that property, and so we can abandon C. If it returns True, then we need to process further the node of the search tree corresponding to C, and so we call ``descendant_subgroups`` recursively on C. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**4]) >>> C = CosetTable(f, []) >>> C.table = [[0, 0, None, None]] >>> first_in_class(C) True >>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1] >>> first_in_class(C) True >>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]] >>> C.p = [0, 1, 2] >>> first_in_class(C) False >>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]] >>> first_in_class(C) False # TODO:: Sims points out in [Sim94] that performance can be improved by # remembering some of the information computed by ``first_in_class``. If # the ``continue α`` statement is executed at line 14, then the same thing # will happen for that value of α in any descendant of the table C, and so # the values the values of α for which this occurs could profitably be # stored and passed through to the descendants of C. Of course this would # make the code more complicated. # The code below is taken directly from the function on page 208 of [Sim94] # ν[α] """ n = C.n # lamda is the largest numbered point in Ω_c_α which is currently defined lamda = -1 # for α ∈ Ω_c, ν[α] is the point in Ω_c_α corresponding to α nu = [None]*n # for α ∈ Ω_c_α, μ[α] is the point in Ω_c corresponding to α mu = [None]*n # mutually ν and μ are the mutually-inverse equivalence maps between # Ω_c_α and Ω_c next_alpha = False # For each 0≠α ∈ [0 .. nc-1], we start by constructing the equivalent # standardized coset table C_α corresponding to H_α for alpha in range(1, n): # reset ν to "None" after previous value of α for beta in range(lamda+1): nu[mu[beta]] = None # we only want to reject our current table in favour of a preceding # table in the ordering in which 1 is replaced by α, if the subgroup # G_α corresponding to this preceding table definitely contains the # given subgroup for w in Y: # TODO: this should support input of a list of general words # not just the words which are in "A" (i.e gen and gen^-1) if C.table[alpha][C.A_dict[w]] != alpha: # continue with α next_alpha = True break if next_alpha: next_alpha = False continue # try α as the new point 0 in Ω_C_α mu[0] = alpha nu[alpha] = 0 # compare corresponding entries in C and C_α lamda = 0 for beta in range(n): for x in C.A: gamma = C.table[beta][C.A_dict[x]] delta = C.table[mu[beta]][C.A_dict[x]] # if either of the entries is undefined, # we move with next α if gamma is None or delta is None: # continue with α next_alpha = True break if nu[delta] is None: # delta becomes the next point in Ω_C_α lamda += 1 nu[delta] = lamda mu[lamda] = delta if nu[delta] < gamma: return False if nu[delta] > gamma: # continue with α next_alpha = True break if next_alpha: next_alpha = False break return True #======================================================================== # Simplifying Presentation #======================================================================== def simplify_presentation(*args, **kwargs): ''' For an instance of `FpGroup`, return a simplified isomorphic copy of the group (e.g. remove redundant generators or relators). Alternatively, a list of generators and relators can be passed in which case the simplified lists will be returned. By default, the generators of the group are unchanged. If you would like to remove redundant generators, set the keyword argument `change_gens = True`. ''' change_gens = kwargs.get("change_gens", False) if len(args) == 1: if not isinstance(args[0], FpGroup): raise TypeError("The argument must be an instance of FpGroup") G = args[0] gens, rels = simplify_presentation(G.generators, G.relators, change_gens=change_gens) if gens: return FpGroup(gens[0].group, rels) return FpGroup([]) elif len(args) == 2: gens, rels = args[0][:], args[1][:] identity = gens[0].group.identity else: if len(args) == 0: m = "Not enough arguments" else: m = "Too many arguments" raise RuntimeError(m) prev_gens = [] prev_rels = [] while not set(prev_rels) == set(rels): prev_rels = rels while change_gens and not set(prev_gens) == set(gens): prev_gens = gens gens, rels = elimination_technique_1(gens, rels, identity) rels = _simplify_relators(rels, identity) if change_gens: syms = [g.array_form[0][0] for g in gens] F = free_group(syms)[0] identity = F.identity gens = F.generators subs = dict(zip(syms, gens)) for j, r in enumerate(rels): a = r.array_form rel = identity for sym, p in a: rel = rel*subs[sym]**p rels[j] = rel return gens, rels def _simplify_relators(rels, identity): """Relies upon ``_simplification_technique_1`` for its functioning. """ rels = rels[:] rels = list(set(_simplification_technique_1(rels))) rels.sort() rels = [r.identity_cyclic_reduction() for r in rels] try: rels.remove(identity) except ValueError: pass return rels # Pg 350, section 2.5.1 from [2] def elimination_technique_1(gens, rels, identity): rels = rels[:] # the shorter relators are examined first so that generators selected for # elimination will have shorter strings as equivalent rels.sort() gens = gens[:] redundant_gens = {} redundant_rels = [] used_gens = set() # examine each relator in relator list for any generator occurring exactly # once for rel in rels: # don't look for a redundant generator in a relator which # depends on previously found ones contained_gens = rel.contains_generators() if any([g in contained_gens for g in redundant_gens]): continue contained_gens = list(contained_gens) contained_gens.sort(reverse = True) for gen in contained_gens: if rel.generator_count(gen) == 1 and gen not in used_gens: k = rel.exponent_sum(gen) gen_index = rel.index(gen**k) bk = rel.subword(gen_index + 1, len(rel)) fw = rel.subword(0, gen_index) chi = bk*fw redundant_gens[gen] = chi**(-1*k) used_gens.update(chi.contains_generators()) redundant_rels.append(rel) break rels = [r for r in rels if r not in redundant_rels] # eliminate the redundant generators from remaining relators rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels] rels = list(set(rels)) try: rels.remove(identity) except ValueError: pass gens = [g for g in gens if g not in redundant_gens] return gens, rels def _simplification_technique_1(rels): """ All relators are checked to see if they are of the form `gen^n`. If any such relators are found then all other relators are processed for strings in the `gen` known order. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import _simplification_technique_1 >>> F, x, y = free_group("x, y") >>> w1 = [x**2*y**4, x**3] >>> _simplification_technique_1(w1) [x**-1*y**4, x**3] >>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5] >>> _simplification_technique_1(w2) [x**-1*y*x**-1, x**3, x**-1*y**-2, y**5] >>> w3 = [x**6*y**4, x**4] >>> _simplification_technique_1(w3) [x**2*y**4, x**4] """ from sympy import gcd rels = rels[:] # dictionary with "gen: n" where gen^n is one of the relators exps = {} for i in range(len(rels)): rel = rels[i] if rel.number_syllables() == 1: g = rel[0] exp = abs(rel.array_form[0][1]) if rel.array_form[0][1] < 0: rels[i] = rels[i]**-1 g = g**-1 if g in exps: exp = gcd(exp, exps[g].array_form[0][1]) exps[g] = g**exp one_syllables_words = exps.values() # decrease some of the exponents in relators, making use of the single # syllable relators for i in range(len(rels)): rel = rels[i] if rel in one_syllables_words: continue rel = rel.eliminate_words(one_syllables_words, _all = True) # if rels[i] contains g**n where abs(n) is greater than half of the power p # of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0) for g in rel.contains_generators(): if g in exps: exp = exps[g].array_form[0][1] max_exp = (exp + 1)//2 rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True) rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True) rels[i] = rel rels = [r.identity_cyclic_reduction() for r in rels] return rels ############################################################################### # SUBGROUP PRESENTATIONS # ############################################################################### # Pg 175 [1] def define_schreier_generators(C, homomorphism=False): ''' Parameters ========== C -- Coset table. homomorphism -- When set to True, return a dictionary containing the images of the presentation generators in the original group. ''' y = [] gamma = 1 f = C.fp_group X = f.generators if homomorphism: # `_gens` stores the elements of the parent group to # to which the schreier generators correspond to. _gens = {} # compute the schreier Traversal tau = {} tau[0] = f.identity C.P = [[None]*len(C.A) for i in range(C.n)] for alpha, x in product(C.omega, C.A): beta = C.table[alpha][C.A_dict[x]] if beta == gamma: C.P[alpha][C.A_dict[x]] = "<identity>" C.P[beta][C.A_dict_inv[x]] = "<identity>" gamma += 1 if homomorphism: tau[beta] = tau[alpha]*x elif x in X and C.P[alpha][C.A_dict[x]] is None: y_alpha_x = '%s_%s' % (x, alpha) y.append(y_alpha_x) C.P[alpha][C.A_dict[x]] = y_alpha_x if homomorphism: _gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1 grp_gens = list(free_group(', '.join(y))) C._schreier_free_group = grp_gens.pop(0) C._schreier_generators = grp_gens if homomorphism: C._schreier_gen_elem = _gens # replace all elements of P by, free group elements for i, j in product(range(len(C.P)), range(len(C.A))): # if equals "<identity>", replace by identity element if C.P[i][j] == "<identity>": C.P[i][j] = C._schreier_free_group.identity elif isinstance(C.P[i][j], str): r = C._schreier_generators[y.index(C.P[i][j])] C.P[i][j] = r beta = C.table[i][j] C.P[beta][j + 1] = r**-1 def reidemeister_relators(C): R = C.fp_group.relators rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)] order_1_gens = set([i for i in rels if len(i) == 1]) # remove all the order 1 generators from relators rels = list(filter(lambda rel: rel not in order_1_gens, rels)) # replace order 1 generators by identity element in reidemeister relators for i in range(len(rels)): w = rels[i] w = w.eliminate_words(order_1_gens, _all=True) rels[i] = w C._schreier_generators = [i for i in C._schreier_generators if not (i in order_1_gens or i**-1 in order_1_gens)] # Tietze transformation 1 i.e TT_1 # remove cyclic conjugate elements from relators i = 0 while i < len(rels): w = rels[i] j = i + 1 while j < len(rels): if w.is_cyclic_conjugate(rels[j]): del rels[j] else: j += 1 i += 1 C._reidemeister_relators = rels def rewrite(C, alpha, w): """ Parameters ========== C: CosetTable α: A live coset w: A word in `A*` Returns ======= ρ(τ(α), w) Examples ======== >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x ,y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**6]) >>> C = CosetTable(f, []) >>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]] >>> C.p = [0, 1, 2, 3, 4, 5] >>> define_schreier_generators(C) >>> rewrite(C, 0, (x*y)**6) x_4*y_2*x_3*x_1*x_2*y_4*x_5 """ v = C._schreier_free_group.identity for i in range(len(w)): x_i = w[i] v = v*C.P[alpha][C.A_dict[x_i]] alpha = C.table[alpha][C.A_dict[x_i]] return v # Pg 350, section 2.5.2 from [2] def elimination_technique_2(C): """ This technique eliminates one generator at a time. Heuristically this seems superior in that we may select for elimination the generator with shortest equivalent string at each stage. >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \ reidemeister_relators, define_schreier_generators, elimination_technique_2 >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x] >>> C = coset_enumeration_r(f, H) >>> C.compress(); C.standardize() >>> define_schreier_generators(C) >>> reidemeister_relators(C) >>> elimination_technique_2(C) ([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2]) """ rels = C._reidemeister_relators rels.sort(reverse=True) gens = C._schreier_generators for i in range(len(gens) - 1, -1, -1): rel = rels[i] for j in range(len(gens) - 1, -1, -1): gen = gens[j] if rel.generator_count(gen) == 1: k = rel.exponent_sum(gen) gen_index = rel.index(gen**k) bk = rel.subword(gen_index + 1, len(rel)) fw = rel.subword(0, gen_index) rep_by = (bk*fw)**(-1*k) del rels[i]; del gens[j] for l in range(len(rels)): rels[l] = rels[l].eliminate_word(gen, rep_by) break C._reidemeister_relators = rels C._schreier_generators = gens return C._schreier_generators, C._reidemeister_relators def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False): """ Parameters ========== fp_group: A finitely presented group, an instance of FpGroup H: A subgroup whose presentation is to be found, given as a list of words in generators of `fp_grp` homomorphism: When set to True, return a homomorphism from the subgroup to the parent group Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation >>> F, x, y = free_group("x, y") Example 5.6 Pg. 177 from [1] >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]) >>> H = [x*y, x**-1*y**-1*x*y*x] >>> reidemeister_presentation(f, H) ((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1)) Example 5.8 Pg. 183 from [1] >>> f = FpGroup(F, [x**3, y**3, (x*y)**3]) >>> H = [x*y, x*y**-1] >>> reidemeister_presentation(f, H) ((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0)) Exercises Q2. Pg 187 from [1] >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3]) >>> H = [x] >>> reidemeister_presentation(f, H) ((x_0,), (x_0**4,)) Example 5.9 Pg. 183 from [1] >>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2]) >>> H = [x] >>> reidemeister_presentation(f, H) ((x_0,), (x_0**6,)) """ if not C: C = coset_enumeration_r(fp_grp, H) C.compress(); C.standardize() define_schreier_generators(C, homomorphism=homomorphism) reidemeister_relators(C) gens, rels = C._schreier_generators, C._reidemeister_relators gens, rels = simplify_presentation(gens, rels, change_gens=True) C.schreier_generators = tuple(gens) C.reidemeister_relators = tuple(rels) if homomorphism: _gens = [] for gen in gens: _gens.append(C._schreier_gen_elem[str(gen)]) return C.schreier_generators, C.reidemeister_relators, _gens return C.schreier_generators, C.reidemeister_relators FpGroupElement = FreeGroupElement
85dd6940795f44ec6927b84073b479df34dec419d6e8cdd61039a8cb5ac2df75
from __future__ import print_function, division from sympy import Integer from sympy.core import Symbol from sympy.core.compatibility import range from sympy.utilities import public @public def approximants(l, X=Symbol('x'), simplify=False): """ Return a generator for consecutive Pade approximants for a series. It can also be used for computing the rational generating function of a series when possible, since the last approximant returned by the generator will be the generating function (if any). The input list can contain more complex expressions than integer or rational numbers; symbols may also be involved in the computation. An example below show how to compute the generating function of the whole Pascal triangle. The generator can be asked to apply the sympy.simplify function on each generated term, which will make the computation slower; however it may be useful when symbols are involved in the expressions. Examples ======== >>> from sympy.series import approximants >>> from sympy import lucas, fibonacci, symbols, binomial >>> g = [lucas(k) for k in range(16)] >>> [e for e in approximants(g)] [2, -4/(x - 2), (5*x - 2)/(3*x - 1), (x - 2)/(x**2 + x - 1)] >>> h = [fibonacci(k) for k in range(16)] >>> [e for e in approximants(h)] [x, -x/(x - 1), (x**2 - x)/(2*x - 1), -x/(x**2 + x - 1)] >>> x, t = symbols("x,t") >>> p=[sum(binomial(k,i)*x**i for i in range(k+1)) for k in range(16)] >>> y = approximants(p, t) >>> for k in range(3): print(next(y)) 1 (x + 1)/((-x - 1)*(t*(x + 1) + (x + 1)/(-x - 1))) nan >>> y = approximants(p, t, simplify=True) >>> for k in range(3): print(next(y)) 1 -1/(t*(x + 1) - 1) nan See Also ======== See function sympy.concrete.guess.guess_generating_function_rational and function mpmath.pade """ p1, q1 = [Integer(1)], [Integer(0)] p2, q2 = [Integer(0)], [Integer(1)] while len(l): b = 0 while l[b]==0: b += 1 if b == len(l): return m = [Integer(1)/l[b]] for k in range(b+1, len(l)): s = 0 for j in range(b, k): s -= l[j+1] * m[b-j-1] m.append(s/l[b]) l = m a, l[0] = l[0], 0 p = [0] * max(len(p2), b+len(p1)) q = [0] * max(len(q2), b+len(q1)) for k in range(len(p2)): p[k] = a*p2[k] for k in range(b, b+len(p1)): p[k] += p1[k-b] for k in range(len(q2)): q[k] = a*q2[k] for k in range(b, b+len(q1)): q[k] += q1[k-b] while p[-1]==0: p.pop() while q[-1]==0: q.pop() p1, p2 = p2, p q1, q2 = q2, q # yield result from sympy import denom, lcm, simplify as simp c = 1 for x in p: c = lcm(c, denom(x)) for x in q: c = lcm(c, denom(x)) out = ( sum(c*e*X**k for k, e in enumerate(p)) / sum(c*e*X**k for k, e in enumerate(q)) ) if simplify: yield(simp(out)) else: yield out return
dd53c8006144a512829abf2303838eddb2222a0d523d64ba04d47eeed6bfb16b
""" Limits ====== Implemented according to the PhD thesis http://www.cybertester.com/data/gruntz.pdf, which contains very thorough descriptions of the algorithm including many examples. We summarize here the gist of it. All functions are sorted according to how rapidly varying they are at infinity using the following rules. Any two functions f and g can be compared using the properties of L: L=lim log|f(x)| / log|g(x)| (for x -> oo) We define >, < ~ according to:: 1. f > g .... L=+-oo we say that: - f is greater than any power of g - f is more rapidly varying than g - f goes to infinity/zero faster than g 2. f < g .... L=0 we say that: - f is lower than any power of g 3. f ~ g .... L!=0, +-oo we say that: - both f and g are bounded from above and below by suitable integral powers of the other Examples ======== :: 2 < x < exp(x) < exp(x**2) < exp(exp(x)) 2 ~ 3 ~ -5 x ~ x**2 ~ x**3 ~ 1/x ~ x**m ~ -x exp(x) ~ exp(-x) ~ exp(2x) ~ exp(x)**2 ~ exp(x+exp(-x)) f ~ 1/f So we can divide all the functions into comparability classes (x and x^2 belong to one class, exp(x) and exp(-x) belong to some other class). In principle, we could compare any two functions, but in our algorithm, we don't compare anything below the class 2~3~-5 (for example log(x) is below this), so we set 2~3~-5 as the lowest comparability class. Given the function f, we find the list of most rapidly varying (mrv set) subexpressions of it. This list belongs to the same comparability class. Let's say it is {exp(x), exp(2x)}. Using the rule f ~ 1/f we find an element "w" (either from the list or a new one) from the same comparability class which goes to zero at infinity. In our example we set w=exp(-x) (but we could also set w=exp(-2x) or w=exp(-3x) ...). We rewrite the mrv set using w, in our case {1/w, 1/w^2}, and substitute it into f. Then we expand f into a series in w:: f = c0*w^e0 + c1*w^e1 + ... + O(w^en), where e0<e1<...<en, c0!=0 but for x->oo, lim f = lim c0*w^e0, because all the other terms go to zero, because w goes to zero faster than the ci and ei. So:: for e0>0, lim f = 0 for e0<0, lim f = +-oo (the sign depends on the sign of c0) for e0=0, lim f = lim c0 We need to recursively compute limits at several places of the algorithm, but as is shown in the PhD thesis, it always finishes. Important functions from the implementation: compare(a, b, x) compares "a" and "b" by computing the limit L. mrv(e, x) returns list of most rapidly varying (mrv) subexpressions of "e" rewrite(e, Omega, x, wsym) rewrites "e" in terms of w leadterm(f, x) returns the lowest power term in the series of f mrv_leadterm(e, x) returns the lead term (c0, e0) for e limitinf(e, x) computes lim e (for x->oo) limit(e, z, z0) computes any limit by converting it to the case x->oo All the functions are really simple and straightforward except rewrite(), which is the most difficult/complex part of the algorithm. When the algorithm fails, the bugs are usually in the series expansion (i.e. in SymPy) or in rewrite. This code is almost exact rewrite of the Maple code inside the Gruntz thesis. Debugging --------- Because the gruntz algorithm is highly recursive, it's difficult to figure out what went wrong inside a debugger. Instead, turn on nice debug prints by defining the environment variable SYMPY_DEBUG. For example: [user@localhost]: SYMPY_DEBUG=True ./bin/isympy In [1]: limit(sin(x)/x, x, 0) limitinf(_x*sin(1/_x), _x) = 1 +-mrv_leadterm(_x*sin(1/_x), _x) = (1, 0) | +-mrv(_x*sin(1/_x), _x) = set([_x]) | | +-mrv(_x, _x) = set([_x]) | | +-mrv(sin(1/_x), _x) = set([_x]) | | +-mrv(1/_x, _x) = set([_x]) | | +-mrv(_x, _x) = set([_x]) | +-mrv_leadterm(exp(_x)*sin(exp(-_x)), _x, set([exp(_x)])) = (1, 0) | +-rewrite(exp(_x)*sin(exp(-_x)), set([exp(_x)]), _x, _w) = (1/_w*sin(_w), -_x) | +-sign(_x, _x) = 1 | +-mrv_leadterm(1, _x) = (1, 0) +-sign(0, _x) = 0 +-limitinf(1, _x) = 1 And check manually which line is wrong. Then go to the source code and debug this function to figure out the exact problem. """ from __future__ import print_function, division from sympy import cacheit from sympy.core import Basic, S, oo, I, Dummy, Wild, Mul from sympy.core.compatibility import reduce from sympy.functions import log, exp from sympy.series.order import Order from sympy.simplify.powsimp import powsimp, powdenest from sympy.utilities.misc import debug_decorator as debug from sympy.utilities.timeutils import timethis timeit = timethis('gruntz') def compare(a, b, x): """Returns "<" if a<b, "=" for a == b, ">" for a>b""" # log(exp(...)) must always be simplified here for termination la, lb = log(a), log(b) if isinstance(a, Basic) and isinstance(a, exp): la = a.args[0] if isinstance(b, Basic) and isinstance(b, exp): lb = b.args[0] c = limitinf(la/lb, x) if c == 0: return "<" elif c.is_infinite: return ">" else: return "=" class SubsSet(dict): """ Stores (expr, dummy) pairs, and how to rewrite expr-s. The gruntz algorithm needs to rewrite certain expressions in term of a new variable w. We cannot use subs, because it is just too smart for us. For example:: > Omega=[exp(exp(_p - exp(-_p))/(1 - 1/_p)), exp(exp(_p))] > O2=[exp(-exp(_p) + exp(-exp(-_p))*exp(_p)/(1 - 1/_p))/_w, 1/_w] > e = exp(exp(_p - exp(-_p))/(1 - 1/_p)) - exp(exp(_p)) > e.subs(Omega[0],O2[0]).subs(Omega[1],O2[1]) -1/w + exp(exp(p)*exp(-exp(-p))/(1 - 1/p)) is really not what we want! So we do it the hard way and keep track of all the things we potentially want to substitute by dummy variables. Consider the expression:: exp(x - exp(-x)) + exp(x) + x. The mrv set is {exp(x), exp(-x), exp(x - exp(-x))}. We introduce corresponding dummy variables d1, d2, d3 and rewrite:: d3 + d1 + x. This class first of all keeps track of the mapping expr->variable, i.e. will at this stage be a dictionary:: {exp(x): d1, exp(-x): d2, exp(x - exp(-x)): d3}. [It turns out to be more convenient this way round.] But sometimes expressions in the mrv set have other expressions from the mrv set as subexpressions, and we need to keep track of that as well. In this case, d3 is really exp(x - d2), so rewrites at this stage is:: {d3: exp(x-d2)}. The function rewrite uses all this information to correctly rewrite our expression in terms of w. In this case w can be chosen to be exp(-x), i.e. d2. The correct rewriting then is:: exp(-w)/w + 1/w + x. """ def __init__(self): self.rewrites = {} def __repr__(self): return super(SubsSet, self).__repr__() + ', ' + self.rewrites.__repr__() def __getitem__(self, key): if not key in self: self[key] = Dummy() return dict.__getitem__(self, key) def do_subs(self, e): """Substitute the variables with expressions""" for expr, var in self.items(): e = e.xreplace({var: expr}) return e def meets(self, s2): """Tell whether or not self and s2 have non-empty intersection""" return set(self.keys()).intersection(list(s2.keys())) != set() def union(self, s2, exps=None): """Compute the union of self and s2, adjusting exps""" res = self.copy() tr = {} for expr, var in s2.items(): if expr in self: if exps: exps = exps.xreplace({var: res[expr]}) tr[var] = res[expr] else: res[expr] = var for var, rewr in s2.rewrites.items(): res.rewrites[var] = rewr.xreplace(tr) return res, exps def copy(self): """Create a shallow copy of SubsSet""" r = SubsSet() r.rewrites = self.rewrites.copy() for expr, var in self.items(): r[expr] = var return r @debug def mrv(e, x): """Returns a SubsSet of most rapidly varying (mrv) subexpressions of 'e', and e rewritten in terms of these""" e = powsimp(e, deep=True, combine='exp') if not isinstance(e, Basic): raise TypeError("e should be an instance of Basic") if not e.has(x): return SubsSet(), e elif e == x: s = SubsSet() return s, s[x] elif e.is_Mul or e.is_Add: i, d = e.as_independent(x) # throw away x-independent terms if d.func != e.func: s, expr = mrv(d, x) return s, e.func(i, expr) a, b = d.as_two_terms() s1, e1 = mrv(a, x) s2, e2 = mrv(b, x) return mrv_max1(s1, s2, e.func(i, e1, e2), x) elif e.is_Pow: b, e = e.as_base_exp() if b == 1: return SubsSet(), b if e.has(x): return mrv(exp(e * log(b)), x) else: s, expr = mrv(b, x) return s, expr**e elif isinstance(e, log): s, expr = mrv(e.args[0], x) return s, log(expr) elif isinstance(e, exp): # We know from the theory of this algorithm that exp(log(...)) may always # be simplified here, and doing so is vital for termination. if isinstance(e.args[0], log): return mrv(e.args[0].args[0], x) # if a product has an infinite factor the result will be # infinite if there is no zero, otherwise NaN; here, we # consider the result infinite if any factor is infinite li = limitinf(e.args[0], x) if any(_.is_infinite for _ in Mul.make_args(li)): s1 = SubsSet() e1 = s1[e] s2, e2 = mrv(e.args[0], x) su = s1.union(s2)[0] su.rewrites[e1] = exp(e2) return mrv_max3(s1, e1, s2, exp(e2), su, e1, x) else: s, expr = mrv(e.args[0], x) return s, exp(expr) elif e.is_Function: l = [mrv(a, x) for a in e.args] l2 = [s for (s, _) in l if s != SubsSet()] if len(l2) != 1: # e.g. something like BesselJ(x, x) raise NotImplementedError("MRV set computation for functions in" " several variables not implemented.") s, ss = l2[0], SubsSet() args = [ss.do_subs(x[1]) for x in l] return s, e.func(*args) elif e.is_Derivative: raise NotImplementedError("MRV set computation for derviatives" " not implemented yet.") return mrv(e.args[0], x) raise NotImplementedError( "Don't know how to calculate the mrv of '%s'" % e) def mrv_max3(f, expsf, g, expsg, union, expsboth, x): """Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. max() compares (two elements of) f and g and returns either (f, expsf) [if f is larger], (g, expsg) [if g is larger] or (union, expsboth) [if f, g are of the same class]. """ if not isinstance(f, SubsSet): raise TypeError("f should be an instance of SubsSet") if not isinstance(g, SubsSet): raise TypeError("g should be an instance of SubsSet") if f == SubsSet(): return g, expsg elif g == SubsSet(): return f, expsf elif f.meets(g): return union, expsboth c = compare(list(f.keys())[0], list(g.keys())[0], x) if c == ">": return f, expsf elif c == "<": return g, expsg else: if c != "=": raise ValueError("c should be =") return union, expsboth def mrv_max1(f, g, exps, x): """Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. mrv_max1() compares (two elements of) f and g and returns the set, which is in the higher comparability class of the union of both, if they have the same order of variation. Also returns exps, with the appropriate substitutions made. """ u, b = f.union(g, exps) return mrv_max3(f, g.do_subs(exps), g, f.do_subs(exps), u, b, x) @debug @cacheit @timeit def sign(e, x): """ Returns a sign of an expression e(x) for x->oo. :: e > 0 for x sufficiently large ... 1 e == 0 for x sufficiently large ... 0 e < 0 for x sufficiently large ... -1 The result of this function is currently undefined if e changes sign arbitrarily often for arbitrarily large x (e.g. sin(x)). Note that this returns zero only if e is *constantly* zero for x sufficiently large. [If e is constant, of course, this is just the same thing as the sign of e.] """ from sympy import sign as _sign if not isinstance(e, Basic): raise TypeError("e should be an instance of Basic") if e.is_positive: return 1 elif e.is_negative: return -1 elif e.is_zero: return 0 elif not e.has(x): return _sign(e) elif e == x: return 1 elif e.is_Mul: a, b = e.as_two_terms() sa = sign(a, x) if not sa: return 0 return sa * sign(b, x) elif isinstance(e, exp): return 1 elif e.is_Pow: s = sign(e.base, x) if s == 1: return 1 if e.exp.is_Integer: return s**e.exp elif isinstance(e, log): return sign(e.args[0] - 1, x) # if all else fails, do it the hard way c0, e0 = mrv_leadterm(e, x) return sign(c0, x) @debug @timeit @cacheit def limitinf(e, x): """Limit e(x) for x-> oo""" # rewrite e in terms of tractable functions only e = e.rewrite('tractable', deep=True) if not e.has(x): return e # e is a constant if e.has(Order): e = e.expand().removeO() if not x.is_positive: # We make sure that x.is_positive is True so we # get all the correct mathematical behavior from the expression. # We need a fresh variable. p = Dummy('p', positive=True, finite=True) e = e.subs(x, p) x = p c0, e0 = mrv_leadterm(e, x) sig = sign(e0, x) if sig == 1: return S.Zero # e0>0: lim f = 0 elif sig == -1: # e0<0: lim f = +-oo (the sign depends on the sign of c0) if c0.match(I*Wild("a", exclude=[I])): return c0*oo s = sign(c0, x) # the leading term shouldn't be 0: if s == 0: raise ValueError("Leading term should not be 0") return s*oo elif sig == 0: return limitinf(c0, x) # e0=0: lim f = lim c0 def moveup2(s, x): r = SubsSet() for expr, var in s.items(): r[expr.xreplace({x: exp(x)})] = var for var, expr in s.rewrites.items(): r.rewrites[var] = s.rewrites[var].xreplace({x: exp(x)}) return r def moveup(l, x): return [e.xreplace({x: exp(x)}) for e in l] @debug @timeit def calculate_series(e, x, logx=None): """ Calculates at least one term of the series of "e" in "x". This is a place that fails most often, so it is in its own function. """ from sympy.polys import cancel for t in e.lseries(x, logx=logx): t = cancel(t) if t.has(exp) and t.has(log): t = powdenest(t) if t.simplify(): break return t @debug @timeit @cacheit def mrv_leadterm(e, x): """Returns (c0, e0) for e.""" Omega = SubsSet() if not e.has(x): return (e, S.Zero) if Omega == SubsSet(): Omega, exps = mrv(e, x) if not Omega: # e really does not depend on x after simplification series = calculate_series(e, x) c0, e0 = series.leadterm(x) if e0 != 0: raise ValueError("e0 should be 0") return c0, e0 if x in Omega: # move the whole omega up (exponentiate each term): Omega_up = moveup2(Omega, x) e_up = moveup([e], x)[0] exps_up = moveup([exps], x)[0] # NOTE: there is no need to move this down! e = e_up Omega = Omega_up exps = exps_up # # The positive dummy, w, is used here so log(w*2) etc. will expand; # a unique dummy is needed in this algorithm # # For limits of complex functions, the algorithm would have to be # improved, or just find limits of Re and Im components separately. # w = Dummy("w", real=True, positive=True, finite=True) f, logw = rewrite(exps, Omega, x, w) series = calculate_series(f, w, logx=logw) return series.leadterm(w) def build_expression_tree(Omega, rewrites): r""" Helper function for rewrite. We need to sort Omega (mrv set) so that we replace an expression before we replace any expression in terms of which it has to be rewritten:: e1 ---> e2 ---> e3 \ -> e4 Here we can do e1, e2, e3, e4 or e1, e2, e4, e3. To do this we assemble the nodes into a tree, and sort them by height. This function builds the tree, rewrites then sorts the nodes. """ class Node: def ht(self): return reduce(lambda x, y: x + y, [x.ht() for x in self.before], 1) nodes = {} for expr, v in Omega: n = Node() n.before = [] n.var = v n.expr = expr nodes[v] = n for _, v in Omega: if v in rewrites: n = nodes[v] r = rewrites[v] for _, v2 in Omega: if r.has(v2): n.before.append(nodes[v2]) return nodes @debug @timeit def rewrite(e, Omega, x, wsym): """e(x) ... the function Omega ... the mrv set wsym ... the symbol which is going to be used for w Returns the rewritten e in terms of w and log(w). See test_rewrite1() for examples and correct results. """ from sympy import ilcm if not isinstance(Omega, SubsSet): raise TypeError("Omega should be an instance of SubsSet") if len(Omega) == 0: raise ValueError("Length can not be 0") # all items in Omega must be exponentials for t in Omega.keys(): if not isinstance(t, exp): raise ValueError("Value should be exp") rewrites = Omega.rewrites Omega = list(Omega.items()) nodes = build_expression_tree(Omega, rewrites) Omega.sort(key=lambda x: nodes[x[1]].ht(), reverse=True) # make sure we know the sign of each exp() term; after the loop, # g is going to be the "w" - the simplest one in the mrv set for g, _ in Omega: sig = sign(g.args[0], x) if sig != 1 and sig != -1: raise NotImplementedError('Result depends on the sign of %s' % sig) if sig == 1: wsym = 1/wsym # if g goes to oo, substitute 1/w # O2 is a list, which results by rewriting each item in Omega using "w" O2 = [] denominators = [] for f, var in Omega: c = limitinf(f.args[0]/g.args[0], x) if c.is_Rational: denominators.append(c.q) arg = f.args[0] if var in rewrites: if not isinstance(rewrites[var], exp): raise ValueError("Value should be exp") arg = rewrites[var].args[0] O2.append((var, exp((arg - c*g.args[0]).expand())*wsym**c)) # Remember that Omega contains subexpressions of "e". So now we find # them in "e" and substitute them for our rewriting, stored in O2 # the following powsimp is necessary to automatically combine exponentials, # so that the .xreplace() below succeeds: # TODO this should not be necessary f = powsimp(e, deep=True, combine='exp') for a, b in O2: f = f.xreplace({a: b}) for _, var in Omega: assert not f.has(var) # finally compute the logarithm of w (logw). logw = g.args[0] if sig == 1: logw = -logw # log(w)->log(1/w)=-log(w) # Some parts of sympy have difficulty computing series expansions with # non-integral exponents. The following heuristic improves the situation: exponent = reduce(ilcm, denominators, 1) f = f.xreplace({wsym: wsym**exponent}) logw /= exponent return f, logw def gruntz(e, z, z0, dir="+"): """ Compute the limit of e(z) at the point z0 using the Gruntz algorithm. z0 can be any expression, including oo and -oo. For dir="+" (default) it calculates the limit from the right (z->z0+) and for dir="-" the limit from the left (z->z0-). For infinite z0 (oo or -oo), the dir argument doesn't matter. This algorithm is fully described in the module docstring in the gruntz.py file. It relies heavily on the series expansion. Most frequently, gruntz() is only used if the faster limit() function (which uses heuristics) fails. """ if not z.is_symbol: raise NotImplementedError("Second argument must be a Symbol") # convert all limits to the limit z->oo; sign of z is handled in limitinf r = None if z0 == oo: r = limitinf(e, z) elif z0 == -oo: r = limitinf(e.subs(z, -z), z) else: if str(dir) == "-": e0 = e.subs(z, z0 - 1/z) elif str(dir) == "+": e0 = e.subs(z, z0 + 1/z) else: raise NotImplementedError("dir must be '+' or '-'") r = limitinf(e0, z) # This is a bit of a heuristic for nice results... we always rewrite # tractable functions in terms of familiar intractable ones. # It might be nicer to rewrite the exactly to what they were initially, # but that would take some work to implement. return r.rewrite('intractable', deep=True)
48f714dfdb73385210deb8248766678a6d2ac0de3bbd3dd5f6a01f8a79da8afe
from __future__ import print_function, division from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.compatibility import (range, integer_types, with_metaclass, is_sequence, iterable, ordered) from sympy.core.containers import Tuple from sympy.core.decorators import call_highest_priority from sympy.core.evaluate import global_evaluate from sympy.core.function import UndefinedFunction from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.relational import Eq from sympy.core.singleton import S, Singleton from sympy.core.symbol import Dummy, Symbol, Wild from sympy.core.sympify import sympify from sympy.polys import lcm, factor from sympy.sets.sets import Interval, Intersection from sympy.simplify import simplify from sympy.tensor.indexed import Idx from sympy.utilities.iterables import flatten from sympy import expand ############################################################################### # SEQUENCES # ############################################################################### class SeqBase(Basic): """Base class for sequences""" is_commutative = True _op_priority = 15 @staticmethod def _start_key(expr): """Return start (if possible) else S.Infinity. adapted from Set._infimum_key """ try: start = expr.start except (NotImplementedError, AttributeError, ValueError): start = S.Infinity return start def _intersect_interval(self, other): """Returns start and stop. Takes intersection over the two intervals. """ interval = Intersection(self.interval, other.interval) return interval.inf, interval.sup @property def gen(self): """Returns the generator for the sequence""" raise NotImplementedError("(%s).gen" % self) @property def interval(self): """The interval on which the sequence is defined""" raise NotImplementedError("(%s).interval" % self) @property def start(self): """The starting point of the sequence. This point is included""" raise NotImplementedError("(%s).start" % self) @property def stop(self): """The ending point of the sequence. This point is included""" raise NotImplementedError("(%s).stop" % self) @property def length(self): """Length of the sequence""" raise NotImplementedError("(%s).length" % self) @property def variables(self): """Returns a tuple of variables that are bounded""" return () @property def free_symbols(self): """ This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols). Examples ======== >>> from sympy import SeqFormula >>> from sympy.abc import n, m >>> SeqFormula(m*n**2, (n, 0, 5)).free_symbols {m} """ return (set(j for i in self.args for j in i.free_symbols .difference(self.variables))) @cacheit def coeff(self, pt): """Returns the coefficient at point pt""" if pt < self.start or pt > self.stop: raise IndexError("Index %s out of bounds %s" % (pt, self.interval)) return self._eval_coeff(pt) def _eval_coeff(self, pt): raise NotImplementedError("The _eval_coeff method should be added to" "%s to return coefficient so it is available" "when coeff calls it." % self.func) def _ith_point(self, i): """Returns the i'th point of a sequence. If start point is negative infinity, point is returned from the end. Assumes the first point to be indexed zero. Examples ========= >>> from sympy import oo >>> from sympy.series.sequences import SeqPer bounded >>> SeqPer((1, 2, 3), (-10, 10))._ith_point(0) -10 >>> SeqPer((1, 2, 3), (-10, 10))._ith_point(5) -5 End is at infinity >>> SeqPer((1, 2, 3), (0, oo))._ith_point(5) 5 Starts at negative infinity >>> SeqPer((1, 2, 3), (-oo, 0))._ith_point(5) -5 """ if self.start is S.NegativeInfinity: initial = self.stop else: initial = self.start if self.start is S.NegativeInfinity: step = -1 else: step = 1 return initial + i*step def _add(self, other): """ Should only be used internally. self._add(other) returns a new, term-wise added sequence if self knows how to add with other, otherwise it returns ``None``. ``other`` should only be a sequence object. Used within :class:`SeqAdd` class. """ return None def _mul(self, other): """ Should only be used internally. self._mul(other) returns a new, term-wise multiplied sequence if self knows how to multiply with other, otherwise it returns ``None``. ``other`` should only be a sequence object. Used within :class:`SeqMul` class. """ return None def coeff_mul(self, other): """ Should be used when ``other`` is not a sequence. Should be defined to define custom behaviour. Examples ======== >>> from sympy import S, oo, SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2).coeff_mul(2) SeqFormula(2*n**2, (n, 0, oo)) Notes ===== '*' defines multiplication of sequences with sequences only. """ return Mul(self, other) def __add__(self, other): """Returns the term-wise addition of 'self' and 'other'. ``other`` should be a sequence. Examples ======== >>> from sympy import S, oo, SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2) + SeqFormula(n**3) SeqFormula(n**3 + n**2, (n, 0, oo)) """ if not isinstance(other, SeqBase): raise TypeError('cannot add sequence and %s' % type(other)) return SeqAdd(self, other) @call_highest_priority('__add__') def __radd__(self, other): return self + other def __sub__(self, other): """Returns the term-wise subtraction of 'self' and 'other'. ``other`` should be a sequence. Examples ======== >>> from sympy import S, oo, SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2) - (SeqFormula(n)) SeqFormula(n**2 - n, (n, 0, oo)) """ if not isinstance(other, SeqBase): raise TypeError('cannot subtract sequence and %s' % type(other)) return SeqAdd(self, -other) @call_highest_priority('__sub__') def __rsub__(self, other): return (-self) + other def __neg__(self): """Negates the sequence. Examples ======== >>> from sympy import S, oo, SeqFormula >>> from sympy.abc import n >>> -SeqFormula(n**2) SeqFormula(-n**2, (n, 0, oo)) """ return self.coeff_mul(-1) def __mul__(self, other): """Returns the term-wise multiplication of 'self' and 'other'. ``other`` should be a sequence. For ``other`` not being a sequence see :func:`coeff_mul` method. Examples ======== >>> from sympy import S, oo, SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2) * (SeqFormula(n)) SeqFormula(n**3, (n, 0, oo)) """ if not isinstance(other, SeqBase): raise TypeError('cannot multiply sequence and %s' % type(other)) return SeqMul(self, other) @call_highest_priority('__mul__') def __rmul__(self, other): return self * other def __iter__(self): for i in range(self.length): pt = self._ith_point(i) yield self.coeff(pt) def __getitem__(self, index): if isinstance(index, integer_types): index = self._ith_point(index) return self.coeff(index) elif isinstance(index, slice): start, stop = index.start, index.stop if start is None: start = 0 if stop is None: stop = self.length return [self.coeff(self._ith_point(i)) for i in range(start, stop, index.step or 1)] def find_linear_recurrence(self,n,d=None,gfvar=None): r""" Finds the shortest linear recurrence that satisfies the first n terms of sequence of order `\leq` n/2 if possible. If d is specified, find shortest linear recurrence of order `\leq` min(d, n/2) if possible. Returns list of coefficients ``[b(1), b(2), ...]`` corresponding to the recurrence relation ``x(n) = b(1)*x(n-1) + b(2)*x(n-2) + ...`` Returns ``[]`` if no recurrence is found. If gfvar is specified, also returns ordinary generating function as a function of gfvar. Examples ======== >>> from sympy import sequence, sqrt, oo, lucas >>> from sympy.abc import n, x, y >>> sequence(n**2).find_linear_recurrence(10, 2) [] >>> sequence(n**2).find_linear_recurrence(10) [3, -3, 1] >>> sequence(2**n).find_linear_recurrence(10) [2] >>> sequence(23*n**4+91*n**2).find_linear_recurrence(10) [5, -10, 10, -5, 1] >>> sequence(sqrt(5)*(((1 + sqrt(5))/2)**n - (-(1 + sqrt(5))/2)**(-n))/5).find_linear_recurrence(10) [1, 1] >>> sequence(x+y*(-2)**(-n), (n, 0, oo)).find_linear_recurrence(30) [1/2, 1/2] >>> sequence(3*5**n + 12).find_linear_recurrence(20,gfvar=x) ([6, -5], 3*(-21*x + 5)/((x - 1)*(5*x - 1))) >>> sequence(lucas(n)).find_linear_recurrence(15,gfvar=x) ([1, 1], (x - 2)/(x**2 + x - 1)) """ from sympy.matrices import Matrix x = [simplify(expand(t)) for t in self[:n]] lx = len(x) if d == None: r = lx//2 else: r = min(d,lx//2) coeffs = [] for l in range(1, r+1): l2 = 2*l mlist = [] for k in range(l): mlist.append(x[k:k+l]) m = Matrix(mlist) if m.det() != 0: y = simplify(m.LUsolve(Matrix(x[l:l2]))) if lx == l2: coeffs = flatten(y[::-1]) break mlist = [] for k in range(l,lx-l): mlist.append(x[k:k+l]) m = Matrix(mlist) if m*y == Matrix(x[l2:]): coeffs = flatten(y[::-1]) break if gfvar == None: return coeffs else: l = len(coeffs) if l == 0: return [], None else: n, d = x[l-1]*gfvar**(l-1), 1 - coeffs[l-1]*gfvar**l for i in range(l-1): n += x[i]*gfvar**i for j in range(l-i-1): n -= coeffs[i]*x[j]*gfvar**(i+j+1) d -= coeffs[i]*gfvar**(i+1) return coeffs, simplify(factor(n)/factor(d)) class EmptySequence(with_metaclass(Singleton, SeqBase)): """Represents an empty sequence. The empty sequence is available as a singleton as ``S.EmptySequence``. Examples ======== >>> from sympy import S, SeqPer, oo >>> from sympy.abc import x >>> S.EmptySequence EmptySequence() >>> SeqPer((1, 2), (x, 0, 10)) + S.EmptySequence SeqPer((1, 2), (x, 0, 10)) >>> SeqPer((1, 2)) * S.EmptySequence EmptySequence() >>> S.EmptySequence.coeff_mul(-1) EmptySequence() """ @property def interval(self): return S.EmptySet @property def length(self): return S.Zero def coeff_mul(self, coeff): """See docstring of SeqBase.coeff_mul""" return self def __iter__(self): return iter([]) class SeqExpr(SeqBase): """Sequence expression class. Various sequences should inherit from this class. Examples ======== >>> from sympy.series.sequences import SeqExpr >>> from sympy.abc import x >>> s = SeqExpr((1, 2, 3), (x, 0, 10)) >>> s.gen (1, 2, 3) >>> s.interval Interval(0, 10) >>> s.length 11 See Also ======== sympy.series.sequences.SeqPer sympy.series.sequences.SeqFormula """ @property def gen(self): return self.args[0] @property def interval(self): return Interval(self.args[1][1], self.args[1][2]) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return self.stop - self.start + 1 @property def variables(self): return (self.args[1][0],) class SeqPer(SeqExpr): """Represents a periodic sequence. The elements are repeated after a given period. Examples ======== >>> from sympy import SeqPer, oo >>> from sympy.abc import k >>> s = SeqPer((1, 2, 3), (0, 5)) >>> s.periodical (1, 2, 3) >>> s.period 3 For value at a particular point >>> s.coeff(3) 1 supports slicing >>> s[:] [1, 2, 3, 1, 2, 3] iterable >>> list(s) [1, 2, 3, 1, 2, 3] sequence starts from negative infinity >>> SeqPer((1, 2, 3), (-oo, 0))[0:6] [1, 2, 3, 1, 2, 3] Periodic formulas >>> SeqPer((k, k**2, k**3), (k, 0, oo))[0:6] [0, 1, 8, 3, 16, 125] See Also ======== sympy.series.sequences.SeqFormula """ def __new__(cls, periodical, limits=None): periodical = sympify(periodical) def _find_x(periodical): free = periodical.free_symbols if len(periodical.free_symbols) == 1: return free.pop() else: return Dummy('k') x, start, stop = None, None, None if limits is None: x, start, stop = _find_x(periodical), 0, S.Infinity if is_sequence(limits, Tuple): if len(limits) == 3: x, start, stop = limits elif len(limits) == 2: x = _find_x(periodical) start, stop = limits if not isinstance(x, (Symbol, Idx)) or start is None or stop is None: raise ValueError('Invalid limits given: %s' % str(limits)) if start is S.NegativeInfinity and stop is S.Infinity: raise ValueError("Both the start and end value" "cannot be unbounded") limits = sympify((x, start, stop)) if is_sequence(periodical, Tuple): periodical = sympify(tuple(flatten(periodical))) else: raise ValueError("invalid period %s should be something " "like e.g (1, 2) " % periodical) if Interval(limits[1], limits[2]) is S.EmptySet: return S.EmptySequence return Basic.__new__(cls, periodical, limits) @property def period(self): return len(self.gen) @property def periodical(self): return self.gen def _eval_coeff(self, pt): if self.start is S.NegativeInfinity: idx = (self.stop - pt) % self.period else: idx = (pt - self.start) % self.period return self.periodical[idx].subs(self.variables[0], pt) def _add(self, other): """See docstring of SeqBase._add""" if isinstance(other, SeqPer): per1, lper1 = self.periodical, self.period per2, lper2 = other.periodical, other.period per_length = lcm(lper1, lper2) new_per = [] for x in range(per_length): ele1 = per1[x % lper1] ele2 = per2[x % lper2] new_per.append(ele1 + ele2) start, stop = self._intersect_interval(other) return SeqPer(new_per, (self.variables[0], start, stop)) def _mul(self, other): """See docstring of SeqBase._mul""" if isinstance(other, SeqPer): per1, lper1 = self.periodical, self.period per2, lper2 = other.periodical, other.period per_length = lcm(lper1, lper2) new_per = [] for x in range(per_length): ele1 = per1[x % lper1] ele2 = per2[x % lper2] new_per.append(ele1 * ele2) start, stop = self._intersect_interval(other) return SeqPer(new_per, (self.variables[0], start, stop)) def coeff_mul(self, coeff): """See docstring of SeqBase.coeff_mul""" coeff = sympify(coeff) per = [x * coeff for x in self.periodical] return SeqPer(per, self.args[1]) class SeqFormula(SeqExpr): """Represents sequence based on a formula. Elements are generated using a formula. Examples ======== >>> from sympy import SeqFormula, oo, Symbol >>> n = Symbol('n') >>> s = SeqFormula(n**2, (n, 0, 5)) >>> s.formula n**2 For value at a particular point >>> s.coeff(3) 9 supports slicing >>> s[:] [0, 1, 4, 9, 16, 25] iterable >>> list(s) [0, 1, 4, 9, 16, 25] sequence starts from negative infinity >>> SeqFormula(n**2, (-oo, 0))[0:6] [0, 1, 4, 9, 16, 25] See Also ======== sympy.series.sequences.SeqPer """ def __new__(cls, formula, limits=None): formula = sympify(formula) def _find_x(formula): free = formula.free_symbols if len(formula.free_symbols) == 1: return free.pop() elif len(formula.free_symbols) == 0: return Dummy('k') else: raise ValueError( " specify dummy variables for %s. If the formula contains" " more than one free symbol, a dummy variable should be" " supplied explicitly e.g., SeqFormula(m*n**2, (n, 0, 5))" % formula) x, start, stop = None, None, None if limits is None: x, start, stop = _find_x(formula), 0, S.Infinity if is_sequence(limits, Tuple): if len(limits) == 3: x, start, stop = limits elif len(limits) == 2: x = _find_x(formula) start, stop = limits if not isinstance(x, (Symbol, Idx)) or start is None or stop is None: raise ValueError('Invalid limits given: %s' % str(limits)) if start is S.NegativeInfinity and stop is S.Infinity: raise ValueError("Both the start and end value" "cannot be unbounded") limits = sympify((x, start, stop)) if Interval(limits[1], limits[2]) is S.EmptySet: return S.EmptySequence return Basic.__new__(cls, formula, limits) @property def formula(self): return self.gen def _eval_coeff(self, pt): d = self.variables[0] return self.formula.subs(d, pt) def _add(self, other): """See docstring of SeqBase._add""" if isinstance(other, SeqFormula): form1, v1 = self.formula, self.variables[0] form2, v2 = other.formula, other.variables[0] formula = form1 + form2.subs(v2, v1) start, stop = self._intersect_interval(other) return SeqFormula(formula, (v1, start, stop)) def _mul(self, other): """See docstring of SeqBase._mul""" if isinstance(other, SeqFormula): form1, v1 = self.formula, self.variables[0] form2, v2 = other.formula, other.variables[0] formula = form1 * form2.subs(v2, v1) start, stop = self._intersect_interval(other) return SeqFormula(formula, (v1, start, stop)) def coeff_mul(self, coeff): """See docstring of SeqBase.coeff_mul""" coeff = sympify(coeff) formula = self.formula * coeff return SeqFormula(formula, self.args[1]) class RecursiveSeq(SeqBase): """A finite degree recursive sequence. That is, a sequence a(n) that depends on a fixed, finite number of its previous values. The general form is a(n) = f(a(n - 1), a(n - 2), ..., a(n - d)) for some fixed, positive integer d, where f is some function defined by a SymPy expression. Parameters ========== recurrence : SymPy expression defining recurrence This is *not* an equality, only the expression that the nth term is equal to. For example, if :code:`a(n) = f(a(n - 1), ..., a(n - d))`, then the expression should be :code:`f(a(n - 1), ..., a(n - d))`. y : function The name of the recursively defined sequence without argument, e.g., :code:`y` if the recurrence function is :code:`y(n)`. n : symbolic argument The name of the variable that the recurrence is in, e.g., :code:`n` if the recurrence function is :code:`y(n)`. initial : iterable with length equal to the degree of the recurrence The initial values of the recurrence. start : start value of sequence (inclusive) Examples ======== >>> from sympy import Function, symbols >>> from sympy.series.sequences import RecursiveSeq >>> y = Function("y") >>> n = symbols("n") >>> fib = RecursiveSeq(y(n - 1) + y(n - 2), y, n, [0, 1]) >>> fib.coeff(3) # Value at a particular point 2 >>> fib[:6] # supports slicing [0, 1, 1, 2, 3, 5] >>> fib.recurrence # inspect recurrence Eq(y(n), y(n - 2) + y(n - 1)) >>> fib.degree # automatically determine degree 2 >>> for x in zip(range(10), fib): # supports iteration ... print(x) (0, 0) (1, 1) (2, 1) (3, 2) (4, 3) (5, 5) (6, 8) (7, 13) (8, 21) (9, 34) See Also ======== sympy.series.sequences.SeqFormula """ def __new__(cls, recurrence, y, n, initial=None, start=0): if not isinstance(y, UndefinedFunction): raise TypeError("recurrence sequence must be an undefined function" ", found `{}`".format(y)) if not isinstance(n, Basic) or not n.is_symbol: raise TypeError("recurrence variable must be a symbol" ", found `{}`".format(n)) k = Wild("k", exclude=(n,)) degree = 0 # Find all applications of y in the recurrence and check that: # 1. The function y is only being used with a single argument; and # 2. All arguments are n + k for constant negative integers k. prev_ys = recurrence.find(y) for prev_y in prev_ys: if len(prev_y.args) != 1: raise TypeError("Recurrence should be in a single variable") shift = prev_y.args[0].match(n + k)[k] if not (shift.is_constant() and shift.is_integer and shift < 0): raise TypeError("Recurrence should have constant," " negative, integer shifts" " (found {})".format(prev_y)) if -shift > degree: degree = -shift if not initial: initial = [Dummy("c_{}".format(k)) for k in range(degree)] if len(initial) != degree: raise ValueError("Number of initial terms must equal degree") degree = Integer(degree) start = sympify(start) initial = Tuple(*(sympify(x) for x in initial)) seq = Basic.__new__(cls, recurrence, y(n), initial, start) seq.cache = {y(start + k): init for k, init in enumerate(initial)} seq._start = start seq.degree = degree seq.y = y seq.n = n seq._recurrence = recurrence return seq @property def start(self): """The starting point of the sequence. This point is included""" return self._start @property def stop(self): """The ending point of the sequence. (oo)""" return S.Infinity @property def interval(self): """Interval on which sequence is defined.""" return (self._start, S.Infinity) def _eval_coeff(self, index): if index - self._start < len(self.cache): return self.cache[self.y(index)] for current in range(len(self.cache), index + 1): # Use xreplace over subs for performance. # See issue #10697. seq_index = self._start + current current_recurrence = self._recurrence.xreplace({self.n: seq_index}) new_term = current_recurrence.xreplace(self.cache) self.cache[self.y(seq_index)] = new_term return self.cache[self.y(self._start + current)] def __iter__(self): index = self._start while True: yield self._eval_coeff(index) index += 1 @property def recurrence(self): """Equation defining recurrence.""" return Eq(self.y(self.n), self._recurrence) def sequence(seq, limits=None): """Returns appropriate sequence object. If ``seq`` is a sympy sequence, returns :class:`SeqPer` object otherwise returns :class:`SeqFormula` object. Examples ======== >>> from sympy import sequence, SeqPer, SeqFormula >>> from sympy.abc import n >>> sequence(n**2, (n, 0, 5)) SeqFormula(n**2, (n, 0, 5)) >>> sequence((1, 2, 3), (n, 0, 5)) SeqPer((1, 2, 3), (n, 0, 5)) See Also ======== sympy.series.sequences.SeqPer sympy.series.sequences.SeqFormula """ seq = sympify(seq) if is_sequence(seq, Tuple): return SeqPer(seq, limits) else: return SeqFormula(seq, limits) ############################################################################### # OPERATIONS # ############################################################################### class SeqExprOp(SeqBase): """Base class for operations on sequences. Examples ======== >>> from sympy.series.sequences import SeqExprOp, sequence >>> from sympy.abc import n >>> s1 = sequence(n**2, (n, 0, 10)) >>> s2 = sequence((1, 2, 3), (n, 5, 10)) >>> s = SeqExprOp(s1, s2) >>> s.gen (n**2, (1, 2, 3)) >>> s.interval Interval(5, 10) >>> s.length 6 See Also ======== sympy.series.sequences.SeqAdd sympy.series.sequences.SeqMul """ @property def gen(self): """Generator for the sequence. returns a tuple of generators of all the argument sequences. """ return tuple(a.gen for a in self.args) @property def interval(self): """Sequence is defined on the intersection of all the intervals of respective sequences """ return Intersection(a.interval for a in self.args) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def variables(self): """Cumulative of all the bound variables""" return tuple(flatten([a.variables for a in self.args])) @property def length(self): return self.stop - self.start + 1 class SeqAdd(SeqExprOp): """Represents term-wise addition of sequences. Rules: * The interval on which sequence is defined is the intersection of respective intervals of sequences. * Anything + :class:`EmptySequence` remains unchanged. * Other rules are defined in ``_add`` methods of sequence classes. Examples ======== >>> from sympy import S, oo, SeqAdd, SeqPer, SeqFormula >>> from sympy.abc import n >>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), S.EmptySequence) SeqPer((1, 2), (n, 0, oo)) >>> SeqAdd(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10))) EmptySequence() >>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2, (n, 0, oo))) SeqAdd(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo))) >>> SeqAdd(SeqFormula(n**3), SeqFormula(n**2)) SeqFormula(n**3 + n**2, (n, 0, oo)) See Also ======== sympy.series.sequences.SeqMul """ def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) # flatten inputs args = list(args) # adapted from sympy.sets.sets.Union def _flatten(arg): if isinstance(arg, SeqBase): if isinstance(arg, SeqAdd): return sum(map(_flatten, arg.args), []) else: return [arg] if iterable(arg): return sum(map(_flatten, arg), []) raise TypeError("Input must be Sequences or " " iterables of Sequences") args = _flatten(args) args = [a for a in args if a is not S.EmptySequence] # Addition of no sequences is EmptySequence if not args: return S.EmptySequence if Intersection(a.interval for a in args) is S.EmptySet: return S.EmptySequence # reduce using known rules if evaluate: return SeqAdd.reduce(args) args = list(ordered(args, SeqBase._start_key)) return Basic.__new__(cls, *args) @staticmethod def reduce(args): """Simplify :class:`SeqAdd` using known rules. Iterates through all pairs and ask the constituent sequences if they can simplify themselves with any other constituent. Notes ===== adapted from ``Union.reduce`` """ new_args = True while(new_args): for id1, s in enumerate(args): new_args = False for id2, t in enumerate(args): if id1 == id2: continue new_seq = s._add(t) # This returns None if s does not know how to add # with t. Returns the newly added sequence otherwise if new_seq is not None: new_args = [a for a in args if a not in (s, t)] new_args.append(new_seq) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return SeqAdd(args, evaluate=False) def _eval_coeff(self, pt): """adds up the coefficients of all the sequences at point pt""" return sum(a.coeff(pt) for a in self.args) class SeqMul(SeqExprOp): r"""Represents term-wise multiplication of sequences. Handles multiplication of sequences only. For multiplication with other objects see :func:`SeqBase.coeff_mul`. Rules: * The interval on which sequence is defined is the intersection of respective intervals of sequences. * Anything \* :class:`EmptySequence` returns :class:`EmptySequence`. * Other rules are defined in ``_mul`` methods of sequence classes. Examples ======== >>> from sympy import S, oo, SeqMul, SeqPer, SeqFormula >>> from sympy.abc import n >>> SeqMul(SeqPer((1, 2), (n, 0, oo)), S.EmptySequence) EmptySequence() >>> SeqMul(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10))) EmptySequence() >>> SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2)) SeqMul(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo))) >>> SeqMul(SeqFormula(n**3), SeqFormula(n**2)) SeqFormula(n**5, (n, 0, oo)) See Also ======== sympy.series.sequences.SeqAdd """ def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_evaluate[0]) # flatten inputs args = list(args) # adapted from sympy.sets.sets.Union def _flatten(arg): if isinstance(arg, SeqBase): if isinstance(arg, SeqMul): return sum(map(_flatten, arg.args), []) else: return [arg] elif iterable(arg): return sum(map(_flatten, arg), []) raise TypeError("Input must be Sequences or " " iterables of Sequences") args = _flatten(args) # Multiplication of no sequences is EmptySequence if not args: return S.EmptySequence if Intersection(a.interval for a in args) is S.EmptySet: return S.EmptySequence # reduce using known rules if evaluate: return SeqMul.reduce(args) args = list(ordered(args, SeqBase._start_key)) return Basic.__new__(cls, *args) @staticmethod def reduce(args): """Simplify a :class:`SeqMul` using known rules. Iterates through all pairs and ask the constituent sequences if they can simplify themselves with any other constituent. Notes ===== adapted from ``Union.reduce`` """ new_args = True while(new_args): for id1, s in enumerate(args): new_args = False for id2, t in enumerate(args): if id1 == id2: continue new_seq = s._mul(t) # This returns None if s does not know how to multiply # with t. Returns the newly multiplied sequence otherwise if new_seq is not None: new_args = [a for a in args if a not in (s, t)] new_args.append(new_seq) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return SeqMul(args, evaluate=False) def _eval_coeff(self, pt): """multiplies the coefficients of all the sequences at point pt""" val = 1 for a in self.args: val *= a.coeff(pt) return val
57062f2bce9c309f1e3125b607163b1ac52c1bb8515a6d804102db06cedd823a
from __future__ import print_function, division from sympy.core import S, Symbol, Add, sympify, Expr, PoleError, Mul from sympy.core.compatibility import string_types from sympy.core.exprtools import factor_terms from sympy.core.numbers import GoldenRatio from sympy.core.symbol import Dummy from sympy.functions.combinatorial.factorials import factorial from sympy.functions.combinatorial.numbers import fibonacci from sympy.functions.special.gamma_functions import gamma from sympy.polys import PolynomialError, factor from sympy.series.order import Order from sympy.simplify.ratsimp import ratsimp from sympy.simplify.simplify import together from .gruntz import gruntz def limit(e, z, z0, dir="+"): """Computes the limit of ``e(z)`` at the point ``z0``. Parameters ========== e : expression, the limit of which is to be taken z : symbol representing the variable in the limit. Other symbols are treated as constants. Multivariate limits are not supported. z0 : the value toward which ``z`` tends. Can be any expression, including ``oo`` and ``-oo``. dir : string, optional (default: "+") The limit is bi-directional if ``dir="+-"``, from the right (z->z0+) if ``dir="+"``, and from the left (z->z0-) if ``dir="-"``. For infinite ``z0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). Examples ======== >>> from sympy import limit, sin, Symbol, oo >>> from sympy.abc import x >>> limit(sin(x)/x, x, 0) 1 >>> limit(1/x, x, 0) # default dir='+' oo >>> limit(1/x, x, 0, dir="-") -oo >>> limit(1/x, x, 0, dir='+-') Traceback (most recent call last): ... ValueError: The limit does not exist since left hand limit = -oo and right hand limit = oo >>> limit(1/x, x, oo) 0 Notes ===== First we try some heuristics for easy and frequent cases like "x", "1/x", "x**2" and similar, so that it's fast. For all other cases, we use the Gruntz algorithm (see the gruntz() function). See Also ======== limit_seq : returns the limit of a sequence. """ if dir == "+-": llim = Limit(e, z, z0, dir="-").doit(deep=False) rlim = Limit(e, z, z0, dir="+").doit(deep=False) if llim == rlim: return rlim else: # TODO: choose a better error? raise ValueError("The limit does not exist since " "left hand limit = %s and right hand limit = %s" % (llim, rlim)) else: return Limit(e, z, z0, dir).doit(deep=False) def heuristics(e, z, z0, dir): """Computes the limit of an expression term-wise. Parameters are the same as for the ``limit`` function. Works with the arguments of expression ``e`` one by one, computing the limit of each and then combining the results. This approach works only for simple limits, but it is fast. """ from sympy.calculus.util import AccumBounds rv = None if abs(z0) is S.Infinity: rv = limit(e.subs(z, 1/z), z, S.Zero, "+" if z0 is S.Infinity else "-") if isinstance(rv, Limit): return elif e.is_Mul or e.is_Add or e.is_Pow or e.is_Function: r = [] for a in e.args: l = limit(a, z, z0, dir) if l.has(S.Infinity) and l.is_finite is None: if isinstance(e, Add): m = factor_terms(e) if not isinstance(m, Mul): # try together m = together(m) if not isinstance(m, Mul): # try factor if the previous methods failed m = factor(e) if isinstance(m, Mul): return heuristics(m, z, z0, dir) return return elif isinstance(l, Limit): return elif l is S.NaN: return else: r.append(l) if r: rv = e.func(*r) if rv is S.NaN and e.is_Mul and any(isinstance(rr, AccumBounds) for rr in r): r2 = [] e2 = [] for ii in range(len(r)): if isinstance(r[ii], AccumBounds): r2.append(r[ii]) else: e2.append(e.args[ii]) if len(e2) > 0: e3 = Mul(*e2).simplify() l = limit(e3, z, z0, dir) rv = l * Mul(*r2) if rv is S.NaN: try: rat_e = ratsimp(e) except PolynomialError: return if rat_e is S.NaN or rat_e == e: return return limit(rat_e, z, z0, dir) return rv class Limit(Expr): """Represents an unevaluated limit. Examples ======== >>> from sympy import Limit, sin, Symbol >>> from sympy.abc import x >>> Limit(sin(x)/x, x, 0) Limit(sin(x)/x, x, 0) >>> Limit(1/x, x, 0, dir="-") Limit(1/x, x, 0, dir='-') """ def __new__(cls, e, z, z0, dir="+"): e = sympify(e) z = sympify(z) z0 = sympify(z0) if z0 is S.Infinity: dir = "-" elif z0 is S.NegativeInfinity: dir = "+" if isinstance(dir, string_types): dir = Symbol(dir) elif not isinstance(dir, Symbol): raise TypeError("direction must be of type basestring or " "Symbol, not %s" % type(dir)) if str(dir) not in ('+', '-', '+-'): raise ValueError("direction must be one of '+', '-' " "or '+-', not %s" % dir) obj = Expr.__new__(cls) obj._args = (e, z, z0, dir) return obj @property def free_symbols(self): e = self.args[0] isyms = e.free_symbols isyms.difference_update(self.args[1].free_symbols) isyms.update(self.args[2].free_symbols) return isyms def doit(self, **hints): """Evaluates the limit. Parameters ========== deep : bool, optional (default: True) Invoke the ``doit`` method of the expressions involved before taking the limit. hints : optional keyword arguments To be passed to ``doit`` methods; only used if deep is True. """ from sympy.series.limitseq import limit_seq from sympy.functions import RisingFactorial e, z, z0, dir = self.args if z0 is S.ComplexInfinity: raise NotImplementedError("Limits at complex " "infinity are not implemented") if hints.get('deep', True): e = e.doit(**hints) z = z.doit(**hints) z0 = z0.doit(**hints) if e == z: return z0 if not e.has(z): return e # gruntz fails on factorials but works with the gamma function # If no factorial term is present, e should remain unchanged. # factorial is defined to be zero for negative inputs (which # differs from gamma) so only rewrite for positive z0. if z0.is_positive: e = e.rewrite([factorial, RisingFactorial], gamma) if e.is_Mul: if abs(z0) is S.Infinity: e = factor_terms(e) e = e.rewrite(fibonacci, GoldenRatio) ok = lambda w: (z in w.free_symbols and any(a.is_polynomial(z) or any(z in m.free_symbols and m.is_polynomial(z) for m in Mul.make_args(a)) for a in Add.make_args(w))) if all(ok(w) for w in e.as_numer_denom()): u = Dummy(positive=True) if z0 is S.NegativeInfinity: inve = e.subs(z, -1/u) else: inve = e.subs(z, 1/u) r = limit(inve.as_leading_term(u), u, S.Zero, "+") if isinstance(r, Limit): return self else: return r if e.is_Order: return Order(limit(e.expr, z, z0), *e.args[1:]) try: r = gruntz(e, z, z0, dir) if r is S.NaN: raise PoleError() except (PoleError, ValueError): r = heuristics(e, z, z0, dir) if r is None: return self return r
6ec35cdb910b5fd701b539f3ab3b707ad7ca54bc43a75fa670f94512bf950f52
"""Limits of sequences""" from __future__ import print_function, division from sympy.core.add import Add from sympy.core.function import PoleError from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.functions.combinatorial.numbers import fibonacci from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import Max, Min from sympy.functions.elementary.trigonometric import cos, sin from sympy.series.limits import Limit def difference_delta(expr, n=None, step=1): """Difference Operator. Discrete analog of differential operator. Given a sequence x[n], returns the sequence x[n + step] - x[n]. Examples ======== >>> from sympy import difference_delta as dd >>> from sympy.abc import n >>> dd(n*(n + 1), n) 2*n + 2 >>> dd(n*(n + 1), n, 2) 4*n + 6 References ========== .. [1] https://reference.wolfram.com/language/ref/DifferenceDelta.html """ expr = sympify(expr) if n is None: f = expr.free_symbols if len(f) == 1: n = f.pop() elif len(f) == 0: return S.Zero else: raise ValueError("Since there is more than one variable in the" " expression, a variable must be supplied to" " take the difference of %s" % expr) step = sympify(step) if step.is_number is False or step.is_finite is False: raise ValueError("Step should be a finite number.") if hasattr(expr, '_eval_difference_delta'): result = expr._eval_difference_delta(n, step) if result: return result return expr.subs(n, n + step) - expr def dominant(expr, n): """Finds the dominant term in a sum, that is a term that dominates every other term. If limit(a/b, n, oo) is oo then a dominates b. If limit(a/b, n, oo) is 0 then b dominates a. Otherwise, a and b are comparable. If there is no unique dominant term, then returns ``None``. Examples ======== >>> from sympy import Sum >>> from sympy.series.limitseq import dominant >>> from sympy.abc import n, k >>> dominant(5*n**3 + 4*n**2 + n + 1, n) 5*n**3 >>> dominant(2**n + Sum(k, (k, 0, n)), n) 2**n See Also ======== sympy.series.limitseq.dominant """ terms = Add.make_args(expr.expand(func=True)) term0 = terms[-1] comp = [term0] # comparable terms for t in terms[:-1]: e = (term0 / t).gammasimp() l = limit_seq(e, n) if l is S.Zero: term0 = t comp = [term0] elif l is None: return None elif l not in [S.Infinity, -S.Infinity]: comp.append(t) if len(comp) > 1: return None return term0 def _limit_inf(expr, n): try: return Limit(expr, n, S.Infinity).doit(deep=False) except (NotImplementedError, PoleError): return None def _limit_seq(expr, n, trials): from sympy.concrete.summations import Sum for i in range(trials): if not expr.has(Sum): result = _limit_inf(expr, n) if result is not None: return result num, den = expr.as_numer_denom() if not den.has(n) or not num.has(n): result = _limit_inf(expr.doit(), n) if result is not None: return result return None num, den = (difference_delta(t.expand(), n) for t in [num, den]) expr = (num / den).gammasimp() if not expr.has(Sum): result = _limit_inf(expr, n) if result is not None: return result num, den = expr.as_numer_denom() num = dominant(num, n) if num is None: return None den = dominant(den, n) if den is None: return None expr = (num / den).gammasimp() def limit_seq(expr, n=None, trials=5): """Finds the limit of a sequence as index n tends to infinity. Parameters ========== expr : Expr SymPy expression for the n-th term of the sequence n : Symbol, optional The index of the sequence, an integer that tends to positive infinity. If None, inferred from the expression unless it has multiple symbols. trials: int, optional The algorithm is highly recursive. ``trials`` is a safeguard from infinite recursion in case the limit is not easily computed by the algorithm. Try increasing ``trials`` if the algorithm returns ``None``. Admissible Terms ================ The algorithm is designed for sequences built from rational functions, indefinite sums, and indefinite products over an indeterminate n. Terms of alternating sign are also allowed, but more complex oscillatory behavior is not supported. Examples ======== >>> from sympy import limit_seq, Sum, binomial >>> from sympy.abc import n, k, m >>> limit_seq((5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5), n) 5/3 >>> limit_seq(binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n)), n) 3/4 >>> limit_seq(Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n), n) 4 See Also ======== sympy.series.limitseq.dominant References ========== .. [1] Computing Limits of Sequences - Manuel Kauers """ from sympy.concrete.summations import Sum from sympy.calculus.util import AccumulationBounds if n is None: free = expr.free_symbols if len(free) == 1: n = free.pop() elif not free: return expr else: raise ValueError("Expression has more than one variable. " "Please specify a variable.") elif n not in expr.free_symbols: return expr expr = expr.rewrite(fibonacci, S.GoldenRatio) n_ = Dummy("n", integer=True, positive=True) n1 = Dummy("n", odd=True, positive=True) n2 = Dummy("n", even=True, positive=True) # If there is a negative term raised to a power involving n, or a # trigonometric function, then consider even and odd n separately. powers = (p.as_base_exp() for p in expr.atoms(Pow)) if (any(b.is_negative and e.has(n) for b, e in powers) or expr.has(cos, sin)): L1 = _limit_seq(expr.xreplace({n: n1}), n1, trials) if L1 is not None: L2 = _limit_seq(expr.xreplace({n: n2}), n2, trials) if L1 != L2: if L1.is_comparable and L2.is_comparable: return AccumulationBounds(Min(L1, L2), Max(L1, L2)) else: return None else: L1 = _limit_seq(expr.xreplace({n: n_}), n_, trials) if L1 is not None: return L1 else: if expr.is_Add: limits = [limit_seq(term, n, trials) for term in expr.args] if any(result is None for result in limits): return None else: return Add(*limits) # Maybe the absolute value is easier to deal with (though not if # it has a Sum). If it tends to 0, the limit is 0. elif not expr.has(Sum): if _limit_seq(Abs(expr.xreplace({n: n_})), n_, trials) is S.Zero: return S.Zero
582344a4e87eb1095f87d1899166e8af4ef1cd2fbd737ee1879823f08cef12b1
"""Fourier Series""" from __future__ import print_function, division from sympy import pi, oo from sympy.core.expr import Expr from sympy.core.add import Add from sympy.core.compatibility import is_sequence from sympy.core.containers import Tuple from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.trigonometric import sin, cos, sinc from sympy.series.series_class import SeriesBase from sympy.series.sequences import SeqFormula from sympy.sets.sets import Interval def fourier_cos_seq(func, limits, n): """Returns the cos sequence in a Fourier series""" from sympy.integrals import integrate x, L = limits[0], limits[2] - limits[1] cos_term = cos(2*n*pi*x / L) formula = 2 * cos_term * integrate(func * cos_term, limits) / L a0 = formula.subs(n, S.Zero) / 2 return a0, SeqFormula(2 * cos_term * integrate(func * cos_term, limits) / L, (n, 1, oo)) def fourier_sin_seq(func, limits, n): """Returns the sin sequence in a Fourier series""" from sympy.integrals import integrate x, L = limits[0], limits[2] - limits[1] sin_term = sin(2*n*pi*x / L) return SeqFormula(2 * sin_term * integrate(func * sin_term, limits) / L, (n, 1, oo)) def _process_limits(func, limits): """ Limits should be of the form (x, start, stop). x should be a symbol. Both start and stop should be bounded. * If x is not given, x is determined from func. * If limits is None. Limit of the form (x, -pi, pi) is returned. Examples ======== >>> from sympy import pi >>> from sympy.series.fourier import _process_limits as pari >>> from sympy.abc import x >>> pari(x**2, (x, -2, 2)) (x, -2, 2) >>> pari(x**2, (-2, 2)) (x, -2, 2) >>> pari(x**2, None) (x, -pi, pi) """ def _find_x(func): free = func.free_symbols if len(func.free_symbols) == 1: return free.pop() elif len(func.free_symbols) == 0: return Dummy('k') else: raise ValueError( " specify dummy variables for %s. If the function contains" " more than one free symbol, a dummy variable should be" " supplied explicitly e.g. FourierSeries(m*n**2, (n, -pi, pi))" % func) x, start, stop = None, None, None if limits is None: x, start, stop = _find_x(func), -pi, pi if is_sequence(limits, Tuple): if len(limits) == 3: x, start, stop = limits elif len(limits) == 2: x = _find_x(func) start, stop = limits if not isinstance(x, Symbol) or start is None or stop is None: raise ValueError('Invalid limits given: %s' % str(limits)) unbounded = [S.NegativeInfinity, S.Infinity] if start in unbounded or stop in unbounded: raise ValueError("Both the start and end value should be bounded") return sympify((x, start, stop)) class FourierSeries(SeriesBase): r"""Represents Fourier sine/cosine series. This class only represents a fourier series. No computation is performed. For how to compute Fourier series, see the :func:`fourier_series` docstring. See Also ======== sympy.series.fourier.fourier_series """ def __new__(cls, *args): args = map(sympify, args) return Expr.__new__(cls, *args) @property def function(self): return self.args[0] @property def x(self): return self.args[1][0] @property def period(self): return (self.args[1][1], self.args[1][2]) @property def a0(self): return self.args[2][0] @property def an(self): return self.args[2][1] @property def bn(self): return self.args[2][2] @property def interval(self): return Interval(0, oo) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return oo def _eval_subs(self, old, new): x = self.x if old.has(x): return self def truncate(self, n=3): """ Return the first n nonzero terms of the series. If n is None return an iterator. Parameters ========== n : int or None Amount of non-zero terms in approximation or None. Returns ======= Expr or iterator Approximation of function expanded into Fourier series. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x, (x, -pi, pi)) >>> s.truncate(4) 2*sin(x) - sin(2*x) + 2*sin(3*x)/3 - sin(4*x)/2 See Also ======== sympy.series.fourier.FourierSeries.sigma_approximation """ if n is None: return iter(self) terms = [] for t in self: if len(terms) == n: break if t is not S.Zero: terms.append(t) return Add(*terms) def sigma_approximation(self, n=3): r""" Return :math:`\sigma`-approximation of Fourier series with respect to order n. Sigma approximation adjusts a Fourier summation to eliminate the Gibbs phenomenon which would otherwise occur at discontinuities. A sigma-approximated summation for a Fourier series of a T-periodical function can be written as .. math:: s(\theta) = \frac{1}{2} a_0 + \sum _{k=1}^{m-1} \operatorname{sinc} \Bigl( \frac{k}{m} \Bigr) \cdot \left[ a_k \cos \Bigl( \frac{2\pi k}{T} \theta \Bigr) + b_k \sin \Bigl( \frac{2\pi k}{T} \theta \Bigr) \right], where :math:`a_0, a_k, b_k, k=1,\ldots,{m-1}` are standard Fourier series coefficients and :math:`\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr)` is a Lanczos :math:`\sigma` factor (expressed in terms of normalized :math:`\operatorname{sinc}` function). Parameters ========== n : int Highest order of the terms taken into account in approximation. Returns ======= Expr Sigma approximation of function expanded into Fourier series. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x, (x, -pi, pi)) >>> s.sigma_approximation(4) 2*sin(x)*sinc(pi/4) - 2*sin(2*x)/pi + 2*sin(3*x)*sinc(3*pi/4)/3 See Also ======== sympy.series.fourier.FourierSeries.truncate Notes ===== The behaviour of :meth:`~sympy.series.fourier.FourierSeries.sigma_approximation` is different from :meth:`~sympy.series.fourier.FourierSeries.truncate` - it takes all nonzero terms of degree smaller than n, rather than first n nonzero ones. References ========== .. [1] https://en.wikipedia.org/wiki/Gibbs_phenomenon .. [2] https://en.wikipedia.org/wiki/Sigma_approximation """ terms = [sinc(pi * i / n) * t for i, t in enumerate(self[:n]) if t is not S.Zero] return Add(*terms) def shift(self, s): """Shift the function by a term independent of x. f(x) -> f(x) + s This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.shift(1).truncate() -4*cos(x) + cos(2*x) + 1 + pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) a0 = self.a0 + s sfunc = self.function + s return self.func(sfunc, self.args[1], (a0, self.an, self.bn)) def shiftx(self, s): """Shift x by a term independent of x. f(x) -> f(x + s) This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.shiftx(1).truncate() -4*cos(x + 1) + cos(2*x + 2) + pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) an = self.an.subs(x, x + s) bn = self.bn.subs(x, x + s) sfunc = self.function.subs(x, x + s) return self.func(sfunc, self.args[1], (self.a0, an, bn)) def scale(self, s): """Scale the function by a term independent of x. f(x) -> s * f(x) This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.scale(2).truncate() -8*cos(x) + 2*cos(2*x) + 2*pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) an = self.an.coeff_mul(s) bn = self.bn.coeff_mul(s) a0 = self.a0 * s sfunc = self.args[0] * s return self.func(sfunc, self.args[1], (a0, an, bn)) def scalex(self, s): """Scale x by a term independent of x. f(x) -> f(s*x) This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.scalex(2).truncate() -4*cos(2*x) + cos(4*x) + pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) an = self.an.subs(x, x * s) bn = self.bn.subs(x, x * s) sfunc = self.function.subs(x, x * s) return self.func(sfunc, self.args[1], (self.a0, an, bn)) def _eval_as_leading_term(self, x): for t in self: if t is not S.Zero: return t def _eval_term(self, pt): if pt == 0: return self.a0 return self.an.coeff(pt) + self.bn.coeff(pt) def __neg__(self): return self.scale(-1) def __add__(self, other): if isinstance(other, FourierSeries): if self.period != other.period: raise ValueError("Both the series should have same periods") x, y = self.x, other.x function = self.function + other.function.subs(y, x) if self.x not in function.free_symbols: return function an = self.an + other.an bn = self.bn + other.bn a0 = self.a0 + other.a0 return self.func(function, self.args[1], (a0, an, bn)) return Add(self, other) def __sub__(self, other): return self.__add__(-other) def fourier_series(f, limits=None): """Computes Fourier sine/cosine series expansion. Returns a :class:`FourierSeries` object. Examples ======== >>> from sympy import fourier_series, pi, cos >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.truncate(n=3) -4*cos(x) + cos(2*x) + pi**2/3 Shifting >>> s.shift(1).truncate() -4*cos(x) + cos(2*x) + 1 + pi**2/3 >>> s.shiftx(1).truncate() -4*cos(x + 1) + cos(2*x + 2) + pi**2/3 Scaling >>> s.scale(2).truncate() -8*cos(x) + 2*cos(2*x) + 2*pi**2/3 >>> s.scalex(2).truncate() -4*cos(2*x) + cos(4*x) + pi**2/3 Notes ===== Computing Fourier series can be slow due to the integration required in computing an, bn. It is faster to compute Fourier series of a function by using shifting and scaling on an already computed Fourier series rather than computing again. e.g. If the Fourier series of ``x**2`` is known the Fourier series of ``x**2 - 1`` can be found by shifting by ``-1``. See Also ======== sympy.series.fourier.FourierSeries References ========== .. [1] mathworld.wolfram.com/FourierSeries.html """ f = sympify(f) limits = _process_limits(f, limits) x = limits[0] if x not in f.free_symbols: return f n = Dummy('n') neg_f = f.subs(x, -x) if f == neg_f: a0, an = fourier_cos_seq(f, limits, n) bn = SeqFormula(0, (1, oo)) elif f == -neg_f: a0 = S.Zero an = SeqFormula(0, (1, oo)) bn = fourier_sin_seq(f, limits, n) else: a0, an = fourier_cos_seq(f, limits, n) bn = fourier_sin_seq(f, limits, n) return FourierSeries(f, limits, (a0, an, bn))
7e6ae8bc3722de9e95693ed6326e87ee30155b5c8100e61ad56186c4d5831ce6
""" This module implements the Residue function and related tools for working with residues. """ from __future__ import print_function, division from sympy import sympify from sympy.utilities.timeutils import timethis @timethis('residue') def residue(expr, x, x0): """ Finds the residue of ``expr`` at the point x=x0. The residue is defined as the coefficient of 1/(x-x0) in the power series expansion about x=x0. Examples ======== >>> from sympy import Symbol, residue, sin >>> x = Symbol("x") >>> residue(1/x, x, 0) 1 >>> residue(1/x**2, x, 0) 0 >>> residue(2/sin(x), x, 0) 2 This function is essential for the Residue Theorem [1]. References ========== .. [1] https://en.wikipedia.org/wiki/Residue_theorem """ # The current implementation uses series expansion to # calculate it. A more general implementation is explained in # the section 5.6 of the Bronstein's book {M. Bronstein: # Symbolic Integration I, Springer Verlag (2005)}. For purely # rational functions, the algorithm is much easier. See # sections 2.4, 2.5, and 2.7 (this section actually gives an # algorithm for computing any Laurent series coefficient for # a rational function). The theory in section 2.4 will help to # understand why the resultant works in the general algorithm. # For the definition of a resultant, see section 1.4 (and any # previous sections for more review). from sympy import collect, Mul, Order, S expr = sympify(expr) if x0 != 0: expr = expr.subs(x, x + x0) for n in [0, 1, 2, 4, 8, 16, 32]: if n == 0: s = expr.series(x, n=0) else: s = expr.nseries(x, n=n) if not s.has(Order) or s.getn() >= 0: break s = collect(s.removeO(), x) if s.is_Add: args = s.args else: args = [s] res = S(0) for arg in args: c, m = arg.as_coeff_mul(x) m = Mul(*m) if not (m == 1 or m == x or (m.is_Pow and m.exp.is_Integer)): raise NotImplementedError('term of unexpected form: %s' % m) if m == 1/x: res += c return res
63565438655b088db356a962a08c2b05b62500c5e576b4afcc816e3b08447ec1
"""Formal Power Series""" from __future__ import print_function, division from collections import defaultdict from sympy import oo, zoo, nan from sympy.core.add import Add from sympy.core.compatibility import iterable from sympy.core.expr import Expr from sympy.core.function import Derivative, Function from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.relational import Eq from sympy.sets.sets import Interval from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy, symbols, Symbol from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial, factorial, rf from sympy.functions.elementary.integers import floor, frac, ceiling from sympy.functions.elementary.miscellaneous import Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.series.limits import Limit from sympy.series.order import Order from sympy.series.sequences import sequence from sympy.series.series_class import SeriesBase def rational_algorithm(f, x, k, order=4, full=False): """Rational algorithm for computing formula of coefficients of Formal Power Series of a function. Applicable when f(x) or some derivative of f(x) is a rational function in x. :func:`rational_algorithm` uses :func:`apart` function for partial fraction decomposition. :func:`apart` by default uses 'undetermined coefficients method'. By setting ``full=True``, 'Bronstein's algorithm' can be used instead. Looks for derivative of a function up to 4'th order (by default). This can be overridden using order option. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import log, atan, I >>> from sympy.series.formal import rational_algorithm as ra >>> from sympy.abc import x, k >>> ra(1 / (1 - x), x, k) (1, 0, 0) >>> ra(log(1 + x), x, k) (-(-1)**(-k)/k, 0, 1) >>> ra(atan(x), x, k, full=True) ((-I*(-I)**(-k)/2 + I*I**(-k)/2)/k, 0, 1) Notes ===== By setting ``full=True``, range of admissible functions to be solved using ``rational_algorithm`` can be increased. This option should be used carefully as it can significantly slow down the computation as ``doit`` is performed on the :class:`RootSum` object returned by the ``apart`` function. Use ``full=False`` whenever possible. See Also ======== sympy.polys.partfrac.apart References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ from sympy.polys import RootSum, apart from sympy.integrals import integrate diff = f ds = [] # list of diff for i in range(order + 1): if i: diff = diff.diff(x) if diff.is_rational_function(x): coeff, sep = S.Zero, S.Zero terms = apart(diff, x, full=full) if terms.has(RootSum): terms = terms.doit() for t in Add.make_args(terms): num, den = t.as_numer_denom() if not den.has(x): sep += t else: if isinstance(den, Mul): # m*(n*x - a)**j -> (n*x - a)**j ind = den.as_independent(x) den = ind[1] num /= ind[0] # (n*x - a)**j -> (x - b) den, j = den.as_base_exp() a, xterm = den.as_coeff_add(x) # term -> m/x**n if not a: sep += t continue xc = xterm[0].coeff(x) a /= -xc num /= xc**j ak = ((-1)**j * num * binomial(j + k - 1, k).rewrite(factorial) / a**(j + k)) coeff += ak # Hacky, better way? if coeff is S.Zero: return None if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or coeff.has(nan)): return None for j in range(i): coeff = (coeff / (k + j + 1)) sep = integrate(sep, x) sep += (ds.pop() - sep).limit(x, 0) # constant of integration return (coeff.subs(k, k - i), sep, i) else: ds.append(diff) return None def rational_independent(terms, x): """Returns a list of all the rationally independent terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.series.formal import rational_independent >>> from sympy.abc import x >>> rational_independent([cos(x), sin(x)], x) [cos(x), sin(x)] >>> rational_independent([x**2, sin(x), x*sin(x), x**3], x) [x**3 + x**2, x*sin(x) + sin(x)] """ if not terms: return [] ind = terms[0:1] for t in terms[1:]: n = t.as_independent(x)[1] for i, term in enumerate(ind): d = term.as_independent(x)[1] q = (n / d).cancel() if q.is_rational_function(x): ind[i] += t break else: ind.append(t) return ind def simpleDE(f, x, g, order=4): r"""Generates simple DE. DE is of the form .. math:: f^k(x) + \sum\limits_{j=0}^{k-1} A_j f^j(x) = 0 where :math:`A_j` should be rational function in x. Generates DE's upto order 4 (default). DE's can also have free parameters. By increasing order, higher order DE's can be found. Yields a tuple of (DE, order). """ from sympy.solvers.solveset import linsolve a = symbols('a:%d' % (order)) def _makeDE(k): eq = f.diff(x, k) + Add(*[a[i]*f.diff(x, i) for i in range(0, k)]) DE = g(x).diff(x, k) + Add(*[a[i]*g(x).diff(x, i) for i in range(0, k)]) return eq, DE eq, DE = _makeDE(order) found = False for k in range(1, order + 1): eq, DE = _makeDE(k) eq = eq.expand() terms = eq.as_ordered_terms() ind = rational_independent(terms, x) if found or len(ind) == k: sol = dict(zip(a, (i for s in linsolve(ind, a[:k]) for i in s))) if sol: found = True DE = DE.subs(sol) DE = DE.as_numer_denom()[0] DE = DE.factor().as_coeff_mul(Derivative)[1][0] yield DE.collect(Derivative(g(x))), k def exp_re(DE, r, k): """Converts a DE with constant coefficients (explike) into a RE. Performs the substitution: .. math:: f^j(x) \\to r(k + j) Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import exp_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> exp_re(-f(x) + Derivative(f(x)), r, k) -r(k) + r(k + 1) >>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k) r(k) + r(k + 1) See Also ======== sympy.series.formal.hyper_re """ RE = S.Zero g = DE.atoms(Function).pop() mini = None for t in Add.make_args(DE): coeff, d = t.as_independent(g) if isinstance(d, Derivative): j = d.derivative_count else: j = 0 if mini is None or j < mini: mini = j RE += coeff * r(k + j) if mini: RE = RE.subs(k, k - mini) return RE def hyper_re(DE, r, k): """Converts a DE into a RE. Performs the substitution: .. math:: x^l f^j(x) \\to (k + 1 - l)_j . a_{k + j - l} Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import hyper_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> hyper_re(-f(x) + Derivative(f(x)), r, k) (k + 1)*r(k + 1) - r(k) >>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k) (k + 2)*(k + 3)*r(k + 3) - r(k) See Also ======== sympy.series.formal.exp_re """ RE = S.Zero g = DE.atoms(Function).pop() x = g.atoms(Symbol).pop() mini = None for t in Add.make_args(DE.expand()): coeff, d = t.as_independent(g) c, v = coeff.as_independent(x) l = v.as_coeff_exponent(x)[1] if isinstance(d, Derivative): j = d.derivative_count else: j = 0 RE += c * rf(k + 1 - l, j) * r(k + j - l) if mini is None or j - l < mini: mini = j - l RE = RE.subs(k, k - mini) m = Wild('m') return RE.collect(r(k + m)) def _transformation_a(f, x, P, Q, k, m, shift): f *= x**(-shift) P = P.subs(k, k + shift) Q = Q.subs(k, k + shift) return f, P, Q, m def _transformation_c(f, x, P, Q, k, m, scale): f = f.subs(x, x**scale) P = P.subs(k, k / scale) Q = Q.subs(k, k / scale) m *= scale return f, P, Q, m def _transformation_e(f, x, P, Q, k, m): f = f.diff(x) P = P.subs(k, k + 1) * (k + m + 1) Q = Q.subs(k, k + 1) * (k + 1) return f, P, Q, m def _apply_shift(sol, shift): return [(res, cond + shift) for res, cond in sol] def _apply_scale(sol, scale): return [(res, cond / scale) for res, cond in sol] def _apply_integrate(sol, x, k): return [(res / ((cond + 1)*(cond.as_coeff_Add()[1].coeff(k))), cond + 1) for res, cond in sol] def _compute_formula(f, x, P, Q, k, m, k_max): """Computes the formula for f.""" from sympy.polys import roots sol = [] for i in range(k_max + 1, k_max + m + 1): if (i < 0) == True: continue r = f.diff(x, i).limit(x, 0) / factorial(i) if r is S.Zero: continue kterm = m*k + i res = r p = P.subs(k, kterm) q = Q.subs(k, kterm) c1 = p.subs(k, 1/k).leadterm(k)[0] c2 = q.subs(k, 1/k).leadterm(k)[0] res *= (-c1 / c2)**k for r, mul in roots(p, k).items(): res *= rf(-r, k)**mul for r, mul in roots(q, k).items(): res /= rf(-r, k)**mul sol.append((res, kterm)) return sol def _rsolve_hypergeometric(f, x, P, Q, k, m): """Recursive wrapper to rsolve_hypergeometric. Returns a Tuple of (formula, series independent terms, maximum power of x in independent terms) if successful otherwise ``None``. See :func:`rsolve_hypergeometric` for details. """ from sympy.polys import lcm, roots from sympy.integrals import integrate # transformation - c proots, qroots = roots(P, k), roots(Q, k) all_roots = dict(proots) all_roots.update(qroots) scale = lcm([r.as_numer_denom()[1] for r, t in all_roots.items() if r.is_rational]) f, P, Q, m = _transformation_c(f, x, P, Q, k, m, scale) # transformation - a qroots = roots(Q, k) if qroots: k_min = Min(*qroots.keys()) else: k_min = S.Zero shift = k_min + m f, P, Q, m = _transformation_a(f, x, P, Q, k, m, shift) l = (x*f).limit(x, 0) if not isinstance(l, Limit) and l != 0: # Ideally should only be l != 0 return None qroots = roots(Q, k) if qroots: k_max = Max(*qroots.keys()) else: k_max = S.Zero ind, mp = S.Zero, -oo for i in range(k_max + m + 1): r = f.diff(x, i).limit(x, 0) / factorial(i) if r.is_finite is False: old_f = f f, P, Q, m = _transformation_a(f, x, P, Q, k, m, i) f, P, Q, m = _transformation_e(f, x, P, Q, k, m) sol, ind, mp = _rsolve_hypergeometric(f, x, P, Q, k, m) sol = _apply_integrate(sol, x, k) sol = _apply_shift(sol, i) ind = integrate(ind, x) ind += (old_f - ind).limit(x, 0) # constant of integration mp += 1 return sol, ind, mp elif r: ind += r*x**(i + shift) pow_x = Rational((i + shift), scale) if pow_x > mp: mp = pow_x # maximum power of x ind = ind.subs(x, x**(1/scale)) sol = _compute_formula(f, x, P, Q, k, m, k_max) sol = _apply_shift(sol, shift) sol = _apply_scale(sol, scale) return sol, ind, mp def rsolve_hypergeometric(f, x, P, Q, k, m): """Solves RE of hypergeometric type. Attempts to solve RE of the form Q(k)*a(k + m) - P(k)*a(k) Transformations that preserve Hypergeometric type: a. x**n*f(x): b(k + m) = R(k - n)*b(k) b. f(A*x): b(k + m) = A**m*R(k)*b(k) c. f(x**n): b(k + n*m) = R(k/n)*b(k) d. f(x**(1/m)): b(k + 1) = R(k*m)*b(k) e. f'(x): b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1)*b(k) Some of these transformations have been used to solve the RE. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import exp, ln, S >>> from sympy.series.formal import rsolve_hypergeometric as rh >>> from sympy.abc import x, k >>> rh(exp(x), x, -S.One, (k + 1), k, 1) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ result = _rsolve_hypergeometric(f, x, P, Q, k, m) if result is None: return None sol_list, ind, mp = result sol_dict = defaultdict(lambda: S.Zero) for res, cond in sol_list: j, mk = cond.as_coeff_Add() c = mk.coeff(k) if j.is_integer is False: res *= x**frac(j) j = floor(j) res = res.subs(k, (k - j) / c) cond = Eq(k % c, j % c) sol_dict[cond] += res # Group together formula for same conditions sol = [] for cond, res in sol_dict.items(): sol.append((res, cond)) sol.append((S.Zero, True)) sol = Piecewise(*sol) if mp is -oo: s = S.Zero elif mp.is_integer is False: s = ceiling(mp) else: s = mp + 1 # save all the terms of # form 1/x**k in ind if s < 0: ind += sum(sequence(sol * x**k, (k, s, -1))) s = S.Zero return (sol, ind, s) def _solve_hyper_RE(f, x, RE, g, k): """See docstring of :func:`rsolve_hypergeometric` for details.""" terms = Add.make_args(RE) if len(terms) == 2: gs = list(RE.atoms(Function)) P, Q = map(RE.coeff, gs) m = gs[1].args[0] - gs[0].args[0] if m < 0: P, Q = Q, P m = abs(m) return rsolve_hypergeometric(f, x, P, Q, k, m) def _solve_explike_DE(f, x, DE, g, k): """Solves DE with constant coefficients.""" from sympy.solvers import rsolve for t in Add.make_args(DE): coeff, d = t.as_independent(g) if coeff.free_symbols: return RE = exp_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) sol = rsolve(RE, g(k), init) if sol: return (sol / factorial(k), S.Zero, S.Zero) def _solve_simple(f, x, DE, g, k): """Converts DE into RE and solves using :func:`rsolve`.""" from sympy.solvers import rsolve RE = hyper_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) / factorial(i) sol = rsolve(RE, g(k), init) if sol: return (sol, S.Zero, S.Zero) def _transform_explike_DE(DE, g, x, order, syms): """Converts DE with free parameters into DE with constant coefficients.""" from sympy.solvers.solveset import linsolve eq = [] highest_coeff = DE.coeff(Derivative(g(x), x, order)) for i in range(order): coeff = DE.coeff(Derivative(g(x), x, i)) coeff = (coeff / highest_coeff).expand().collect(x) for t in Add.make_args(coeff): eq.append(t) temp = [] for e in eq: if e.has(x): break elif e.has(Symbol): temp.append(e) else: eq = temp if eq: sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: DE = DE.subs(sol) DE = DE.factor().as_coeff_mul(Derivative)[1][0] DE = DE.collect(Derivative(g(x))) return DE def _transform_DE_RE(DE, g, k, order, syms): """Converts DE with free parameters into RE of hypergeometric type.""" from sympy.solvers.solveset import linsolve RE = hyper_re(DE, g, k) eq = [] for i in range(1, order): coeff = RE.coeff(g(k + i)) eq.append(coeff) sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: m = Wild('m') RE = RE.subs(sol) RE = RE.factor().as_numer_denom()[0].collect(g(k + m)) RE = RE.as_coeff_mul(g)[1][0] for i in range(order): # smallest order should be g(k) if RE.coeff(g(k + i)) and i: RE = RE.subs(k, k - i) break return RE def solve_de(f, x, DE, order, g, k): """Solves the DE. Tries to solve DE by either converting into a RE containing two terms or converting into a DE having constant coefficients. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import Derivative as D, Function >>> from sympy import exp, ln >>> from sympy.series.formal import solve_de >>> from sympy.abc import x, k >>> f = Function('f') >>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) """ sol = None syms = DE.free_symbols.difference({g, x}) if syms: RE = _transform_DE_RE(DE, g, k, order, syms) else: RE = hyper_re(DE, g, k) if not RE.free_symbols.difference({k}): sol = _solve_hyper_RE(f, x, RE, g, k) if sol: return sol if syms: DE = _transform_explike_DE(DE, g, x, order, syms) if not DE.free_symbols.difference({x}): sol = _solve_explike_DE(f, x, DE, g, k) if sol: return sol def hyper_algorithm(f, x, k, order=4): """Hypergeometric algorithm for computing Formal Power Series. Steps: * Generates DE * Convert the DE into RE * Solves the RE Examples ======== >>> from sympy import exp, ln >>> from sympy.series.formal import hyper_algorithm >>> from sympy.abc import x, k >>> hyper_algorithm(exp(x), x, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> hyper_algorithm(ln(1 + x), x, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) See Also ======== sympy.series.formal.simpleDE sympy.series.formal.solve_de """ g = Function('g') des = [] # list of DE's sol = None for DE, i in simpleDE(f, x, g, order): if DE is not None: sol = solve_de(f, x, DE, i, g, k) if sol: return sol if not DE.free_symbols.difference({x}): des.append(DE) # If nothing works # Try plain rsolve for DE in des: sol = _solve_simple(f, x, DE, g, k) if sol: return sol def _compute_fps(f, x, x0, dir, hyper, order, rational, full): """Recursive wrapper to compute fps. See :func:`compute_fps` for details. """ if x0 in [S.Infinity, -S.Infinity]: dir = S.One if x0 is S.Infinity else -S.One temp = f.subs(x, 1/x) result = _compute_fps(temp, x, 0, dir, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, 1/x), result[2].subs(x, 1/x)) elif x0 or dir == -S.One: if dir == -S.One: rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 temp = f.subs(x, rep) result = _compute_fps(temp, x, 0, S.One, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, rep2 + rep2b), result[2].subs(x, rep2 + rep2b)) if f.is_polynomial(x): return None # Break instances of Add # this allows application of different # algorithms on different terms increasing the # range of admissible functions. if isinstance(f, Add): result = False ak = sequence(S.Zero, (0, oo)) ind, xk = S.Zero, None for t in Add.make_args(f): res = _compute_fps(t, x, 0, S.One, hyper, order, rational, full) if res: if not result: result = True xk = res[1] if res[0].start > ak.start: seq = ak s, f = ak.start, res[0].start else: seq = res[0] s, f = res[0].start, ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(f - s)], xk[s:f])]) ak += res[0] ind += res[2] + save else: ind += t if result: return ak, xk, ind return None result = None # from here on it's x0=0 and dir=1 handling k = Dummy('k') if rational: result = rational_algorithm(f, x, k, order, full) if result is None and hyper: result = hyper_algorithm(f, x, k, order) if result is None: return None ak = sequence(result[0], (k, result[2], oo)) xk = sequence(x**k, (k, 0, oo)) ind = result[1] return ak, xk, ind def compute_fps(f, x, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """Computes the formula for Formal Power Series of a function. Tries to compute the formula by applying the following techniques (in order): * rational_algorithm * Hypergeomitric algorithm Parameters ========== x : Symbol x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Returns ======= ak : sequence Sequence of coefficients. xk : sequence Sequence of powers of x. ind : Expr Independent terms. mul : Pow Common terms. See Also ======== sympy.series.formal.rational_algorithm sympy.series.formal.hyper_algorithm """ f = sympify(f) x = sympify(x) if not f.has(x): return None x0 = sympify(x0) if dir == '+': dir = S.One elif dir == '-': dir = -S.One elif dir not in [S.One, -S.One]: raise ValueError("Dir must be '+' or '-'") else: dir = sympify(dir) return _compute_fps(f, x, x0, dir, hyper, order, rational, full) class FormalPowerSeries(SeriesBase): """Represents Formal Power Series of a function. No computation is performed. This class should only to be used to represent a series. No checks are performed. For computing a series use :func:`fps`. See Also ======== sympy.series.formal.fps """ def __new__(cls, *args): args = map(sympify, args) return Expr.__new__(cls, *args) @property def function(self): return self.args[0] @property def x(self): return self.args[1] @property def x0(self): return self.args[2] @property def dir(self): return self.args[3] @property def ak(self): return self.args[4][0] @property def xk(self): return self.args[4][1] @property def ind(self): return self.args[4][2] @property def interval(self): return Interval(0, oo) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return oo @property def infinite(self): """Returns an infinite representation of the series""" from sympy.concrete import Sum ak, xk = self.ak, self.xk k = ak.variables[0] inf_sum = Sum(ak.formula * xk.formula, (k, ak.start, ak.stop)) return self.ind + inf_sum def _get_pow_x(self, term): """Returns the power of x in a term.""" xterm, pow_x = term.as_independent(self.x)[1].as_base_exp() if not xterm.has(self.x): return S.Zero return pow_x def polynomial(self, n=6): """Truncated series as polynomial. Returns series sexpansion of ``f`` upto order ``O(x**n)`` as a polynomial(without ``O`` term). """ terms = [] for i, t in enumerate(self): xp = self._get_pow_x(t) if xp >= n: break elif xp.is_integer is True and i == n + 1: break elif t is not S.Zero: terms.append(t) return Add(*terms) def truncate(self, n=6): """Truncated series. Returns truncated series expansion of f upto order ``O(x**n)``. If n is ``None``, returns an infinite iterator. """ if n is None: return iter(self) x, x0 = self.x, self.x0 pt_xk = self.xk.coeff(n) if x0 is S.NegativeInfinity: x0 = S.Infinity return self.polynomial(n) + Order(pt_xk, (x, x0)) def _eval_term(self, pt): try: pt_xk = self.xk.coeff(pt) pt_ak = self.ak.coeff(pt).simplify() # Simplify the coefficients except IndexError: term = S.Zero else: term = (pt_ak * pt_xk) if self.ind: ind = S.Zero for t in Add.make_args(self.ind): pow_x = self._get_pow_x(t) if pt == 0 and pow_x < 1: ind += t elif pow_x >= pt and pow_x < pt + 1: ind += t term += ind return term.collect(self.x) def _eval_subs(self, old, new): x = self.x if old.has(x): return self def _eval_as_leading_term(self, x): for t in self: if t is not S.Zero: return t def _eval_derivative(self, x): f = self.function.diff(x) ind = self.ind.diff(x) pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t * (pow_xk + pow_x) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k + 1), (k, ak.start - 1, ak.stop)) else: ak = sequence((ak.formula * pow_xk).subs(k, k + 1), (k, ak.start - 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def integrate(self, x=None, **kwargs): """Integrate Formal Power Series. Examples ======== >>> from sympy import fps, sin, integrate >>> from sympy.abc import x >>> f = fps(sin(x)) >>> f.integrate(x).truncate() -1 + x**2/2 - x**4/24 + O(x**6) >>> integrate(f, (x, 0, 1)) -cos(1) + 1 """ from sympy.integrals import integrate if x is None: x = self.x elif iterable(x): return integrate(self.function, x) f = integrate(self.function, x) ind = integrate(self.ind, x) ind += (f - ind).limit(x, 0) # constant of integration pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t / (pow_xk + pow_x + 1) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k - 1), (k, ak.start + 1, ak.stop)) else: ak = sequence((ak.formula / (pow_xk + 1)).subs(k, k - 1), (k, ak.start + 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def __add__(self, other): other = sympify(other) if isinstance(other, FormalPowerSeries): if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") x, y = self.x, other.x f = self.function + other.function.subs(y, x) if self.x not in f.free_symbols: return f ak = self.ak + other.ak if self.ak.start > other.ak.start: seq = other.ak s, e = other.ak.start, self.ak.start else: seq = self.ak s, e = self.ak.start, other.ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(e - s)], self.xk[s:e])]) ind = self.ind + other.ind + save return self.func(f, x, self.x0, self.dir, (ak, self.xk, ind)) elif not other.has(self.x): f = self.function + other ind = self.ind + other return self.func(f, self.x, self.x0, self.dir, (self.ak, self.xk, ind)) return Add(self, other) def __radd__(self, other): return self.__add__(other) def __neg__(self): return self.func(-self.function, self.x, self.x0, self.dir, (-self.ak, self.xk, -self.ind)) def __sub__(self, other): return self.__add__(-other) def __rsub__(self, other): return (-self).__add__(other) def __mul__(self, other): other = sympify(other) if other.has(self.x): return Mul(self, other) f = self.function * other ak = self.ak.coeff_mul(other) ind = self.ind * other return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def __rmul__(self, other): return self.__mul__(other) def fps(f, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """Generates Formal Power Series of f. Returns the formal series expansion of ``f`` around ``x = x0`` with respect to ``x`` in the form of a ``FormalPowerSeries`` object. Formal Power Series is represented using an explicit formula computed using different algorithms. See :func:`compute_fps` for the more details regarding the computation of formula. Parameters ========== x : Symbol, optional If x is None and ``f`` is univariate, the univariate symbols will be supplied, otherwise an error will be raised. x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Examples ======== >>> from sympy import fps, O, ln, atan >>> from sympy.abc import x Rational Functions >>> fps(ln(1 + x)).truncate() x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6) >>> fps(atan(x), full=True).truncate() x - x**3/3 + x**5/5 + O(x**6) See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.compute_fps """ f = sympify(f) if x is None: free = f.free_symbols if len(free) == 1: x = free.pop() elif not free: return f else: raise NotImplementedError("multivariate formal power series") result = compute_fps(f, x, x0, dir, hyper, order, rational, full) if result is None: return f return FormalPowerSeries(f, x, x0, dir, result)
4a105dbfb430f7947ee45728e5097536714698cdea4a8740c8b517afa2bc2087
from __future__ import print_function, division from sympy.core import S, sympify, Expr, Rational, Dummy from sympy.core import Add, Mul, expand_power_base, expand_log from sympy.core.cache import cacheit from sympy.core.compatibility import default_sort_key, is_sequence from sympy.core.containers import Tuple from sympy.sets.sets import Complement from sympy.utilities.iterables import uniq class Order(Expr): r""" Represents the limiting behavior of some function The order of a function characterizes the function based on the limiting behavior of the function as it goes to some limit. Only taking the limit point to be a number is currently supported. This is expressed in big O notation [1]_. The formal definition for the order of a function `g(x)` about a point `a` is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if for any `\delta > 0` there exists a `M > 0` such that `|g(x)| \leq M|f(x)|` for `|x-a| < \delta`. This is equivalent to `\lim_{x \rightarrow a} \sup |g(x)/f(x)| < \infty`. Let's illustrate it on the following example by taking the expansion of `\sin(x)` about 0: .. math :: \sin(x) = x - x^3/3! + O(x^5) where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition of `O`, for any `\delta > 0` there is an `M` such that: .. math :: |x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta or by the alternate definition: .. math :: \lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty which surely is true, because .. math :: \lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5! As it is usually used, the order of a function can be intuitively thought of representing all terms of powers greater than the one specified. For example, `O(x^3)` corresponds to any terms proportional to `x^3, x^4,\ldots` and any higher power. For a polynomial, this leaves terms proportional to `x^2`, `x` and constants. Examples ======== >>> from sympy import O, oo, cos, pi >>> from sympy.abc import x, y >>> O(x + x**2) O(x) >>> O(x + x**2, (x, 0)) O(x) >>> O(x + x**2, (x, oo)) O(x**2, (x, oo)) >>> O(1 + x*y) O(1, x, y) >>> O(1 + x*y, (x, 0), (y, 0)) O(1, x, y) >>> O(1 + x*y, (x, oo), (y, oo)) O(x*y, (x, oo), (y, oo)) >>> O(1) in O(1, x) True >>> O(1, x) in O(1) False >>> O(x) in O(1, x) True >>> O(x**2) in O(x) True >>> O(x)*x O(x**2) >>> O(x) - O(x) O(x) >>> O(cos(x)) O(1) >>> O(cos(x), (x, pi/2)) O(x - pi/2, (x, pi/2)) References ========== .. [1] `Big O notation <https://en.wikipedia.org/wiki/Big_O_notation>`_ Notes ===== In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading term. ``O(f(x), x)`` is automatically transformed to ``O(f(x).as_leading_term(x),x)``. ``O(expr*f(x), x)`` is ``O(f(x), x)`` ``O(expr, x)`` is ``O(1)`` ``O(0, x)`` is 0. Multivariate O is also supported: ``O(f(x, y), x, y)`` is transformed to ``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)`` In the multivariate case, it is assumed the limits w.r.t. the various symbols commute. If no symbols are passed then all symbols in the expression are used and the limit point is assumed to be zero. """ is_Order = True __slots__ = [] @cacheit def __new__(cls, expr, *args, **kwargs): expr = sympify(expr) if not args: if expr.is_Order: variables = expr.variables point = expr.point else: variables = list(expr.free_symbols) point = [S.Zero]*len(variables) else: args = list(args if is_sequence(args) else [args]) variables, point = [], [] if is_sequence(args[0]): for a in args: v, p = list(map(sympify, a)) variables.append(v) point.append(p) else: variables = list(map(sympify, args)) point = [S.Zero]*len(variables) if not all(v.is_symbol for v in variables): raise TypeError('Variables are not symbols, got %s' % variables) if len(list(uniq(variables))) != len(variables): raise ValueError('Variables are supposed to be unique symbols, got %s' % variables) if expr.is_Order: expr_vp = dict(expr.args[1:]) new_vp = dict(expr_vp) vp = dict(zip(variables, point)) for v, p in vp.items(): if v in new_vp.keys(): if p != new_vp[v]: raise NotImplementedError( "Mixing Order at different points is not supported.") else: new_vp[v] = p if set(expr_vp.keys()) == set(new_vp.keys()): return expr else: variables = list(new_vp.keys()) point = [new_vp[v] for v in variables] if expr is S.NaN: return S.NaN if any(x in p.free_symbols for x in variables for p in point): raise ValueError('Got %s as a point.' % point) if variables: if any(p != point[0] for p in point): raise NotImplementedError( "Multivariable orders at different points are not supported.") if point[0] is S.Infinity: s = {k: 1/Dummy() for k in variables} rs = {1/v: 1/k for k, v in s.items()} elif point[0] is S.NegativeInfinity: s = {k: -1/Dummy() for k in variables} rs = {-1/v: -1/k for k, v in s.items()} elif point[0] is not S.Zero: s = dict((k, Dummy() + point[0]) for k in variables) rs = dict((v - point[0], k - point[0]) for k, v in s.items()) else: s = () rs = () expr = expr.subs(s) if expr.is_Add: from sympy import expand_multinomial expr = expand_multinomial(expr) if s: args = tuple([r[0] for r in rs.items()]) else: args = tuple(variables) if len(variables) > 1: # XXX: better way? We need this expand() to # workaround e.g: expr = x*(x + y). # (x*(x + y)).as_leading_term(x, y) currently returns # x*y (wrong order term!). That's why we want to deal with # expand()'ed expr (handled in "if expr.is_Add" branch below). expr = expr.expand() if expr.is_Add: lst = expr.extract_leading_order(args) expr = Add(*[f.expr for (e, f) in lst]) elif expr: expr = expr.as_leading_term(*args) expr = expr.as_independent(*args, as_Add=False)[1] expr = expand_power_base(expr) expr = expand_log(expr) if len(args) == 1: # The definition of O(f(x)) symbol explicitly stated that # the argument of f(x) is irrelevant. That's why we can # combine some power exponents (only "on top" of the # expression tree for f(x)), e.g.: # x**p * (-x)**q -> x**(p+q) for real p, q. x = args[0] margs = list(Mul.make_args( expr.as_independent(x, as_Add=False)[1])) for i, t in enumerate(margs): if t.is_Pow: b, q = t.args if b in (x, -x) and q.is_real and not q.has(x): margs[i] = x**q elif b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) elif b.is_Mul and b.args[0] is S.NegativeOne: b = -b if b.is_Pow and not b.exp.has(x): b, r = b.args if b in (x, -x) and r.is_real: margs[i] = x**(r*q) expr = Mul(*margs) expr = expr.subs(rs) if expr is S.Zero: return expr if expr.is_Order: expr = expr.expr if not expr.has(*variables): expr = S.One # create Order instance: vp = dict(zip(variables, point)) variables.sort(key=default_sort_key) point = [vp[v] for v in variables] args = (expr,) + Tuple(*zip(variables, point)) obj = Expr.__new__(cls, *args) return obj def _eval_nseries(self, x, n, logx): return self @property def expr(self): return self.args[0] @property def variables(self): if self.args[1:]: return tuple(x[0] for x in self.args[1:]) else: return () @property def point(self): if self.args[1:]: return tuple(x[1] for x in self.args[1:]) else: return () @property def free_symbols(self): return self.expr.free_symbols | set(self.variables) def _eval_power(b, e): if e.is_Number and e.is_nonnegative: return b.func(b.expr ** e, *b.args[1:]) if e == O(1): return b return def as_expr_variables(self, order_symbols): if order_symbols is None: order_symbols = self.args[1:] else: if (not all(o[1] == order_symbols[0][1] for o in order_symbols) and not all(p == self.point[0] for p in self.point)): # pragma: no cover raise NotImplementedError('Order at points other than 0 ' 'or oo not supported, got %s as a point.' % self.point) if order_symbols and order_symbols[0][1] != self.point[0]: raise NotImplementedError( "Multiplying Order at different points is not supported.") order_symbols = dict(order_symbols) for s, p in dict(self.args[1:]).items(): if s not in order_symbols.keys(): order_symbols[s] = p order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0])) return self.expr, tuple(order_symbols) def removeO(self): return S.Zero def getO(self): return self @cacheit def contains(self, expr): r""" Return True if expr belongs to Order(self.expr, \*self.variables). Return False if self belongs to expr. Return None if the inclusion relation cannot be determined (e.g. when self and expr have different symbols). """ from sympy import powsimp if expr is S.Zero: return True if expr is S.NaN: return False point = self.point[0] if self.point else S.Zero if expr.is_Order: if (any(p != point for p in expr.point) or any(p != point for p in self.point)): return None if expr.expr == self.expr: # O(1) + O(1), O(1) + O(1, x), etc. return all([x in self.args[1:] for x in expr.args[1:]]) if expr.expr.is_Add: return all([self.contains(x) for x in expr.expr.args]) if self.expr.is_Add and point == S.Zero: return any([self.func(x, *self.args[1:]).contains(expr) for x in self.expr.args]) if self.variables and expr.variables: common_symbols = tuple( [s for s in self.variables if s in expr.variables]) elif self.variables: common_symbols = self.variables else: common_symbols = expr.variables if not common_symbols: return None if (self.expr.is_Pow and len(self.variables) == 1 and self.variables == expr.variables): symbol = self.variables[0] other = expr.expr.as_independent(symbol, as_Add=False)[1] if (other.is_Pow and other.base == symbol and self.expr.base == symbol): if point == S.Zero: rv = (self.expr.exp - other.exp).is_nonpositive if point.is_infinite: rv = (self.expr.exp - other.exp).is_nonnegative if rv is not None: return rv r = None ratio = self.expr/expr.expr ratio = powsimp(ratio, deep=True, combine='exp') for s in common_symbols: from sympy.series.limits import Limit l = Limit(ratio, s, point).doit(heuristics=False) if not isinstance(l, Limit): l = l != 0 else: l = None if r is None: r = l else: if r != l: return return r if self.expr.is_Pow and len(self.variables) == 1: symbol = self.variables[0] other = expr.as_independent(symbol, as_Add=False)[1] if (other.is_Pow and other.base == symbol and self.expr.base == symbol): if point == S.Zero: rv = (self.expr.exp - other.exp).is_nonpositive if point.is_infinite: rv = (self.expr.exp - other.exp).is_nonnegative if rv is not None: return rv obj = self.func(expr, *self.args[1:]) return self.contains(obj) def __contains__(self, other): result = self.contains(other) if result is None: raise TypeError('contains did not evaluate to a bool') return result def _eval_subs(self, old, new): if old in self.variables: newexpr = self.expr.subs(old, new) i = self.variables.index(old) newvars = list(self.variables) newpt = list(self.point) if new.is_symbol: newvars[i] = new else: syms = new.free_symbols if len(syms) == 1 or old in syms: if old in syms: var = self.variables[i] else: var = syms.pop() # First, try to substitute self.point in the "new" # expr to see if this is a fixed point. # E.g. O(y).subs(y, sin(x)) point = new.subs(var, self.point[i]) if point != self.point[i]: from sympy.solvers.solveset import solveset d = Dummy() sol = solveset(old - new.subs(var, d), d) if isinstance(sol, Complement): e1 = sol.args[0] e2 = sol.args[1] sol = set(e1) - set(e2) res = [dict(zip((d, ), sol))] point = d.subs(res[0]).limit(old, self.point[i]) newvars[i] = var newpt[i] = point elif old not in syms: del newvars[i], newpt[i] if not syms and new == self.point[i]: newvars.extend(syms) newpt.extend([S.Zero]*len(syms)) else: return return Order(newexpr, *zip(newvars, newpt)) def _eval_conjugate(self): expr = self.expr._eval_conjugate() if expr is not None: return self.func(expr, *self.args[1:]) def _eval_derivative(self, x): return self.func(self.expr.diff(x), *self.args[1:]) or self def _eval_transpose(self): expr = self.expr._eval_transpose() if expr is not None: return self.func(expr, *self.args[1:]) def _sage_(self): #XXX: SAGE doesn't have Order yet. Let's return 0 instead. return Rational(0)._sage_() O = Order
4a1899be349a2e8f1511c1206b86e2b6a9c313ff12f7892ebdee82d1bde8595c
from __future__ import print_function, division from collections import defaultdict from sympy.core import (Basic, S, Add, Mul, Pow, Symbol, sympify, expand_mul, expand_func, Function, Dummy, Expr, factor_terms, expand_power_exp) from sympy.core.compatibility import iterable, ordered, range, as_int from sympy.core.evaluate import global_evaluate from sympy.core.function import expand_log, count_ops, _mexpand, _coeff_isneg, nfloat from sympy.core.numbers import Float, I, pi, Rational, Integer from sympy.core.rules import Transform from sympy.core.sympify import _sympify from sympy.functions import gamma, exp, sqrt, log, exp_polar, piecewise_fold from sympy.functions.combinatorial.factorials import CombinatorialFunction from sympy.functions.elementary.complexes import unpolarify from sympy.functions.elementary.exponential import ExpBase from sympy.functions.elementary.hyperbolic import HyperbolicFunction from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.functions.special.bessel import besselj, besseli, besselk, jn, bessely from sympy.polys import together, cancel, factor from sympy.simplify.combsimp import combsimp from sympy.simplify.cse_opts import sub_pre, sub_post from sympy.simplify.powsimp import powsimp from sympy.simplify.radsimp import radsimp, fraction from sympy.simplify.sqrtdenest import sqrtdenest from sympy.simplify.trigsimp import trigsimp, exptrigsimp from sympy.utilities.iterables import has_variety import mpmath def separatevars(expr, symbols=[], dict=False, force=False): """ Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are independent of symbols. If dict=True then the separated terms will be returned in a dictionary keyed to their corresponding symbols. By default, all symbols in the expression will appear as keys; if symbols are provided, then all those symbols will be used as keys, and any terms in the expression containing other symbols or non-symbols will be returned keyed to the string 'coeff'. (Passing None for symbols will return the expression in a dictionary keyed to 'coeff'.) If force=True, then bases of powers will be separated regardless of assumptions on the symbols involved. Notes ===== The order of the factors is determined by Mul, so that the separated expressions may not necessarily be grouped together. Although factoring is necessary to separate variables in some expressions, it is not necessary in all cases, so one should not count on the returned factors being factored. Examples ======== >>> from sympy.abc import x, y, z, alpha >>> from sympy import separatevars, sin >>> separatevars((x*y)**y) (x*y)**y >>> separatevars((x*y)**y, force=True) x**y*y**y >>> e = 2*x**2*z*sin(y)+2*z*x**2 >>> separatevars(e) 2*x**2*z*(sin(y) + 1) >>> separatevars(e, symbols=(x, y), dict=True) {'coeff': 2*z, x: x**2, y: sin(y) + 1} >>> separatevars(e, [x, y, alpha], dict=True) {'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1} If the expression is not really separable, or is only partially separable, separatevars will do the best it can to separate it by using factoring. >>> separatevars(x + x*y - 3*x**2) -x*(3*x - y - 1) If the expression is not separable then expr is returned unchanged or (if dict=True) then None is returned. >>> eq = 2*x + y*sin(x) >>> separatevars(eq) == eq True >>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) == None True """ expr = sympify(expr) if dict: return _separatevars_dict(_separatevars(expr, force), symbols) else: return _separatevars(expr, force) def _separatevars(expr, force): if len(expr.free_symbols) == 1: return expr # don't destroy a Mul since much of the work may already be done if expr.is_Mul: args = list(expr.args) changed = False for i, a in enumerate(args): args[i] = separatevars(a, force) changed = changed or args[i] != a if changed: expr = expr.func(*args) return expr # get a Pow ready for expansion if expr.is_Pow: expr = Pow(separatevars(expr.base, force=force), expr.exp) # First try other expansion methods expr = expr.expand(mul=False, multinomial=False, force=force) _expr, reps = posify(expr) if force else (expr, {}) expr = factor(_expr).subs(reps) if not expr.is_Add: return expr # Find any common coefficients to pull out args = list(expr.args) commonc = args[0].args_cnc(cset=True, warn=False)[0] for i in args[1:]: commonc &= i.args_cnc(cset=True, warn=False)[0] commonc = Mul(*commonc) commonc = commonc.as_coeff_Mul()[1] # ignore constants commonc_set = commonc.args_cnc(cset=True, warn=False)[0] # remove them for i, a in enumerate(args): c, nc = a.args_cnc(cset=True, warn=False) c = c - commonc_set args[i] = Mul(*c)*Mul(*nc) nonsepar = Add(*args) if len(nonsepar.free_symbols) > 1: _expr = nonsepar _expr, reps = posify(_expr) if force else (_expr, {}) _expr = (factor(_expr)).subs(reps) if not _expr.is_Add: nonsepar = _expr return commonc*nonsepar def _separatevars_dict(expr, symbols): if symbols: if not all((t.is_Atom for t in symbols)): raise ValueError("symbols must be Atoms.") symbols = list(symbols) elif symbols is None: return {'coeff': expr} else: symbols = list(expr.free_symbols) if not symbols: return None ret = dict(((i, []) for i in symbols + ['coeff'])) for i in Mul.make_args(expr): expsym = i.free_symbols intersection = set(symbols).intersection(expsym) if len(intersection) > 1: return None if len(intersection) == 0: # There are no symbols, so it is part of the coefficient ret['coeff'].append(i) else: ret[intersection.pop()].append(i) # rebuild for k, v in ret.items(): ret[k] = Mul(*v) return ret def _is_sum_surds(p): args = p.args if p.is_Add else [p] for y in args: if not ((y**2).is_Rational and y.is_real): return False return True def posify(eq): """Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols. Any symbol that has positive=None will be replaced with a positive dummy symbol having the same name. This replacement will allow more symbolic processing of expressions, especially those involving powers and logarithms. A dictionary that can be sent to subs to restore eq to its original symbols is also returned. >>> from sympy import posify, Symbol, log, solve >>> from sympy.abc import x >>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True)) (_x + n + p, {_x: x}) >>> eq = 1/x >>> log(eq).expand() log(1/x) >>> log(posify(eq)[0]).expand() -log(_x) >>> p, rep = posify(eq) >>> log(p).expand().subs(rep) -log(x) It is possible to apply the same transformations to an iterable of expressions: >>> eq = x**2 - 4 >>> solve(eq, x) [-2, 2] >>> eq_x, reps = posify([eq, x]); eq_x [_x**2 - 4, _x] >>> solve(*eq_x) [2] """ eq = sympify(eq) if iterable(eq): f = type(eq) eq = list(eq) syms = set() for e in eq: syms = syms.union(e.atoms(Symbol)) reps = {} for s in syms: reps.update(dict((v, k) for k, v in posify(s)[1].items())) for i, e in enumerate(eq): eq[i] = e.subs(reps) return f(eq), {r: s for s, r in reps.items()} reps = dict([(s, Dummy(s.name, positive=True)) for s in eq.free_symbols if s.is_positive is None]) eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def hypersimp(f, k): """Given combinatorial term f(k) simplify its consecutive term ratio i.e. f(k+1)/f(k). The input term can be composed of functions and integer sequences which have equivalent representation in terms of gamma special function. The algorithm performs three basic steps: 1. Rewrite all functions in terms of gamma, if possible. 2. Rewrite all occurrences of gamma in terms of products of gamma and rising factorial with integer, absolute constant exponent. 3. Perform simplification of nested fractions, powers and if the resulting expression is a quotient of polynomials, reduce their total degree. If f(k) is hypergeometric then as result we arrive with a quotient of polynomials of minimal degree. Otherwise None is returned. For more information on the implemented algorithm refer to: 1. W. Koepf, Algorithms for m-fold Hypergeometric Summation, Journal of Symbolic Computation (1995) 20, 399-417 """ f = sympify(f) g = f.subs(k, k + 1) / f g = g.rewrite(gamma) g = expand_func(g) g = powsimp(g, deep=True, combine='exp') if g.is_rational_function(k): return simplify(g, ratio=S.Infinity) else: return None def hypersimilar(f, g, k): """Returns True if 'f' and 'g' are hyper-similar. Similarity in hypergeometric sense means that a quotient of f(k) and g(k) is a rational function in k. This procedure is useful in solving recurrence relations. For more information see hypersimp(). """ f, g = list(map(sympify, (f, g))) h = (f/g).rewrite(gamma) h = h.expand(func=True, basic=False) return h.is_rational_function(k) def signsimp(expr, evaluate=None): """Make all Add sub-expressions canonical wrt sign. If an Add subexpression, ``a``, can have a sign extracted, as determined by could_extract_minus_sign, it is replaced with Mul(-1, a, evaluate=False). This allows signs to be extracted from powers and products. Examples ======== >>> from sympy import signsimp, exp, symbols >>> from sympy.abc import x, y >>> i = symbols('i', odd=True) >>> n = -1 + 1/x >>> n/x/(-n)**2 - 1/n/x (-1 + 1/x)/(x*(1 - 1/x)**2) - 1/(x*(-1 + 1/x)) >>> signsimp(_) 0 >>> x*n + x*-n x*(-1 + 1/x) + x*(1 - 1/x) >>> signsimp(_) 0 Since powers automatically handle leading signs >>> (-2)**i -2**i signsimp can be used to put the base of a power with an integer exponent into canonical form: >>> n**i (-1 + 1/x)**i By default, signsimp doesn't leave behind any hollow simplification: if making an Add canonical wrt sign didn't change the expression, the original Add is restored. If this is not desired then the keyword ``evaluate`` can be set to False: >>> e = exp(y - x) >>> signsimp(e) == e True >>> signsimp(e, evaluate=False) exp(-(x - y)) """ if evaluate is None: evaluate = global_evaluate[0] expr = sympify(expr) if not isinstance(expr, Expr) or expr.is_Atom: return expr e = sub_post(sub_pre(expr)) if not isinstance(e, Expr) or e.is_Atom: return e if e.is_Add: return e.func(*[signsimp(a, evaluate) for a in e.args]) if evaluate: e = e.xreplace({m: -(-m) for m in e.atoms(Mul) if -(-m) != m}) return e def simplify(expr, ratio=1.7, measure=count_ops, rational=False, inverse=False): """Simplifies the given expression. Simplification is not a well defined term and the exact strategies this function tries can change in the future versions of SymPy. If your algorithm relies on "simplification" (whatever it is), try to determine what you need exactly - is it powsimp()?, radsimp()?, together()?, logcombine()?, or something else? And use this particular function directly, because those are well defined and thus your algorithm will be robust. Nonetheless, especially for interactive use, or when you don't know anything about the structure of the expression, simplify() tries to apply intelligent heuristics to make the input expression "simpler". For example: >>> from sympy import simplify, cos, sin >>> from sympy.abc import x, y >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2) >>> a (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2) >>> simplify(a) x + 1 Note that we could have obtained the same result by using specific simplification functions: >>> from sympy import trigsimp, cancel >>> trigsimp(a) (x**2 + x)/x >>> cancel(_) x + 1 In some cases, applying :func:`simplify` may actually result in some more complicated expression. The default ``ratio=1.7`` prevents more extreme cases: if (result length)/(input length) > ratio, then input is returned unmodified. The ``measure`` parameter lets you specify the function used to determine how complex an expression is. The function should take a single argument as an expression and return a number such that if expression ``a`` is more complex than expression ``b``, then ``measure(a) > measure(b)``. The default measure function is :func:`count_ops`, which returns the total number of operations in the expression. For example, if ``ratio=1``, ``simplify`` output can't be longer than input. :: >>> from sympy import sqrt, simplify, count_ops, oo >>> root = 1/(sqrt(2)+3) Since ``simplify(root)`` would result in a slightly longer expression, root is returned unchanged instead:: >>> simplify(root, ratio=1) == root True If ``ratio=oo``, simplify will be applied anyway:: >>> count_ops(simplify(root, ratio=oo)) > count_ops(root) True Note that the shortest expression is not necessary the simplest, so setting ``ratio`` to 1 may not be a good idea. Heuristically, the default value ``ratio=1.7`` seems like a reasonable choice. You can easily define your own measure function based on what you feel should represent the "size" or "complexity" of the input expression. Note that some choices, such as ``lambda expr: len(str(expr))`` may appear to be good metrics, but have other problems (in this case, the measure function may slow down simplify too much for very large expressions). If you don't know what a good metric would be, the default, ``count_ops``, is a good one. For example: >>> from sympy import symbols, log >>> a, b = symbols('a b', positive=True) >>> g = log(a) + log(b) + log(a)*log(1/b) >>> h = simplify(g) >>> h log(a*b**(-log(a) + 1)) >>> count_ops(g) 8 >>> count_ops(h) 5 So you can see that ``h`` is simpler than ``g`` using the count_ops metric. However, we may not like how ``simplify`` (in this case, using ``logcombine``) has created the ``b**(log(1/a) + 1)`` term. A simple way to reduce this would be to give more weight to powers as operations in ``count_ops``. We can do this by using the ``visual=True`` option: >>> print(count_ops(g, visual=True)) 2*ADD + DIV + 4*LOG + MUL >>> print(count_ops(h, visual=True)) 2*LOG + MUL + POW + SUB >>> from sympy import Symbol, S >>> def my_measure(expr): ... POW = Symbol('POW') ... # Discourage powers by giving POW a weight of 10 ... count = count_ops(expr, visual=True).subs(POW, 10) ... # Every other operation gets a weight of 1 (the default) ... count = count.replace(Symbol, type(S.One)) ... return count >>> my_measure(g) 8 >>> my_measure(h) 14 >>> 15./8 > 1.7 # 1.7 is the default ratio True >>> simplify(g, measure=my_measure) -log(a)*log(b) + log(a) + log(b) Note that because ``simplify()`` internally tries many different simplification strategies and then compares them using the measure function, we get a completely different result that is still different from the input expression by doing this. If rational=True, Floats will be recast as Rationals before simplification. If rational=None, Floats will be recast as Rationals but the result will be recast as Floats. If rational=False(default) then nothing will be done to the Floats. If inverse=True, it will be assumed that a composition of inverse functions, such as sin and asin, can be cancelled in any order. For example, ``asin(sin(x))`` will yield ``x`` without checking whether x belongs to the set where this relation is true. The default is False. """ expr = sympify(expr) try: return expr._eval_simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse) except AttributeError: pass original_expr = expr = signsimp(expr) from sympy.simplify.hyperexpand import hyperexpand from sympy.functions.special.bessel import BesselBase from sympy import Sum, Product if not isinstance(expr, Basic) or not expr.args: # XXX: temporary hack return expr if inverse and expr.has(Function): expr = inversecombine(expr) if not expr.args: # simplified to atomic return expr if not isinstance(expr, (Add, Mul, Pow, ExpBase)): return expr.func(*[simplify(x, ratio=ratio, measure=measure, rational=rational, inverse=inverse) for x in expr.args]) if not expr.is_commutative: expr = nc_simplify(expr) # TODO: Apply different strategies, considering expression pattern: # is it a purely rational function? Is there any trigonometric function?... # See also https://github.com/sympy/sympy/pull/185. def shorter(*choices): '''Return the choice that has the fewest ops. In case of a tie, the expression listed first is selected.''' if not has_variety(choices): return choices[0] return min(choices, key=measure) # rationalize Floats floats = False if rational is not False and expr.has(Float): floats = True expr = nsimplify(expr, rational=True) expr = bottom_up(expr, lambda w: w.normal()) expr = Mul(*powsimp(expr).as_content_primitive()) _e = cancel(expr) expr1 = shorter(_e, _mexpand(_e).cancel()) # issue 6829 expr2 = shorter(together(expr, deep=True), together(expr1, deep=True)) if ratio is S.Infinity: expr = expr2 else: expr = shorter(expr2, expr1, expr) if not isinstance(expr, Basic): # XXX: temporary hack return expr expr = factor_terms(expr, sign=False) # hyperexpand automatically only works on hypergeometric terms expr = hyperexpand(expr) expr = piecewise_fold(expr) if expr.has(BesselBase): expr = besselsimp(expr) if expr.has(TrigonometricFunction, HyperbolicFunction): expr = trigsimp(expr, deep=True) if expr.has(log): expr = shorter(expand_log(expr, deep=True), logcombine(expr)) if expr.has(CombinatorialFunction, gamma): # expression with gamma functions or non-integer arguments is # automatically passed to gammasimp expr = combsimp(expr) if expr.has(Sum): expr = sum_simplify(expr) if expr.has(Product): expr = product_simplify(expr) from sympy.physics.units import Quantity from sympy.physics.units.util import quantity_simplify if expr.has(Quantity): expr = quantity_simplify(expr) short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr) short = shorter(short, cancel(short)) short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short))) if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase): short = exptrigsimp(short) # get rid of hollow 2-arg Mul factorization hollow_mul = Transform( lambda x: Mul(*x.args), lambda x: x.is_Mul and len(x.args) == 2 and x.args[0].is_Number and x.args[1].is_Add and x.is_commutative) expr = short.xreplace(hollow_mul) numer, denom = expr.as_numer_denom() if denom.is_Add: n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1)) if n is not S.One: expr = (numer*n).expand()/d if expr.could_extract_minus_sign(): n, d = fraction(expr) if d != 0: expr = signsimp(-n/(-d)) if measure(expr) > ratio*measure(original_expr): expr = original_expr # restore floats if floats and rational is None: expr = nfloat(expr, exponent=False) return expr def sum_simplify(s): """Main function for Sum simplification""" from sympy.concrete.summations import Sum from sympy.core.function import expand terms = Add.make_args(expand(s)) s_t = [] # Sum Terms o_t = [] # Other Terms for term in terms: if isinstance(term, Mul): other = 1 sum_terms = [] if not term.has(Sum): o_t.append(term) continue mul_terms = Mul.make_args(term) for mul_term in mul_terms: if isinstance(mul_term, Sum): r = mul_term._eval_simplify() sum_terms.extend(Add.make_args(r)) else: other = other * mul_term if len(sum_terms): #some simplification may have happened #use if so s_t.append(Mul(*sum_terms) * other) else: o_t.append(other) elif isinstance(term, Sum): #as above, we need to turn this into an add list r = term._eval_simplify() s_t.extend(Add.make_args(r)) else: o_t.append(term) result = Add(sum_combine(s_t), *o_t) return result def sum_combine(s_t): """Helper function for Sum simplification Attempts to simplify a list of sums, by combining limits / sum function's returns the simplified sum """ from sympy.concrete.summations import Sum used = [False] * len(s_t) for method in range(2): for i, s_term1 in enumerate(s_t): if not used[i]: for j, s_term2 in enumerate(s_t): if not used[j] and i != j: temp = sum_add(s_term1, s_term2, method) if isinstance(temp, Sum) or isinstance(temp, Mul): s_t[i] = temp s_term1 = s_t[i] used[j] = True result = S.Zero for i, s_term in enumerate(s_t): if not used[i]: result = Add(result, s_term) return result def factor_sum(self, limits=None, radical=False, clear=False, fraction=False, sign=True): """Helper function for Sum simplification if limits is specified, "self" is the inner part of a sum Returns the sum with constant factors brought outside """ from sympy.core.exprtools import factor_terms from sympy.concrete.summations import Sum result = self.function if limits is None else self limits = self.limits if limits is None else limits #avoid any confusion w/ as_independent if result == 0: return S.Zero #get the summation variables sum_vars = set([limit.args[0] for limit in limits]) #finally we try to factor out any common terms #and remove the from the sum if independent retv = factor_terms(result, radical=radical, clear=clear, fraction=fraction, sign=sign) #avoid doing anything bad if not result.is_commutative: return Sum(result, *limits) i, d = retv.as_independent(*sum_vars) if isinstance(retv, Add): return i * Sum(1, *limits) + Sum(d, *limits) else: return i * Sum(d, *limits) def sum_add(self, other, method=0): """Helper function for Sum simplification""" from sympy.concrete.summations import Sum from sympy import Mul #we know this is something in terms of a constant * a sum #so we temporarily put the constants inside for simplification #then simplify the result def __refactor(val): args = Mul.make_args(val) sumv = next(x for x in args if isinstance(x, Sum)) constant = Mul(*[x for x in args if x != sumv]) return Sum(constant * sumv.function, *sumv.limits) if isinstance(self, Mul): rself = __refactor(self) else: rself = self if isinstance(other, Mul): rother = __refactor(other) else: rother = other if type(rself) == type(rother): if method == 0: if rself.limits == rother.limits: return factor_sum(Sum(rself.function + rother.function, *rself.limits)) elif method == 1: if simplify(rself.function - rother.function) == 0: if len(rself.limits) == len(rother.limits) == 1: i = rself.limits[0][0] x1 = rself.limits[0][1] y1 = rself.limits[0][2] j = rother.limits[0][0] x2 = rother.limits[0][1] y2 = rother.limits[0][2] if i == j: if x2 == y1 + 1: return factor_sum(Sum(rself.function, (i, x1, y2))) elif x1 == y2 + 1: return factor_sum(Sum(rself.function, (i, x2, y1))) return Add(self, other) def product_simplify(s): """Main function for Product simplification""" from sympy.concrete.products import Product terms = Mul.make_args(s) p_t = [] # Product Terms o_t = [] # Other Terms for term in terms: if isinstance(term, Product): p_t.append(term) else: o_t.append(term) used = [False] * len(p_t) for method in range(2): for i, p_term1 in enumerate(p_t): if not used[i]: for j, p_term2 in enumerate(p_t): if not used[j] and i != j: if isinstance(product_mul(p_term1, p_term2, method), Product): p_t[i] = product_mul(p_term1, p_term2, method) used[j] = True result = Mul(*o_t) for i, p_term in enumerate(p_t): if not used[i]: result = Mul(result, p_term) return result def product_mul(self, other, method=0): """Helper function for Product simplification""" from sympy.concrete.products import Product if type(self) == type(other): if method == 0: if self.limits == other.limits: return Product(self.function * other.function, *self.limits) elif method == 1: if simplify(self.function - other.function) == 0: if len(self.limits) == len(other.limits) == 1: i = self.limits[0][0] x1 = self.limits[0][1] y1 = self.limits[0][2] j = other.limits[0][0] x2 = other.limits[0][1] y2 = other.limits[0][2] if i == j: if x2 == y1 + 1: return Product(self.function, (i, x1, y2)) elif x1 == y2 + 1: return Product(self.function, (i, x2, y1)) return Mul(self, other) def _nthroot_solve(p, n, prec): """ helper function for ``nthroot`` It denests ``p**Rational(1, n)`` using its minimal polynomial """ from sympy.polys.numberfields import _minimal_polynomial_sq from sympy.solvers import solve while n % 2 == 0: p = sqrtdenest(sqrt(p)) n = n // 2 if n == 1: return p pn = p**Rational(1, n) x = Symbol('x') f = _minimal_polynomial_sq(p, n, x) if f is None: return None sols = solve(f, x) for sol in sols: if abs(sol - pn).n() < 1./10**prec: sol = sqrtdenest(sol) if _mexpand(sol**n) == p: return sol def logcombine(expr, force=False): """ Takes logarithms and combines them using the following rules: - log(x) + log(y) == log(x*y) if both are positive - a*log(x) == log(x**a) if x is positive and a is real If ``force`` is True then the assumptions above will be assumed to hold if there is no assumption already in place on a quantity. For example, if ``a`` is imaginary or the argument negative, force will not perform a combination but if ``a`` is a symbol with no assumptions the change will take place. Examples ======== >>> from sympy import Symbol, symbols, log, logcombine, I >>> from sympy.abc import a, x, y, z >>> logcombine(a*log(x) + log(y) - log(z)) a*log(x) + log(y) - log(z) >>> logcombine(a*log(x) + log(y) - log(z), force=True) log(x**a*y/z) >>> x,y,z = symbols('x,y,z', positive=True) >>> a = Symbol('a', real=True) >>> logcombine(a*log(x) + log(y) - log(z)) log(x**a*y/z) The transformation is limited to factors and/or terms that contain logs, so the result depends on the initial state of expansion: >>> eq = (2 + 3*I)*log(x) >>> logcombine(eq, force=True) == eq True >>> logcombine(eq.expand(), force=True) log(x**2) + I*log(x**3) See Also ======== posify: replace all symbols with symbols having positive assumptions sympy.core.function.expand_log: expand the logarithms of products and powers; the opposite of logcombine """ def f(rv): if not (rv.is_Add or rv.is_Mul): return rv def gooda(a): # bool to tell whether the leading ``a`` in ``a*log(x)`` # could appear as log(x**a) return (a is not S.NegativeOne and # -1 *could* go, but we disallow (a.is_real or force and a.is_real is not False)) def goodlog(l): # bool to tell whether log ``l``'s argument can combine with others a = l.args[0] return a.is_positive or force and a.is_nonpositive is not False other = [] logs = [] log1 = defaultdict(list) for a in Add.make_args(rv): if isinstance(a, log) and goodlog(a): log1[()].append(([], a)) elif not a.is_Mul: other.append(a) else: ot = [] co = [] lo = [] for ai in a.args: if ai.is_Rational and ai < 0: ot.append(S.NegativeOne) co.append(-ai) elif isinstance(ai, log) and goodlog(ai): lo.append(ai) elif gooda(ai): co.append(ai) else: ot.append(ai) if len(lo) > 1: logs.append((ot, co, lo)) elif lo: log1[tuple(ot)].append((co, lo[0])) else: other.append(a) # if there is only one log at each coefficient and none have # an exponent to place inside the log then there is nothing to do if not logs and all(len(log1[k]) == 1 and log1[k][0] == [] for k in log1): return rv # collapse multi-logs as far as possible in a canonical way # TODO: see if x*log(a)+x*log(a)*log(b) -> x*log(a)*(1+log(b))? # -- in this case, it's unambiguous, but if it were were a log(c) in # each term then it's arbitrary whether they are grouped by log(a) or # by log(c). So for now, just leave this alone; it's probably better to # let the user decide for o, e, l in logs: l = list(ordered(l)) e = log(l.pop(0).args[0]**Mul(*e)) while l: li = l.pop(0) e = log(li.args[0]**e) c, l = Mul(*o), e if isinstance(l, log): # it should be, but check to be sure log1[(c,)].append(([], l)) else: other.append(c*l) # logs that have the same coefficient can multiply for k in list(log1.keys()): log1[Mul(*k)] = log(logcombine(Mul(*[ l.args[0]**Mul(*c) for c, l in log1.pop(k)]), force=force), evaluate=False) # logs that have oppositely signed coefficients can divide for k in ordered(list(log1.keys())): if not k in log1: # already popped as -k continue if -k in log1: # figure out which has the minus sign; the one with # more op counts should be the one num, den = k, -k if num.count_ops() > den.count_ops(): num, den = den, num other.append( num*log(log1.pop(num).args[0]/log1.pop(den).args[0], evaluate=False)) else: other.append(k*log1.pop(k)) return Add(*other) return bottom_up(expr, f) def inversecombine(expr): """Simplify the composition of a function and its inverse. No attention is paid to whether the inverse is a left inverse or a right inverse; thus, the result will in general not be equivalent to the original expression. Examples ======== >>> from sympy.simplify.simplify import inversecombine >>> from sympy import asin, sin, log, exp >>> from sympy.abc import x >>> inversecombine(asin(sin(x))) x >>> inversecombine(2*log(exp(3*x))) 6*x """ def f(rv): if rv.is_Function and hasattr(rv, "inverse"): if (len(rv.args) == 1 and len(rv.args[0].args) == 1 and isinstance(rv.args[0], rv.inverse(argindex=1))): rv = rv.args[0].args[0] return rv return bottom_up(expr, f) def walk(e, *target): """iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed. Examples ======== >>> from sympy.simplify.simplify import walk >>> from sympy import Min, Max >>> from sympy.abc import x, y, z >>> list(walk(Min(x, Max(y, Min(1, z))), Min)) [Min(x, Max(y, Min(1, z)))] >>> list(walk(Min(x, Max(y, Min(1, z))), Min, Max)) [Min(x, Max(y, Min(1, z))), Max(y, Min(1, z)), Min(1, z)] See Also ======== bottom_up """ if isinstance(e, target): yield e for i in e.args: for w in walk(i, *target): yield w def bottom_up(rv, F, atoms=False, nonbasic=False): """Apply ``F`` to all expressions in an expression tree from the bottom up. If ``atoms`` is True, apply ``F`` even if there are no args; if ``nonbasic`` is True, try to apply ``F`` to non-Basic objects. """ try: if rv.args: args = tuple([bottom_up(a, F, atoms, nonbasic) for a in rv.args]) if args != rv.args: rv = rv.func(*args) rv = F(rv) elif atoms: rv = F(rv) except AttributeError: if nonbasic: try: rv = F(rv) except TypeError: pass return rv def besselsimp(expr): """ Simplify bessel-type functions. This routine tries to simplify bessel-type functions. Currently it only works on the Bessel J and I functions, however. It works by looking at all such functions in turn, and eliminating factors of "I" and "-1" (actually their polar equivalents) in front of the argument. Then, functions of half-integer order are rewritten using strigonometric functions and functions of integer order (> 1) are rewritten using functions of low order. Finally, if the expression was changed, compute factorization of the result with factor(). >>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S >>> from sympy.abc import z, nu >>> besselsimp(besselj(nu, z*polar_lift(-1))) exp(I*pi*nu)*besselj(nu, z) >>> besselsimp(besseli(nu, z*polar_lift(-I))) exp(-I*pi*nu/2)*besselj(nu, z) >>> besselsimp(besseli(S(-1)/2, z)) sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) >>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z)) 3*z*besseli(0, z)/2 """ # TODO # - better algorithm? # - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ... # - use contiguity relations? def replacer(fro, to, factors): factors = set(factors) def repl(nu, z): if factors.intersection(Mul.make_args(z)): return to(nu, z) return fro(nu, z) return repl def torewrite(fro, to): def tofunc(nu, z): return fro(nu, z).rewrite(to) return tofunc def tominus(fro): def tofunc(nu, z): return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z) return tofunc orig_expr = expr ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)] expr = expr.replace( besselj, replacer(besselj, torewrite(besselj, besseli), ifactors)) expr = expr.replace( besseli, replacer(besseli, torewrite(besseli, besselj), ifactors)) minusfactors = [-1, exp_polar(I*pi)] expr = expr.replace( besselj, replacer(besselj, tominus(besselj), minusfactors)) expr = expr.replace( besseli, replacer(besseli, tominus(besseli), minusfactors)) z0 = Dummy('z') def expander(fro): def repl(nu, z): if (nu % 1) == S(1)/2: return simplify(trigsimp(unpolarify( fro(nu, z0).rewrite(besselj).rewrite(jn).expand( func=True)).subs(z0, z))) elif nu.is_Integer and nu > 1: return fro(nu, z).expand(func=True) return fro(nu, z) return repl expr = expr.replace(besselj, expander(besselj)) expr = expr.replace(bessely, expander(bessely)) expr = expr.replace(besseli, expander(besseli)) expr = expr.replace(besselk, expander(besselk)) if expr != orig_expr: expr = expr.factor() return expr def nthroot(expr, n, max_len=4, prec=15): """ compute a real nth-root of a sum of surds Parameters ========== expr : sum of surds n : integer max_len : maximum number of surds passed as constants to ``nsimplify`` Algorithm ========= First ``nsimplify`` is used to get a candidate root; if it is not a root the minimal polynomial is computed; the answer is one of its roots. Examples ======== >>> from sympy.simplify.simplify import nthroot >>> from sympy import Rational, sqrt >>> nthroot(90 + 34*sqrt(7), 3) sqrt(7) + 3 """ expr = sympify(expr) n = sympify(n) p = expr**Rational(1, n) if not n.is_integer: return p if not _is_sum_surds(expr): return p surds = [] coeff_muls = [x.as_coeff_Mul() for x in expr.args] for x, y in coeff_muls: if not x.is_rational: return p if y is S.One: continue if not (y.is_Pow and y.exp == S.Half and y.base.is_integer): return p surds.append(y) surds.sort() surds = surds[:max_len] if expr < 0 and n % 2 == 1: p = (-expr)**Rational(1, n) a = nsimplify(p, constants=surds) res = a if _mexpand(a**n) == _mexpand(-expr) else p return -res a = nsimplify(p, constants=surds) if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr): return _mexpand(a) expr = _nthroot_solve(expr, n, prec) if expr is None: return p return expr def nsimplify(expr, constants=(), tolerance=None, full=False, rational=None, rational_conversion='base10'): """ Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be converted to Rationals. For numerical expressions, a simple formula that numerically matches the given numerical expression is sought (and the input should be possible to evalf to a precision of at least 30 digits). Optionally, a list of (rationally independent) constants to include in the formula may be given. A lower tolerance may be set to find less exact matches. If no tolerance is given then the least precise value will set the tolerance (e.g. Floats default to 15 digits of precision, so would be tolerance=10**-15). With full=True, a more extensive search is performed (this is useful to find simpler numbers when the tolerance is set low). When converting to rational, if rational_conversion='base10' (the default), then convert floats to rationals using their base-10 (string) representation. When rational_conversion='exact' it uses the exact, base-2 representation. Examples ======== >>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, exp, pi >>> nsimplify(4/(1+sqrt(5)), [GoldenRatio]) -2 + 2*GoldenRatio >>> nsimplify((1/(exp(3*pi*I/5)+1))) 1/2 - I*sqrt(sqrt(5)/10 + 1/4) >>> nsimplify(I**I, [pi]) exp(-pi/2) >>> nsimplify(pi, tolerance=0.01) 22/7 >>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact') 6004799503160655/18014398509481984 >>> nsimplify(0.333333333333333, rational=True) 1/3 See Also ======== sympy.core.function.nfloat """ try: return sympify(as_int(expr)) except (TypeError, ValueError): pass expr = sympify(expr).xreplace({ Float('inf'): S.Infinity, Float('-inf'): S.NegativeInfinity, }) if expr is S.Infinity or expr is S.NegativeInfinity: return expr if rational or expr.free_symbols: return _real_to_rational(expr, tolerance, rational_conversion) # SymPy's default tolerance for Rationals is 15; other numbers may have # lower tolerances set, so use them to pick the largest tolerance if None # was given if tolerance is None: tolerance = 10**-min([15] + [mpmath.libmp.libmpf.prec_to_dps(n._prec) for n in expr.atoms(Float)]) # XXX should prec be set independent of tolerance or should it be computed # from tolerance? prec = 30 bprec = int(prec*3.33) constants_dict = {} for constant in constants: constant = sympify(constant) v = constant.evalf(prec) if not v.is_Float: raise ValueError("constants must be real-valued") constants_dict[str(constant)] = v._to_mpmath(bprec) exprval = expr.evalf(prec, chop=True) re, im = exprval.as_real_imag() # safety check to make sure that this evaluated to a number if not (re.is_Number and im.is_Number): return expr def nsimplify_real(x): orig = mpmath.mp.dps xv = x._to_mpmath(bprec) try: # We'll be happy with low precision if a simple fraction if not (tolerance or full): mpmath.mp.dps = 15 rat = mpmath.pslq([xv, 1]) if rat is not None: return Rational(-int(rat[1]), int(rat[0])) mpmath.mp.dps = prec newexpr = mpmath.identify(xv, constants=constants_dict, tol=tolerance, full=full) if not newexpr: raise ValueError if full: newexpr = newexpr[0] expr = sympify(newexpr) if x and not expr: # don't let x become 0 raise ValueError if expr.is_finite is False and not xv in [mpmath.inf, mpmath.ninf]: raise ValueError return expr finally: # even though there are returns above, this is executed # before leaving mpmath.mp.dps = orig try: if re: re = nsimplify_real(re) if im: im = nsimplify_real(im) except ValueError: if rational is None: return _real_to_rational(expr, rational_conversion=rational_conversion) return expr rv = re + im*S.ImaginaryUnit # if there was a change or rational is explicitly not wanted # return the value, else return the Rational representation if rv != expr or rational is False: return rv return _real_to_rational(expr, rational_conversion=rational_conversion) def _real_to_rational(expr, tolerance=None, rational_conversion='base10'): """ Replace all reals in expr with rationals. Examples ======== >>> from sympy import Rational >>> from sympy.simplify.simplify import _real_to_rational >>> from sympy.abc import x >>> _real_to_rational(.76 + .1*x**.5) sqrt(x)/10 + 19/25 If rational_conversion='base10', this uses the base-10 string. If rational_conversion='exact', the exact, base-2 representation is used. >>> _real_to_rational(0.333333333333333, rational_conversion='exact') 6004799503160655/18014398509481984 >>> _real_to_rational(0.333333333333333) 1/3 """ expr = _sympify(expr) inf = Float('inf') p = expr reps = {} reduce_num = None if tolerance is not None and tolerance < 1: reduce_num = ceiling(1/tolerance) for fl in p.atoms(Float): key = fl if reduce_num is not None: r = Rational(fl).limit_denominator(reduce_num) elif (tolerance is not None and tolerance >= 1 and fl.is_Integer is False): r = Rational(tolerance*round(fl/tolerance) ).limit_denominator(int(tolerance)) else: if rational_conversion == 'exact': r = Rational(fl) reps[key] = r continue elif rational_conversion != 'base10': raise ValueError("rational_conversion must be 'base10' or 'exact'") r = nsimplify(fl, rational=False) # e.g. log(3).n() -> log(3) instead of a Rational if fl and not r: r = Rational(fl) elif not r.is_Rational: if fl == inf or fl == -inf: r = S.ComplexInfinity elif fl < 0: fl = -fl d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = -Rational(str(fl/d))*d elif fl > 0: d = Pow(10, int((mpmath.log(fl)/mpmath.log(10)))) r = Rational(str(fl/d))*d else: r = Integer(0) reps[key] = r return p.subs(reps, simultaneous=True) def clear_coefficients(expr, rhs=S.Zero): """Return `p, r` where `p` is the expression obtained when Rational additive and multiplicative coefficients of `expr` have been stripped away in a naive fashion (i.e. without simplification). The operations needed to remove the coefficients will be applied to `rhs` and returned as `r`. Examples ======== >>> from sympy.simplify.simplify import clear_coefficients >>> from sympy.abc import x, y >>> from sympy import Dummy >>> expr = 4*y*(6*x + 3) >>> clear_coefficients(expr - 2) (y*(2*x + 1), 1/6) When solving 2 or more expressions like `expr = a`, `expr = b`, etc..., it is advantageous to provide a Dummy symbol for `rhs` and simply replace it with `a`, `b`, etc... in `r`. >>> rhs = Dummy('rhs') >>> clear_coefficients(expr, rhs) (y*(2*x + 1), _rhs/12) >>> _[1].subs(rhs, 2) 1/6 """ was = None free = expr.free_symbols if expr.is_Rational: return (S.Zero, rhs - expr) while expr and was != expr: was = expr m, expr = ( expr.as_content_primitive() if free else factor_terms(expr).as_coeff_Mul(rational=True)) rhs /= m c, expr = expr.as_coeff_Add(rational=True) rhs -= c expr = signsimp(expr, evaluate = False) if _coeff_isneg(expr): expr = -expr rhs = -rhs return expr, rhs def nc_simplify(expr, deep=True): ''' Simplify a non-commutative expression composed of multiplication and raising to a power by grouping repeated subterms into one power. Priority is given to simplifications that give the fewest number of arguments in the end (for example, in a*b*a*b*c*a*b*c simplifying to (a*b)**2*c*a*b*c gives 5 arguments while a*b*(a*b*c)**2 has 3). If `expr` is a sum of such terms, the sum of the simplified terms is returned. Keyword argument `deep` controls whether or not subexpressions nested deeper inside the main expression are simplified. See examples below. Setting `deep` to `False` can save time on nested expressions that don't need simplifying on all levels. Examples ======== >>> from sympy import symbols >>> from sympy.simplify.simplify import nc_simplify >>> a, b, c = symbols("a b c", commutative=False) >>> nc_simplify(a*b*a*b*c*a*b*c) a*b*(a*b*c)**2 >>> expr = a**2*b*a**4*b*a**4 >>> nc_simplify(expr) a**2*(b*a**4)**2 >>> nc_simplify(a*b*a*b*c**2*(a*b)**2*c**2) ((a*b)**2*c**2)**2 >>> nc_simplify(a*b*a*b + 2*a*c*a**2*c*a**2*c*a) (a*b)**2 + 2*(a*c*a)**3 >>> nc_simplify(b**-1*a**-1*(a*b)**2) a*b >>> nc_simplify(a**-1*b**-1*c*a) (b*a)**(-1)*c*a >>> expr = (a*b*a*b)**2*a*c*a*c >>> nc_simplify(expr) (a*b)**4*(a*c)**2 >>> nc_simplify(expr, deep=False) (a*b*a*b)**2*(a*c)**2 ''' from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul, MatPow, MatrixSymbol) from sympy.core.exprtools import factor_nc if isinstance(expr, MatrixExpr): expr = expr.doit(inv_expand=False) _Add, _Mul, _Pow, _Symbol = MatAdd, MatMul, MatPow, MatrixSymbol else: _Add, _Mul, _Pow, _Symbol = Add, Mul, Pow, Symbol # =========== Auxiliary functions ======================== def _overlaps(args): # Calculate a list of lists m such that m[i][j] contains the lengths # of all possible overlaps between args[:i+1] and args[i+1+j:]. # An overlap is a suffix of the prefix that matches a prefix # of the suffix. # For example, let expr=c*a*b*a*b*a*b*a*b. Then m[3][0] contains # the lengths of overlaps of c*a*b*a*b with a*b*a*b. The overlaps # are a*b*a*b, a*b and the empty word so that m[3][0]=[4,2,0]. # All overlaps rather than only the longest one are recorded # because this information helps calculate other overlap lengths. m = [[([1, 0] if a == args[0] else [0]) for a in args[1:]]] for i in range(1, len(args)): overlaps = [] j = 0 for j in range(len(args) - i - 1): overlap = [] for v in m[i-1][j+1]: if j + i + 1 + v < len(args) and args[i] == args[j+i+1+v]: overlap.append(v + 1) overlap += [0] overlaps.append(overlap) m.append(overlaps) return m def _reduce_inverses(_args): # replace consecutive negative powers by an inverse # of a product of positive powers, e.g. a**-1*b**-1*c # will simplify to (a*b)**-1*c; # return that new args list and the number of negative # powers in it (inv_tot) inv_tot = 0 # total number of inverses inverses = [] args = [] for arg in _args: if isinstance(arg, _Pow) and arg.args[1] < 0: inverses = [arg**-1] + inverses inv_tot += 1 else: if len(inverses) == 1: args.append(inverses[0]**-1) elif len(inverses) > 1: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 inverses = [] args.append(arg) if inverses: args.append(_Pow(_Mul(*inverses), -1)) inv_tot -= len(inverses) - 1 return inv_tot, tuple(args) def get_score(s): # compute the number of arguments of s # (including in nested expressions) overall # but ignore exponents if isinstance(s, _Pow): return get_score(s.args[0]) elif isinstance(s, (_Add, _Mul)): return sum([get_score(a) for a in s.args]) return 1 def compare(s, alt_s): # compare two possible simplifications and return a # "better" one if s != alt_s and get_score(alt_s) < get_score(s): return alt_s return s # ======================================================== if not isinstance(expr, (_Add, _Mul, _Pow)) or expr.is_commutative: return expr args = expr.args[:] if isinstance(expr, _Pow): if deep: return _Pow(nc_simplify(args[0]), args[1]).doit() else: return expr elif isinstance(expr, _Add): return _Add(*[nc_simplify(a, deep=deep) for a in args]).doit() else: # get the non-commutative part c_args, args = expr.args_cnc() com_coeff = Mul(*c_args) if com_coeff != 1: return com_coeff*nc_simplify(expr/com_coeff, deep=deep) inv_tot, args = _reduce_inverses(args) # if most arguments are negative, work with the inverse # of the expression, e.g. a**-1*b*a**-1*c**-1 will become # (c*a*b**-1*a)**-1 at the end so can work with c*a*b**-1*a invert = False if inv_tot > len(args)/2: invert = True args = [a**-1 for a in args[::-1]] if deep: args = tuple(nc_simplify(a) for a in args) m = _overlaps(args) # simps will be {subterm: end} where `end` is the ending # index of a sequence of repetitions of subterm; # this is for not wasting time with subterms that are part # of longer, already considered sequences simps = {} post = 1 pre = 1 # the simplification coefficient is the number of # arguments by which contracting a given sequence # would reduce the word; e.g. in a*b*a*b*c*a*b*c, # contracting a*b*a*b to (a*b)**2 removes 3 arguments # while a*b*c*a*b*c to (a*b*c)**2 removes 6. It's # better to contract the latter so simplification # with a maximum simplification coefficient will be chosen max_simp_coeff = 0 simp = None # information about future simplification for i in range(1, len(args)): simp_coeff = 0 l = 0 # length of a subterm p = 0 # the power of a subterm if i < len(args) - 1: rep = m[i][0] start = i # starting index of the repeated sequence end = i+1 # ending index of the repeated sequence if i == len(args)-1 or rep == [0]: # no subterm is repeated at this stage, at least as # far as the arguments are concerned - there may be # a repetition if powers are taken into account if (isinstance(args[i], _Pow) and not isinstance(args[i].args[0], _Symbol)): subterm = args[i].args[0].args l = len(subterm) if args[i-l:i] == subterm: # e.g. a*b in a*b*(a*b)**2 is not repeated # in args (= [a, b, (a*b)**2]) but it # can be matched here p += 1 start -= l if args[i+1:i+1+l] == subterm: # e.g. a*b in (a*b)**2*a*b p += 1 end += l if p: p += args[i].args[1] else: continue else: l = rep[0] # length of the longest repeated subterm at this point start -= l - 1 subterm = args[start:end] p = 2 end += l if subterm in simps and simps[subterm] >= start: # the subterm is part of a sequence that # has already been considered continue # count how many times it's repeated while end < len(args): if l in m[end-1][0]: p += 1 end += l elif isinstance(args[end], _Pow) and args[end].args[0].args == subterm: # for cases like a*b*a*b*(a*b)**2*a*b p += args[end].args[1] end += 1 else: break # see if another match can be made, e.g. # for b*a**2 in b*a**2*b*a**3 or a*b in # a**2*b*a*b pre_exp = 0 pre_arg = 1 if start - l >= 0 and args[start-l+1:start] == subterm[1:]: if isinstance(subterm[0], _Pow): pre_arg = subterm[0].args[0] exp = subterm[0].args[1] else: pre_arg = subterm[0] exp = 1 if isinstance(args[start-l], _Pow) and args[start-l].args[0] == pre_arg: pre_exp = args[start-l].args[1] - exp start -= l p += 1 elif args[start-l] == pre_arg: pre_exp = 1 - exp start -= l p += 1 post_exp = 0 post_arg = 1 if end + l - 1 < len(args) and args[end:end+l-1] == subterm[:-1]: if isinstance(subterm[-1], _Pow): post_arg = subterm[-1].args[0] exp = subterm[-1].args[1] else: post_arg = subterm[-1] exp = 1 if isinstance(args[end+l-1], _Pow) and args[end+l-1].args[0] == post_arg: post_exp = args[end+l-1].args[1] - exp end += l p += 1 elif args[end+l-1] == post_arg: post_exp = 1 - exp end += l p += 1 # Consider a*b*a**2*b*a**2*b*a: # b*a**2 is explicitly repeated, but note # that in this case a*b*a is also repeated # so there are two possible simplifications: # a*(b*a**2)**3*a**-1 or (a*b*a)**3 # The latter is obviously simpler. # But in a*b*a**2*b**2*a**2 the simplifications are # a*(b*a**2)**2 and (a*b*a)**3*a in which case # it's better to stick with the shorter subterm if post_exp and exp % 2 == 0 and start > 0: exp = exp/2 _pre_exp = 1 _post_exp = 1 if isinstance(args[start-1], _Pow) and args[start-1].args[0] == post_arg: _post_exp = post_exp + exp _pre_exp = args[start-1].args[1] - exp elif args[start-1] == post_arg: _post_exp = post_exp + exp _pre_exp = 1 - exp if _pre_exp == 0 or _post_exp == 0: if not pre_exp: start -= 1 post_exp = _post_exp pre_exp = _pre_exp pre_arg = post_arg subterm = (post_arg**exp,) + subterm[:-1] + (post_arg**exp,) simp_coeff += end-start if post_exp: simp_coeff -= 1 if pre_exp: simp_coeff -= 1 simps[subterm] = end if simp_coeff > max_simp_coeff: max_simp_coeff = simp_coeff simp = (start, _Mul(*subterm), p, end, l) pre = pre_arg**pre_exp post = post_arg**post_exp if simp: subterm = _Pow(nc_simplify(simp[1], deep=deep), simp[2]) pre = nc_simplify(_Mul(*args[:simp[0]])*pre, deep=deep) post = post*nc_simplify(_Mul(*args[simp[3]:]), deep=deep) simp = pre*subterm*post if pre != 1 or post != 1: # new simplifications may be possible but no need # to recurse over arguments simp = nc_simplify(simp, deep=False) else: simp = _Mul(*args) if invert: simp = _Pow(simp, -1) # see if factor_nc(expr) is simplified better if not isinstance(expr, MatrixExpr): f_expr = factor_nc(expr) if f_expr != expr: alt_simp = nc_simplify(f_expr, deep=deep) simp = compare(simp, alt_simp) else: simp = simp.doit(inv_expand=False) return simp
1368fb2b050ce714eabc1ca28b4dfa32c3e0b75d1fe2a11b8a116bf3c9a77f08
r""" This module contains the functionality to arrange the nodes of a diagram on an abstract grid, and then to produce a graphical representation of the grid. The currently supported back-ends are Xy-pic [Xypic]. Layout Algorithm ================ This section provides an overview of the algorithms implemented in :class:`DiagramGrid` to lay out diagrams. The first step of the algorithm is the removal composite and identity morphisms which do not have properties in the supplied diagram. The premises and conclusions of the diagram are then merged. The generic layout algorithm begins with the construction of the "skeleton" of the diagram. The skeleton is an undirected graph which has the objects of the diagram as vertices and has an (undirected) edge between each pair of objects between which there exist morphisms. The direction of the morphisms does not matter at this stage. The skeleton also includes an edge between each pair of vertices `A` and `C` such that there exists an object `B` which is connected via a morphism to `A`, and via a morphism to `C`. The skeleton constructed in this way has the property that every object is a vertex of a triangle formed by three edges of the skeleton. This property lies at the base of the generic layout algorithm. After the skeleton has been constructed, the algorithm lists all triangles which can be formed. Note that some triangles will not have all edges corresponding to morphisms which will actually be drawn. Triangles which have only one edge or less which will actually be drawn are immediately discarded. The list of triangles is sorted according to the number of edges which correspond to morphisms, then the triangle with the least number of such edges is selected. One of such edges is picked and the corresponding objects are placed horizontally, on a grid. This edge is recorded to be in the fringe. The algorithm then finds a "welding" of a triangle to the fringe. A welding is an edge in the fringe where a triangle could be attached. If the algorithm succeeds in finding such a welding, it adds to the grid that vertex of the triangle which was not yet included in any edge in the fringe and records the two new edges in the fringe. This process continues iteratively until all objects of the diagram has been placed or until no more weldings can be found. An edge is only removed from the fringe when a welding to this edge has been found, and there is no room around this edge to place another vertex. When no more weldings can be found, but there are still triangles left, the algorithm searches for a possibility of attaching one of the remaining triangles to the existing structure by a vertex. If such a possibility is found, the corresponding edge of the found triangle is placed in the found space and the iterative process of welding triangles restarts. When logical groups are supplied, each of these groups is laid out independently. Then a diagram is constructed in which groups are objects and any two logical groups between which there exist morphisms are connected via a morphism. This diagram is laid out. Finally, the grid which includes all objects of the initial diagram is constructed by replacing the cells which contain logical groups with the corresponding laid out grids, and by correspondingly expanding the rows and columns. The sequential layout algorithm begins by constructing the underlying undirected graph defined by the morphisms obtained after simplifying premises and conclusions and merging them (see above). The vertex with the minimal degree is then picked up and depth-first search is started from it. All objects which are located at distance `n` from the root in the depth-first search tree, are positioned in the `n`-th column of the resulting grid. The sequential layout will therefore attempt to lay the objects out along a line. References ========== [Xypic] http://xy-pic.sourceforge.net/ """ from __future__ import print_function, division from sympy.categories import (CompositeMorphism, IdentityMorphism, NamedMorphism, Diagram) from sympy.core import Dict, Symbol from sympy.core.compatibility import iterable, range from sympy.printing import latex from sympy.sets import FiniteSet from sympy.utilities import default_sort_key from sympy.utilities.decorator import doctest_depends_on from itertools import chain __doctest_requires__ = {('preview_diagram',): 'pyglet'} class _GrowableGrid(object): """ Holds a growable grid of objects. It is possible to append or prepend a row or a column to the grid using the corresponding methods. Prepending rows or columns has the effect of changing the coordinates of the already existing elements. This class currently represents a naive implementation of the functionality with little attempt at optimisation. """ def __init__(self, width, height): self._width = width self._height = height self._array = [[None for j in range(width)] for i in range(height)] @property def width(self): return self._width @property def height(self): return self._height def __getitem__(self, i_j): """ Returns the element located at in the i-th line and j-th column. """ i, j = i_j return self._array[i][j] def __setitem__(self, i_j, newvalue): """ Sets the element located at in the i-th line and j-th column. """ i, j = i_j self._array[i][j] = newvalue def append_row(self): """ Appends an empty row to the grid. """ self._height += 1 self._array.append([None for j in range(self._width)]) def append_column(self): """ Appends an empty column to the grid. """ self._width += 1 for i in range(self._height): self._array[i].append(None) def prepend_row(self): """ Prepends the grid with an empty row. """ self._height += 1 self._array.insert(0, [None for j in range(self._width)]) def prepend_column(self): """ Prepends the grid with an empty column. """ self._width += 1 for i in range(self._height): self._array[i].insert(0, None) class DiagramGrid(object): r""" Constructs and holds the fitting of the diagram into a grid. The mission of this class is to analyse the structure of the supplied diagram and to place its objects on a grid such that, when the objects and the morphisms are actually drawn, the diagram would be "readable", in the sense that there will not be many intersections of moprhisms. This class does not perform any actual drawing. It does strive nevertheless to offer sufficient metadata to draw a diagram. Consider the following simple diagram. >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import Diagram, DiagramGrid >>> from sympy import pprint >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g]) The simplest way to have a diagram laid out is the following: >>> grid = DiagramGrid(diagram) >>> (grid.width, grid.height) (2, 2) >>> pprint(grid) A B <BLANKLINE> C Sometimes one sees the diagram as consisting of logical groups. One can advise ``DiagramGrid`` as to such groups by employing the ``groups`` keyword argument. Consider the following diagram: >>> D = Object("D") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> h = NamedMorphism(D, A, "h") >>> k = NamedMorphism(D, B, "k") >>> diagram = Diagram([f, g, h, k]) Lay it out with generic layout: >>> grid = DiagramGrid(diagram) >>> pprint(grid) A B D <BLANKLINE> C Now, we can group the objects `A` and `D` to have them near one another: >>> grid = DiagramGrid(diagram, groups=[[A, D], B, C]) >>> pprint(grid) B C <BLANKLINE> A D Note how the positioning of the other objects changes. Further indications can be supplied to the constructor of :class:`DiagramGrid` using keyword arguments. The currently supported hints are explained in the following paragraphs. :class:`DiagramGrid` does not automatically guess which layout would suit the supplied diagram better. Consider, for example, the following linear diagram: >>> E = Object("E") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> h = NamedMorphism(C, D, "h") >>> i = NamedMorphism(D, E, "i") >>> diagram = Diagram([f, g, h, i]) When laid out with the generic layout, it does not get to look linear: >>> grid = DiagramGrid(diagram) >>> pprint(grid) A B <BLANKLINE> C D <BLANKLINE> E To get it laid out in a line, use ``layout="sequential"``: >>> grid = DiagramGrid(diagram, layout="sequential") >>> pprint(grid) A B C D E One may sometimes need to transpose the resulting layout. While this can always be done by hand, :class:`DiagramGrid` provides a hint for that purpose: >>> grid = DiagramGrid(diagram, layout="sequential", transpose=True) >>> pprint(grid) A <BLANKLINE> B <BLANKLINE> C <BLANKLINE> D <BLANKLINE> E Separate hints can also be provided for each group. For an example, refer to ``tests/test_drawing.py``, and see the different ways in which the five lemma [FiveLemma] can be laid out. See Also ======== Diagram References ========== [FiveLemma] https://en.wikipedia.org/wiki/Five_lemma """ @staticmethod def _simplify_morphisms(morphisms): """ Given a dictionary mapping morphisms to their properties, returns a new dictionary in which there are no morphisms which do not have properties, and which are compositions of other morphisms included in the dictionary. Identities are dropped as well. """ newmorphisms = {} for morphism, props in morphisms.items(): if isinstance(morphism, CompositeMorphism) and not props: continue elif isinstance(morphism, IdentityMorphism): continue else: newmorphisms[morphism] = props return newmorphisms @staticmethod def _merge_premises_conclusions(premises, conclusions): """ Given two dictionaries of morphisms and their properties, produces a single dictionary which includes elements from both dictionaries. If a morphism has some properties in premises and also in conclusions, the properties in conclusions take priority. """ return dict(chain(premises.items(), conclusions.items())) @staticmethod def _juxtapose_edges(edge1, edge2): """ If ``edge1`` and ``edge2`` have precisely one common endpoint, returns an edge which would form a triangle with ``edge1`` and ``edge2``. If ``edge1`` and ``edge2`` don't have a common endpoint, returns ``None``. If ``edge1`` and ``edge`` are the same edge, returns ``None``. """ intersection = edge1 & edge2 if len(intersection) != 1: # The edges either have no common points or are equal. return None # The edges have a common endpoint. Extract the different # endpoints and set up the new edge. return (edge1 - intersection) | (edge2 - intersection) @staticmethod def _add_edge_append(dictionary, edge, elem): """ If ``edge`` is not in ``dictionary``, adds ``edge`` to the dictionary and sets its value to ``[elem]``. Otherwise appends ``elem`` to the value of existing entry. Note that edges are undirected, thus `(A, B) = (B, A)`. """ if edge in dictionary: dictionary[edge].append(elem) else: dictionary[edge] = [elem] @staticmethod def _build_skeleton(morphisms): """ Creates a dictionary which maps edges to corresponding morphisms. Thus for a morphism `f:A\rightarrow B`, the edge `(A, B)` will be associated with `f`. This function also adds to the list those edges which are formed by juxtaposition of two edges already in the list. These new edges are not associated with any morphism and are only added to assure that the diagram can be decomposed into triangles. """ edges = {} # Create edges for morphisms. for morphism in morphisms: DiagramGrid._add_edge_append( edges, frozenset([morphism.domain, morphism.codomain]), morphism) # Create new edges by juxtaposing existing edges. edges1 = dict(edges) for w in edges1: for v in edges1: wv = DiagramGrid._juxtapose_edges(w, v) if wv and wv not in edges: edges[wv] = [] return edges @staticmethod def _list_triangles(edges): """ Builds the set of triangles formed by the supplied edges. The triangles are arbitrary and need not be commutative. A triangle is a set that contains all three of its sides. """ triangles = set() for w in edges: for v in edges: wv = DiagramGrid._juxtapose_edges(w, v) if wv and wv in edges: triangles.add(frozenset([w, v, wv])) return triangles @staticmethod def _drop_redundant_triangles(triangles, skeleton): """ Returns a list which contains only those triangles who have morphisms associated with at least two edges. """ return [tri for tri in triangles if len([e for e in tri if skeleton[e]]) >= 2] @staticmethod def _morphism_length(morphism): """ Returns the length of a morphism. The length of a morphism is the number of components it consists of. A non-composite morphism is of length 1. """ if isinstance(morphism, CompositeMorphism): return len(morphism.components) else: return 1 @staticmethod def _compute_triangle_min_sizes(triangles, edges): r""" Returns a dictionary mapping triangles to their minimal sizes. The minimal size of a triangle is the sum of maximal lengths of morphisms associated to the sides of the triangle. The length of a morphism is the number of components it consists of. A non-composite morphism is of length 1. Sorting triangles by this metric attempts to address two aspects of layout. For triangles with only simple morphisms in the edge, this assures that triangles with all three edges visible will get typeset after triangles with less visible edges, which sometimes minimizes the necessity in diagonal arrows. For triangles with composite morphisms in the edges, this assures that objects connected with shorter morphisms will be laid out first, resulting the visual proximity of those objects which are connected by shorter morphisms. """ triangle_sizes = {} for triangle in triangles: size = 0 for e in triangle: morphisms = edges[e] if morphisms: size += max(DiagramGrid._morphism_length(m) for m in morphisms) triangle_sizes[triangle] = size return triangle_sizes @staticmethod def _triangle_objects(triangle): """ Given a triangle, returns the objects included in it. """ # A triangle is a frozenset of three two-element frozensets # (the edges). This chains the three edges together and # creates a frozenset from the iterator, thus producing a # frozenset of objects of the triangle. return frozenset(chain(*tuple(triangle))) @staticmethod def _other_vertex(triangle, edge): """ Given a triangle and an edge of it, returns the vertex which opposes the edge. """ # This gets the set of objects of the triangle and then # subtracts the set of objects employed in ``edge`` to get the # vertex opposite to ``edge``. return list(DiagramGrid._triangle_objects(triangle) - set(edge))[0] @staticmethod def _empty_point(pt, grid): """ Checks if the cell at coordinates ``pt`` is either empty or out of the bounds of the grid. """ if (pt[0] < 0) or (pt[1] < 0) or \ (pt[0] >= grid.height) or (pt[1] >= grid.width): return True return grid[pt] is None @staticmethod def _put_object(coords, obj, grid, fringe): """ Places an object at the coordinate ``cords`` in ``grid``, growing the grid and updating ``fringe``, if necessary. Returns (0, 0) if no row or column has been prepended, (1, 0) if a row was prepended, (0, 1) if a column was prepended and (1, 1) if both a column and a row were prepended. """ (i, j) = coords offset = (0, 0) if i == -1: grid.prepend_row() i = 0 offset = (1, 0) for k in range(len(fringe)): ((i1, j1), (i2, j2)) = fringe[k] fringe[k] = ((i1 + 1, j1), (i2 + 1, j2)) elif i == grid.height: grid.append_row() if j == -1: j = 0 offset = (offset[0], 1) grid.prepend_column() for k in range(len(fringe)): ((i1, j1), (i2, j2)) = fringe[k] fringe[k] = ((i1, j1 + 1), (i2, j2 + 1)) elif j == grid.width: grid.append_column() grid[i, j] = obj return offset @staticmethod def _choose_target_cell(pt1, pt2, edge, obj, skeleton, grid): """ Given two points, ``pt1`` and ``pt2``, and the welding edge ``edge``, chooses one of the two points to place the opposing vertex ``obj`` of the triangle. If neither of this points fits, returns ``None``. """ pt1_empty = DiagramGrid._empty_point(pt1, grid) pt2_empty = DiagramGrid._empty_point(pt2, grid) if pt1_empty and pt2_empty: # Both cells are empty. Of these two, choose that cell # which will assure that a visible edge of the triangle # will be drawn perpendicularly to the current welding # edge. A = grid[edge[0]] if skeleton.get(frozenset([A, obj])): return pt1 else: return pt2 if pt1_empty: return pt1 elif pt2_empty: return pt2 else: return None @staticmethod def _find_triangle_to_weld(triangles, fringe, grid): """ Finds, if possible, a triangle and an edge in the fringe to which the triangle could be attached. Returns the tuple containing the triangle and the index of the corresponding edge in the fringe. This function relies on the fact that objects are unique in the diagram. """ for triangle in triangles: for (a, b) in fringe: if frozenset([grid[a], grid[b]]) in triangle: return (triangle, (a, b)) return None @staticmethod def _weld_triangle(tri, welding_edge, fringe, grid, skeleton): """ If possible, welds the triangle ``tri`` to ``fringe`` and returns ``False``. If this method encounters a degenerate situation in the fringe and corrects it such that a restart of the search is required, it returns ``True`` (which means that a restart in finding triangle weldings is required). A degenerate situation is a situation when an edge listed in the fringe does not belong to the visual boundary of the diagram. """ a, b = welding_edge target_cell = None obj = DiagramGrid._other_vertex(tri, (grid[a], grid[b])) # We now have a triangle and an edge where it can be welded to # the fringe. Decide where to place the other vertex of the # triangle and check for degenerate situations en route. if (abs(a[0] - b[0]) == 1) and (abs(a[1] - b[1]) == 1): # A diagonal edge. target_cell = (a[0], b[1]) if grid[target_cell]: # That cell is already occupied. target_cell = (b[0], a[1]) if grid[target_cell]: # Degenerate situation, this edge is not # on the actual fringe. Correct the # fringe and go on. fringe.remove((a, b)) return True elif a[0] == b[0]: # A horizontal edge. We first attempt to build the # triangle in the downward direction. down_left = a[0] + 1, a[1] down_right = a[0] + 1, b[1] target_cell = DiagramGrid._choose_target_cell( down_left, down_right, (a, b), obj, skeleton, grid) if not target_cell: # No room below this edge. Check above. up_left = a[0] - 1, a[1] up_right = a[0] - 1, b[1] target_cell = DiagramGrid._choose_target_cell( up_left, up_right, (a, b), obj, skeleton, grid) if not target_cell: # This edge is not in the fringe, remove it # and restart. fringe.remove((a, b)) return True elif a[1] == b[1]: # A vertical edge. We will attempt to place the other # vertex of the triangle to the right of this edge. right_up = a[0], a[1] + 1 right_down = b[0], a[1] + 1 target_cell = DiagramGrid._choose_target_cell( right_up, right_down, (a, b), obj, skeleton, grid) if not target_cell: # No room to the left. See what's to the right. left_up = a[0], a[1] - 1 left_down = b[0], a[1] - 1 target_cell = DiagramGrid._choose_target_cell( left_up, left_down, (a, b), obj, skeleton, grid) if not target_cell: # This edge is not in the fringe, remove it # and restart. fringe.remove((a, b)) return True # We now know where to place the other vertex of the # triangle. offset = DiagramGrid._put_object(target_cell, obj, grid, fringe) # Take care of the displacement of coordinates if a row or # a column was prepended. target_cell = (target_cell[0] + offset[0], target_cell[1] + offset[1]) a = (a[0] + offset[0], a[1] + offset[1]) b = (b[0] + offset[0], b[1] + offset[1]) fringe.extend([(a, target_cell), (b, target_cell)]) # No restart is required. return False @staticmethod def _triangle_key(tri, triangle_sizes): """ Returns a key for the supplied triangle. It should be the same independently of the hash randomisation. """ objects = sorted( DiagramGrid._triangle_objects(tri), key=default_sort_key) return (triangle_sizes[tri], default_sort_key(objects)) @staticmethod def _pick_root_edge(tri, skeleton): """ For a given triangle always picks the same root edge. The root edge is the edge that will be placed first on the grid. """ candidates = [sorted(e, key=default_sort_key) for e in tri if skeleton[e]] sorted_candidates = sorted(candidates, key=default_sort_key) # Don't forget to assure the proper ordering of the vertices # in this edge. return tuple(sorted(sorted_candidates[0], key=default_sort_key)) @staticmethod def _drop_irrelevant_triangles(triangles, placed_objects): """ Returns only those triangles whose set of objects is not completely included in ``placed_objects``. """ return [tri for tri in triangles if not placed_objects.issuperset( DiagramGrid._triangle_objects(tri))] @staticmethod def _grow_pseudopod(triangles, fringe, grid, skeleton, placed_objects): """ Starting from an object in the existing structure on the grid, adds an edge to which a triangle from ``triangles`` could be welded. If this method has found a way to do so, it returns the object it has just added. This method should be applied when ``_weld_triangle`` cannot find weldings any more. """ for i in range(grid.height): for j in range(grid.width): obj = grid[i, j] if not obj: continue # Here we need to choose a triangle which has only # ``obj`` in common with the existing structure. The # situations when this is not possible should be # handled elsewhere. def good_triangle(tri): objs = DiagramGrid._triangle_objects(tri) return obj in objs and \ placed_objects & (objs - {obj}) == set() tris = [tri for tri in triangles if good_triangle(tri)] if not tris: # This object is not interesting. continue # Pick the "simplest" of the triangles which could be # attached. Remember that the list of triangles is # sorted according to their "simplicity" (see # _compute_triangle_min_sizes for the metric). # # Note that ``tris`` are sequentially built from # ``triangles``, so we don't have to worry about hash # randomisation. tri = tris[0] # We have found a triangle which could be attached to # the existing structure by a vertex. candidates = sorted([e for e in tri if skeleton[e]], key=lambda e: FiniteSet(*e).sort_key()) edges = [e for e in candidates if obj in e] # Note that a meaningful edge (i.e., and edge that is # associated with a morphism) containing ``obj`` # always exists. That's because all triangles are # guaranteed to have at least two meaningful edges. # See _drop_redundant_triangles. # Get the object at the other end of the edge. edge = edges[0] other_obj = tuple(edge - frozenset([obj]))[0] # Now check for free directions. When checking for # free directions, prefer the horizontal and vertical # directions. neighbours = [(i - 1, j), (i, j + 1), (i + 1, j), (i, j - 1), (i - 1, j - 1), (i - 1, j + 1), (i + 1, j - 1), (i + 1, j + 1)] for pt in neighbours: if DiagramGrid._empty_point(pt, grid): # We have a found a place to grow the # pseudopod into. offset = DiagramGrid._put_object( pt, other_obj, grid, fringe) i += offset[0] j += offset[1] pt = (pt[0] + offset[0], pt[1] + offset[1]) fringe.append(((i, j), pt)) return other_obj # This diagram is actually cooler that I can handle. Fail cowardly. return None @staticmethod def _handle_groups(diagram, groups, merged_morphisms, hints): """ Given the slightly preprocessed morphisms of the diagram, produces a grid laid out according to ``groups``. If a group has hints, it is laid out with those hints only, without any influence from ``hints``. Otherwise, it is laid out with ``hints``. """ def lay_out_group(group, local_hints): """ If ``group`` is a set of objects, uses a ``DiagramGrid`` to lay it out and returns the grid. Otherwise returns the object (i.e., ``group``). If ``local_hints`` is not empty, it is supplied to ``DiagramGrid`` as the dictionary of hints. Otherwise, the ``hints`` argument of ``_handle_groups`` is used. """ if isinstance(group, FiniteSet): # Set up the corresponding object-to-group # mappings. for obj in group: obj_groups[obj] = group # Lay out the current group. if local_hints: groups_grids[group] = DiagramGrid( diagram.subdiagram_from_objects(group), **local_hints) else: groups_grids[group] = DiagramGrid( diagram.subdiagram_from_objects(group), **hints) else: obj_groups[group] = group def group_to_finiteset(group): """ Converts ``group`` to a :class:``FiniteSet`` if it is an iterable. """ if iterable(group): return FiniteSet(*group) else: return group obj_groups = {} groups_grids = {} # We would like to support various containers to represent # groups. To achieve that, before laying each group out, it # should be converted to a FiniteSet, because that is what the # following code expects. if isinstance(groups, dict) or isinstance(groups, Dict): finiteset_groups = {} for group, local_hints in groups.items(): finiteset_group = group_to_finiteset(group) finiteset_groups[finiteset_group] = local_hints lay_out_group(group, local_hints) groups = finiteset_groups else: finiteset_groups = [] for group in groups: finiteset_group = group_to_finiteset(group) finiteset_groups.append(finiteset_group) lay_out_group(finiteset_group, None) groups = finiteset_groups new_morphisms = [] for morphism in merged_morphisms: dom = obj_groups[morphism.domain] cod = obj_groups[morphism.codomain] # Note that we are not really interested in morphisms # which do not employ two different groups, because # these do not influence the layout. if dom != cod: # These are essentially unnamed morphisms; they are # not going to mess in the final layout. By giving # them the same names, we avoid unnecessary # duplicates. new_morphisms.append(NamedMorphism(dom, cod, "dummy")) # Lay out the new diagram. Since these are dummy morphisms, # properties and conclusions are irrelevant. top_grid = DiagramGrid(Diagram(new_morphisms)) # We now have to substitute the groups with the corresponding # grids, laid out at the beginning of this function. Compute # the size of each row and column in the grid, so that all # nested grids fit. def group_size(group): """ For the supplied group (or object, eventually), returns the size of the cell that will hold this group (object). """ if group in groups_grids: grid = groups_grids[group] return (grid.height, grid.width) else: return (1, 1) row_heights = [max(group_size(top_grid[i, j])[0] for j in range(top_grid.width)) for i in range(top_grid.height)] column_widths = [max(group_size(top_grid[i, j])[1] for i in range(top_grid.height)) for j in range(top_grid.width)] grid = _GrowableGrid(sum(column_widths), sum(row_heights)) real_row = 0 real_column = 0 for logical_row in range(top_grid.height): for logical_column in range(top_grid.width): obj = top_grid[logical_row, logical_column] if obj in groups_grids: # This is a group. Copy the corresponding grid in # place. local_grid = groups_grids[obj] for i in range(local_grid.height): for j in range(local_grid.width): grid[real_row + i, real_column + j] = local_grid[i, j] else: # This is an object. Just put it there. grid[real_row, real_column] = obj real_column += column_widths[logical_column] real_column = 0 real_row += row_heights[logical_row] return grid @staticmethod def _generic_layout(diagram, merged_morphisms): """ Produces the generic layout for the supplied diagram. """ all_objects = set(diagram.objects) if len(all_objects) == 1: # There only one object in the diagram, just put in on 1x1 # grid. grid = _GrowableGrid(1, 1) grid[0, 0] = tuple(all_objects)[0] return grid skeleton = DiagramGrid._build_skeleton(merged_morphisms) grid = _GrowableGrid(2, 1) if len(skeleton) == 1: # This diagram contains only one morphism. Draw it # horizontally. objects = sorted(all_objects, key=default_sort_key) grid[0, 0] = objects[0] grid[0, 1] = objects[1] return grid triangles = DiagramGrid._list_triangles(skeleton) triangles = DiagramGrid._drop_redundant_triangles(triangles, skeleton) triangle_sizes = DiagramGrid._compute_triangle_min_sizes( triangles, skeleton) triangles = sorted(triangles, key=lambda tri: DiagramGrid._triangle_key(tri, triangle_sizes)) # Place the first edge on the grid. root_edge = DiagramGrid._pick_root_edge(triangles[0], skeleton) grid[0, 0], grid[0, 1] = root_edge fringe = [((0, 0), (0, 1))] # Record which objects we now have on the grid. placed_objects = set(root_edge) while placed_objects != all_objects: welding = DiagramGrid._find_triangle_to_weld( triangles, fringe, grid) if welding: (triangle, welding_edge) = welding restart_required = DiagramGrid._weld_triangle( triangle, welding_edge, fringe, grid, skeleton) if restart_required: continue placed_objects.update( DiagramGrid._triangle_objects(triangle)) else: # No more weldings found. Try to attach triangles by # vertices. new_obj = DiagramGrid._grow_pseudopod( triangles, fringe, grid, skeleton, placed_objects) if not new_obj: # No more triangles can be attached, not even by # the edge. We will set up a new diagram out of # what has been left, laid it out independently, # and then attach it to this one. remaining_objects = all_objects - placed_objects remaining_diagram = diagram.subdiagram_from_objects( FiniteSet(*remaining_objects)) remaining_grid = DiagramGrid(remaining_diagram) # Now, let's glue ``remaining_grid`` to ``grid``. final_width = grid.width + remaining_grid.width final_height = max(grid.height, remaining_grid.height) final_grid = _GrowableGrid(final_width, final_height) for i in range(grid.width): for j in range(grid.height): final_grid[i, j] = grid[i, j] start_j = grid.width for i in range(remaining_grid.height): for j in range(remaining_grid.width): final_grid[i, start_j + j] = remaining_grid[i, j] return final_grid placed_objects.add(new_obj) triangles = DiagramGrid._drop_irrelevant_triangles( triangles, placed_objects) return grid @staticmethod def _get_undirected_graph(objects, merged_morphisms): """ Given the objects and the relevant morphisms of a diagram, returns the adjacency lists of the underlying undirected graph. """ adjlists = {} for obj in objects: adjlists[obj] = [] for morphism in merged_morphisms: adjlists[morphism.domain].append(morphism.codomain) adjlists[morphism.codomain].append(morphism.domain) # Assure that the objects in the adjacency list are always in # the same order. for obj in adjlists.keys(): adjlists[obj].sort(key=default_sort_key) return adjlists @staticmethod def _sequential_layout(diagram, merged_morphisms): r""" Lays out the diagram in "sequential" layout. This method will attempt to produce a result as close to a line as possible. For linear diagrams, the result will actually be a line. """ objects = diagram.objects sorted_objects = sorted(objects, key=default_sort_key) # Set up the adjacency lists of the underlying undirected # graph of ``merged_morphisms``. adjlists = DiagramGrid._get_undirected_graph(objects, merged_morphisms) # Find an object with the minimal degree. This is going to be # the root. root = sorted_objects[0] mindegree = len(adjlists[root]) for obj in sorted_objects: current_degree = len(adjlists[obj]) if current_degree < mindegree: root = obj mindegree = current_degree grid = _GrowableGrid(1, 1) grid[0, 0] = root placed_objects = {root} def place_objects(pt, placed_objects): """ Does depth-first search in the underlying graph of the diagram and places the objects en route. """ # We will start placing new objects from here. new_pt = (pt[0], pt[1] + 1) for adjacent_obj in adjlists[grid[pt]]: if adjacent_obj in placed_objects: # This object has already been placed. continue DiagramGrid._put_object(new_pt, adjacent_obj, grid, []) placed_objects.add(adjacent_obj) placed_objects.update(place_objects(new_pt, placed_objects)) new_pt = (new_pt[0] + 1, new_pt[1]) return placed_objects place_objects((0, 0), placed_objects) return grid @staticmethod def _drop_inessential_morphisms(merged_morphisms): r""" Removes those morphisms which should appear in the diagram, but which have no relevance to object layout. Currently this removes "loop" morphisms: the non-identity morphisms with the same domains and codomains. """ morphisms = [m for m in merged_morphisms if m.domain != m.codomain] return morphisms @staticmethod def _get_connected_components(objects, merged_morphisms): """ Given a container of morphisms, returns a list of connected components formed by these morphisms. A connected component is represented by a diagram consisting of the corresponding morphisms. """ component_index = {} for o in objects: component_index[o] = None # Get the underlying undirected graph of the diagram. adjlist = DiagramGrid._get_undirected_graph(objects, merged_morphisms) def traverse_component(object, current_index): """ Does a depth-first search traversal of the component containing ``object``. """ component_index[object] = current_index for o in adjlist[object]: if component_index[o] is None: traverse_component(o, current_index) # Traverse all components. current_index = 0 for o in adjlist: if component_index[o] is None: traverse_component(o, current_index) current_index += 1 # List the objects of the components. component_objects = [[] for i in range(current_index)] for o, idx in component_index.items(): component_objects[idx].append(o) # Finally, list the morphisms belonging to each component. # # Note: If some objects are isolated, they will not get any # morphisms at this stage, and since the layout algorithm # relies, we are essentially going to lose this object. # Therefore, check if there are isolated objects and, for each # of them, provide the trivial identity morphism. It will get # discarded later, but the object will be there. component_morphisms = [] for component in component_objects: current_morphisms = {} for m in merged_morphisms: if (m.domain in component) and (m.codomain in component): current_morphisms[m] = merged_morphisms[m] if len(component) == 1: # Let's add an identity morphism, for the sake of # surely having morphisms in this component. current_morphisms[IdentityMorphism(component[0])] = FiniteSet() component_morphisms.append(Diagram(current_morphisms)) return component_morphisms def __init__(self, diagram, groups=None, **hints): premises = DiagramGrid._simplify_morphisms(diagram.premises) conclusions = DiagramGrid._simplify_morphisms(diagram.conclusions) all_merged_morphisms = DiagramGrid._merge_premises_conclusions( premises, conclusions) merged_morphisms = DiagramGrid._drop_inessential_morphisms( all_merged_morphisms) # Store the merged morphisms for later use. self._morphisms = all_merged_morphisms components = DiagramGrid._get_connected_components( diagram.objects, all_merged_morphisms) if groups and (groups != diagram.objects): # Lay out the diagram according to the groups. self._grid = DiagramGrid._handle_groups( diagram, groups, merged_morphisms, hints) elif len(components) > 1: # Note that we check for connectedness _before_ checking # the layout hints because the layout strategies don't # know how to deal with disconnected diagrams. # The diagram is disconnected. Lay out the components # independently. grids = [] # Sort the components to eventually get the grids arranged # in a fixed, hash-independent order. components = sorted(components, key=default_sort_key) for component in components: grid = DiagramGrid(component, **hints) grids.append(grid) # Throw the grids together, in a line. total_width = sum(g.width for g in grids) total_height = max(g.height for g in grids) grid = _GrowableGrid(total_width, total_height) start_j = 0 for g in grids: for i in range(g.height): for j in range(g.width): grid[i, start_j + j] = g[i, j] start_j += g.width self._grid = grid elif "layout" in hints: if hints["layout"] == "sequential": self._grid = DiagramGrid._sequential_layout( diagram, merged_morphisms) else: self._grid = DiagramGrid._generic_layout(diagram, merged_morphisms) if hints.get("transpose"): # Transpose the resulting grid. grid = _GrowableGrid(self._grid.height, self._grid.width) for i in range(self._grid.height): for j in range(self._grid.width): grid[j, i] = self._grid[i, j] self._grid = grid @property def width(self): """ Returns the number of columns in this diagram layout. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import Diagram, DiagramGrid >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g]) >>> grid = DiagramGrid(diagram) >>> grid.width 2 """ return self._grid.width @property def height(self): """ Returns the number of rows in this diagram layout. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import Diagram, DiagramGrid >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g]) >>> grid = DiagramGrid(diagram) >>> grid.height 2 """ return self._grid.height def __getitem__(self, i_j): """ Returns the object placed in the row ``i`` and column ``j``. The indices are 0-based. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import Diagram, DiagramGrid >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g]) >>> grid = DiagramGrid(diagram) >>> (grid[0, 0], grid[0, 1]) (Object("A"), Object("B")) >>> (grid[1, 0], grid[1, 1]) (None, Object("C")) """ i, j = i_j return self._grid[i, j] @property def morphisms(self): """ Returns those morphisms (and their properties) which are sufficiently meaningful to be drawn. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import Diagram, DiagramGrid >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g]) >>> grid = DiagramGrid(diagram) >>> grid.morphisms {NamedMorphism(Object("A"), Object("B"), "f"): EmptySet(), NamedMorphism(Object("B"), Object("C"), "g"): EmptySet()} """ return self._morphisms def __str__(self): """ Produces a string representation of this class. This method returns a string representation of the underlying list of lists of objects. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import Diagram, DiagramGrid >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g]) >>> grid = DiagramGrid(diagram) >>> print(grid) [[Object("A"), Object("B")], [None, Object("C")]] """ return repr(self._grid._array) class ArrowStringDescription(object): r""" Stores the information necessary for producing an Xy-pic description of an arrow. The principal goal of this class is to abstract away the string representation of an arrow and to also provide the functionality to produce the actual Xy-pic string. ``unit`` sets the unit which will be used to specify the amount of curving and other distances. ``horizontal_direction`` should be a string of ``"r"`` or ``"l"`` specifying the horizontal offset of the target cell of the arrow relatively to the current one. ``vertical_direction`` should specify the vertical offset using a series of either ``"d"`` or ``"u"``. ``label_position`` should be either ``"^"``, ``"_"``, or ``"|"`` to specify that the label should be positioned above the arrow, below the arrow or just over the arrow, in a break. Note that the notions "above" and "below" are relative to arrow direction. ``label`` stores the morphism label. This works as follows (disregard the yet unexplained arguments): >>> from sympy.categories.diagram_drawing import ArrowStringDescription >>> astr = ArrowStringDescription( ... unit="mm", curving=None, curving_amount=None, ... looping_start=None, looping_end=None, horizontal_direction="d", ... vertical_direction="r", label_position="_", label="f") >>> print(str(astr)) \ar[dr]_{f} ``curving`` should be one of ``"^"``, ``"_"`` to specify in which direction the arrow is going to curve. ``curving_amount`` is a number describing how many ``unit``'s the morphism is going to curve: >>> astr = ArrowStringDescription( ... unit="mm", curving="^", curving_amount=12, ... looping_start=None, looping_end=None, horizontal_direction="d", ... vertical_direction="r", label_position="_", label="f") >>> print(str(astr)) \ar@/^12mm/[dr]_{f} ``looping_start`` and ``looping_end`` are currently only used for loop morphisms, those which have the same domain and codomain. These two attributes should store a valid Xy-pic direction and specify, correspondingly, the direction the arrow gets out into and the direction the arrow gets back from: >>> astr = ArrowStringDescription( ... unit="mm", curving=None, curving_amount=None, ... looping_start="u", looping_end="l", horizontal_direction="", ... vertical_direction="", label_position="_", label="f") >>> print(str(astr)) \ar@(u,l)[]_{f} ``label_displacement`` controls how far the arrow label is from the ends of the arrow. For example, to position the arrow label near the arrow head, use ">": >>> astr = ArrowStringDescription( ... unit="mm", curving="^", curving_amount=12, ... looping_start=None, looping_end=None, horizontal_direction="d", ... vertical_direction="r", label_position="_", label="f") >>> astr.label_displacement = ">" >>> print(str(astr)) \ar@/^12mm/[dr]_>{f} Finally, ``arrow_style`` is used to specify the arrow style. To get a dashed arrow, for example, use "{-->}" as arrow style: >>> astr = ArrowStringDescription( ... unit="mm", curving="^", curving_amount=12, ... looping_start=None, looping_end=None, horizontal_direction="d", ... vertical_direction="r", label_position="_", label="f") >>> astr.arrow_style = "{-->}" >>> print(str(astr)) \ar@/^12mm/@{-->}[dr]_{f} Notes ===== Instances of :class:`ArrowStringDescription` will be constructed by :class:`XypicDiagramDrawer` and provided for further use in formatters. The user is not expected to construct instances of :class:`ArrowStringDescription` themselves. To be able to properly utilise this class, the reader is encouraged to checkout the Xy-pic user guide, available at [Xypic]. See Also ======== XypicDiagramDrawer References ========== [Xypic] http://xy-pic.sourceforge.net/ """ def __init__(self, unit, curving, curving_amount, looping_start, looping_end, horizontal_direction, vertical_direction, label_position, label): self.unit = unit self.curving = curving self.curving_amount = curving_amount self.looping_start = looping_start self.looping_end = looping_end self.horizontal_direction = horizontal_direction self.vertical_direction = vertical_direction self.label_position = label_position self.label = label self.label_displacement = "" self.arrow_style = "" # This flag shows that the position of the label of this # morphism was set while typesetting a curved morphism and # should not be modified later. self.forced_label_position = False def __str__(self): if self.curving: curving_str = "@/%s%d%s/" % (self.curving, self.curving_amount, self.unit) else: curving_str = "" if self.looping_start and self.looping_end: looping_str = "@(%s,%s)" % (self.looping_start, self.looping_end) else: looping_str = "" if self.arrow_style: style_str = "@" + self.arrow_style else: style_str = "" return "\\ar%s%s%s[%s%s]%s%s{%s}" % \ (curving_str, looping_str, style_str, self.horizontal_direction, self.vertical_direction, self.label_position, self.label_displacement, self.label) class XypicDiagramDrawer(object): r""" Given a :class:`Diagram` and the corresponding :class:`DiagramGrid`, produces the Xy-pic representation of the diagram. The most important method in this class is ``draw``. Consider the following triangle diagram: >>> from sympy.categories import Object, NamedMorphism, Diagram >>> from sympy.categories import DiagramGrid, XypicDiagramDrawer >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g], {g * f: "unique"}) To draw this diagram, its objects need to be laid out with a :class:`DiagramGrid`:: >>> grid = DiagramGrid(diagram) Finally, the drawing: >>> drawer = XypicDiagramDrawer() >>> print(drawer.draw(diagram, grid)) \xymatrix{ A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\ C & } For further details see the docstring of this method. To control the appearance of the arrows, formatters are used. The dictionary ``arrow_formatters`` maps morphisms to formatter functions. A formatter is accepts an :class:`ArrowStringDescription` and is allowed to modify any of the arrow properties exposed thereby. For example, to have all morphisms with the property ``unique`` appear as dashed arrows, and to have their names prepended with `\exists !`, the following should be done: >>> def formatter(astr): ... astr.label = r"\exists !" + astr.label ... astr.arrow_style = "{-->}" >>> drawer.arrow_formatters["unique"] = formatter >>> print(drawer.draw(diagram, grid)) \xymatrix{ A \ar@{-->}[d]_{\exists !g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\ C & } To modify the appearance of all arrows in the diagram, set ``default_arrow_formatter``. For example, to place all morphism labels a little bit farther from the arrow head so that they look more centred, do as follows: >>> def default_formatter(astr): ... astr.label_displacement = "(0.45)" >>> drawer.default_arrow_formatter = default_formatter >>> print(drawer.draw(diagram, grid)) \xymatrix{ A \ar@{-->}[d]_(0.45){\exists !g\circ f} \ar[r]^(0.45){f} & B \ar[ld]^(0.45){g} \\ C & } In some diagrams some morphisms are drawn as curved arrows. Consider the following diagram: >>> D = Object("D") >>> E = Object("E") >>> h = NamedMorphism(D, A, "h") >>> k = NamedMorphism(D, B, "k") >>> diagram = Diagram([f, g, h, k]) >>> grid = DiagramGrid(diagram) >>> drawer = XypicDiagramDrawer() >>> print(drawer.draw(diagram, grid)) \xymatrix{ A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_3mm/[ll]_{h} \\ & C & } To control how far the morphisms are curved by default, one can use the ``unit`` and ``default_curving_amount`` attributes: >>> drawer.unit = "cm" >>> drawer.default_curving_amount = 1 >>> print(drawer.draw(diagram, grid)) \xymatrix{ A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]_{h} \\ & C & } In some diagrams, there are multiple curved morphisms between the same two objects. To control by how much the curving changes between two such successive morphisms, use ``default_curving_step``: >>> drawer.default_curving_step = 1 >>> h1 = NamedMorphism(A, D, "h1") >>> diagram = Diagram([f, g, h, k, h1]) >>> grid = DiagramGrid(diagram) >>> print(drawer.draw(diagram, grid)) \xymatrix{ A \ar[r]_{f} \ar@/^1cm/[rr]^{h_{1}} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_2cm/[ll]_{h} \\ & C & } The default value of ``default_curving_step`` is 4 units. See Also ======== draw, ArrowStringDescription """ def __init__(self): self.unit = "mm" self.default_curving_amount = 3 self.default_curving_step = 4 # This dictionary maps properties to the corresponding arrow # formatters. self.arrow_formatters = {} # This is the default arrow formatter which will be applied to # each arrow independently of its properties. self.default_arrow_formatter = None @staticmethod def _process_loop_morphism(i, j, grid, morphisms_str_info, object_coords): """ Produces the information required for constructing the string representation of a loop morphism. This function is invoked from ``_process_morphism``. See Also ======== _process_morphism """ curving = "" label_pos = "^" looping_start = "" looping_end = "" # This is a loop morphism. Count how many morphisms stick # in each of the four quadrants. Note that straight # vertical and horizontal morphisms count in two quadrants # at the same time (i.e., a morphism going up counts both # in the first and the second quadrants). # The usual numbering (counterclockwise) of quadrants # applies. quadrant = [0, 0, 0, 0] obj = grid[i, j] for m, m_str_info in morphisms_str_info.items(): if (m.domain == obj) and (m.codomain == obj): # That's another loop morphism. Check how it # loops and mark the corresponding quadrants as # busy. (l_s, l_e) = (m_str_info.looping_start, m_str_info.looping_end) if (l_s, l_e) == ("r", "u"): quadrant[0] += 1 elif (l_s, l_e) == ("u", "l"): quadrant[1] += 1 elif (l_s, l_e) == ("l", "d"): quadrant[2] += 1 elif (l_s, l_e) == ("d", "r"): quadrant[3] += 1 continue if m.domain == obj: (end_i, end_j) = object_coords[m.codomain] goes_out = True elif m.codomain == obj: (end_i, end_j) = object_coords[m.domain] goes_out = False else: continue d_i = end_i - i d_j = end_j - j m_curving = m_str_info.curving if (d_i != 0) and (d_j != 0): # This is really a diagonal morphism. Detect the # quadrant. if (d_i > 0) and (d_j > 0): quadrant[0] += 1 elif (d_i > 0) and (d_j < 0): quadrant[1] += 1 elif (d_i < 0) and (d_j < 0): quadrant[2] += 1 elif (d_i < 0) and (d_j > 0): quadrant[3] += 1 elif d_i == 0: # Knowing where the other end of the morphism is # and which way it goes, we now have to decide # which quadrant is now the upper one and which is # the lower one. if d_j > 0: if goes_out: upper_quadrant = 0 lower_quadrant = 3 else: upper_quadrant = 3 lower_quadrant = 0 else: if goes_out: upper_quadrant = 2 lower_quadrant = 1 else: upper_quadrant = 1 lower_quadrant = 2 if m_curving: if m_curving == "^": quadrant[upper_quadrant] += 1 elif m_curving == "_": quadrant[lower_quadrant] += 1 else: # This morphism counts in both upper and lower # quadrants. quadrant[upper_quadrant] += 1 quadrant[lower_quadrant] += 1 elif d_j == 0: # Knowing where the other end of the morphism is # and which way it goes, we now have to decide # which quadrant is now the left one and which is # the right one. if d_i < 0: if goes_out: left_quadrant = 1 right_quadrant = 0 else: left_quadrant = 0 right_quadrant = 1 else: if goes_out: left_quadrant = 3 right_quadrant = 2 else: left_quadrant = 2 right_quadrant = 3 if m_curving: if m_curving == "^": quadrant[left_quadrant] += 1 elif m_curving == "_": quadrant[right_quadrant] += 1 else: # This morphism counts in both upper and lower # quadrants. quadrant[left_quadrant] += 1 quadrant[right_quadrant] += 1 # Pick the freest quadrant to curve our morphism into. freest_quadrant = 0 for i in range(4): if quadrant[i] < quadrant[freest_quadrant]: freest_quadrant = i # Now set up proper looping. (looping_start, looping_end) = [("r", "u"), ("u", "l"), ("l", "d"), ("d", "r")][freest_quadrant] return (curving, label_pos, looping_start, looping_end) @staticmethod def _process_horizontal_morphism(i, j, target_j, grid, morphisms_str_info, object_coords): """ Produces the information required for constructing the string representation of a horizontal morphism. This function is invoked from ``_process_morphism``. See Also ======== _process_morphism """ # The arrow is horizontal. Check if it goes from left to # right (``backwards == False``) or from right to left # (``backwards == True``). backwards = False start = j end = target_j if end < start: (start, end) = (end, start) backwards = True # Let's see which objects are there between ``start`` and # ``end``, and then count how many morphisms stick out # upwards, and how many stick out downwards. # # For example, consider the situation: # # B1 C1 # | | # A--B--C--D # | # B2 # # Between the objects `A` and `D` there are two objects: # `B` and `C`. Further, there are two morphisms which # stick out upward (the ones between `B1` and `B` and # between `C` and `C1`) and one morphism which sticks out # downward (the one between `B and `B2`). # # We need this information to decide how to curve the # arrow between `A` and `D`. First of all, since there # are two objects between `A` and `D``, we must curve the # arrow. Then, we will have it curve downward, because # there is more space (less morphisms stick out downward # than upward). up = [] down = [] straight_horizontal = [] for k in range(start + 1, end): obj = grid[i, k] if not obj: continue for m in morphisms_str_info: if m.domain == obj: (end_i, end_j) = object_coords[m.codomain] elif m.codomain == obj: (end_i, end_j) = object_coords[m.domain] else: continue if end_i > i: down.append(m) elif end_i < i: up.append(m) elif not morphisms_str_info[m].curving: # This is a straight horizontal morphism, # because it has no curving. straight_horizontal.append(m) if len(up) < len(down): # More morphisms stick out downward than upward, let's # curve the morphism up. if backwards: curving = "_" label_pos = "_" else: curving = "^" label_pos = "^" # Assure that the straight horizontal morphisms have # their labels on the lower side of the arrow. for m in straight_horizontal: (i1, j1) = object_coords[m.domain] (i2, j2) = object_coords[m.codomain] m_str_info = morphisms_str_info[m] if j1 < j2: m_str_info.label_position = "_" else: m_str_info.label_position = "^" # Don't allow any further modifications of the # position of this label. m_str_info.forced_label_position = True else: # More morphisms stick out downward than upward, let's # curve the morphism up. if backwards: curving = "^" label_pos = "^" else: curving = "_" label_pos = "_" # Assure that the straight horizontal morphisms have # their labels on the upper side of the arrow. for m in straight_horizontal: (i1, j1) = object_coords[m.domain] (i2, j2) = object_coords[m.codomain] m_str_info = morphisms_str_info[m] if j1 < j2: m_str_info.label_position = "^" else: m_str_info.label_position = "_" # Don't allow any further modifications of the # position of this label. m_str_info.forced_label_position = True return (curving, label_pos) @staticmethod def _process_vertical_morphism(i, j, target_i, grid, morphisms_str_info, object_coords): """ Produces the information required for constructing the string representation of a vertical morphism. This function is invoked from ``_process_morphism``. See Also ======== _process_morphism """ # This arrow is vertical. Check if it goes from top to # bottom (``backwards == False``) or from bottom to top # (``backwards == True``). backwards = False start = i end = target_i if end < start: (start, end) = (end, start) backwards = True # Let's see which objects are there between ``start`` and # ``end``, and then count how many morphisms stick out to # the left, and how many stick out to the right. # # See the corresponding comment in the previous branch of # this if-statement for more details. left = [] right = [] straight_vertical = [] for k in range(start + 1, end): obj = grid[k, j] if not obj: continue for m in morphisms_str_info: if m.domain == obj: (end_i, end_j) = object_coords[m.codomain] elif m.codomain == obj: (end_i, end_j) = object_coords[m.domain] else: continue if end_j > j: right.append(m) elif end_j < j: left.append(m) elif not morphisms_str_info[m].curving: # This is a straight vertical morphism, # because it has no curving. straight_vertical.append(m) if len(left) < len(right): # More morphisms stick out to the left than to the # right, let's curve the morphism to the right. if backwards: curving = "^" label_pos = "^" else: curving = "_" label_pos = "_" # Assure that the straight vertical morphisms have # their labels on the left side of the arrow. for m in straight_vertical: (i1, j1) = object_coords[m.domain] (i2, j2) = object_coords[m.codomain] m_str_info = morphisms_str_info[m] if i1 < i2: m_str_info.label_position = "^" else: m_str_info.label_position = "_" # Don't allow any further modifications of the # position of this label. m_str_info.forced_label_position = True else: # More morphisms stick out to the right than to the # left, let's curve the morphism to the left. if backwards: curving = "_" label_pos = "_" else: curving = "^" label_pos = "^" # Assure that the straight vertical morphisms have # their labels on the right side of the arrow. for m in straight_vertical: (i1, j1) = object_coords[m.domain] (i2, j2) = object_coords[m.codomain] m_str_info = morphisms_str_info[m] if i1 < i2: m_str_info.label_position = "_" else: m_str_info.label_position = "^" # Don't allow any further modifications of the # position of this label. m_str_info.forced_label_position = True return (curving, label_pos) def _process_morphism(self, diagram, grid, morphism, object_coords, morphisms, morphisms_str_info): """ Given the required information, produces the string representation of ``morphism``. """ def repeat_string_cond(times, str_gt, str_lt): """ If ``times > 0``, repeats ``str_gt`` ``times`` times. Otherwise, repeats ``str_lt`` ``-times`` times. """ if times > 0: return str_gt * times else: return str_lt * (-times) def count_morphisms_undirected(A, B): """ Counts how many processed morphisms there are between the two supplied objects. """ return len([m for m in morphisms_str_info if set([m.domain, m.codomain]) == set([A, B])]) def count_morphisms_filtered(dom, cod, curving): """ Counts the processed morphisms which go out of ``dom`` into ``cod`` with curving ``curving``. """ return len([m for m, m_str_info in morphisms_str_info.items() if (m.domain, m.codomain) == (dom, cod) and (m_str_info.curving == curving)]) (i, j) = object_coords[morphism.domain] (target_i, target_j) = object_coords[morphism.codomain] # We now need to determine the direction of # the arrow. delta_i = target_i - i delta_j = target_j - j vertical_direction = repeat_string_cond(delta_i, "d", "u") horizontal_direction = repeat_string_cond(delta_j, "r", "l") curving = "" label_pos = "^" looping_start = "" looping_end = "" if (delta_i == 0) and (delta_j == 0): # This is a loop morphism. (curving, label_pos, looping_start, looping_end) = XypicDiagramDrawer._process_loop_morphism( i, j, grid, morphisms_str_info, object_coords) elif (delta_i == 0) and (abs(j - target_j) > 1): # This is a horizontal morphism. (curving, label_pos) = XypicDiagramDrawer._process_horizontal_morphism( i, j, target_j, grid, morphisms_str_info, object_coords) elif (delta_j == 0) and (abs(i - target_i) > 1): # This is a vertical morphism. (curving, label_pos) = XypicDiagramDrawer._process_vertical_morphism( i, j, target_i, grid, morphisms_str_info, object_coords) count = count_morphisms_undirected(morphism.domain, morphism.codomain) curving_amount = "" if curving: # This morphisms should be curved anyway. curving_amount = self.default_curving_amount + count * \ self.default_curving_step elif count: # There are no objects between the domain and codomain of # the current morphism, but this is not there already are # some morphisms with the same domain and codomain, so we # have to curve this one. curving = "^" filtered_morphisms = count_morphisms_filtered( morphism.domain, morphism.codomain, curving) curving_amount = self.default_curving_amount + \ filtered_morphisms * \ self.default_curving_step # Let's now get the name of the morphism. morphism_name = "" if isinstance(morphism, IdentityMorphism): morphism_name = "id_{%s}" + latex(grid[i, j]) elif isinstance(morphism, CompositeMorphism): component_names = [latex(Symbol(component.name)) for component in morphism.components] component_names.reverse() morphism_name = "\\circ ".join(component_names) elif isinstance(morphism, NamedMorphism): morphism_name = latex(Symbol(morphism.name)) return ArrowStringDescription( self.unit, curving, curving_amount, looping_start, looping_end, horizontal_direction, vertical_direction, label_pos, morphism_name) @staticmethod def _check_free_space_horizontal(dom_i, dom_j, cod_j, grid): """ For a horizontal morphism, checks whether there is free space (i.e., space not occupied by any objects) above the morphism or below it. """ if dom_j < cod_j: (start, end) = (dom_j, cod_j) backwards = False else: (start, end) = (cod_j, dom_j) backwards = True # Check for free space above. if dom_i == 0: free_up = True else: free_up = all([grid[dom_i - 1, j] for j in range(start, end + 1)]) # Check for free space below. if dom_i == grid.height - 1: free_down = True else: free_down = all([not grid[dom_i + 1, j] for j in range(start, end + 1)]) return (free_up, free_down, backwards) @staticmethod def _check_free_space_vertical(dom_i, cod_i, dom_j, grid): """ For a vertical morphism, checks whether there is free space (i.e., space not occupied by any objects) to the left of the morphism or to the right of it. """ if dom_i < cod_i: (start, end) = (dom_i, cod_i) backwards = False else: (start, end) = (cod_i, dom_i) backwards = True # Check if there's space to the left. if dom_j == 0: free_left = True else: free_left = all([not grid[i, dom_j - 1] for i in range(start, end + 1)]) if dom_j == grid.width - 1: free_right = True else: free_right = all([not grid[i, dom_j + 1] for i in range(start, end + 1)]) return (free_left, free_right, backwards) @staticmethod def _check_free_space_diagonal(dom_i, cod_i, dom_j, cod_j, grid): """ For a diagonal morphism, checks whether there is free space (i.e., space not occupied by any objects) above the morphism or below it. """ def abs_xrange(start, end): if start < end: return range(start, end + 1) else: return range(end, start + 1) if dom_i < cod_i and dom_j < cod_j: # This morphism goes from top-left to # bottom-right. (start_i, start_j) = (dom_i, dom_j) (end_i, end_j) = (cod_i, cod_j) backwards = False elif dom_i > cod_i and dom_j > cod_j: # This morphism goes from bottom-right to # top-left. (start_i, start_j) = (cod_i, cod_j) (end_i, end_j) = (dom_i, dom_j) backwards = True if dom_i < cod_i and dom_j > cod_j: # This morphism goes from top-right to # bottom-left. (start_i, start_j) = (dom_i, dom_j) (end_i, end_j) = (cod_i, cod_j) backwards = True elif dom_i > cod_i and dom_j < cod_j: # This morphism goes from bottom-left to # top-right. (start_i, start_j) = (cod_i, cod_j) (end_i, end_j) = (dom_i, dom_j) backwards = False # This is an attempt at a fast and furious strategy to # decide where there is free space on the two sides of # a diagonal morphism. For a diagonal morphism # starting at ``(start_i, start_j)`` and ending at # ``(end_i, end_j)`` the rectangle defined by these # two points is considered. The slope of the diagonal # ``alpha`` is then computed. Then, for every cell # ``(i, j)`` within the rectangle, the slope # ``alpha1`` of the line through ``(start_i, # start_j)`` and ``(i, j)`` is considered. If # ``alpha1`` is between 0 and ``alpha``, the point # ``(i, j)`` is above the diagonal, if ``alpha1`` is # between ``alpha`` and infinity, the point is below # the diagonal. Also note that, with some beforehand # precautions, this trick works for both the main and # the secondary diagonals of the rectangle. # I have considered the possibility to only follow the # shorter diagonals immediately above and below the # main (or secondary) diagonal. This, however, # wouldn't have resulted in much performance gain or # better detection of outer edges, because of # relatively small sizes of diagram grids, while the # code would have become harder to understand. alpha = float(end_i - start_i)/(end_j - start_j) free_up = True free_down = True for i in abs_xrange(start_i, end_i): if not free_up and not free_down: break for j in abs_xrange(start_j, end_j): if not free_up and not free_down: break if (i, j) == (start_i, start_j): continue if j == start_j: alpha1 = "inf" else: alpha1 = float(i - start_i)/(j - start_j) if grid[i, j]: if (alpha1 == "inf") or (abs(alpha1) > abs(alpha)): free_down = False elif abs(alpha1) < abs(alpha): free_up = False return (free_up, free_down, backwards) def _push_labels_out(self, morphisms_str_info, grid, object_coords): """ For all straight morphisms which form the visual boundary of the laid out diagram, puts their labels on their outer sides. """ def set_label_position(free1, free2, pos1, pos2, backwards, m_str_info): """ Given the information about room available to one side and to the other side of a morphism (``free1`` and ``free2``), sets the position of the morphism label in such a way that it is on the freer side. This latter operations involves choice between ``pos1`` and ``pos2``, taking ``backwards`` in consideration. Thus this function will do nothing if either both ``free1 == True`` and ``free2 == True`` or both ``free1 == False`` and ``free2 == False``. In either case, choosing one side over the other presents no advantage. """ if backwards: (pos1, pos2) = (pos2, pos1) if free1 and not free2: m_str_info.label_position = pos1 elif free2 and not free1: m_str_info.label_position = pos2 for m, m_str_info in morphisms_str_info.items(): if m_str_info.curving or m_str_info.forced_label_position: # This is either a curved morphism, and curved # morphisms have other magic, or the position of this # label has already been fixed. continue if m.domain == m.codomain: # This is a loop morphism, their labels, again have a # different magic. continue (dom_i, dom_j) = object_coords[m.domain] (cod_i, cod_j) = object_coords[m.codomain] if dom_i == cod_i: # Horizontal morphism. (free_up, free_down, backwards) = XypicDiagramDrawer._check_free_space_horizontal( dom_i, dom_j, cod_j, grid) set_label_position(free_up, free_down, "^", "_", backwards, m_str_info) elif dom_j == cod_j: # Vertical morphism. (free_left, free_right, backwards) = XypicDiagramDrawer._check_free_space_vertical( dom_i, cod_i, dom_j, grid) set_label_position(free_left, free_right, "_", "^", backwards, m_str_info) else: # A diagonal morphism. (free_up, free_down, backwards) = XypicDiagramDrawer._check_free_space_diagonal( dom_i, cod_i, dom_j, cod_j, grid) set_label_position(free_up, free_down, "^", "_", backwards, m_str_info) @staticmethod def _morphism_sort_key(morphism, object_coords): """ Provides a morphism sorting key such that horizontal or vertical morphisms between neighbouring objects come first, then horizontal or vertical morphisms between more far away objects, and finally, all other morphisms. """ (i, j) = object_coords[morphism.domain] (target_i, target_j) = object_coords[morphism.codomain] if morphism.domain == morphism.codomain: # Loop morphisms should get after diagonal morphisms # so that the proper direction in which to curve the # loop can be determined. return (3, 0, default_sort_key(morphism)) if target_i == i: return (1, abs(target_j - j), default_sort_key(morphism)) if target_j == j: return (1, abs(target_i - i), default_sort_key(morphism)) # Diagonal morphism. return (2, 0, default_sort_key(morphism)) @staticmethod def _build_xypic_string(diagram, grid, morphisms, morphisms_str_info, diagram_format): """ Given a collection of :class:`ArrowStringDescription` describing the morphisms of a diagram and the object layout information of a diagram, produces the final Xy-pic picture. """ # Build the mapping between objects and morphisms which have # them as domains. object_morphisms = {} for obj in diagram.objects: object_morphisms[obj] = [] for morphism in morphisms: object_morphisms[morphism.domain].append(morphism) result = "\\xymatrix%s{\n" % diagram_format for i in range(grid.height): for j in range(grid.width): obj = grid[i, j] if obj: result += latex(obj) + " " morphisms_to_draw = object_morphisms[obj] for morphism in morphisms_to_draw: result += str(morphisms_str_info[morphism]) + " " # Don't put the & after the last column. if j < grid.width - 1: result += "& " # Don't put the line break after the last row. if i < grid.height - 1: result += "\\\\" result += "\n" result += "}\n" return result def draw(self, diagram, grid, masked=None, diagram_format=""): r""" Returns the Xy-pic representation of ``diagram`` laid out in ``grid``. Consider the following simple triangle diagram. >>> from sympy.categories import Object, NamedMorphism, Diagram >>> from sympy.categories import DiagramGrid, XypicDiagramDrawer >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g], {g * f: "unique"}) To draw this diagram, its objects need to be laid out with a :class:`DiagramGrid`:: >>> grid = DiagramGrid(diagram) Finally, the drawing: >>> drawer = XypicDiagramDrawer() >>> print(drawer.draw(diagram, grid)) \xymatrix{ A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\ C & } The argument ``masked`` can be used to skip morphisms in the presentation of the diagram: >>> print(drawer.draw(diagram, grid, masked=[g * f])) \xymatrix{ A \ar[r]^{f} & B \ar[ld]^{g} \\ C & } Finally, the ``diagram_format`` argument can be used to specify the format string of the diagram. For example, to increase the spacing by 1 cm, proceeding as follows: >>> print(drawer.draw(diagram, grid, diagram_format="@+1cm")) \xymatrix@+1cm{ A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\ C & } """ # This method works in several steps. It starts by removing # the masked morphisms, if necessary, and then maps objects to # their positions in the grid (coordinate tuples). Remember # that objects are unique in ``Diagram`` and in the layout # produced by ``DiagramGrid``, so every object is mapped to a # single coordinate pair. # # The next step is the central step and is concerned with # analysing the morphisms of the diagram and deciding how to # draw them. For example, how to curve the arrows is decided # at this step. The bulk of the analysis is implemented in # ``_process_morphism``, to the result of which the # appropriate formatters are applied. # # The result of the previous step is a list of # ``ArrowStringDescription``. After the analysis and # application of formatters, some extra logic tries to assure # better positioning of morphism labels (for example, an # attempt is made to avoid the situations when arrows cross # labels). This functionality constitutes the next step and # is implemented in ``_push_labels_out``. Note that label # positions which have been set via a formatter are not # affected in this step. # # Finally, at the closing step, the array of # ``ArrowStringDescription`` and the layout information # incorporated in ``DiagramGrid`` are combined to produce the # resulting Xy-pic picture. This part of code lies in # ``_build_xypic_string``. if not masked: morphisms_props = grid.morphisms else: morphisms_props = {} for m, props in grid.morphisms.items(): if m in masked: continue morphisms_props[m] = props # Build the mapping between objects and their position in the # grid. object_coords = {} for i in range(grid.height): for j in range(grid.width): if grid[i, j]: object_coords[grid[i, j]] = (i, j) morphisms = sorted(morphisms_props, key=lambda m: XypicDiagramDrawer._morphism_sort_key( m, object_coords)) # Build the tuples defining the string representations of # morphisms. morphisms_str_info = {} for morphism in morphisms: string_description = self._process_morphism( diagram, grid, morphism, object_coords, morphisms, morphisms_str_info) if self.default_arrow_formatter: self.default_arrow_formatter(string_description) for prop in morphisms_props[morphism]: # prop is a Symbol. TODO: Find out why. if prop.name in self.arrow_formatters: formatter = self.arrow_formatters[prop.name] formatter(string_description) morphisms_str_info[morphism] = string_description # Reposition the labels a bit. self._push_labels_out(morphisms_str_info, grid, object_coords) return XypicDiagramDrawer._build_xypic_string( diagram, grid, morphisms, morphisms_str_info, diagram_format) def xypic_draw_diagram(diagram, masked=None, diagram_format="", groups=None, **hints): r""" Provides a shortcut combining :class:`DiagramGrid` and :class:`XypicDiagramDrawer`. Returns an Xy-pic presentation of ``diagram``. The argument ``masked`` is a list of morphisms which will be not be drawn. The argument ``diagram_format`` is the format string inserted after "\xymatrix". ``groups`` should be a set of logical groups. The ``hints`` will be passed directly to the constructor of :class:`DiagramGrid`. For more information about the arguments, see the docstrings of :class:`DiagramGrid` and ``XypicDiagramDrawer.draw``. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram >>> from sympy.categories import xypic_draw_diagram >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> diagram = Diagram([f, g], {g * f: "unique"}) >>> print(xypic_draw_diagram(diagram)) \xymatrix{ A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\ C & } See Also ======== XypicDiagramDrawer, DiagramGrid """ grid = DiagramGrid(diagram, groups, **hints) drawer = XypicDiagramDrawer() return drawer.draw(diagram, grid, masked, diagram_format) @doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',)) def preview_diagram(diagram, masked=None, diagram_format="", groups=None, output='png', viewer=None, euler=True, **hints): """ Combines the functionality of ``xypic_draw_diagram`` and ``sympy.printing.preview``. The arguments ``masked``, ``diagram_format``, ``groups``, and ``hints`` are passed to ``xypic_draw_diagram``, while ``output``, ``viewer, and ``euler`` are passed to ``preview``. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram >>> from sympy.categories import preview_diagram >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g], {g * f: "unique"}) >>> preview_diagram(d) See Also ======== xypic_diagram_drawer """ from sympy.printing import preview latex_output = xypic_draw_diagram(diagram, masked, diagram_format, groups, **hints) preview(latex_output, output, viewer, euler, ("xypic",))
e1dc70a68eab010e68d18481d234eb7eb3ef224957c416107d7e866b3bf8468f
from __future__ import print_function, division from sympy.core import S, Basic, Dict, Symbol, Tuple, sympify from sympy.core.compatibility import iterable from sympy.sets import Set, FiniteSet, EmptySet class Class(Set): r""" The base class for any kind of class in the set-theoretic sense. In axiomatic set theories, everything is a class. A class which can be a member of another class is a set. A class which is not a member of another class is a proper class. The class `\{1, 2\}` is a set; the class of all sets is a proper class. This class is essentially a synonym for :class:`sympy.core.Set`. The goal of this class is to assure easier migration to the eventual proper implementation of set theory. """ is_proper = False class Object(Symbol): """ The base class for any kind of object in an abstract category. While technically any instance of :class:`Basic` will do, this class is the recommended way to create abstract objects in abstract categories. """ class Morphism(Basic): """ The base class for any morphism in an abstract category. In abstract categories, a morphism is an arrow between two category objects. The object where the arrow starts is called the domain, while the object where the arrow ends is called the codomain. Two morphisms between the same pair of objects are considered to be the same morphisms. To distinguish between morphisms between the same objects use :class:`NamedMorphism`. It is prohibited to instantiate this class. Use one of the derived classes instead. See Also ======== IdentityMorphism, NamedMorphism, CompositeMorphism """ def __new__(cls, domain, codomain): raise(NotImplementedError( "Cannot instantiate Morphism. Use derived classes instead.")) @property def domain(self): """ Returns the domain of the morphism. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> f = NamedMorphism(A, B, "f") >>> f.domain Object("A") """ return self.args[0] @property def codomain(self): """ Returns the codomain of the morphism. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> f = NamedMorphism(A, B, "f") >>> f.codomain Object("B") """ return self.args[1] def compose(self, other): r""" Composes self with the supplied morphism. The order of elements in the composition is the usual order, i.e., to construct `g\circ f` use ``g.compose(f)``. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> g * f CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"), NamedMorphism(Object("B"), Object("C"), "g"))) >>> (g * f).domain Object("A") >>> (g * f).codomain Object("C") """ return CompositeMorphism(other, self) def __mul__(self, other): r""" Composes self with the supplied morphism. The semantics of this operation is given by the following equation: ``g * f == g.compose(f)`` for composable morphisms ``g`` and ``f``. See Also ======== compose """ return self.compose(other) class IdentityMorphism(Morphism): """ Represents an identity morphism. An identity morphism is a morphism with equal domain and codomain, which acts as an identity with respect to composition. Examples ======== >>> from sympy.categories import Object, NamedMorphism, IdentityMorphism >>> A = Object("A") >>> B = Object("B") >>> f = NamedMorphism(A, B, "f") >>> id_A = IdentityMorphism(A) >>> id_B = IdentityMorphism(B) >>> f * id_A == f True >>> id_B * f == f True See Also ======== Morphism """ def __new__(cls, domain): return Basic.__new__(cls, domain, domain) class NamedMorphism(Morphism): """ Represents a morphism which has a name. Names are used to distinguish between morphisms which have the same domain and codomain: two named morphisms are equal if they have the same domains, codomains, and names. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> f = NamedMorphism(A, B, "f") >>> f NamedMorphism(Object("A"), Object("B"), "f") >>> f.name 'f' See Also ======== Morphism """ def __new__(cls, domain, codomain, name): if not name: raise ValueError("Empty morphism names not allowed.") return Basic.__new__(cls, domain, codomain, Symbol(name)) @property def name(self): """ Returns the name of the morphism. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> f = NamedMorphism(A, B, "f") >>> f.name 'f' """ return self.args[2].name class CompositeMorphism(Morphism): r""" Represents a morphism which is a composition of other morphisms. Two composite morphisms are equal if the morphisms they were obtained from (components) are the same and were listed in the same order. The arguments to the constructor for this class should be listed in diagram order: to obtain the composition `g\circ f` from the instances of :class:`Morphism` ``g`` and ``f`` use ``CompositeMorphism(f, g)``. Examples ======== >>> from sympy.categories import Object, NamedMorphism, CompositeMorphism >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> g * f CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"), NamedMorphism(Object("B"), Object("C"), "g"))) >>> CompositeMorphism(f, g) == g * f True """ @staticmethod def _add_morphism(t, morphism): """ Intelligently adds ``morphism`` to tuple ``t``. If ``morphism`` is a composite morphism, its components are added to the tuple. If ``morphism`` is an identity, nothing is added to the tuple. No composability checks are performed. """ if isinstance(morphism, CompositeMorphism): # ``morphism`` is a composite morphism; we have to # denest its components. return t + morphism.components elif isinstance(morphism, IdentityMorphism): # ``morphism`` is an identity. Nothing happens. return t else: return t + Tuple(morphism) def __new__(cls, *components): if components and not isinstance(components[0], Morphism): # Maybe the user has explicitly supplied a list of # morphisms. return CompositeMorphism.__new__(cls, *components[0]) normalised_components = Tuple() for current, following in zip(components, components[1:]): if not isinstance(current, Morphism) or \ not isinstance(following, Morphism): raise TypeError("All components must be morphisms.") if current.codomain != following.domain: raise ValueError("Uncomposable morphisms.") normalised_components = CompositeMorphism._add_morphism( normalised_components, current) # We haven't added the last morphism to the list of normalised # components. Add it now. normalised_components = CompositeMorphism._add_morphism( normalised_components, components[-1]) if not normalised_components: # If ``normalised_components`` is empty, only identities # were supplied. Since they all were composable, they are # all the same identities. return components[0] elif len(normalised_components) == 1: # No sense to construct a whole CompositeMorphism. return normalised_components[0] return Basic.__new__(cls, normalised_components) @property def components(self): """ Returns the components of this composite morphism. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> (g * f).components (NamedMorphism(Object("A"), Object("B"), "f"), NamedMorphism(Object("B"), Object("C"), "g")) """ return self.args[0] @property def domain(self): """ Returns the domain of this composite morphism. The domain of the composite morphism is the domain of its first component. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> (g * f).domain Object("A") """ return self.components[0].domain @property def codomain(self): """ Returns the codomain of this composite morphism. The codomain of the composite morphism is the codomain of its last component. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> (g * f).codomain Object("C") """ return self.components[-1].codomain def flatten(self, new_name): """ Forgets the composite structure of this morphism. If ``new_name`` is not empty, returns a :class:`NamedMorphism` with the supplied name, otherwise returns a :class:`Morphism`. In both cases the domain of the new morphism is the domain of this composite morphism and the codomain of the new morphism is the codomain of this composite morphism. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> (g * f).flatten("h") NamedMorphism(Object("A"), Object("C"), "h") """ return NamedMorphism(self.domain, self.codomain, new_name) class Category(Basic): r""" An (abstract) category. A category [JoyOfCats] is a quadruple `\mbox{K} = (O, \hom, id, \circ)` consisting of * a (set-theoretical) class `O`, whose members are called `K`-objects, * for each pair `(A, B)` of `K`-objects, a set `\hom(A, B)` whose members are called `K`-morphisms from `A` to `B`, * for a each `K`-object `A`, a morphism `id:A\rightarrow A`, called the `K`-identity of `A`, * a composition law `\circ` associating with every `K`-morphisms `f:A\rightarrow B` and `g:B\rightarrow C` a `K`-morphism `g\circ f:A\rightarrow C`, called the composite of `f` and `g`. Composition is associative, `K`-identities are identities with respect to composition, and the sets `\hom(A, B)` are pairwise disjoint. This class knows nothing about its objects and morphisms. Concrete cases of (abstract) categories should be implemented as classes derived from this one. Certain instances of :class:`Diagram` can be asserted to be commutative in a :class:`Category` by supplying the argument ``commutative_diagrams`` in the constructor. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram, Category >>> from sympy import FiniteSet >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g]) >>> K = Category("K", commutative_diagrams=[d]) >>> K.commutative_diagrams == FiniteSet(d) True See Also ======== Diagram """ def __new__(cls, name, objects=EmptySet(), commutative_diagrams=EmptySet()): if not name: raise ValueError("A Category cannot have an empty name.") new_category = Basic.__new__(cls, Symbol(name), Class(objects), FiniteSet(*commutative_diagrams)) return new_category @property def name(self): """ Returns the name of this category. Examples ======== >>> from sympy.categories import Category >>> K = Category("K") >>> K.name 'K' """ return self.args[0].name @property def objects(self): """ Returns the class of objects of this category. Examples ======== >>> from sympy.categories import Object, Category >>> from sympy import FiniteSet >>> A = Object("A") >>> B = Object("B") >>> K = Category("K", FiniteSet(A, B)) >>> K.objects Class({Object("A"), Object("B")}) """ return self.args[1] @property def commutative_diagrams(self): """ Returns the :class:`FiniteSet` of diagrams which are known to be commutative in this category. >>> from sympy.categories import Object, NamedMorphism, Diagram, Category >>> from sympy import FiniteSet >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g]) >>> K = Category("K", commutative_diagrams=[d]) >>> K.commutative_diagrams == FiniteSet(d) True """ return self.args[2] def hom(self, A, B): raise NotImplementedError( "hom-sets are not implemented in Category.") def all_morphisms(self): raise NotImplementedError( "Obtaining the class of morphisms is not implemented in Category.") class Diagram(Basic): r""" Represents a diagram in a certain category. Informally, a diagram is a collection of objects of a category and certain morphisms between them. A diagram is still a monoid with respect to morphism composition; i.e., identity morphisms, as well as all composites of morphisms included in the diagram belong to the diagram. For a more formal approach to this notion see [Pare1970]. The components of composite morphisms are also added to the diagram. No properties are assigned to such morphisms by default. A commutative diagram is often accompanied by a statement of the following kind: "if such morphisms with such properties exist, then such morphisms which such properties exist and the diagram is commutative". To represent this, an instance of :class:`Diagram` includes a collection of morphisms which are the premises and another collection of conclusions. ``premises`` and ``conclusions`` associate morphisms belonging to the corresponding categories with the :class:`FiniteSet`'s of their properties. The set of properties of a composite morphism is the intersection of the sets of properties of its components. The domain and codomain of a conclusion morphism should be among the domains and codomains of the morphisms listed as the premises of a diagram. No checks are carried out of whether the supplied object and morphisms do belong to one and the same category. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram >>> from sympy import FiniteSet, pprint, default_sort_key >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g]) >>> premises_keys = sorted(d.premises.keys(), key=default_sort_key) >>> pprint(premises_keys, use_unicode=False) [g*f:A-->C, id:A-->A, id:B-->B, id:C-->C, f:A-->B, g:B-->C] >>> pprint(d.premises, use_unicode=False) {g*f:A-->C: EmptySet(), id:A-->A: EmptySet(), id:B-->B: EmptySet(), id:C-->C: EmptySet(), f:A-->B: EmptySet(), g:B-->C: EmptySet()} >>> d = Diagram([f, g], {g * f: "unique"}) >>> pprint(d.conclusions) {g*f:A-->C: {unique}} References ========== [Pare1970] B. Pareigis: Categories and functors. Academic Press, 1970. """ @staticmethod def _set_dict_union(dictionary, key, value): """ If ``key`` is in ``dictionary``, set the new value of ``key`` to be the union between the old value and ``value``. Otherwise, set the value of ``key`` to ``value. Returns ``True`` if the key already was in the dictionary and ``False`` otherwise. """ if key in dictionary: dictionary[key] = dictionary[key] | value return True else: dictionary[key] = value return False @staticmethod def _add_morphism_closure(morphisms, morphism, props, add_identities=True, recurse_composites=True): """ Adds a morphism and its attributes to the supplied dictionary ``morphisms``. If ``add_identities`` is True, also adds the identity morphisms for the domain and the codomain of ``morphism``. """ if not Diagram._set_dict_union(morphisms, morphism, props): # We have just added a new morphism. if isinstance(morphism, IdentityMorphism): if props: # Properties for identity morphisms don't really # make sense, because very much is known about # identity morphisms already, so much that they # are trivial. Having properties for identity # morphisms would only be confusing. raise ValueError( "Instances of IdentityMorphism cannot have properties.") return if add_identities: empty = EmptySet() id_dom = IdentityMorphism(morphism.domain) id_cod = IdentityMorphism(morphism.codomain) Diagram._set_dict_union(morphisms, id_dom, empty) Diagram._set_dict_union(morphisms, id_cod, empty) for existing_morphism, existing_props in list(morphisms.items()): new_props = existing_props & props if morphism.domain == existing_morphism.codomain: left = morphism * existing_morphism Diagram._set_dict_union(morphisms, left, new_props) if morphism.codomain == existing_morphism.domain: right = existing_morphism * morphism Diagram._set_dict_union(morphisms, right, new_props) if isinstance(morphism, CompositeMorphism) and recurse_composites: # This is a composite morphism, add its components as # well. empty = EmptySet() for component in morphism.components: Diagram._add_morphism_closure(morphisms, component, empty, add_identities) def __new__(cls, *args): """ Construct a new instance of Diagram. If no arguments are supplied, an empty diagram is created. If at least an argument is supplied, ``args[0]`` is interpreted as the premises of the diagram. If ``args[0]`` is a list, it is interpreted as a list of :class:`Morphism`'s, in which each :class:`Morphism` has an empty set of properties. If ``args[0]`` is a Python dictionary or a :class:`Dict`, it is interpreted as a dictionary associating to some :class:`Morphism`'s some properties. If at least two arguments are supplied ``args[1]`` is interpreted as the conclusions of the diagram. The type of ``args[1]`` is interpreted in exactly the same way as the type of ``args[0]``. If only one argument is supplied, the diagram has no conclusions. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import IdentityMorphism, Diagram >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g]) >>> IdentityMorphism(A) in d.premises.keys() True >>> g * f in d.premises.keys() True >>> d = Diagram([f, g], {g * f: "unique"}) >>> d.conclusions[g * f] {unique} """ premises = {} conclusions = {} # Here we will keep track of the objects which appear in the # premises. objects = EmptySet() if len(args) >= 1: # We've got some premises in the arguments. premises_arg = args[0] if isinstance(premises_arg, list): # The user has supplied a list of morphisms, none of # which have any attributes. empty = EmptySet() for morphism in premises_arg: objects |= FiniteSet(morphism.domain, morphism.codomain) Diagram._add_morphism_closure(premises, morphism, empty) elif isinstance(premises_arg, dict) or isinstance(premises_arg, Dict): # The user has supplied a dictionary of morphisms and # their properties. for morphism, props in premises_arg.items(): objects |= FiniteSet(morphism.domain, morphism.codomain) Diagram._add_morphism_closure( premises, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props)) if len(args) >= 2: # We also have some conclusions. conclusions_arg = args[1] if isinstance(conclusions_arg, list): # The user has supplied a list of morphisms, none of # which have any attributes. empty = EmptySet() for morphism in conclusions_arg: # Check that no new objects appear in conclusions. if ((sympify(objects.contains(morphism.domain)) is S.true) and (sympify(objects.contains(morphism.codomain)) is S.true)): # No need to add identities and recurse # composites this time. Diagram._add_morphism_closure( conclusions, morphism, empty, add_identities=False, recurse_composites=False) elif isinstance(conclusions_arg, dict) or \ isinstance(conclusions_arg, Dict): # The user has supplied a dictionary of morphisms and # their properties. for morphism, props in conclusions_arg.items(): # Check that no new objects appear in conclusions. if (morphism.domain in objects) and \ (morphism.codomain in objects): # No need to add identities and recurse # composites this time. Diagram._add_morphism_closure( conclusions, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props), add_identities=False, recurse_composites=False) return Basic.__new__(cls, Dict(premises), Dict(conclusions), objects) @property def premises(self): """ Returns the premises of this diagram. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import IdentityMorphism, Diagram >>> from sympy import pretty >>> A = Object("A") >>> B = Object("B") >>> f = NamedMorphism(A, B, "f") >>> id_A = IdentityMorphism(A) >>> id_B = IdentityMorphism(B) >>> d = Diagram([f]) >>> print(pretty(d.premises, use_unicode=False)) {id:A-->A: EmptySet(), id:B-->B: EmptySet(), f:A-->B: EmptySet()} """ return self.args[0] @property def conclusions(self): """ Returns the conclusions of this diagram. Examples ======== >>> from sympy.categories import Object, NamedMorphism >>> from sympy.categories import IdentityMorphism, Diagram >>> from sympy import FiniteSet >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g]) >>> IdentityMorphism(A) in d.premises.keys() True >>> g * f in d.premises.keys() True >>> d = Diagram([f, g], {g * f: "unique"}) >>> d.conclusions[g * f] == FiniteSet("unique") True """ return self.args[1] @property def objects(self): """ Returns the :class:`FiniteSet` of objects that appear in this diagram. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g]) >>> d.objects {Object("A"), Object("B"), Object("C")} """ return self.args[2] def hom(self, A, B): """ Returns a 2-tuple of sets of morphisms between objects A and B: one set of morphisms listed as premises, and the other set of morphisms listed as conclusions. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram >>> from sympy import pretty >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g], {g * f: "unique"}) >>> print(pretty(d.hom(A, C), use_unicode=False)) ({g*f:A-->C}, {g*f:A-->C}) See Also ======== Object, Morphism """ premises = EmptySet() conclusions = EmptySet() for morphism in self.premises.keys(): if (morphism.domain == A) and (morphism.codomain == B): premises |= FiniteSet(morphism) for morphism in self.conclusions.keys(): if (morphism.domain == A) and (morphism.codomain == B): conclusions |= FiniteSet(morphism) return (premises, conclusions) def is_subdiagram(self, diagram): """ Checks whether ``diagram`` is a subdiagram of ``self``. Diagram `D'` is a subdiagram of `D` if all premises (conclusions) of `D'` are contained in the premises (conclusions) of `D`. The morphisms contained both in `D'` and `D` should have the same properties for `D'` to be a subdiagram of `D`. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g], {g * f: "unique"}) >>> d1 = Diagram([f]) >>> d.is_subdiagram(d1) True >>> d1.is_subdiagram(d) False """ premises = all([(m in self.premises) and (diagram.premises[m] == self.premises[m]) for m in diagram.premises]) if not premises: return False conclusions = all([(m in self.conclusions) and (diagram.conclusions[m] == self.conclusions[m]) for m in diagram.conclusions]) # Premises is surely ``True`` here. return conclusions def subdiagram_from_objects(self, objects): """ If ``objects`` is a subset of the objects of ``self``, returns a diagram which has as premises all those premises of ``self`` which have a domains and codomains in ``objects``, likewise for conclusions. Properties are preserved. Examples ======== >>> from sympy.categories import Object, NamedMorphism, Diagram >>> from sympy import FiniteSet >>> A = Object("A") >>> B = Object("B") >>> C = Object("C") >>> f = NamedMorphism(A, B, "f") >>> g = NamedMorphism(B, C, "g") >>> d = Diagram([f, g], {f: "unique", g*f: "veryunique"}) >>> d1 = d.subdiagram_from_objects(FiniteSet(A, B)) >>> d1 == Diagram([f], {f: "unique"}) True """ if not objects.is_subset(self.objects): raise ValueError( "Supplied objects should all belong to the diagram.") new_premises = {} for morphism, props in self.premises.items(): if ((sympify(objects.contains(morphism.domain)) is S.true) and (sympify(objects.contains(morphism.codomain)) is S.true)): new_premises[morphism] = props new_conclusions = {} for morphism, props in self.conclusions.items(): if ((sympify(objects.contains(morphism.domain)) is S.true) and (sympify(objects.contains(morphism.codomain)) is S.true)): new_conclusions[morphism] = props return Diagram(new_premises, new_conclusions)
7255a5a1d9e566c126a808d52b57b402b601249cffedb410714736a30102a561
# References : # http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/ # https://en.wikipedia.org/wiki/Quaternion from __future__ import print_function from sympy import Rational from sympy import re, im, conjugate from sympy import sqrt, sin, cos, acos, exp, ln from sympy import trigsimp from sympy import integrate from sympy import Matrix, Add, Mul from sympy import sympify from sympy.core.compatibility import SYMPY_INTS from sympy.core.expr import Expr from sympy.core.numbers import Integer class Quaternion(Expr): """Provides basic quaternion operations. Quaternion objects can be instantiated as Quaternion(a, b, c, d) as in (a + b*i + c*j + d*k). Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q 1 + 2*i + 3*j + 4*k Quaternions over complex fields can be defined as : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, I >>> x = symbols('x') >>> q1 = Quaternion(x, x**3, x, x**2, real_field = False) >>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> q1 x + x**3*i + x*j + x**2*k >>> q2 (3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k """ _op_priority = 11.0 is_commutative = False def __new__(cls, a=0, b=0, c=0, d=0, real_field=True): a = sympify(a) b = sympify(b) c = sympify(c) d = sympify(d) if any(i.is_commutative is False for i in [a, b, c, d]): raise ValueError("arguments have to be commutative") else: obj = Expr.__new__(cls, a, b, c, d) obj._a = a obj._b = b obj._c = c obj._d = d obj._real_field = real_field return obj @property def a(self): return self._a @property def b(self): return self._b @property def c(self): return self._c @property def d(self): return self._d @property def real_field(self): return self._real_field @classmethod def from_axis_angle(cls, vector, angle): """Returns a rotation quaternion given the axis and the angle of rotation. Parameters ========== vector : tuple of three numbers The vector representation of the given axis. angle : number The angle by which axis is rotated (in radians). Returns ======= Quaternion The normalized rotation quaternion calculated from the given axis and the angle of rotation. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import pi, sqrt >>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3) >>> q 1/2 + 1/2*i + 1/2*j + 1/2*k """ (x, y, z) = vector norm = sqrt(x**2 + y**2 + z**2) (x, y, z) = (x / norm, y / norm, z / norm) s = sin(angle * Rational(1, 2)) a = cos(angle * Rational(1, 2)) b = x * s c = y * s d = z * s return cls(a, b, c, d).normalize() @classmethod def from_rotation_matrix(cls, M): """Returns the equivalent quaternion of a matrix. The quaternion will be normalized only if the matrix is special orthogonal (orthogonal and det(M) = 1). Parameters ========== M : Matrix Input matrix to be converted to equivalent quaternion. M must be special orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized. Returns ======= Quaternion The quaternion equivalent to given matrix. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import Matrix, symbols, cos, sin, trigsimp >>> x = symbols('x') >>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]]) >>> q = trigsimp(Quaternion.from_rotation_matrix(M)) >>> q sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(-2*cos(x) + 2)/2*k """ absQ = M.det()**Rational(1, 3) a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2 b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2 c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2 d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2 try: b = Quaternion.__copysign(b, M[2, 1] - M[1, 2]) c = Quaternion.__copysign(c, M[0, 2] - M[2, 0]) d = Quaternion.__copysign(d, M[1, 0] - M[0, 1]) except Exception: pass return Quaternion(a, b, c, d) @staticmethod def __copysign(x, y): # Takes the sign from the second term and sets the sign of the first # without altering the magnitude. if y == 0: return 0 return x if x*y > 0 else -x def __add__(self, other): return self.add(other) def __radd__(self, other): return self.add(other) def __sub__(self, other): return self.add(other*-1) def __mul__(self, other): return self._generic_mul(self, other) def __rmul__(self, other): return self._generic_mul(other, self) def __pow__(self, p): return self.pow(p) def __neg__(self): return Quaternion(-self._a, -self._b, -self._c, -self.d) def _eval_Integral(self, *args): return self.integrate(*args) def diff(self, *symbols, **kwargs): kwargs.setdefault('evaluate', True) return self.func(*[a.diff(*symbols, **kwargs) for a in self.args]) def add(self, other): """Adds quaternions. Parameters ========== other : Quaternion The quaternion to add to current (self) quaternion. Returns ======= Quaternion The resultant quaternion after adding self to other Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols >>> q1 = Quaternion(1, 2, 3, 4) >>> q2 = Quaternion(5, 6, 7, 8) >>> q1.add(q2) 6 + 8*i + 10*j + 12*k >>> q1 + 5 6 + 2*i + 3*j + 4*k >>> x = symbols('x', real = True) >>> q1.add(x) (x + 1) + 2*i + 3*j + 4*k Quaternions over complex fields : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import I >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> q3.add(2 + 3*I) (5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k """ q1 = self q2 = sympify(other) # If q2 is a number or a sympy expression instead of a quaternion if not isinstance(q2, Quaternion): if q1.real_field: if q2.is_complex: return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d) else: # q2 is something strange, do not evaluate: return Add(q1, q2) else: return Quaternion(q1.a + q2, q1.b, q1.c, q1.d) return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d + q2.d) def mul(self, other): """Multiplies quaternions. Parameters ========== other : Quaternion or symbol The quaternion to multiply to current (self) quaternion. Returns ======= Quaternion The resultant quaternion after multiplying self with other Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols >>> q1 = Quaternion(1, 2, 3, 4) >>> q2 = Quaternion(5, 6, 7, 8) >>> q1.mul(q2) (-60) + 12*i + 30*j + 24*k >>> q1.mul(2) 2 + 4*i + 6*j + 8*k >>> x = symbols('x', real = True) >>> q1.mul(x) x + 2*x*i + 3*x*j + 4*x*k Quaternions over complex fields : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import I >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> q3.mul(2 + 3*I) (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k """ return self._generic_mul(self, other) @staticmethod def _generic_mul(q1, q2): """Generic multiplication. Parameters ========== q1 : Quaternion or symbol q2 : Quaternion or symbol It's important to note that if neither q1 nor q2 is a Quaternion, this function simply returns q1 * q2. Returns ======= Quaternion The resultant quaternion after multiplying q1 and q2 Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols >>> q1 = Quaternion(1, 2, 3, 4) >>> q2 = Quaternion(5, 6, 7, 8) >>> Quaternion._generic_mul(q1, q2) (-60) + 12*i + 30*j + 24*k >>> Quaternion._generic_mul(q1, 2) 2 + 4*i + 6*j + 8*k >>> x = symbols('x', real = True) >>> Quaternion._generic_mul(q1, x) x + 2*x*i + 3*x*j + 4*x*k Quaternions over complex fields : >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import I >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) >>> Quaternion._generic_mul(q3, 2 + 3*I) (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k """ q1 = sympify(q1) q2 = sympify(q2) # None is a Quaternion: if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion): return q1 * q2 # If q1 is a number or a sympy expression instead of a quaternion if not isinstance(q1, Quaternion): if q2.real_field: if q1.is_complex: return q2 * Quaternion(re(q1), im(q1), 0, 0) else: return Mul(q1, q2) else: return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d) # If q2 is a number or a sympy expression instead of a quaternion if not isinstance(q2, Quaternion): if q1.real_field: if q2.is_complex: return q1 * Quaternion(re(q2), im(q2), 0, 0) else: return Mul(q1, q2) else: return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d) return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a, q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b, -q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c, q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d) def _eval_conjugate(self): """Returns the conjugate of the quaternion.""" q = self return Quaternion(q.a, -q.b, -q.c, -q.d) def norm(self): """Returns the norm of the quaternion.""" q = self # trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms # arise when from_axis_angle is used). return sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2)) def normalize(self): """Returns the normalized form of the quaternion.""" q = self return q * (1/q.norm()) def inverse(self): """Returns the inverse of the quaternion.""" q = self if not q.norm(): raise ValueError("Cannot compute inverse for a quaternion with zero norm") return conjugate(q) * (1/q.norm()**2) def pow(self, p): """Finds the pth power of the quaternion. Parameters ========== p : int Power to be applied on quaternion. Returns ======= Quaternion Returns the p-th power of the current quaternion. Returns the inverse if p = -1. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q.pow(4) 668 + (-224)*i + (-336)*j + (-448)*k """ q = self if p == -1: return q.inverse() res = 1 if p < 0: q, p = q.inverse(), -p if not (isinstance(p, (Integer, SYMPY_INTS))): return NotImplemented while p > 0: if p & 1: res = q * res p = p >> 1 q = q * q return res def exp(self): """Returns the exponential of q (e^q). Returns ======= Quaternion Exponential of q (e^q). Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q.exp() E*cos(sqrt(29)) + 2*sqrt(29)*E*sin(sqrt(29))/29*i + 3*sqrt(29)*E*sin(sqrt(29))/29*j + 4*sqrt(29)*E*sin(sqrt(29))/29*k """ # exp(q) = e^a(cos||v|| + v/||v||*sin||v||) q = self vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2) a = exp(q.a) * cos(vector_norm) b = exp(q.a) * sin(vector_norm) * q.b / vector_norm c = exp(q.a) * sin(vector_norm) * q.c / vector_norm d = exp(q.a) * sin(vector_norm) * q.d / vector_norm return Quaternion(a, b, c, d) def _ln(self): """Returns the natural logarithm of the quaternion (_ln(q)). Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q._ln() log(sqrt(30)) + 2*sqrt(29)*acos(sqrt(30)/30)/29*i + 3*sqrt(29)*acos(sqrt(30)/30)/29*j + 4*sqrt(29)*acos(sqrt(30)/30)/29*k """ # _ln(q) = _ln||q|| + v/||v||*arccos(a/||q||) q = self vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2) q_norm = q.norm() a = ln(q_norm) b = q.b * acos(q.a / q_norm) / vector_norm c = q.c * acos(q.a / q_norm) / vector_norm d = q.d * acos(q.a / q_norm) / vector_norm return Quaternion(a, b, c, d) def pow_cos_sin(self, p): """Computes the pth power in the cos-sin form. Parameters ========== p : int Power to be applied on quaternion. Returns ======= Quaternion The p-th power in the cos-sin form. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 2, 3, 4) >>> q.pow_cos_sin(4) 900*cos(4*acos(sqrt(30)/30)) + 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i + 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j + 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k """ # q = ||q||*(cos(a) + u*sin(a)) # q^p = ||q||^p * (cos(p*a) + u*sin(p*a)) q = self (v, angle) = q.to_axis_angle() q2 = Quaternion.from_axis_angle(v, p * angle) return q2 * (q.norm()**p) def integrate(self, *args): # TODO: is this expression correct? return Quaternion(integrate(self.a, *args), integrate(self.b, *args), integrate(self.c, *args), integrate(self.d, *args)) @staticmethod def rotate_point(pin, r): """Returns the coordinates of the point pin(a 3 tuple) after rotation. Parameters ========== pin : tuple A 3-element tuple of coordinates of a point. This point will be the axis of rotation. r Angle to be rotated. Returns ======= tuple The coordinates of the quaternion after rotation. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, trigsimp, cos, sin >>> x = symbols('x') >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2)) >>> trigsimp(Quaternion.rotate_point((1, 1, 1), q)) (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1) >>> (axis, angle) = q.to_axis_angle() >>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle))) (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1) """ if isinstance(r, tuple): # if r is of the form (vector, angle) q = Quaternion.from_axis_angle(r[0], r[1]) else: # if r is a quaternion q = r.normalize() pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q) return (pout.b, pout.c, pout.d) def to_axis_angle(self): """Returns the axis and angle of rotation of a quaternion Returns ======= tuple Tuple of (axis, angle) Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> q = Quaternion(1, 1, 1, 1) >>> (axis, angle) = q.to_axis_angle() >>> axis (sqrt(3)/3, sqrt(3)/3, sqrt(3)/3) >>> angle 2*pi/3 """ q = self try: # Skips it if it doesn't know whether q.a is negative if q.a < 0: # avoid error with acos # axis and angle of rotation of q and q*-1 will be the same q = q * -1 except BaseException: pass q = q.normalize() angle = trigsimp(2 * acos(q.a)) # Since quaternion is normalised, q.a is less than 1. s = sqrt(1 - q.a*q.a) x = trigsimp(q.b / s) y = trigsimp(q.c / s) z = trigsimp(q.d / s) v = (x, y, z) t = (v, angle) return t def to_rotation_matrix(self, v=None): """Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed. Parameters ========== v : tuple or None Default value: None Returns ======= tuple Returns the equivalent rotation transformation matrix of the quaternion which represents rotation about the origin if v is not passed. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, trigsimp, cos, sin >>> x = symbols('x') >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2)) >>> trigsimp(q.to_rotation_matrix()) Matrix([ [cos(x), -sin(x), 0], [sin(x), cos(x), 0], [ 0, 0, 1]]) Generates a 4x4 transformation matrix (used for rotation about a point other than the origin) if the point(v) is passed as an argument. Examples ======== >>> from sympy.algebras.quaternion import Quaternion >>> from sympy import symbols, trigsimp, cos, sin >>> x = symbols('x') >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2)) >>> trigsimp(q.to_rotation_matrix((1, 1, 1))) Matrix([ [cos(x), -sin(x), 0, sin(x) - cos(x) + 1], [sin(x), cos(x), 0, -sin(x) - cos(x) + 1], [ 0, 0, 1, 0], [ 0, 0, 0, 1]]) """ q = self s = q.norm()**-2 m00 = 1 - 2*s*(q.c**2 + q.d**2) m01 = 2*s*(q.b*q.c - q.d*q.a) m02 = 2*s*(q.b*q.d + q.c*q.a) m10 = 2*s*(q.b*q.c + q.d*q.a) m11 = 1 - 2*s*(q.b**2 + q.d**2) m12 = 2*s*(q.c*q.d - q.b*q.a) m20 = 2*s*(q.b*q.d - q.c*q.a) m21 = 2*s*(q.c*q.d + q.b*q.a) m22 = 1 - 2*s*(q.b**2 + q.c**2) if not v: return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]]) else: (x, y, z) = v m03 = x - x*m00 - y*m01 - z*m02 m13 = y - x*m10 - y*m11 - z*m12 m23 = z - x*m20 - y*m21 - z*m22 m30 = m31 = m32 = 0 m33 = 1 return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13], [m20, m21, m22, m23], [m30, m31, m32, m33]])
da6605a57df67b63b376e87cac0b3a132a663ded875fb4a59f21d0133e7754ee
from __future__ import print_function, division from itertools import permutations from sympy.combinatorics import Permutation from sympy.core import AtomicExpr, Basic, Expr, Dummy, Function, sympify, diff, Pow, Mul, Add, symbols, Tuple from sympy.core.compatibility import range, reduce from sympy.core.numbers import Zero from sympy.functions import factorial from sympy.matrices import Matrix from sympy.simplify import simplify from sympy.solvers import solve # TODO you are a bit excessive in the use of Dummies # TODO dummy point, literal field # TODO too often one needs to call doit or simplify on the output, check the # tests and find out why from sympy.tensor.array import ImmutableDenseNDimArray class Manifold(Basic): """Object representing a mathematical manifold. The only role that this object plays is to keep a list of all patches defined on the manifold. It does not provide any means to study the topological characteristics of the manifold that it represents. """ def __new__(cls, name, dim): name = sympify(name) dim = sympify(dim) obj = Basic.__new__(cls, name, dim) obj.name = name obj.dim = dim obj.patches = [] # The patches list is necessary if a Patch instance needs to enumerate # other Patch instance on the same manifold. return obj def _latex(self, printer, *args): return r'\mathrm{%s}' % self.name class Patch(Basic): """Object representing a patch on a manifold. On a manifold one can have many patches that do not always include the whole manifold. On these patches coordinate charts can be defined that permit the parameterization of any point on the patch in terms of a tuple of real numbers (the coordinates). This object serves as a container/parent for all coordinate system charts that can be defined on the patch it represents. Examples ======== Define a Manifold and a Patch on that Manifold: >>> from sympy.diffgeom import Manifold, Patch >>> m = Manifold('M', 3) >>> p = Patch('P', m) >>> p in m.patches True """ # Contains a reference to the parent manifold in order to be able to access # other patches. def __new__(cls, name, manifold): name = sympify(name) obj = Basic.__new__(cls, name, manifold) obj.name = name obj.manifold = manifold obj.manifold.patches.append(obj) obj.coord_systems = [] # The list of coordinate systems is necessary for an instance of # CoordSystem to enumerate other coord systems on the patch. return obj @property def dim(self): return self.manifold.dim def _latex(self, printer, *args): return r'\mathrm{%s}_{%s}' % (self.name, self.manifold._latex(printer, *args)) class CoordSystem(Basic): """Contains all coordinate transformation logic. Examples ======== Define a Manifold and a Patch, and then define two coord systems on that patch: >>> from sympy import symbols, sin, cos, pi >>> from sympy.diffgeom import Manifold, Patch, CoordSystem >>> from sympy.simplify import simplify >>> r, theta = symbols('r, theta') >>> m = Manifold('M', 2) >>> patch = Patch('P', m) >>> rect = CoordSystem('rect', patch) >>> polar = CoordSystem('polar', patch) >>> rect in patch.coord_systems True Connect the coordinate systems. An inverse transformation is automatically found by ``solve`` when possible: >>> polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)]) >>> polar.coord_tuple_transform_to(rect, [0, 2]) Matrix([ [0], [0]]) >>> polar.coord_tuple_transform_to(rect, [2, pi/2]) Matrix([ [0], [2]]) >>> rect.coord_tuple_transform_to(polar, [1, 1]).applyfunc(simplify) Matrix([ [sqrt(2)], [ pi/4]]) Calculate the jacobian of the polar to cartesian transformation: >>> polar.jacobian(rect, [r, theta]) Matrix([ [cos(theta), -r*sin(theta)], [sin(theta), r*cos(theta)]]) Define a point using coordinates in one of the coordinate systems: >>> p = polar.point([1, 3*pi/4]) >>> rect.point_to_coords(p) Matrix([ [-sqrt(2)/2], [ sqrt(2)/2]]) Define a basis scalar field (i.e. a coordinate function), that takes a point and returns its coordinates. It is an instance of ``BaseScalarField``. >>> rect.coord_function(0)(p) -sqrt(2)/2 >>> rect.coord_function(1)(p) sqrt(2)/2 Define a basis vector field (i.e. a unit vector field along the coordinate line). Vectors are also differential operators on scalar fields. It is an instance of ``BaseVectorField``. >>> v_x = rect.base_vector(0) >>> x = rect.coord_function(0) >>> v_x(x) 1 >>> v_x(v_x(x)) 0 Define a basis oneform field: >>> dx = rect.base_oneform(0) >>> dx(v_x) 1 If you provide a list of names the fields will print nicely: - without provided names: >>> x, v_x, dx (rect_0, e_rect_0, drect_0) - with provided names >>> rect = CoordSystem('rect', patch, ['x', 'y']) >>> rect.coord_function(0), rect.base_vector(0), rect.base_oneform(0) (x, e_x, dx) """ # Contains a reference to the parent patch in order to be able to access # other coordinate system charts. def __new__(cls, name, patch, names=None): name = sympify(name) # names is not in args because it is related only to printing, not to # identifying the CoordSystem instance. if not names: names = ['%s_%d' % (name, i) for i in range(patch.dim)] if isinstance(names, Tuple): obj = Basic.__new__(cls, name, patch, names) else: names = Tuple(*symbols(names)) obj = Basic.__new__(cls, name, patch, names) obj.name = name obj._names = [str(i) for i in names.args] obj.patch = patch obj.patch.coord_systems.append(obj) obj.transforms = {} # All the coordinate transformation logic is in this dictionary in the # form of: # key = other coordinate system # value = tuple of # TODO make these Lambda instances # - list of `Dummy` coordinates in this coordinate system # - list of expressions as a function of the Dummies giving # the coordinates in another coordinate system obj._dummies = [Dummy(str(n)) for n in names] obj._dummy = Dummy() return obj @property def dim(self): return self.patch.dim ########################################################################## # Coordinate transformations. ########################################################################## def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False): """Register the transformation used to switch to another coordinate system. Parameters ========== to_sys another instance of ``CoordSystem`` from_coords list of symbols in terms of which ``to_exprs`` is given to_exprs list of the expressions of the new coordinate tuple inverse try to deduce and register the inverse transformation fill_in_gaps try to deduce other transformation that are made possible by composing the present transformation with other already registered transformation """ from_coords, to_exprs = dummyfy(from_coords, to_exprs) self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs) if inverse: to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs) if fill_in_gaps: self._fill_gaps_in_transformations() @staticmethod def _inv_transf(from_coords, to_exprs): inv_from = [i.as_dummy() for i in from_coords] inv_to = solve( [t[0] - t[1] for t in zip(inv_from, to_exprs)], list(from_coords), dict=True)[0] inv_to = [inv_to[fc] for fc in from_coords] return Matrix(inv_from), Matrix(inv_to) @staticmethod def _fill_gaps_in_transformations(): raise NotImplementedError # TODO def coord_tuple_transform_to(self, to_sys, coords): """Transform ``coords`` to coord system ``to_sys``. See the docstring of ``CoordSystem`` for examples.""" coords = Matrix(coords) if self != to_sys: transf = self.transforms[to_sys] coords = transf[1].subs(list(zip(transf[0], coords))) return coords def jacobian(self, to_sys, coords): """Return the jacobian matrix of a transformation.""" with_dummies = self.coord_tuple_transform_to( to_sys, self._dummies).jacobian(self._dummies) return with_dummies.subs(list(zip(self._dummies, coords))) ########################################################################## # Base fields. ########################################################################## def coord_function(self, coord_index): """Return a ``BaseScalarField`` that takes a point and returns one of the coords. Takes a point and returns its coordinate in this coordinate system. See the docstring of ``CoordSystem`` for examples.""" return BaseScalarField(self, coord_index) def coord_functions(self): """Returns a list of all coordinate functions. For more details see the ``coord_function`` method of this class.""" return [self.coord_function(i) for i in range(self.dim)] def base_vector(self, coord_index): """Return a basis vector field. The basis vector field for this coordinate system. It is also an operator on scalar fields. See the docstring of ``CoordSystem`` for examples.""" return BaseVectorField(self, coord_index) def base_vectors(self): """Returns a list of all base vectors. For more details see the ``base_vector`` method of this class.""" return [self.base_vector(i) for i in range(self.dim)] def base_oneform(self, coord_index): """Return a basis 1-form field. The basis one-form field for this coordinate system. It is also an operator on vector fields. See the docstring of ``CoordSystem`` for examples.""" return Differential(self.coord_function(coord_index)) def base_oneforms(self): """Returns a list of all base oneforms. For more details see the ``base_oneform`` method of this class.""" return [self.base_oneform(i) for i in range(self.dim)] ########################################################################## # Points. ########################################################################## def point(self, coords): """Create a ``Point`` with coordinates given in this coord system. See the docstring of ``CoordSystem`` for examples.""" return Point(self, coords) def point_to_coords(self, point): """Calculate the coordinates of a point in this coord system. See the docstring of ``CoordSystem`` for examples.""" return point.coords(self) ########################################################################## # Printing. ########################################################################## def _latex(self, printer, *args): return r'\mathrm{%s}^{\mathrm{%s}}_{%s}' % ( self.name, self.patch.name, self.patch.manifold._latex(printer, *args)) class Point(Basic): """Point in a Manifold object. To define a point you must supply coordinates and a coordinate system. The usage of this object after its definition is independent of the coordinate system that was used in order to define it, however due to limitations in the simplification routines you can arrive at complicated expressions if you use inappropriate coordinate systems. Examples ======== Define the boilerplate Manifold, Patch and coordinate systems: >>> from sympy import symbols, sin, cos, pi >>> from sympy.diffgeom import ( ... Manifold, Patch, CoordSystem, Point) >>> r, theta = symbols('r, theta') >>> m = Manifold('M', 2) >>> p = Patch('P', m) >>> rect = CoordSystem('rect', p) >>> polar = CoordSystem('polar', p) >>> polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)]) Define a point using coordinates from one of the coordinate systems: >>> p = Point(polar, [r, 3*pi/4]) >>> p.coords() Matrix([ [ r], [3*pi/4]]) >>> p.coords(rect) Matrix([ [-sqrt(2)*r/2], [ sqrt(2)*r/2]]) """ def __init__(self, coord_sys, coords): super(Point, self).__init__() self._coord_sys = coord_sys self._coords = Matrix(coords) self._args = self._coord_sys, self._coords def coords(self, to_sys=None): """Coordinates of the point in a given coordinate system. If ``to_sys`` is ``None`` it returns the coordinates in the system in which the point was defined.""" if to_sys: return self._coord_sys.coord_tuple_transform_to(to_sys, self._coords) else: return self._coords @property def free_symbols(self): raise NotImplementedError return self._coords.free_symbols class BaseScalarField(AtomicExpr): """Base Scalar Field over a Manifold for a given Coordinate System. A scalar field takes a point as an argument and returns a scalar. A base scalar field of a coordinate system takes a point and returns one of the coordinates of that point in the coordinate system in question. To define a scalar field you need to choose the coordinate system and the index of the coordinate. The use of the scalar field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems. You can build complicated scalar fields by just building up SymPy expressions containing ``BaseScalarField`` instances. Examples ======== Define boilerplate Manifold, Patch and coordinate systems: >>> from sympy import symbols, sin, cos, pi, Function >>> from sympy.diffgeom import ( ... Manifold, Patch, CoordSystem, Point, BaseScalarField) >>> r0, theta0 = symbols('r0, theta0') >>> m = Manifold('M', 2) >>> p = Patch('P', m) >>> rect = CoordSystem('rect', p) >>> polar = CoordSystem('polar', p) >>> polar.connect_to(rect, [r0, theta0], [r0*cos(theta0), r0*sin(theta0)]) Point to be used as an argument for the filed: >>> point = polar.point([r0, 0]) Examples of fields: >>> fx = BaseScalarField(rect, 0) >>> fy = BaseScalarField(rect, 1) >>> (fx**2+fy**2).rcall(point) r0**2 >>> g = Function('g') >>> ftheta = BaseScalarField(polar, 1) >>> fg = g(ftheta-pi) >>> fg.rcall(point) g(-pi) """ is_commutative = True def __new__(cls, coord_sys, index): obj = AtomicExpr.__new__(cls, coord_sys, sympify(index)) obj._coord_sys = coord_sys obj._index = index return obj def __call__(self, *args): """Evaluating the field at a point or doing nothing. If the argument is a ``Point`` instance, the field is evaluated at that point. The field is returned itself if the argument is any other object. It is so in order to have working recursive calling mechanics for all fields (check the ``__call__`` method of ``Expr``). """ point = args[0] if len(args) != 1 or not isinstance(point, Point): return self coords = point.coords(self._coord_sys) # XXX Calling doit is necessary with all the Subs expressions # XXX Calling simplify is necessary with all the trig expressions return simplify(coords[self._index]).doit() # XXX Workaround for limitations on the content of args free_symbols = set() def doit(self): return self class BaseVectorField(AtomicExpr): r"""Vector Field over a Manifold. A vector field is an operator taking a scalar field and returning a directional derivative (which is also a scalar field). A base vector field is the same type of operator, however the derivation is specifically done with respect to a chosen coordinate. To define a base vector field you need to choose the coordinate system and the index of the coordinate. The use of the vector field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems. Examples ======== Use the predefined R2 manifold, setup some boilerplate. >>> from sympy import symbols, pi, Function >>> from sympy.diffgeom.rn import R2, R2_p, R2_r >>> from sympy.diffgeom import BaseVectorField >>> from sympy import pprint >>> x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0') Points to be used as arguments for the field: >>> point_p = R2_p.point([r0, theta0]) >>> point_r = R2_r.point([x0, y0]) Scalar field to operate on: >>> g = Function('g') >>> s_field = g(R2.x, R2.y) >>> s_field.rcall(point_r) g(x0, y0) >>> s_field.rcall(point_p) g(r0*cos(theta0), r0*sin(theta0)) Vector field: >>> v = BaseVectorField(R2_r, 1) >>> pprint(v(s_field)) / d \| |-----(g(x, xi_2))|| \dxi_2 /|xi_2=y >>> pprint(v(s_field).rcall(point_r).doit()) d ---(g(x0, y0)) dy0 >>> pprint(v(s_field).rcall(point_p)) / d \| |-----(g(r0*cos(theta0), xi_2))|| \dxi_2 /|xi_2=r0*sin(theta0) """ is_commutative = False def __new__(cls, coord_sys, index): index = sympify(index) obj = AtomicExpr.__new__(cls, coord_sys, index) obj._coord_sys = coord_sys obj._index = index return obj def __call__(self, scalar_field): """Apply on a scalar field. The action of a vector field on a scalar field is a directional differentiation. If the argument is not a scalar field an error is raised. """ if covariant_order(scalar_field) or contravariant_order(scalar_field): raise ValueError('Only scalar fields can be supplied as arguments to vector fields.') if scalar_field is None: return self base_scalars = list(scalar_field.atoms(BaseScalarField)) # First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r) d_var = self._coord_sys._dummy # TODO: you need a real dummy function for the next line d_funcs = [Function('_#_%s' % i)(d_var) for i, b in enumerate(base_scalars)] d_result = scalar_field.subs(list(zip(base_scalars, d_funcs))) d_result = d_result.diff(d_var) # Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y)) coords = self._coord_sys._dummies d_funcs_deriv = [f.diff(d_var) for f in d_funcs] d_funcs_deriv_sub = [] for b in base_scalars: jac = self._coord_sys.jacobian(b._coord_sys, coords) d_funcs_deriv_sub.append(jac[b._index, self._index]) d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub))) # Remove the dummies result = d_result.subs(list(zip(d_funcs, base_scalars))) result = result.subs(list(zip(coords, self._coord_sys.coord_functions()))) return result.doit() class Commutator(Expr): r"""Commutator of two vector fields. The commutator of two vector fields `v_1` and `v_2` is defined as the vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal to `v_1(v_2(f)) - v_2(v_1(f))`. Examples ======== Use the predefined R2 manifold, setup some boilerplate. >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import Commutator >>> from sympy import pprint >>> from sympy.simplify import simplify Vector fields: >>> e_x, e_y, e_r = R2.e_x, R2.e_y, R2.e_r >>> c_xy = Commutator(e_x, e_y) >>> c_xr = Commutator(e_x, e_r) >>> c_xy 0 Unfortunately, the current code is not able to compute everything: >>> c_xr Commutator(e_x, e_r) >>> simplify(c_xr(R2.y**2)) -2*y**2*cos(theta)/(x**2 + y**2) """ def __new__(cls, v1, v2): if (covariant_order(v1) or contravariant_order(v1) != 1 or covariant_order(v2) or contravariant_order(v2) != 1): raise ValueError( 'Only commutators of vector fields are supported.') if v1 == v2: return Zero() coord_sys = set().union(*[v.atoms(CoordSystem) for v in (v1, v2)]) if len(coord_sys) == 1: # Only one coordinate systems is used, hence it is easy enough to # actually evaluate the commutator. if all(isinstance(v, BaseVectorField) for v in (v1, v2)): return Zero() bases_1, bases_2 = [list(v.atoms(BaseVectorField)) for v in (v1, v2)] coeffs_1 = [v1.expand().coeff(b) for b in bases_1] coeffs_2 = [v2.expand().coeff(b) for b in bases_2] res = 0 for c1, b1 in zip(coeffs_1, bases_1): for c2, b2 in zip(coeffs_2, bases_2): res += c1*b1(c2)*b2 - c2*b2(c1)*b1 return res else: return super(Commutator, cls).__new__(cls, v1, v2) def __init__(self, v1, v2): super(Commutator, self).__init__() self._args = (v1, v2) self._v1 = v1 self._v2 = v2 def __call__(self, scalar_field): """Apply on a scalar field. If the argument is not a scalar field an error is raised. """ return self._v1(self._v2(scalar_field)) - self._v2(self._v1(scalar_field)) class Differential(Expr): r"""Return the differential (exterior derivative) of a form field. The differential of a form (i.e. the exterior derivative) has a complicated definition in the general case. The differential `df` of the 0-form `f` is defined for any vector field `v` as `df(v) = v(f)`. Examples ======== Use the predefined R2 manifold, setup some boilerplate. >>> from sympy import Function >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import Differential >>> from sympy import pprint Scalar field (0-forms): >>> g = Function('g') >>> s_field = g(R2.x, R2.y) Vector fields: >>> e_x, e_y, = R2.e_x, R2.e_y Differentials: >>> dg = Differential(s_field) >>> dg d(g(x, y)) >>> pprint(dg(e_x)) / d \| |-----(g(xi_1, y))|| \dxi_1 /|xi_1=x >>> pprint(dg(e_y)) / d \| |-----(g(x, xi_2))|| \dxi_2 /|xi_2=y Applying the exterior derivative operator twice always results in: >>> Differential(dg) 0 """ is_commutative = False def __new__(cls, form_field): if contravariant_order(form_field): raise ValueError( 'A vector field was supplied as an argument to Differential.') if isinstance(form_field, Differential): return Zero() else: return super(Differential, cls).__new__(cls, form_field) def __init__(self, form_field): super(Differential, self).__init__() self._form_field = form_field self._args = (self._form_field, ) def __call__(self, *vector_fields): """Apply on a list of vector_fields. If the number of vector fields supplied is not equal to 1 + the order of the form field inside the differential the result is undefined. For 1-forms (i.e. differentials of scalar fields) the evaluation is done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector field, the differential is returned unchanged. This is done in order to permit partial contractions for higher forms. In the general case the evaluation is done by applying the form field inside the differential on a list with one less elements than the number of elements in the original list. Lowering the number of vector fields is achieved through replacing each pair of fields by their commutator. If the arguments are not vectors or ``None``s an error is raised. """ if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None for a in vector_fields): raise ValueError('The arguments supplied to Differential should be vector fields or Nones.') k = len(vector_fields) if k == 1: if vector_fields[0]: return vector_fields[0].rcall(self._form_field) return self else: # For higher form it is more complicated: # Invariant formula: # https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula # df(v1, ... vn) = +/- vi(f(v1..no i..vn)) # +/- f([vi,vj],v1..no i, no j..vn) f = self._form_field v = vector_fields ret = 0 for i in range(k): t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:])) ret += (-1)**i*t for j in range(i + 1, k): c = Commutator(v[i], v[j]) if c: # TODO this is ugly - the Commutator can be Zero and # this causes the next line to fail t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:]) ret += (-1)**(i + j)*t return ret class TensorProduct(Expr): """Tensor product of forms. The tensor product permits the creation of multilinear functionals (i.e. higher order tensors) out of lower order fields (e.g. 1-forms and vector fields). However, the higher tensors thus created lack the interesting features provided by the other type of product, the wedge product, namely they are not antisymmetric and hence are not form fields. Examples ======== Use the predefined R2 manifold, setup some boilerplate. >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import TensorProduct >>> TensorProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) 1 >>> TensorProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x) 0 >>> TensorProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y) x**2 >>> TensorProduct(R2.e_x, R2.e_y)(R2.x**2, R2.y**2) 4*x*y >>> TensorProduct(R2.e_y, R2.dx)(R2.y) dx You can nest tensor products. >>> tp1 = TensorProduct(R2.dx, R2.dy) >>> TensorProduct(tp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x) 1 You can make partial contraction for instance when 'raising an index'. Putting ``None`` in the second argument of ``rcall`` means that the respective position in the tensor product is left as it is. >>> TP = TensorProduct >>> metric = TP(R2.dx, R2.dx) + 3*TP(R2.dy, R2.dy) >>> metric.rcall(R2.e_y, None) 3*dy Or automatically pad the args with ``None`` without specifying them. >>> metric.rcall(R2.e_y) 3*dy """ def __new__(cls, *args): scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0]) multifields = [m for m in args if covariant_order(m) + contravariant_order(m)] if multifields: if len(multifields) == 1: return scalar*multifields[0] return scalar*super(TensorProduct, cls).__new__(cls, *multifields) else: return scalar def __init__(self, *args): super(TensorProduct, self).__init__() self._args = args def __call__(self, *fields): """Apply on a list of fields. If the number of input fields supplied is not equal to the order of the tensor product field, the list of arguments is padded with ``None``'s. The list of arguments is divided in sublists depending on the order of the forms inside the tensor product. The sublists are provided as arguments to these forms and the resulting expressions are given to the constructor of ``TensorProduct``. """ tot_order = covariant_order(self) + contravariant_order(self) tot_args = len(fields) if tot_args != tot_order: fields = list(fields) + [None]*(tot_order - tot_args) orders = [covariant_order(f) + contravariant_order(f) for f in self._args] indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)] fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])] multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)] return TensorProduct(*multipliers) class WedgeProduct(TensorProduct): """Wedge product of forms. In the context of integration only completely antisymmetric forms make sense. The wedge product permits the creation of such forms. Examples ======== Use the predefined R2 manifold, setup some boilerplate. >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import WedgeProduct >>> WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) 1 >>> WedgeProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x) -1 >>> WedgeProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y) x**2 >>> WedgeProduct(R2.e_x,R2.e_y)(R2.y,None) -e_x You can nest wedge products. >>> wp1 = WedgeProduct(R2.dx, R2.dy) >>> WedgeProduct(wp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x) 0 """ # TODO the calculation of signatures is slow # TODO you do not need all these permutations (neither the prefactor) def __call__(self, *fields): """Apply on a list of vector_fields. The expression is rewritten internally in terms of tensor products and evaluated.""" orders = (covariant_order(e) + contravariant_order(e) for e in self.args) mul = 1/Mul(*(factorial(o) for o in orders)) perms = permutations(fields) perms_par = (Permutation( p).signature() for p in permutations(list(range(len(fields))))) tensor_prod = TensorProduct(*self.args) return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)]) class LieDerivative(Expr): """Lie derivative with respect to a vector field. The transport operator that defines the Lie derivative is the pushforward of the field to be derived along the integral curve of the field with respect to which one derives. Examples ======== >>> from sympy.diffgeom import (LieDerivative, TensorProduct) >>> from sympy.diffgeom.rn import R2 >>> LieDerivative(R2.e_x, R2.y) 0 >>> LieDerivative(R2.e_x, R2.x) 1 >>> LieDerivative(R2.e_x, R2.e_x) 0 The Lie derivative of a tensor field by another tensor field is equal to their commutator: >>> LieDerivative(R2.e_x, R2.e_r) Commutator(e_x, e_r) >>> LieDerivative(R2.e_x + R2.e_y, R2.x) 1 >>> tp = TensorProduct(R2.dx, R2.dy) >>> LieDerivative(R2.e_x, tp) LieDerivative(e_x, TensorProduct(dx, dy)) >>> LieDerivative(R2.e_x, tp) LieDerivative(e_x, TensorProduct(dx, dy)) """ def __new__(cls, v_field, expr): expr_form_ord = covariant_order(expr) if contravariant_order(v_field) != 1 or covariant_order(v_field): raise ValueError('Lie derivatives are defined only with respect to' ' vector fields. The supplied argument was not a ' 'vector field.') if expr_form_ord > 0: return super(LieDerivative, cls).__new__(cls, v_field, expr) if expr.atoms(BaseVectorField): return Commutator(v_field, expr) else: return v_field.rcall(expr) def __init__(self, v_field, expr): super(LieDerivative, self).__init__() self._v_field = v_field self._expr = expr self._args = (self._v_field, self._expr) def __call__(self, *args): v = self._v_field expr = self._expr lead_term = v(expr(*args)) rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:]) for i in range(len(args))]) return lead_term - rest class BaseCovarDerivativeOp(Expr): """Covariant derivative operator with respect to a base vector. Examples ======== >>> from sympy.diffgeom.rn import R2, R2_r >>> from sympy.diffgeom import BaseCovarDerivativeOp >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) >>> ch [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch) >>> cvd(R2.x) 1 >>> cvd(R2.x*R2.e_x) e_x """ def __init__(self, coord_sys, index, christoffel): super(BaseCovarDerivativeOp, self).__init__() self._coord_sys = coord_sys self._index = index self._christoffel = christoffel self._args = self._coord_sys, self._index, self._christoffel def __call__(self, field): """Apply on a scalar field. The action of a vector field on a scalar field is a directional differentiation. If the argument is not a scalar field the behaviour is undefined. """ if covariant_order(field) != 0: raise NotImplementedError() field = vectors_in_basis(field, self._coord_sys) wrt_vector = self._coord_sys.base_vector(self._index) wrt_scalar = self._coord_sys.coord_function(self._index) vectors = list(field.atoms(BaseVectorField)) # First step: replace all vectors with something susceptible to # derivation and do the derivation # TODO: you need a real dummy function for the next line d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i, b in enumerate(vectors)] d_result = field.subs(list(zip(vectors, d_funcs))) d_result = wrt_vector(d_result) # Second step: backsubstitute the vectors in d_result = d_result.subs(list(zip(d_funcs, vectors))) # Third step: evaluate the derivatives of the vectors derivs = [] for v in vectors: d = Add(*[(self._christoffel[k, wrt_vector._index, v._index] *v._coord_sys.base_vector(k)) for k in range(v._coord_sys.dim)]) derivs.append(d) to_subs = [wrt_vector(d) for d in d_funcs] result = d_result.subs(list(zip(to_subs, derivs))) # Remove the dummies result = result.subs(list(zip(d_funcs, vectors))) return result.doit() class CovarDerivativeOp(Expr): """Covariant derivative operator. Examples ======== >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import CovarDerivativeOp >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) >>> ch [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> cvd = CovarDerivativeOp(R2.x*R2.e_x, ch) >>> cvd(R2.x) x >>> cvd(R2.x*R2.e_x) x*e_x """ def __init__(self, wrt, christoffel): super(CovarDerivativeOp, self).__init__() if len(set(v._coord_sys for v in wrt.atoms(BaseVectorField))) > 1: raise NotImplementedError() if contravariant_order(wrt) != 1 or covariant_order(wrt): raise ValueError('Covariant derivatives are defined only with ' 'respect to vector fields. The supplied argument ' 'was not a vector field.') self._wrt = wrt self._christoffel = christoffel self._args = self._wrt, self._christoffel def __call__(self, field): vectors = list(self._wrt.atoms(BaseVectorField)) base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel) for v in vectors] return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field) def _latex(self, printer, *args): return r'\mathbb{\nabla}_{%s}' % printer._print(self._wrt) ############################################################################### # Integral curves on vector fields ############################################################################### def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False): r"""Return the series expansion for an integral curve of the field. Integral curve is a function `\gamma` taking a parameter in `R` to a point in the manifold. It verifies the equation: `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)` where the given ``vector_field`` is denoted as `V`. This holds for any value `t` for the parameter and any scalar field `f`. This equation can also be decomposed of a basis of coordinate functions `V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i` This function returns a series expansion of `\gamma(t)` in terms of the coordinate system ``coord_sys``. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold). See Also ======== intcurve_diffequ Parameters ========== vector_field the vector field for which an integral curve will be given param the argument of the function `\gamma` from R to the curve start_point the point which corresponds to `\gamma(0)` n the order to which to expand coord_sys the coordinate system in which to expand coeffs (default False) - if True return a list of elements of the expansion Examples ======== Use the predefined R2 manifold: >>> from sympy.abc import t, x, y >>> from sympy.diffgeom.rn import R2, R2_p, R2_r >>> from sympy.diffgeom import intcurve_series Specify a starting point and a vector field: >>> start_point = R2_r.point([x, y]) >>> vector_field = R2_r.e_x Calculate the series: >>> intcurve_series(vector_field, t, start_point, n=3) Matrix([ [t + x], [ y]]) Or get the elements of the expansion in a list: >>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True) >>> series[0] Matrix([ [x], [y]]) >>> series[1] Matrix([ [t], [0]]) >>> series[2] Matrix([ [0], [0]]) The series in the polar coordinate system: >>> series = intcurve_series(vector_field, t, start_point, ... n=3, coord_sys=R2_p, coeffs=True) >>> series[0] Matrix([ [sqrt(x**2 + y**2)], [ atan2(y, x)]]) >>> series[1] Matrix([ [t*x/sqrt(x**2 + y**2)], [ -t*y/(x**2 + y**2)]]) >>> series[2] Matrix([ [t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2], [ t**2*x*y/(x**2 + y**2)**2]]) """ if contravariant_order(vector_field) != 1 or covariant_order(vector_field): raise ValueError('The supplied field was not a vector field.') def iter_vfield(scalar_field, i): """Return ``vector_field`` called `i` times on ``scalar_field``.""" return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field) def taylor_terms_per_coord(coord_function): """Return the series for one of the coordinates.""" return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i) for i in range(n)] coord_sys = coord_sys if coord_sys else start_point._coord_sys coord_functions = coord_sys.coord_functions() taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions] if coeffs: return [Matrix(t) for t in zip(*taylor_terms)] else: return Matrix([sum(c) for c in taylor_terms]) def intcurve_diffequ(vector_field, param, start_point, coord_sys=None): r"""Return the differential equation for an integral curve of the field. Integral curve is a function `\gamma` taking a parameter in `R` to a point in the manifold. It verifies the equation: `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)` where the given ``vector_field`` is denoted as `V`. This holds for any value `t` for the parameter and any scalar field `f`. This function returns the differential equation of `\gamma(t)` in terms of the coordinate system ``coord_sys``. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold). See Also ======== intcurve_series Parameters ========== vector_field the vector field for which an integral curve will be given param the argument of the function `\gamma` from R to the curve start_point the point which corresponds to `\gamma(0)` coord_sys the coordinate system in which to give the equations Returns ======= a tuple of (equations, initial conditions) Examples ======== Use the predefined R2 manifold: >>> from sympy.abc import t >>> from sympy.diffgeom.rn import R2, R2_p, R2_r >>> from sympy.diffgeom import intcurve_diffequ Specify a starting point and a vector field: >>> start_point = R2_r.point([0, 1]) >>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y Get the equation: >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point) >>> equations [f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)] >>> init_cond [f_0(0), f_1(0) - 1] The series in the polar coordinate system: >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) >>> equations [Derivative(f_0(t), t), Derivative(f_1(t), t) - 1] >>> init_cond [f_0(0) - 1, f_1(0) - pi/2] """ if contravariant_order(vector_field) != 1 or covariant_order(vector_field): raise ValueError('The supplied field was not a vector field.') coord_sys = coord_sys if coord_sys else start_point._coord_sys gammas = [Function('f_%d' % i)(param) for i in range( start_point._coord_sys.dim)] arbitrary_p = Point(coord_sys, gammas) coord_functions = coord_sys.coord_functions() equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p)) for cf in coord_functions] init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point)) for cf in coord_functions] return equations, init_cond ############################################################################### # Helpers ############################################################################### def dummyfy(args, exprs): # TODO Is this a good idea? d_args = Matrix([s.as_dummy() for s in args]) reps = dict(zip(args, d_args)) d_exprs = Matrix([sympify(expr).subs(reps) for expr in exprs]) return d_args, d_exprs ############################################################################### # Helpers ############################################################################### def contravariant_order(expr, _strict=False): """Return the contravariant order of an expression. Examples ======== >>> from sympy.diffgeom import contravariant_order >>> from sympy.diffgeom.rn import R2 >>> from sympy.abc import a >>> contravariant_order(a) 0 >>> contravariant_order(a*R2.x + 2) 0 >>> contravariant_order(a*R2.x*R2.e_y + R2.e_x) 1 """ # TODO move some of this to class methods. # TODO rewrite using the .as_blah_blah methods if isinstance(expr, Add): orders = [contravariant_order(e) for e in expr.args] if len(set(orders)) != 1: raise ValueError('Misformed expression containing contravariant fields of varying order.') return orders[0] elif isinstance(expr, Mul): orders = [contravariant_order(e) for e in expr.args] not_zero = [o for o in orders if o != 0] if len(not_zero) > 1: raise ValueError('Misformed expression containing multiplication between vectors.') return 0 if not not_zero else not_zero[0] elif isinstance(expr, Pow): if covariant_order(expr.base) or covariant_order(expr.exp): raise ValueError( 'Misformed expression containing a power of a vector.') return 0 elif isinstance(expr, BaseVectorField): return 1 elif isinstance(expr, TensorProduct): return sum(contravariant_order(a) for a in expr.args) elif not _strict or expr.atoms(BaseScalarField): return 0 else: # If it does not contain anything related to the diffgeom module and it is _strict return -1 def covariant_order(expr, _strict=False): """Return the covariant order of an expression. Examples ======== >>> from sympy.diffgeom import covariant_order >>> from sympy.diffgeom.rn import R2 >>> from sympy.abc import a >>> covariant_order(a) 0 >>> covariant_order(a*R2.x + 2) 0 >>> covariant_order(a*R2.x*R2.dy + R2.dx) 1 """ # TODO move some of this to class methods. # TODO rewrite using the .as_blah_blah methods if isinstance(expr, Add): orders = [covariant_order(e) for e in expr.args] if len(set(orders)) != 1: raise ValueError('Misformed expression containing form fields of varying order.') return orders[0] elif isinstance(expr, Mul): orders = [covariant_order(e) for e in expr.args] not_zero = [o for o in orders if o != 0] if len(not_zero) > 1: raise ValueError('Misformed expression containing multiplication between forms.') return 0 if not not_zero else not_zero[0] elif isinstance(expr, Pow): if covariant_order(expr.base) or covariant_order(expr.exp): raise ValueError( 'Misformed expression containing a power of a form.') return 0 elif isinstance(expr, Differential): return covariant_order(*expr.args) + 1 elif isinstance(expr, TensorProduct): return sum(covariant_order(a) for a in expr.args) elif not _strict or expr.atoms(BaseScalarField): return 0 else: # If it does not contain anything related to the diffgeom module and it is _strict return -1 ############################################################################### # Coordinate transformation functions ############################################################################### def vectors_in_basis(expr, to_sys): """Transform all base vectors in base vectors of a specified coord basis. While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system. Examples ======== >>> from sympy.diffgeom import vectors_in_basis >>> from sympy.diffgeom.rn import R2_r, R2_p >>> vectors_in_basis(R2_r.e_x, R2_p) x*e_r/sqrt(x**2 + y**2) - y*e_theta/(x**2 + y**2) >>> vectors_in_basis(R2_p.e_r, R2_r) sin(theta)*e_y + cos(theta)*e_x """ vectors = list(expr.atoms(BaseVectorField)) new_vectors = [] for v in vectors: cs = v._coord_sys jac = cs.jacobian(to_sys, cs.coord_functions()) new = (jac.T*Matrix(to_sys.base_vectors()))[v._index] new_vectors.append(new) return expr.subs(list(zip(vectors, new_vectors))) ############################################################################### # Coordinate-dependent functions ############################################################################### def twoform_to_matrix(expr): """Return the matrix representing the twoform. For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`, where `e_i` is the i-th base vector field for the coordinate system in which the expression of `w` is given. Examples ======== >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import twoform_to_matrix, TensorProduct >>> TP = TensorProduct >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) Matrix([ [1, 0], [0, 1]]) >>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) Matrix([ [x, 0], [0, 1]]) >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2) Matrix([ [ 1, 0], [-1/2, 1]]) """ if covariant_order(expr) != 2 or contravariant_order(expr): raise ValueError('The input expression is not a two-form.') coord_sys = expr.atoms(CoordSystem) if len(coord_sys) != 1: raise ValueError('The input expression concerns more than one ' 'coordinate systems, hence there is no unambiguous ' 'way to choose a coordinate system for the matrix.') coord_sys = coord_sys.pop() vectors = coord_sys.base_vectors() expr = expr.expand() matrix_content = [[expr.rcall(v1, v2) for v1 in vectors] for v2 in vectors] return Matrix(matrix_content) def metric_to_Christoffel_1st(expr): """Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric. Examples ======== >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct >>> TP = TensorProduct >>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]] """ matrix = twoform_to_matrix(expr) if not matrix.is_symmetric(): raise ValueError( 'The two-form representing the metric is not symmetric.') coord_sys = expr.atoms(CoordSystem).pop() deriv_matrices = [matrix.applyfunc(lambda a: d(a)) for d in coord_sys.base_vectors()] indices = list(range(coord_sys.dim)) christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2 for k in indices] for j in indices] for i in indices] return ImmutableDenseNDimArray(christoffel) def metric_to_Christoffel_2nd(expr): """Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of second kind that represents the Levi-Civita connection for the given metric. Examples ======== >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]] """ ch_1st = metric_to_Christoffel_1st(expr) coord_sys = expr.atoms(CoordSystem).pop() indices = list(range(coord_sys.dim)) # XXX workaround, inverting a matrix does not work if it contains non # symbols #matrix = twoform_to_matrix(expr).inv() matrix = twoform_to_matrix(expr) s_fields = set() for e in matrix: s_fields.update(e.atoms(BaseScalarField)) s_fields = list(s_fields) dums = coord_sys._dummies matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields))) # XXX end of workaround christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices]) for k in indices] for j in indices] for i in indices] return ImmutableDenseNDimArray(christoffel) def metric_to_Riemann_components(expr): """Return the components of the Riemann tensor expressed in a given basis. Given a metric it calculates the components of the Riemann tensor in the canonical basis of the coordinate system in which the metric expression is given. Examples ======== >>> from sympy import exp >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct >>> TP = TensorProduct >>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]] >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \ R2.r**2*TP(R2.dtheta, R2.dtheta) >>> non_trivial_metric r**2*TensorProduct(dtheta, dtheta) + exp(2*r)*TensorProduct(dr, dr) >>> riemann = metric_to_Riemann_components(non_trivial_metric) >>> riemann[0, :, :, :] [[[0, 0], [0, 0]], [[0, r*exp(-2*r)], [-r*exp(-2*r), 0]]] >>> riemann[1, :, :, :] [[[0, -1/r], [1/r, 0]], [[0, 0], [0, 0]]] """ ch_2nd = metric_to_Christoffel_2nd(expr) coord_sys = expr.atoms(CoordSystem).pop() indices = list(range(coord_sys.dim)) deriv_ch = [[[[d(ch_2nd[i, j, k]) for d in coord_sys.base_vectors()] for k in indices] for j in indices] for i in indices] riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu] for nu in indices] for mu in indices] for sig in indices] for rho in indices] riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices]) for nu in indices] for mu in indices] for sig in indices] for rho in indices] riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu] for nu in indices] for mu in indices] for sig in indices] for rho in indices] return ImmutableDenseNDimArray(riemann) def metric_to_Ricci_components(expr): """Return the components of the Ricci tensor expressed in a given basis. Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is given. Examples ======== >>> from sympy import exp >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct >>> TP = TensorProduct >>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[0, 0], [0, 0]] >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \ R2.r**2*TP(R2.dtheta, R2.dtheta) >>> non_trivial_metric r**2*TensorProduct(dtheta, dtheta) + exp(2*r)*TensorProduct(dr, dr) >>> metric_to_Ricci_components(non_trivial_metric) [[1/r, 0], [0, r*exp(-2*r)]] """ riemann = metric_to_Riemann_components(expr) coord_sys = expr.atoms(CoordSystem).pop() indices = list(range(coord_sys.dim)) ricci = [[Add(*[riemann[k, i, k, j] for k in indices]) for j in indices] for i in indices] return ImmutableDenseNDimArray(ricci)
27a0a854cc92c827b9299f814d4992e4282226fadea06bc4f2916d8d0c663b29
""" AST nodes specific to the C family of languages """ from sympy.codegen.ast import Attribute, Declaration, Node, String, Token, Type, none, FunctionCall from sympy.core.basic import Basic from sympy.core.compatibility import string_types from sympy.core.containers import Tuple from sympy.core.sympify import sympify void = Type('void') restrict = Attribute('restrict') # guarantees no pointer aliasing volatile = Attribute('volatile') static = Attribute('static') def alignof(arg): """ Generate of FunctionCall instance for calling 'alignof' """ return FunctionCall('alignof', [String(arg) if isinstance(arg, string_types) else arg]) def sizeof(arg): """ Generate of FunctionCall instance for calling 'sizeof' Examples ======== >>> from sympy.codegen.ast import real >>> from sympy.codegen.cnodes import sizeof >>> from sympy.printing.ccode import ccode >>> ccode(sizeof(real)) 'sizeof(double)' """ return FunctionCall('sizeof', [String(arg) if isinstance(arg, string_types) else arg]) class CommaOperator(Basic): """ Represents the comma operator in C """ def __new__(cls, *args): return Basic.__new__(cls, *[sympify(arg) for arg in args]) class Label(String): """ Label for use with e.g. goto statement. Examples ======== >>> from sympy.codegen.cnodes import Label >>> from sympy.printing.ccode import ccode >>> print(ccode(Label('foo'))) foo: """ class goto(Token): """ Represents goto in C """ __slots__ = ['label'] _construct_label = Label class PreDecrement(Basic): """ Represents the pre-decrement operator Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cnodes import PreDecrement >>> from sympy.printing.ccode import ccode >>> ccode(PreDecrement(x)) '--(x)' """ nargs = 1 class PostDecrement(Basic): """ Represents the post-decrement operator """ nargs = 1 class PreIncrement(Basic): """ Represents the pre-increment operator """ nargs = 1 class PostIncrement(Basic): """ Represents the post-increment operator """ nargs = 1 class struct(Node): """ Represents a struct in C """ __slots__ = ['name', 'declarations'] defaults = {'name': none} _construct_name = String @classmethod def _construct_declarations(cls, args): return Tuple(*[Declaration(arg) for arg in args]) class union(struct): """ Represents a union in C """
f51987be77186bc60e796bebd53ba16d0c450b076a8c46f1d97456d08a8b394b
# -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function) import math from sympy import Interval from sympy.calculus.singularities import is_increasing, is_decreasing from sympy.codegen.rewriting import Optimization from sympy.core.function import UndefinedFunction """ This module collects classes useful for approimate rewriting of expressions. This can be beneficial when generating numeric code for which performance is of greater importance than precision (e.g. for preconditioners used in iterative methods). """ class SumApprox(Optimization): """ Approximates sum by neglecting small terms If terms are expressions which can be determined to be monotonic, then bounds for those expressions are added. Parameters ========== bounds : dict Mapping expressions to length 2 tuple of bounds (low, high). reltol : number Threshold for when to ignore a term. Taken relative to the largest lower bound among bounds. Examples ======== >>> from sympy import exp >>> from sympy.abc import x, y, z >>> from sympy.codegen.rewriting import optimize >>> from sympy.codegen.approximations import SumApprox >>> bounds = {x: (-1, 1), y: (1000, 2000), z: (-10, 3)} >>> sum_approx3 = SumApprox(bounds, reltol=1e-3) >>> sum_approx2 = SumApprox(bounds, reltol=1e-2) >>> sum_approx1 = SumApprox(bounds, reltol=1e-1) >>> expr = 3*(x + y + exp(z)) >>> optimize(expr, [sum_approx3]) 3*(x + y + exp(z)) >>> optimize(expr, [sum_approx2]) 3*y + 3*exp(z) >>> optimize(expr, [sum_approx1]) 3*y """ def __init__(self, bounds, reltol, **kwargs): super(SumApprox, self).__init__(**kwargs) self.bounds = bounds self.reltol = reltol def __call__(self, expr): return expr.factor().replace(self.query, lambda arg: self.value(arg)) def query(self, expr): return expr.is_Add def value(self, add): for term in add.args: if term.is_number or term in self.bounds or len(term.free_symbols) != 1: continue fs, = term.free_symbols if fs not in self.bounds: continue intrvl = Interval(*self.bounds[fs]) if is_increasing(term, intrvl, fs): self.bounds[term] = ( term.subs({fs: self.bounds[fs][0]}), term.subs({fs: self.bounds[fs][1]}) ) elif is_decreasing(term, intrvl, fs): self.bounds[term] = ( term.subs({fs: self.bounds[fs][1]}), term.subs({fs: self.bounds[fs][0]}) ) else: return add if all(term.is_number or term in self.bounds for term in add.args): bounds = [(term, term) if term.is_number else self.bounds[term] for term in add.args] largest_abs_guarantee = 0 for lo, hi in bounds: if lo <= 0 <= hi: continue largest_abs_guarantee = max(largest_abs_guarantee, min(abs(lo), abs(hi))) new_terms = [] for term, (lo, hi) in zip(add.args, bounds): if max(abs(lo), abs(hi)) >= largest_abs_guarantee*self.reltol: new_terms.append(term) return add.func(*new_terms) else: return add class SeriesApprox(Optimization): """ Approximates functions by expanding them as a series Parameters ========== bounds : dict Mapping expressions to length 2 tuple of bounds (low, high). reltol : number Threshold for when to ignore a term. Taken relative to the largest lower bound among bounds. max_order : int Largest order to include in series expansion n_point_checks : int (even) The validity of an expansion (with respect to reltol) is checked at discrete points (linearly spaced over the bounds of the variable). The number of points used in this numerical check is given by this number. Examples ======== >>> from sympy import sin, pi >>> from sympy.abc import x, y >>> from sympy.codegen.rewriting import optimize >>> from sympy.codegen.approximations import SeriesApprox >>> bounds = {x: (-.1, .1), y: (pi-1, pi+1)} >>> series_approx2 = SeriesApprox(bounds, reltol=1e-2) >>> series_approx3 = SeriesApprox(bounds, reltol=1e-3) >>> series_approx8 = SeriesApprox(bounds, reltol=1e-8) >>> expr = sin(x)*sin(y) >>> optimize(expr, [series_approx2]) x*(-y + (y - pi)**3/6 + pi) >>> optimize(expr, [series_approx3]) (-x**3/6 + x)*sin(y) >>> optimize(expr, [series_approx8]) sin(x)*sin(y) """ def __init__(self, bounds, reltol, max_order=4, n_point_checks=4, **kwargs): super(SeriesApprox, self).__init__(**kwargs) self.bounds = bounds self.reltol = reltol self.max_order = max_order if n_point_checks % 2 == 1: raise ValueError("Checking the solution at expansion point is not helpful") self.n_point_checks = n_point_checks self._prec = math.ceil(-math.log10(self.reltol)) def __call__(self, expr): return expr.factor().replace(self.query, lambda arg: self.value(arg)) def query(self, expr): return (expr.is_Function and not isinstance(expr, UndefinedFunction) and len(expr.args) == 1) def value(self, fexpr): free_symbols = fexpr.free_symbols if len(free_symbols) != 1: return fexpr symb, = free_symbols if symb not in self.bounds: return fexpr lo, hi = self.bounds[symb] x0 = (lo + hi)/2 cheapest = None for n in range(self.max_order+1, 0, -1): fseri = fexpr.series(symb, x0=x0, n=n).removeO() n_ok = True for idx in range(self.n_point_checks): x = lo + idx*(hi - lo)/(self.n_point_checks - 1) val = fseri.xreplace({symb: x}) ref = fexpr.xreplace({symb: x}) if abs((1 - val/ref).evalf(self._prec)) > self.reltol: n_ok = False break if n_ok: cheapest = fseri else: break if cheapest is None: return fexpr else: return cheapest
1dc7fd556043dfcef675209860e1bda803fe7a7e41347fb8296e72485e7b0821
""" AST nodes specific to Fortran. The functions defined in this module allows the user to express functions such as ``dsign`` as a SymPy function for symbolic manipulation. """ from sympy.codegen.ast import ( Attribute, CodeBlock, FunctionCall, Node, none, String, Token, _mk_Tuple, Variable ) from sympy.core.basic import Basic from sympy.core.compatibility import string_types from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.numbers import Float, Integer from sympy.core.sympify import sympify from sympy.logic import true, false from sympy.utilities.iterables import iterable pure = Attribute('pure') elemental = Attribute('elemental') # (all elemental procedures are also pure) intent_in = Attribute('intent_in') intent_out = Attribute('intent_out') intent_inout = Attribute('intent_inout') allocatable = Attribute('allocatable') class Program(Token): """ Represents a 'program' block in Fortran Examples ======== >>> from sympy.codegen.ast import Print >>> from sympy.codegen.fnodes import Program >>> prog = Program('myprogram', [Print([42])]) >>> from sympy.printing import fcode >>> print(fcode(prog, source_format='free')) program myprogram print *, 42 end program """ __slots__ = ['name', 'body'] _construct_name = String _construct_body = staticmethod(lambda body: CodeBlock(*body)) class use_rename(Token): """ Represents a renaming in a use statement in Fortran Examples ======== >>> from sympy.codegen.fnodes import use_rename, use >>> from sympy.printing import fcode >>> ren = use_rename("thingy", "convolution2d") >>> print(fcode(ren, source_format='free')) thingy => convolution2d >>> full = use('signallib', only=['snr', ren]) >>> print(fcode(full, source_format='free')) use signallib, only: snr, thingy => convolution2d """ __slots__ = ['local', 'original'] _construct_local = String _construct_original = String def _name(arg): if hasattr(arg, 'name'): return arg.name else: return String(arg) class use(Token): """ Represents a use statement in Fortran Examples ======== >>> from sympy.codegen.fnodes import use >>> from sympy.printing import fcode >>> fcode(use('signallib'), source_format='free') 'use signallib' >>> fcode(use('signallib', [('metric', 'snr')]), source_format='free') 'use signallib, metric => snr' >>> fcode(use('signallib', only=['snr', 'convolution2d']), source_format='free') 'use signallib, only: snr, convolution2d' """ __slots__ = ['namespace', 'rename', 'only'] defaults = {'rename': none, 'only': none} _construct_namespace = staticmethod(_name) _construct_rename = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else use_rename(*arg) for arg in args])) _construct_only = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else _name(arg) for arg in args])) class Module(Token): """ Represents a module in Fortran Examples ======== >>> from sympy.codegen.fnodes import Module >>> from sympy.printing import fcode >>> print(fcode(Module('signallib', ['implicit none'], []), source_format='free')) module signallib implicit none <BLANKLINE> contains <BLANKLINE> <BLANKLINE> end module """ __slots__ = ['name', 'declarations', 'definitions'] defaults = {'declarations': Tuple()} _construct_name = String _construct_declarations = staticmethod(lambda arg: CodeBlock(*arg)) _construct_definitions = staticmethod(lambda arg: CodeBlock(*arg)) class Subroutine(Node): """ Represents a subroutine in Fortran Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import Print >>> from sympy.codegen.fnodes import Subroutine >>> from sympy.printing import fcode >>> x, y = symbols('x y', real=True) >>> sub = Subroutine('mysub', [x, y], [Print([x**2 + y**2, x*y])]) >>> print(fcode(sub, source_format='free', standard=2003)) subroutine mysub(x, y) real*8 :: x real*8 :: y print *, x**2 + y**2, x*y end subroutine """ __slots__ = ['name', 'parameters', 'body', 'attrs'] _construct_name = String _construct_parameters = staticmethod(lambda params: Tuple(*map(Variable.deduced, params))) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class SubroutineCall(Token): """ Represents a call to a subroutine in Fortran Examples ======== >>> from sympy.codegen.fnodes import SubroutineCall >>> from sympy.printing import fcode >>> fcode(SubroutineCall('mysub', 'x y'.split())) ' call mysub(x, y)' """ __slots__ = ['name', 'subroutine_args'] _construct_name = staticmethod(_name) _construct_subroutine_args = staticmethod(_mk_Tuple) class Do(Token): """ Represents a Do loop in in Fortran Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import aug_assign, Print >>> from sympy.codegen.fnodes import Do >>> from sympy.printing import fcode >>> i, n = symbols('i n', integer=True) >>> r = symbols('r', real=True) >>> body = [aug_assign(r, '+', 1/i), Print([i, r])] >>> do1 = Do(body, i, 1, n) >>> print(fcode(do1, source_format='free')) do i = 1, n r = r + 1d0/i print *, i, r end do >>> do2 = Do(body, i, 1, n, 2) >>> print(fcode(do2, source_format='free')) do i = 1, n, 2 r = r + 1d0/i print *, i, r end do """ __slots__ = ['body', 'counter', 'first', 'last', 'step', 'concurrent'] defaults = {'step': Integer(1), 'concurrent': false} _construct_body = staticmethod(lambda body: CodeBlock(*body)) _construct_counter = staticmethod(sympify) _construct_first = staticmethod(sympify) _construct_last = staticmethod(sympify) _construct_step = staticmethod(sympify) _construct_concurrent = staticmethod(lambda arg: true if arg else false) class ArrayConstructor(Token): """ Represents an array constructor Examples ======== >>> from sympy.printing import fcode >>> from sympy.codegen.fnodes import ArrayConstructor >>> ac = ArrayConstructor([1, 2, 3]) >>> fcode(ac, standard=95, source_format='free') '(/1, 2, 3/)' >>> fcode(ac, standard=2003, source_format='free') '[1, 2, 3]' """ __slots__ = ['elements'] _construct_elements = staticmethod(_mk_Tuple) class ImpliedDoLoop(Token): """ Represents an implied do loop in Fortran Examples ======== >>> from sympy import Symbol, fcode >>> from sympy.codegen.fnodes import ImpliedDoLoop, ArrayConstructor >>> i = Symbol('i', integer=True) >>> idl = ImpliedDoLoop(i**3, i, -3, 3, 2) # -27, -1, 1, 27 >>> ac = ArrayConstructor([-28, idl, 28]) # -28, -27, -1, 1, 27, 28 >>> fcode(ac, standard=2003, source_format='free') '[-28, (i**3, i = -3, 3, 2), 28]' """ __slots__ = ['expr', 'counter', 'first', 'last', 'step'] defaults = {'step': Integer(1)} _construct_expr = staticmethod(sympify) _construct_counter = staticmethod(sympify) _construct_first = staticmethod(sympify) _construct_last = staticmethod(sympify) _construct_step = staticmethod(sympify) class Extent(Basic): """ Represents a dimension extent. Examples ======== >>> from sympy.codegen.fnodes import Extent >>> e = Extent(-3, 3) # -3, -2, -1, 0, 1, 2, 3 >>> from sympy.printing import fcode >>> fcode(e, source_format='free') '-3:3' >>> from sympy.codegen.ast import Variable, real >>> from sympy.codegen.fnodes import dimension, intent_out >>> dim = dimension(e, e) >>> arr = Variable('x', real, attrs=[dim, intent_out]) >>> fcode(arr.as_Declaration(), source_format='free', standard=2003) 'real*8, dimension(-3:3, -3:3), intent(out) :: x' """ def __new__(cls, *args): if len(args) == 2: low, high = args return Basic.__new__(cls, sympify(low), sympify(high)) elif len(args) == 0 or (len(args) == 1 and args[0] in (':', None)): return Basic.__new__(cls) # assumed shape else: raise ValueError("Expected 0 or 2 args (or one argument == None or ':')") def _sympystr(self, printer): if len(self.args) == 0: return ':' return '%d:%d' % self.args assumed_extent = Extent() # or Extent(':'), Extent(None) def dimension(*args): """ Creates a 'dimension' Attribute with (up to 7) extents. Examples ======== >>> from sympy.printing import fcode >>> from sympy.codegen.fnodes import dimension, intent_in >>> dim = dimension('2', ':') # 2 rows, runtime determined number of columns >>> from sympy.codegen.ast import Variable, integer >>> arr = Variable('a', integer, attrs=[dim, intent_in]) >>> fcode(arr.as_Declaration(), source_format='free', standard=2003) 'integer*4, dimension(2, :), intent(in) :: a' """ if len(args) > 7: raise ValueError("Fortran only supports up to 7 dimensional arrays") parameters = [] for arg in args: if isinstance(arg, Extent): parameters.append(arg) elif isinstance(arg, string_types): if arg == ':': parameters.append(Extent()) else: parameters.append(String(arg)) elif iterable(arg): parameters.append(Extent(*arg)) else: parameters.append(sympify(arg)) if len(args) == 0: raise ValueError("Need at least one dimension") return Attribute('dimension', parameters) assumed_size = dimension('*') def array(symbol, dim, intent=None, **kwargs): """ Convenience function for creating a Variable instance for a Fortran array Parameters ========== symbol : symbol dim : Attribute or iterable If dim is an ``Attribute`` it need to have the name 'dimension'. If it is not an ``Attribute``, then it is passsed to :func:`dimension` as ``*dim`` intent : str One of: 'in', 'out', 'inout' or None \\*\\*kwargs: Keyword arguments for ``Variable`` ('type' & 'value') Examples ======== >>> from sympy.printing import fcode >>> from sympy.codegen.ast import integer, real >>> from sympy.codegen.fnodes import array >>> arr = array('a', '*', 'in', type=integer) >>> print(fcode(arr.as_Declaration(), source_format='free', standard=2003)) integer*4, dimension(*), intent(in) :: a >>> x = array('x', [3, ':', ':'], intent='out', type=real) >>> print(fcode(x.as_Declaration(value=1), source_format='free', standard=2003)) real*8, dimension(3, :, :), intent(out) :: x = 1 """ if isinstance(dim, Attribute): if str(dim.name) != 'dimension': raise ValueError("Got an unexpected Attribute argument as dim: %s" % str(dim)) else: dim = dimension(*dim) attrs = list(kwargs.pop('attrs', [])) + [dim] if intent is not None: if intent not in (intent_in, intent_out, intent_inout): intent = {'in': intent_in, 'out': intent_out, 'inout': intent_inout}[intent] attrs.append(intent) value = kwargs.pop('value', None) type_ = kwargs.pop('type', None) if type_ is None: return Variable.deduced(symbol, value=value, attrs=attrs) else: return Variable(symbol, type_, value=value, attrs=attrs) def _printable(arg): return String(arg) if isinstance(arg, string_types) else sympify(arg) def allocated(array): """ Creates an AST node for a function call to Fortran's "allocated(...)" Examples ======== >>> from sympy.printing import fcode >>> from sympy.codegen.fnodes import allocated >>> alloc = allocated('x') >>> fcode(alloc, source_format='free') 'allocated(x)' """ return FunctionCall('allocated', [_printable(array)]) def lbound(array, dim=None, kind=None): """ Creates an AST node for a function call to Fortran's "lbound(...)" Parameters ========== array : Symbol or String dim : expr kind : expr Examples ======== >>> from sympy.printing import fcode >>> from sympy.codegen.fnodes import lbound >>> lb = lbound('arr', dim=2) >>> fcode(lb, source_format='free') 'lbound(arr, 2)' """ return FunctionCall( 'lbound', [_printable(array)] + ([_printable(dim)] if dim else []) + ([_printable(kind)] if kind else []) ) def ubound(array, dim=None, kind=None): return FunctionCall( 'ubound', [_printable(array)] + ([_printable(dim)] if dim else []) + ([_printable(kind)] if kind else []) ) def shape(source, kind=None): """ Creates an AST node for a function call to Fortran's "shape(...)" Parameters ========== source : Symbol or String kind : expr Examples ======== >>> from sympy.printing import fcode >>> from sympy.codegen.fnodes import shape >>> shp = shape('x') >>> fcode(shp, source_format='free') 'shape(x)' """ return FunctionCall( 'shape', [_printable(source)] + ([_printable(kind)] if kind else []) ) def size(array, dim=None, kind=None): """ Creates an AST node for a function call to Fortran's "size(...)" Examples ======== >>> from sympy import Symbol >>> from sympy.printing import fcode >>> from sympy.codegen.ast import FunctionDefinition, real, Return, Variable >>> from sympy.codegen.fnodes import array, sum_, size >>> a = Symbol('a', real=True) >>> body = [Return((sum_(a**2)/size(a))**.5)] >>> arr = array(a, dim=[':'], intent='in') >>> fd = FunctionDefinition(real, 'rms', [arr], body) >>> print(fcode(fd, source_format='free', standard=2003)) real*8 function rms(a) real*8, dimension(:), intent(in) :: a rms = sqrt(sum(a**2)*1d0/size(a)) end function """ return FunctionCall( 'size', [_printable(array)] + ([_printable(dim)] if dim else []) + ([_printable(kind)] if kind else []) ) def reshape(source, shape, pad=None, order=None): """ Creates an AST node for a function call to Fortran's "reshape(...)" Parameters ========== source : Symbol or String shape : ArrayExpr """ return FunctionCall( 'reshape', [_printable(source), _printable(shape)] + ([_printable(pad)] if pad else []) + ([_printable(order)] if pad else []) ) def bind_C(name=None): """ Creates an Attribute ``bind_C`` with a name Parameters ========== name : str Examples ======== >>> from sympy import Symbol >>> from sympy.printing import fcode >>> from sympy.codegen.ast import FunctionDefinition, real, Return, Variable >>> from sympy.codegen.fnodes import array, sum_, size, bind_C >>> a = Symbol('a', real=True) >>> s = Symbol('s', integer=True) >>> arr = array(a, dim=[s], intent='in') >>> body = [Return((sum_(a**2)/s)**.5)] >>> fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')]) >>> print(fcode(fd, source_format='free', standard=2003)) real*8 function rms(a, s) bind(C, name="rms") real*8, dimension(s), intent(in) :: a integer*4 :: s rms = sqrt(sum(a**2)/s) end function """ return Attribute('bind_C', [String(name)] if name else []) class GoTo(Token): """ Represents a goto statement in Fortran Examples ======== >>> from sympy.codegen.fnodes import GoTo >>> go = GoTo([10, 20, 30], 'i') >>> from sympy.printing import fcode >>> fcode(go, source_format='free') 'go to (10, 20, 30), i' """ __slots__ = ['labels', 'expr'] defaults = {'expr': none} _construct_labels = staticmethod(_mk_Tuple) _construct_expr = staticmethod(sympify) class FortranReturn(Token): """ AST node explicitly mapped to a fortran "return". Because a return statement in fortran is different from C, and in order to aid reuse of our codegen ASTs the ordinary ``.codegen.ast.Return`` is interpreted as assignment to the result variable of the function. If one for some reason needs to generate a fortran RETURN statement, this node should be used. Examples ======== >>> from sympy.codegen.fnodes import FortranReturn >>> from sympy.printing import fcode >>> fcode(FortranReturn('x')) ' return x' """ __slots__ = ['return_value'] defaults = {'return_value': none} _construct_return_value = staticmethod(sympify) class FFunction(Function): _required_standard = 77 def _fcode(self, printer): name = self.__class__.__name__ if printer._settings['standard'] < self._required_standard: raise NotImplementedError("%s requires Fortran %d or newer" % (name, self._required_standard)) return '{0}({1})'.format(name, ', '.join(map(printer._print, self.args))) class F95Function(FFunction): _required_standard = 95 class isign(FFunction): """ Fortran sign intrinsic for integer arguments. """ nargs = 2 class dsign(FFunction): """ Fortran sign intrinsic for double precision arguments. """ nargs = 2 class cmplx(FFunction): """ Fortran complex conversion function. """ nargs = 2 # may be extended to (2, 3) at a later point class kind(FFunction): """ Fortran kind function. """ nargs = 1 class merge(F95Function): """ Fortran merge function """ nargs = 3 class _literal(Float): _token = None _decimals = None def _fcode(self, printer, *args, **kwargs): mantissa, sgnd_ex = ('%.{0}e'.format(self._decimals) % self).split('e') mantissa = mantissa.strip('0').rstrip('.') ex_sgn, ex_num = sgnd_ex[0], sgnd_ex[1:].lstrip('0') ex_sgn = '' if ex_sgn == '+' else ex_sgn return (mantissa or '0') + self._token + ex_sgn + (ex_num or '0') class literal_sp(_literal): """ Fortran single precision real literal """ _token = 'e' _decimals = 9 class literal_dp(_literal): """ Fortran double precision real literal """ _token = 'd' _decimals = 17 class sum_(Token, Expr): __slots__ = ['array', 'dim', 'mask'] defaults = {'dim': none, 'mask': none} _construct_array = staticmethod(sympify) _construct_dim = staticmethod(sympify) class product_(Token, Expr): __slots__ = ['array', 'dim', 'mask'] defaults = {'dim': none, 'mask': none} _construct_array = staticmethod(sympify) _construct_dim = staticmethod(sympify)
6c863db6368e7613a40bf1bd44d6c4820a729645e42b34b43f8cbc699f97f136
import itertools from functools import reduce from collections import defaultdict from sympy import Indexed, IndexedBase, Tuple, Sum, Add, S, Integer from sympy.combinatorics import Permutation from sympy.core.basic import Basic from sympy.core.compatibility import accumulate, default_sort_key from sympy.core.mul import Mul from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions import (MatAdd, MatMul, Trace, Transpose, MatrixSymbol) from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement from sympy.tensor.array import NDimArray class _CodegenArrayAbstract(Basic): @property def subranks(self): """ Returns the ranks of the objects in the uppermost tensor product inside the current object. In case no tensor products are contained, return the atomic ranks. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayTensorProduct, CodegenArrayContraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> P = MatrixSymbol("P", 3, 3) Important: do not confuse the rank of the matrix with the rank of an array. >>> tp = CodegenArrayTensorProduct(M, N, P) >>> tp.subranks [2, 2, 2] >>> co = CodegenArrayContraction(tp, (1, 2), (3, 4)) >>> co.subranks [2, 2, 2] """ return self._subranks[:] def subrank(self): """ The sum of ``subranks``. """ return sum(self.subranks) @property def shape(self): return self._shape class CodegenArrayContraction(_CodegenArrayAbstract): r""" This class is meant to represent contractions of arrays in a form easily processable by the code printers. """ def __new__(cls, expr, *contraction_indices, **kwargs): contraction_indices = _sort_contraction_indices(contraction_indices) expr = _sympify(expr) if len(contraction_indices) == 0: return expr if isinstance(expr, CodegenArrayContraction): return cls._flatten(expr, *contraction_indices) obj = Basic.__new__(cls, expr, *contraction_indices) obj._subranks = _get_subranks(expr) obj._mapping = _get_mapping_from_subranks(obj._subranks) free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all([i not in cind for cind in contraction_indices])} obj._free_indices_to_position = free_indices_to_position shape = expr.shape if shape: # Check that no contraction happens when the shape is mismatched: for i in contraction_indices: if len(set(shape[j] for j in i)) != 1: raise ValueError("contracting indices of different dimensions") shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices)) obj._shape = shape return obj @staticmethod def _get_free_indices_to_position_map(free_indices, contraction_indices): free_indices_to_position = {} flattened_contraction_indices = [j for i in contraction_indices for j in i] counter = 0 for ind in free_indices: while counter in flattened_contraction_indices: counter += 1 free_indices_to_position[ind] = counter counter += 1 return free_indices_to_position @staticmethod def _get_index_shifts(expr): """ Get the mapping of indices at the positions before the contraction occures. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), [1, 2]) >>> cg._get_index_shifts(cg) [0, 2] Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They need to be shifted by 0 and 2 to get the corresponding positions before the contraction (that is, 0 and 3). """ inner_contraction_indices = expr.contraction_indices all_inner = [j for i in inner_contraction_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = get_rank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 return shifts @staticmethod def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices): shifts = CodegenArrayContraction._get_index_shifts(expr) outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices) return outer_contraction_indices @staticmethod def _flatten(expr, *outer_contraction_indices): inner_contraction_indices = expr.contraction_indices outer_contraction_indices = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices) contraction_indices = inner_contraction_indices + outer_contraction_indices return CodegenArrayContraction(expr.expr, *contraction_indices) def _get_contraction_tuples(self): r""" Return tuples containing the argument index and position within the argument of the index position. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 2)) >>> cg._get_contraction_tuples() [[(0, 1), (1, 0)]] Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices of the tensor product `A\otimes B` are contracted, has been transformed into `(0, 1)` and `(1, 0)`, identifying the same indices in a different notation. `(0, 1)` is the second index (1) of the first argument (i.e. 0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second argument (i.e. 1 or `B`). """ mapping = self._mapping return [[mapping[j] for j in i] for i in self.contraction_indices] @staticmethod def _contraction_tuples_to_contraction_indices(expr, contraction_tuples): # TODO: check that `expr` has `.subranks`: ranks = expr.subranks cumulative_ranks = [0] + list(accumulate(ranks)) return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples] @property def free_indices(self): return self._free_indices[:] @property def free_indices_to_position(self): return dict(self._free_indices_to_position) @property def expr(self): return self.args[0] @property def contraction_indices(self): return self.args[1:] def _contraction_indices_to_components(self): expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): raise NotImplementedError("only for contractions of tensor products") ranks = expr.subranks mapping = {} counter = 0 for i, rank in enumerate(ranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def sort_args_by_name(self): """ Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = CodegenArrayContraction.from_MatMul(C*D*A*B) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(C, D, A, B), (1, 2), (3, 4), (5, 6)) >>> cg.sort_args_by_name() CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (0, 7), (1, 2), (5, 6)) """ expr = self.expr if not isinstance(expr, CodegenArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = CodegenArrayTensorProduct(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return CodegenArrayContraction(c_tp, *new_contr_indices) def _get_contraction_links(self): r""" Returns a dictionary of links between arguments in the tensor product being contracted. See the example for an explanation of the values. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) Matrix multiplications are pairwise contractions between neighboring matrices: `A_{ij} B_{jk} C_{kl} D_{lm}` >>> cg = CodegenArrayContraction.from_MatMul(A*B*C*D) >>> cg CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (1, 2), (3, 4), (5, 6)) >>> cg._get_contraction_links() {0: {1: (1, 0)}, 1: {0: (0, 1), 1: (2, 0)}, 2: {0: (1, 1), 1: (3, 0)}, 3: {0: (2, 1)}} This dictionary is interpreted as follows: argument in position 0 (i.e. matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that is argument in position 1 (matrix `B`) on the first index slot of `B`, this is the contraction provided by the index `j` from `A`. The argument in position 1 (that is, matrix `B`) has two contractions, the ones provided by the indices `j` and `k`, respectively the first and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and `(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of argument in position 0 (that is, `A_{\ldot j}`), and so on. """ return _get_contraction_links(self.subranks, *self.contraction_indices) @staticmethod def from_MatMul(expr): args_nonmat = [] args = [] contractions = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(arg) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] return Mul.fromiter(args_nonmat)*CodegenArrayContraction( CodegenArrayTensorProduct(*args), *contractions ) def get_shape(expr): if hasattr(expr, "shape"): return expr.shape return () class CodegenArrayTensorProduct(_CodegenArrayAbstract): r""" Class to represent the tensor product of array-like objects. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] args = cls._flatten(args) ranks = [get_rank(arg) for arg in args] if len(args) == 1: return args[0] # If there are contraction objects inside, transform the whole # expression into `CodegenArrayContraction`: contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, CodegenArrayContraction)} if contractions: cumulative_ranks = list(accumulate([0] + ranks))[:-1] tp = cls(*[arg.expr if isinstance(arg, CodegenArrayContraction) else arg for arg in args]) contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices] return CodegenArrayContraction(tp, *contraction_indices) #newargs = [i for i in args if hasattr(i, "shape")] #coeff = reduce(lambda x, y: x*y, [i for i in args if not hasattr(i, "shape")], S.One) #newargs[0] *= coeff obj = Basic.__new__(cls, *args) obj._subranks = ranks shapes = [get_shape(i) for i in args] if any(i is None for i in shapes): obj._shape = None else: obj._shape = tuple(j for i in shapes for j in i) return obj @classmethod def _flatten(cls, args): args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])] return args class CodegenArrayElementwiseAdd(_CodegenArrayAbstract): r""" Class for elementwise array additions. """ def __new__(cls, *args): args = [_sympify(arg) for arg in args] obj = Basic.__new__(cls, *args) ranks = [get_rank(arg) for arg in args] ranks = list(set(ranks)) if len(ranks) != 1: raise ValueError("summing arrays of different ranks") obj._subranks = ranks shapes = [arg.shape for arg in args] if len(set([i for i in shapes if i is not None])) > 1: raise ValueError("mismatching shapes in addition") if any(i is None for i in shapes): obj._shape = None else: obj._shape = shapes[0] return obj class CodegenArrayPermuteDims(_CodegenArrayAbstract): r""" Class to represent permutation of axes of arrays. Examples ======== >>> from sympy.codegen.array_utils import CodegenArrayPermuteDims >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> cg = CodegenArrayPermuteDims(M, [1, 0]) The object ``cg`` represents the transposition of ``M``, as the permutation ``[1, 0]`` will act on its indices by switching them: `M_{ij} \Rightarrow M_{ji}` This is evident when transforming back to matrix form: >>> from sympy.codegen.array_utils import recognize_matrix_expression >>> recognize_matrix_expression(cg) M.T >>> N = MatrixSymbol("N", 3, 2) >>> cg = CodegenArrayPermuteDims(N, [1, 0]) >>> cg.shape (2, 3) """ def __new__(cls, expr, permutation): from sympy.combinatorics import Permutation expr = _sympify(expr) permutation = Permutation(permutation) plist = permutation.args[0] if plist == sorted(plist): return expr obj = Basic.__new__(cls, expr, permutation) obj._subranks = [get_rank(expr)] shape = expr.shape if shape is None: obj._shape = None else: obj._shape = tuple(shape[permutation(i)] for i in range(len(shape))) return obj @property def expr(self): return self.args[0] @property def permutation(self): return self.args[1] def nest_permutation(self): r""" Nest the permutation down the expression tree. Examples ======== >>> from sympy.codegen.array_utils import (CodegenArrayPermuteDims, CodegenArrayTensorProduct, nest_permutation) >>> from sympy import MatrixSymbol >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2]) >>> cg CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), (0 1)(2 3)) >>> nest_permutation(cg) CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, (0 1)), CodegenArrayPermuteDims(N, (0 1))) In ``cg`` both ``M`` and ``N`` are transposed. The cyclic representation of the permutation after the tensor product is `(0 1)(2 3)`. After nesting it down the expression tree, the usual transposition permutation `(0 1)` appears. """ expr = self.expr if isinstance(expr, CodegenArrayTensorProduct): # Check if the permutation keeps the subranks separated: subranks = expr.subranks subrank = expr.subrank() l = list(range(subrank)) p = [self.permutation(i) for i in l] dargs = {} counter = 0 for i, arg in zip(subranks, expr.args): p0 = p[counter:counter+i] counter += i s0 = sorted(p0) if not all([s0[j+1]-s0[j] == 1 for j in range(len(s0)-1)]): # Cross-argument permutations, impossible to nest the object: return self subpermutation = [p0.index(j) for j in s0] dargs[s0[0]] = CodegenArrayPermuteDims(arg, subpermutation) # Read the arguments sorting the according to the keys of the dict: args = [dargs[i] for i in sorted(dargs)] return CodegenArrayTensorProduct(*args) elif isinstance(expr, CodegenArrayContraction): # Invert tree hierarchy: put the contraction above. cycles = self.permutation.cyclic_form newcycles = CodegenArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles) newpermutation = Permutation(newcycles) new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices] return CodegenArrayContraction(CodegenArrayPermuteDims(expr.expr, newpermutation), *new_contr_indices) elif isinstance(expr, CodegenArrayElementwiseAdd): return CodegenArrayElementwiseAdd(*[CodegenArrayPermuteDims(arg, self.permutation) for arg in expr.args]) return self def nest_permutation(expr): if isinstance(expr, CodegenArrayPermuteDims): return expr.nest_permutation() else: return expr class CodegenArrayDiagonal(_CodegenArrayAbstract): r""" Class to represent the diagonal operator. In a 2-dimensional array it returns the diagonal, this looks like the operation: `A_{ij} \rightarrow A_{ii}` The diagonal over axes 1 and 2 (the second and third) of the tensor product of two 2-dimensional arrays `A \otimes B` is `\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}` In this last example the array expression has been reduced from 4-dimensional to 3-dimensional. Notice that no contraction has occurred, rather there is a new index `i` for the diagonal, contraction would have reduced the array to 2 dimensions. Notice that the diagonalized out dimensions are added as new dimensions at the end of the indices. """ def __new__(cls, expr, *diagonal_indices): expr = _sympify(expr) diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices] if isinstance(expr, CodegenArrayDiagonal): return cls._flatten(expr, *diagonal_indices) obj = Basic.__new__(cls, expr, *diagonal_indices) obj._subranks = _get_subranks(expr) shape = expr.shape if shape is None: obj._shape = None else: # Check that no diagonalization happens on indices with mismatched # dimensions: for i in diagonal_indices: if len(set(shape[j] for j in i)) != 1: raise ValueError("contracting indices of different dimensions") # Get new shape: shp1 = tuple(shp for i,shp in enumerate(shape) if not any(i in j for j in diagonal_indices)) shp2 = tuple(shape[i[0]] for i in diagonal_indices) obj._shape = shp1 + shp2 return obj @property def expr(self): return self.args[0] @property def diagonal_indices(self): return self.args[1:] @staticmethod def _flatten(expr, *outer_diagonal_indices): inner_diagonal_indices = expr.diagonal_indices all_inner = [j for i in inner_diagonal_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = get_rank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices) diagonal_indices = inner_diagonal_indices + outer_diagonal_indices return CodegenArrayDiagonal(expr.expr, *diagonal_indices) def get_rank(expr): if isinstance(expr, (MatrixExpr, MatrixElement)): return 2 if isinstance(expr, _CodegenArrayAbstract): return expr.subrank() if isinstance(expr, NDimArray): return expr.rank() if isinstance(expr, Indexed): return expr.rank if isinstance(expr, IndexedBase): shape = expr.shape if shape is None: return -1 else: return len(shape) if isinstance(expr, _RecognizeMatOp): return expr.rank() if isinstance(expr, _RecognizeMatMulLines): return expr.rank() return 0 def _get_subranks(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subranks else: return [get_rank(expr)] def _get_mapping_from_subranks(subranks): mapping = {} counter = 0 for i, rank in enumerate(subranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def _get_contraction_links(subranks, *contraction_indices): mapping = _get_mapping_from_subranks(subranks) contraction_tuples = [[mapping[j] for j in i] for i in contraction_indices] dlinks = defaultdict(dict) for links in contraction_tuples: if len(links) > 2: raise NotImplementedError("three or more axes contracted at the same time") (arg1, pos1), (arg2, pos2) = links dlinks[arg1][pos1] = (arg2, pos2) dlinks[arg2][pos2] = (arg1, pos1) return dict(dlinks) def _sort_contraction_indices(pairing_indices): pairing_indices = [Tuple(*sorted(i)) for i in pairing_indices] pairing_indices.sort(key=lambda x: min(x)) return pairing_indices def _get_diagonal_indices(flattened_indices): axes_contraction = defaultdict(list) for i, ind in enumerate(flattened_indices): if isinstance(ind, (int, Integer)): # If the indices is a number, there can be no diagonal operation: continue axes_contraction[ind].append(i) axes_contraction = {k: v for k, v in axes_contraction.items() if len(v) > 1} # Put the diagonalized indices at the end: ret_indices = [i for i in flattened_indices if i not in axes_contraction] diag_indices = list(axes_contraction) diag_indices.sort(key=lambda x: flattened_indices.index(x)) diagonal_indices = [tuple(axes_contraction[i]) for i in diag_indices] ret_indices += diag_indices ret_indices = tuple(ret_indices) return diagonal_indices, ret_indices def _get_argindex(subindices, ind): for i, sind in enumerate(subindices): if ind == sind: return i if isinstance(sind, (set, frozenset)) and ind in sind: return i raise IndexError("%s not found in %s" % (ind, subindices)) def _codegen_array_parse(expr): if isinstance(expr, Sum): function = expr.function summation_indices = expr.variables subexpr, subindices = _codegen_array_parse(function) # Check dimensional consistency: shape = subexpr.shape if shape: for ind, istart, iend in expr.limits: i = _get_argindex(subindices, ind) if istart != 0 or iend+1 != shape[i]: raise ValueError("summation index and array dimension mismatch: %s" % ind) contraction_indices = [] subindices = list(subindices) if isinstance(subexpr, CodegenArrayDiagonal): diagonal_indices = list(subexpr.diagonal_indices) dindices = subindices[-len(diagonal_indices):] subindices = subindices[:-len(diagonal_indices)] for index in summation_indices: if index in dindices: position = dindices.index(index) contraction_indices.append(diagonal_indices[position]) diagonal_indices[position] = None diagonal_indices = [i for i in diagonal_indices if i is not None] for i, ind in enumerate(subindices): if ind in summation_indices: pass if diagonal_indices: subexpr = CodegenArrayDiagonal(subexpr.expr, *diagonal_indices) else: subexpr = subexpr.expr else: subindices = subindices axes_contraction = defaultdict(list) for i, ind in enumerate(subindices): if ind in summation_indices: axes_contraction[ind].append(i) subindices[i] = None for k, v in axes_contraction.items(): contraction_indices.append(tuple(v)) free_indices = [i for i in subindices if i is not None] indices_ret = list(free_indices) indices_ret.sort(key=lambda x: free_indices.index(x)) return CodegenArrayContraction( subexpr, *contraction_indices, free_indices=free_indices ), tuple(indices_ret) if isinstance(expr, Mul): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) # Check if there are KroneckerDelta objects: kronecker_delta_repl = {} for arg in args: if not isinstance(arg, KroneckerDelta): continue # Diagonalize two indices: i, j = arg.indices kindices = set(arg.indices) if i in kronecker_delta_repl: kindices.update(kronecker_delta_repl[i]) if j in kronecker_delta_repl: kindices.update(kronecker_delta_repl[j]) kindices = frozenset(kindices) for index in kindices: kronecker_delta_repl[index] = kindices # Remove KroneckerDelta objects, their relations should be handled by # CodegenArrayDiagonal: newargs = [] newindices = [] for arg, loc_indices in zip(args, indices): if isinstance(arg, KroneckerDelta): continue newargs.append(arg) newindices.append(loc_indices) flattened_indices = [kronecker_delta_repl.get(j, j) for i in newindices for j in i] diagonal_indices, ret_indices = _get_diagonal_indices(flattened_indices) tp = CodegenArrayTensorProduct(*newargs) if diagonal_indices: return (CodegenArrayDiagonal(tp, *diagonal_indices), ret_indices) else: return tp, ret_indices if isinstance(expr, MatrixElement): indices = expr.args[1:] diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.args[0], *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, Indexed): indices = expr.indices diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return (CodegenArrayDiagonal(expr.base, *diagonal_indices), ret_indices) else: return expr.args[0], ret_indices if isinstance(expr, IndexedBase): raise NotImplementedError if isinstance(expr, KroneckerDelta): return expr, expr.indices if isinstance(expr, Add): args, indices = zip(*[_codegen_array_parse(arg) for arg in expr.args]) args = list(args) # Check if all indices are compatible. Otherwise expand the dimensions: index0set = set(indices[0]) index0 = indices[0] for i in range(1, len(args)): if set(indices[i]) != index0set: raise NotImplementedError("indices must be the same") permutation = Permutation([index0.index(j) for j in indices[i]]) # Perform index permutations: args[i] = CodegenArrayPermuteDims(args[i], permutation) return CodegenArrayElementwiseAdd(*args), index0 return expr, () raise NotImplementedError("could not recognize expression %s" % expr) def _parse_matrix_expression(expr): if isinstance(expr, MatMul): args_nonmat = [] args = [] contractions = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(arg) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] return Mul.fromiter(args_nonmat)*CodegenArrayContraction( CodegenArrayTensorProduct(*[_parse_matrix_expression(arg) for arg in args]), *contractions ) elif isinstance(expr, MatAdd): return CodegenArrayElementwiseAdd( *[_parse_matrix_expression(arg) for arg in expr.args] ) elif isinstance(expr, Transpose): return CodegenArrayPermuteDims( _parse_matrix_expression(expr.args[0]), [1, 0] ) else: return expr def parse_indexed_expression(expr, first_indices=[]): r""" Parse indexed expression into a form useful for code generation. Examples ======== >>> from sympy.codegen.array_utils import parse_indexed_expression >>> from sympy import MatrixSymbol, Sum, symbols >>> from sympy.combinatorics import Permutation >>> Permutation.print_cyclic = True >>> i, j, k, d = symbols("i j k d") >>> M = MatrixSymbol("M", d, d) >>> N = MatrixSymbol("N", d, d) Recognize the trace in summation form: >>> expr = Sum(M[i, i], (i, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(M, (0, 1)) Recognize the extraction of the diagonal by using the same index `i` on both axes of the matrix: >>> expr = M[i, i] >>> parse_indexed_expression(expr) CodegenArrayDiagonal(M, (0, 1)) This function can help perform the transformation expressed in two different mathematical notations as: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Recognize the matrix multiplication in summation form: >>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1)) >>> parse_indexed_expression(expr) CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)) Specify that ``k`` has to be the starting index: >>> parse_indexed_expression(expr, first_indices=[k]) CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (0 1)) """ result, indices = _codegen_array_parse(expr) if not first_indices: return result for i in first_indices: if i not in indices: first_indices.remove(i) #raise ValueError("index %s not found or not a free index" % i) first_indices.extend([i for i in indices if i not in first_indices]) permutation = [first_indices.index(i) for i in indices] return CodegenArrayPermuteDims(result, permutation) def _has_multiple_lines(expr): if isinstance(expr, _RecognizeMatMulLines): return True if isinstance(expr, _RecognizeMatOp): return expr.multiple_lines return False class _RecognizeMatOp(object): """ Class to help parsing matrix multiplication lines. """ def __init__(self, operator, args): self.operator = operator self.args = args if any(_has_multiple_lines(arg) for arg in args): multiple_lines = True else: multiple_lines = False self.multiple_lines = multiple_lines def rank(self): if self.operator == Trace: return 0 # TODO: check return 2 def __repr__(self): op = self.operator if op == MatMul: s = "*" elif op == MatAdd: s = "+" else: s = op.__name__ return "_RecognizeMatOp(%s, %s)" % (s, repr(self.args)) return "_RecognizeMatOp(%s)" % (s.join(repr(i) for i in self.args)) def __eq__(self, other): if not isinstance(other, type(self)): return False if self.operator != other.operator: return False if self.args != other.args: return False return True def __iter__(self): return iter(self.args) class _RecognizeMatMulLines(list): """ This class handles multiple parsed multiplication lines. """ def __new__(cls, args): if len(args) == 1: return args[0] return list.__new__(cls, args) def rank(self): return reduce(lambda x, y: x*y, [get_rank(i) for i in self], S.One) def __repr__(self): return "_RecognizeMatMulLines(%s)" % super(_RecognizeMatMulLines, self).__repr__() def _support_function_tp1_recognize(contraction_indices, args): if not isinstance(args, list): args = [args] subranks = [get_rank(i) for i in args] coeff = reduce(lambda x, y: x*y, [arg for arg, srank in zip(args, subranks) if srank == 0], S.One) mapping = _get_mapping_from_subranks(subranks) dlinks = _get_contraction_links(subranks, *contraction_indices) flatten_contractions = [j for i in contraction_indices for j in i] total_rank = sum(subranks) # TODO: turn `free_indices` into a list? free_indices = {i: i for i in range(total_rank) if i not in flatten_contractions} return_list = [] while dlinks: if free_indices: first_index, starting_argind = min(free_indices.items(), key=lambda x: x[1]) free_indices.pop(first_index) starting_argind, starting_pos = mapping[starting_argind] else: # Maybe a Trace first_index = None starting_argind = min(dlinks) starting_pos = 0 current_argind, current_pos = starting_argind, starting_pos matmul_args = [] last_index = None while True: elem = args[current_argind] if current_pos == 1: elem = _RecognizeMatOp(Transpose, [elem]) matmul_args.append(elem) if current_argind not in dlinks: break other_pos = 1 - current_pos link_dict = dlinks.pop(current_argind) if other_pos not in link_dict: if free_indices: last_index = [i for i, j in free_indices.items() if mapping[j] == (current_argind, other_pos)][0] else: last_index = None break if len(link_dict) > 2: raise NotImplementedError("not a matrix multiplication line") # Get the last element of `link_dict` as the next link. The last # element is the correct start for trace expressions: current_argind, current_pos = link_dict[other_pos] if current_argind == starting_argind: # This is a trace: if len(matmul_args) > 1: matmul_args = [_RecognizeMatOp(Trace, [_RecognizeMatOp(MatMul, matmul_args)])] else: matmul_args = [_RecognizeMatOp(Trace, matmul_args)] break dlinks.pop(starting_argind, None) free_indices.pop(last_index, None) return_list.append(_RecognizeMatOp(MatMul, matmul_args)) if coeff != 1: # Let's inject the coefficient: return_list[0].args.insert(0, coeff) return _RecognizeMatMulLines(return_list) def recognize_matrix_expression(expr): r""" Recognize matrix expressions in codegen objects. If more than one matrix multiplication line have been detected, return a list with the matrix expressions. Examples ======== >>> from sympy import MatrixSymbol, MatrixExpr, Sum, Symbol >>> from sympy.abc import i, j, k, l, N >>> from sympy.codegen.array_utils import CodegenArrayContraction, CodegenArrayTensorProduct >>> from sympy.codegen.array_utils import recognize_matrix_expression, parse_indexed_expression >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) (A*B).T Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A.T*B >>> cg = parse_indexed_expression(expr, first_indices=[k]) >>> recognize_matrix_expression(cg) (A.T*B).T Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A) Recognize some more complex traces: >>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) Trace(A*B) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> cg = parse_indexed_expression(expr) >>> recognize_matrix_expression(cg) A*B.T*A.T Expressions constructed from matrix expressions do not contain literal indices, the positions of free indices are returned instead: >>> expr = A*B >>> cg = CodegenArrayContraction.from_MatMul(expr) >>> recognize_matrix_expression(cg) A*B If more than one line of matrix multiplications is detected, return separate matrix multiplication factors: >>> cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C, D), (1, 2), (5, 6)) >>> recognize_matrix_expression(cg) [A*B, C*D] The two lines have free indices at axes 0, 3 and 4, 7, respectively. """ # TODO: expr has to be a CodegenArray... type rec = _recognize_matrix_expression(expr) return _unfold_recognized_expr(rec) def _recognize_matrix_expression(expr): if isinstance(expr, CodegenArrayContraction): args = _recognize_matrix_expression(expr.expr) contraction_indices = expr.contraction_indices if isinstance(args, _RecognizeMatOp) and args.operator == MatAdd: addends = [] for arg in args.args: addends.append(_support_function_tp1_recognize(contraction_indices, arg)) return _RecognizeMatOp(MatAdd, addends) elif isinstance(args, _RecognizeMatMulLines): return _support_function_tp1_recognize(contraction_indices, args) return _support_function_tp1_recognize(contraction_indices, [args]) elif isinstance(expr, CodegenArrayElementwiseAdd): add_args = [] for arg in expr.args: add_args.append(_recognize_matrix_expression(arg)) return _RecognizeMatOp(MatAdd, add_args) elif isinstance(expr, (MatrixSymbol, IndexedBase)): return expr elif isinstance(expr, CodegenArrayPermuteDims): if expr.permutation.args[0] == [1, 0]: return _RecognizeMatOp(Transpose, [_recognize_matrix_expression(expr.expr)]) elif isinstance(expr.expr, CodegenArrayTensorProduct): ranks = expr.expr.subranks newrange = [expr.permutation(i) for i in range(sum(ranks))] newpos = [] counter = 0 for rank in ranks: newpos.append(newrange[counter:counter+rank]) counter += rank newargs = [] for pos, arg in zip(newpos, expr.expr.args): if pos == sorted(pos): newargs.append((_recognize_matrix_expression(arg), pos[0])) elif len(pos) == 2: newargs.append((_RecognizeMatOp(Transpose, [_recognize_matrix_expression(arg)]), pos[0])) else: raise NotImplementedError newargs.sort(key=lambda x: x[1]) newargs = [i[0] for i in newargs] return _RecognizeMatMulLines(newargs) else: raise NotImplementedError elif isinstance(expr, CodegenArrayTensorProduct): args = [_recognize_matrix_expression(arg) for arg in expr.args] multiple_lines = [_has_multiple_lines(arg) for arg in args] if any(multiple_lines): if any(a.operator != MatAdd for i, a in enumerate(args) if multiple_lines[i]): raise NotImplementedError expand_args = [arg.args if multiple_lines[i] else [arg] for i, arg in enumerate(args)] it = itertools.product(*expand_args) ret = _RecognizeMatOp(MatAdd, [_RecognizeMatMulLines([k for j in i for k in (j if isinstance(j, _RecognizeMatMulLines) else [j])]) for i in it]) return ret return _RecognizeMatMulLines(args) elif isinstance(expr, Transpose): return expr elif isinstance(expr, MatrixExpr): return expr return expr def _unfold_recognized_expr(expr): if isinstance(expr, _RecognizeMatOp): return expr.operator(*[_unfold_recognized_expr(i) for i in expr.args]) elif isinstance(expr, _RecognizeMatMulLines): return [_unfold_recognized_expr(i) for i in expr] else: return expr
cb8b9bafe576abede94d37610daa10d129418f61063bcaa1fc18edf4684ccb21
from __future__ import (absolute_import, division, print_function) from sympy import And, Gt, Lt, Abs, Dummy, oo, Tuple, Symbol from sympy.codegen.ast import ( Assignment, AddAugmentedAssignment, CodeBlock, Declaration, FunctionDefinition, Print, Return, Scope, While, Variable, Pointer, real ) """ This module collects functions for constructing ASTs representing algorithms. """ def newtons_method(expr, wrt, atol=1e-12, delta=None, debug=False, itermax=None, counter=None): """ Generates an AST for Newton-Raphson method (a root-finding algorithm). Returns an abstract syntax tree (AST) based on ``sympy.codegen.ast`` for Netwon's method of root-finding. Parameters ========== expr : expression wrt : Symbol With respect to, i.e. what is the variable. atol : number or expr Absolute tolerance (stopping criterion) delta : Symbol Will be a ``Dummy`` if ``None``. debug : bool Whether to print convergence information during iterations itermax : number or expr Maximum number of iterations. counter : Symbol Will be a ``Dummy`` if ``None``. Examples ======== >>> from sympy import symbols, cos >>> from sympy.codegen.ast import Assignment >>> from sympy.codegen.algorithms import newtons_method >>> x, dx, atol = symbols('x dx atol') >>> expr = cos(x) - x**3 >>> algo = newtons_method(expr, x, atol, dx) >>> algo.has(Assignment(dx, -expr/expr.diff(x))) True References ========== .. [1] https://en.wikipedia.org/wiki/Newton%27s_method """ if delta is None: delta = Dummy() Wrapper = Scope name_d = 'delta' else: Wrapper = lambda x: x name_d = delta.name delta_expr = -expr/expr.diff(wrt) whl_bdy = [Assignment(delta, delta_expr), AddAugmentedAssignment(wrt, delta)] if debug: prnt = Print([wrt, delta], r"{0}=%12.5g {1}=%12.5g\n".format(wrt.name, name_d)) whl_bdy = [whl_bdy[0], prnt] + whl_bdy[1:] req = Gt(Abs(delta), atol) declars = [Declaration(Variable(delta, type=real, value=oo))] if itermax is not None: counter = counter or Dummy(integer=True) v_counter = Variable.deduced(counter, 0) declars.append(Declaration(v_counter)) whl_bdy.append(AddAugmentedAssignment(counter, 1)) req = And(req, Lt(counter, itermax)) whl = While(req, CodeBlock(*whl_bdy)) blck = declars + [whl] return Wrapper(CodeBlock(*blck)) def _symbol_of(arg): if isinstance(arg, Declaration): arg = arg.variable.symbol elif isinstance(arg, Variable): arg = arg.symbol return arg def newtons_method_function(expr, wrt, params=None, func_name="newton", attrs=Tuple(), **kwargs): """ Generates an AST for a function implementing the Newton-Raphson method. Parameters ========== expr : expression wrt : Symbol With respect to, i.e. what is the variable params : iterable of symbols Symbols appearing in expr that are taken as constants during the iterations (these will be accepted as parameters to the generated function). func_name : str Name of the generated function. attrs : Tuple Attribute instances passed as ``attrs`` to ``FunctionDefinition``. \\*\\*kwargs : Keyword arguments passed to :func:`sympy.codegen.algorithms.newtons_method`. Examples ======== >>> from sympy import symbols, cos >>> from sympy.codegen.algorithms import newtons_method_function >>> from sympy.codegen.pyutils import render_as_module >>> from sympy.core.compatibility import exec_ >>> x = symbols('x') >>> expr = cos(x) - x**3 >>> func = newtons_method_function(expr, x) >>> py_mod = render_as_module(func) # source code as string >>> namespace = {} >>> exec_(py_mod, namespace, namespace) >>> res = eval('newton(0.5)', namespace) >>> abs(res - 0.865474033102) < 1e-12 True See Also ======== sympy.codegen.ast.newtons_method """ if params is None: params = (wrt,) pointer_subs = {p.symbol: Symbol('(*%s)' % p.symbol.name) for p in params if isinstance(p, Pointer)} delta = kwargs.pop('delta', None) if delta is None: delta = Symbol('d_' + wrt.name) if expr.has(delta): delta = None # will use Dummy algo = newtons_method(expr, wrt, delta=delta, **kwargs).xreplace(pointer_subs) if isinstance(algo, Scope): algo = algo.body not_in_params = expr.free_symbols.difference(set(_symbol_of(p) for p in params)) if not_in_params: raise ValueError("Missing symbols in params: %s" % ', '.join(map(str, not_in_params))) declars = tuple(Variable(p, real) for p in params) body = CodeBlock(algo, Return(wrt)) return FunctionDefinition(real, func_name, declars, body, attrs=attrs)
dad3e85ca10be35f486663cb553e515e84151bc5bdd6e8bdfa30fa81a0ee6046
# -*- coding: utf-8 -*- """ Classes and functions useful for rewriting expressions for optimized code generation. Some languages (or standards thereof), e.g. C99, offer specialized math functions for better performance and/or precision. Using the ``optimize`` function in this module, together with a collection of rules (represented as instances of ``Optimization``), one can rewrite the expressions for this purpose:: >>> from sympy import Symbol, exp, log >>> from sympy.codegen.rewriting import optimize, optims_c99 >>> x = Symbol('x') >>> optimize(3*exp(2*x) - 3, optims_c99) 3*expm1(2*x) >>> optimize(exp(2*x) - 3, optims_c99) exp(2*x) - 3 >>> optimize(log(3*x + 3), optims_c99) log1p(x) + log(3) >>> optimize(log(2*x + 3), optims_c99) log(2*x + 3) The ``optims_c99`` imported above is tuple containing the following instances (which may be imported from ``sympy.codegen.rewriting``): - ``expm1_opt`` - ``log1p_opt`` - ``exp2_opt`` - ``log2_opt`` - ``log2const_opt`` """ from __future__ import (absolute_import, division, print_function) from itertools import chain from sympy import log, exp, Max, Min, Wild, expand_log, Dummy from sympy.codegen.cfunctions import log1p, log2, exp2, expm1 from sympy.core.mul import Mul from sympy.utilities.iterables import sift class Optimization(object): """ Abstract base class for rewriting optimization. Subclasses should implement ``__call__`` taking an expression as argument. Parameters ========== cost_function : callable returning number priority : number """ def __init__(self, cost_function=None, priority=1): self.cost_function = cost_function self.priority=priority class ReplaceOptim(Optimization): """ Rewriting optimization calling replace on expressions. The instance can be used as a function on expressions for which it will apply the ``replace`` method (see :meth:`sympy.core.basic.Basic.replace`). Parameters ========== query : first argument passed to replace value : second argument passed to replace Examples ======== >>> from sympy import Symbol, Pow >>> from sympy.codegen.rewriting import ReplaceOptim >>> from sympy.codegen.cfunctions import exp2 >>> x = Symbol('x') >>> exp2_opt = ReplaceOptim(lambda p: p.is_Pow and p.base == 2, ... lambda p: exp2(p.exp)) >>> exp2_opt(2**x) exp2(x) """ def __init__(self, query, value, **kwargs): super(ReplaceOptim, self).__init__(**kwargs) self.query = query self.value = value def __call__(self, expr): return expr.replace(self.query, self.value) def optimize(expr, optimizations): """ Apply optimizations to an expression. Parameters ========== expr : expression optimizations : iterable of ``Optimization`` instances The optimizations will be sorted with respect to ``priority`` (highest first). Examples ======== >>> from sympy import log, Symbol >>> from sympy.codegen.rewriting import optims_c99, optimize >>> x = Symbol('x') >>> optimize(log(x+3)/log(2) + log(x**2 + 1), optims_c99) log1p(x**2) + log2(x + 3) """ for optim in sorted(optimizations, key=lambda opt: opt.priority, reverse=True): new_expr = optim(expr) if optim.cost_function is None: expr = new_expr else: before, after = map(lambda x: optim.cost_function(x), (expr, new_expr)) if before > after: expr = new_expr return expr exp2_opt = ReplaceOptim( lambda p: p.is_Pow and p.base == 2, lambda p: exp2(p.exp) ) _d = Wild('d', properties=[lambda x: x.is_Dummy]) _u = Wild('u', properties=[lambda x: not x.is_number and not x.is_Add]) _v = Wild('v') _w = Wild('w') log2_opt = ReplaceOptim(_v*log(_w)/log(2), _v*log2(_w), cost_function=lambda expr: expr.count( lambda e: ( # division & eval of transcendentals are expensive floating point operations... e.is_Pow and e.exp.is_negative # division or (isinstance(e, (log, log2)) and not e.args[0].is_number)) # transcendental ) ) log2const_opt = ReplaceOptim(log(2)*log2(_w), log(_w)) logsumexp_2terms_opt = ReplaceOptim( lambda l: (isinstance(l, log) and l.args[0].is_Add and len(l.args[0].args) == 2 and all(isinstance(t, exp) for t in l.args[0].args)), lambda l: ( Max(*[e.args[0] for e in l.args[0].args]) + log1p(exp(Min(*[e.args[0] for e in l.args[0].args]))) ) ) def _try_expm1(expr): protected, old_new = expr.replace(exp, lambda arg: Dummy(), map=True) factored = protected.factor() new_old = {v: k for k, v in old_new.items()} return factored.replace(_d - 1, lambda d: expm1(new_old[d].args[0])).xreplace(new_old) def _expm1_value(e): numbers, non_num = sift(e.args, lambda arg: arg.is_number, binary=True) non_num_exp, non_num_other = sift(non_num, lambda arg: arg.has(exp), binary=True) numsum = sum(numbers) new_exp_terms, done = [], False for exp_term in non_num_exp: if done: new_exp_terms.append(exp_term) else: looking_at = exp_term + numsum attempt = _try_expm1(looking_at) if looking_at == attempt: new_exp_terms.append(exp_term) else: done = True new_exp_terms.append(attempt) if not done: new_exp_terms.append(numsum) return e.func(*chain(new_exp_terms, non_num_other)) expm1_opt = ReplaceOptim(lambda e: e.is_Add, _expm1_value) log1p_opt = ReplaceOptim( lambda e: isinstance(e, log), lambda l: expand_log(l.replace( log, lambda arg: log(arg.factor()) )).replace(log(_u+1), log1p(_u)) ) def create_expand_pow_optimization(limit): """ Creates an instance of :class:`ReplaceOptim` for expanding ``Pow``. The requirements for expansions are that the base needs to be a symbol and the exponent needs to be an integer (and be less than or equal to ``limit``). Parameters ========== limit : int The highest power which is expanded into multiplication. Examples ======== >>> from sympy import Symbol, sin >>> from sympy.codegen.rewriting import create_expand_pow_optimization >>> x = Symbol('x') >>> expand_opt = create_expand_pow_optimization(3) >>> expand_opt(x**5 + x**3) x**5 + x*x*x >>> expand_opt(x**5 + x**3 + sin(x)**3) x**5 + x*x*x + sin(x)**3 """ return ReplaceOptim( lambda e: e.is_Pow and e.base.is_symbol and e.exp.is_integer and e.exp.is_nonnegative and e.exp <= limit, lambda p: Mul(*([p.base]*p.exp), evaluate=False) ) # Collections of optimizations: optims_c99 = (expm1_opt, log1p_opt, exp2_opt, log2_opt, log2const_opt)
23b761d78f84d34854c6b4b3992d26343ded17dc2c316c618c269be031767127
""" Types used to represent a full function/module as an Abstract Syntax Tree. Most types are small, and are merely used as tokens in the AST. A tree diagram has been included below to illustrate the relationships between the AST types. AST Type Tree ------------- :: *Basic* |--->AssignmentBase | |--->Assignment | |--->AugmentedAssignment | |--->AddAugmentedAssignment | |--->SubAugmentedAssignment | |--->MulAugmentedAssignment | |--->DivAugmentedAssignment | |--->ModAugmentedAssignment | |--->CodeBlock | | |--->Token | |--->Attribute | |--->For | |--->String | | |--->QuotedString | | |--->Comment | |--->Type | | |--->IntBaseType | | | |--->_SizedIntType | | | |--->SignedIntType | | | |--->UnsignedIntType | | |--->FloatBaseType | | |--->FloatType | | |--->ComplexBaseType | | |--->ComplexType | |--->Node | | |--->Variable | | | |---> Pointer | | |--->FunctionPrototype | | |--->FunctionDefinition | |--->Element | |--->Declaration | |--->While | |--->Scope | |--->Stream | |--->Print | |--->FunctionCall | |--->BreakToken | |--->ContinueToken | |--->NoneToken | |--->Statement |--->Return Predefined types ---------------- A number of ``Type`` instances are provided in the ``sympy.codegen.ast`` module for convenience. Perhaps the two most common ones for code-generation (of numeric codes) are ``float32`` and ``float64`` (known as single and double precision respectively). There are also precision generic versions of Types (for which the codeprinters selects the underlying data type at time of printing): ``real``, ``integer``, ``complex_``, ``bool_``. The other ``Type`` instances defined are: - ``intc``: Integer type used by C's "int". - ``intp``: Integer type used by C's "unsigned". - ``int8``, ``int16``, ``int32``, ``int64``: n-bit integers. - ``uint8``, ``uint16``, ``uint32``, ``uint64``: n-bit unsigned integers. - ``float80``: known as "extended precision" on modern x86/amd64 hardware. - ``complex64``: Complex number represented by two ``float32`` numbers - ``complex128``: Complex number represented by two ``float64`` numbers Using the nodes --------------- It is possible to construct simple algorithms using the AST nodes. Let's construct a loop applying Newton's method:: >>> from sympy import symbols, cos >>> from sympy.codegen.ast import While, Assignment, aug_assign, Print >>> t, dx, x = symbols('tol delta val') >>> expr = cos(x) - x**3 >>> whl = While(abs(dx) > t, [ ... Assignment(dx, -expr/expr.diff(x)), ... aug_assign(x, '+', dx), ... Print([x]) ... ]) >>> from sympy.printing import pycode >>> py_str = pycode(whl) >>> print(py_str) while (abs(delta) > tol): delta = (val**3 - math.cos(val))/(-3*val**2 - math.sin(val)) val += delta print(val) >>> import math >>> tol, val, delta = 1e-5, 0.5, float('inf') >>> exec(py_str) 1.1121416371 0.909672693737 0.867263818209 0.865477135298 0.865474033111 >>> print('%3.1g' % (math.cos(val) - val**3)) -3e-11 If we want to generate Fortran code for the same while loop we simple call ``fcode``:: >>> from sympy.printing.fcode import fcode >>> print(fcode(whl, standard=2003, source_format='free')) do while (abs(delta) > tol) delta = (val**3 - cos(val))/(-3*val**2 - sin(val)) val = val + delta print *, val end do There is a function constructing a loop (or a complete function) like this in :mod:`sympy.codegen.algorithms`. """ from __future__ import print_function, division from itertools import chain from collections import defaultdict from sympy.core import Symbol, Tuple, Dummy from sympy.core.basic import Basic from sympy.core.compatibility import string_types from sympy.core.expr import Expr from sympy.core.numbers import Float, Integer from sympy.core.relational import Lt, Le, Ge, Gt from sympy.core.sympify import _sympify, sympify, SympifyError from sympy.utilities.iterables import iterable def _mk_Tuple(args): """ Create a Sympy Tuple object from an iterable, converting Python strings to AST strings. Parameters ========== args: iterable Arguments to :class:`sympy.Tuple`. Returns ======= sympy.Tuple """ args = [String(arg) if isinstance(arg, string_types) else arg for arg in args] return Tuple(*args) class Token(Basic): """ Base class for the AST types. Defining fields are set in ``__slots__``. Attributes (defined in __slots__) are only allowed to contain instances of Basic (unless atomic, see ``String``). The arguments to ``__new__()`` correspond to the attributes in the order defined in ``__slots__`. The ``defaults`` class attribute is a dictionary mapping attribute names to their default values. Subclasses should not need to override the ``__new__()`` method. They may define a class or static method named ``_construct_<attr>`` for each attribute to process the value passed to ``__new__()``. Attributes listed in the class attribute ``not_in_args`` are not passed to :class:`sympy.Basic`. """ __slots__ = [] defaults = {} not_in_args = [] indented_args = ['body'] @property def is_Atom(self): return len(self.__slots__) == 0 @classmethod def _get_constructor(cls, attr): """ Get the constructor function for an attribute by name. """ return getattr(cls, '_construct_%s' % attr, lambda x: x) @classmethod def _construct(cls, attr, arg): """ Construct an attribute value from argument passed to ``__new__()``. """ if arg == None: return cls.defaults.get(attr, none) else: if isinstance(arg, Dummy): # sympy's replace uses Dummy instances return arg else: return cls._get_constructor(attr)(arg) def __new__(cls, *args, **kwargs): # Pass through existing instances when given as sole argument if len(args) == 1 and not kwargs and isinstance(args[0], cls): return args[0] if len(args) > len(cls.__slots__): raise ValueError("Too many arguments (%d), expected at most %d" % (len(args), len(cls.__slots__))) attrvals = [] # Process positional arguments for attrname, argval in zip(cls.__slots__, args): if attrname in kwargs: raise TypeError('Got multiple values for attribute %r' % attrname) attrvals.append(cls._construct(attrname, argval)) # Process keyword arguments for attrname in cls.__slots__[len(args):]: if attrname in kwargs: argval = kwargs.pop(attrname) elif attrname in cls.defaults: argval = cls.defaults[attrname] else: raise TypeError('No value for %r given and attribute has no default' % attrname) attrvals.append(cls._construct(attrname, argval)) if kwargs: raise ValueError("Unknown keyword arguments: %s" % ' '.join(kwargs)) # Parent constructor basic_args = [ val for attr, val in zip(cls.__slots__, attrvals) if attr not in cls.not_in_args ] obj = Basic.__new__(cls, *basic_args) # Set attributes for attr, arg in zip(cls.__slots__, attrvals): setattr(obj, attr, arg) return obj def __eq__(self, other): if not isinstance(other, self.__class__): return False for attr in self.__slots__: if getattr(self, attr) != getattr(other, attr): return False return True def _hashable_content(self): return tuple([getattr(self, attr) for attr in self.__slots__]) def __hash__(self): return super(Token, self).__hash__() def _joiner(self, k, indent_level): return (',\n' + ' '*indent_level) if k in self.indented_args else ', ' def _indented(self, printer, k, v, *args, **kwargs): il = printer._context['indent_level'] def _print(arg): if isinstance(arg, Token): return printer._print(arg, *args, joiner=self._joiner(k, il), **kwargs) else: return printer._print(v, *args, **kwargs) if isinstance(v, Tuple): joined = self._joiner(k, il).join([_print(arg) for arg in v.args]) if k in self.indented_args: return '(\n' + ' '*il + joined + ',\n' + ' '*(il - 4) + ')' else: return ('({0},)' if len(v.args) == 1 else '({0})').format(joined) else: return _print(v) def _sympyrepr(self, printer, *args, **kwargs): from sympy.printing.printer import printer_context exclude = kwargs.get('exclude', ()) values = [getattr(self, k) for k in self.__slots__] indent_level = printer._context.get('indent_level', 0) joiner = kwargs.pop('joiner', ', ') arg_reprs = [] for i, (attr, value) in enumerate(zip(self.__slots__, values)): if attr in exclude: continue # Skip attributes which have the default value if attr in self.defaults and value == self.defaults[attr]: continue ilvl = indent_level + 4 if attr in self.indented_args else 0 with printer_context(printer, indent_level=ilvl): indented = self._indented(printer, attr, value, *args, **kwargs) arg_reprs.append(('{1}' if i == 0 else '{0}={1}').format(attr, indented.lstrip())) return "{0}({1})".format(self.__class__.__name__, joiner.join(arg_reprs)) _sympystr = _sympyrepr def __repr__(self): # sympy.core.Basic.__repr__ uses sstr from sympy.printing import srepr return srepr(self) def kwargs(self, exclude=(), apply=None): """ Get instance's attributes as dict of keyword arguments. Parameters ========== exclude : collection of str Collection of keywords to exclude. apply : callable, optional Function to apply to all values. """ kwargs = {k: getattr(self, k) for k in self.__slots__ if k not in exclude} if apply is not None: return {k: apply(v) for k, v in kwargs.items()} else: return kwargs class BreakToken(Token): """ Represents 'break' in C/Python ('exit' in Fortran). Use the premade instance ``break_`` or instantiate manually. Examples ======== >>> from sympy.printing import ccode, fcode >>> from sympy.codegen.ast import break_ >>> ccode(break_) 'break' >>> fcode(break_, source_format='free') 'exit' """ break_ = BreakToken() class ContinueToken(Token): """ Represents 'continue' in C/Python ('cycle' in Fortran) Use the premade instance ``continue_`` or instantiate manually. Examples ======== >>> from sympy.printing import ccode, fcode >>> from sympy.codegen.ast import continue_ >>> ccode(continue_) 'continue' >>> fcode(continue_, source_format='free') 'cycle' """ continue_ = ContinueToken() class NoneToken(Token): """ The AST equivalence of Python's NoneType The corresponding instance of Python's ``None`` is ``none``. Examples ======== >>> from sympy.codegen.ast import none, Variable >>> from sympy.printing.pycode import pycode >>> print(pycode(Variable('x').as_Declaration(value=none))) x = None """ def __eq__(self, other): return other is None or isinstance(other, NoneToken) def _hashable_content(self): return () def __hash__(self): return super(Token, self).__hash__() none = NoneToken() class AssignmentBase(Basic): """ Abstract base class for Assignment and AugmentedAssignment. Attributes: =========== op : str Symbol for assignment operator, e.g. "=", "+=", etc. """ def __new__(cls, lhs, rhs): lhs = _sympify(lhs) rhs = _sympify(rhs) cls._check_args(lhs, rhs) return super(AssignmentBase, cls).__new__(cls, lhs, rhs) @property def lhs(self): return self.args[0] @property def rhs(self): return self.args[1] @classmethod def _check_args(cls, lhs, rhs): """ Check arguments to __new__ and raise exception if any problems found. Derived classes may wish to override this. """ from sympy.matrices.expressions.matexpr import ( MatrixElement, MatrixSymbol) from sympy.tensor.indexed import Indexed # Tuple of things that can be on the lhs of an assignment assignable = (Symbol, MatrixSymbol, MatrixElement, Indexed, Element, Variable) if not isinstance(lhs, assignable): raise TypeError("Cannot assign to lhs of type %s." % type(lhs)) # Indexed types implement shape, but don't define it until later. This # causes issues in assignment validation. For now, matrices are defined # as anything with a shape that is not an Indexed lhs_is_mat = hasattr(lhs, 'shape') and not isinstance(lhs, Indexed) rhs_is_mat = hasattr(rhs, 'shape') and not isinstance(rhs, Indexed) # If lhs and rhs have same structure, then this assignment is ok if lhs_is_mat: if not rhs_is_mat: raise ValueError("Cannot assign a scalar to a matrix.") elif lhs.shape != rhs.shape: raise ValueError("Dimensions of lhs and rhs don't align.") elif rhs_is_mat and not lhs_is_mat: raise ValueError("Cannot assign a matrix to a scalar.") class Assignment(AssignmentBase): """ Represents variable assignment for code generation. Parameters ========== lhs : Expr Sympy object representing the lhs of the expression. These should be singular objects, such as one would use in writing code. Notable types include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that subclass these types are also supported. rhs : Expr Sympy object representing the rhs of the expression. This can be any type, provided its shape corresponds to that of the lhs. For example, a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as the dimensions will not align. Examples ======== >>> from sympy import symbols, MatrixSymbol, Matrix >>> from sympy.codegen.ast import Assignment >>> x, y, z = symbols('x, y, z') >>> Assignment(x, y) Assignment(x, y) >>> Assignment(x, 0) Assignment(x, 0) >>> A = MatrixSymbol('A', 1, 3) >>> mat = Matrix([x, y, z]).T >>> Assignment(A, mat) Assignment(A, Matrix([[x, y, z]])) >>> Assignment(A[0, 1], x) Assignment(A[0, 1], x) """ op = ':=' class AugmentedAssignment(AssignmentBase): """ Base class for augmented assignments. Attributes: =========== binop : str Symbol for binary operation being applied in the assignment, such as "+", "*", etc. """ @property def op(self): return self.binop + '=' class AddAugmentedAssignment(AugmentedAssignment): binop = '+' class SubAugmentedAssignment(AugmentedAssignment): binop = '-' class MulAugmentedAssignment(AugmentedAssignment): binop = '*' class DivAugmentedAssignment(AugmentedAssignment): binop = '/' class ModAugmentedAssignment(AugmentedAssignment): binop = '%' # Mapping from binary op strings to AugmentedAssignment subclasses augassign_classes = { cls.binop: cls for cls in [ AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment ] } def aug_assign(lhs, op, rhs): """ Create 'lhs op= rhs'. Represents augmented variable assignment for code generation. This is a convenience function. You can also use the AugmentedAssignment classes directly, like AddAugmentedAssignment(x, y). Parameters ========== lhs : Expr Sympy object representing the lhs of the expression. These should be singular objects, such as one would use in writing code. Notable types include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that subclass these types are also supported. op : str Operator (+, -, /, \\*, %). rhs : Expr Sympy object representing the rhs of the expression. This can be any type, provided its shape corresponds to that of the lhs. For example, a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as the dimensions will not align. Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import aug_assign >>> x, y = symbols('x, y') >>> aug_assign(x, '+', y) AddAugmentedAssignment(x, y) """ if op not in augassign_classes: raise ValueError("Unrecognized operator %s" % op) return augassign_classes[op](lhs, rhs) class CodeBlock(Basic): """ Represents a block of code For now only assignments are supported. This restriction will be lifted in the future. Useful attributes on this object are: ``left_hand_sides``: Tuple of left-hand sides of assignments, in order. ``left_hand_sides``: Tuple of right-hand sides of assignments, in order. ``free_symbols``: Free symbols of the expressions in the right-hand sides which do not appear in the left-hand side of an assignment. Useful methods on this object are: ``topological_sort``: Class method. Return a CodeBlock with assignments sorted so that variables are assigned before they are used. ``cse``: Return a new CodeBlock with common subexpressions eliminated and pulled out as assignments. Examples ======== >>> from sympy import symbols, ccode >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y = symbols('x y') >>> c = CodeBlock(Assignment(x, 1), Assignment(y, x + 1)) >>> print(ccode(c)) x = 1; y = x + 1; """ def __new__(cls, *args): left_hand_sides = [] right_hand_sides = [] for i in args: if isinstance(i, Assignment): lhs, rhs = i.args left_hand_sides.append(lhs) right_hand_sides.append(rhs) obj = Basic.__new__(cls, *args) obj.left_hand_sides = Tuple(*left_hand_sides) obj.right_hand_sides = Tuple(*right_hand_sides) return obj def __iter__(self): return iter(self.args) def _sympyrepr(self, printer, *args, **kwargs): il = printer._context.get('indent_level', 0) joiner = ',\n' + ' '*il joined = joiner.join(map(printer._print, self.args)) return ('{0}(\n'.format(' '*(il-4) + self.__class__.__name__,) + ' '*il + joined + '\n' + ' '*(il - 4) + ')') _sympystr = _sympyrepr @property def free_symbols(self): return super(CodeBlock, self).free_symbols - set(self.left_hand_sides) @classmethod def topological_sort(cls, assignments): """ Return a CodeBlock with topologically sorted assignments so that variables are assigned before they are used. The existing order of assignments is preserved as much as possible. This function assumes that variables are assigned to only once. This is a class constructor so that the default constructor for CodeBlock can error when variables are used before they are assigned. Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y, z = symbols('x y z') >>> assignments = [ ... Assignment(x, y + z), ... Assignment(y, z + 1), ... Assignment(z, 2), ... ] >>> CodeBlock.topological_sort(assignments) CodeBlock( Assignment(z, 2), Assignment(y, z + 1), Assignment(x, y + z) ) """ from sympy.utilities.iterables import topological_sort if not all(isinstance(i, Assignment) for i in assignments): # Will support more things later raise NotImplementedError("CodeBlock.topological_sort only supports Assignments") if any(isinstance(i, AugmentedAssignment) for i in assignments): raise NotImplementedError("CodeBlock.topological_sort doesn't yet work with AugmentedAssignments") # Create a graph where the nodes are assignments and there is a directed edge # between nodes that use a variable and nodes that assign that # variable, like # [(x := 1, y := x + 1), (x := 1, z := y + z), (y := x + 1, z := y + z)] # If we then topologically sort these nodes, they will be in # assignment order, like # x := 1 # y := x + 1 # z := y + z # A = The nodes # # enumerate keeps nodes in the same order they are already in if # possible. It will also allow us to handle duplicate assignments to # the same variable when those are implemented. A = list(enumerate(assignments)) # var_map = {variable: [nodes for which this variable is assigned to]} # like {x: [(1, x := y + z), (4, x := 2 * w)], ...} var_map = defaultdict(list) for node in A: i, a = node var_map[a.lhs].append(node) # E = Edges in the graph E = [] for dst_node in A: i, a = dst_node for s in a.rhs.free_symbols: for src_node in var_map[s]: E.append((src_node, dst_node)) ordered_assignments = topological_sort([A, E]) # De-enumerate the result return cls(*[a for i, a in ordered_assignments]) def cse(self, symbols=None, optimizations=None, postprocess=None, order='canonical'): """ Return a new code block with common subexpressions eliminated See the docstring of :func:`sympy.simplify.cse_main.cse` for more information. Examples ======== >>> from sympy import symbols, sin >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y, z = symbols('x y z') >>> c = CodeBlock( ... Assignment(x, 1), ... Assignment(y, sin(x) + 1), ... Assignment(z, sin(x) - 1), ... ) ... >>> c.cse() CodeBlock( Assignment(x, 1), Assignment(x0, sin(x)), Assignment(y, x0 + 1), Assignment(z, x0 - 1) ) """ from sympy.simplify.cse_main import cse from sympy.utilities.iterables import numbered_symbols, filter_symbols # Check that the CodeBlock only contains assignments to unique variables if not all(isinstance(i, Assignment) for i in self.args): # Will support more things later raise NotImplementedError("CodeBlock.cse only supports Assignments") if any(isinstance(i, AugmentedAssignment) for i in self.args): raise NotImplementedError("CodeBlock.cse doesn't yet work with AugmentedAssignments") for i, lhs in enumerate(self.left_hand_sides): if lhs in self.left_hand_sides[:i]: raise NotImplementedError("Duplicate assignments to the same " "variable are not yet supported (%s)" % lhs) # Ensure new symbols for subexpressions do not conflict with existing existing_symbols = self.atoms(Symbol) if symbols is None: symbols = numbered_symbols() symbols = filter_symbols(symbols, existing_symbols) replacements, reduced_exprs = cse(list(self.right_hand_sides), symbols=symbols, optimizations=optimizations, postprocess=postprocess, order=order) new_block = [Assignment(var, expr) for var, expr in zip(self.left_hand_sides, reduced_exprs)] new_assignments = [Assignment(var, expr) for var, expr in replacements] return self.topological_sort(new_assignments + new_block) class For(Token): """Represents a 'for-loop' in the code. Expressions are of the form: "for target in iter: body..." Parameters ========== target : symbol iter : iterable body : CodeBlock or iterable ! When passed an iterable it is used to instantiate a CodeBlock. Examples ======== >>> from sympy import symbols, Range >>> from sympy.codegen.ast import aug_assign, For >>> x, i, j, k = symbols('x i j k') >>> for_i = For(i, Range(10), [aug_assign(x, '+', i*j*k)]) >>> for_i # doctest: -NORMALIZE_WHITESPACE For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) >>> for_ji = For(j, Range(7), [for_i]) >>> for_ji # doctest: -NORMALIZE_WHITESPACE For(j, iterable=Range(0, 7, 1), body=CodeBlock( For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) )) >>> for_kji =For(k, Range(5), [for_ji]) >>> for_kji # doctest: -NORMALIZE_WHITESPACE For(k, iterable=Range(0, 5, 1), body=CodeBlock( For(j, iterable=Range(0, 7, 1), body=CodeBlock( For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) )) )) """ __slots__ = ['target', 'iterable', 'body'] _construct_target = staticmethod(_sympify) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) @classmethod def _construct_iterable(cls, itr): if not iterable(itr): raise TypeError("iterable must be an iterable") if isinstance(itr, list): # _sympify errors on lists because they are mutable itr = tuple(itr) return _sympify(itr) class String(Token): """ SymPy object representing a string. Atomic object which is not an expression (as opposed to Symbol). Parameters ========== text : str Examples ======== >>> from sympy.codegen.ast import String >>> f = String('foo') >>> f foo >>> str(f) 'foo' >>> f.text 'foo' >>> print(repr(f)) String('foo') """ __slots__ = ['text'] not_in_args = ['text'] is_Atom = True @classmethod def _construct_text(cls, text): if not isinstance(text, string_types): raise TypeError("Argument text is not a string type.") return text def _sympystr(self, printer, *args, **kwargs): return self.text class QuotedString(String): """ Represents a string which should be printed with quotes. """ class Comment(String): """ Represents a comment. """ class Node(Token): """ Subclass of Token, carrying the attribute 'attrs' (Tuple) Examples ======== >>> from sympy.codegen.ast import Node, value_const, pointer_const >>> n1 = Node([value_const]) >>> n1.attr_params('value_const') # get the parameters of attribute (by name) () >>> from sympy.codegen.fnodes import dimension >>> n2 = Node([value_const, dimension(5, 3)]) >>> n2.attr_params(value_const) # get the parameters of attribute (by Attribute instance) () >>> n2.attr_params('dimension') # get the parameters of attribute (by name) (5, 3) >>> n2.attr_params(pointer_const) is None True """ __slots__ = ['attrs'] defaults = {'attrs': Tuple()} _construct_attrs = staticmethod(_mk_Tuple) def attr_params(self, looking_for): """ Returns the parameters of the Attribute with name ``looking_for`` in self.attrs """ for attr in self.attrs: if str(attr.name) == str(looking_for): return attr.parameters class Type(Token): """ Represents a type. The naming is a super-set of NumPy naming. Type has a classmethod ``from_expr`` which offer type deduction. It also has a method ``cast_check`` which casts the argument to its type, possibly raising an exception if rounding error is not within tolerances, or if the value is not representable by the underlying data type (e.g. unsigned integers). Parameters ========== name : str Name of the type, e.g. ``object``, ``int16``, ``float16`` (where the latter two would use the ``Type`` sub-classes ``IntType`` and ``FloatType`` respectively). If a ``Type`` instance is given, the said instance is returned. Examples ======== >>> from sympy.codegen.ast import Type >>> t = Type.from_expr(42) >>> t integer >>> print(repr(t)) IntBaseType(String('integer')) >>> from sympy.codegen.ast import uint8 >>> uint8.cast_check(-1) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Minimum value for data type bigger than new value. >>> from sympy.codegen.ast import float32 >>> v6 = 0.123456 >>> float32.cast_check(v6) 0.123456 >>> v10 = 12345.67894 >>> float32.cast_check(v10) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> boost_mp50 = Type('boost::multiprecision::cpp_dec_float_50') >>> from sympy import Symbol >>> from sympy.printing.cxxcode import cxxcode >>> from sympy.codegen.ast import Declaration, Variable >>> cxxcode(Declaration(Variable('x', type=boost_mp50))) 'boost::multiprecision::cpp_dec_float_50 x' References ========== .. [1] https://docs.scipy.org/doc/numpy/user/basics.types.html """ __slots__ = ['name'] _construct_name = String def _sympystr(self, printer, *args, **kwargs): return str(self.name) @classmethod def from_expr(cls, expr): """ Deduces type from an expression or a ``Symbol``. Parameters ========== expr : number or SymPy object The type will be deduced from type or properties. Examples ======== >>> from sympy.codegen.ast import Type, integer, complex_ >>> Type.from_expr(2) == integer True >>> from sympy import Symbol >>> Type.from_expr(Symbol('z', complex=True)) == complex_ True >>> Type.from_expr(sum) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Could not deduce type from expr. Raises ====== ValueError when type deduction fails. """ if isinstance(expr, (float, Float)): return real if isinstance(expr, (int, Integer)) or getattr(expr, 'is_integer', False): return integer if getattr(expr, 'is_real', False): return real if isinstance(expr, complex) or getattr(expr, 'is_complex', False): return complex_ if isinstance(expr, bool) or getattr(expr, 'is_Relational', False): return bool_ else: raise ValueError("Could not deduce type from expr.") def _check(self, value): pass def cast_check(self, value, rtol=None, atol=0, limits=None, precision_targets=None): """ Casts a value to the data type of the instance. Parameters ========== value : number rtol : floating point number Relative tolerance. (will be deduced if not given). atol : floating point number Absolute tolerance (in addition to ``rtol``). limits : dict Values given by ``limits.h``, x86/IEEE754 defaults if not given. Default: :attr:`default_limits`. type_aliases : dict Maps substitutions for Type, e.g. {integer: int64, real: float32} Examples ======== >>> from sympy.codegen.ast import Type, integer, float32, int8 >>> integer.cast_check(3.0) == 3 True >>> float32.cast_check(1e-40) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Minimum value for data type bigger than new value. >>> int8.cast_check(256) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Maximum value for data type smaller than new value. >>> v10 = 12345.67894 >>> float32.cast_check(v10) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> from sympy.codegen.ast import float64 >>> float64.cast_check(v10) 12345.67894 >>> from sympy import Float >>> v18 = Float('0.123456789012345646') >>> float64.cast_check(v18) Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> from sympy.codegen.ast import float80 >>> float80.cast_check(v18) 0.123456789012345649 """ val = sympify(value) ten = Integer(10) exp10 = getattr(self, 'decimal_dig', None) if rtol is None: rtol = 1e-15 if exp10 is None else 2.0*ten**(-exp10) def tol(num): return atol + rtol*abs(num) new_val = self.cast_nocheck(value) self._check(new_val) delta = new_val - val if abs(delta) > tol(val): # rounding, e.g. int(3.5) != 3.5 raise ValueError("Casting gives a significantly different value.") return new_val class IntBaseType(Type): """ Integer base type, contains no size information. """ __slots__ = ['name'] cast_nocheck = lambda self, i: Integer(int(i)) class _SizedIntType(IntBaseType): __slots__ = ['name', 'nbits'] _construct_nbits = Integer def _check(self, value): if value < self.min: raise ValueError("Value is too small: %d < %d" % (value, self.min)) if value > self.max: raise ValueError("Value is too big: %d > %d" % (value, self.max)) class SignedIntType(_SizedIntType): """ Represents a signed integer type. """ @property def min(self): return -2**(self.nbits-1) @property def max(self): return 2**(self.nbits-1) - 1 class UnsignedIntType(_SizedIntType): """ Represents an unsigned integer type. """ @property def min(self): return 0 @property def max(self): return 2**self.nbits - 1 two = Integer(2) class FloatBaseType(Type): """ Represents a floating point number type. """ cast_nocheck = Float class FloatType(FloatBaseType): """ Represents a floating point type with fixed bit width. Base 2 & one sign bit is assumed. Parameters ========== name : str Name of the type. nbits : integer Number of bits used (storage). nmant : integer Number of bits used to represent the mantissa. nexp : integer Number of bits used to represent the mantissa. Examples ======== >>> from sympy import S, Float >>> from sympy.codegen.ast import FloatType >>> half_precision = FloatType('f16', nbits=16, nmant=10, nexp=5) >>> half_precision.max 65504 >>> half_precision.tiny == S(2)**-14 True >>> half_precision.eps == S(2)**-10 True >>> half_precision.dig == 3 True >>> half_precision.decimal_dig == 5 True >>> half_precision.cast_check(1.0) 1.0 >>> half_precision.cast_check(1e5) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Maximum value for data type smaller than new value. """ __slots__ = ['name', 'nbits', 'nmant', 'nexp'] _construct_nbits = _construct_nmant = _construct_nexp = Integer @property def max_exponent(self): """ The largest positive number n, such that 2**(n - 1) is a representable finite value. """ # cf. C++'s ``std::numeric_limits::max_exponent`` return two**(self.nexp - 1) @property def min_exponent(self): """ The lowest negative number n, such that 2**(n - 1) is a valid normalized number. """ # cf. C++'s ``std::numeric_limits::min_exponent`` return 3 - self.max_exponent @property def max(self): """ Maximum value representable. """ return (1 - two**-(self.nmant+1))*two**self.max_exponent @property def tiny(self): """ The minimum positive normalized value. """ # See C macros: FLT_MIN, DBL_MIN, LDBL_MIN # or C++'s ``std::numeric_limits::min`` # or numpy.finfo(dtype).tiny return two**(self.min_exponent - 1) @property def eps(self): """ Difference between 1.0 and the next representable value. """ return two**(-self.nmant) @property def dig(self): """ Number of decimal digits that are guaranteed to be preserved in text. When converting text -> float -> text, you are guaranteed that at least ``dig`` number of digits are preserved with respect to rounding or overflow. """ from sympy.functions import floor, log return floor(self.nmant * log(2)/log(10)) @property def decimal_dig(self): """ Number of digits needed to store & load without loss. Number of decimal digits needed to guarantee that two consecutive conversions (float -> text -> float) to be idempotent. This is useful when one do not want to loose precision due to rounding errors when storing a floating point value as text. """ from sympy.functions import ceiling, log return ceiling((self.nmant + 1) * log(2)/log(10) + 1) def cast_nocheck(self, value): """ Casts without checking if out of bounds or subnormal. """ return Float(str(sympify(value).evalf(self.decimal_dig)), self.decimal_dig) def _check(self, value): if value < -self.max: raise ValueError("Value is too small: %d < %d" % (value, -self.max)) if value > self.max: raise ValueError("Value is too big: %d > %d" % (value, self.max)) if abs(value) < self.tiny: raise ValueError("Smallest (absolute) value for data type bigger than new value.") class ComplexBaseType(FloatBaseType): def cast_nocheck(self, value): """ Casts without checking if out of bounds or subnormal. """ from sympy.functions import re, im return ( super(ComplexBaseType, self).cast_nocheck(re(value)) + super(ComplexBaseType, self).cast_nocheck(im(value))*1j ) def _check(self, value): from sympy.functions import re, im super(ComplexBaseType, self)._check(re(value)) super(ComplexBaseType, self)._check(im(value)) class ComplexType(ComplexBaseType, FloatType): """ Represents a complex floating point number. """ # NumPy types: intc = IntBaseType('intc') intp = IntBaseType('intp') int8 = SignedIntType('int8', 8) int16 = SignedIntType('int16', 16) int32 = SignedIntType('int32', 32) int64 = SignedIntType('int64', 64) uint8 = UnsignedIntType('uint8', 8) uint16 = UnsignedIntType('uint16', 16) uint32 = UnsignedIntType('uint32', 32) uint64 = UnsignedIntType('uint64', 64) float16 = FloatType('float16', 16, nexp=5, nmant=10) # IEEE 754 binary16, Half precision float32 = FloatType('float32', 32, nexp=8, nmant=23) # IEEE 754 binary32, Single precision float64 = FloatType('float64', 64, nexp=11, nmant=52) # IEEE 754 binary64, Double precision float80 = FloatType('float80', 80, nexp=15, nmant=63) # x86 extended precision (1 integer part bit), "long double" float128 = FloatType('float128', 128, nexp=15, nmant=112) # IEEE 754 binary128, Quadruple precision float256 = FloatType('float256', 256, nexp=19, nmant=236) # IEEE 754 binary256, Octuple precision complex64 = ComplexType('complex64', nbits=64, **float32.kwargs(exclude=('name', 'nbits'))) complex128 = ComplexType('complex128', nbits=128, **float64.kwargs(exclude=('name', 'nbits'))) # Generic types (precision may be chosen by code printers): untyped = Type('untyped') real = FloatBaseType('real') integer = IntBaseType('integer') complex_ = ComplexBaseType('complex') bool_ = Type('bool') class Attribute(Token): """ Attribute (possibly parametrized) For use with :class:`sympy.codegen.ast.Node` (which takes instances of ``Attribute`` as ``attrs``). Parameters ========== name : str parameters : Tuple Examples ======== >>> from sympy.codegen.ast import Attribute >>> volatile = Attribute('volatile') >>> volatile volatile >>> print(repr(volatile)) Attribute(String('volatile')) >>> a = Attribute('foo', [1, 2, 3]) >>> a foo(1, 2, 3) >>> a.parameters == (1, 2, 3) True """ __slots__ = ['name', 'parameters'] defaults = {'parameters': Tuple()} _construct_name = String _construct_parameters = staticmethod(_mk_Tuple) def _sympystr(self, printer, *args, **kwargs): result = str(self.name) if self.parameters: result += '(%s)' % ', '.join(map(lambda arg: printer._print( arg, *args, **kwargs), self.parameters)) return result value_const = Attribute('value_const') pointer_const = Attribute('pointer_const') class Variable(Node): """ Represents a variable Parameters ========== symbol : Symbol type : Type (optional) Type of the variable. attrs : iterable of Attribute instances Will be stored as a Tuple. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Variable, float32, integer >>> x = Symbol('x') >>> v = Variable(x, type=float32) >>> v.attrs () >>> v == Variable('x') False >>> v == Variable('x', type=float32) True >>> v Variable(x, type=float32) One may also construct a ``Variable`` instance with the type deduced from assumptions about the symbol using the ``deduced`` classmethod: >>> i = Symbol('i', integer=True) >>> v = Variable.deduced(i) >>> v.type == integer True >>> v == Variable('i') False >>> from sympy.codegen.ast import value_const >>> value_const in v.attrs False >>> w = Variable('w', attrs=[value_const]) >>> w Variable(w, attrs=(value_const,)) >>> value_const in w.attrs True >>> w.as_Declaration(value=42) Declaration(Variable(w, value=42, attrs=(value_const,))) """ __slots__ = ['symbol', 'type', 'value'] + Node.__slots__ defaults = dict(chain(Node.defaults.items(), { 'type': untyped, 'value': none }.items())) _construct_symbol = staticmethod(sympify) _construct_value = staticmethod(sympify) @classmethod def deduced(cls, symbol, value=None, attrs=Tuple(), cast_check=True): """ Alt. constructor with type deduction from ``Type.from_expr``. Deduces type primarily from ``symbol``, secondarily from ``value``. Parameters ========== symbol : Symbol value : expr (optional) value of the variable. attrs : iterable of Attribute instances cast_check : bool Whether to apply ``Type.cast_check`` on ``value``. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Variable, complex_ >>> n = Symbol('n', integer=True) >>> str(Variable.deduced(n).type) 'integer' >>> x = Symbol('x', real=True) >>> v = Variable.deduced(x) >>> v.type real >>> z = Symbol('z', complex=True) >>> Variable.deduced(z).type == complex_ True """ if isinstance(symbol, Variable): return symbol try: type_ = Type.from_expr(symbol) except ValueError: type_ = Type.from_expr(value) if value is not None and cast_check: value = type_.cast_check(value) return cls(symbol, type=type_, value=value, attrs=attrs) def as_Declaration(self, **kwargs): """ Convenience method for creating a Declaration instance. If the variable of the Declaration need to wrap a modified variable keyword arguments may be passed (overriding e.g. the ``value`` of the Variable instance). Examples ======== >>> from sympy.codegen.ast import Variable >>> x = Variable('x') >>> decl1 = x.as_Declaration() >>> decl1.variable.value == None True >>> decl2 = x.as_Declaration(value=42.0) >>> decl2.variable.value == 42 True """ kw = self.kwargs() kw.update(kwargs) return Declaration(self.func(**kw)) def _relation(self, rhs, op): try: rhs = _sympify(rhs) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, rhs)) return op(self, rhs, evaluate=False) __lt__ = lambda self, other: self._relation(other, Lt) __le__ = lambda self, other: self._relation(other, Le) __ge__ = lambda self, other: self._relation(other, Ge) __gt__ = lambda self, other: self._relation(other, Gt) class Pointer(Variable): """ Represents a pointer. See ``Variable``. Examples ======== Can create instances of ``Element``: >>> from sympy import Symbol >>> from sympy.codegen.ast import Pointer >>> i = Symbol('i', integer=True) >>> p = Pointer('x') >>> p[i+1] Element(x, indices=((i + 1,),)) """ def __getitem__(self, key): try: return Element(self.symbol, key) except TypeError: return Element(self.symbol, (key,)) class Element(Token): """ Element in (a possibly N-dimensional) array. Examples ======== >>> from sympy.codegen.ast import Element >>> elem = Element('x', 'ijk') >>> elem.symbol.name == 'x' True >>> elem.indices (i, j, k) >>> from sympy import ccode >>> ccode(elem) 'x[i][j][k]' >>> ccode(Element('x', 'ijk', strides='lmn', offset='o')) 'x[i*l + j*m + k*n + o]' """ __slots__ = ['symbol', 'indices', 'strides', 'offset'] defaults = {'strides': none, 'offset': none} _construct_symbol = staticmethod(sympify) _construct_indices = staticmethod(lambda arg: Tuple(*arg)) _construct_strides = staticmethod(lambda arg: Tuple(*arg)) _construct_offset = staticmethod(sympify) class Declaration(Token): """ Represents a variable declaration Parameters ========== variable : Variable Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Declaration, Type, Variable, integer, untyped >>> z = Declaration('z') >>> z.variable.type == untyped True >>> z.variable.value == None True """ __slots__ = ['variable'] _construct_variable = Variable class While(Token): """ Represents a 'for-loop' in the code. Expressions are of the form: "while condition: body..." Parameters ========== condition : expression convertable to Boolean body : CodeBlock or iterable When passed an iterable it is used to instantiate a CodeBlock. Examples ======== >>> from sympy import symbols, Gt, Abs >>> from sympy.codegen import aug_assign, Assignment, While >>> x, dx = symbols('x dx') >>> expr = 1 - x**2 >>> whl = While(Gt(Abs(dx), 1e-9), [ ... Assignment(dx, -expr/expr.diff(x)), ... aug_assign(x, '+', dx) ... ]) """ __slots__ = ['condition', 'body'] _construct_condition = staticmethod(lambda cond: _sympify(cond)) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class Scope(Token): """ Represents a scope in the code. Parameters ========== body : CodeBlock or iterable When passed an iterable it is used to instantiate a CodeBlock. """ __slots__ = ['body'] @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class Stream(Token): """ Represents a stream. There are two predefined Stream instances ``stdout`` & ``stderr``. Parameters ========== name : str Examples ======== >>> from sympy import Symbol >>> from sympy.printing.pycode import pycode >>> from sympy.codegen.ast import Print, stderr, QuotedString >>> print(pycode(Print(['x'], file=stderr))) print(x, file=sys.stderr) >>> x = Symbol('x') >>> print(pycode(Print([QuotedString('x')], file=stderr))) # print literally "x" print("x", file=sys.stderr) """ __slots__ = ['name'] _construct_name = String stdout = Stream('stdout') stderr = Stream('stderr') class Print(Token): """ Represents print command in the code. Parameters ========== formatstring : str *args : Basic instances (or convertible to such through sympify) Examples ======== >>> from sympy.codegen.ast import Print >>> from sympy.printing.pycode import pycode >>> print(pycode(Print('x y'.split(), "coordinate: %12.5g %12.5g"))) print("coordinate: %12.5g %12.5g" % (x, y)) """ __slots__ = ['print_args', 'format_string', 'file'] defaults = {'format_string': none, 'file': none} _construct_print_args = staticmethod(_mk_Tuple) _construct_format_string = QuotedString _construct_file = Stream class FunctionPrototype(Node): """ Represents a function prototype Allows the user to generate forward declaration in e.g. C/C++. Parameters ========== return_type : Type name : str parameters: iterable of Variable instances attrs : iterable of Attribute instances Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import real, FunctionPrototype >>> from sympy.printing.ccode import ccode >>> x, y = symbols('x y', real=True) >>> fp = FunctionPrototype(real, 'foo', [x, y]) >>> ccode(fp) 'double foo(double x, double y)' """ __slots__ = ['return_type', 'name', 'parameters', 'attrs'] _construct_return_type = Type _construct_name = String @staticmethod def _construct_parameters(args): def _var(arg): if isinstance(arg, Declaration): return arg.variable elif isinstance(arg, Variable): return arg else: return Variable.deduced(arg) return Tuple(*map(_var, args)) @classmethod def from_FunctionDefinition(cls, func_def): if not isinstance(func_def, FunctionDefinition): raise TypeError("func_def is not an instance of FunctionDefiniton") return cls(**func_def.kwargs(exclude=('body',))) class FunctionDefinition(FunctionPrototype): """ Represents a function definition in the code. Parameters ========== return_type : Type name : str parameters: iterable of Variable instances body : CodeBlock or iterable attrs : iterable of Attribute instances Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import real, FunctionPrototype >>> from sympy.printing.ccode import ccode >>> x, y = symbols('x y', real=True) >>> fp = FunctionPrototype(real, 'foo', [x, y]) >>> ccode(fp) 'double foo(double x, double y)' >>> from sympy.codegen.ast import FunctionDefinition, Return >>> body = [Return(x*y)] >>> fd = FunctionDefinition.from_FunctionPrototype(fp, body) >>> print(ccode(fd)) double foo(double x, double y){ return x*y; } """ __slots__ = FunctionPrototype.__slots__[:-1] + ['body', 'attrs'] @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) @classmethod def from_FunctionPrototype(cls, func_proto, body): if not isinstance(func_proto, FunctionPrototype): raise TypeError("func_proto is not an instance of FunctionPrototype") return cls(body=body, **func_proto.kwargs()) class Return(Basic): """ Represents a return command in the code. """ class FunctionCall(Token, Expr): """ Represents a call to a function in the code. Parameters ========== name : str function_args : Tuple Examples ======== >>> from sympy.codegen.ast import FunctionCall >>> from sympy.printing.pycode import pycode >>> fcall = FunctionCall('foo', 'bar baz'.split()) >>> print(pycode(fcall)) foo(bar, baz) """ __slots__ = ['name', 'function_args'] _construct_name = String _construct_function_args = staticmethod(lambda args: Tuple(*args))
57ea39419b669df76fc5b8ceb37a453a83a6723d50118f5c5e60ca949a94487f
""" This module contains SymPy functions mathcin corresponding to special math functions in the C standard library (since C99, also available in C++11). The functions defined in this module allows the user to express functions such as ``expm1`` as a SymPy function for symbolic manipulation. """ from sympy.core.function import ArgumentIndexError, Function from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.miscellaneous import sqrt def _expm1(x): return exp(x) - S.One class expm1(Function): """ Represents the exponential function minus one. The benefit of using ``expm1(x)`` over ``exp(x) - 1`` is that the latter is prone to cancellation under finite precision arithmetic when x is close to zero. Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cfunctions import expm1 >>> '%.0e' % expm1(1e-99).evalf() '1e-99' >>> from math import exp >>> exp(1e-99) - 1 0.0 >>> expm1(x).diff(x) exp(x) See Also ======== log1p """ nargs = 1 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return exp(*self.args) else: raise ArgumentIndexError(self, argindex) def _eval_expand_func(self, **hints): return _expm1(*self.args) def _eval_rewrite_as_exp(self, arg, **kwargs): return exp(arg) - S.One _eval_rewrite_as_tractable = _eval_rewrite_as_exp @classmethod def eval(cls, arg): exp_arg = exp.eval(arg) if exp_arg is not None: return exp_arg - S.One def _eval_is_real(self): return self.args[0].is_real def _eval_is_finite(self): return self.args[0].is_finite def _log1p(x): return log(x + S.One) class log1p(Function): """ Represents the natural logarithm of a number plus one. The benefit of using ``log1p(x)`` over ``log(x + 1)`` is that the latter is prone to cancellation under finite precision arithmetic when x is close to zero. Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cfunctions import log1p >>> from sympy.core.function import expand_log >>> '%.0e' % expand_log(log1p(1e-99)).evalf() '1e-99' >>> from math import log >>> log(1 + 1e-99) 0.0 >>> log1p(x).diff(x) 1/(x + 1) See Also ======== expm1 """ nargs = 1 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return S.One/(self.args[0] + S.One) else: raise ArgumentIndexError(self, argindex) def _eval_expand_func(self, **hints): return _log1p(*self.args) def _eval_rewrite_as_log(self, arg, **kwargs): return _log1p(arg) _eval_rewrite_as_tractable = _eval_rewrite_as_log @classmethod def eval(cls, arg): if arg.is_Rational: return log(arg + S.One) elif not arg.is_Float: # not safe to add 1 to Float return log.eval(arg + S.One) elif arg.is_number: return log(Rational(arg) + S.One) def _eval_is_real(self): return (self.args[0] + S.One).is_nonnegative def _eval_is_finite(self): if (self.args[0] + S.One).is_zero: return False return self.args[0].is_finite def _eval_is_positive(self): return self.args[0].is_positive def _eval_is_zero(self): return self.args[0].is_zero def _eval_is_nonnegative(self): return self.args[0].is_nonnegative _Two = S(2) def _exp2(x): return Pow(_Two, x) class exp2(Function): """ Represents the exponential function with base two. The benefit of using ``exp2(x)`` over ``2**x`` is that the latter is not as efficient under finite precision arithmetic. Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cfunctions import exp2 >>> exp2(2).evalf() == 4 True >>> exp2(x).diff(x) log(2)*exp2(x) See Also ======== log2 """ nargs = 1 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return self*log(_Two) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Pow(self, arg, **kwargs): return _exp2(arg) _eval_rewrite_as_tractable = _eval_rewrite_as_Pow def _eval_expand_func(self, **hints): return _exp2(*self.args) @classmethod def eval(cls, arg): if arg.is_number: return _exp2(arg) def _log2(x): return log(x)/log(_Two) class log2(Function): """ Represents the logarithm function with base two. The benefit of using ``log2(x)`` over ``log(x)/log(2)`` is that the latter is not as efficient under finite precision arithmetic. Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cfunctions import log2 >>> log2(4).evalf() == 2 True >>> log2(x).diff(x) 1/(x*log(2)) See Also ======== exp2 log10 """ nargs = 1 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return S.One/(log(_Two)*self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_number: result = log.eval(arg, base=_Two) if result.is_Atom: return result elif arg.is_Pow and arg.base == _Two: return arg.exp def _eval_expand_func(self, **hints): return _log2(*self.args) def _eval_rewrite_as_log(self, arg, **kwargs): return _log2(arg) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _fma(x, y, z): return x*y + z class fma(Function): """ Represents "fused multiply add". The benefit of using ``fma(x, y, z)`` over ``x*y + z`` is that, under finite precision arithmetic, the former is supported by special instructions on some CPUs. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.codegen.cfunctions import fma >>> fma(x, y, z).diff(x) y """ nargs = 3 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex in (1, 2): return self.args[2 - argindex] elif argindex == 3: return S.One else: raise ArgumentIndexError(self, argindex) def _eval_expand_func(self, **hints): return _fma(*self.args) def _eval_rewrite_as_tractable(self, arg, **kwargs): return _fma(arg) _Ten = S(10) def _log10(x): return log(x)/log(_Ten) class log10(Function): """ Represents the logarithm function with base ten. Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cfunctions import log10 >>> log10(100).evalf() == 2 True >>> log10(x).diff(x) 1/(x*log(10)) See Also ======== log2 """ nargs = 1 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return S.One/(log(_Ten)*self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_number: result = log.eval(arg, base=_Ten) if result.is_Atom: return result elif arg.is_Pow and arg.base == _Ten: return arg.exp def _eval_expand_func(self, **hints): return _log10(*self.args) def _eval_rewrite_as_log(self, arg, **kwargs): return _log10(arg) _eval_rewrite_as_tractable = _eval_rewrite_as_log def _Sqrt(x): return Pow(x, S.Half) class Sqrt(Function): # 'sqrt' already defined in sympy.functions.elementary.miscellaneous """ Represents the square root function. The reason why one would use ``Sqrt(x)`` over ``sqrt(x)`` is that the latter is internally represented as ``Pow(x, S.Half)`` which may not be what one wants when doing code-generation. Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cfunctions import Sqrt >>> Sqrt(x) Sqrt(x) >>> Sqrt(x).diff(x) 1/(2*sqrt(x)) See Also ======== Cbrt """ nargs = 1 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return Pow(self.args[0], -S.Half)/_Two else: raise ArgumentIndexError(self, argindex) def _eval_expand_func(self, **hints): return _Sqrt(*self.args) def _eval_rewrite_as_Pow(self, arg, **kwargs): return _Sqrt(arg) _eval_rewrite_as_tractable = _eval_rewrite_as_Pow def _Cbrt(x): return Pow(x, Rational(1, 3)) class Cbrt(Function): # 'cbrt' already defined in sympy.functions.elementary.miscellaneous """ Represents the cube root function. The reason why one would use ``Cbrt(x)`` over ``cbrt(x)`` is that the latter is internally represented as ``Pow(x, Rational(1, 3))`` which may not be what one wants when doing code-generation. Examples ======== >>> from sympy.abc import x >>> from sympy.codegen.cfunctions import Cbrt >>> Cbrt(x) Cbrt(x) >>> Cbrt(x).diff(x) 1/(3*x**(2/3)) See Also ======== Sqrt """ nargs = 1 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return Pow(self.args[0], Rational(-_Two/3))/3 else: raise ArgumentIndexError(self, argindex) def _eval_expand_func(self, **hints): return _Cbrt(*self.args) def _eval_rewrite_as_Pow(self, arg, **kwargs): return _Cbrt(arg) _eval_rewrite_as_tractable = _eval_rewrite_as_Pow def _hypot(x, y): return sqrt(Pow(x, 2) + Pow(y, 2)) class hypot(Function): """ Represents the hypotenuse function. The hypotenuse function is provided by e.g. the math library in the C99 standard, hence one may want to represent the function symbolically when doing code-generation. Examples ======== >>> from sympy.abc import x, y >>> from sympy.codegen.cfunctions import hypot >>> hypot(3, 4).evalf() == 5 True >>> hypot(x, y) hypot(x, y) >>> hypot(x, y).diff(x) x/hypot(x, y) """ nargs = 2 def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex in (1, 2): return 2*self.args[argindex-1]/(_Two*self.func(*self.args)) else: raise ArgumentIndexError(self, argindex) def _eval_expand_func(self, **hints): return _hypot(*self.args) def _eval_rewrite_as_Pow(self, arg, **kwargs): return _hypot(arg) _eval_rewrite_as_tractable = _eval_rewrite_as_Pow
38ed01bc5b0cf4f63ee32c56db84290284e55d8d2d8c0eede826ca8d6ca4e256
from itertools import chain from sympy.codegen.fnodes import Module from sympy.core.symbol import Dummy from sympy.printing.fcode import FCodePrinter """ This module collects utilities for rendering Fortran code. """ def render_as_module(definitions, name, declarations=(), printer_settings=None): """ Creates a ``Module`` instance and renders it as a string. This generates Fortran source code for a module with the correct ``use`` statements. Parameters ========== definitions : iterable Passed to :class:`sympy.codegen.fnodes.Module`. name : str Passed to :class:`sympy.codegen.fnodes.Module`. declarations : iterable Passed to :class:`sympy.codegen.fnodes.Module`. It will be extended with use statements, 'implicit none' and public list generated from ``definitions``. printer_settings : dict Passed to ``FCodePrinter`` (default: ``{'standard': 2003, 'source_format': 'free'}``). """ printer_settings = printer_settings or {'standard': 2003, 'source_format': 'free'} printer = FCodePrinter(printer_settings) dummy = Dummy() if isinstance(definitions, Module): raise ValueError("This function expects to construct a module on its own.") mod = Module(name, chain(declarations, [dummy]), definitions) fstr = printer.doprint(mod) module_use_str = ' %s\n' % ' \n'.join(['use %s, only: %s' % (k, ', '.join(v)) for k, v in printer.module_uses.items()]) module_use_str += ' implicit none\n' module_use_str += ' private\n' module_use_str += ' public %s\n' % ', '.join([str(node.name) for node in definitions if getattr(node, 'name', None)]) return fstr.replace(printer.doprint(dummy), module_use_str) return fstr
0f92047ea9217fc90baac26e9f2dcd012b47e1b225e10323261ccdba88f6427c
# -*- coding: utf-8 -*- """ This file contains some classical ciphers and routines implementing a linear-feedback shift register (LFSR) and the Diffie-Hellman key exchange. .. warning:: This module is intended for educational purposes only. Do not use the functions in this module for real cryptographic applications. If you wish to encrypt real data, we recommend using something like the `cryptography <https://cryptography.io/en/latest/>`_ module. """ from __future__ import print_function from string import whitespace, ascii_uppercase as uppercase, printable from sympy import nextprime from sympy.core import Rational, Symbol from sympy.core.numbers import igcdex, mod_inverse from sympy.core.compatibility import range from sympy.matrices import Matrix from sympy.ntheory import isprime, totient, primitive_root from sympy.polys.domains import FF from sympy.polys.polytools import gcd, Poly from sympy.utilities.misc import filldedent, translate from sympy.utilities.iterables import uniq from sympy.utilities.randtest import _randrange def AZ(s=None): """Return the letters of ``s`` in uppercase. In case more than one string is passed, each of them will be processed and a list of upper case strings will be returned. Examples ======== >>> from sympy.crypto.crypto import AZ >>> AZ('Hello, world!') 'HELLOWORLD' >>> AZ('Hello, world!'.split()) ['HELLO', 'WORLD'] See Also ======== check_and_join """ if not s: return uppercase t = type(s) is str if t: s = [s] rv = [check_and_join(i.upper().split(), uppercase, filter=True) for i in s] if t: return rv[0] return rv bifid5 = AZ().replace('J', '') bifid6 = AZ() + '0123456789' bifid10 = printable def padded_key(key, symbols, filter=True): """Return a string of the distinct characters of ``symbols`` with those of ``key`` appearing first, omitting characters in ``key`` that are not in ``symbols``. A ValueError is raised if a) there are duplicate characters in ``symbols`` or b) there are characters in ``key`` that are not in ``symbols``. Examples ======== >>> from sympy.crypto.crypto import padded_key >>> padded_key('PUPPY', 'OPQRSTUVWXY') 'PUYOQRSTVWX' >>> padded_key('RSA', 'ARTIST') Traceback (most recent call last): ... ValueError: duplicate characters in symbols: T """ syms = list(uniq(symbols)) if len(syms) != len(symbols): extra = ''.join(sorted(set( [i for i in symbols if symbols.count(i) > 1]))) raise ValueError('duplicate characters in symbols: %s' % extra) extra = set(key) - set(syms) if extra: raise ValueError( 'characters in key but not symbols: %s' % ''.join( sorted(extra))) key0 = ''.join(list(uniq(key))) return key0 + ''.join([i for i in syms if i not in key0]) def check_and_join(phrase, symbols=None, filter=None): """ Joins characters of `phrase` and if ``symbols`` is given, raises an error if any character in ``phrase`` is not in ``symbols``. Parameters ========== phrase: string or list of strings to be returned as a string symbols: iterable of characters allowed in ``phrase``; if ``symbols`` is None, no checking is performed Examples ======== >>> from sympy.crypto.crypto import check_and_join >>> check_and_join('a phrase') 'a phrase' >>> check_and_join('a phrase'.upper().split()) 'APHRASE' >>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True) 'ARAE' >>> check_and_join('a phrase!'.upper().split(), 'ARE') Traceback (most recent call last): ... ValueError: characters in phrase but not symbols: "!HPS" """ rv = ''.join(''.join(phrase)) if symbols is not None: symbols = check_and_join(symbols) missing = ''.join(list(sorted(set(rv) - set(symbols)))) if missing: if not filter: raise ValueError( 'characters in phrase but not symbols: "%s"' % missing) rv = translate(rv, None, missing) return rv def _prep(msg, key, alp, default=None): if not alp: if not default: alp = AZ() msg = AZ(msg) key = AZ(key) else: alp = default else: alp = ''.join(alp) key = check_and_join(key, alp, filter=True) msg = check_and_join(msg, alp, filter=True) return msg, key, alp def cycle_list(k, n): """ Returns the elements of the list ``range(n)`` shifted to the left by ``k`` (so the list starts with ``k`` (mod ``n``)). Examples ======== >>> from sympy.crypto.crypto import cycle_list >>> cycle_list(3, 10) [3, 4, 5, 6, 7, 8, 9, 0, 1, 2] """ k = k % n return list(range(k, n)) + list(range(k)) ######## shift cipher examples ############ def encipher_shift(msg, key, symbols=None): """ Performs shift cipher encryption on plaintext msg, and returns the ciphertext. Notes ===== The shift cipher is also called the Caesar cipher, after Julius Caesar, who, according to Suetonius, used it with a shift of three to protect messages of military significance. Caesar's nephew Augustus reportedly used a similar cipher, but with a right shift of 1. ALGORITHM: INPUT: ``key``: an integer (the secret key) ``msg``: plaintext of upper-case letters OUTPUT: ``ct``: ciphertext of upper-case letters STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L1`` of corresponding integers. 2. Compute from the list ``L1`` a new list ``L2``, given by adding ``(k mod 26)`` to each element in ``L1``. 3. Compute from the list ``L2`` a string ``ct`` of corresponding letters. Examples ======== >>> from sympy.crypto.crypto import encipher_shift, decipher_shift >>> msg = "GONAVYBEATARMY" >>> ct = encipher_shift(msg, 1); ct 'HPOBWZCFBUBSNZ' To decipher the shifted text, change the sign of the key: >>> encipher_shift(ct, -1) 'GONAVYBEATARMY' There is also a convenience function that does this with the original key: >>> decipher_shift(ct, 1) 'GONAVYBEATARMY' """ msg, _, A = _prep(msg, '', symbols) shift = len(A) - key % len(A) key = A[shift:] + A[:shift] return translate(msg, key, A) def decipher_shift(msg, key, symbols=None): """ Return the text by shifting the characters of ``msg`` to the left by the amount given by ``key``. Examples ======== >>> from sympy.crypto.crypto import encipher_shift, decipher_shift >>> msg = "GONAVYBEATARMY" >>> ct = encipher_shift(msg, 1); ct 'HPOBWZCFBUBSNZ' To decipher the shifted text, change the sign of the key: >>> encipher_shift(ct, -1) 'GONAVYBEATARMY' Or use this function with the original key: >>> decipher_shift(ct, 1) 'GONAVYBEATARMY' """ return encipher_shift(msg, -key, symbols) ######## affine cipher examples ############ def encipher_affine(msg, key, symbols=None, _inverse=False): r""" Performs the affine cipher encryption on plaintext ``msg``, and returns the ciphertext. Encryption is based on the map `x \rightarrow ax+b` (mod `N`) where ``N`` is the number of characters in the alphabet. Decryption is based on the map `x \rightarrow cx+d` (mod `N`), where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`). In particular, for the map to be invertible, we need `\mathrm{gcd}(a, N) = 1` and an error will be raised if this is not true. Notes ===== This is a straightforward generalization of the shift cipher with the added complexity of requiring 2 characters to be deciphered in order to recover the key. ALGORITHM: INPUT: ``msg``: string of characters that appear in ``symbols`` ``a, b``: a pair integers, with ``gcd(a, N) = 1`` (the secret key) ``symbols``: string of characters (default = uppercase letters). When no symbols are given, ``msg`` is converted to upper case letters and all other charactes are ignored. OUTPUT: ``ct``: string of characters (the ciphertext message) STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L1`` of corresponding integers. 2. Compute from the list ``L1`` a new list ``L2``, given by replacing ``x`` by ``a*x + b (mod N)``, for each element ``x`` in ``L1``. 3. Compute from the list ``L2`` a string ``ct`` of corresponding letters. See Also ======== decipher_affine """ msg, _, A = _prep(msg, '', symbols) N = len(A) a, b = key assert gcd(a, N) == 1 if _inverse: c = mod_inverse(a, N) d = -b*c a, b = c, d B = ''.join([A[(a*i + b) % N] for i in range(N)]) return translate(msg, A, B) def decipher_affine(msg, key, symbols=None): r""" Return the deciphered text that was made from the mapping, `x \rightarrow ax+b` (mod `N`), where ``N`` is the number of characters in the alphabet. Deciphering is done by reciphering with a new key: `x \rightarrow cx+d` (mod `N`), where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`). Examples ======== >>> from sympy.crypto.crypto import encipher_affine, decipher_affine >>> msg = "GO NAVY BEAT ARMY" >>> key = (3, 1) >>> encipher_affine(msg, key) 'TROBMVENBGBALV' >>> decipher_affine(_, key) 'GONAVYBEATARMY' """ return encipher_affine(msg, key, symbols, _inverse=True) #################### substitution cipher ########################### def encipher_substitution(msg, old, new=None): r""" Returns the ciphertext obtained by replacing each character that appears in ``old`` with the corresponding character in ``new``. If ``old`` is a mapping, then new is ignored and the replacements defined by ``old`` are used. Notes ===== This is a more general than the affine cipher in that the key can only be recovered by determining the mapping for each symbol. Though in practice, once a few symbols are recognized the mappings for other characters can be quickly guessed. Examples ======== >>> from sympy.crypto.crypto import encipher_substitution, AZ >>> old = 'OEYAG' >>> new = '034^6' >>> msg = AZ("go navy! beat army!") >>> ct = encipher_substitution(msg, old, new); ct '60N^V4B3^T^RM4' To decrypt a substitution, reverse the last two arguments: >>> encipher_substitution(ct, new, old) 'GONAVYBEATARMY' In the special case where ``old`` and ``new`` are a permutation of order 2 (representing a transposition of characters) their order is immaterial: >>> old = 'NAVY' >>> new = 'ANYV' >>> encipher = lambda x: encipher_substitution(x, old, new) >>> encipher('NAVY') 'ANYV' >>> encipher(_) 'NAVY' The substitution cipher, in general, is a method whereby "units" (not necessarily single characters) of plaintext are replaced with ciphertext according to a regular system. >>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc'])) >>> print(encipher_substitution('abc', ords)) \97\98\99 """ return translate(msg, old, new) ###################################################################### #################### Vigenère cipher examples ######################## ###################################################################### def encipher_vigenere(msg, key, symbols=None): """ Performs the Vigenère cipher encryption on plaintext ``msg``, and returns the ciphertext. Examples ======== >>> from sympy.crypto.crypto import encipher_vigenere, AZ >>> key = "encrypt" >>> msg = "meet me on monday" >>> encipher_vigenere(msg, key) 'QRGKKTHRZQEBPR' Section 1 of the Kryptos sculpture at the CIA headquarters uses this cipher and also changes the order of the the alphabet [2]_. Here is the first line of that section of the sculpture: >>> from sympy.crypto.crypto import decipher_vigenere, padded_key >>> alp = padded_key('KRYPTOS', AZ()) >>> key = 'PALIMPSEST' >>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ' >>> decipher_vigenere(msg, key, alp) 'BETWEENSUBTLESHADINGANDTHEABSENC' Notes ===== The Vigenère cipher is named after Blaise de Vigenère, a sixteenth century diplomat and cryptographer, by a historical accident. Vigenère actually invented a different and more complicated cipher. The so-called *Vigenère cipher* was actually invented by Giovan Batista Belaso in 1553. This cipher was used in the 1800's, for example, during the American Civil War. The Confederacy used a brass cipher disk to implement the Vigenère cipher (now on display in the NSA Museum in Fort Meade) [1]_. The Vigenère cipher is a generalization of the shift cipher. Whereas the shift cipher shifts each letter by the same amount (that amount being the key of the shift cipher) the Vigenère cipher shifts a letter by an amount determined by the key (which is a word or phrase known only to the sender and receiver). For example, if the key was a single letter, such as "C", then the so-called Vigenere cipher is actually a shift cipher with a shift of `2` (since "C" is the 2nd letter of the alphabet, if you start counting at `0`). If the key was a word with two letters, such as "CA", then the so-called Vigenère cipher will shift letters in even positions by `2` and letters in odd positions are left alone (shifted by `0`, since "A" is the 0th letter, if you start counting at `0`). ALGORITHM: INPUT: ``msg``: string of characters that appear in ``symbols`` (the plaintext) ``key``: a string of characters that appear in ``symbols`` (the secret key) ``symbols``: a string of letters defining the alphabet OUTPUT: ``ct``: string of characters (the ciphertext message) STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``key`` a list ``L1`` of corresponding integers. Let ``n1 = len(L1)``. 2. Compute from the string ``msg`` a list ``L2`` of corresponding integers. Let ``n2 = len(L2)``. 3. Break ``L2`` up sequentially into sublists of size ``n1``; the last sublist may be smaller than ``n1`` 4. For each of these sublists ``L`` of ``L2``, compute a new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)`` to the ``i``-th element in the sublist, for each ``i``. 5. Assemble these lists ``C`` by concatenation into a new list of length ``n2``. 6. Compute from the new list a string ``ct`` of corresponding letters. Once it is known that the key is, say, `n` characters long, frequency analysis can be applied to every `n`-th letter of the ciphertext to determine the plaintext. This method is called *Kasiski examination* (although it was first discovered by Babbage). If they key is as long as the message and is comprised of randomly selected characters -- a one-time pad -- the message is theoretically unbreakable. The cipher Vigenère actually discovered is an "auto-key" cipher described as follows. ALGORITHM: INPUT: ``key``: a string of letters (the secret key) ``msg``: string of letters (the plaintext message) OUTPUT: ``ct``: string of upper-case letters (the ciphertext message) STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L2`` of corresponding integers. Let ``n2 = len(L2)``. 2. Let ``n1`` be the length of the key. Append to the string ``key`` the first ``n2 - n1`` characters of the plaintext message. Compute from this string (also of length ``n2``) a list ``L1`` of integers corresponding to the letter numbers in the first step. 3. Compute a new list ``C`` given by ``C[i] = L1[i] + L2[i] (mod N)``. 4. Compute from the new list a string ``ct`` of letters corresponding to the new integers. To decipher the auto-key ciphertext, the key is used to decipher the first ``n1`` characters and then those characters become the key to decipher the next ``n1`` characters, etc...: >>> m = AZ('go navy, beat army! yes you can'); m 'GONAVYBEATARMYYESYOUCAN' >>> key = AZ('gold bug'); n1 = len(key); n2 = len(m) >>> auto_key = key + m[:n2 - n1]; auto_key 'GOLDBUGGONAVYBEATARMYYE' >>> ct = encipher_vigenere(m, auto_key); ct 'MCYDWSHKOGAMKZCELYFGAYR' >>> n1 = len(key) >>> pt = [] >>> while ct: ... part, ct = ct[:n1], ct[n1:] ... pt.append(decipher_vigenere(part, key)) ... key = pt[-1] ... >>> ''.join(pt) == m True References ========== .. [1] https://en.wikipedia.org/wiki/Vigenere_cipher .. [2] http://web.archive.org/web/20071116100808/ http://filebox.vt.edu/users/batman/kryptos.html (short URL: https://goo.gl/ijr22d) """ msg, key, A = _prep(msg, key, symbols) map = {c: i for i, c in enumerate(A)} key = [map[c] for c in key] N = len(map) k = len(key) rv = [] for i, m in enumerate(msg): rv.append(A[(map[m] + key[i % k]) % N]) rv = ''.join(rv) return rv def decipher_vigenere(msg, key, symbols=None): """ Decode using the Vigenère cipher. Examples ======== >>> from sympy.crypto.crypto import decipher_vigenere >>> key = "encrypt" >>> ct = "QRGK kt HRZQE BPR" >>> decipher_vigenere(ct, key) 'MEETMEONMONDAY' """ msg, key, A = _prep(msg, key, symbols) map = {c: i for i, c in enumerate(A)} N = len(A) # normally, 26 K = [map[c] for c in key] n = len(K) C = [map[c] for c in msg] rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)]) return rv #################### Hill cipher ######################## def encipher_hill(msg, key, symbols=None, pad="Q"): r""" Return the Hill cipher encryption of ``msg``. Notes ===== The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_, was the first polygraphic cipher in which it was practical (though barely) to operate on more than three symbols at once. The following discussion assumes an elementary knowledge of matrices. First, each letter is first encoded as a number starting with 0. Suppose your message `msg` consists of `n` capital letters, with no spaces. This may be regarded an `n`-tuple M of elements of `Z_{26}` (if the letters are those of the English alphabet). A key in the Hill cipher is a `k x k` matrix `K`, all of whose entries are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k` is one-to-one). ALGORITHM: INPUT: ``msg``: plaintext message of `n` upper-case letters ``key``: a `k x k` invertible matrix `K`, all of whose entries are in `Z_{26}` (or whatever number of symbols are being used). ``pad``: character (default "Q") to use to make length of text be a multiple of ``k`` OUTPUT: ``ct``: ciphertext of upper-case letters STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L`` of corresponding integers. Let ``n = len(L)``. 2. Break the list ``L`` up into ``t = ceiling(n/k)`` sublists ``L_1``, ..., ``L_t`` of size ``k`` (with the last list "padded" to ensure its size is ``k``). 3. Compute new list ``C_1``, ..., ``C_t`` given by ``C[i] = K*L_i`` (arithmetic is done mod N), for each ``i``. 4. Concatenate these into a list ``C = C_1 + ... + C_t``. 5. Compute from ``C`` a string ``ct`` of corresponding letters. This has length ``k*t``. References ========== .. [1] en.wikipedia.org/wiki/Hill_cipher .. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet, The American Mathematical Monthly Vol.36, June-July 1929, pp.306-312. See Also ======== decipher_hill """ assert key.is_square assert len(pad) == 1 msg, pad, A = _prep(msg, pad, symbols) map = {c: i for i, c in enumerate(A)} P = [map[c] for c in msg] N = len(A) k = key.cols n = len(P) m, r = divmod(n, k) if r: P = P + [map[pad]]*(k - r) m += 1 rv = ''.join([A[c % N] for j in range(m) for c in list(key*Matrix(k, 1, [P[i] for i in range(k*j, k*(j + 1))]))]) return rv def decipher_hill(msg, key, symbols=None): """ Deciphering is the same as enciphering but using the inverse of the key matrix. Examples ======== >>> from sympy.crypto.crypto import encipher_hill, decipher_hill >>> from sympy import Matrix >>> key = Matrix([[1, 2], [3, 5]]) >>> encipher_hill("meet me on monday", key) 'UEQDUEODOCTCWQ' >>> decipher_hill(_, key) 'MEETMEONMONDAY' When the length of the plaintext (stripped of invalid characters) is not a multiple of the key dimension, extra characters will appear at the end of the enciphered and deciphered text. In order to decipher the text, those characters must be included in the text to be deciphered. In the following, the key has a dimension of 4 but the text is 2 short of being a multiple of 4 so two characters will be added. >>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0], ... [2, 2, 3, 4], [1, 1, 0, 1]]) >>> msg = "ST" >>> encipher_hill(msg, key) 'HJEB' >>> decipher_hill(_, key) 'STQQ' >>> encipher_hill(msg, key, pad="Z") 'ISPK' >>> decipher_hill(_, key) 'STZZ' If the last two characters of the ciphertext were ignored in either case, the wrong plaintext would be recovered: >>> decipher_hill("HD", key) 'ORMV' >>> decipher_hill("IS", key) 'UIKY' """ assert key.is_square msg, _, A = _prep(msg, '', symbols) map = {c: i for i, c in enumerate(A)} C = [map[c] for c in msg] N = len(A) k = key.cols n = len(C) m, r = divmod(n, k) if r: C = C + [0]*(k - r) m += 1 key_inv = key.inv_mod(N) rv = ''.join([A[p % N] for j in range(m) for p in list(key_inv*Matrix( k, 1, [C[i] for i in range(k*j, k*(j + 1))]))]) return rv #################### Bifid cipher ######################## def encipher_bifid(msg, key, symbols=None): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses an `n \times n` Polybius square. INPUT: ``msg``: plaintext string ``key``: short string for key; duplicate characters are ignored and then it is padded with the characters in ``symbols`` that were not in the short key ``symbols``: `n \times n` characters defining the alphabet (default is string.printable) OUTPUT: ciphertext (using Bifid5 cipher without spaces) See Also ======== decipher_bifid, encipher_bifid5, encipher_bifid6 """ msg, key, A = _prep(msg, key, symbols, bifid10) long_key = ''.join(uniq(key)) or A n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) N = int(n) if len(long_key) < N**2: long_key = list(long_key) + [x for x in A if x not in long_key] # the fractionalization row_col = dict([(ch, divmod(i, N)) for i, ch in enumerate(long_key)]) r, c = zip(*[row_col[x] for x in msg]) rc = r + c ch = {i: ch for ch, i in row_col.items()} rv = ''.join((ch[i] for i in zip(rc[::2], rc[1::2]))) return rv def decipher_bifid(msg, key, symbols=None): r""" Performs the Bifid cipher decryption on ciphertext ``msg``, and returns the plaintext. This is the version of the Bifid cipher that uses the `n \times n` Polybius square. INPUT: ``msg``: ciphertext string ``key``: short string for key; duplicate characters are ignored and then it is padded with the characters in ``symbols`` that were not in the short key ``symbols``: `n \times n` characters defining the alphabet (default=string.printable, a `10 \times 10` matrix) OUTPUT: deciphered text Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_bifid, decipher_bifid, AZ) Do an encryption using the bifid5 alphabet: >>> alp = AZ().replace('J', '') >>> ct = AZ("meet me on monday!") >>> key = AZ("gold bug") >>> encipher_bifid(ct, key, alp) 'IEILHHFSTSFQYE' When entering the text or ciphertext, spaces are ignored so it can be formatted as desired. Re-entering the ciphertext from the preceding, putting 4 characters per line and padding with an extra J, does not cause problems for the deciphering: >>> decipher_bifid(''' ... IEILH ... HFSTS ... FQYEJ''', key, alp) 'MEETMEONMONDAY' When no alphabet is given, all 100 printable characters will be used: >>> key = '' >>> encipher_bifid('hello world!', key) 'bmtwmg-bIo*w' >>> decipher_bifid(_, key) 'hello world!' If the key is changed, a different encryption is obtained: >>> key = 'gold bug' >>> encipher_bifid('hello world!', 'gold_bug') 'hg2sfuei7t}w' And if the key used to decrypt the message is not exact, the original text will not be perfectly obtained: >>> decipher_bifid(_, 'gold pug') 'heldo~wor6d!' """ msg, _, A = _prep(msg, '', symbols, bifid10) long_key = ''.join(uniq(key)) or A n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) N = int(n) if len(long_key) < N**2: long_key = list(long_key) + [x for x in A if x not in long_key] # the reverse fractionalization row_col = dict( [(ch, divmod(i, N)) for i, ch in enumerate(long_key)]) rc = [i for c in msg for i in row_col[c]] n = len(msg) rc = zip(*(rc[:n], rc[n:])) ch = {i: ch for ch, i in row_col.items()} rv = ''.join((ch[i] for i in rc)) return rv def bifid_square(key): """Return characters of ``key`` arranged in a square. Examples ======== >>> from sympy.crypto.crypto import ( ... bifid_square, AZ, padded_key, bifid5) >>> bifid_square(AZ().replace('J', '')) Matrix([ [A, B, C, D, E], [F, G, H, I, K], [L, M, N, O, P], [Q, R, S, T, U], [V, W, X, Y, Z]]) >>> bifid_square(padded_key(AZ('gold bug!'), bifid5)) Matrix([ [G, O, L, D, B], [U, A, C, E, F], [H, I, K, M, N], [P, Q, R, S, T], [V, W, X, Y, Z]]) See Also ======== padded_key """ A = ''.join(uniq(''.join(key))) n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) n = int(n) f = lambda i, j: Symbol(A[n*i + j]) rv = Matrix(n, n, f) return rv def encipher_bifid5(msg, key): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses the `5 \times 5` Polybius square. The letter "J" is ignored so it must be replaced with something else (traditionally an "I") before encryption. Notes ===== The Bifid cipher was invented around 1901 by Felix Delastelle. It is a *fractional substitution* cipher, where letters are replaced by pairs of symbols from a smaller alphabet. The cipher uses a `5 \times 5` square filled with some ordering of the alphabet, except that "J" is replaced with "I" (this is a so-called Polybius square; there is a `6 \times 6` analog if you add back in "J" and also append onto the usual 26 letter alphabet, the digits 0, 1, ..., 9). According to Helen Gaines' book *Cryptanalysis*, this type of cipher was used in the field by the German Army during World War I. ALGORITHM: (5x5 case) INPUT: ``msg``: plaintext string; converted to upper case and filtered of anything but all letters except J. ``key``: short string for key; non-alphabetic letters, J and duplicated characters are ignored and then, if the length is less than 25 characters, it is padded with other letters of the alphabet (in alphabetical order). OUTPUT: ciphertext (all caps, no spaces) STEPS: 0. Create the `5 \times 5` Polybius square ``S`` associated to ``key`` as follows: a) moving from left-to-right, top-to-bottom, place the letters of the key into a `5 \times 5` matrix, b) if the key has less than 25 letters, add the letters of the alphabet not in the key until the `5 \times 5` square is filled. 1. Create a list ``P`` of pairs of numbers which are the coordinates in the Polybius square of the letters in ``msg``. 2. Let ``L1`` be the list of all first coordinates of ``P`` (length of ``L1 = n``), let ``L2`` be the list of all second coordinates of ``P`` (so the length of ``L2`` is also ``n``). 3. Let ``L`` be the concatenation of ``L1`` and ``L2`` (length ``L = 2*n``), except that consecutive numbers are paired ``(L[2*i], L[2*i + 1])``. You can regard ``L`` as a list of pairs of length ``n``. 4. Let ``C`` be the list of all letters which are of the form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a string, this is the ciphertext of ``msg``. Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_bifid5, decipher_bifid5) "J" will be omitted unless it is replaced with something else: >>> round_trip = lambda m, k: \ ... decipher_bifid5(encipher_bifid5(m, k), k) >>> key = 'a' >>> msg = "JOSIE" >>> round_trip(msg, key) 'OSIE' >>> round_trip(msg.replace("J", "I"), key) 'IOSIE' >>> j = "QIQ" >>> round_trip(msg.replace("J", j), key).replace(j, "J") 'JOSIE' See Also ======== decipher_bifid5, encipher_bifid """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5) key = padded_key(key, bifid5) return encipher_bifid(msg, '', key) def decipher_bifid5(msg, key): r""" Return the Bifid cipher decryption of ``msg``. This is the version of the Bifid cipher that uses the `5 \times 5` Polybius square; the letter "J" is ignored unless a ``key`` of length 25 is used. INPUT: ``msg``: ciphertext string ``key``: short string for key; duplicated characters are ignored and if the length is less then 25 characters, it will be padded with other letters from the alphabet omitting "J". Non-alphabetic characters are ignored. OUTPUT: plaintext from Bifid5 cipher (all caps, no spaces) Examples ======== >>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5 >>> key = "gold bug" >>> encipher_bifid5('meet me on friday', key) 'IEILEHFSTSFXEE' >>> encipher_bifid5('meet me on monday', key) 'IEILHHFSTSFQYE' >>> decipher_bifid5(_, key) 'MEETMEONMONDAY' """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5) key = padded_key(key, bifid5) return decipher_bifid(msg, '', key) def bifid5_square(key=None): r""" 5x5 Polybius square. Produce the Polybius square for the `5 \times 5` Bifid cipher. Examples ======== >>> from sympy.crypto.crypto import bifid5_square >>> bifid5_square("gold bug") Matrix([ [G, O, L, D, B], [U, A, C, E, F], [H, I, K, M, N], [P, Q, R, S, T], [V, W, X, Y, Z]]) """ if not key: key = bifid5 else: _, key, _ = _prep('', key.upper(), None, bifid5) key = padded_key(key, bifid5) return bifid_square(key) def encipher_bifid6(msg, key): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses the `6 \times 6` Polybius square. INPUT: ``msg``: plaintext string (digits okay) ``key``: short string for key (digits okay). If ``key`` is less than 36 characters long, the square will be filled with letters A through Z and digits 0 through 9. OUTPUT: ciphertext from Bifid cipher (all caps, no spaces) See Also ======== decipher_bifid6, encipher_bifid """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6) key = padded_key(key, bifid6) return encipher_bifid(msg, '', key) def decipher_bifid6(msg, key): r""" Performs the Bifid cipher decryption on ciphertext ``msg``, and returns the plaintext. This is the version of the Bifid cipher that uses the `6 \times 6` Polybius square. INPUT: ``msg``: ciphertext string (digits okay); converted to upper case ``key``: short string for key (digits okay). If ``key`` is less than 36 characters long, the square will be filled with letters A through Z and digits 0 through 9. All letters are converted to uppercase. OUTPUT: plaintext from Bifid cipher (all caps, no spaces) Examples ======== >>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6 >>> key = "gold bug" >>> encipher_bifid6('meet me on monday at 8am', key) 'KFKLJJHF5MMMKTFRGPL' >>> decipher_bifid6(_, key) 'MEETMEONMONDAYAT8AM' """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6) key = padded_key(key, bifid6) return decipher_bifid(msg, '', key) def bifid6_square(key=None): r""" 6x6 Polybius square. Produces the Polybius square for the `6 \times 6` Bifid cipher. Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9". Examples ======== >>> from sympy.crypto.crypto import bifid6_square >>> key = "gold bug" >>> bifid6_square(key) Matrix([ [G, O, L, D, B, U], [A, C, E, F, H, I], [J, K, M, N, P, Q], [R, S, T, V, W, X], [Y, Z, 0, 1, 2, 3], [4, 5, 6, 7, 8, 9]]) """ if not key: key = bifid6 else: _, key, _ = _prep('', key.upper(), None, bifid6) key = padded_key(key, bifid6) return bifid_square(key) #################### RSA ############################# def rsa_public_key(p, q, e): r""" Return the RSA *public key* pair, `(n, e)`, where `n` is a product of two primes and `e` is relatively prime (coprime) to the Euler totient `\phi(n)`. False is returned if any assumption is violated. Examples ======== >>> from sympy.crypto.crypto import rsa_public_key >>> p, q, e = 3, 5, 7 >>> rsa_public_key(p, q, e) (15, 7) >>> rsa_public_key(p, q, 30) False """ n = p*q if isprime(p) and isprime(q): phi = totient(n) if gcd(e, phi) == 1: return n, e return False def rsa_private_key(p, q, e): r""" Return the RSA *private key*, `(n,d)`, where `n` is a product of two primes and `d` is the inverse of `e` (mod `\phi(n)`). False is returned if any assumption is violated. Examples ======== >>> from sympy.crypto.crypto import rsa_private_key >>> p, q, e = 3, 5, 7 >>> rsa_private_key(p, q, e) (15, 7) >>> rsa_private_key(p, q, 30) False """ n = p*q if isprime(p) and isprime(q): phi = totient(n) if gcd(e, phi) == 1: d = mod_inverse(e, phi) return n, d return False def encipher_rsa(i, key): """ Return encryption of ``i`` by computing `i^e` (mod `n`), where ``key`` is the public key `(n, e)`. Examples ======== >>> from sympy.crypto.crypto import encipher_rsa, rsa_public_key >>> p, q, e = 3, 5, 7 >>> puk = rsa_public_key(p, q, e) >>> msg = 12 >>> encipher_rsa(msg, puk) 3 """ n, e = key return pow(i, e, n) def decipher_rsa(i, key): """ Return decyption of ``i`` by computing `i^d` (mod `n`), where ``key`` is the private key `(n, d)`. Examples ======== >>> from sympy.crypto.crypto import decipher_rsa, rsa_private_key >>> p, q, e = 3, 5, 7 >>> prk = rsa_private_key(p, q, e) >>> msg = 3 >>> decipher_rsa(msg, prk) 12 """ n, d = key return pow(i, d, n) #################### kid krypto (kid RSA) ############################# def kid_rsa_public_key(a, b, A, B): r""" Kid RSA is a version of RSA useful to teach grade school children since it does not involve exponentiation. Alice wants to talk to Bob. Bob generates keys as follows. Key generation: * Select positive integers `a, b, A, B` at random. * Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`, `n = (e d - 1)//M`. * The *public key* is `(n, e)`. Bob sends these to Alice. * The *private key* is `(n, d)`, which Bob keeps secret. Encryption: If `p` is the plaintext message then the ciphertext is `c = p e \pmod n`. Decryption: If `c` is the ciphertext message then the plaintext is `p = c d \pmod n`. Examples ======== >>> from sympy.crypto.crypto import kid_rsa_public_key >>> a, b, A, B = 3, 4, 5, 6 >>> kid_rsa_public_key(a, b, A, B) (369, 58) """ M = a*b - 1 e = A*M + a d = B*M + b n = (e*d - 1)//M return n, e def kid_rsa_private_key(a, b, A, B): """ Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`, `n = (e d - 1) / M`. The *private key* is `d`, which Bob keeps secret. Examples ======== >>> from sympy.crypto.crypto import kid_rsa_private_key >>> a, b, A, B = 3, 4, 5, 6 >>> kid_rsa_private_key(a, b, A, B) (369, 70) """ M = a*b - 1 e = A*M + a d = B*M + b n = (e*d - 1)//M return n, d def encipher_kid_rsa(msg, key): """ Here ``msg`` is the plaintext and ``key`` is the public key. Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_kid_rsa, kid_rsa_public_key) >>> msg = 200 >>> a, b, A, B = 3, 4, 5, 6 >>> key = kid_rsa_public_key(a, b, A, B) >>> encipher_kid_rsa(msg, key) 161 """ n, e = key return (msg*e) % n def decipher_kid_rsa(msg, key): """ Here ``msg`` is the plaintext and ``key`` is the private key. Examples ======== >>> from sympy.crypto.crypto import ( ... kid_rsa_public_key, kid_rsa_private_key, ... decipher_kid_rsa, encipher_kid_rsa) >>> a, b, A, B = 3, 4, 5, 6 >>> d = kid_rsa_private_key(a, b, A, B) >>> msg = 200 >>> pub = kid_rsa_public_key(a, b, A, B) >>> pri = kid_rsa_private_key(a, b, A, B) >>> ct = encipher_kid_rsa(msg, pub) >>> decipher_kid_rsa(ct, pri) 200 """ n, d = key return (msg*d) % n #################### Morse Code ###################################### morse_char = { ".-": "A", "-...": "B", "-.-.": "C", "-..": "D", ".": "E", "..-.": "F", "--.": "G", "....": "H", "..": "I", ".---": "J", "-.-": "K", ".-..": "L", "--": "M", "-.": "N", "---": "O", ".--.": "P", "--.-": "Q", ".-.": "R", "...": "S", "-": "T", "..-": "U", "...-": "V", ".--": "W", "-..-": "X", "-.--": "Y", "--..": "Z", "-----": "0", "----": "1", "..---": "2", "...--": "3", "....-": "4", ".....": "5", "-....": "6", "--...": "7", "---..": "8", "----.": "9", ".-.-.-": ".", "--..--": ",", "---...": ":", "-.-.-.": ";", "..--..": "?", "-....-": "-", "..--.-": "_", "-.--.": "(", "-.--.-": ")", ".----.": "'", "-...-": "=", ".-.-.": "+", "-..-.": "/", ".--.-.": "@", "...-..-": "$", "-.-.--": "!"} char_morse = {v: k for k, v in morse_char.items()} def encode_morse(msg, sep='|', mapping=None): """ Encodes a plaintext into popular Morse Code with letters separated by `sep` and words by a double `sep`. References ========== .. [1] https://en.wikipedia.org/wiki/Morse_code Examples ======== >>> from sympy.crypto.crypto import encode_morse >>> msg = 'ATTACK RIGHT FLANK' >>> encode_morse(msg) '.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-' """ mapping = mapping or char_morse assert sep not in mapping word_sep = 2*sep mapping[" "] = word_sep suffix = msg and msg[-1] in whitespace # normalize whitespace msg = (' ' if word_sep else '').join(msg.split()) # omit unmapped chars chars = set(''.join(msg.split())) ok = set(mapping.keys()) msg = translate(msg, None, ''.join(chars - ok)) morsestring = [] words = msg.split() for word in words: morseword = [] for letter in word: morseletter = mapping[letter] morseword.append(morseletter) word = sep.join(morseword) morsestring.append(word) return word_sep.join(morsestring) + (word_sep if suffix else '') def decode_morse(msg, sep='|', mapping=None): """ Decodes a Morse Code with letters separated by `sep` (default is '|') and words by `word_sep` (default is '||) into plaintext. References ========== .. [1] https://en.wikipedia.org/wiki/Morse_code Examples ======== >>> from sympy.crypto.crypto import decode_morse >>> mc = '--|---|...-|.||.|.-|...|-' >>> decode_morse(mc) 'MOVE EAST' """ mapping = mapping or morse_char word_sep = 2*sep characterstring = [] words = msg.strip(word_sep).split(word_sep) for word in words: letters = word.split(sep) chars = [mapping[c] for c in letters] word = ''.join(chars) characterstring.append(word) rv = " ".join(characterstring) return rv #################### LFSRs ########################################## def lfsr_sequence(key, fill, n): r""" This function creates an lfsr sequence. INPUT: ``key``: a list of finite field elements, `[c_0, c_1, \ldots, c_k].` ``fill``: the list of the initial terms of the lfsr sequence, `[x_0, x_1, \ldots, x_k].` ``n``: number of terms of the sequence that the function returns. OUTPUT: The lfsr sequence defined by `x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for `n \leq k`. Notes ===== S. Golomb [G]_ gives a list of three statistical properties a sequence of numbers `a = \{a_n\}_{n=1}^\infty`, `a_n \in \{0,1\}`, should display to be considered "random". Define the autocorrelation of `a` to be .. math:: C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}. In the case where `a` is periodic with period `P` then this reduces to .. math:: C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}. Assume `a` is periodic with period `P`. - balance: .. math:: \left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1. - low autocorrelation: .. math:: C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right. (For sequences satisfying these first two properties, it is known that `\epsilon = -1/P` must hold.) - proportional runs property: In each period, half the runs have length `1`, one-fourth have length `2`, etc. Moreover, there are as many runs of `1`'s as there are of `0`'s. References ========== .. [G] Solomon Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, Ca, 1967 Examples ======== >>> from sympy.crypto.crypto import lfsr_sequence >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> lfsr_sequence(key, fill, 10) [1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2] """ if not isinstance(key, list): raise TypeError("key must be a list") if not isinstance(fill, list): raise TypeError("fill must be a list") p = key[0].mod F = FF(p) s = fill k = len(fill) L = [] for i in range(n): s0 = s[:] L.append(s[0]) s = s[1:k] x = sum([int(key[i]*s0[i]) for i in range(k)]) s.append(F(x)) return L # use [x.to_int() for x in L] for int version def lfsr_autocorrelation(L, P, k): """ This function computes the LFSR autocorrelation function. INPUT: ``L``: is a periodic sequence of elements of `GF(2)`. ``L`` must have length larger than ``P``. ``P``: the period of ``L`` ``k``: an integer (`0 < k < p`) OUTPUT: the ``k``-th value of the autocorrelation of the LFSR ``L`` Examples ======== >>> from sympy.crypto.crypto import ( ... lfsr_sequence, lfsr_autocorrelation) >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_autocorrelation(s, 15, 7) -1/15 >>> lfsr_autocorrelation(s, 15, 0) 1 """ if not isinstance(L, list): raise TypeError("L (=%s) must be a list" % L) P = int(P) k = int(k) L0 = L[:P] # slices makes a copy L1 = L0 + L0[:k] L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)] tot = sum(L2) return Rational(tot, P) def lfsr_connection_polynomial(s): """ This function computes the LFSR connection polynomial. INPUT: ``s``: a sequence of elements of even length, with entries in a finite field OUTPUT: ``C(x)``: the connection polynomial of a minimal LFSR yielding ``s``. This implements the algorithm in section 3 of J. L. Massey's article [M]_. References ========== .. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding." IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969. Examples ======== >>> from sympy.crypto.crypto import ( ... lfsr_sequence, lfsr_connection_polynomial) >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**4 + x + 1 >>> fill = [F(1), F(0), F(0), F(1)] >>> key = [F(1), F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(1), F(0)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x**2 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x + 1 """ # Initialization: p = s[0].mod x = Symbol("x") C = 1*x**0 B = 1*x**0 m = 1 b = 1*x**0 L = 0 N = 0 while N < len(s): if L > 0: dC = Poly(C).degree() r = min(L + 1, dC + 1) coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)] d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int() for i in range(1, r)])) % p if L == 0: d = s[N].to_int()*x**0 if d == 0: m += 1 N += 1 if d > 0: if 2*L > N: C = (C - d*((b**(p - 2)) % p)*x**m*B).expand() m += 1 N += 1 else: T = C C = (C - d*((b**(p - 2)) % p)*x**m*B).expand() L = N + 1 - L m = 1 b = d B = T N += 1 dC = Poly(C).degree() coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)] return sum([coeffsC[i] % p*x**i for i in range(dC + 1) if coeffsC[i] is not None]) #################### ElGamal ############################# def elgamal_private_key(digit=10, seed=None): r""" Return three number tuple as private key. Elgamal encryption is based on the mathmatical problem called the Discrete Logarithm Problem (DLP). For example, `a^{b} \equiv c \pmod p` In general, if ``a`` and ``b`` are known, ``ct`` is easily calculated. If ``b`` is unknown, it is hard to use ``a`` and ``ct`` to get ``b``. Parameters ========== digit : minimum number of binary digits for key Returns ======= (p, r, d) : p = prime number, r = primitive root, d = random number Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.utilities.randtest._randrange. Examples ======== >>> from sympy.crypto.crypto import elgamal_private_key >>> from sympy.ntheory import is_primitive_root, isprime >>> a, b, _ = elgamal_private_key() >>> isprime(a) True >>> is_primitive_root(b, a) True """ randrange = _randrange(seed) p = nextprime(2**digit) return p, primitive_root(p), randrange(2, p) def elgamal_public_key(key): """ Return three number tuple as public key. Parameters ========== key : Tuple (p, r, e) generated by ``elgamal_private_key`` Returns ======= (p, r, e = r**d mod p) : d is a random number in private key. Examples ======== >>> from sympy.crypto.crypto import elgamal_public_key >>> elgamal_public_key((1031, 14, 636)) (1031, 14, 212) """ p, r, e = key return p, r, pow(r, e, p) def encipher_elgamal(i, key, seed=None): r""" Encrypt message with public key ``i`` is a plaintext message expressed as an integer. ``key`` is public key (p, r, e). In order to encrypt a message, a random number ``a`` in ``range(2, p)`` is generated and the encryped message is returned as `c_{1}` and `c_{2}` where: `c_{1} \equiv r^{a} \pmod p` `c_{2} \equiv m e^{a} \pmod p` Parameters ========== msg : int of encoded message key : public key Returns ======= (c1, c2) : Encipher into two number Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.utilities.randtest._randrange. Examples ======== >>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key >>> pri = elgamal_private_key(5, seed=[3]); pri (37, 2, 3) >>> pub = elgamal_public_key(pri); pub (37, 2, 8) >>> msg = 36 >>> encipher_elgamal(msg, pub, seed=[3]) (8, 6) """ p, r, e = key if i < 0 or i >= p: raise ValueError( 'Message (%s) should be in range(%s)' % (i, p)) randrange = _randrange(seed) a = randrange(2, p) return pow(r, a, p), i*pow(e, a, p) % p def decipher_elgamal(msg, key): r""" Decrypt message with private key `msg = (c_{1}, c_{2})` `key = (p, r, d)` According to extended Eucliden theorem, `u c_{1}^{d} + p n = 1` `u \equiv 1/{{c_{1}}^d} \pmod p` `u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p` `\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p` Examples ======== >>> from sympy.crypto.crypto import decipher_elgamal >>> from sympy.crypto.crypto import encipher_elgamal >>> from sympy.crypto.crypto import elgamal_private_key >>> from sympy.crypto.crypto import elgamal_public_key >>> pri = elgamal_private_key(5, seed=[3]) >>> pub = elgamal_public_key(pri); pub (37, 2, 8) >>> msg = 17 >>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg True """ p, r, d = key c1, c2 = msg u = igcdex(c1**d, p)[0] return u * c2 % p ################ Diffie-Hellman Key Exchange ######################### def dh_private_key(digit=10, seed=None): r""" Return three integer tuple as private key. Diffie-Hellman key exchange is based on the mathematical problem called the Discrete Logarithm Problem (see ElGamal). Diffie-Hellman key exchange is divided into the following steps: * Alice and Bob agree on a base that consist of a prime ``p`` and a primitive root of ``p`` called ``g`` * Alice choses a number ``a`` and Bob choses a number ``b`` where ``a`` and ``b`` are random numbers in range `[2, p)`. These are their private keys. * Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends Alice `g^{b} \pmod p` * They both raise the received value to their secretly chosen number (``a`` or ``b``) and now have both as their shared key `g^{ab} \pmod p` Parameters ========== digit: minimum number of binary digits required in key Returns ======= (p, g, a) : p = prime number, g = primitive root of p, a = random number from 2 through p - 1 Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.utilities.randtest._randrange. Examples ======== >>> from sympy.crypto.crypto import dh_private_key >>> from sympy.ntheory import isprime, is_primitive_root >>> p, g, _ = dh_private_key() >>> isprime(p) True >>> is_primitive_root(g, p) True >>> p, g, _ = dh_private_key(5) >>> isprime(p) True >>> is_primitive_root(g, p) True """ p = nextprime(2**digit) g = primitive_root(p) randrange = _randrange(seed) a = randrange(2, p) return p, g, a def dh_public_key(key): """ Return three number tuple as public key. This is the tuple that Alice sends to Bob. Parameters ========== key: Tuple (p, g, a) generated by ``dh_private_key`` Returns ======= (p, g, g^a mod p) : p, g and a as in Parameters Examples ======== >>> from sympy.crypto.crypto import dh_private_key, dh_public_key >>> p, g, a = dh_private_key(); >>> _p, _g, x = dh_public_key((p, g, a)) >>> p == _p and g == _g True >>> x == pow(g, a, p) True """ p, g, a = key return p, g, pow(g, a, p) def dh_shared_key(key, b): """ Return an integer that is the shared key. This is what Bob and Alice can both calculate using the public keys they received from each other and their private keys. Parameters ========== key: Tuple (p, g, x) generated by ``dh_public_key`` b: Random number in the range of 2 to p - 1 (Chosen by second key exchange member (Bob)) Returns ======= shared key (int) Examples ======== >>> from sympy.crypto.crypto import ( ... dh_private_key, dh_public_key, dh_shared_key) >>> prk = dh_private_key(); >>> p, g, x = dh_public_key(prk); >>> sk = dh_shared_key((p, g, x), 1000) >>> sk == pow(x, 1000, p) True """ p, _, x = key if 1 >= b or b >= p: raise ValueError(filldedent(''' Value of b should be greater 1 and less than prime %s.''' % p)) return pow(x, b, p) ################ Goldwasser-Micali Encryption ######################### def _legendre(a, p): """ Returns the legendre symbol of a and p assuming that p is a prime i.e. 1 if a is a quadratic residue mod p -1 if a is not a quadratic residue mod p 0 if a is divisible by p Parameters ========== a : int the number to test p : the prime to test a against Returns ======= legendre symbol (a / p) (int) """ sig = pow(a, (p - 1)//2, p) if sig == 1: return 1 elif sig == 0: return 0 else: return -1 def _random_coprime_stream(n, seed=None): randrange = _randrange(seed) while True: y = randrange(n) if gcd(y, n) == 1: yield y def gm_private_key(p, q, a=None): """ Check if p and q can be used as private keys for the Goldwasser-Micali encryption. The method works roughly as follows. Pick two large primes p ands q. Call their product N. Given a message as an integer i, write i in its bit representation b_0,...,b_n. For each k, if b_k = 0: let a_k be a random square (quadratic residue) modulo p * q such that jacobi_symbol(a, p * q) = 1 if b_k = 1: let a_k be a random non-square (non-quadratic residue) modulo p * q such that jacobi_symbol(a, p * q) = 1 return [a_1, a_2,...] b_k can be recovered by checking whether or not a_k is a residue. And from the b_k's, the message can be reconstructed. The idea is that, while jacobi_symbol(a, p * q) can be easily computed (and when it is equal to -1 will tell you that a is not a square mod p * q), quadratic residuosity modulo a composite number is hard to compute without knowing its factorization. Moreover, approximately half the numbers coprime to p * q have jacobi_symbol equal to 1. And among those, approximately half are residues and approximately half are not. This maximizes the entropy of the code. Parameters ========== p, q, a : initialization variables Returns ======= p, q : the input value p and q Raises ====== ValueError : if p and q are not distinct odd primes """ if p == q: raise ValueError("expected distinct primes, " "got two copies of %i" % p) elif not isprime(p) or not isprime(q): raise ValueError("first two arguments must be prime, " "got %i of %i" % (p, q)) elif p == 2 or q == 2: raise ValueError("first two arguments must not be even, " "got %i of %i" % (p, q)) return p, q def gm_public_key(p, q, a=None, seed=None): """ Compute public keys for p and q. Note that in Goldwasser-Micali Encrpytion, public keys are randomly selected. Parameters ========== p, q, a : (int) initialization variables Returns ======= (a, N) : tuple[int] a is the input a if it is not None otherwise some random integer coprime to p and q. N is the product of p and q """ p, q = gm_private_key(p, q) N = p * q if a is None: randrange = _randrange(seed) while True: a = randrange(N) if _legendre(a, p) == _legendre(a, q) == -1: break else: if _legendre(a, p) != -1 or _legendre(a, q) != -1: return False return (a, N) def encipher_gm(i, key, seed=None): """ Encrypt integer 'i' using public_key 'key' Note that gm uses random encrpytion. Parameters ========== i: (int) the message to encrypt key: Tuple (a, N) the public key Returns ======= List[int] the randomized encrpyted message. """ if i < 0: raise ValueError( "message must be a non-negative " "integer: got %d instead" % i) a, N = key bits = [] while i > 0: bits.append(i % 2) i //= 2 gen = _random_coprime_stream(N, seed) rev = reversed(bits) encode = lambda b: next(gen)**2*pow(a, b) % N return [ encode(b) for b in rev ] def decipher_gm(message, key): """ Decrypt message 'message' using public_key 'key'. Parameters ========== List[int]: the randomized encrpyted message. key: Tuple (p, q) the private key Returns ======= i (int) the encrpyted message """ p, q = key res = lambda m, p: _legendre(m, p) > 0 bits = [res(m, p) * res(m, q) for m in message] m = 0 for b in bits: m <<= 1 m += not b return m
5d01e9e503e52a749899d033a2513d1a2b4e81cce0cfd53df95bd6c27feb8325
"""Module for querying SymPy objects about assumptions.""" from __future__ import print_function, division from sympy.assumptions.assume import (global_assumptions, Predicate, AppliedPredicate) from sympy.core import sympify from sympy.core.cache import cacheit from sympy.core.decorators import deprecated from sympy.core.relational import Relational from sympy.logic.boolalg import (to_cnf, And, Not, Or, Implies, Equivalent, BooleanFunction, BooleanAtom) from sympy.logic.inference import satisfiable from sympy.utilities.decorator import memoize_property # Deprecated predicates should be added to this list deprecated_predicates = [ 'bounded', 'infinity', 'infinitesimal' ] # Memoization storage for predicates predicate_storage = {} predicate_memo = memoize_property(predicate_storage) # Memoization is necessary for the properties of AssumptionKeys to # ensure that only one object of Predicate objects are created. # This is because assumption handlers are registered on those objects. class AssumptionKeys(object): """ This class contains all the supported keys by ``ask``. """ @predicate_memo def hermitian(self): """ Hermitian predicate. ``ask(Q.hermitian(x))`` is true iff ``x`` belongs to the set of Hermitian operators. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples return Predicate('hermitian') @predicate_memo def antihermitian(self): """ Antihermitian predicate. ``Q.antihermitian(x)`` is true iff ``x`` belongs to the field of antihermitian operators, i.e., operators in the form ``x*I``, where ``x`` is Hermitian. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples return Predicate('antihermitian') @predicate_memo def real(self): r""" Real number predicate. ``Q.real(x)`` is true iff ``x`` is a real number, i.e., it is in the interval `(-\infty, \infty)`. Note that, in particular the infinities are not real. Use ``Q.extended_real`` if you want to consider those as well. A few important facts about reals: - Every real number is positive, negative, or zero. Furthermore, because these sets are pairwise disjoint, each real number is exactly one of those three. - Every real number is also complex. - Every real number is finite. - Every real number is either rational or irrational. - Every real number is either algebraic or transcendental. - The facts ``Q.negative``, ``Q.zero``, ``Q.positive``, ``Q.nonnegative``, ``Q.nonpositive``, ``Q.nonzero``, ``Q.integer``, ``Q.rational``, and ``Q.irrational`` all imply ``Q.real``, as do all facts that imply those facts. - The facts ``Q.algebraic``, and ``Q.transcendental`` do not imply ``Q.real``; they imply ``Q.complex``. An algebraic or transcendental number may or may not be real. - The "non" facts (i.e., ``Q.nonnegative``, ``Q.nonzero``, ``Q.nonpositive`` and ``Q.noninteger``) are not equivalent to not the fact, but rather, not the fact *and* ``Q.real``. For example, ``Q.nonnegative`` means ``~Q.negative & Q.real``. So for example, ``I`` is not nonnegative, nonzero, or nonpositive. Examples ======== >>> from sympy import Q, ask, symbols >>> x = symbols('x') >>> ask(Q.real(x), Q.positive(x)) True >>> ask(Q.real(0)) True References ========== .. [1] https://en.wikipedia.org/wiki/Real_number """ return Predicate('real') @predicate_memo def extended_real(self): r""" Extended real predicate. ``Q.extended_real(x)`` is true iff ``x`` is a real number or `\{-\infty, \infty\}`. See documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import ask, Q, oo, I >>> ask(Q.extended_real(1)) True >>> ask(Q.extended_real(I)) False >>> ask(Q.extended_real(oo)) True """ return Predicate('extended_real') @predicate_memo def imaginary(self): """ Imaginary number predicate. ``Q.imaginary(x)`` is true iff ``x`` can be written as a real number multiplied by the imaginary unit ``I``. Please note that ``0`` is not considered to be an imaginary number. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.imaginary(3*I)) True >>> ask(Q.imaginary(2 + 3*I)) False >>> ask(Q.imaginary(0)) False References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_number """ return Predicate('imaginary') @predicate_memo def complex(self): """ Complex number predicate. ``Q.complex(x)`` is true iff ``x`` belongs to the set of complex numbers. Note that every complex number is finite. Examples ======== >>> from sympy import Q, Symbol, ask, I, oo >>> x = Symbol('x') >>> ask(Q.complex(0)) True >>> ask(Q.complex(2 + 3*I)) True >>> ask(Q.complex(oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Complex_number """ return Predicate('complex') @predicate_memo def algebraic(self): r""" Algebraic number predicate. ``Q.algebraic(x)`` is true iff ``x`` belongs to the set of algebraic numbers. ``x`` is algebraic if there is some polynomial in ``p(x)\in \mathbb\{Q\}[x]`` such that ``p(x) = 0``. Examples ======== >>> from sympy import ask, Q, sqrt, I, pi >>> ask(Q.algebraic(sqrt(2))) True >>> ask(Q.algebraic(I)) True >>> ask(Q.algebraic(pi)) False References ========== .. [1] https://en.wikipedia.org/wiki/Algebraic_number """ return Predicate('algebraic') @predicate_memo def transcendental(self): """ Transcedental number predicate. ``Q.transcendental(x)`` is true iff ``x`` belongs to the set of transcendental numbers. A transcendental number is a real or complex number that is not algebraic. """ # TODO: Add examples return Predicate('transcendental') @predicate_memo def integer(self): """ Integer predicate. ``Q.integer(x)`` is true iff ``x`` belongs to the set of integer numbers. Examples ======== >>> from sympy import Q, ask, S >>> ask(Q.integer(5)) True >>> ask(Q.integer(S(1)/2)) False References ========== .. [1] https://en.wikipedia.org/wiki/Integer """ return Predicate('integer') @predicate_memo def rational(self): """ Rational number predicate. ``Q.rational(x)`` is true iff ``x`` belongs to the set of rational numbers. Examples ======== >>> from sympy import ask, Q, pi, S >>> ask(Q.rational(0)) True >>> ask(Q.rational(S(1)/2)) True >>> ask(Q.rational(pi)) False References ========== https://en.wikipedia.org/wiki/Rational_number """ return Predicate('rational') @predicate_memo def irrational(self): """ Irrational number predicate. ``Q.irrational(x)`` is true iff ``x`` is any real number that cannot be expressed as a ratio of integers. Examples ======== >>> from sympy import ask, Q, pi, S, I >>> ask(Q.irrational(0)) False >>> ask(Q.irrational(S(1)/2)) False >>> ask(Q.irrational(pi)) True >>> ask(Q.irrational(I)) False References ========== .. [1] https://en.wikipedia.org/wiki/Irrational_number """ return Predicate('irrational') @predicate_memo def finite(self): """ Finite predicate. ``Q.finite(x)`` is true if ``x`` is neither an infinity nor a ``NaN``. In other words, ``ask(Q.finite(x))`` is true for all ``x`` having a bounded absolute value. Examples ======== >>> from sympy import Q, ask, Symbol, S, oo, I >>> x = Symbol('x') >>> ask(Q.finite(S.NaN)) False >>> ask(Q.finite(oo)) False >>> ask(Q.finite(1)) True >>> ask(Q.finite(2 + 3*I)) True References ========== .. [1] https://en.wikipedia.org/wiki/Finite """ return Predicate('finite') @predicate_memo @deprecated(useinstead="finite", issue=9425, deprecated_since_version="1.0") def bounded(self): """ See documentation of ``Q.finite``. """ return Predicate('finite') @predicate_memo def infinite(self): """ Infinite number predicate. ``Q.infinite(x)`` is true iff the absolute value of ``x`` is infinity. """ # TODO: Add examples return Predicate('infinite') @predicate_memo @deprecated(useinstead="infinite", issue=9426, deprecated_since_version="1.0") def infinity(self): """ See documentation of ``Q.infinite``. """ return Predicate('infinite') @predicate_memo @deprecated(useinstead="zero", issue=9675, deprecated_since_version="1.0") def infinitesimal(self): """ See documentation of ``Q.zero``. """ return Predicate('zero') @predicate_memo def positive(self): r""" Positive real number predicate. ``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x`` is in the interval `(0, \infty)`. In particular, infinity is not positive. A few important facts about positive numbers: - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x)) True >>> ask(Q.positive(1)) True >>> ask(Q.nonpositive(I)) False >>> ask(~Q.positive(I)) True """ return Predicate('positive') @predicate_memo def negative(self): r""" Negative number predicate. ``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is, it is in the interval :math:`(-\infty, 0)`. Note in particular that negative infinity is not negative. A few important facts about negative numbers: - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x)) True >>> ask(Q.negative(-1)) True >>> ask(Q.nonnegative(I)) False >>> ask(~Q.negative(I)) True """ return Predicate('negative') @predicate_memo def zero(self): """ Zero number predicate. ``ask(Q.zero(x))`` is true iff the value of ``x`` is zero. Examples ======== >>> from sympy import ask, Q, oo, symbols >>> x, y = symbols('x, y') >>> ask(Q.zero(0)) True >>> ask(Q.zero(1/oo)) True >>> ask(Q.zero(0*oo)) False >>> ask(Q.zero(1)) False >>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) True """ return Predicate('zero') @predicate_memo def nonzero(self): """ Nonzero real number predicate. ``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero. Note in particular that ``Q.nonzero(x)`` is false if ``x`` is not real. Use ``~Q.zero(x)`` if you want the negation of being zero without any real assumptions. A few important facts about nonzero numbers: - ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I, oo >>> x = symbols('x') >>> print(ask(Q.nonzero(x), ~Q.zero(x))) None >>> ask(Q.nonzero(x), Q.positive(x)) True >>> ask(Q.nonzero(x), Q.zero(x)) False >>> ask(Q.nonzero(0)) False >>> ask(Q.nonzero(I)) False >>> ask(~Q.zero(I)) True >>> ask(Q.nonzero(oo)) #doctest: +SKIP False """ return Predicate('nonzero') @predicate_memo def nonpositive(self): """ Nonpositive real number predicate. ``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of negative numbers including zero. - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonpositive(-1)) True >>> ask(Q.nonpositive(0)) True >>> ask(Q.nonpositive(1)) False >>> ask(Q.nonpositive(I)) False >>> ask(Q.nonpositive(-I)) False """ return Predicate('nonpositive') @predicate_memo def nonnegative(self): """ Nonnegative real number predicate. ``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of positive numbers including zero. - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonnegative(1)) True >>> ask(Q.nonnegative(0)) True >>> ask(Q.nonnegative(-1)) False >>> ask(Q.nonnegative(I)) False >>> ask(Q.nonnegative(-I)) False """ return Predicate('nonnegative') @predicate_memo def even(self): """ Even number predicate. ``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even integers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.even(0)) True >>> ask(Q.even(2)) True >>> ask(Q.even(3)) False >>> ask(Q.even(pi)) False """ return Predicate('even') @predicate_memo def odd(self): """ Odd number predicate. ``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.odd(0)) False >>> ask(Q.odd(2)) False >>> ask(Q.odd(3)) True >>> ask(Q.odd(pi)) False """ return Predicate('odd') @predicate_memo def prime(self): """ Prime number predicate. ``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater than 1 that has no positive divisors other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.prime(0)) False >>> ask(Q.prime(1)) False >>> ask(Q.prime(2)) True >>> ask(Q.prime(20)) False >>> ask(Q.prime(-3)) False """ return Predicate('prime') @predicate_memo def composite(self): """ Composite number predicate. ``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has at least one positive divisor other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.composite(0)) False >>> ask(Q.composite(1)) False >>> ask(Q.composite(2)) False >>> ask(Q.composite(20)) True """ return Predicate('composite') @predicate_memo def commutative(self): """ Commutative predicate. ``ask(Q.commutative(x))`` is true iff ``x`` commutes with any other object with respect to multiplication operation. """ # TODO: Add examples return Predicate('commutative') @predicate_memo def is_true(self): """ Generic predicate. ``ask(Q.is_true(x))`` is true iff ``x`` is true. This only makes sense if ``x`` is a predicate. Examples ======== >>> from sympy import ask, Q, symbols >>> x = symbols('x') >>> ask(Q.is_true(True)) True """ return Predicate('is_true') @predicate_memo def symmetric(self): """ Symmetric matrix predicate. ``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(Y)) False References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_matrix """ # TODO: Add handlers to make these keys work with # actual matrices and add more examples in the docstring. return Predicate('symmetric') @predicate_memo def invertible(self): """ Invertible matrix predicate. ``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. A square matrix is called invertible only if its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.invertible(X*Y), Q.invertible(X)) False >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) True >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Invertible_matrix """ return Predicate('invertible') @predicate_memo def orthogonal(self): """ Orthogonal matrix predicate. ``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. A square matrix ``M`` is an orthogonal matrix if it satisfies ``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of ``M`` and ``I`` is an identity matrix. Note that an orthogonal matrix is necessarily invertible. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.orthogonal(Y)) False >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) True >>> ask(Q.orthogonal(Identity(3))) True >>> ask(Q.invertible(X), Q.orthogonal(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix """ return Predicate('orthogonal') @predicate_memo def unitary(self): """ Unitary matrix predicate. ``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` where :math:``M^T`` is the conjugate transpose matrix of ``M``. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.unitary(Y)) False >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) True >>> ask(Q.unitary(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_matrix """ return Predicate('unitary') @predicate_memo def positive_definite(self): r""" Positive definite matrix predicate. If ``M`` is a :math:``n \times n`` symmetric real matrix, it is said to be positive definite if :math:`Z^TMZ` is positive for every non-zero column vector ``Z`` of ``n`` real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.positive_definite(Y)) False >>> ask(Q.positive_definite(Identity(3))) True >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ... Q.positive_definite(Z)) True References ========== .. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix """ return Predicate('positive_definite') @predicate_memo def upper_triangular(self): """ Upper triangular matrix predicate. A matrix ``M`` is called upper triangular matrix if :math:`M_{ij}=0` for :math:`i<j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.upper_triangular(Identity(3))) True >>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/UpperTriangularMatrix.html """ return Predicate('upper_triangular') @predicate_memo def lower_triangular(self): """ Lower triangular matrix predicate. A matrix ``M`` is called lower triangular matrix if :math:`a_{ij}=0` for :math:`i>j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.lower_triangular(Identity(3))) True >>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/LowerTriangularMatrix.html """ return Predicate('lower_triangular') @predicate_memo def diagonal(self): """ Diagonal matrix predicate. ``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.diagonal(ZeroMatrix(3, 3))) True >>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Diagonal_matrix """ return Predicate('diagonal') @predicate_memo def fullrank(self): """ Fullrank matrix predicate. ``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.fullrank(X.T), Q.fullrank(X)) True >>> ask(Q.fullrank(ZeroMatrix(3, 3))) False >>> ask(Q.fullrank(Identity(3))) True """ return Predicate('fullrank') @predicate_memo def square(self): """ Square matrix predicate. ``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix is a matrix with the same number of rows and columns. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('X', 2, 3) >>> ask(Q.square(X)) True >>> ask(Q.square(Y)) False >>> ask(Q.square(ZeroMatrix(3, 3))) True >>> ask(Q.square(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Square_matrix """ return Predicate('square') @predicate_memo def integer_elements(self): """ Integer elements matrix predicate. ``Q.integer_elements(x)`` is true iff all the elements of ``x`` are integers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) True """ return Predicate('integer_elements') @predicate_memo def real_elements(self): """ Real elements matrix predicate. ``Q.real_elements(x)`` is true iff all the elements of ``x`` are real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.real(X[1, 2]), Q.real_elements(X)) True """ return Predicate('real_elements') @predicate_memo def complex_elements(self): """ Complex elements matrix predicate. ``Q.complex_elements(x)`` is true iff all the elements of ``x`` are complex numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) True >>> ask(Q.complex_elements(X), Q.integer_elements(X)) True """ return Predicate('complex_elements') @predicate_memo def singular(self): """ Singular matrix predicate. A matrix is singular iff the value of its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.singular(X), Q.invertible(X)) False >>> ask(Q.singular(X), ~Q.invertible(X)) True References ========== .. [1] http://mathworld.wolfram.com/SingularMatrix.html """ return Predicate('singular') @predicate_memo def normal(self): """ Normal matrix predicate. A matrix is normal if it commutes with its conjugate transpose. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.normal(X), Q.unitary(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Normal_matrix """ return Predicate('normal') @predicate_memo def triangular(self): """ Triangular matrix predicate. ``Q.triangular(X)`` is true if ``X`` is one that is either lower triangular or upper triangular. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.upper_triangular(X)) True >>> ask(Q.triangular(X), Q.lower_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_matrix """ return Predicate('triangular') @predicate_memo def unit_triangular(self): """ Unit triangular matrix predicate. A unit triangular matrix is a triangular matrix with 1s on the diagonal. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.unit_triangular(X)) True """ return Predicate('unit_triangular') Q = AssumptionKeys() def _extract_facts(expr, symbol, check_reversed_rel=True): """ Helper for ask(). Extracts the facts relevant to the symbol from an assumption. Returns None if there is nothing to extract. """ if isinstance(symbol, Relational): if check_reversed_rel: rev = _extract_facts(expr, symbol.reversed, False) if rev is not None: return rev if isinstance(expr, bool): return if not expr.has(symbol): return if isinstance(expr, AppliedPredicate): if expr.arg == symbol: return expr.func else: return if isinstance(expr, Not) and expr.args[0].func in (And, Or): cls = Or if expr.args[0] == And else And expr = cls(*[~arg for arg in expr.args[0].args]) args = [_extract_facts(arg, symbol) for arg in expr.args] if isinstance(expr, And): args = [x for x in args if x is not None] if args: return expr.func(*args) if args and all(x != None for x in args): return expr.func(*args) def ask(proposition, assumptions=True, context=global_assumptions): """ Method for inferring properties about objects. **Syntax** * ask(proposition) * ask(proposition, assumptions) where ``proposition`` is any boolean expression Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), Q.is_true(x > 0)) # doctest: +SKIP It is however a work in progress. """ from sympy.assumptions.satask import satask if not isinstance(proposition, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("proposition must be a valid logical expression") if not isinstance(assumptions, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("assumptions must be a valid logical expression") if isinstance(proposition, AppliedPredicate): key, expr = proposition.func, sympify(proposition.arg) else: key, expr = Q.is_true, sympify(proposition) assumptions = And(assumptions, And(*context)) assumptions = to_cnf(assumptions) local_facts = _extract_facts(assumptions, expr) known_facts_cnf = get_known_facts_cnf() known_facts_dict = get_known_facts_dict() if local_facts and satisfiable(And(local_facts, known_facts_cnf)) is False: raise ValueError("inconsistent assumptions %s" % assumptions) # direct resolution method, no logic res = key(expr)._eval_ask(assumptions) if res is not None: return bool(res) if local_facts is None: return satask(proposition, assumptions=assumptions, context=context) # See if there's a straight-forward conclusion we can make for the inference if local_facts.is_Atom: if key in known_facts_dict[local_facts]: return True if Not(key) in known_facts_dict[local_facts]: return False elif (isinstance(local_facts, And) and all(k in known_facts_dict for k in local_facts.args)): for assum in local_facts.args: if assum.is_Atom: if key in known_facts_dict[assum]: return True if Not(key) in known_facts_dict[assum]: return False elif isinstance(assum, Not) and assum.args[0].is_Atom: if key in known_facts_dict[assum]: return False if Not(key) in known_facts_dict[assum]: return True elif (isinstance(key, Predicate) and isinstance(local_facts, Not) and local_facts.args[0].is_Atom): if local_facts.args[0] in known_facts_dict[key]: return False # Failing all else, we do a full logical inference res = ask_full_inference(key, local_facts, known_facts_cnf) if res is None: return satask(proposition, assumptions=assumptions, context=context) return res def ask_full_inference(proposition, assumptions, known_facts_cnf): """ Method for inferring properties about objects. """ if not satisfiable(And(known_facts_cnf, assumptions, proposition)): return False if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): return True return None def register_handler(key, handler): """ Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler:: >>> from sympy.assumptions import register_handler, ask, Q >>> from sympy.assumptions.handlers import AskHandler >>> class MersenneHandler(AskHandler): ... # Mersenne numbers are in the form 2**n - 1, n integer ... @staticmethod ... def Integer(expr, assumptions): ... from sympy import log ... return ask(Q.integer(log(expr + 1, 2))) >>> register_handler('mersenne', MersenneHandler) >>> ask(Q.mersenne(7)) True """ if type(key) is Predicate: key = key.name try: getattr(Q, key).add_handler(handler) except AttributeError: setattr(Q, key, Predicate(key, handlers=[handler])) def remove_handler(key, handler): """Removes a handler from the ask system. Same syntax as register_handler""" if type(key) is Predicate: key = key.name getattr(Q, key).remove_handler(handler) def single_fact_lookup(known_facts_keys, known_facts_cnf): # Compute the quick lookup for single facts mapping = {} for key in known_facts_keys: mapping[key] = {key} for other_key in known_facts_keys: if other_key != key: if ask_full_inference(other_key, key, known_facts_cnf): mapping[key].add(other_key) return mapping def compute_known_facts(known_facts, known_facts_keys): """Compute the various forms of knowledge compilation used by the assumptions system. This function is typically applied to the results of the ``get_known_facts`` and ``get_known_facts_keys`` functions defined at the bottom of this file. """ from textwrap import dedent, wrap fact_string = dedent('''\ """ The contents of this file are the return value of ``sympy.assumptions.ask.compute_known_facts``. Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.core.cache import cacheit from sympy.logic.boolalg import And, Not, Or from sympy.assumptions.ask import Q # -{ Known facts in Conjunctive Normal Form }- @cacheit def get_known_facts_cnf(): return And( %s ) # -{ Known facts in compressed sets }- @cacheit def get_known_facts_dict(): return { %s } ''') # Compute the known facts in CNF form for logical inference LINE = ",\n " HANG = ' '*8 cnf = to_cnf(known_facts) c = LINE.join([str(a) for a in cnf.args]) mapping = single_fact_lookup(known_facts_keys, cnf) items = sorted(mapping.items(), key=str) keys = [str(i[0]) for i in items] values = ['set(%s)' % sorted(i[1], key=str) for i in items] m = LINE.join(['\n'.join( wrap("%s: %s" % (k, v), subsequent_indent=HANG, break_long_words=False)) for k, v in zip(keys, values)]) + ',' return fact_string % (c, m) # handlers tells us what ask handler we should use # for a particular key _val_template = 'sympy.assumptions.handlers.%s' _handlers = [ ("antihermitian", "sets.AskAntiHermitianHandler"), ("finite", "calculus.AskFiniteHandler"), ("commutative", "AskCommutativeHandler"), ("complex", "sets.AskComplexHandler"), ("composite", "ntheory.AskCompositeHandler"), ("even", "ntheory.AskEvenHandler"), ("extended_real", "sets.AskExtendedRealHandler"), ("hermitian", "sets.AskHermitianHandler"), ("imaginary", "sets.AskImaginaryHandler"), ("integer", "sets.AskIntegerHandler"), ("irrational", "sets.AskIrrationalHandler"), ("rational", "sets.AskRationalHandler"), ("negative", "order.AskNegativeHandler"), ("nonzero", "order.AskNonZeroHandler"), ("nonpositive", "order.AskNonPositiveHandler"), ("nonnegative", "order.AskNonNegativeHandler"), ("zero", "order.AskZeroHandler"), ("positive", "order.AskPositiveHandler"), ("prime", "ntheory.AskPrimeHandler"), ("real", "sets.AskRealHandler"), ("odd", "ntheory.AskOddHandler"), ("algebraic", "sets.AskAlgebraicHandler"), ("is_true", "common.TautologicalHandler"), ("symmetric", "matrices.AskSymmetricHandler"), ("invertible", "matrices.AskInvertibleHandler"), ("orthogonal", "matrices.AskOrthogonalHandler"), ("unitary", "matrices.AskUnitaryHandler"), ("positive_definite", "matrices.AskPositiveDefiniteHandler"), ("upper_triangular", "matrices.AskUpperTriangularHandler"), ("lower_triangular", "matrices.AskLowerTriangularHandler"), ("diagonal", "matrices.AskDiagonalHandler"), ("fullrank", "matrices.AskFullRankHandler"), ("square", "matrices.AskSquareHandler"), ("integer_elements", "matrices.AskIntegerElementsHandler"), ("real_elements", "matrices.AskRealElementsHandler"), ("complex_elements", "matrices.AskComplexElementsHandler"), ] for name, value in _handlers: register_handler(name, _val_template % value) @cacheit def get_known_facts_keys(): return [ getattr(Q, attr) for attr in Q.__class__.__dict__ if not (attr.startswith('__') or attr in deprecated_predicates)] @cacheit def get_known_facts(): return And( Implies(Q.infinite, ~Q.finite), Implies(Q.real, Q.complex), Implies(Q.real, Q.hermitian), Equivalent(Q.extended_real, Q.real | Q.infinite), Equivalent(Q.even | Q.odd, Q.integer), Implies(Q.even, ~Q.odd), Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite), Implies(Q.integer, Q.rational), Implies(Q.rational, Q.algebraic), Implies(Q.algebraic, Q.complex), Equivalent(Q.transcendental | Q.algebraic, Q.complex), Implies(Q.transcendental, ~Q.algebraic), Implies(Q.imaginary, Q.complex & ~Q.real), Implies(Q.imaginary, Q.antihermitian), Implies(Q.antihermitian, ~Q.hermitian), Equivalent(Q.irrational | Q.rational, Q.real), Implies(Q.irrational, ~Q.rational), Implies(Q.zero, Q.even), Equivalent(Q.real, Q.negative | Q.zero | Q.positive), Implies(Q.zero, ~Q.negative & ~Q.positive), Implies(Q.negative, ~Q.positive), Equivalent(Q.nonnegative, Q.zero | Q.positive), Equivalent(Q.nonpositive, Q.zero | Q.negative), Equivalent(Q.nonzero, Q.negative | Q.positive), Implies(Q.orthogonal, Q.positive_definite), Implies(Q.orthogonal, Q.unitary), Implies(Q.unitary & Q.real, Q.orthogonal), Implies(Q.unitary, Q.normal), Implies(Q.unitary, Q.invertible), Implies(Q.normal, Q.square), Implies(Q.diagonal, Q.normal), Implies(Q.positive_definite, Q.invertible), Implies(Q.diagonal, Q.upper_triangular), Implies(Q.diagonal, Q.lower_triangular), Implies(Q.lower_triangular, Q.triangular), Implies(Q.upper_triangular, Q.triangular), Implies(Q.triangular, Q.upper_triangular | Q.lower_triangular), Implies(Q.upper_triangular & Q.lower_triangular, Q.diagonal), Implies(Q.diagonal, Q.symmetric), Implies(Q.unit_triangular, Q.triangular), Implies(Q.invertible, Q.fullrank), Implies(Q.invertible, Q.square), Implies(Q.symmetric, Q.square), Implies(Q.fullrank & Q.square, Q.invertible), Equivalent(Q.invertible, ~Q.singular), Implies(Q.integer_elements, Q.real_elements), Implies(Q.real_elements, Q.complex_elements), ) from sympy.assumptions.ask_generated import ( get_known_facts_dict, get_known_facts_cnf)
a0441cee3c199abe883e7bba2fbca57c7b8023a28b4d8e26788ba13509b76263
from __future__ import print_function, division from sympy.assumptions.ask_generated import get_known_facts_cnf from sympy.assumptions.assume import global_assumptions, AppliedPredicate from sympy.assumptions.sathandlers import fact_registry from sympy.core import oo, Tuple from sympy.logic.inference import satisfiable from sympy.logic.boolalg import And def satask(proposition, assumptions=True, context=global_assumptions, use_known_facts=True, iterations=oo): relevant_facts = get_all_relevant_facts(proposition, assumptions, context, use_known_facts=use_known_facts, iterations=iterations) can_be_true = satisfiable(And(proposition, assumptions, relevant_facts, *context)) can_be_false = satisfiable(And(~proposition, assumptions, relevant_facts, *context)) if can_be_true and can_be_false: return None if can_be_true and not can_be_false: return True if not can_be_true and can_be_false: return False if not can_be_true and not can_be_false: # TODO: Run additional checks to see which combination of the # assumptions, global_assumptions, and relevant_facts are # inconsistent. raise ValueError("Inconsistent assumptions") def get_relevant_facts(proposition, assumptions=(True,), context=global_assumptions, use_known_facts=True, exprs=None, relevant_facts=None): newexprs = set() if not exprs: keys = proposition.atoms(AppliedPredicate) # XXX: We need this since True/False are not Basic keys |= Tuple(*assumptions).atoms(AppliedPredicate) if context: keys |= And(*context).atoms(AppliedPredicate) exprs = {key.args[0] for key in keys} if not relevant_facts: relevant_facts = set([]) if use_known_facts: for expr in exprs: relevant_facts.add(get_known_facts_cnf().rcall(expr)) for expr in exprs: for fact in fact_registry[expr.func]: newfact = fact.rcall(expr) relevant_facts.add(newfact) newexprs |= set([key.args[0] for key in newfact.atoms(AppliedPredicate)]) return relevant_facts, newexprs - exprs def get_all_relevant_facts(proposition, assumptions=True, context=global_assumptions, use_known_facts=True, iterations=oo): # The relevant facts might introduce new keys, e.g., Q.zero(x*y) will # introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until # we stop getting new things. Hopefully this strategy won't lead to an # infinite loop in the future. i = 0 relevant_facts = set() exprs = None while exprs != set(): (relevant_facts, exprs) = get_relevant_facts(proposition, And.make_args(assumptions), context, use_known_facts=use_known_facts, exprs=exprs, relevant_facts=relevant_facts) i += 1 if i >= iterations: return And(*relevant_facts) return And(*relevant_facts)
dd9583ea8aca37629dfc98aafccc7d0c096ea4ad183db9323cd51a9cdb0318fe
from __future__ import print_function, division from collections import defaultdict from sympy.assumptions.ask import Q from sympy.assumptions.assume import Predicate, AppliedPredicate from sympy.core import (Add, Mul, Pow, Integer, Number, NumberSymbol,) from sympy.core.compatibility import MutableMapping from sympy.core.numbers import ImaginaryUnit from sympy.core.logic import fuzzy_or, fuzzy_and from sympy.core.rules import Transform from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import Abs from sympy.logic.boolalg import (Equivalent, Implies, And, Or, BooleanFunction, Not) from sympy.matrices.expressions import MatMul # APIs here may be subject to change # XXX: Better name? class UnevaluatedOnFree(BooleanFunction): """ Represents a Boolean function that remains unevaluated on free predicates This is intended to be a superclass of other classes, which define the behavior on singly applied predicates. A free predicate is a predicate that is not applied, or a combination thereof. For example, Q.zero or Or(Q.positive, Q.negative). A singly applied predicate is a free predicate applied everywhere to a single expression. For instance, Q.zero(x) and Or(Q.positive(x*y), Q.negative(x*y)) are singly applied, but Or(Q.positive(x), Q.negative(y)) and Or(Q.positive, Q.negative(y)) are not. The boolean literals True and False are considered to be both free and singly applied. This class raises ValueError unless the input is a free predicate or a singly applied predicate. On a free predicate, this class remains unevaluated. On a singly applied predicate, the method apply() is called and returned, or the original expression returned if apply() returns None. When apply() is called, self.expr is set to the unique expression that the predicates are applied at. self.pred is set to the free form of the predicate. The typical usage is to create this class with free predicates and evaluate it using .rcall(). """ def __new__(cls, arg): # Mostly type checking here arg = _sympify(arg) predicates = arg.atoms(Predicate) applied_predicates = arg.atoms(AppliedPredicate) if predicates and applied_predicates: raise ValueError("arg must be either completely free or singly applied") if not applied_predicates: obj = BooleanFunction.__new__(cls, arg) obj.pred = arg obj.expr = None return obj predicate_args = {pred.args[0] for pred in applied_predicates} if len(predicate_args) > 1: raise ValueError("The AppliedPredicates in arg must be applied to a single expression.") obj = BooleanFunction.__new__(cls, arg) obj.expr = predicate_args.pop() obj.pred = arg.xreplace(Transform(lambda e: e.func, lambda e: isinstance(e, AppliedPredicate))) applied = obj.apply() if applied is None: return obj return applied def apply(self): return class AllArgs(UnevaluatedOnFree): """ Class representing vectorizing a predicate over all the .args of an expression See the docstring of UnevaluatedOnFree for more information on this class. The typical usage is to evaluate predicates with expressions using .rcall(). Example ======= >>> from sympy.assumptions.sathandlers import AllArgs >>> from sympy import symbols, Q >>> x, y = symbols('x y') >>> a = AllArgs(Q.positive | Q.negative) >>> a AllArgs(Q.negative | Q.positive) >>> a.rcall(x*y) (Q.negative(x) | Q.positive(x)) & (Q.negative(y) | Q.positive(y)) """ def apply(self): return And(*[self.pred.rcall(arg) for arg in self.expr.args]) class AnyArgs(UnevaluatedOnFree): """ Class representing vectorizing a predicate over any of the .args of an expression. See the docstring of UnevaluatedOnFree for more information on this class. The typical usage is to evaluate predicates with expressions using .rcall(). Example ======= >>> from sympy.assumptions.sathandlers import AnyArgs >>> from sympy import symbols, Q >>> x, y = symbols('x y') >>> a = AnyArgs(Q.positive & Q.negative) >>> a AnyArgs(Q.negative & Q.positive) >>> a.rcall(x*y) (Q.negative(x) & Q.positive(x)) | (Q.negative(y) & Q.positive(y)) """ def apply(self): return Or(*[self.pred.rcall(arg) for arg in self.expr.args]) class ExactlyOneArg(UnevaluatedOnFree): """ Class representing a predicate holding on exactly one of the .args of an expression. See the docstring of UnevaluatedOnFree for more information on this class. The typical usage is to evaluate predicate with expressions using .rcall(). Example ======= >>> from sympy.assumptions.sathandlers import ExactlyOneArg >>> from sympy import symbols, Q >>> x, y = symbols('x y') >>> a = ExactlyOneArg(Q.positive) >>> a ExactlyOneArg(Q.positive) >>> a.rcall(x*y) (Q.positive(x) & ~Q.positive(y)) | (Q.positive(y) & ~Q.positive(x)) """ def apply(self): expr = self.expr pred = self.pred pred_args = [pred.rcall(arg) for arg in expr.args] # Technically this is xor, but if one term in the disjunction is true, # it is not possible for the remainder to be true, so regular or is # fine in this case. return Or(*[And(pred_args[i], *map(Not, pred_args[:i] + pred_args[i+1:])) for i in range(len(pred_args))]) # Note: this is the equivalent cnf form. The above is more efficient # as the first argument of an implication, since p >> q is the same as # q | ~p, so the the ~ will convert the Or to and, and one just needs # to distribute the q across it to get to cnf. # return And(*[Or(*map(Not, c)) for c in combinations(pred_args, 2)]) & Or(*pred_args) def _old_assump_replacer(obj): # Things to be careful of: # - real means real or infinite in the old assumptions. # - nonzero does not imply real in the old assumptions. # - finite means finite and not zero in the old assumptions. if not isinstance(obj, AppliedPredicate): return obj e = obj.args[0] ret = None if obj.func == Q.positive: ret = fuzzy_and([e.is_finite, e.is_positive]) if obj.func == Q.zero: ret = e.is_zero if obj.func == Q.negative: ret = fuzzy_and([e.is_finite, e.is_negative]) if obj.func == Q.nonpositive: ret = fuzzy_and([e.is_finite, e.is_nonpositive]) if obj.func == Q.nonzero: ret = fuzzy_and([e.is_nonzero, e.is_finite]) if obj.func == Q.nonnegative: ret = fuzzy_and([fuzzy_or([e.is_zero, e.is_finite]), e.is_nonnegative]) if obj.func == Q.rational: ret = e.is_rational if obj.func == Q.irrational: ret = e.is_irrational if obj.func == Q.even: ret = e.is_even if obj.func == Q.odd: ret = e.is_odd if obj.func == Q.integer: ret = e.is_integer if obj.func == Q.imaginary: ret = e.is_imaginary if obj.func == Q.commutative: ret = e.is_commutative if ret is None: return obj return ret def evaluate_old_assump(pred): """ Replace assumptions of expressions replaced with their values in the old assumptions (like Q.negative(-1) => True). Useful because some direct computations for numeric objects is defined most conveniently in the old assumptions. """ return pred.xreplace(Transform(_old_assump_replacer)) class CheckOldAssump(UnevaluatedOnFree): def apply(self): return Equivalent(self.args[0], evaluate_old_assump(self.args[0])) class CheckIsPrime(UnevaluatedOnFree): def apply(self): from sympy import isprime return Equivalent(self.args[0], isprime(self.expr)) class CustomLambda(object): """ Interface to lambda with rcall Workaround until we get a better way to represent certain facts. """ def __init__(self, lamda): self.lamda = lamda def rcall(self, *args): return self.lamda(*args) class ClassFactRegistry(MutableMapping): """ Register handlers against classes ``registry[C] = handler`` registers ``handler`` for class ``C``. ``registry[C]`` returns a set of handlers for class ``C``, or any of its superclasses. """ def __init__(self, d=None): d = d or {} self.d = defaultdict(frozenset, d) super(ClassFactRegistry, self).__init__() def __setitem__(self, key, item): self.d[key] = frozenset(item) def __getitem__(self, key): ret = self.d[key] for k in self.d: if issubclass(key, k): ret |= self.d[k] return ret def __delitem__(self, key): del self.d[key] def __iter__(self): return self.d.__iter__() def __len__(self): return len(self.d) def __repr__(self): return repr(self.d) fact_registry = ClassFactRegistry() def register_fact(klass, fact, registry=fact_registry): registry[klass] |= {fact} for klass, fact in [ (Mul, Equivalent(Q.zero, AnyArgs(Q.zero))), (MatMul, Implies(AllArgs(Q.square), Equivalent(Q.invertible, AllArgs(Q.invertible)))), (Add, Implies(AllArgs(Q.positive), Q.positive)), (Add, Implies(AllArgs(Q.negative), Q.negative)), (Mul, Implies(AllArgs(Q.positive), Q.positive)), (Mul, Implies(AllArgs(Q.commutative), Q.commutative)), (Mul, Implies(AllArgs(Q.real), Q.commutative)), (Pow, CustomLambda(lambda power: Implies(Q.real(power.base) & Q.even(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))), (Pow, CustomLambda(lambda power: Implies(Q.nonnegative(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonnegative(power)))), (Pow, CustomLambda(lambda power: Implies(Q.nonpositive(power.base) & Q.odd(power.exp) & Q.nonnegative(power.exp), Q.nonpositive(power)))), # This one can still be made easier to read. I think we need basic pattern # matching, so that we can just write Equivalent(Q.zero(x**y), Q.zero(x) & Q.positive(y)) (Pow, CustomLambda(lambda power: Equivalent(Q.zero(power), Q.zero(power.base) & Q.positive(power.exp)))), (Integer, CheckIsPrime(Q.prime)), # Implicitly assumes Mul has more than one arg # Would be AllArgs(Q.prime | Q.composite) except 1 is composite (Mul, Implies(AllArgs(Q.prime), ~Q.prime)), # More advanced prime assumptions will require inequalities, as 1 provides # a corner case. (Mul, Implies(AllArgs(Q.imaginary | Q.real), Implies(ExactlyOneArg(Q.imaginary), Q.imaginary))), (Mul, Implies(AllArgs(Q.real), Q.real)), (Add, Implies(AllArgs(Q.real), Q.real)), # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented) (Mul, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational), Q.irrational))), (Add, Implies(AllArgs(Q.real), Implies(ExactlyOneArg(Q.irrational), Q.irrational))), (Mul, Implies(AllArgs(Q.rational), Q.rational)), (Add, Implies(AllArgs(Q.rational), Q.rational)), (Abs, Q.nonnegative), (Abs, Equivalent(AllArgs(~Q.zero), ~Q.zero)), # Including the integer qualification means we don't need to add any facts # for odd, since the assumptions already know that every integer is # exactly one of even or odd. (Mul, Implies(AllArgs(Q.integer), Equivalent(AnyArgs(Q.even), Q.even))), (Abs, Implies(AllArgs(Q.even), Q.even)), (Abs, Implies(AllArgs(Q.odd), Q.odd)), (Add, Implies(AllArgs(Q.integer), Q.integer)), (Add, Implies(ExactlyOneArg(~Q.integer), ~Q.integer)), (Mul, Implies(AllArgs(Q.integer), Q.integer)), (Mul, Implies(ExactlyOneArg(~Q.rational), ~Q.integer)), (Abs, Implies(AllArgs(Q.integer), Q.integer)), (Number, CheckOldAssump(Q.negative)), (Number, CheckOldAssump(Q.zero)), (Number, CheckOldAssump(Q.positive)), (Number, CheckOldAssump(Q.nonnegative)), (Number, CheckOldAssump(Q.nonzero)), (Number, CheckOldAssump(Q.nonpositive)), (Number, CheckOldAssump(Q.rational)), (Number, CheckOldAssump(Q.irrational)), (Number, CheckOldAssump(Q.even)), (Number, CheckOldAssump(Q.odd)), (Number, CheckOldAssump(Q.integer)), (Number, CheckOldAssump(Q.imaginary)), # For some reason NumberSymbol does not subclass Number (NumberSymbol, CheckOldAssump(Q.negative)), (NumberSymbol, CheckOldAssump(Q.zero)), (NumberSymbol, CheckOldAssump(Q.positive)), (NumberSymbol, CheckOldAssump(Q.nonnegative)), (NumberSymbol, CheckOldAssump(Q.nonzero)), (NumberSymbol, CheckOldAssump(Q.nonpositive)), (NumberSymbol, CheckOldAssump(Q.rational)), (NumberSymbol, CheckOldAssump(Q.irrational)), (NumberSymbol, CheckOldAssump(Q.imaginary)), (ImaginaryUnit, CheckOldAssump(Q.negative)), (ImaginaryUnit, CheckOldAssump(Q.zero)), (ImaginaryUnit, CheckOldAssump(Q.positive)), (ImaginaryUnit, CheckOldAssump(Q.nonnegative)), (ImaginaryUnit, CheckOldAssump(Q.nonzero)), (ImaginaryUnit, CheckOldAssump(Q.nonpositive)), (ImaginaryUnit, CheckOldAssump(Q.rational)), (ImaginaryUnit, CheckOldAssump(Q.irrational)), (ImaginaryUnit, CheckOldAssump(Q.imaginary)) ]: register_fact(klass, fact)
ce8b6286f973918a5fccea657f3fc8e7c837158a5b5c99159e23d5b5d6d59956
r""" This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper functions that it uses. :py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in ``pde.py``. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a specific hint. See also the docstring on :py:meth:`~sympy.solvers.ode.dsolve`. **Functions in this module** These are the user functions in this module: - :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs. - :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into possible hints for :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the solution to an ODE. - :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the homogeneous order of an expression. - :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant. - :py:meth:`~sympy.solvers.ode_checkinfsol` - Checks if the given infinitesimals are the actual infinitesimals of a first order ODE. These are the non-solver helper functions that are for internal use. The user should use the various options to :py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided by these functions: - :py:meth:`~sympy.solvers.ode.odesimp` - Does all forms of ODE simplification. - :py:meth:`~sympy.solvers.ode.ode_sol_simplicity` - A key function for comparing solutions by simplicity. - :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary constants. - :py:meth:`~sympy.solvers.ode.constant_renumber` - Renumber arbitrary constants. - :py:meth:`~sympy.solvers.ode._handle_Integral` - Evaluate unevaluated Integrals. See also the docstrings of these functions. **Currently implemented solver methods** The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run ``help(ode)``): - 1st order separable differential equations. - 1st order differential equations whose coefficients or `dx` and `dy` are functions homogeneous of the same order. - 1st order exact differential equations. - 1st order linear differential equations. - 1st order Bernoulli differential equations. - Power series solutions for first order differential equations. - Lie Group method of solving first order differential equations. - 2nd order Liouville differential equations. - Power series solutions for second order differential equations at ordinary and regular singular points. - `n`\th order differential equation that can be solved with algebraic rearrangement and integration. - `n`\th order linear homogeneous differential equation with constant coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters. **Philosophy behind this module** This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named ``ode_<hint>``. That function takes in the ODE and any match expression gathered by :py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated :py:class:`~sympy.integrals.Integral` class. :py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function around all of this, will then call :py:meth:`~sympy.solvers.ode.odesimp` on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it. **How to add new solution methods** If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple's DETools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an `n`\th order ODE instead of only with specific orders, if possible. To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a ``hint_Integral`` hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()`` function should choose the best using min with ``ode_sol_simplicity`` as the key argument. See :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best`, for example. The function that uses your method will be called ``ode_<hint>()``, so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore '``_``' character). Include a function for every hint, except for ``_Integral`` hints (:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such as a best hint that would defeat the purpose of ``all_Integral``), you will need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for guidelines on writing a hint name. Determine *in general* how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In general, ``_Integral`` variants should go at the end of the list, and ``_best`` variants should go before the various hints they apply to. For example, the ``undetermined_coefficients`` hint comes before the ``variation_of_parameters`` hint because, even though variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster. Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode` (if the match function is more than just a few lines, like :py:meth:`~sympy.solvers.ode._undetermined_coefficients_match`, it should go outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the ODE without solving for it as much as possible, so that :py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0. In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (``.match()`` will do this for you), and add that as ``matching_hints['hint'] = matchdict`` in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`. :py:meth:`~sympy.solvers.ode.classify_ode` will then send this to :py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as the ``match`` argument. Your function should be named ``ode_<hint>(eq, func, order, match)`. If you need to send more information, put it in the ``match`` dictionary. For example, if you had to substitute in a dummy variable in :py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to pass it to your function using the `match` dict to access it. You can access the independent variable using ``func.args[0]``, and the dependent variable (the function you are trying to solve for) as ``func.func``. If, while trying to solve the ODE, you find that you cannot, raise ``NotImplementedError``. :py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all`` meta-hint, rather than causing the whole routine to fail. Add a docstring to your function that describes the method employed. Like with anything else in SymPy, you will need to add a doctest to the docstring, in addition to real tests in ``test_ode.py``. Try to maintain consistency with the other hint functions' docstrings. Add your method to the list at the top of this docstring. Also, add your method to ``ode.rst`` in the ``docs/src`` directory, so that the Sphinx docs will pull its docstring into the main SymPy documentation. Be sure to make the Sphinx documentation by running ``make html`` from within the doc directory to verify that the docstring formats correctly. If your solution method involves integrating, use :py:meth:`Integral() <sympy.integrals.integrals.Integral>` instead of :py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass hard/slow integration by using the ``_Integral`` variant of your hint. In most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your solution. If this is not the case, you will need to write special code in :py:meth:`~sympy.solvers.ode._handle_Integral`. Arbitrary constants should be symbols named ``C1``, ``C2``, and so on. All solution methods should return an equality instance. If you need an arbitrary number of arbitrary constants, you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``. If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your ``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.odesimp` will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in :py:meth:`~sympy.solvers.ode.odesimp` for it. For example, solutions returned from the ``1st_homogeneous_coeff`` hints often have many :py:meth:`~sympy.functions.log` terms, so :py:meth:`~sympy.solvers.ode.odesimp` calls :py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also consider common ways that you can rearrange your solution to have :py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is better to put simplification in :py:meth:`~sympy.solvers.ode.odesimp` than in your method, because it can then be turned off with the simplify flag in :py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous simplification in your function, be sure to only run it using ``if match.get('simplify', True):``, especially if it can be slow or if it can reduce the domain of the solution. Finally, as with every contribution to SymPy, your method will need to be tested. Add a test for each method in ``test_ode.py``. Follow the conventions there, i.e., test the solver using ``dsolve(eq, f(x), hint=your_hint)``, and also test the solution using :py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test won't be broken simply by the introduction of another matching hint. If your method works for higher order (>1) ODEs, you will need to run ``sol = constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is the order of the ODE. This is because ``constant_renumber`` renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a `n`\th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down. Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in ``test_ode.py``, so if anything is broken, one of those tests will surely fail. """ from __future__ import print_function, division from collections import defaultdict from itertools import islice from functools import cmp_to_key from sympy.core import Add, S, Mul, Pow, oo from sympy.core.compatibility import ordered, iterable, is_sequence, range from sympy.core.containers import Tuple from sympy.core.exprtools import factor_terms from sympy.core.expr import AtomicExpr, Expr from sympy.core.function import (Function, Derivative, AppliedUndef, diff, expand, expand_mul, Subs, _mexpand) from sympy.core.multidimensional import vectorize from sympy.core.numbers import NaN, zoo, I, Number from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, Dummy, symbols from sympy.core.sympify import sympify from sympy.logic.boolalg import (BooleanAtom, And, Or, Not, BooleanTrue, BooleanFalse) from sympy.functions import cos, exp, im, log, re, sin, tan, sqrt, \ atan2, conjugate, Piecewise from sympy.functions.combinatorial.factorials import factorial from sympy.integrals.integrals import Integral, integrate from sympy.matrices import wronskian, Matrix, eye, zeros from sympy.polys import (Poly, RootOf, rootof, terms_gcd, PolynomialError, lcm, roots) from sympy.polys.polyroots import roots_quartic from sympy.polys.polytools import cancel, degree, div from sympy.series import Order from sympy.series.series import series from sympy.simplify import collect, logcombine, powsimp, separatevars, \ simplify, trigsimp, denom, posify, cse from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import collect_const from sympy.solvers import solve from sympy.solvers.pde import pdsolve from sympy.utilities import numbered_symbols, default_sort_key, sift from sympy.solvers.deutils import _preprocess, ode_order, _desolve #: This is a list of hints in the order that they should be preferred by #: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the #: list should produce simpler solutions than those later in the list (for #: ODEs that fit both). For now, the order of this list is based on empirical #: observations by the developers of SymPy. #: #: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE #: can be overridden (see the docstring). #: #: In general, ``_Integral`` hints are grouped at the end of the list, unless #: there is a method that returns an unevaluable integral most of the time #: (which go near the end of the list anyway). ``default``, ``all``, #: ``best``, and ``all_Integral`` meta-hints should not be included in this #: list, but ``_best`` and ``_Integral`` hints should be included. allhints = ( "nth_algebraic", "separable", "1st_exact", "1st_linear", "Bernoulli", "Riccati_special_minus2", "1st_homogeneous_coeff_best", "1st_homogeneous_coeff_subs_indep_div_dep", "1st_homogeneous_coeff_subs_dep_div_indep", "almost_linear", "linear_coefficients", "separable_reduced", "1st_power_series", "lie_group", "nth_linear_constant_coeff_homogeneous", "nth_linear_euler_eq_homogeneous", "nth_linear_constant_coeff_undetermined_coefficients", "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", "nth_linear_constant_coeff_variation_of_parameters", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", "Liouville", "2nd_power_series_ordinary", "2nd_power_series_regular", "nth_algebraic_Integral", "separable_Integral", "1st_exact_Integral", "1st_linear_Integral", "Bernoulli_Integral", "1st_homogeneous_coeff_subs_indep_div_dep_Integral", "1st_homogeneous_coeff_subs_dep_div_indep_Integral", "almost_linear_Integral", "linear_coefficients_Integral", "separable_reduced_Integral", "nth_linear_constant_coeff_variation_of_parameters_Integral", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral", "Liouville_Integral", ) lie_heuristics = ( "abaco1_simple", "abaco1_product", "abaco2_similar", "abaco2_unique_unknown", "abaco2_unique_general", "linear", "function_sum", "bivariate", "chi" ) def sub_func_doit(eq, func, new): r""" When replacing the func with something else, we usually want the derivative evaluated, so this function helps in making that happen. Examples ======== >>> from sympy import Derivative, symbols, Function >>> from sympy.solvers.ode import sub_func_doit >>> x, z = symbols('x, z') >>> y = Function('y') >>> sub_func_doit(3*Derivative(y(x), x) - 1, y(x), x) 2 >>> sub_func_doit(x*Derivative(y(x), x) - y(x)**2 + y(x), y(x), ... 1/(x*(z + 1/x))) x*(-1/(x**2*(z + 1/x)) + 1/(x**3*(z + 1/x)**2)) + 1/(x*(z + 1/x)) ...- 1/(x**2*(z + 1/x)**2) """ reps= {func: new} for d in eq.atoms(Derivative): if d.expr == func: reps[d] = new.diff(*d.variable_count) else: reps[d] = d.xreplace({func: new}).doit(deep=False) return eq.xreplace(reps) def get_numbered_constants(eq, num=1, start=1, prefix='C'): """ Returns a list of constants that do not occur in eq already. """ if isinstance(eq, Expr): eq = [eq] elif not iterable(eq): raise ValueError("Expected Expr or iterable but got %s" % eq) atom_set = set().union(*[i.free_symbols for i in eq]) func_set = set().union(*[i.atoms(Function) for i in eq]) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} ncs = numbered_symbols(start=start, prefix=prefix, exclude=atom_set) Cs = [next(ncs) for i in range(num)] return (Cs[0] if num == 1 else tuple(Cs)) def dsolve(eq, func=None, hint="default", simplify=True, ics= None, xi=None, eta=None, x0=0, n=6, **kwargs): r""" Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations. For single ordinary differential equation ========================================= It is classified under this when number of equation in ``eq`` is one. **Usage** ``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation ``eq`` for function ``f(x)``, using method ``hint``. **Details** ``eq`` can be any supported ordinary differential equation (see the :py:mod:`~sympy.solvers.ode` docstring for supported methods). This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``f(x)`` is a function of one variable whose derivatives in that variable make up the ordinary differential equation ``eq``. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want dsolve to use. Use ``classify_ode(eq, f(x))`` to get all of the possible hints for an ODE. The default hint, ``default``, will use whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See Hints below for more options that you can use for hint. ``simplify`` enables simplification by :py:meth:`~sympy.solvers.ode.odesimp`. See its docstring for more information. Turn this off, for example, to disable solving of solutions for ``func`` or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled. ``xi`` and ``eta`` are the infinitesimal functions of an ordinary differential equation. They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, ``xi`` and ``eta`` are calculated using :py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various heuristics. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. For power series solutions, if no initial conditions are specified ``f(0)`` is assumed to be ``C0`` and the power series solution is calculated about 0. ``x0`` is the point about which the power series solution of a differential equation is to be evaluated. ``n`` gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`: ``default``: This uses whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. This is the default argument to :py:meth:`~sympy.solvers.ode.dsolve`. ``all``: To make :py:meth:`~sympy.solvers.ode.dsolve` apply all relevant classification hints, use ``dsolve(ODE, func, hint="all")``. This will return a dictionary of ``hint:solution`` terms. If a hint causes dsolve to raise the ``NotImplementedError``, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - ``order``: The order of the ODE. See also :py:meth:`~sympy.solvers.deutils.ode_order` in ``deutils.py``. - ``best``: The simplest hint; what would be returned by ``best`` below. - ``best_hint``: The hint that would produce the solution given by ``best``. If more than one hint produces the best solution, the first one in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode` is chosen. - ``default``: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode`. ``all_Integral``: This is the same as ``all``, except if a hint also has a corresponding ``_Integral`` hint, it only returns the ``_Integral`` hint. This is useful if ``all`` causes :py:meth:`~sympy.solvers.ode.dsolve` to hang because of a difficult or impossible integral. This meta-hint will also be much faster than ``all``, because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. ``best``: To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods and return the simplest one. This takes into account whether the solution is solvable in the function, whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x # x is the independent variable >>> f = Function("f")(x) # f is a function of x >>> # f_ will be the derivative of f with respect to x >>> f_ = Derivative(f, x) - See ``test_ode.py`` for many tests, which serves also as a set of examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.dsolve` always returns an :py:class:`~sympy.core.relational.Equality` class (except for the case when the hint is ``all`` or ``all_Integral``). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution. - Arbitrary constants are symbols named ``C1``, ``C2``, and so on. - Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have "absorbed" other constants into it. - Do ``help(ode.ode_<hintname>)`` to get help more information on a specific hint, where ``<hintname>`` is the name of a hint without ``_Integral``. For system of ordinary differential equations ============================================= **Usage** ``dsolve(eq, func)`` -> Solve a system of ordinary differential equations ``eq`` for ``func`` being list of functions including `x(t)`, `y(t)`, `z(t)` where number of functions in the list depends upon the number of equations provided in ``eq``. **Details** ``eq`` can be any supported system of ordinary differential equations This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation ``eq``. It is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). **Hints** The hints are formed by parameters returned by classify_sysode, combining them give hints name used later for forming method name. Examples ======== >>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x)) Eq(f(x), C1*sin(3*x) + C2*cos(3*x)) >>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) >>> dsolve(eq, hint='1st_exact') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> dsolve(eq, hint='almost_linear') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t))) >>> dsolve(eq) [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)), Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) + exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))] >>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t))) >>> dsolve(eq) {Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))} """ if iterable(eq): match = classify_sysode(eq, func) eq = match['eq'] order = match['order'] func = match['func'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # keep highest order term coefficient positive for i in range(len(eq)): for func_ in func: if isinstance(func_, list): pass else: if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative: eq[i] = -eq[i] match['eq'] = eq if len(set(order.values()))!=1: raise ValueError("It solves only those systems of equations whose orders are equal") match['order'] = list(order.values())[0] def recur_len(l): return sum(recur_len(item) if isinstance(item,list) else 1 for item in l) if recur_len(func) != len(eq): raise ValueError("dsolve() and classify_sysode() work with " "number of functions being equal to number of equations") if match['type_of_equation'] is None: raise NotImplementedError else: if match['is_linear'] == True: if match['no_of_equation'] > 3: solvefunc = globals()['sysode_linear_neq_order%(order)s' % match] else: solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match] else: solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match] sols = solvefunc(match) if ics: constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols solved_constants = solve_ics(sols, func, constants, ics) return [sol.subs(solved_constants) for sol in sols] return sols else: given_hint = hint # hint given by the user # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics, x0=x0, n=n, **kwargs) eq = hints.pop('eq', eq) all_ = hints.pop('all', False) if all_: retdict = {} failed_hints = {} gethints = classify_ode(eq, dict=True) orderedhints = gethints['ordered_hints'] for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint], simplify) except NotImplementedError as detail: failed_hints[hint] = detail else: retdict[hint] = rv func = hints[hint]['func'] retdict['best'] = min(list(retdict.values()), key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) if given_hint == 'best': return retdict['best'] for i in orderedhints: if retdict['best'] == retdict.get(i, None): retdict['best_hint'] = i break retdict['default'] = gethints['default'] retdict['order'] = gethints['order'] retdict.update(failed_hints) return retdict else: # The key 'hint' stores the hint needed to be solved for. hint = hints['hint'] return _helper_simplify(eq, hint, hints, simplify, ics=ics) def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs): r""" Helper function of dsolve that calls the respective :py:mod:`~sympy.solvers.ode` functions to solve for the ordinary differential equations. This minimizes the computation in calling :py:meth:`~sympy.solvers.deutils._desolve` multiple times. """ r = match if hint.endswith('_Integral'): solvefunc = globals()['ode_' + hint[:-len('_Integral')]] else: solvefunc = globals()['ode_' + hint] func = r['func'] order = r['order'] match = r[hint] free = eq.free_symbols cons = lambda s: s.free_symbols.difference(free) if simplify: # odesimp() will attempt to integrate, if necessary, apply constantsimp(), # attempt to solve for func, and apply any other hint specific # simplifications sols = solvefunc(eq, func, order, match) if isinstance(sols, Expr): rv = odesimp(sols, func, order, cons(sols), hint) else: rv = [odesimp(s, func, order, cons(s), hint) for s in sols] else: # We still want to integrate (you can disable it separately with the hint) match['simplify'] = False # Some hints can take advantage of this option rv = _handle_Integral(solvefunc(eq, func, order, match), func, order, hint) if ics and not 'power_series' in hint: if isinstance(rv, Expr): solved_constants = solve_ics([rv], [r['func']], cons(rv), ics) rv = rv.subs(solved_constants) else: rv1 = [] for s in rv: solved_constants = solve_ics([s], [r['func']], cons(s), ics) rv1.append(s.subs(solved_constants)) rv = rv1 return rv def solve_ics(sols, funcs, constants, ics): """ Solve for the constants given initial conditions ``sols`` is a list of solutions. ``funcs`` is a list of functions. ``constants`` is a list of constants. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. Returns a dictionary mapping constants to values. ``solution.subs(constants)`` will replace the constants in ``solution``. Example ======= >>> # From dsolve(f(x).diff(x) - f(x), f(x)) >>> from sympy import symbols, Eq, exp, Function >>> from sympy.solvers.ode import solve_ics >>> f = Function('f') >>> x, C1 = symbols('x C1') >>> sols = [Eq(f(x), C1*exp(x))] >>> funcs = [f(x)] >>> constants = [C1] >>> ics = {f(0): 2} >>> solved_constants = solve_ics(sols, funcs, constants, ics) >>> solved_constants {C1: 2} >>> sols[0].subs(solved_constants) Eq(f(x), 2*exp(x)) """ # Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x, # x0)): value (currently checked by classify_ode). To solve, replace x # with x0, f(x0) with value, then solve for constants. For f^(n)(x0), # differentiate the solution n times, so that f^(n)(x) appears. x = funcs[0].args[0] diff_sols = [] subs_sols = [] diff_variables = set() for funcarg, value in ics.items(): if isinstance(funcarg, AppliedUndef): x0 = funcarg.args[0] matching_func = [f for f in funcs if f.func == funcarg.func][0] S = sols elif isinstance(funcarg, (Subs, Derivative)): if isinstance(funcarg, Subs): # Make sure it stays a subs. Otherwise subs below will produce # a different looking term. funcarg = funcarg.doit() if isinstance(funcarg, Subs): deriv = funcarg.expr x0 = funcarg.point[0] variables = funcarg.expr.variables matching_func = deriv elif isinstance(funcarg, Derivative): deriv = funcarg x0 = funcarg.variables[0] variables = (x,)*len(funcarg.variables) matching_func = deriv.subs(x0, x) if variables not in diff_variables: for sol in sols: if sol.has(deriv.expr.func): diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables))) diff_variables.add(variables) S = diff_sols else: raise NotImplementedError("Unrecognized initial condition") for sol in S: if sol.has(matching_func): sol2 = sol sol2 = sol2.subs(x, x0) sol2 = sol2.subs(funcarg, value) subs_sols.append(sol2) # TODO: Use solveset here try: solved_constants = solve(subs_sols, constants, dict=True) except NotImplementedError: solved_constants = [] # XXX: We can't differentiate between the solution not existing because of # invalid initial conditions, and not existing because solve is not smart # enough. If we could use solveset, this might be improvable, but for now, # we use NotImplementedError in this case. if not solved_constants: raise NotImplementedError("Couldn't solve for initial conditions") if solved_constants == True: raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.") if len(solved_constants) > 1: raise NotImplementedError("Initial conditions produced too many solutions for constants") if len(solved_constants[0]) != len(constants): raise ValueError("Initial conditions did not produce a solution for all constants. Perhaps they are under-specified.") return solved_constants[0] def classify_ode(eq, func=None, dict=False, ics=None, **kwargs): r""" Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve` classifications for an ODE. The tuple is ordered so that first item is the classification that :py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a different classification, use ``dsolve(ODE, func, hint=<classification>)``. See also the :py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints you can use. If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will return a dictionary of ``hint:match`` expression terms. This is intended for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by executing ``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint without ``_Integral``. See :py:data:`~sympy.solvers.ode.allhints` or the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`. Notes ===== These are remarks on hint names. ``_Integral`` If a classification has ``_Integral`` at the end, it will return the expression with an unevaluated :py:class:`~sympy.integrals.Integral` class in it. Note that a hint may do this anyway if :py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral, though just using an ``_Integral`` will do so much faster. Indeed, an ``_Integral`` hint will always be faster than its corresponding hint without ``_Integral`` because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because :py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or impossible integral. Try using an ``_Integral`` hint or ``all_Integral`` to get it return something. Note that some hints do not have ``_Integral`` counterparts. This is because :py:meth:`~sympy.solvers.ode.integrate` is not used in solving the ODE for those method. For example, `n`\th order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no ``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can easily evaluate any unevaluated :py:class:`~sympy.integrals.Integral`\s in an expression by doing ``expr.doit()``. Ordinals Some hints contain an ordinal such as ``1st_linear``. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has ``nth`` in it, such as the ``nth_linear`` hints, this means that the method used to applies to ODEs of any order. ``indep`` and ``dep`` Some hints contain the words ``indep`` or ``dep``. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to `x` and ``dep`` will refer to `f`. ``subs`` If a hints has the word ``subs`` in it, it means the the ODE is solved by substituting the expression given after the word ``subs`` for a single dummy variable. This is usually in terms of ``indep`` and ``dep`` as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, ``indep``/``dep`` will be written as ``indep_div_dep``. ``coeff`` The word ``coeff`` in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (``help(ode)``). This is contrast to ``coefficients``, as in ``undetermined_coefficients``, which refers to the common name of a method. ``_best`` Methods that have more than one fundamental way to solve will have a hint for each sub-method and a ``_best`` meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal ``best`` meta-hint. Examples ======== >>> from sympy import Function, classify_ode, Eq >>> from sympy.abc import x >>> f = Function('f') >>> classify_ode(Eq(f(x).diff(x), 0), f(x)) ('nth_algebraic', 'separable', '1st_linear', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_linear_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') >>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4) ('nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_constant_coeff_variation_of_parameters_Integral') """ ics = sympify(ics) prep = kwargs.pop('prep', True) if func and len(func.args) != 1: raise ValueError("dsolve() and classify_ode() only " "work with functions of one variable, not %s" % func) if prep or func is None: eq, func_ = _preprocess(eq, func) if func is None: func = func_ x = func.args[0] f = func.func y = Dummy('y') xi = kwargs.get('xi') eta = kwargs.get('eta') terms = kwargs.get('n') if isinstance(eq, Equality): if eq.rhs != 0: return classify_ode(eq.lhs - eq.rhs, func, dict=dict, ics=ics, xi=xi, n=terms, eta=eta, prep=False) eq = eq.lhs order = ode_order(eq, f(x)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {"order": order} if not order: if dict: matching_hints["default"] = None return matching_hints else: return () df = f(x).diff(x) a = Wild('a', exclude=[f(x)]) b = Wild('b', exclude=[f(x)]) c = Wild('c', exclude=[f(x)]) d = Wild('d', exclude=[df, f(x).diff(x, 2)]) e = Wild('e', exclude=[df]) k = Wild('k', exclude=[df]) n = Wild('n', exclude=[x, f(x), df]) c1 = Wild('c1', exclude=[x]) a2 = Wild('a2', exclude=[x, f(x), df]) b2 = Wild('b2', exclude=[x, f(x), df]) c2 = Wild('c2', exclude=[x, f(x), df]) d2 = Wild('d2', exclude=[x, f(x), df]) a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)]) r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint boundary = {} # Used to extract initial conditions C1 = Symbol("C1") eq = expand(eq) # Preprocessing to get the initial conditions out if ics is not None: for funcarg in ics: # Separating derivatives if isinstance(funcarg, (Subs, Derivative)): # f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x, # y) is a Derivative if isinstance(funcarg, Subs): deriv = funcarg.expr old = funcarg.variables[0] new = funcarg.point[0] elif isinstance(funcarg, Derivative): deriv = funcarg # No information on this. Just assume it was x old = x new = funcarg.variables[0] if (isinstance(deriv, Derivative) and isinstance(deriv.args[0], AppliedUndef) and deriv.args[0].func == f and len(deriv.args[0].args) == 1 and old == x and not new.has(x) and all(i == deriv.variables[0] for i in deriv.variables) and not ics[funcarg].has(f)): dorder = ode_order(deriv, x) temp = 'f' + str(dorder) boundary.update({temp: new, temp + 'val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Derivatives") # Separating functions elif isinstance(funcarg, AppliedUndef): if (funcarg.func == f and len(funcarg.args) == 1 and not funcarg.args[0].has(x) and not ics[funcarg].has(f)): boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Function") else: raise ValueError("Enter boundary conditions of the form ics={f(point}: value, f(x).diff(x, order).subs(x, point): value}") # Precondition to try remove f(x) from highest order derivative reduced_eq = None if eq.is_Add: deriv_coef = eq.coeff(f(x).diff(x, order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*f(x)**c1) if r and r[c1]: den = f(x)**r[c1] reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: ## Linear case: a(x)*y'+b(x)*y+c(x) == 0 if eq.is_Add: ind, dep = reduced_eq.as_independent(f) else: u = Dummy('u') ind, dep = (reduced_eq + u).as_independent(f) ind, dep = [tmp.subs(u, 0) for tmp in [ind, dep]] r = {a: dep.coeff(df), b: dep.coeff(f(x)), c: ind} # double check f[a] since the preconditioning may have failed if not r[a].has(f) and not r[b].has(f) and ( r[a]*df + r[b]*f(x) + r[c]).expand() - reduced_eq == 0: r['a'] = a r['b'] = b r['c'] = c matching_hints["1st_linear"] = r matching_hints["1st_linear_Integral"] = r ## Bernoulli case: a(x)*y'+b(x)*y+c(x)*y**n == 0 r = collect( reduced_eq, f(x), exact=True).match(a*df + b*f(x) + c*f(x)**n) if r and r[c] != 0 and r[n] != 1: # See issue 4676 r['a'] = a r['b'] = b r['c'] = c r['n'] = n matching_hints["Bernoulli"] = r matching_hints["Bernoulli_Integral"] = r ## Riccati special n == -2 case: a2*y'+b2*y**2+c2*y/x+d2/x**2 == 0 r = collect(reduced_eq, f(x), exact=True).match(a2*df + b2*f(x)**2 + c2*f(x)/x + d2/x**2) if r and r[b2] != 0 and (r[c2] != 0 or r[d2] != 0): r['a2'] = a2 r['b2'] = b2 r['c2'] = c2 r['d2'] = d2 matching_hints["Riccati_special_minus2"] = r # NON-REDUCED FORM OF EQUATION matches r = collect(eq, df, exact=True).match(d + e * df) if r: r['d'] = d r['e'] = e r['y'] = y r[d] = r[d].subs(f(x), y) r[e] = r[e].subs(f(x), y) # FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS # TODO: Hint first order series should match only if d/e is analytic. # For now, only d/e and (d/e).diff(arg) is checked for existence at # at a given point. # This is currently done internally in ode_1st_power_series. point = boundary.get('f0', 0) value = boundary.get('f0val', C1) check = cancel(r[d]/r[e]) check1 = check.subs({x: point, y: value}) if not check1.has(oo) and not check1.has(zoo) and \ not check1.has(NaN) and not check1.has(-oo): check2 = (check1.diff(x)).subs({x: point, y: value}) if not check2.has(oo) and not check2.has(zoo) and \ not check2.has(NaN) and not check2.has(-oo): rseries = r.copy() rseries.update({'terms': terms, 'f0': point, 'f0val': value}) matching_hints["1st_power_series"] = rseries r3.update(r) ## Exact Differential Equation: P(x, y) + Q(x, y)*y' = 0 where # dP/dy == dQ/dx try: if r[d] != 0: numerator = simplify(r[d].diff(y) - r[e].diff(x)) # The following few conditions try to convert a non-exact # differential equation into an exact one. # References : Differential equations with applications # and historical notes - George E. Simmons if numerator: # If (dP/dy - dQ/dx) / Q = f(x) # then exp(integral(f(x))*equation becomes exact factor = simplify(numerator/r[e]) variables = factor.free_symbols if len(variables) == 1 and x == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: # If (dP/dy - dQ/dx) / -P = f(y) # then exp(integral(f(y))*equation becomes exact factor = simplify(-numerator/r[d]) variables = factor.free_symbols if len(variables) == 1 and y == variables.pop(): factor = exp(Integral(factor).doit()) r[d] *= factor r[e] *= factor matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r else: matching_hints["1st_exact"] = r matching_hints["1st_exact_Integral"] = r except NotImplementedError: # Differentiating the coefficients might fail because of things # like f(2*x).diff(x). See issue 4624 and issue 4719. pass # Any first order ODE can be ideally solved by the Lie Group # method matching_hints["lie_group"] = r3 # This match is used for several cases below; we now collect on # f(x) so the matching works. r = collect(reduced_eq, df, exact=True).match(d + e*df) if r: # Using r[d] and r[e] without any modification for hints # linear-coefficients and separable-reduced. num, den = r[d], r[e] # ODE = d/e + df r['d'] = d r['e'] = e r['y'] = y r[d] = num.subs(f(x), y) r[e] = den.subs(f(x), y) ## Separable Case: y' == P(y)*Q(x) r[d] = separatevars(r[d]) r[e] = separatevars(r[e]) # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' m1 = separatevars(r[d], dict=True, symbols=(x, y)) m2 = separatevars(r[e], dict=True, symbols=(x, y)) if m1 and m2: r1 = {'m1': m1, 'm2': m2, 'y': y} matching_hints["separable"] = r1 matching_hints["separable_Integral"] = r1 ## First order equation with homogeneous coefficients: # dy/dx == F(y/x) or dy/dx == F(x/y) ordera = homogeneous_order(r[d], x, y) if ordera is not None: orderb = homogeneous_order(r[e], x, y) if ordera == orderb: # u1=y/x and u2=x/y u1 = Dummy('u1') u2 = Dummy('u2') s = "1st_homogeneous_coeff_subs" s1 = s + "_dep_div_indep" s2 = s + "_indep_div_dep" if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0: matching_hints[s1] = r matching_hints[s1 + "_Integral"] = r if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0: matching_hints[s2] = r matching_hints[s2 + "_Integral"] = r if s1 in matching_hints and s2 in matching_hints: matching_hints["1st_homogeneous_coeff_best"] = r ## Linear coefficients of the form # y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0 # that can be reduced to homogeneous form. F = num/den params = _linear_coeff_match(F, func) if params: xarg, yarg = params u = Dummy('u') t = Dummy('t') # Dummy substitution for df and f(x). dummy_eq = reduced_eq.subs(((df, t), (f(x), u))) reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x))) dummy_eq = simplify(dummy_eq.subs(reps)) # get the re-cast values for e and d r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d) if r2: orderd = homogeneous_order(r2[d], x, f(x)) if orderd is not None: ordere = homogeneous_order(r2[e], x, f(x)) if orderd == ordere: # Match arguments are passed in such a way that it # is coherent with the already existing homogeneous # functions. r2[d] = r2[d].subs(f(x), y) r2[e] = r2[e].subs(f(x), y) r2.update({'xarg': xarg, 'yarg': yarg, 'd': d, 'e': e, 'y': y}) matching_hints["linear_coefficients"] = r2 matching_hints["linear_coefficients_Integral"] = r2 ## Equation of the form y' + (y/x)*H(x^n*y) = 0 # that can be reduced to separable form factor = simplify(x/f(x)*num/den) # Try representing factor in terms of x^n*y # where n is lowest power of x in factor; # first remove terms like sqrt(2)*3 from factor.atoms(Mul) u = None for mul in ordered(factor.atoms(Mul)): if mul.has(x): _, u = mul.as_independent(x, f(x)) break if u and u.has(f(x)): h = x**(degree(Poly(u.subs(f(x), y), gen=x)))*f(x) p = Wild('p') if (u/h == 1) or ((u/h).simplify().match(x**p)): t = Dummy('t') r2 = {'t': t} xpart, ypart = u.as_independent(f(x)) test = factor.subs(((u, t), (1/u, 1/t))) free = test.free_symbols if len(free) == 1 and free.pop() == t: r2.update({'power': xpart.as_base_exp()[1], 'u': test}) matching_hints["separable_reduced"] = r2 matching_hints["separable_reduced_Integral"] = r2 ## Almost-linear equation of the form f(x)*g(y)*y' + k(x)*l(y) + m(x) = 0 r = collect(eq, [df, f(x)]).match(e*df + d) if r: r2 = r.copy() r2[c] = S.Zero if r2[d].is_Add: # Separate the terms having f(x) to r[d] and # remaining to r[c] no_f, r2[d] = r2[d].as_independent(f(x)) r2[c] += no_f factor = simplify(r2[d].diff(f(x))/r[e]) if factor and not factor.has(f(x)): r2[d] = factor_terms(r2[d]) u = r2[d].as_independent(f(x), as_Add=False)[1] r2.update({'a': e, 'b': d, 'c': c, 'u': u}) r2[d] /= u r2[e] /= u.diff(f(x)) matching_hints["almost_linear"] = r2 matching_hints["almost_linear_Integral"] = r2 elif order == 2: # Liouville ODE in the form # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98 s = d*f(x).diff(x, 2) + e*df**2 + k*df r = reduced_eq.match(s) if r and r[d] != 0: y = Dummy('y') g = simplify(r[e]/r[d]).subs(f(x), y) h = simplify(r[k]/r[d]).subs(f(x), y) if y in h.free_symbols or x in g.free_symbols: pass else: r = {'g': g, 'h': h, 'y': y} matching_hints["Liouville"] = r matching_hints["Liouville_Integral"] = r # Homogeneous second order differential equation of the form # a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3, where # for simplicity, a3, b3 and c3 are assumed to be polynomials. # It has a definite power series solution at point x0 if, b3/a3 and c3/a3 # are analytic at x0. deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) ordinary = False if r and r[a3] != 0: if all([r[key].is_polynomial() for key in r]): p = cancel(r[b3]/r[a3]) # Used below q = cancel(r[c3]/r[a3]) # Used below point = kwargs.get('x0', 0) check = p.subs(x, point) if not check.has(oo) and not check.has(NaN) and \ not check.has(zoo) and not check.has(-oo): check = q.subs(x, point) if not check.has(oo) and not check.has(NaN) and \ not check.has(zoo) and not check.has(-oo): ordinary = True r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms}) matching_hints["2nd_power_series_ordinary"] = r # Checking if the differential equation has a regular singular point # at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0) # and (c3/a3)*((x - x0)**2) are analytic at x0. if not ordinary: p = cancel((x - point)*p) check = p.subs(x, point) if not check.has(oo) and not check.has(NaN) and \ not check.has(zoo) and not check.has(-oo): q = cancel(((x - point)**2)*q) check = q.subs(x, point) if not check.has(oo) and not check.has(NaN) and \ not check.has(zoo) and not check.has(-oo): coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms} matching_hints["2nd_power_series_regular"] = coeff_dict if order > 0: # Any ODE that can be solved with a combination of algebra and # integrals e.g.: # d^3/dx^3(x y) = F(x) r = _nth_algebraic_match(reduced_eq, func) if r['solutions']: matching_hints['nth_algebraic'] = r matching_hints['nth_algebraic_Integral'] = r # nth order linear ODE # a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b r = _nth_linear_match(reduced_eq, func, order) # Constant coefficient case (a_i is constant for all i) if r and not any(r[i].has(x) for i in r if i >= 0): # Inhomogeneous case: F(x) is not identically 0 if r[-1]: undetcoeff = _undetermined_coefficients_match(r[-1], x) s = "nth_linear_constant_coeff_variation_of_parameters" matching_hints[s] = r matching_hints[s + "_Integral"] = r if undetcoeff['test']: r['trialset'] = undetcoeff['trialset'] matching_hints[ "nth_linear_constant_coeff_undetermined_coefficients" ] = r # Homogeneous case: F(x) is identically 0 else: matching_hints["nth_linear_constant_coeff_homogeneous"] = r # nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x) #In case of Homogeneous euler equation F(x) = 0 def _test_term(coeff, order): r""" Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x), where K is independent of x and y(x), order>= 0. So we need to check that for each term, coeff == K*x**order from some K. We have a few cases, since coeff may have several different types. """ if order < 0: raise ValueError("order should be greater than 0") if coeff == 0: return True if order == 0: if x in coeff.free_symbols: return False return True if coeff.is_Mul: if coeff.has(f(x)): return False return x**order in coeff.args elif coeff.is_Pow: return coeff.as_base_exp() == (x, order) elif order == 1: return x == coeff return False # Find coefficient for higest derivative, multiply coefficients to # bring the equation into Euler form if possible r_rescaled = None if r is not None: coeff = r[order] factor = x**order / coeff r_rescaled = {i: factor*r[i] for i in r} if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in r_rescaled if i != 'trialset' and i >= 0): if not r_rescaled[-1]: matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled else: matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled e, re = posify(r_rescaled[-1].subs(x, exp(x))) undetcoeff = _undetermined_coefficients_match(e.subs(re), x) if undetcoeff['test']: r_rescaled['trialset'] = undetcoeff['trialset'] matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled # Order keys based on allhints. retlist = [i for i in allhints if i in matching_hints] if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for dsolve(). Use an ordered dict in Py 3. matching_hints["default"] = retlist[0] if retlist else None matching_hints["ordered_hints"] = tuple(retlist) return matching_hints else: return tuple(retlist) def classify_sysode(eq, funcs=None, **kwargs): r""" Returns a dictionary of parameter names and values that define the system of ordinary differential equations in ``eq``. The parameters are further used in :py:meth:`~sympy.solvers.ode.dsolve` for solving that system. The parameter names and values are: 'is_linear' (boolean), which tells whether the given system is linear. Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators. 'func' (list) contains the :py:class:`~sympy.core.function.Function`s that appear with a derivative in the ODE, i.e. those that we are trying to solve the ODE for. 'order' (dict) with the maximum derivative for each element of the 'func' parameter. 'func_coeff' (dict) with the coefficient for each triple ``(equation number, function, order)```. The coefficients are those subexpressions that do not appear in 'func', and hence can be considered constant for purposes of ODE solving. 'eq' (list) with the equations from ``eq``, sympified and transformed into expressions (we are solving for these expressions to be zero). 'no_of_equations' (int) is the number of equations (same as ``len(eq)``). 'type_of_equation' (string) is an internal classification of the type of ODE. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm -A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists Examples ======== >>> from sympy import Function, Eq, symbols, diff >>> from sympy.solvers.ode import classify_sysode >>> from sympy.abc import t >>> f, x, y = symbols('f, x, y', cls=Function) >>> k, l, m, n = symbols('k, l, m, n', Integer=True) >>> x1 = diff(x(t), t) ; y1 = diff(y(t), t) >>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t) >>> eq = (Eq(5*x1, 12*x(t) - 6*y(t)), Eq(2*y1, 11*x(t) + 3*y(t))) >>> classify_sysode(eq) {'eq': [-12*x(t) + 6*y(t) + 5*Derivative(x(t), t), -11*x(t) - 3*y(t) + 2*Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 5, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 2}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type1'} >>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) >>> classify_sysode(eq) {'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t), t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0, (1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': 'type4'} """ # Sympify equations and convert iterables of equations into # a list of equations def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eq, funcs = (_sympify(w) for w in [eq, funcs]) for i, fi in enumerate(eq): if isinstance(fi, Equality): eq[i] = fi.lhs - fi.rhs matching_hints = {"no_of_equation":i+1} matching_hints['eq'] = eq if i==0: raise ValueError("classify_sysode() works for systems of ODEs. " "For scalar ODEs, classify_ode should be used") t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # find all the functions if not given order = dict() if funcs==[None]: funcs = [] for eqs in eq: derivs = eqs.atoms(Derivative) func = set().union(*[d.atoms(AppliedUndef) for d in derivs]) for func_ in func: funcs.append(func_) funcs = list(set(funcs)) if len(funcs) < len(eq): raise ValueError("Number of functions given is less than number of equations %s" % funcs) func_dict = dict() for func in funcs: if not order.get(func, False): max_order = 0 for i, eqs_ in enumerate(eq): order_ = ode_order(eqs_,func) if max_order < order_: max_order = order_ eq_no = i if eq_no in func_dict: list_func = [] list_func.append(func_dict[eq_no]) list_func.append(func) func_dict[eq_no] = list_func else: func_dict[eq_no] = func order[func] = max_order funcs = [func_dict[i] for i in range(len(func_dict))] matching_hints['func'] = funcs for func in funcs: if isinstance(func, list): for func_elem in func: if len(func_elem.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) else: if func and len(func.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) # find the order of all equation in system of odes matching_hints["order"] = order # find coefficients of terms f(t), diff(f(t),t) and higher derivatives # and similarly for other functions g(t), diff(g(t),t) in all equations. # Here j denotes the equation number, funcs[l] denotes the function about # which we are talking about and k denotes the order of function funcs[l] # whose coefficient we are calculating. def linearity_check(eqs, j, func, is_linear_): for k in range(order[func] + 1): func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k)) if is_linear_ == True: if func_coef[j, func, k] == 0: if k == 0: coef = eqs.as_independent(func, as_Add=True)[1] for xr in range(1, ode_order(eqs,func) + 1): coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1] if coef != 0: is_linear_ = False else: if eqs.as_independent(diff(func, t, k), as_Add=True)[1]: is_linear_ = False else: for func_ in funcs: if isinstance(func_, list): for elem_func_ in func_: dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1] if dep != 0: is_linear_ = False else: dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1] if dep != 0: is_linear_ = False return is_linear_ func_coef = {} is_linear = True for j, eqs in enumerate(eq): for func in funcs: if isinstance(func, list): for func_elem in func: is_linear = linearity_check(eqs, j, func_elem, is_linear) else: is_linear = linearity_check(eqs, j, func, is_linear) matching_hints['func_coeff'] = func_coef matching_hints['is_linear'] = is_linear if len(set(order.values()))==1: order_eq = list(matching_hints['order'].values())[0] if matching_hints['is_linear'] == True: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef) elif order_eq == 2: type_of_equation = check_linear_2eq_order2(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_linear_3eq_order1(eq, funcs, func_coef) if type_of_equation==None: type_of_equation = check_linear_neq_order1(eq, funcs, func_coef) else: type_of_equation = None else: if order_eq == 1: type_of_equation = check_linear_neq_order1(eq, funcs, func_coef) else: type_of_equation = None else: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef) else: type_of_equation = None else: type_of_equation = None else: type_of_equation = None matching_hints['type_of_equation'] = type_of_equation return matching_hints def check_linear_2eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() # for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1) # and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2) r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1] r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1] r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S(0),S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): # We can handle homogeneous case and simple constant forcings r['d1'] = forcing[0] r['d2'] = forcing[1] else: # Issue #9244: nonhomogeneous linear systems are not supported return None # Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and # Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t)) p = 0 q = 0 p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0])) p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0])) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q and n==0: if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j: p = 1 elif q and n==1: if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j: p = 2 # End of condition for type 6 if r['d1']!=0 or r['d2']!=0: if not r['d1'].has(t) and not r['d2'].has(t): if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): # Equations for type 2 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)+d1) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t)+d2) return "type2" else: return None else: if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): # Equations for type 1 are Eq(a1*diff(x(t),t),b1*x(t)+c1*y(t)) and Eq(a2*diff(y(t),t),b2*x(t)+c2*y(t)) return "type1" else: r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2'] r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2'] if (r['b1'] == r['c2']) and (r['c1'] == r['b2']): # Equation for type 3 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), g(t)*x(t) + f(t)*y(t)) return "type3" elif (r['b1'] == r['c2']) and (r['c1'] == -r['b2']) or (r['b1'] == -r['c2']) and (r['c1'] == r['b2']): # Equation for type 4 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), -g(t)*x(t) + f(t)*y(t)) return "type4" elif (not cancel(r['b2']/r['c1']).has(t) and not cancel((r['c2']-r['b1'])/r['c1']).has(t)) \ or (not cancel(r['b1']/r['c2']).has(t) and not cancel((r['c1']-r['b2'])/r['c2']).has(t)): # Equations for type 5 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), a*g(t)*x(t) + [f(t) + b*g(t)]*y(t) return "type5" elif p: return "type6" else: # Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t)) return "type7" def check_linear_2eq_order2(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() a = Wild('a', exclude=[1/t]) b = Wild('b', exclude=[1/t**2]) u = Wild('u', exclude=[t, t**2]) v = Wild('v', exclude=[t, t**2]) w = Wild('w', exclude=[t, t**2]) p = Wild('p', exclude=[t, t**2]) r['a1'] = fc[0,x(t),2] ; r['a2'] = fc[1,y(t),2] r['b1'] = fc[0,x(t),1] ; r['b2'] = fc[1,x(t),1] r['c1'] = fc[0,y(t),1] ; r['c2'] = fc[1,y(t),1] r['d1'] = fc[0,x(t),0] ; r['d2'] = fc[1,x(t),0] r['e1'] = fc[0,y(t),0] ; r['e2'] = fc[1,y(t),0] const = [S(0), S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not (j.has(x(t)) or j.has(y(t))): const[i] += j r['f1'] = const[0] r['f2'] = const[1] if r['f1']!=0 or r['f2']!=0: if all(not r[k].has(t) for k in 'a1 a2 d1 d2 e1 e2 f1 f2'.split()) \ and r['b1']==r['c1']==r['b2']==r['c2']==0: return "type2" elif all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2 d1 d2 e1 e1'.split()): p = [S(0), S(0)] ; q = [S(0), S(0)] for n, e in enumerate([r['f1'], r['f2']]): if e.has(t): tpart = e.as_independent(t, Mul)[1] for i in Mul.make_args(tpart): if i.has(exp): b, e = i.as_base_exp() co = e.coeff(t) if co and not co.has(t) and co.has(I): p[n] = 1 else: q[n] = 1 else: q[n] = 1 else: q[n] = 1 if p[0]==1 and p[1]==1 and q[0]==0 and q[1]==0: return "type4" else: return None else: return None else: if r['b1']==r['b2']==r['c1']==r['c2']==0 and all(not r[k].has(t) \ for k in 'a1 a2 d1 d2 e1 e2'.split()): return "type1" elif r['b1']==r['e1']==r['c2']==r['d2']==0 and all(not r[k].has(t) \ for k in 'a1 a2 b2 c1 d1 e2'.split()) and r['c1'] == -r['b2'] and \ r['d1'] == r['e2']: return "type3" elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \ (r['d2']/r['a2']).has(t) and not (r['e1']/r['a1']).has(t) and \ r['b1']==r['d1']==r['c2']==r['e2']==0: return "type5" elif ((r['a1']/r['d1']).expand()).match((p*(u*t**2+v*t+w)**2).expand()) and not \ (cancel(r['a1']*r['d2']/(r['a2']*r['d1']))).has(t) and not (r['d1']/r['e1']).has(t) and not \ (r['d2']/r['e2']).has(t) and r['b1'] == r['b2'] == r['c1'] == r['c2'] == 0: return "type10" elif not cancel(r['d1']/r['e1']).has(t) and not cancel(r['d2']/r['e2']).has(t) and not \ cancel(r['d1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['b1']==r['b2']==r['c1']==r['c2']==0: return "type6" elif not cancel(r['b1']/r['c1']).has(t) and not cancel(r['b2']/r['c2']).has(t) and not \ cancel(r['b1']*r['a2']/(r['b2']*r['a1'])).has(t) and r['d1']==r['d2']==r['e1']==r['e2']==0: return "type7" elif cancel(-r['b2']/r['d2'])==t and cancel(-r['c1']/r['e1'])==t and not \ cancel(r['e1']*r['a2']/(r['d2']*r['a1'])).has(t) and r['e1'].has(t) \ and r['b1']==r['d1']==r['c2']==r['e2']==0: return "type8" elif (r['b1']/r['a1']).match(a/t) and (r['b2']/r['a2']).match(a/t) and not \ (r['b1']/r['c1']).has(t) and not (r['b2']/r['c2']).has(t) and \ (r['d1']/r['a1']).match(b/t**2) and (r['d2']/r['a2']).match(b/t**2) \ and not (r['d1']/r['e1']).has(t) and not (r['d2']/r['e2']).has(t): return "type9" elif -r['b1']/r['d1']==-r['c1']/r['e1']==-r['b2']/r['d2']==-r['c2']/r['e2']==t: return "type11" else: return None def check_linear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() r['a1'] = fc[0,x(t),1]; r['a2'] = fc[1,y(t),1]; r['a3'] = fc[2,z(t),1] r['b1'] = fc[0,x(t),0]; r['b2'] = fc[1,x(t),0]; r['b3'] = fc[2,x(t),0] r['c1'] = fc[0,y(t),0]; r['c2'] = fc[1,y(t),0]; r['c3'] = fc[2,y(t),0] r['d1'] = fc[0,z(t),0]; r['d2'] = fc[1,z(t),0]; r['d3'] = fc[2,z(t),0] forcing = [S(0), S(0), S(0)] for i in range(3): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t), z(t)): forcing[i] += j if forcing[0].has(t) or forcing[1].has(t) or forcing[2].has(t): # We can handle homogeneous case and simple constant forcings. # Issue #9244: nonhomogeneous linear systems are not supported return None if all(not r[k].has(t) for k in 'a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3'.split()): if r['c1']==r['d1']==r['d2']==0: return 'type1' elif r['c1'] == -r['b2'] and r['d1'] == -r['b3'] and r['d2'] == -r['c3'] \ and r['b1'] == r['c2'] == r['d3'] == 0: return 'type2' elif r['b1'] == r['c2'] == r['d3'] == 0 and r['c1']/r['a1'] == -r['d1']/r['a1'] \ and r['d2']/r['a2'] == -r['b2']/r['a2'] and r['b3']/r['a3'] == -r['c3']/r['a3']: return 'type3' else: return None else: for k1 in 'c1 d1 b2 d2 b3 c3'.split(): if r[k1] == 0: continue else: if all(not cancel(r[k1]/r[k]).has(t) for k in 'd1 b2 d2 b3 c3'.split() if r[k]!=0) \ and all(not cancel(r[k1]/(r['b1'] - r[k])).has(t) for k in 'b1 c2 d3'.split() if r['b1']!=r[k]): return 'type4' else: break return None def check_linear_neq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() n = len(eq) for i in range(n): for j in range(n): if (fc[i,func[j],0]/fc[i,func[i],1]).has(t): return None if len(eq)==3: return 'type6' return 'type1' def check_nonlinear_2eq_order1(eq, func, func_coef): t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] f = Wild('f') g = Wild('g') u, v = symbols('u, v', cls=Dummy) def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \ or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)): return 'type5' else: return None for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func eq_type = check_type(x, y) if not eq_type: eq_type = check_type(y, x) return eq_type x = func[0].func y = func[1].func fc = func_coef n = Wild('n', exclude=[x(t),y(t)]) f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r = eq[0].match(diff(x(t),t) - x(t)**n*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type1' r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type2' g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \ r2[g].subs(x(t),u).subs(y(t),v).has(t)): return 'type3' r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) phi = (r1[f].subs(x(t),u).subs(y(t),v))/num if R1 and R2: return 'type4' return None def check_nonlinear_2eq_order2(eq, func, func_coef): return None def check_nonlinear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] u, v, w = symbols('u, v, w', cls=Dummy) a = Wild('a', exclude=[x(t), y(t), z(t), t]) b = Wild('b', exclude=[x(t), y(t), z(t), t]) c = Wild('c', exclude=[x(t), y(t), z(t), t]) f = Wild('f') F1 = Wild('F1') F2 = Wild('F2') F3 = Wild('F3') for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t)) r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t)) r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type1' r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f) if r: r1 = collect_const(r[f]).match(a*f) r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t)) r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type2' r = eq[0].match(diff(x(t),t) - (F2-F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1) if r2: r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2]) if r1 and r2 and r3: return 'type3' r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1) if r2: r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2]) if r1 and r2 and r3: return 'type4' r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1)) if r2: r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2])) if r1 and r2 and r3: return 'type5' return None def check_nonlinear_3eq_order2(eq, func, func_coef): return None def checksysodesol(eqs, sols, func=None): r""" Substitutes corresponding ``sols`` for each functions into each ``eqs`` and checks that the result of substitutions for each equation is ``0``. The equations and solutions passed can be any iterable. This only works when each ``sols`` have one function only, like `x(t)` or `y(t)`. For each function, ``sols`` can have a single solution or a list of solutions. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the ``func`` argument. When a sequence of equations is passed, the same sequence is used to return the result for each equation with each function substituted with corresponding solutions. It tries the following method to find zero equivalence for each equation: Substitute the solutions for functions, like `x(t)` and `y(t)` into the original equations containing those functions. This function returns a tuple. The first item in the tuple is ``True`` if the substitution results for each equation is ``0``, and ``False`` otherwise. The second item in the tuple is what the substitution results in. Each element of the ``list`` should always be ``0`` corresponding to each equation if the first item is ``True``. Note that sometimes this function may return ``False``, but with an expression that is identically equal to ``0``, instead of returning ``True``. This is because :py:meth:`~sympy.simplify.simplify.simplify` cannot reduce the expression to ``0``. If an expression returned by each function vanishes identically, then ``sols`` really is a solution to ``eqs``. If this function seems to hang, it is probably because of a difficult simplification. Examples ======== >>> from sympy import Eq, diff, symbols, sin, cos, exp, sqrt, S, Function >>> from sympy.solvers.ode import checksysodesol >>> C1, C2 = symbols('C1:3') >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(diff(x(t),t), x(t) + y(t) + 17), Eq(diff(y(t),t), -2*x(t) + y(t) + 12)) >>> sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(5)/3), ... Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(46)/3)] >>> checksysodesol(eq, sol) (True, [0, 0]) >>> eq = (Eq(diff(x(t),t),x(t)*y(t)**4), Eq(diff(y(t),t),y(t)**3)) >>> sol = [Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), -sqrt(2)*sqrt(-1/(C2 + t))/2), ... Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), sqrt(2)*sqrt(-1/(C2 + t))/2)] >>> checksysodesol(eq, sol) (True, [0, 0]) """ def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eqs = _sympify(eqs) for i in range(len(eqs)): if isinstance(eqs[i], Equality): eqs[i] = eqs[i].lhs - eqs[i].rhs if func is None: funcs = [] for eq in eqs: derivs = eq.atoms(Derivative) func = set().union(*[d.atoms(AppliedUndef) for d in derivs]) for func_ in func: funcs.append(func_) funcs = list(set(funcs)) if not all(isinstance(func, AppliedUndef) and len(func.args) == 1 for func in funcs)\ and len({func.args for func in funcs})!=1: raise ValueError("func must be a function of one variable, not %s" % func) for sol in sols: if len(sol.atoms(AppliedUndef)) != 1: raise ValueError("solutions should have one function only") if len(funcs) != len({sol.lhs for sol in sols}): raise ValueError("number of solutions provided does not match the number of equations") t = funcs[0].args[0] dictsol = dict() for sol in sols: func = list(sol.atoms(AppliedUndef))[0] if sol.rhs == func: sol = sol.reversed solved = sol.lhs == func and not sol.rhs.has(func) if not solved: rhs = solve(sol, func) if not rhs: raise NotImplementedError else: rhs = sol.rhs dictsol[func] = rhs checkeq = [] for eq in eqs: for func in funcs: eq = sub_func_doit(eq, func, dictsol[func]) ss = simplify(eq) if ss != 0: eq = ss.expand(force=True) else: eq = 0 checkeq.append(eq) if len(set(checkeq)) == 1 and list(set(checkeq))[0] == 0: return (True, checkeq) else: return (False, checkeq) @vectorize(0) def odesimp(eq, func, order, constants, hint): r""" Simplifies ODEs, including trying to solve for ``func`` and running :py:meth:`~sympy.solvers.ode.constantsimp`. It may use knowledge of the type of solution that the hint returns to apply additional simplifications. It also attempts to integrate any :py:class:`~sympy.integrals.Integral`\s in the expression, if the hint is not an ``_Integral`` hint. This function should have no effect on expressions returned by :py:meth:`~sympy.solvers.ode.dsolve`, as :py:meth:`~sympy.solvers.ode.dsolve` already calls :py:meth:`~sympy.solvers.ode.odesimp`, but the individual hint functions do not call :py:meth:`~sympy.solvers.ode.odesimp` (because the :py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this function is designed for mainly internal use. Examples ======== >>> from sympy import sin, symbols, dsolve, pprint, Function >>> from sympy.solvers.ode import odesimp >>> x , u2, C1= symbols('x,u2,C1') >>> f = Function('f') >>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral', ... simplify=False) >>> pprint(eq, wrap_line=False) x ---- f(x) / | | / 1 \ | -|u2 + -------| | | /1 \| | | sin|--|| | \ \u2// log(f(x)) = log(C1) + | ---------------- d(u2) | 2 | u2 | / >>> pprint(odesimp(eq, f(x), 1, {C1}, ... hint='1st_homogeneous_coeff_subs_indep_div_dep' ... )) #doctest: +SKIP x --------- = C1 /f(x)\ tan|----| \2*x / """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) # First, integrate if the hint allows it. eq = _handle_Integral(eq, func, order, hint) if hint.startswith("nth_linear_euler_eq_nonhomogeneous"): eq = simplify(eq) if not isinstance(eq, Equality): raise TypeError("eq should be an instance of Equality") # Second, clean up the arbitrary constants. # Right now, nth linear hints can put as many as 2*order constants in an # expression. If that number grows with another hint, the third argument # here should be raised accordingly, or constantsimp() rewritten to handle # an arbitrary number of constants. eq = constantsimp(eq, constants) # Lastly, now that we have cleaned up the expression, try solving for func. # When CRootOf is implemented in solve(), we will want to return a CRootOf # every time instead of an Equality. # Get the f(x) on the left if possible. if eq.rhs == func and not eq.lhs.has(func): eq = [Eq(eq.rhs, eq.lhs)] # make sure we are working with lists of solutions in simplified form. if eq.lhs == func and not eq.rhs.has(func): # The solution is already solved eq = [eq] # special simplification of the rhs if hint.startswith("nth_linear_constant_coeff"): # Collect terms to make the solution look nice. # This is also necessary for constantsimp to remove unnecessary # terms from the particular solution from variation of parameters # # Collect is not behaving reliably here. The results for # some linear constant-coefficient equations with repeated # roots do not properly simplify all constants sometimes. # 'collectterms' gives different orders sometimes, and results # differ in collect based on that order. The # sort-reverse trick fixes things, but may fail in the # future. In addition, collect is splitting exponentials with # rational powers for no reason. We have to do a match # to fix this using Wilds. global collectterms try: collectterms.sort(key=default_sort_key) collectterms.reverse() except Exception: pass assert len(eq) == 1 and eq[0].lhs == f(x) sol = eq[0].rhs sol = expand_mul(sol) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x)) sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x)) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)) del collectterms # Collect is splitting exponentials with rational powers for # no reason. We call powsimp to fix. sol = powsimp(sol) eq[0] = Eq(f(x), sol) else: # The solution is not solved, so try to solve it try: floats = any(i.is_Float for i in eq.atoms(Number)) eqsol = solve(eq, func, force=True, rational=False if floats else None) if not eqsol: raise NotImplementedError except (NotImplementedError, PolynomialError): eq = [eq] else: def _expand(expr): numer, denom = expr.as_numer_denom() if denom.is_Add: return expr else: return powsimp(expr.expand(), combine='exp', deep=True) # XXX: the rest of odesimp() expects each ``t`` to be in a # specific normal form: rational expression with numerator # expanded, but with combined exponential functions (at # least in this setup all tests pass). eq = [Eq(f(x), _expand(t)) for t in eqsol] # special simplification of the lhs. if hint.startswith("1st_homogeneous_coeff"): for j, eqi in enumerate(eq): newi = logcombine(eqi, force=True) if isinstance(newi.lhs, log) and newi.rhs == 0: newi = Eq(newi.lhs.args[0]/C1, C1) eq[j] = newi # We cleaned up the constants before solving to help the solve engine with # a simpler expression, but the solved expression could have introduced # things like -C1, so rerun constantsimp() one last time before returning. for i, eqi in enumerate(eq): eq[i] = constantsimp(eqi, constants) eq[i] = constant_renumber(eq[i], 'C', 1, 2*order) # If there is only 1 solution, return it; # otherwise return the list of solutions. if len(eq) == 1: eq = eq[0] return eq def checkodesol(ode, sol, func=None, order='auto', solve_for_func=True): r""" Substitutes ``sol`` into ``ode`` and checks that the result is ``0``. This only works when ``func`` is one function, like `f(x)`. ``sol`` can be a single solution or a list of solutions. Each solution may be an :py:class:`~sympy.core.relational.Equality` that the solution satisfies, e.g. ``Eq(f(x), C1), Eq(f(x) + C1, 0)``; or simply an :py:class:`~sympy.core.expr.Expr`, e.g. ``f(x) - C1``. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the ``func`` argument. If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution. It tries the following methods, in order, until it finds zero equivalence: 1. Substitute the solution for `f` in the original equation. This only works if ``ode`` is solved for `f`. It will attempt to solve it first unless ``solve_for_func == False``. 2. Take `n` derivatives of the solution, where `n` is the order of ``ode``, and check to see if that is equal to the solution. This only works on exact ODEs. 3. Take the 1st, 2nd, ..., `n`\th derivatives of the solution, each time solving for the derivative of `f` of that order (this will always be possible because `f` is a linear operator). Then back substitute each derivative into ``ode`` in reverse order. This function returns a tuple. The first item in the tuple is ``True`` if the substitution results in ``0``, and ``False`` otherwise. The second item in the tuple is what the substitution results in. It should always be ``0`` if the first item is ``True``. Sometimes this function will return ``False`` even when an expression is identically equal to ``0``. This happens when :py:meth:`~sympy.simplify.simplify.simplify` does not reduce the expression to ``0``. If an expression returned by this function vanishes identically, then ``sol`` really is a solution to the ``ode``. If this function seems to hang, it is probably because of a hard simplification. To use this function to test, test the first item of the tuple. Examples ======== >>> from sympy import Eq, Function, checkodesol, symbols >>> x, C1 = symbols('x,C1') >>> f = Function('f') >>> checkodesol(f(x).diff(x), Eq(f(x), C1)) (True, 0) >>> assert checkodesol(f(x).diff(x), C1)[0] >>> assert not checkodesol(f(x).diff(x), x)[0] >>> checkodesol(f(x).diff(x, 2), x**2) (False, 2) """ if not isinstance(ode, Equality): ode = Eq(ode, 0) if func is None: try: _, func = _preprocess(ode.lhs) except ValueError: funcs = [s.atoms(AppliedUndef) for s in ( sol if is_sequence(sol, set) else [sol])] funcs = set().union(*funcs) if len(funcs) != 1: raise ValueError( 'must pass func arg to checkodesol for this case.') func = funcs.pop() if not isinstance(func, AppliedUndef) or len(func.args) != 1: raise ValueError( "func must be a function of one variable, not %s" % func) if is_sequence(sol, set): return type(sol)([checkodesol(ode, i, order=order, solve_for_func=solve_for_func) for i in sol]) if not isinstance(sol, Equality): sol = Eq(func, sol) elif sol.rhs == func: sol = sol.reversed if order == 'auto': order = ode_order(ode, func) solved = sol.lhs == func and not sol.rhs.has(func) if solve_for_func and not solved: rhs = solve(sol, func) if rhs: eqs = [Eq(func, t) for t in rhs] if len(rhs) == 1: eqs = eqs[0] return checkodesol(ode, eqs, order=order, solve_for_func=False) s = True testnum = 0 x = func.args[0] while s: if testnum == 0: # First pass, try substituting a solved solution directly into the # ODE. This has the highest chance of succeeding. ode_diff = ode.lhs - ode.rhs if sol.lhs == func: s = sub_func_doit(ode_diff, func, sol.rhs) else: testnum += 1 continue ss = simplify(s) if ss: # with the new numer_denom in power.py, if we do a simple # expansion then testnum == 0 verifies all solutions. s = ss.expand(force=True) else: s = 0 testnum += 1 elif testnum == 1: # Second pass. If we cannot substitute f, try seeing if the nth # derivative is equal, this will only work for odes that are exact, # by definition. s = simplify( trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) - trigsimp(ode.lhs) + trigsimp(ode.rhs)) # s2 = simplify( # diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \ # ode.lhs + ode.rhs) testnum += 1 elif testnum == 2: # Third pass. Try solving for df/dx and substituting that into the # ODE. Thanks to Chris Smith for suggesting this method. Many of # the comments below are his, too. # The method: # - Take each of 1..n derivatives of the solution. # - Solve each nth derivative for d^(n)f/dx^(n) # (the differential of that order) # - Back substitute into the ODE in decreasing order # (i.e., n, n-1, ...) # - Check the result for zero equivalence if sol.lhs == func and not sol.rhs.has(func): diffsols = {0: sol.rhs} elif sol.rhs == func and not sol.lhs.has(func): diffsols = {0: sol.lhs} else: diffsols = {} sol = sol.lhs - sol.rhs for i in range(1, order + 1): # Differentiation is a linear operator, so there should always # be 1 solution. Nonetheless, we test just to make sure. # We only need to solve once. After that, we automatically # have the solution to the differential in the order we want. if i == 1: ds = sol.diff(x) try: sdf = solve(ds, func.diff(x, i)) if not sdf: raise NotImplementedError except NotImplementedError: testnum += 1 break else: diffsols[i] = sdf[0] else: # This is what the solution says df/dx should be. diffsols[i] = diffsols[i - 1].diff(x) # Make sure the above didn't fail. if testnum > 2: continue else: # Substitute it into ODE to check for self consistency. lhs, rhs = ode.lhs, ode.rhs for i in range(order, -1, -1): if i == 0 and 0 not in diffsols: # We can only substitute f(x) if the solution was # solved for f(x). break lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i]) rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i]) ode_or_bool = Eq(lhs, rhs) ode_or_bool = simplify(ode_or_bool) if isinstance(ode_or_bool, (bool, BooleanAtom)): if ode_or_bool: lhs = rhs = S.Zero else: lhs = ode_or_bool.lhs rhs = ode_or_bool.rhs # No sense in overworking simplify -- just prove that the # numerator goes to zero num = trigsimp((lhs - rhs).as_numer_denom()[0]) # since solutions are obtained using force=True we test # using the same level of assumptions ## replace function with dummy so assumptions will work _func = Dummy('func') num = num.subs(func, _func) ## posify the expression num, reps = posify(num) s = simplify(num).xreplace(reps).xreplace({_func: func}) testnum += 1 else: break if not s: return (True, s) elif s is True: # The code above never was able to change s raise NotImplementedError("Unable to test if " + str(sol) + " is a solution to " + str(ode) + ".") else: return (False, s) def ode_sol_simplicity(sol, func, trysolving=True): r""" Returns an extended integer representing how simple a solution to an ODE is. The following things are considered, in order from most simple to least: - ``sol`` is solved for ``func``. - ``sol`` is not solved for ``func``, but can be if passed to solve (e.g., a solution returned by ``dsolve(ode, func, simplify=False``). - If ``sol`` is not solved for ``func``, then base the result on the length of ``sol``, as computed by ``len(str(sol))``. - If ``sol`` has any unevaluated :py:class:`~sympy.integrals.Integral`\s, this will automatically be considered less simple than any of the above. This function returns an integer such that if solution A is simpler than solution B by above metric, then ``ode_sol_simplicity(sola, func) < ode_sol_simplicity(solb, func)``. Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed. +----------------------------------------------+-------------------+ | Simplicity | Return | +==============================================+===================+ | ``sol`` solved for ``func`` | ``-2`` | +----------------------------------------------+-------------------+ | ``sol`` not solved for ``func`` but can be | ``-1`` | +----------------------------------------------+-------------------+ | ``sol`` is not solved nor solvable for | ``len(str(sol))`` | | ``func`` | | +----------------------------------------------+-------------------+ | ``sol`` contains an | ``oo`` | | :py:class:`~sympy.integrals.Integral` | | +----------------------------------------------+-------------------+ ``oo`` here means the SymPy infinity, which should compare greater than any integer. If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve ``sol``, you can use ``trysolving=False`` to skip that step, which is the only potentially slow step. For example, :py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag should do this. If ``sol`` is a list of solutions, if the worst solution in the list returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``, that is, the length of the string representation of the whole list. Examples ======== This function is designed to be passed to ``min`` as the key argument, such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x)))``. >>> from sympy import symbols, Function, Eq, tan, cos, sqrt, Integral >>> from sympy.solvers.ode import ode_sol_simplicity >>> x, C1, C2 = symbols('x, C1, C2') >>> f = Function('f') >>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x)) -2 >>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x)) -1 >>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x)) oo >>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1) >>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2) >>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]] [28, 35] >>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x))) Eq(f(x)/tan(f(x)/(2*x)), C1) """ # TODO: if two solutions are solved for f(x), we still want to be # able to get the simpler of the two # See the docstring for the coercion rules. We check easier (faster) # things here first, to save time. if iterable(sol): # See if there are Integrals for i in sol: if ode_sol_simplicity(i, func, trysolving=trysolving) == oo: return oo return len(str(sol)) if sol.has(Integral): return oo # Next, try to solve for func. This code will change slightly when CRootOf # is implemented in solve(). Probably a CRootOf solution should fall # somewhere between a normal solution and an unsolvable expression. # First, see if they are already solved if sol.lhs == func and not sol.rhs.has(func) or \ sol.rhs == func and not sol.lhs.has(func): return -2 # We are not so lucky, try solving manually if trysolving: try: sols = solve(sol, func) if not sols: raise NotImplementedError except NotImplementedError: pass else: return -1 # Finally, a naive computation based on the length of the string version # of the expression. This may favor combined fractions because they # will not have duplicate denominators, and may slightly favor expressions # with fewer additions and subtractions, as those are separated by spaces # by the printer. # Additional ideas for simplicity heuristics are welcome, like maybe # checking if a equation has a larger domain, or if constantsimp has # introduced arbitrary constants numbered higher than the order of a # given ODE that sol is a solution of. return len(str(sol)) def _get_constant_subexpressions(expr, Cs): Cs = set(Cs) Ces = [] def _recursive_walk(expr): expr_syms = expr.free_symbols if len(expr_syms) > 0 and expr_syms.issubset(Cs): Ces.append(expr) else: if expr.func == exp: expr = expr.expand(mul=True) if expr.func in (Add, Mul): d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs)) if len(d[True]) > 1: x = expr.func(*d[True]) if not x.is_number: Ces.append(x) elif isinstance(expr, Integral): if expr.free_symbols.issubset(Cs) and \ all(len(x) == 3 for x in expr.limits): Ces.append(expr) for i in expr.args: _recursive_walk(i) return _recursive_walk(expr) return Ces def __remove_linear_redundancies(expr, Cs): cnts = {i: expr.count(i) for i in Cs} Cs = [i for i in Cs if cnts[i] > 0] def _linear(expr): if isinstance(expr, Add): xs = [i for i in Cs if expr.count(i)==cnts[i] \ and 0 == expr.diff(i, 2)] d = {} for x in xs: y = expr.diff(x) if y not in d: d[y]=[] d[y].append(x) for y in d: if len(d[y]) > 1: d[y].sort(key=str) for x in d[y][1:]: expr = expr.subs(x, 0) return expr def _recursive_walk(expr): if len(expr.args) != 0: expr = expr.func(*[_recursive_walk(i) for i in expr.args]) expr = _linear(expr) return expr if isinstance(expr, Equality): lhs, rhs = [_recursive_walk(i) for i in expr.args] f = lambda i: isinstance(i, Number) or i in Cs if isinstance(lhs, Symbol) and lhs in Cs: rhs, lhs = lhs, rhs if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f) for i in [True, False]: for hs in [dlhs, drhs]: if i not in hs: hs[i] = [0] # this calculation can be simplified lhs = Add(*dlhs[False]) - Add(*drhs[False]) rhs = Add(*drhs[True]) - Add(*dlhs[True]) elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) if True in dlhs: if False not in dlhs: dlhs[False] = [1] lhs = Mul(*dlhs[False]) rhs = rhs/Mul(*dlhs[True]) return Eq(lhs, rhs) else: return _recursive_walk(expr) @vectorize(0) def constantsimp(expr, constants): r""" Simplifies an expression with arbitrary constants in it. This function is written specifically to work with :py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use. Simplification is done by "absorbing" the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of. The symbols must all have the same name with numbers after it, for example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be '``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3. If the arbitrary constants are independent of the variable ``x``, then the independent symbol would be ``x``. There is no need to specify the dependent function, such as ``f(x)``, because it already has the independent symbol, ``x``, in it. Because terms are "absorbed" into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result. If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary. Absorption of constants is done with limited assistance: 1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x C_1 \cos(x)`; 2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`. Use :py:meth:`~sympy.solvers.ode.constant_renumber` to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. `C_1 + C_3 x`. In rare cases, a single constant can be "simplified" into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have `C_1` and `C_2` in an expression, when `C_1` is actually equal to `C_2`. Use your discretion in such situations, and also take advantage of the ability to use hints in :py:meth:`~sympy.solvers.ode.dsolve`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode import constantsimp >>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y') >>> constantsimp(2*C1*x, {C1, C2, C3}) C1*x >>> constantsimp(C1 + 2 + x, {C1, C2, C3}) C1 + x >>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3}) C1 + C3*x """ # This function works recursively. The idea is that, for Mul, # Add, Pow, and Function, if the class has a constant in it, then # we can simplify it, which we do by recursing down and # simplifying up. Otherwise, we can skip that part of the # expression. Cs = constants orig_expr = expr constant_subexprs = _get_constant_subexpressions(expr, Cs) for xe in constant_subexprs: xes = list(xe.free_symbols) if not xes: continue if all([expr.count(c) == xe.count(c) for c in xes]): xes.sort(key=str) expr = expr.subs(xe, xes[0]) # try to perform common sub-expression elimination of constant terms try: commons, rexpr = cse(expr) commons.reverse() rexpr = rexpr[0] for s in commons: cs = list(s[1].atoms(Symbol)) if len(cs) == 1 and cs[0] in Cs and \ cs[0] not in rexpr.atoms(Symbol) and \ not any(cs[0] in ex for ex in commons if ex != s): rexpr = rexpr.subs(s[0], cs[0]) else: rexpr = rexpr.subs(*s) expr = rexpr except Exception: pass expr = __remove_linear_redundancies(expr, Cs) def _conditional_term_factoring(expr): new_expr = terms_gcd(expr, clear=False, deep=True, expand=False) # we do not want to factor exponentials, so handle this separately if new_expr.is_Mul: infac = False asfac = False for m in new_expr.args: if isinstance(m, exp): asfac = True elif m.is_Add: infac = any(isinstance(fi, exp) for t in m.args for fi in Mul.make_args(t)) if asfac and infac: new_expr = expr break return new_expr expr = _conditional_term_factoring(expr) # call recursively if more simplification is possible if orig_expr != expr: return constantsimp(expr, Cs) return expr def constant_renumber(expr, symbolname, startnumber, endnumber): r""" Renumber arbitrary constants in ``expr`` to have numbers 1 through `N` where `N` is ``endnumber - startnumber + 1`` at most. In the process, this reorders expression terms in a standard way. This is a simple function that goes through and renumbers any :py:class:`~sympy.core.symbol.Symbol` with a name in the form ``symbolname + num`` where ``num`` is in the range from ``startnumber`` to ``endnumber``. Symbols are renumbered based on ``.sort_key()``, so they should be numbered roughly in the order that they appear in the final, printed expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines. The structure of this function is very similar to that of :py:meth:`~sympy.solvers.ode.constantsimp`. Examples ======== >>> from sympy import symbols, Eq, pprint >>> from sympy.solvers.ode import constant_renumber >>> x, C0, C1, C2, C3, C4 = symbols('x,C:5') Only constants in the given range (inclusive) are renumbered; the renumbering always starts from 1: >>> constant_renumber(C1 + C3 + C4, 'C', 1, 3) C1 + C2 + C4 >>> constant_renumber(C0 + C1 + C3 + C4, 'C', 2, 4) C0 + 2*C1 + C2 >>> constant_renumber(C0 + 2*C1 + C2, 'C', 0, 1) C1 + 3*C2 >>> pprint(C2 + C1*x + C3*x**2) 2 C1*x + C2 + C3*x >>> pprint(constant_renumber(C2 + C1*x + C3*x**2, 'C', 1, 3)) 2 C1 + C2*x + C3*x """ if type(expr) in (set, list, tuple): return type(expr)( [constant_renumber(i, symbolname=symbolname, startnumber=startnumber, endnumber=endnumber) for i in expr] ) global newstartnumber newstartnumber = 1 constants_found = [None]*(endnumber + 2) constantsymbols = [Symbol( symbolname + "%d" % t) for t in range(startnumber, endnumber + 1)] # make a mapping to send all constantsymbols to S.One and use # that to make sure that term ordering is not dependent on # the indexed value of C C_1 = [(ci, S.One) for ci in constantsymbols] sort_key=lambda arg: default_sort_key(arg.subs(C_1)) def _constant_renumber(expr): r""" We need to have an internal recursive function so that newstartnumber maintains its values throughout recursive calls. """ global newstartnumber if isinstance(expr, Equality): return Eq( _constant_renumber(expr.lhs), _constant_renumber(expr.rhs)) if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \ not expr.has(*constantsymbols): # Base case, as above. Hope there aren't constants inside # of some other class, because they won't be renumbered. return expr elif expr.is_Piecewise: return expr elif expr in constantsymbols: if expr not in constants_found: constants_found[newstartnumber] = expr newstartnumber += 1 return expr elif expr.is_Function or expr.is_Pow or isinstance(expr, Tuple): return expr.func( *[_constant_renumber(x) for x in expr.args]) else: sortedargs = list(expr.args) sortedargs.sort(key=sort_key) return expr.func(*[_constant_renumber(x) for x in sortedargs]) expr = _constant_renumber(expr) # Renumbering happens here newconsts = symbols('C1:%d' % newstartnumber) expr = expr.subs(zip(constants_found[1:], newconsts), simultaneous=True) return expr def _handle_Integral(expr, func, order, hint): r""" Converts a solution with Integrals in it into an actual solution. For most hints, this simply runs ``expr.doit()``. """ global y x = func.args[0] f = func.func if hint == "1st_exact": sol = (expr.doit()).subs(y, f(x)) del y elif hint == "1st_exact_Integral": sol = Eq(Subs(expr.lhs, y, f(x)), expr.rhs) del y elif hint == "nth_linear_constant_coeff_homogeneous": sol = expr elif not hint.endswith("_Integral"): sol = expr.doit() else: sol = expr return sol # FIXME: replace the general solution in the docstring with # dsolve(equation, hint='1st_exact_Integral'). You will need to be able # to have assumptions on P and Q that dP/dy = dQ/dx. def ode_1st_exact(eq, func, order, match): r""" Solves 1st order exact ordinary differential equations. A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 is exact if there is some function `F(x, y)` such that `P(x, y) = \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. Then, the solution will be as given below:: >>> from sympy import Function, Eq, Integral, symbols, pprint >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') >>> P, Q, F= map(Function, ['P', 'Q', 'F']) >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + ... Integral(Q(x0, t), (t, y0, y))), C1)) x y / / | | F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 | | / / x0 y0 Where the first partials of `P` and `Q` exist and are continuous in a simply connected region. A note: SymPy currently has no way to represent inert substitution on an expression, so the hint ``1st_exact_Integral`` will return an integral with `dy`. This is supposed to represent the function that you are solving for. Examples ======== >>> from sympy import Function, dsolve, cos, sin >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), ... f(x), hint='1st_exact') Eq(x*cos(f(x)) + f(x)**3/3, C1) References ========== - https://en.wikipedia.org/wiki/Exact_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 73 # indirect doctest """ x = func.args[0] f = func.func r = match # d+e*diff(f(x),x) e = r[r['e']] d = r[r['d']] global y # This is the only way to pass dummy y to _handle_Integral y = r['y'] C1 = get_numbered_constants(eq, num=1) # Refer Joel Moses, "Symbolic Integration - The Stormy Decade", # Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 # which gives the method to solve an exact differential equation. sol = Integral(d, x) + Integral((e - (Integral(d, x).diff(y))), y) return Eq(sol, C1) def ode_1st_homogeneous_coeff_best(eq, func, order, match): r""" Returns the best solution to an ODE from the two hints ``1st_homogeneous_coeff_subs_dep_div_indep`` and ``1st_homogeneous_coeff_subs_indep_div_dep``. This is as determined by :py:meth:`~sympy.solvers.ode.ode_sol_simplicity`. See the :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` docstrings for more information on these hints. Note that there is no ``ode_1st_homogeneous_coeff_best_Integral`` hint. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_best', simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ # There are two substitutions that solve the equation, u1=y/x and u2=x/y # They produce different integrals, so try them both and see which # one is easier. sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match) sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match) simplify = match.get('simplify', True) if simplify: # why is odesimp called here? Should it be at the usual spot? constants = sol1.free_symbols.difference(eq.free_symbols) sol1 = odesimp( sol1, func, order, constants, "1st_homogeneous_coeff_subs_indep_div_dep") constants = sol2.free_symbols.difference(eq.free_symbols) sol2 = odesimp( sol2, func, order, constants, "1st_homogeneous_coeff_subs_dep_div_indep") return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential equation into an equation separable in the variables `x` and `u`. If `h(u_1)` is the function that results from making the substitution `u_1 = f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is:: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) >>> pprint(genform) /f(x)\ /f(x)\ d g|----| + h|----|*--(f(x)) \ x / \ x / dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) f(x) ---- x / | | -h(u1) log(x) = C1 + | ---------------- d(u1) | u1*h(u1) + g(u1) | / Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`. Examples ======== >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) / 3 \ |3*f(x) f (x)| log|------ + -----| | x 3 | \ x / log(x) = log(C1) - ------------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u1 = Dummy('u1') # u1 == f(x)/x r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) yarg = match.get('yarg', 0) int = Integral( (-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}), (u1, None, f(x)/x)) sol = logcombine(Eq(log(x), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential equation into an equation separable in the variables `y` and `u_2`. If `h(u_2)` is the function that results from making the substitution `u_2 = x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) >>> pprint(genform) / x \ / x \ d g|----| + h|----|*--(f(x)) \f(x)/ \f(x)/ dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) x ---- f(x) / | | -g(u2) | ---------------- d(u2) | u2*g(u2) + h(u2) | / <BLANKLINE> f(x) = C1*e Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`. Examples ======== >>> from sympy import Function, pprint, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep', ... simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u2 = Dummy('u2') # u2 == x/f(x) r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) # If xarg present take xarg, else zero yarg = match.get('yarg', 0) # If yarg present take yarg, else zero int = Integral( simplify( (-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})), (u2, None, x/f(x))) sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol # XXX: Should this function maybe go somewhere else? def homogeneous_order(eq, *symbols): r""" Returns the order `n` if `g` is homogeneous and ``None`` if it is not homogeneous. Determines if a function is homogeneous and if so of what order. A function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y, \cdots) = t^n f(x, y, \cdots)`. If the function is of two variables, `F(x, y)`, then `f` being homogeneous of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)` or `H(y/x)`. This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of :py:meth:`~solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and :py:meth:`~solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`). Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, ``None`` is returned. Examples ======== >>> from sympy import Function, homogeneous_order, sqrt >>> from sympy.abc import x, y >>> f = Function('f') >>> homogeneous_order(f(x), f(x)) is None True >>> homogeneous_order(f(x,y), f(y, x), x, y) is None True >>> homogeneous_order(f(x), f(x), x) 1 >>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x)) 2 >>> homogeneous_order(x**2+f(x), x, f(x)) is None True """ if not symbols: raise ValueError("homogeneous_order: no symbols were given.") symset = set(symbols) eq = sympify(eq) # The following are not supported if eq.has(Order, Derivative): return None # These are all constants if (eq.is_Number or eq.is_NumberSymbol or eq.is_number ): return S.Zero # Replace all functions with dummy variables dum = numbered_symbols(prefix='d', cls=Dummy) newsyms = set() for i in [j for j in symset if getattr(j, 'is_Function')]: iargs = set(i.args) if iargs.difference(symset): return None else: dummyvar = next(dum) eq = eq.subs(i, dummyvar) symset.remove(i) newsyms.add(dummyvar) symset.update(newsyms) if not eq.free_symbols & symset: return None # assuming order of a nested function can only be equal to zero if isinstance(eq, Function): return None if homogeneous_order( eq.args[0], *tuple(symset)) != 0 else S.Zero # make the replacement of x with x*t and see if t can be factored out t = Dummy('t', positive=True) # It is sufficient that t > 0 eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t] if eqs is S.One: return S.Zero # there was no term with only t i, d = eqs.as_independent(t, as_Add=False) b, e = d.as_base_exp() if b == t: return e def ode_1st_linear(eq, func, order, match): r""" Solves 1st order linear differential equations. These are differential equations of the form .. math:: dy/dx + P(x) y = Q(x)\text{.} These kinds of differential equations can be solved in a general way. The integrating factor `e^{\int P(x) \,dx}` will turn the equation into a separable equation. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint, diff, sin >>> from sympy.abc import x >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) >>> pprint(genform) d P(x)*f(x) + --(f(x)) = Q(x) dx >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) / / \ | | | | | / | / | | | | | | | | P(x) dx | - | P(x) dx | | | | | | | / | / f(x) = |C1 + | Q(x)*e dx|*e | | | \ / / Examples ======== >>> f = Function('f') >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), ... f(x), '1st_linear')) f(x) = x*(C1 - cos(x)) References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 92 # indirect doctest """ x = func.args[0] f = func.func r = match # a*diff(f(x),x) + b*f(x) + c C1 = get_numbered_constants(eq, num=1) t = exp(Integral(r[r['b']]/r[r['a']], x)) tt = Integral(t*(-r[r['c']]/r[r['a']]), x) f = match.get('u', f(x)) # take almost-linear u if present, else f(x) return Eq(f, (tt + C1)/t) def ode_Bernoulli(eq, func, order, match): r""" Solves Bernoulli differential equations. These are equations of the form .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} The substitution `w = 1/y^{1-n}` will transform an equation of this form into one that is linear (see the docstring of :py:meth:`~sympy.solvers.ode.ode_1st_linear`). The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) >>> pprint(genform) d n P(x)*f(x) + --(f(x)) = Q(x)*f (x) dx >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral')) #doctest: +SKIP 1 ---- 1 - n // / \ \ || | | | || | / | / | || | | | | | || | (1 - n)* | P(x) dx | (-1 + n)* | P(x) dx| || | | | | | || | / | / | f(x) = ||C1 + (-1 + n)* | -Q(x)*e dx|*e | || | | | \\ / / / Note that the equation is separable when `n = 1` (see the docstring of :py:meth:`~sympy.solvers.ode.ode_separable`). >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), ... hint='separable_Integral')) f(x) / | / | 1 | | - dy = C1 + | (-P(x) + Q(x)) dx | y | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), ... f(x), hint='Bernoulli')) 1 f(x) = ------------------- / log(x) 1\ x*|C1 + ------ + -| \ x x/ References ========== - https://en.wikipedia.org/wiki/Bernoulli_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 95 # indirect doctest """ x = func.args[0] f = func.func r = match # a*diff(f(x),x) + b*f(x) + c*f(x)**n, n != 1 C1 = get_numbered_constants(eq, num=1) t = exp((1 - r[r['n']])*Integral(r[r['b']]/r[r['a']], x)) tt = (r[r['n']] - 1)*Integral(t*r[r['c']]/r[r['a']], x) return Eq(f(x), ((tt + C1)/t)**(1/(1 - r[r['n']]))) def ode_Riccati_special_minus2(eq, func, order, match): r""" The general Riccati equation has the form .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} While it does not have a general solution [1], the "special" form, `dy/dx = a y^2 - b x^c`, does have solutions in many cases [2]. This routine returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither `a` nor `b` are zero and either `c` or `d` is zero. >>> from sympy.abc import x, y, a, b, c, d >>> from sympy.solvers.ode import dsolve, checkodesol >>> from sympy import pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) >>> sol = dsolve(genform, y) >>> pprint(sol, wrap_line=False) / / __________________ \\ | __________________ | / 2 || | / 2 | \/ 4*b*d - (a + c) *log(x)|| -|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| \ \ 2*a // f(x) = ------------------------------------------------------------------------ 2*b*x >>> checkodesol(genform, sol, order=1)[0] True References ========== 1. http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati 2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf """ x = func.args[0] f = func.func r = match # a2*diff(f(x),x) + b2*f(x) + c2*f(x)/x + d2/x**2 a2, b2, c2, d2 = [r[r[s]] for s in 'a2 b2 c2 d2'.split()] C1 = get_numbered_constants(eq, num=1) mu = sqrt(4*d2*b2 - (a2 - c2)**2) return Eq(f(x), (a2 - c2 - mu*tan(mu/(2*a2)*log(x) + C1))/(2*b2*x)) def ode_Liouville(eq, func, order, match): r""" Solves 2nd order Liouville differential equations. The general form of a Liouville ODE is .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! \frac{dy}{dx}\!\right)^2 + h(x) \frac{dy}{dx}\text{.} The general solution is: >>> from sympy import Function, dsolve, Eq, pprint, diff >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + ... h(x)*diff(f(x),x), 0) >>> pprint(genform) 2 2 /d \ d d g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 \dx / dx 2 dx >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) f(x) / / | | | / | / | | | | | - | h(x) dx | | g(y) dy | | | | | / | / C1 + C2* | e dx + | e dy = 0 | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + ... diff(f(x), x)/x, f(x), hint='Liouville')) ________________ ________________ [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] References ========== - Goldstein and Braun, "Advanced Methods for the Solution of Differential Equations", pp. 98 - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville # indirect doctest """ # Liouville ODE: # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98, as well as # http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville x = func.args[0] f = func.func r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x) y = r['y'] C1, C2 = get_numbered_constants(eq, num=2) int = Integral(exp(Integral(r['g'], y)), (y, None, f(x))) sol = Eq(int + C1*Integral(exp(-Integral(r['h'], x)), x) + C2, 0) return sol def ode_2nd_power_series_ordinary(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogenous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials, it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at `x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`, in the differential equation, and equating the nth term. Using this relation various terms can be generated. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x, y >>> f = Function("f") >>> eq = f(x).diff(x, 2) + f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_ordinary')) / 4 2 \ / 2 \ |x x | | x | / 6\ f(x) = C2*|-- - -- + 1| + C1*x*|- -- + 1| + O\x / \24 2 / \ 6 / References ========== - http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = Dummy("n", integer=True) s = Wild("s") k = Wild("k", exclude=[x]) x0 = match.get('x0') terms = match.get('terms', 5) p = match[match['a3']] q = match[match['b3']] r = match[match['c3']] seriesdict = {} recurr = Function("r") # Generating the recurrence relation which works this way: # for the second order term the summation begins at n = 2. The coefficients # p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that # the exponent of x becomes n. # For example, if p is x, then the second degree recurrence term is # an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to # an+1*n*(n - 1)*x**n. # A similar process is done with the first order and zeroth order term. coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)] for index, coeff in enumerate(coefflist): if coeff[1]: f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0))) if f2.is_Add: addargs = f2.args else: addargs = [f2] for arg in addargs: powm = arg.match(s*x**k) term = coeff[0]*powm[s] if not powm[k].is_Symbol: term = term.subs(n, n - powm[k].as_independent(n)[0]) startind = powm[k].subs(n, index) # Seeing if the startterm can be reduced further. # If it vanishes for n lesser than startind, it is # equal to summation from n. if startind: for i in reversed(range(startind)): if not term.subs(n, i): seriesdict[term] = i else: seriesdict[term] = i + 1 break else: seriesdict[term] = S(0) # Stripping of terms so that the sum starts with the same number. teq = S(0) suminit = seriesdict.values() rkeys = seriesdict.keys() req = Add(*rkeys) if any(suminit): maxval = max(suminit) for term in seriesdict: val = seriesdict[term] if val != maxval: for i in range(val, maxval): teq += term.subs(n, val) finaldict = {} if teq: fargs = teq.atoms(AppliedUndef) if len(fargs) == 1: finaldict[fargs.pop()] = 0 else: maxf = max(fargs, key = lambda x: x.args[0]) sol = solve(teq, maxf) if isinstance(sol, list): sol = sol[0] finaldict[maxf] = sol # Finding the recurrence relation in terms of the largest term. fargs = req.atoms(AppliedUndef) maxf = max(fargs, key = lambda x: x.args[0]) minf = min(fargs, key = lambda x: x.args[0]) if minf.args[0].is_Symbol: startiter = 0 else: startiter = -minf.args[0].as_independent(n)[0] lhs = maxf rhs = solve(req, maxf) if isinstance(rhs, list): rhs = rhs[0] # Checking how many values are already present tcounter = len([t for t in finaldict.values() if t]) for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary check = rhs.subs(n, startiter) nlhs = lhs.subs(n, startiter) nrhs = check.subs(finaldict) finaldict[nlhs] = nrhs startiter += 1 # Post processing series = C0 + C1*(x - x0) for term in finaldict: if finaldict[term]: fact = term.args[0] series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*( x - x0)**fact) series = collect(expand_mul(series), [C0, C1]) + Order(x**terms) return Eq(f(x), series) def ode_2nd_power_series_regular(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogenous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}` and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity `P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for finding the power series solutions is: 1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series solutions about x0. Find `p0` and `q0` which are the constants of the power series expansions. 2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the roots `m1` and `m2` of the indicial equation. 3. If `m1 - m2` is a non integer there exists two series solutions. If `m1 = m2`, there exists only one solution. If `m1 - m2` is an integer, then the existence of one solution is confirmed. The other solution may or may not exist. The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The coefficients are determined by the following recurrence relation. `a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case in which `m1 - m2` is an integer, it can be seen from the recurrence relation that for the lower root `m`, when `n` equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x, y >>> f = Function("f") >>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x) >>> pprint(dsolve(eq)) / 6 4 2 \ | x x x | / 4 2 \ C1*|- --- + -- - -- + 1| | x x | \ 720 24 2 / / 6\ f(x) = C2*|--- - -- + 1| + ------------------------ + O\x / \120 6 / x References ========== - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = Dummy("n") m = Dummy("m") # for solving the indicial equation s = Wild("s") k = Wild("k", exclude=[x]) x0 = match.get('x0') terms = match.get('terms', 5) p = match['p'] q = match['q'] # Generating the indicial equation indicial = [] for term in [p, q]: if not term.has(x): indicial.append(term) else: term = series(term, n=1, x0=x0) if isinstance(term, Order): indicial.append(S(0)) else: for arg in term.args: if not arg.has(x): indicial.append(arg) break p0, q0 = indicial sollist = solve(m*(m - 1) + m*p0 + q0, m) if sollist and isinstance(sollist, list) and all( [sol.is_real for sol in sollist]): serdict1 = {} serdict2 = {} if len(sollist) == 1: # Only one series solution exists in this case. m1 = m2 = sollist.pop() if terms-m1-1 <= 0: return Eq(f(x), Order(terms)) serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) else: m1 = sollist[0] m2 = sollist[1] if m1 < m2: m1, m2 = m2, m1 # Irrespective of whether m1 - m2 is an integer or not, one # Frobenius series solution exists. serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) if not (m1 - m2).is_integer: # Second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1) else: # Check if second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1) if serdict1: finalseries1 = C0 for key in serdict1: power = int(key.name[1:]) finalseries1 += serdict1[key]*(x - x0)**power finalseries1 = (x - x0)**m1*finalseries1 finalseries2 = S(0) if serdict2: for key in serdict2: power = int(key.name[1:]) finalseries2 += serdict2[key]*(x - x0)**power finalseries2 += C1 finalseries2 = (x - x0)**m2*finalseries2 return Eq(f(x), collect(finalseries1 + finalseries2, [C0, C1]) + Order(x**terms)) def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None): r""" Returns a dict with keys as coefficients and values as their values in terms of C0 """ n = int(n) # In cases where m1 - m2 is not an integer m2 = check d = Dummy("d") numsyms = numbered_symbols("C", start=0) numsyms = [next(numsyms) for i in range(n + 1)] C0 = Symbol("C0") serlist = [] for ser in [p, q]: # Order term not present if ser.is_polynomial(x) and Poly(ser, x).degree() <= n: if x0: ser = ser.subs(x, x + x0) dict_ = Poly(ser, x).as_dict() # Order term present else: tseries = series(ser, x=x0, n=n+1) # Removing order dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict() # Fill in with zeros, if coefficients are zero. for i in range(n + 1): if (i,) not in dict_: dict_[(i,)] = S(0) serlist.append(dict_) pseries = serlist[0] qseries = serlist[1] indicial = d*(d - 1) + d*p0 + q0 frobdict = {} for i in range(1, n + 1): num = c*(m*pseries[(i,)] + qseries[(i,)]) for j in range(1, i): sym = Symbol("C" + str(j)) num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)]) # Checking for cases when m1 - m2 is an integer. If num equals zero # then a second Frobenius series solution cannot be found. If num is not zero # then set constant as zero and proceed. if m2 is not None and i == m2 - m: if num: return False else: frobdict[numsyms[i]] = S(0) else: frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i)) return frobdict def _nth_algebraic_match(eq, func): r""" Matches any differential equation that nth_algebraic can solve. Uses `sympy.solve` but teaches it how to integrate derivatives. This involves calling `sympy.solve` and does most of the work of finding a solution (apart from evaluating the integrals). """ # Each integration should generate a different constant constants = iter(numbered_symbols(prefix='C', cls=Symbol, start=1)) constant = lambda: next(constants, None) # Like Derivative but "invertible" class diffx(Function): def inverse(self): # We mustn't use integrate here because fx has been replaced by _t # in the equation so integrals will not be correct while solve is # still working. return lambda expr: Integral(expr, var) + constant() # Replace derivatives wrt the independent variable with diffx def replace(eq, var): def expand_diffx(*args): differand, diffs = args[0], args[1:] toreplace = differand for v, n in diffs: for _ in range(n): if v == var: toreplace = diffx(toreplace) else: toreplace = Derivative(toreplace, v) return toreplace return eq.replace(Derivative, expand_diffx) # Restore derivatives in solution afterwards def unreplace(eq, var): return eq.replace(diffx, lambda e: Derivative(e, var)) # The independent variable var = func.args[0] subs_eqn = replace(eq, var) try: solns = solve(subs_eqn, func) except NotImplementedError: solns = [] solns = [unreplace(soln, var) for soln in solns] solns = [Equality(func, soln) for soln in solns] return {'var':var, 'solutions':solns} def ode_nth_algebraic(eq, func, order, match): r""" Solves an `n`\th order ordinary differential equation using algebra and integrals. There is no general form for the kind of equation that this can solve. The the equation is solved algebraically treating differentiation as an invertible algebraic function. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) >>> dsolve(eq, f(x), hint='nth_algebraic') ... # doctest: +NORMALIZE_WHITESPACE [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] Note that this solver can return algebraic solutions that do not have any integration constants (f(x) = 0 in the above example). # indirect doctest """ solns = match['solutions'] var = match['var'] solns = _nth_algebraic_remove_redundant_solutions(eq, solns, order, var) if len(solns) == 1: return solns[0] else: return solns # FIXME: Maybe something like this function should be applied to the solutions # returned by dsolve in general rather than just for nth_algebraic... def _nth_algebraic_remove_redundant_solutions(eq, solns, order, var): r""" Remove redundant solutions from the set of solutions returned by nth_algebraic. This function is needed because otherwise nth_algebraic can return redundant solutions where both algebraic solutions and integral solutions are found to the ODE. As an example consider: eq = Eq(f(x) * f(x).diff(x), 0) There are two ways to find solutions to eq. The first is the algebraic solution f(x)=0. The second is to solve the equation f(x).diff(x) = 0 leading to the solution f(x) = C1. In this particular case we then see that the first solution is a special case of the second and we don't want to return it. This does not always happen for algebraic solutions though since if we have eq = Eq(f(x)*(1 + f(x).diff(x)), 0) then we get the algebraic solution f(x) = 0 and the integral solution f(x) = -x + C1 and in this case the two solutions are not equivalent wrt initial conditions so both should be returned. """ def is_special_case_of(soln1, soln2): return _nth_algebraic_is_special_case_of(soln1, soln2, eq, order, var) unique_solns = [] for soln1 in solns: for soln2 in unique_solns[:]: if is_special_case_of(soln1, soln2): break elif is_special_case_of(soln2, soln1): unique_solns.remove(soln2) else: unique_solns.append(soln1) return unique_solns def _nth_algebraic_is_special_case_of(soln1, soln2, eq, order, var): r""" True if soln1 is found to be a special case of soln2 wrt some value of the constants that appear in soln2. False otherwise. """ # The solutions returned by nth_algebraic should be given explicitly as in # Eq(f(x), expr). We will equate the RHSs of the two solutions giving an # equation f1(x) = f2(x). # # Since this is supposed to hold for all x it also holds for derivatives # f1'(x) and f2'(x). For an order n ode we should be able to differentiate # each solution n times to get n+1 equations. # # We then try to solve those n+1 equations for the integrations constants # in f2(x). If we can find a solution that doesn't depend on x then it # means that some value of the constants in f1(x) is a special case of # f2(x) corresponding to a paritcular choice of the integration constants. constants1 = soln1.free_symbols.difference(eq.free_symbols) constants2 = soln2.free_symbols.difference(eq.free_symbols) constants1_new = get_numbered_constants(soln1.rhs - soln2.rhs, len(constants1)) if len(constants1) == 1: constants1_new = {constants1_new} for c_old, c_new in zip(constants1, constants1_new): soln1 = soln1.subs(c_old, c_new) # n equations for f1(x)=f2(x), f1'(x)=f2'(x), ... lhs = soln1.rhs.doit() rhs = soln2.rhs.doit() eqns = [Eq(lhs, rhs)] for n in range(1, order): lhs = lhs.diff(var) rhs = rhs.diff(var) eq = Eq(lhs, rhs) eqns.append(eq) # BooleanTrue/False awkwardly show up for trivial equations if any(isinstance(eq, BooleanFalse) for eq in eqns): return False eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)] constant_solns = solve(eqns, constants2) # Sometimes returns a dict and sometimes a list of dicts if isinstance(constant_solns, dict): constant_solns = [constant_solns] # If any solution gives all constants as expressions that don't depend on # x then there exists constants for soln2 that give soln1 for constant_soln in constant_solns: if not any(c.has(var) for c in constant_soln.values()): return True else: return False def _nth_linear_match(eq, func, order): r""" Matches a differential equation to the linear form: .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 Returns a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is not linear. This function assumes that ``func`` has already been checked to be good. Examples ======== >>> from sympy import Function, cos, sin >>> from sympy.abc import x >>> from sympy.solvers.ode import _nth_linear_match >>> f = Function('f') >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(x), f(x), 3) {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(f(x)), f(x), 3) == None True """ x = func.args[0] one_x = {x} terms = {i: S.Zero for i in range(-1, order + 1)} for i in Add.make_args(eq): if not i.has(func): terms[-1] += i else: c, f = i.as_independent(func) if (isinstance(f, Derivative) and set(f.variables) == one_x and f.args[0] == func): terms[f.derivative_count] += c elif f == func: terms[len(f.args[1:])] += c else: return None return terms def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation. This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `f(x) = x^r`, and deriving a characteristic equation for `r`. When there are repeated roots, we include extra terms of the form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration constant, `r` is a root of the characteristic equation, and `k` ranges over the multiplicity of `r`. In the cases where the roots are complex, solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` are returned, based on expansions with Euler's formula. The general solution is the sum of the terms found. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.CRootOf` instance will be returned instead. >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), ... hint='nth_linear_euler_eq_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), sqrt(x)*(C1 + C2*log(x))) Note that because this method does not involve integration, there is no ``nth_linear_euler_eq_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, corresponding to the fundamental solution set, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) >>> pprint(dsolve(eq, f(x), ... hint='nth_linear_euler_eq_homogeneous')) 2 f(x) = x *(C1 + C2*x) References ========== - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and Engineers", Springer 1999, pp. 12 # indirect doctest """ global collectterms collectterms = [] x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, str) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() chareq = Poly(chareq, symbol) chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) constants.reverse() # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 gsol = S(0) # We need keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. ln = log for root, multiplicity in charroots.items(): for i in range(multiplicity): if isinstance(root, RootOf): gsol += (x**root) * constants.pop() if multiplicity != 1: raise ValueError("Value should be 1") collectterms = [(0, root, 0)] + collectterms elif root.is_real: gsol += ln(x)**i*(x**root) * constants.pop() collectterms = [(i, root, 0)] + collectterms else: reroot = re(root) imroot = im(root) gsol += ln(x)**i * (x**reroot) * ( constants.pop() * sin(abs(imroot)*ln(x)) + constants.pop() * cos(imroot*ln(x))) # Preserve ordering (multiplicity, real part, imaginary part) # It will be assumed implicitly when constructing # fundamental solution sets. collectterms = [(i, reroot, imroot)] + collectterms if returns == 'sol': return Eq(f(x), gsol) elif returns in ('list' 'both'): # HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through) # Create a list of (hopefully) linearly independent solutions gensols = [] # Keep track of when to use sin or cos for nonzero imroot for i, reroot, imroot in collectterms: if imroot == 0: gensols.append(ln(x)**i*x**reroot) else: sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x)) if sin_form in gensols: cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x)) gensols.append(cos_form) else: gensols.append(sin_form) if returns == 'list': return gensols else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `x = exp(t)`, and deriving a characteristic equation of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can be then solved by nth_linear_constant_coeff_undetermined_coefficients if g(exp(t)) has finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. After replacement of x by exp(t), this method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import dsolve, Function, Derivative, log >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) """ x = func.args[0] f = func.func r = match chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, str) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() for i in range(1,degree(Poly(chareq, symbol))+1): eq += chareq.coeff(symbol**i)*diff(f(x), x, i) if chareq.as_coeff_add(symbol)[0]: eq += chareq.as_coeff_add(symbol)[0]*f(x) e, re = posify(r[-1].subs(x, exp(x))) eq += e.subs(re) match = _nth_linear_match(eq, f(x), ode_order(eq, f(x))) match['trialset'] = r['trialset'] return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand() def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by multiplying eq given below with `a_n x^{n}` .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() Eq(f(x), C1*x + C2*x**2 + x**4/6) """ x = func.args[0] f = func.func r = match gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both') match.update(gensol) r[-1] = r[-1]/r[ode_order(eq, f(x))] sol = _solve_variation_of_parameters(eq, func, order, match) return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))]) def ode_almost_linear(eq, func, order, match): r""" Solves an almost-linear differential equation. The general form of an almost linear differential equation is .. math:: f(x) g(y) y + k(x) l(y) + m(x) = 0 \text{where} l'(y) = g(y)\text{.} This can be solved by substituting `l(y) = u(y)`. Making the given substitution reduces it to a linear differential equation of the form `u' + P(x) u + Q(x) = 0`. The general solution is >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, y, n >>> f, g, k, l = map(Function, ['f', 'g', 'k', 'l']) >>> genform = Eq(f(x)*(l(y).diff(y)) + k(x)*l(y) + g(x)) >>> pprint(genform) d f(x)*--(l(y)) + g(x) + k(x)*l(y) = 0 dy >>> pprint(dsolve(genform, hint = 'almost_linear')) / // y*k(x) \\ | || ------ || | || f(x) || -y*k(x) | ||-g(x)*e || -------- | ||-------------- for k(x) != 0|| f(x) l(y) = |C1 + |< k(x) ||*e | || || | || -y*g(x) || | || -------- otherwise || | || f(x) || \ \\ // See Also ======== :meth:`sympy.solvers.ode.ode_1st_linear` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = x*d + x*f(x) + 1 >>> dsolve(eq, f(x), hint='almost_linear') Eq(f(x), (C1 - Ei(x))*exp(-x)) >>> pprint(dsolve(eq, f(x), hint='almost_linear')) -x f(x) = (C1 - Ei(x))*e References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ # Since ode_1st_linear has already been implemented, and the # coefficients have been modified to the required form in # classify_ode, just passing eq, func, order and match to # ode_1st_linear will give the required output. return ode_1st_linear(eq, func, order, match) def _linear_coeff_match(expr, func): r""" Helper function to match hint ``linear_coefficients``. Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 f(x) + c_2)` where the following conditions hold: 1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; 2. `c_1` or `c_2` are not equal to zero; 3. `a_2 b_1 - a_1 b_2` is not equal to zero. Return ``xarg``, ``yarg`` where 1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` 2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` Examples ======== >>> from sympy import Function >>> from sympy.abc import x >>> from sympy.solvers.ode import _linear_coeff_match >>> from sympy.functions.elementary.trigonometric import sin >>> f = Function('f') >>> _linear_coeff_match(( ... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x)) (1/9, 22/9) >>> _linear_coeff_match( ... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x)) (19/27, 2/27) >>> _linear_coeff_match(sin(f(x)/x), f(x)) """ f = func.func x = func.args[0] def abc(eq): r''' Internal function of _linear_coeff_match that returns Rationals a, b, c if eq is a*x + b*f(x) + c, else None. ''' eq = _mexpand(eq) c = eq.as_independent(x, f(x), as_Add=True)[0] if not c.is_Rational: return a = eq.coeff(x) if not a.is_Rational: return b = eq.coeff(f(x)) if not b.is_Rational: return if eq == a*x + b*f(x) + c: return a, b, c def match(arg): r''' Internal function of _linear_coeff_match that returns Rationals a1, b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is non-zero, else None. ''' n, d = arg.together().as_numer_denom() m = abc(n) if m is not None: a1, b1, c1 = m m = abc(d) if m is not None: a2, b2, c2 = m d = a2*b1 - a1*b2 if (c1 or c2) and d: return a1, b1, c1, a2, b2, c2, d m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} m1 = match(m.pop()) if m1 and all(match(mi) == m1 for mi in m): a1, b1, c1, a2, b2, c2, denom = m1 return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom def ode_linear_coefficients(eq, func, order, match): r""" Solves a differential equation with linear coefficients. The general form of a differential equation with linear coefficients is .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}\!\right) = 0\text{,} where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 - a_2 b_1 \ne 0`. This can be solved by substituting: .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 b_2}\text{.} This substitution reduces the equation to a homogeneous differential equation. See Also ======== :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_best` :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` :meth:`sympy.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> df = f(x).diff(x) >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) >>> dsolve(eq, hint='linear_coefficients') [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] >>> pprint(dsolve(eq, hint='linear_coefficients')) ___________ ___________ / 2 / 2 [f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ return ode_1st_homogeneous_coeff_best(eq, func, order, match) def ode_separable_reduced(eq, func, order, match): r""" Solves a differential equation that can be reduced to the separable form. The general form of this equation is .. math:: y' + (y/x) H(x^n y) = 0\text{}. This can be solved by substituting `u(y) = x^n y`. The equation then reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - \frac{1}{x} = 0`. The general solution is: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, g = map(Function, ['f', 'g']) >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) >>> pprint(genform) / n \ d f(x)*g\x *f(x)/ --(f(x)) + --------------- dx x >>> pprint(dsolve(genform, hint='separable_reduced')) n x *f(x) / | | 1 | ------------ dy = C1 + log(x) | y*(n - g(y)) | / See Also ======== :meth:`sympy.solvers.ode.ode_separable` Examples ======== >>> from sympy import Function, Derivative, pprint >>> from sympy.solvers.ode import dsolve, classify_ode >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = (x - x**2*f(x))*d - f(x) >>> dsolve(eq, hint='separable_reduced') [Eq(f(x), (-sqrt(C1*x**2 + 1) + 1)/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] >>> pprint(dsolve(eq, hint='separable_reduced')) ___________ ___________ / 2 / 2 - \/ C1*x + 1 + 1 \/ C1*x + 1 + 1 [f(x) = --------------------, f(x) = ------------------] x x References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ # Arguments are passed in a way so that they are coherent with the # ode_separable function x = func.args[0] f = func.func y = Dummy('y') u = match['u'].subs(match['t'], y) ycoeff = 1/(y*(match['power'] - u)) m1 = {y: 1, x: -1/x, 'coeff': 1} m2 = {y: ycoeff, x: 1, 'coeff': 1} r = {'m1': m1, 'm2': m2, 'y': y, 'hint': x**match['power']*f(x)} return ode_separable(eq, func, order, r) def ode_1st_power_series(eq, func, order, match): r""" The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation. For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`. The solution is given by .. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!}, where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`. To compute the values of the `F_{n}(x_{0},b)` the following algorithm is followed, until the required number of terms are generated. 1. `F_1 = h(x_{0}, b)` 2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}` Examples ======== >>> from sympy import Function, Derivative, pprint, exp >>> from sympy.solvers.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> eq = exp(x)*(f(x).diff(x)) - f(x) >>> pprint(dsolve(eq, hint='1st_power_series')) 3 4 5 C1*x C1*x C1*x / 6\ f(x) = C1 + C1*x - ----- + ----- + ----- + O\x / 6 24 60 References ========== - Travis W. Walker, Analytic power series technique for solving first-order differential equations, p.p 17, 18 """ x = func.args[0] y = match['y'] f = func.func h = -match[match['d']]/match[match['e']] point = match.get('f0') value = match.get('f0val') terms = match.get('terms') # First term F = h if not h: return Eq(f(x), value) # Initialization series = value if terms > 1: hc = h.subs({x: point, y: value}) if hc.has(oo) or hc.has(NaN) or hc.has(zoo): # Derivative does not exist, not analytic return Eq(f(x), oo) elif hc: series += hc*(x - point) for factcount in range(2, terms): Fnew = F.diff(x) + F.diff(y)*h Fnewc = Fnew.subs({x: point, y: value}) # Same logic as above if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo): return Eq(f(x), oo) series += Fnewc*((x - point)**factcount)/factorial(factcount) F = Fnew series += Order(x**terms) return Eq(f(x), series) def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous differential equation with constant coefficients. This is an equation of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = 0\text{.} These equations can be solved in a general manner, by taking the roots of the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, for each where `C_n` is an arbitrary constant, `r` is a root of the characteristic equation and `i` is one of each from 0 to the multiplicity of the root - 1 (for example, a root 3 of multiplicity 2 would create the terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.CRootOf` instance will be return instead. >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) Note that because this method does not involve integration, there is no ``nth_linear_constant_coeff_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous')) x -2*x f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 211 # indirect doctest """ x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if type(i) == str or i < 0: pass else: chareq += r[i]*symbol**i chareq = Poly(chareq, symbol) # Can't just call roots because it doesn't return rootof for unsolveable # polynomials. chareqroots = roots(chareq, multiple=True) if len(chareqroots) != order: chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()]) # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 gsol = S(0) # We need to keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. global collectterms collectterms = [] gensols = [] conjugate_roots = [] # used to prevent double-use of conjugate roots # Loop over roots in theorder provided by roots/rootof... for root in chareqroots: # but don't repoeat multiple roots. if root not in charroots: continue multiplicity = charroots.pop(root) for i in range(multiplicity): if chareq_is_complex: gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms continue reroot = re(root) imroot = im(root) if imroot.has(atan2) and reroot.has(atan2): # Remove this condition when re and im stop returning # circular atan2 usages. gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms else: if root in conjugate_roots: collectterms = [(i, reroot, imroot)] + collectterms continue if imroot == 0: gensols.append(x**i*exp(reroot*x)) collectterms = [(i, reroot, 0)] + collectterms continue conjugate_roots.append(conjugate(root)) gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x)) gensols.append(x**i*exp(reroot*x) * cos( imroot * x)) # This ordering is important collectterms = [(i, reroot, imroot)] + collectterms if returns == 'list': return gensols elif returns in ('sol' 'both'): gsol = Add(*[i*j for (i,j) in zip(constants, gensols)]) if returns == 'sol': return Eq(f(x), gsol) else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of undetermined coefficients. This method works on differential equations of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{,} where `P(x)` is a function that has a finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, cos >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - ... 4*exp(-x)*x**2 + cos(2*x), f(x), ... hint='nth_linear_constant_coeff_undetermined_coefficients')) / 4\ | x | -x 4*sin(2*x) 3*cos(2*x) f(x) = |C1 + C2*x + --|*e - ---------- + ---------- \ 3 / 25 25 References ========== - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 221 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_undetermined_coefficients(eq, func, order, match) def _solve_undetermined_coefficients(eq, func, order, match): r""" Helper function for the method of undetermined coefficients. See the :py:meth:`~sympy.solvers.ode.ode_nth_linear_constant_coeff_undetermined_coefficients` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. ``trialset`` The set of trial functions as returned by ``_undetermined_coefficients_match()['trialset']``. """ x = func.args[0] f = func.func r = match coeffs = numbered_symbols('a', cls=Dummy) coefflist = [] gensols = r['list'] gsol = r['sol'] trialset = r['trialset'] notneedset = set([]) newtrialset = set([]) global collectterms if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply" + " undetermined coefficients to " + str(eq) + " (number of terms != order)") usedsin = set([]) mult = 0 # The multiplicity of the root getmult = True for i, reroot, imroot in collectterms: if getmult: mult = i + 1 getmult = False if i == 0: getmult = True if imroot: # Alternate between sin and cos if (i, reroot) in usedsin: check = x**i*exp(reroot*x)*cos(imroot*x) else: check = x**i*exp(reroot*x)*sin(abs(imroot)*x) usedsin.add((i, reroot)) else: check = x**i*exp(reroot*x) if check in trialset: # If an element of the trial function is already part of the # homogeneous solution, we need to multiply by sufficient x to # make it linearly independent. We also don't need to bother # checking for the coefficients on those elements, since we # already know it will be 0. while True: if check*x**mult in trialset: mult += 1 else: break trialset.add(check*x**mult) notneedset.add(check) newtrialset = trialset - notneedset trialfunc = 0 for i in newtrialset: c = next(coeffs) coefflist.append(c) trialfunc += c*i eqs = sub_func_doit(eq, f(x), trialfunc) coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1)))) eqs = _mexpand(eqs) for i in Add.make_args(eqs): s = separatevars(i, dict=True, symbols=[x]) coeffsdict[s[x]] += s['coeff'] coeffvals = solve(list(coeffsdict.values()), coefflist) if not coeffvals: raise NotImplementedError( "Could not solve `%s` using the " "method of undetermined coefficients " "(unable to solve for coefficients)." % eq) psol = trialfunc.subs(coeffvals) return Eq(f(x), gsol.rhs + psol) def _undetermined_coefficients_match(expr, x): r""" Returns a trial function match if undetermined coefficients can be applied to ``expr``, and ``None`` otherwise. A trial expression can be found for an expression for use with the method of undetermined coefficients if the expression is an additive/multiplicative combination of constants, polynomials in `x` (the independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and `e^{a x}` terms (in other words, it has a finite number of linearly independent derivatives). Note that you may still need to multiply each term returned here by sufficient `x` to make it linearly independent with the solutions to the homogeneous equation. This is intended for internal use by ``undetermined_coefficients`` hints. SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So, for example, you will need to manually convert `\sin^2(x)` into `[1 + \cos(2 x)]/2` to properly apply the method of undetermined coefficients on it. Examples ======== >>> from sympy import log, exp >>> from sympy.solvers.ode import _undetermined_coefficients_match >>> from sympy.abc import x >>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) {'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}} >>> _undetermined_coefficients_match(log(x), x) {'test': False} """ a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1) retdict = {} def _test_term(expr, x): r""" Test if ``expr`` fits the proper form for undetermined coefficients. """ if not expr.has(x): return True elif expr.is_Add: return all(_test_term(i, x) for i in expr.args) elif expr.is_Mul: if expr.has(sin, cos): foundtrig = False # Make sure that there is only one trig function in the args. # See the docstring. for i in expr.args: if i.has(sin, cos): if foundtrig: return False else: foundtrig = True return all(_test_term(i, x) for i in expr.args) elif expr.is_Function: if expr.func in (sin, cos, exp): if expr.args[0].match(a*x + b): return True else: return False else: return False elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \ expr.exp >= 0: return True elif expr.is_Pow and expr.base.is_number: if expr.exp.match(a*x + b): return True else: return False elif expr.is_Symbol or expr.is_number: return True else: return False def _get_trial_set(expr, x, exprs=set([])): r""" Returns a set of trial terms for undetermined coefficients. The idea behind undetermined coefficients is that the terms expression repeat themselves after a finite number of derivatives, except for the coefficients (they are linearly dependent). So if we collect these, we should have the terms of our trial function. """ def _remove_coefficient(expr, x): r""" Returns the expression without a coefficient. Similar to expr.as_independent(x)[1], except it only works multiplicatively. """ term = S.One if expr.is_Mul: for i in expr.args: if i.has(x): term *= i elif expr.has(x): term = expr return term expr = expand_mul(expr) if expr.is_Add: for term in expr.args: if _remove_coefficient(term, x) in exprs: pass else: exprs.add(_remove_coefficient(term, x)) exprs = exprs.union(_get_trial_set(term, x, exprs)) else: term = _remove_coefficient(expr, x) tmpset = exprs.union({term}) oldset = set([]) while tmpset != oldset: # If you get stuck in this loop, then _test_term is probably # broken oldset = tmpset.copy() expr = expr.diff(x) term = _remove_coefficient(expr, x) if term.is_Add: tmpset = tmpset.union(_get_trial_set(term, x, tmpset)) else: tmpset.add(term) exprs = tmpset return exprs retdict['test'] = _test_term(expr, x) if retdict['test']: # Try to generate a list of trial solutions that will have the # undetermined coefficients. Note that if any of these are not linearly # independent with any of the solutions to the homogeneous equation, # then they will need to be multiplied by sufficient x to make them so. # This function DOES NOT do that (it doesn't even look at the # homogeneous equation). retdict['trialset'] = _get_trial_set(expr, x) return retdict def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of variation of parameters. This method works on any differential equations of the form .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{.} This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, P(x)]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation with constant coefficients, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), ... hint='nth_linear_constant_coeff_variation_of_parameters')) / 3 \ | 2 x *(6*log(x) - 11)| x f(x) = |C1 + C2*x + C3*x + ------------------|*e \ 36 / References ========== - https://en.wikipedia.org/wiki/Variation_of_parameters - http://planetmath.org/VariationOfParameters - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 233 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_variation_of_parameters(eq, func, order, match) def _solve_variation_of_parameters(eq, func, order, match): r""" Helper function for the method of variation of parameters and nonhomogeneous euler eq. See the :py:meth:`~sympy.solvers.ode.ode_nth_linear_constant_coeff_variation_of_parameters` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. """ x = func.args[0] f = func.func r = match psol = 0 gensols = r['list'] gsol = r['sol'] wr = wronskian(gensols, x) if r.get('simplify', True): wr = simplify(wr) # We need much better simplification for # some ODEs. See issue 4662, for example. # To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1 wr = trigsimp(wr, deep=True, recursive=True) if not wr: # The wronskian will be 0 iff the solutions are not linearly # independent. raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (Wronskian == 0)") if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (number of terms != order)") negoneterm = (-1)**(order) for i in gensols: psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order] negoneterm *= -1 if r.get('simplify', True): psol = simplify(psol) psol = trigsimp(psol, deep=True) return Eq(f(x), gsol.rhs + psol) def ode_separable(eq, func, order, match): r""" Solves separable 1st order differential equations. This is any differential equation that can be written as `P(y) \tfrac{dy}{dx} = Q(x)`. The solution can then just be found by rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back end, so if a separable equation is not caught by this solver, it is most likely the fault of that function. :py:meth:`~sympy.simplify.simplify.separatevars` is smart enough to do most expansion and factoring necessary to convert a separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) >>> pprint(genform) d a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) dx >>> pprint(dsolve(genform, f(x), hint='separable_Integral')) f(x) / / | | | b(y) | c(x) | ---- dy = C1 + | ---- dx | d(y) | a(x) | | / / Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), ... hint='separable', simplify=False)) / 2 \ 2 log\3*f (x) - 1/ x ---------------- = C1 + -- 6 2 References ========== - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 52 # indirect doctest """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) r = match # {'m1':m1, 'm2':m2, 'y':y} u = r.get('hint', f(x)) # get u from separable_reduced else get f(x) return Eq(Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']], (r['y'], None, u)), Integral(-r['m1']['coeff']*r['m1'][x]/ r['m2'][x], x) + C1) def checkinfsol(eq, infinitesimals, func=None, order=None): r""" This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs. As of now, it simply checks, by substituting the infinitesimals in the partial differential equation. .. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}\right)*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0 where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}` The infinitesimals should be given in the form of a list of dicts ``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the output of the function infinitesimals. It returns a list of values of the form ``[(True/False, sol)]`` where ``sol`` is the value obtained after substituting the infinitesimals in the PDE. If it is ``True``, then ``sol`` would be 0. """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Lie groups solver has been implemented " "only for first order differential equations") else: df = func.diff(x) a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy('y') h = h.subs(func, y) xi = Function('xi')(x, y) eta = Function('eta')(x, y) dxi = Function('xi')(x, func) deta = Function('eta')(x, func) pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y))) soltup = [] for sol in infinitesimals: tsol = {xi: S(sol[dxi]).subs(func, y), eta: S(sol[deta]).subs(func, y)} sol = simplify(pde.subs(tsol).doit()) if sol: soltup.append((False, sol.subs(y, func))) else: soltup.append((True, 0)) return soltup def ode_lie_group(eq, func, order, match): r""" This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate given system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE is quadrature and can be solved easily. It makes use of the :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the infinitesimals of the transformation. The coordinates `r` and `s` can be found by solving the following Partial Differential Equations. .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} = 0 .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} = 1 The differential equation becomes separable in the new coordinate system .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + h(x, y)\frac{\partial s}{\partial y}}{ \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} After finding the solution by integration, it is then converted back to the original coordinate system by substituting `r` and `s` in terms of `x` and `y` again. Examples ======== >>> from sympy import Function, dsolve, Eq, exp, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), ... hint='lie_group')) / 2\ 2 | x | -x f(x) = |C1 + --|*e \ 2 / References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ heuristics = lie_heuristics inf = {} f = func.func x = func.args[0] df = func.diff(x) xi = Function("xi") eta = Function("eta") a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) xis = match.pop('xi') etas = match.pop('eta') if match: h = -simplify(match[match['d']]/match[match['e']]) y = match['y'] else: try: sol = solve(eq, df) if sol == []: raise NotImplementedError except NotImplementedError: raise NotImplementedError("Unable to solve the differential equation " + str(eq) + " by the lie group method") else: y = Dummy("y") h = sol[0].subs(func, y) if xis is not None and etas is not None: inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}] if not checkinfsol(eq, inf, func=f(x), order=1)[0][0]: raise ValueError("The given infinitesimals xi and eta" " are not the infinitesimals to the given equation") else: heuristics = ["user_defined"] match = {'h': h, 'y': y} # This is done so that if: # a] solve raises a NotImplementedError. # b] any heuristic raises a ValueError # another heuristic can be used. tempsol = [] # Used by solve below for heuristic in heuristics: try: if not inf: inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match) except ValueError: continue else: for infsim in inf: xiinf = (infsim[xi(x, func)]).subs(func, y) etainf = (infsim[eta(x, func)]).subs(func, y) # This condition creates recursion while using pdsolve. # Since the first step while solving a PDE of form # a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0 # is to solve the ODE dy/dx = b/a if simplify(etainf/xiinf) == h: continue rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf r = pdsolve(rpde, func=f(x, y)).rhs s = pdsolve(rpde - 1, func=f(x, y)).rhs newcoord = [_lie_group_remove(coord) for coord in [r, s]] r = Dummy("r") s = Dummy("s") C1 = Symbol("C1") rcoord = newcoord[0] scoord = newcoord[-1] try: sol = solve([r - rcoord, s - scoord], x, y, dict=True) except NotImplementedError: continue else: sol = sol[0] xsub = sol[x] ysub = sol[y] num = simplify(scoord.diff(x) + scoord.diff(y)*h) denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h) if num and denom: diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)])) sep = separatevars(diffeq, symbols=[r, s], dict=True) if sep: # Trying to separate, r and s coordinates deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r) # Substituting and reverting back to original coordinates deq = deq.subs([(r, rcoord), (s, scoord)]) try: sdeq = solve(deq, y) except NotImplementedError: tempsol.append(deq) else: if len(sdeq) == 1: return Eq(f(x), sdeq.pop()) else: return [Eq(f(x), sol) for sol in sdeq] elif denom: # (ds/dr) is zero which means s is constant return Eq(f(x), solve(scoord - C1, y)[0]) elif num: # (dr/ds) is zero which means r is constant return Eq(f(x), solve(rcoord - C1, y)[0]) # If nothing works, return solution as it is, without solving for y if tempsol: if len(tempsol) == 1: return Eq(tempsol.pop().subs(y, f(x)), 0) else: return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol] raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the lie group method") def _lie_group_remove(coords): r""" This function is strictly meant for internal use by the Lie group ODE solving method. It replaces arbitrary functions returned by pdsolve with either 0 or 1 or the args of the arbitrary function. The algorithm used is: 1] If coords is an instance of an Undefined Function, then the args are returned 2] If the arbitrary function is present in an Add object, it is replaced by zero. 3] If the arbitrary function is present in an Mul object, it is replaced by one. 4] If coords has no Undefined Function, it is returned as it is. Examples ======== >>> from sympy.solvers.ode import _lie_group_remove >>> from sympy import Function >>> from sympy.abc import x, y >>> F = Function("F") >>> eq = x**2*y >>> _lie_group_remove(eq) x**2*y >>> eq = F(x**2*y) >>> _lie_group_remove(eq) x**2*y >>> eq = y**2*x + F(x**3) >>> _lie_group_remove(eq) x*y**2 >>> eq = (F(x**3) + y)*x**4 >>> _lie_group_remove(eq) x**4*y """ if isinstance(coords, AppliedUndef): return coords.args[0] elif coords.is_Add: subfunc = coords.atoms(AppliedUndef) if subfunc: for func in subfunc: coords = coords.subs(func, 0) return coords elif coords.is_Pow: base, expr = coords.as_base_exp() base = _lie_group_remove(base) expr = _lie_group_remove(expr) return base**expr elif coords.is_Mul: mulargs = [] coordargs = coords.args for arg in coordargs: if not isinstance(coords, AppliedUndef): mulargs.append(_lie_group_remove(arg)) return Mul(*mulargs) return coords def infinitesimals(eq, func=None, order=None, hint='default', match=None): r""" The infinitesimal functions of an ordinary differential equation, `\xi(x,y)` and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE `y'=f(x,y)` would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`, `y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`. A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`. They are tangents to the coordinate curves of the new system. Consider the transformation `(x, y) \to (X, Y)` such that the differential equation remains invariant. `\xi` and `\eta` are the tangents to the transformed coordinates `X` and `Y`, at `\varepsilon=0`. .. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \xi, \left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \eta, The infinitesimals can be found by solving the following PDE: >>> from sympy import Function, diff, Eq, pprint >>> from sympy.abc import x, y >>> xi, eta, h = map(Function, ['xi', 'eta', 'h']) >>> h = h(x, y) # dy/dx = h >>> eta = eta(x, y) >>> xi = xi(x, y) >>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h ... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0) >>> pprint(genform) /d d \ d 2 d |--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x \dy dx / dy dy <BLANKLINE> d d i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0 dx dx Solving the above mentioned PDE is not trivial, and can be solved only by making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an infinitesimal is found, the attempt to find more heuristics stops. This is done to optimise the speed of solving the differential equation. If a list of all the infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives the complete list of infinitesimals. If the infinitesimals for a particular heuristic needs to be found, it can be passed as a flag to ``hint``. Examples ======== >>> from sympy import Function, diff >>> from sympy.solvers.ode import infinitesimals >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x) - x**2*f(x) >>> infinitesimals(eq) [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}] References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Infinitesimals for only " "first order ODE's have been implemented") else: df = func.diff(x) # Matching differential equation of the form a*df + b a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) if match: # Used by lie_group hint h = match['h'] y = match['y'] else: match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy("y") h = h.subs(func, y) u = Dummy("u") hx = h.diff(x) hy = h.diff(y) hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv} if hint == 'all': xieta = [] for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] inflist = function(match, comp=True) if inflist: xieta.extend([inf for inf in inflist if inf not in xieta]) if xieta: return xieta else: raise NotImplementedError("Infinitesimals could not be found for " "the given ODE") elif hint == 'default': for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] xieta = function(match, comp=False) if xieta: return xieta raise NotImplementedError("Infinitesimals could not be found for" " the given ODE") elif hint not in lie_heuristics: raise ValueError("Heuristic not recognized: " + hint) else: function = globals()['lie_heuristic_' + hint] xieta = function(match, comp=True) if xieta: return xieta else: raise ValueError("Infinitesimals could not be found using the" " given heuristic") def lie_heuristic_abaco1_simple(match, comp=False): r""" The first heuristic uses the following four sets of assumptions on `\xi` and `\eta` .. math:: \xi = 0, \eta = f(x) .. math:: \xi = 0, \eta = f(y) .. math:: \xi = f(x), \eta = 0 .. math:: \xi = f(y), \eta = 0 The success of this heuristic is determined by algebraic factorisation. For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE .. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x})*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0 reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0` If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually be integrated easily. A similar idea is applied to the other 3 assumptions as well. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ xieta = [] y = match['y'] h = match['h'] func = match['func'] x = func.args[0] hx = match['hx'] hy = match['hy'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) hysym = hy.free_symbols if y not in hysym: try: fx = exp(integrate(hy, x)) except NotImplementedError: pass else: inf = {xi: S(0), eta: fx} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = hy/h facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: S(0), eta: fy.subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/h facsym = factor.free_symbols if y not in facsym: try: fx = exp(integrate(factor, x)) except NotImplementedError: pass else: inf = {xi: fx, eta: S(0)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/(h**2) facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: fy.subs(y, func), eta: S(0)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco1_product(match, comp=False): r""" The second heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x)*g(y) .. math:: \eta = f(x)*g(y), \xi = 0 The first assumption of this heuristic holds good if `\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is separable in `x` and `y`, then the separated factors containing `x` is `f(x)`, and `g(y)` is obtained by .. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy} provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function of `y` only. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x)*g(y)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] y = match['y'] h = match['h'] hinv = match['hinv'] func = match['func'] x = func.args[0] xi = Function('xi')(x, func) eta = Function('eta')(x, func) inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*h)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) inf = {eta: S(0), xi: (fx*gy).subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) u1 = Dummy("u1") inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*hinv)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) etaval = fx*gy etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y) inf = {eta: etaval.subs(y, func), xi: S(0)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_bivariate(match, comp=False): r""" The third heuristic assumes the infinitesimals `\xi` and `\eta` to be bi-variate polynomials in `x` and `y`. The assumption made here for the logic below is that `h` is a rational function in `x` and `y` though that may not be necessary for the infinitesimals to be bivariate polynomials. The coefficients of the infinitesimals are found out by substituting them in the PDE and grouping similar terms that are polynomials and since they form a linear system, solve and check for non trivial solutions. The degree of the assumed bivariates are increased till a certain maximum value. References ========== - Lie Groups and Differential Equations pp. 327 - pp. 329 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): # The maximum degree that the infinitesimals can take is # calculated by this technique. etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid") ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy num, denom = cancel(ipde).as_numer_denom() deg = Poly(num, x, y).total_degree() deta = Function('deta')(x, y) dxi = Function('dxi')(x, y) ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2 - dxi*hx - deta*hy) xieq = Symbol("xi0") etaeq = Symbol("eta0") for i in range(deg + 1): if i: xieq += Add(*[ Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) etaeq += Add(*[ Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom() pden = expand(pden) # If the individual terms are monomials, the coefficients # are grouped if pden.is_polynomial(x, y) and pden.is_Add: polyy = Poly(pden, x, y).as_dict() if polyy: symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y} soldict = solve(polyy.values(), *symset) if isinstance(soldict, list): soldict = soldict[0] if any(x for x in soldict.values()): xired = xieq.subs(soldict) etared = etaeq.subs(soldict) # Scaling is done by substituting one for the parameters # This can be any number except zero. dict_ = dict((sym, 1) for sym in symset) inf = {eta: etared.subs(dict_).subs(y, func), xi: xired.subs(dict_).subs(y, func)} return [inf] def lie_heuristic_chi(match, comp=False): r""" The aim of the fourth heuristic is to find the function `\chi(x, y)` that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx} - \frac{\partial h}{\partial y}\chi = 0`. This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition, `h` should be a rational function in `x` and `y`. The method used here is to substitute a general binomial for `\chi` up to a certain maximum degree is reached. The coefficients of the polynomials, are calculated by by collecting terms of the same order in `x` and `y`. After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h` which would give `-\xi` as the quotient and `\eta` as the remainder. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): schi, schix, schiy = symbols("schi, schix, schiy") cpde = schix + h*schiy - hy*schi num, denom = cancel(cpde).as_numer_denom() deg = Poly(num, x, y).total_degree() chi = Function('chi')(x, y) chix = chi.diff(x) chiy = chi.diff(y) cpde = chix + h*chiy - hy*chi chieq = Symbol("chi") for i in range(1, deg + 1): chieq += Add(*[ Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom() cnum = expand(cnum) if cnum.is_polynomial(x, y) and cnum.is_Add: cpoly = Poly(cnum, x, y).as_dict() if cpoly: solsyms = chieq.free_symbols - {x, y} soldict = solve(cpoly.values(), *solsyms) if isinstance(soldict, list): soldict = soldict[0] if any(x for x in soldict.values()): chieq = chieq.subs(soldict) dict_ = dict((sym, 1) for sym in solsyms) chieq = chieq.subs(dict_) # After finding chi, the main aim is to find out # eta, xi by the equation eta = xi*h + chi # One method to set xi, would be rearranging it to # (eta/h) - xi = (chi/h). This would mean dividing # chi by h would give -xi as the quotient and eta # as the remainder. Thanks to Sean Vig for suggesting # this method. xic, etac = div(chieq, h) inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)} return [inf] def lie_heuristic_function_sum(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x) + g(y) .. math:: \eta = f(x) + g(y), \xi = 0 The first assumption of this heuristic holds good if .. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{ \partial x^{2}}(h^{-1}))^{-1}] is separable in `x` and `y`, 1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`. From this `g(y)` can be determined. 2. The separated factors containing `x` is `f''(x)`. 3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals `\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x) + g(y)`. For both assumptions, the constant factors are separated among `g(y)` and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that obtained from 2]. If not possible, then this heuristic fails. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) for odefac in [h, hinv]: factor = odefac*((1/odefac).diff(x, 2)) sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y]) if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y): k = Dummy("k") try: gy = k*integrate(sep[y], y) except NotImplementedError: pass else: fdd = 1/(k*sep[x]*sep['coeff']) fx = simplify(fdd/factor - gy) check = simplify(fx.diff(x, 2) - fdd) if fx: if not check: fx = fx.subs(k, 1) gy = (gy/k) else: sol = solve(check, k) if sol: sol = sol[0] fx = fx.subs(k, sol) gy = (gy/k)*sol else: continue if odefac == hinv: # Inverse ODE fx = fx.subs(x, y) gy = gy.subs(y, x) etaval = factor_terms(fx + gy) if etaval.is_Mul: etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)]) if odefac == hinv: # Inverse ODE inf = {eta: etaval.subs(y, func), xi : S(0)} else: inf = {xi: etaval.subs(y, func), eta : S(0)} if not comp: return [inf] else: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco2_similar(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = g(x), \xi = f(x) .. math:: \eta = f(y), \xi = g(y) For the first assumption, 1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{ \partial yy}}` is calculated. Let us say this value is A 2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{ \frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)` and `A(x)*f(x)` gives `g(x)` 3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{ \partial Y}} = \gamma` is calculated. If a] `\gamma` is a function of `x` alone b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{ \partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone. then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)` The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ xieta = [] h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) factor = cancel(h.diff(y)/h.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{xi: tau, eta: gx}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{xi: tau, eta: gx}] factor = cancel(hinv.diff(y)/hinv.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/( hinv + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] def lie_heuristic_abaco2_unique_unknown(match, comp=False): r""" This heuristic assumes the presence of unknown functions or known functions with non-integer powers. 1. A list of all functions and non-integer powers containing x and y 2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{ \frac{\partial f}{\partial x}} = R` If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return `\xi` and `\eta` b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE. If yes, then return `\xi` and `\eta` If not, then check if a] :math:`\xi = -R,\eta = 1` b] :math:`\xi = 1, \eta = -\frac{1}{R}` are solutions. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ xieta = [] h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) funclist = [] for atom in h.atoms(Pow): base, exp = atom.as_base_exp() if base.has(x) and base.has(y): if not exp.is_Integer: funclist.append(atom) for function in h.atoms(AppliedUndef): syms = function.free_symbols if x in syms and y in syms: funclist.append(function) for f in funclist: frac = cancel(f.diff(y)/f.diff(x)) sep = separatevars(frac, dict=True, symbols=[x, y]) if sep and sep['coeff']: xitry1 = sep[x] etatry1 = -1/(sep[y]*sep['coeff']) pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy if not simplify(pde1): return [{xi: xitry1, eta: etatry1.subs(y, func)}] xitry2 = 1/etatry1 etatry2 = 1/xitry1 pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy if not simplify(expand(pde2)): return [{xi: xitry2.subs(y, func), eta: etatry2}] else: etatry = -1/frac pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy if not simplify(pde): return [{xi: S(1), eta: etatry.subs(y, func)}] xitry = -frac pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy if not simplify(expand(pde)): return [{xi: xitry.subs(y, func), eta: S(1)}] def lie_heuristic_abaco2_unique_general(match, comp=False): r""" This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)` without making any assumptions on `h`. The complete sequence of steps is given in the paper mentioned below. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ xieta = [] h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) C = S(0) A = hx.diff(y) B = hy.diff(y) + hy**2 C = hx.diff(x) - hx**2 if not (A and B and C): return Ax = A.diff(x) Ay = A.diff(y) Axy = Ax.diff(y) Axx = Ax.diff(x) Ayy = Ay.diff(y) D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay if not D: E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A) if E1: E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if not E2: E3 = simplify( E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4) if not E3: etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -4*A**3*etaval/E1 if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] else: E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if E1: E2 = simplify( 4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2)) if not E2: E3 = simplify( -(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D + (A*hx - 3*Ax)*E1)*E1) if not E3: etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -E1*etaval/D if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] def lie_heuristic_linear(match, comp=False): r""" This heuristic assumes 1. `\xi = ax + by + c` and 2. `\eta = fx + gy + h` After substituting the following assumptions in the determining PDE, it reduces to .. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x} - (fx + gy + c)\frac{\partial h}{\partial y} Solving the reduced PDE obtained, using the method of characteristics, becomes impractical. The method followed is grouping similar terms and solving the system of linear equations obtained. The difference between the bivariate heuristic is that `h` need not be a rational function in this case. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ xieta = [] h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) coeffdict = {} symbols = numbered_symbols("c", cls=Dummy) symlist = [next(symbols) for i in islice(symbols, 6)] C0, C1, C2, C3, C4, C5 = symlist pde = C3 + (C4 - C0)*h -(C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2 pde, denom = pde.as_numer_denom() pde = powsimp(expand(pde)) if pde.is_Add: terms = pde.args for term in terms: if term.is_Mul: rem = Mul(*[m for m in term.args if not m.has(x, y)]) xypart = term/rem if xypart not in coeffdict: coeffdict[xypart] = rem else: coeffdict[xypart] += rem else: if term not in coeffdict: coeffdict[term] = S(1) else: coeffdict[term] += S(1) sollist = coeffdict.values() soldict = solve(sollist, symlist) if soldict: if isinstance(soldict, list): soldict = soldict[0] subval = soldict.values() if any(t for t in subval): onedict = dict(zip(symlist, [1]*6)) xival = C0*x + C1*func + C2 etaval = C3*x + C4*func + C5 xival = xival.subs(soldict) etaval = etaval.subs(soldict) xival = xival.subs(onedict) etaval = etaval.subs(onedict) return [{xi: xival, eta: etaval}] def sysode_linear_2eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] C1, C2, C3, C4 = get_numbered_constants(eq, num=4) r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1) # and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2) r['a'] = -fc[0,x(t),0]/fc[0,x(t),1] r['c'] = -fc[1,x(t),0]/fc[1,y(t),1] r['b'] = -fc[0,y(t),0]/fc[0,x(t),1] r['d'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S(0),S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): r['k1'] = forcing[0] r['k2'] = forcing[1] else: raise NotImplementedError("Only homogeneous problems are supported" + " (and constant inhomogeneity)") if match_['type_of_equation'] == 'type1': sol = _linear_2eq_order1_type1(x, y, t, r, eq) if match_['type_of_equation'] == 'type2': gsol = _linear_2eq_order1_type1(x, y, t, r, eq) psol = _linear_2eq_order1_type2(x, y, t, r, eq) sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])] if match_['type_of_equation'] == 'type3': sol = _linear_2eq_order1_type3(x, y, t, r, eq) if match_['type_of_equation'] == 'type4': sol = _linear_2eq_order1_type4(x, y, t, r, eq) if match_['type_of_equation'] == 'type5': sol = _linear_2eq_order1_type5(x, y, t, r, eq) if match_['type_of_equation'] == 'type6': sol = _linear_2eq_order1_type6(x, y, t, r, eq) if match_['type_of_equation'] == 'type7': sol = _linear_2eq_order1_type7(x, y, t, r, eq) return sol def _linear_2eq_order1_type1(x, y, t, r, eq): r""" It is classified under system of two linear homogeneous first-order constant-coefficient ordinary differential equations. The equations which come under this type are .. math:: x' = ax + by, .. math:: y' = cx + dy The characteristics equation is written as .. math:: \lambda^{2} + (a+d) \lambda + ad - bc = 0 and its discriminant is `D = (a-d)^{2} + 4bc`. There are several cases 1. Case when `ad - bc \neq 0`. The origin of coordinates, `x = y = 0`, is the only stationary point; it is - a node if `D = 0` - a node if `D > 0` and `ad - bc > 0` - a saddle if `D > 0` and `ad - bc < 0` - a focus if `D < 0` and `a + d \neq 0` - a centre if `D < 0` and `a + d \neq 0`. 1.1. If `D > 0`. The characteristic equation has two distinct real roots `\lambda_1` and `\lambda_ 2` . The general solution of the system in question is expressed as .. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t} .. math:: y = C_1 (\lambda_1 - a) e^{\lambda_1 t} + C_2 (\lambda_2 - a) e^{\lambda_2 t} where `C_1` and `C_2` being arbitrary constants 1.2. If `D < 0`. The characteristics equation has two conjugate roots, `\lambda_1 = \sigma + i \beta` and `\lambda_2 = \sigma - i \beta`. The general solution of the system is given by .. math:: x = b e^{\sigma t} (C_1 \sin(\beta t) + C_2 \cos(\beta t)) .. math:: y = e^{\sigma t} ([(\sigma - a) C_1 - \beta C_2] \sin(\beta t) + [\beta C_1 + (\sigma - a) C_2 \cos(\beta t)]) 1.3. If `D = 0` and `a \neq d`. The characteristic equation has two equal roots, `\lambda_1 = \lambda_2`. The general solution of the system is written as .. math:: x = 2b (C_1 + \frac{C_2}{a-d} + C_2 t) e^{\frac{a+d}{2} t} .. math:: y = [(d - a) C_1 + C_2 + (d - a) C_2 t] e^{\frac{a+d}{2} t} 1.4. If `D = 0` and `a = d \neq 0` and `b = 0` .. math:: x = C_1 e^{a t} , y = (c C_1 t + C_2) e^{a t} 1.5. If `D = 0` and `a = d \neq 0` and `c = 0` .. math:: x = (b C_1 t + C_2) e^{a t} , y = C_1 e^{a t} 2. Case when `ad - bc = 0` and `a^{2} + b^{2} > 0`. The whole straight line `ax + by = 0` consists of singular points. The original system of differential equations can be rewritten as .. math:: x' = ax + by , y' = k (ax + by) 2.1 If `a + bk \neq 0`, solution will be .. math:: x = b C_1 + C_2 e^{(a + bk) t} , y = -a C_1 + k C_2 e^{(a + bk) t} 2.2 If `a + bk = 0`, solution will be .. math:: x = C_1 (bk t - 1) + b C_2 t , y = k^{2} b C_1 t + (b k^{2} t + 1) C_2 """ l = Dummy('l') C1, C2 = get_numbered_constants(eq, num=2) a, b, c, d = r['a'], r['b'], r['c'], r['d'] real_coeff = all(v.is_real for v in (a, b, c, d)) D = (a - d)**2 + 4*b*c l1 = (a + d + sqrt(D))/2 l2 = (a + d - sqrt(D))/2 equal_roots = Eq(D, 0).expand() gsol1, gsol2 = [], [] # Solutions have exponential form if either D > 0 with real coefficients # or D != 0 with complex coefficients. Eigenvalues are distinct. # For each eigenvalue lam, pick an eigenvector, making sure we don't get (0, 0) # The candidates are (b, lam-a) and (lam-d, c). exponential_form = D > 0 if real_coeff else Not(equal_roots) bad_ab_vector1 = And(Eq(b, 0), Eq(l1, a)) bad_ab_vector2 = And(Eq(b, 0), Eq(l2, a)) vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)), Piecewise((c, bad_ab_vector1), (l1 - a, True)))) vector2 = Matrix((Piecewise((l2 - d, bad_ab_vector2), (b, True)), Piecewise((c, bad_ab_vector2), (l2 - a, True)))) sol_vector = C1*exp(l1*t)*vector1 + C2*exp(l2*t)*vector2 gsol1.append((sol_vector[0], exponential_form)) gsol2.append((sol_vector[1], exponential_form)) # Solutions have trigonometric form for real coefficients with D < 0 # Both b and c are nonzero in this case, so (b, lam-a) is an eigenvector # It splits into real/imag parts as (b, sigma-a) and (0, beta). Then # multiply it by C1(cos(beta*t) + I*C2*sin(beta*t)) and separate real/imag trigonometric_form = D < 0 if real_coeff else False sigma = re(l1) if im(l1).is_positive: beta = im(l1) else: beta = im(l2) vector1 = Matrix((b, sigma - a)) vector2 = Matrix((0, beta)) sol_vector = exp(sigma*t) * (C1*(cos(beta*t)*vector1 - sin(beta*t)*vector2) + \ C2*(sin(beta*t)*vector1 + cos(beta*t)*vector2)) gsol1.append((sol_vector[0], trigonometric_form)) gsol2.append((sol_vector[1], trigonometric_form)) # Final case is D == 0, a single eigenvalue. If the eigenspace is 2-dimensional # then we have a scalar matrix, deal with this case first. scalar_matrix = And(Eq(a, d), Eq(b, 0), Eq(c, 0)) vector1 = Matrix((S.One, S.Zero)) vector2 = Matrix((S.Zero, S.One)) sol_vector = exp(l1*t) * (C1*vector1 + C2*vector2) gsol1.append((sol_vector[0], scalar_matrix)) gsol2.append((sol_vector[1], scalar_matrix)) # Have one eigenvector. Get a generalized eigenvector from (A-lam)*vector2 = vector1 vector1 = Matrix((Piecewise((l1 - d, bad_ab_vector1), (b, True)), Piecewise((c, bad_ab_vector1), (l1 - a, True)))) vector2 = Matrix((Piecewise((S.One, bad_ab_vector1), (S.Zero, Eq(a, l1)), (b/(a - l1), True)), Piecewise((S.Zero, bad_ab_vector1), (S.One, Eq(a, l1)), (S.Zero, True)))) sol_vector = exp(l1*t) * (C1*vector1 + C2*(vector2 + t*vector1)) gsol1.append((sol_vector[0], equal_roots)) gsol2.append((sol_vector[1], equal_roots)) return [Eq(x(t), Piecewise(*gsol1)), Eq(y(t), Piecewise(*gsol2))] def _linear_2eq_order1_type2(x, y, t, r, eq): r""" The equations of this type are .. math:: x' = ax + by + k1 , y' = cx + dy + k2 The general solution of this system is given by sum of its particular solution and the general solution of the corresponding homogeneous system is obtained from type1. 1. When `ad - bc \neq 0`. The particular solution will be `x = x_0` and `y = y_0` where `x_0` and `y_0` are determined by solving linear system of equations .. math:: a x_0 + b y_0 + k1 = 0 , c x_0 + d y_0 + k2 = 0 2. When `ad - bc = 0` and `a^{2} + b^{2} > 0`. In this case, the system of equation becomes .. math:: x' = ax + by + k_1 , y' = k (ax + by) + k_2 2.1 If `\sigma = a + bk \neq 0`, particular solution is given by .. math:: x = b \sigma^{-1} (c_1 k - c_2) t - \sigma^{-2} (a c_1 + b c_2) .. math:: y = kx + (c_2 - c_1 k) t 2.2 If `\sigma = a + bk = 0`, particular solution is given by .. math:: x = \frac{1}{2} b (c_2 - c_1 k) t^{2} + c_1 t .. math:: y = kx + (c_2 - c_1 k) t """ r['k1'] = -r['k1']; r['k2'] = -r['k2'] if (r['a']*r['d'] - r['b']*r['c']) != 0: x0, y0 = symbols('x0, y0', cls=Dummy) sol = solve((r['a']*x0+r['b']*y0+r['k1'], r['c']*x0+r['d']*y0+r['k2']), x0, y0) psol = [sol[x0], sol[y0]] elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2+r['b']**2) > 0: k = r['c']/r['a'] sigma = r['a'] + r['b']*k if sigma != 0: sol1 = r['b']*sigma**-1*(r['k1']*k-r['k2'])*t - sigma**-2*(r['a']*r['k1']+r['b']*r['k2']) sol2 = k*sol1 + (r['k2']-r['k1']*k)*t else: # FIXME: a previous typo fix shows this is not covered by tests sol1 = r['b']*(r['k2']-r['k1']*k)*t**2 + r['k1']*t sol2 = k*sol1 + (r['k2']-r['k1']*k)*t psol = [sol1, sol2] return psol def _linear_2eq_order1_type3(x, y, t, r, eq): r""" The equations of this type of ode are .. math:: x' = f(t) x + g(t) y .. math:: y' = g(t) x + f(t) y The solution of such equations is given by .. math:: x = e^{F} (C_1 e^{G} + C_2 e^{-G}) , y = e^{F} (C_1 e^{G} - C_2 e^{-G}) where `C_1` and `C_2` are arbitrary constants, and .. math:: F = \int f(t) \,dt , G = \int g(t) \,dt """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) F = Integral(r['a'], t) G = Integral(r['b'], t) sol1 = exp(F)*(C1*exp(G) + C2*exp(-G)) sol2 = exp(F)*(C1*exp(G) - C2*exp(-G)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type4(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = -g(t) x + f(t) y The solution is given by .. math:: x = F (C_1 \cos(G) + C_2 \sin(G)), y = F (-C_1 \sin(G) + C_2 \cos(G)) where `C_1` and `C_2` are arbitrary constants, and .. math:: F = \int f(t) \,dt , G = \int g(t) \,dt """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) if r['b'] == -r['c']: F = exp(Integral(r['a'], t)) G = Integral(r['b'], t) sol1 = F*(C1*cos(G) + C2*sin(G)) sol2 = F*(-C1*sin(G) + C2*cos(G)) elif r['d'] == -r['a']: F = exp(Integral(r['c'], t)) G = Integral(r['d'], t) sol1 = F*(-C1*sin(G) + C2*cos(G)) sol2 = F*(C1*cos(G) + C2*sin(G)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type5(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a g(t) x + [f(t) + b g(t)] y The transformation of .. math:: x = e^{\int f(t) \,dt} u , y = e^{\int f(t) \,dt} v , T = \int g(t) \,dt leads to a system of constant coefficient linear differential equations .. math:: u'(T) = v , v'(T) = au + bv """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) u, v = symbols('u, v', cls=Function) T = Symbol('T') if not cancel(r['c']/r['b']).has(t): p = cancel(r['c']/r['b']) q = cancel((r['d']-r['a'])/r['b']) eq = (Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T))) sol = dsolve(eq) sol1 = exp(Integral(r['a'], t))*sol[0].rhs.subs(T, Integral(r['b'],t)) sol2 = exp(Integral(r['a'], t))*sol[1].rhs.subs(T, Integral(r['b'],t)) if not cancel(r['a']/r['d']).has(t): p = cancel(r['a']/r['d']) q = cancel((r['b']-r['c'])/r['d']) sol = dsolve(Eq(diff(u(T),T), v(T)), Eq(diff(v(T),T), p*u(T)+q*v(T))) sol1 = exp(Integral(r['c'], t))*sol[1].rhs.subs(T, Integral(r['d'],t)) sol2 = exp(Integral(r['c'], t))*sol[0].rhs.subs(T, Integral(r['d'],t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type6(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y This is solved by first multiplying the first equation by `-a` and adding it to the second equation to obtain .. math:: y' - a x' = -a h(t) (y - a x) Setting `U = y - ax` and integrating the equation we arrive at .. math:: y - ax = C_1 e^{-a \int h(t) \,dt} and on substituting the value of y in first equation give rise to first order ODEs. After solving for `x`, we can obtain `y` by substituting the value of `x` in second equation. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) p = 0 q = 0 p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0]) p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0]) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q!=0 and n==0: if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j: p = 1 s = j break if q!=0 and n==1: if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j: p = 2 s = j break if p == 1: equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t))) hint1 = classify_ode(equ)[1] sol1 = dsolve(equ, hint=hint1+'_Integral').rhs sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t)) elif p ==2: equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) hint1 = classify_ode(equ)[1] sol2 = dsolve(equ, hint=hint1+'_Integral').rhs sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type7(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = h(t) x + p(t) y Differentiating the first equation and substituting the value of `y` from second equation will give a second-order linear equation .. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0 This above equation can be easily integrated if following conditions are satisfied. 1. `fgp - g^{2} h + f g' - f' g = 0` 2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg` If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver. Otherwise if the above condition fails then, a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)` Then the general solution is expressed as .. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt .. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt] where C1 and C2 are arbitrary constants and .. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b'] e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t) m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t) m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t) if e1 == 0: sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif e2 == 0: sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t): sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t): sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs else: x0 = Function('x0')(t) # x0 and y0 being particular solutions y0 = Function('y0')(t) F = exp(Integral(r['a'],t)) P = exp(Integral(r['d'],t)) sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t) sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_linear_2eq_order2(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] C1, C2, C3, C4 = get_numbered_constants(eq, num=4) r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = [] for terms in Add.make_args(eq[i]): eqs.append(terms/fc[i,func[i],2]) eq[i] = Add(*eqs) # for equations Eq(diff(x(t),t,t), a1*diff(x(t),t)+b1*diff(y(t),t)+c1*x(t)+d1*y(t)+e1) # and Eq(a2*diff(y(t),t,t), a2*diff(x(t),t)+b2*diff(y(t),t)+c2*x(t)+d2*y(t)+e2) r['a1'] = -fc[0,x(t),1]/fc[0,x(t),2] ; r['a2'] = -fc[1,x(t),1]/fc[1,y(t),2] r['b1'] = -fc[0,y(t),1]/fc[0,x(t),2] ; r['b2'] = -fc[1,y(t),1]/fc[1,y(t),2] r['c1'] = -fc[0,x(t),0]/fc[0,x(t),2] ; r['c2'] = -fc[1,x(t),0]/fc[1,y(t),2] r['d1'] = -fc[0,y(t),0]/fc[0,x(t),2] ; r['d2'] = -fc[1,y(t),0]/fc[1,y(t),2] const = [S(0), S(0)] for i in range(2): for j in Add.make_args(eq[i]): if not (j.has(x(t)) or j.has(y(t))): const[i] += j r['e1'] = -const[0] r['e2'] = -const[1] if match_['type_of_equation'] == 'type1': sol = _linear_2eq_order2_type1(x, y, t, r, eq) elif match_['type_of_equation'] == 'type2': gsol = _linear_2eq_order2_type1(x, y, t, r, eq) psol = _linear_2eq_order2_type2(x, y, t, r, eq) sol = [Eq(x(t), gsol[0].rhs+psol[0]), Eq(y(t), gsol[1].rhs+psol[1])] elif match_['type_of_equation'] == 'type3': sol = _linear_2eq_order2_type3(x, y, t, r, eq) elif match_['type_of_equation'] == 'type4': sol = _linear_2eq_order2_type4(x, y, t, r, eq) elif match_['type_of_equation'] == 'type5': sol = _linear_2eq_order2_type5(x, y, t, r, eq) elif match_['type_of_equation'] == 'type6': sol = _linear_2eq_order2_type6(x, y, t, r, eq) elif match_['type_of_equation'] == 'type7': sol = _linear_2eq_order2_type7(x, y, t, r, eq) elif match_['type_of_equation'] == 'type8': sol = _linear_2eq_order2_type8(x, y, t, r, eq) elif match_['type_of_equation'] == 'type9': sol = _linear_2eq_order2_type9(x, y, t, r, eq) elif match_['type_of_equation'] == 'type10': sol = _linear_2eq_order2_type10(x, y, t, r, eq) elif match_['type_of_equation'] == 'type11': sol = _linear_2eq_order2_type11(x, y, t, r, eq) return sol def _linear_2eq_order2_type1(x, y, t, r, eq): r""" System of two constant-coefficient second-order linear homogeneous differential equations .. math:: x'' = ax + by .. math:: y'' = cx + dy The characteristic equation for above equations .. math:: \lambda^4 - (a + d) \lambda^2 + ad - bc = 0 whose discriminant is `D = (a - d)^2 + 4bc \neq 0` 1. When `ad - bc \neq 0` 1.1. If `D \neq 0`. The characteristic equation has four distinct roots, `\lambda_1, \lambda_2, \lambda_3, \lambda_4`. The general solution of the system is .. math:: x = C_1 b e^{\lambda_1 t} + C_2 b e^{\lambda_2 t} + C_3 b e^{\lambda_3 t} + C_4 b e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} - a) e^{\lambda_1 t} + C_2 (\lambda_2^{2} - a) e^{\lambda_2 t} + C_3 (\lambda_3^{2} - a) e^{\lambda_3 t} + C_4 (\lambda_4^{2} - a) e^{\lambda_4 t} where `C_1,..., C_4` are arbitrary constants. 1.2. If `D = 0` and `a \neq d`: .. math:: x = 2 C_1 (bt + \frac{2bk}{a - d}) e^{\frac{kt}{2}} + 2 C_2 (bt + \frac{2bk}{a - d}) e^{\frac{-kt}{2}} + 2b C_3 t e^{\frac{kt}{2}} + 2b C_4 t e^{\frac{-kt}{2}} .. math:: y = C_1 (d - a) t e^{\frac{kt}{2}} + C_2 (d - a) t e^{\frac{-kt}{2}} + C_3 [(d - a) t + 2k] e^{\frac{kt}{2}} + C_4 [(d - a) t - 2k] e^{\frac{-kt}{2}} where `C_1,..., C_4` are arbitrary constants and `k = \sqrt{2 (a + d)}` 1.3. If `D = 0` and `a = d \neq 0` and `b = 0`: .. math:: x = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t} .. math:: y = c C_1 t e^{\sqrt{a} t} - c C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t} 1.4. If `D = 0` and `a = d \neq 0` and `c = 0`: .. math:: x = b C_1 t e^{\sqrt{a} t} - b C_2 t e^{-\sqrt{a} t} + C_3 e^{\sqrt{a} t} + C_4 e^{-\sqrt{a} t} .. math:: y = 2 \sqrt{a} C_1 e^{\sqrt{a} t} + 2 \sqrt{a} C_2 e^{-\sqrt{a} t} 2. When `ad - bc = 0` and `a^2 + b^2 > 0`. Then the original system becomes .. math:: x'' = ax + by .. math:: y'' = k (ax + by) 2.1. If `a + bk \neq 0`: .. math:: x = C_1 e^{t \sqrt{a + bk}} + C_2 e^{-t \sqrt{a + bk}} + C_3 bt + C_4 b .. math:: y = C_1 k e^{t \sqrt{a + bk}} + C_2 k e^{-t \sqrt{a + bk}} - C_3 at - C_4 a 2.2. If `a + bk = 0`: .. math:: x = C_1 b t^3 + C_2 b t^2 + C_3 t + C_4 .. math:: y = kx + 6 C_1 t + 2 C_2 """ r['a'] = r['c1'] r['b'] = r['d1'] r['c'] = r['c2'] r['d'] = r['d2'] l = Symbol('l') C1, C2, C3, C4 = get_numbered_constants(eq, num=4) chara_eq = l**4 - (r['a']+r['d'])*l**2 + r['a']*r['d'] - r['b']*r['c'] l1 = rootof(chara_eq, 0) l2 = rootof(chara_eq, 1) l3 = rootof(chara_eq, 2) l4 = rootof(chara_eq, 3) D = (r['a'] - r['d'])**2 + 4*r['b']*r['c'] if (r['a']*r['d'] - r['b']*r['c']) != 0: if D != 0: gsol1 = C1*r['b']*exp(l1*t) + C2*r['b']*exp(l2*t) + C3*r['b']*exp(l3*t) \ + C4*r['b']*exp(l4*t) gsol2 = C1*(l1**2-r['a'])*exp(l1*t) + C2*(l2**2-r['a'])*exp(l2*t) + \ C3*(l3**2-r['a'])*exp(l3*t) + C4*(l4**2-r['a'])*exp(l4*t) else: if r['a'] != r['d']: k = sqrt(2*(r['a']+r['d'])) mid = r['b']*t+2*r['b']*k/(r['a']-r['d']) gsol1 = 2*C1*mid*exp(k*t/2) + 2*C2*mid*exp(-k*t/2) + \ 2*r['b']*C3*t*exp(k*t/2) + 2*r['b']*C4*t*exp(-k*t/2) gsol2 = C1*(r['d']-r['a'])*t*exp(k*t/2) + C2*(r['d']-r['a'])*t*exp(-k*t/2) + \ C3*((r['d']-r['a'])*t+2*k)*exp(k*t/2) + C4*((r['d']-r['a'])*t-2*k)*exp(-k*t/2) elif r['a'] == r['d'] != 0 and r['b'] == 0: sa = sqrt(r['a']) gsol1 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t) gsol2 = r['c']*C1*t*exp(sa*t)-r['c']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t) elif r['a'] == r['d'] != 0 and r['c'] == 0: sa = sqrt(r['a']) gsol1 = r['b']*C1*t*exp(sa*t)-r['b']*C2*t*exp(-sa*t)+C3*exp(sa*t)+C4*exp(-sa*t) gsol2 = 2*sa*C1*exp(sa*t) + 2*sa*C2*exp(-sa*t) elif (r['a']*r['d'] - r['b']*r['c']) == 0 and (r['a']**2 + r['b']**2) > 0: k = r['c']/r['a'] if r['a'] + r['b']*k != 0: mid = sqrt(r['a'] + r['b']*k) gsol1 = C1*exp(mid*t) + C2*exp(-mid*t) + C3*r['b']*t + C4*r['b'] gsol2 = C1*k*exp(mid*t) + C2*k*exp(-mid*t) - C3*r['a']*t - C4*r['a'] else: gsol1 = C1*r['b']*t**3 + C2*r['b']*t**2 + C3*t + C4 gsol2 = k*gsol1 + 6*C1*t + 2*C2 return [Eq(x(t), gsol1), Eq(y(t), gsol2)] def _linear_2eq_order2_type2(x, y, t, r, eq): r""" The equations in this type are .. math:: x'' = a_1 x + b_1 y + c_1 .. math:: y'' = a_2 x + b_2 y + c_2 The general solution of this system is given by the sum of its particular solution and the general solution of the homogeneous system. The general solution is given by the linear system of 2 equation of order 2 and type 1 1. If `a_1 b_2 - a_2 b_1 \neq 0`. A particular solution will be `x = x_0` and `y = y_0` where the constants `x_0` and `y_0` are determined by solving the linear algebraic system .. math:: a_1 x_0 + b_1 y_0 + c_1 = 0, a_2 x_0 + b_2 y_0 + c_2 = 0 2. If `a_1 b_2 - a_2 b_1 = 0` and `a_1^2 + b_1^2 > 0`. In this case, the system in question becomes .. math:: x'' = ax + by + c_1, y'' = k (ax + by) + c_2 2.1. If `\sigma = a + bk \neq 0`, the particular solution will be .. math:: x = \frac{1}{2} b \sigma^{-1} (c_1 k - c_2) t^2 - \sigma^{-2} (a c_1 + b c_2) .. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2 2.2. If `\sigma = a + bk = 0`, the particular solution will be .. math:: x = \frac{1}{24} b (c_2 - c_1 k) t^4 + \frac{1}{2} c_1 t^2 .. math:: y = kx + \frac{1}{2} (c_2 - c_1 k) t^2 """ x0, y0 = symbols('x0, y0') if r['c1']*r['d2'] - r['c2']*r['d1'] != 0: sol = solve((r['c1']*x0+r['d1']*y0+r['e1'], r['c2']*x0+r['d2']*y0+r['e2']), x0, y0) psol = [sol[x0], sol[y0]] elif r['c1']*r['d2'] - r['c2']*r['d1'] == 0 and (r['c1']**2 + r['d1']**2) > 0: k = r['c2']/r['c1'] sig = r['c1'] + r['d1']*k if sig != 0: psol1 = r['d1']*sig**-1*(r['e1']*k-r['e2'])*t**2/2 - \ sig**-2*(r['c1']*r['e1']+r['d1']*r['e2']) psol2 = k*psol1 + (r['e2'] - r['e1']*k)*t**2/2 psol = [psol1, psol2] else: psol1 = r['d1']*(r['e2']-r['e1']*k)*t**4/24 + r['e1']*t**2/2 psol2 = k*psol1 + (r['e2']-r['e1']*k)*t**2/2 psol = [psol1, psol2] return psol def _linear_2eq_order2_type3(x, y, t, r, eq): r""" These type of equation is used for describing the horizontal motion of a pendulum taking into account the Earth rotation. The solution is given with `a^2 + 4b > 0`: .. math:: x = C_1 \cos(\alpha t) + C_2 \sin(\alpha t) + C_3 \cos(\beta t) + C_4 \sin(\beta t) .. math:: y = -C_1 \sin(\alpha t) + C_2 \cos(\alpha t) - C_3 \sin(\beta t) + C_4 \cos(\beta t) where `C_1,...,C_4` and .. math:: \alpha = \frac{1}{2} a + \frac{1}{2} \sqrt{a^2 + 4b}, \beta = \frac{1}{2} a - \frac{1}{2} \sqrt{a^2 + 4b} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) if r['b1']**2 - 4*r['c1'] > 0: r['a'] = r['b1'] ; r['b'] = -r['c1'] alpha = r['a']/2 + sqrt(r['a']**2 + 4*r['b'])/2 beta = r['a']/2 - sqrt(r['a']**2 + 4*r['b'])/2 sol1 = C1*cos(alpha*t) + C2*sin(alpha*t) + C3*cos(beta*t) + C4*sin(beta*t) sol2 = -C1*sin(alpha*t) + C2*cos(alpha*t) - C3*sin(beta*t) + C4*cos(beta*t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type4(x, y, t, r, eq): r""" These equations are found in the theory of oscillations .. math:: x'' + a_1 x' + b_1 y' + c_1 x + d_1 y = k_1 e^{i \omega t} .. math:: y'' + a_2 x' + b_2 y' + c_2 x + d_2 y = k_2 e^{i \omega t} The general solution of this linear nonhomogeneous system of constant-coefficient differential equations is given by the sum of its particular solution and the general solution of the corresponding homogeneous system (with `k_1 = k_2 = 0`) 1. A particular solution is obtained by the method of undetermined coefficients: .. math:: x = A_* e^{i \omega t}, y = B_* e^{i \omega t} On substituting these expressions into the original system of differential equations, one arrive at a linear nonhomogeneous system of algebraic equations for the coefficients `A` and `B`. 2. The general solution of the homogeneous system of differential equations is determined by a linear combination of linearly independent particular solutions determined by the method of undetermined coefficients in the form of exponentials: .. math:: x = A e^{\lambda t}, y = B e^{\lambda t} On substituting these expressions into the original system and collecting the coefficients of the unknown `A` and `B`, one obtains .. math:: (\lambda^{2} + a_1 \lambda + c_1) A + (b_1 \lambda + d_1) B = 0 .. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + b_2 \lambda + d_2) B = 0 The determinant of this system must vanish for nontrivial solutions A, B to exist. This requirement results in the following characteristic equation for `\lambda` .. math:: (\lambda^2 + a_1 \lambda + c_1) (\lambda^2 + b_2 \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0 If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original system of the differential equations has the form .. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} + a_1 \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + a_1 \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + a_1 \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + a_1 \lambda_4 + c_1) e^{\lambda_4 t} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') Ra, Ca, Rb, Cb = symbols('Ra, Ca, Rb, Cb') a1 = r['a1'] ; a2 = r['a2'] b1 = r['b1'] ; b2 = r['b2'] c1 = r['c1'] ; c2 = r['c2'] d1 = r['d1'] ; d2 = r['d2'] k1 = r['e1'].expand().as_independent(t)[0] k2 = r['e2'].expand().as_independent(t)[0] ew1 = r['e1'].expand().as_independent(t)[1] ew2 = powdenest(ew1).as_base_exp()[1] ew3 = collect(ew2, t).coeff(t) w = cancel(ew3/I) # The particular solution is assumed to be (Ra+I*Ca)*exp(I*w*t) and # (Rb+I*Cb)*exp(I*w*t) for x(t) and y(t) respectively peq1 = (-w**2+c1)*Ra - a1*w*Ca + d1*Rb - b1*w*Cb - k1 peq2 = a1*w*Ra + (-w**2+c1)*Ca + b1*w*Rb + d1*Cb peq3 = c2*Ra - a2*w*Ca + (-w**2+d2)*Rb - b2*w*Cb - k2 peq4 = a2*w*Ra + c2*Ca + b2*w*Rb + (-w**2+d2)*Cb # FIXME: solve for what in what? Ra, Rb, etc I guess # but then psol not used for anything? psol = solve([peq1, peq2, peq3, peq4]) chareq = (k**2+a1*k+c1)*(k**2+b2*k+d2) - (b1*k+d1)*(a2*k+c2) [k1, k2, k3, k4] = roots_quartic(Poly(chareq)) sol1 = -C1*(b1*k1+d1)*exp(k1*t) - C2*(b1*k2+d1)*exp(k2*t) - \ C3*(b1*k3+d1)*exp(k3*t) - C4*(b1*k4+d1)*exp(k4*t) + (Ra+I*Ca)*exp(I*w*t) a1_ = (a1-1) sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*t) + C2*(k2**2+a1_*k2+c1)*exp(k2*t) + \ C3*(k3**2+a1_*k3+c1)*exp(k3*t) + C4*(k4**2+a1_*k4+c1)*exp(k4*t) + (Rb+I*Cb)*exp(I*w*t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type5(x, y, t, r, eq): r""" The equation which come under this category are .. math:: x'' = a (t y' - y) .. math:: y'' = b (t x' - x) The transformation .. math:: u = t x' - x, b = t y' - y leads to the first-order system .. math:: u' = atv, v' = btu The general solution of this system is given by If `ab > 0`: .. math:: u = C_1 a e^{\frac{1}{2} \sqrt{ab} t^2} + C_2 a e^{-\frac{1}{2} \sqrt{ab} t^2} .. math:: v = C_1 \sqrt{ab} e^{\frac{1}{2} \sqrt{ab} t^2} - C_2 \sqrt{ab} e^{-\frac{1}{2} \sqrt{ab} t^2} If `ab < 0`: .. math:: u = C_1 a \cos(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 a \sin(-\frac{1}{2} \sqrt{\left|ab\right|} t^2) .. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\frac{1}{2} \sqrt{\left|ab\right|} t^2) + C_2 \sqrt{\left|ab\right|} \cos(-\frac{1}{2} \sqrt{\left|ab\right|} t^2) where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v` in above equations and integrating the resulting expressions, the general solution will become .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) r['a'] = -r['d1'] ; r['b'] = -r['c2'] mul = sqrt(abs(r['a']*r['b'])) if r['a']*r['b'] > 0: u = C1*r['a']*exp(mul*t**2/2) + C2*r['a']*exp(-mul*t**2/2) v = C1*mul*exp(mul*t**2/2) - C2*mul*exp(-mul*t**2/2) else: u = C1*r['a']*cos(mul*t**2/2) + C2*r['a']*sin(mul*t**2/2) v = -C1*mul*sin(mul*t**2/2) + C2*mul*cos(mul*t**2/2) sol1 = C3*t + t*Integral(u/t**2, t) sol2 = C4*t + t*Integral(v/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type6(x, y, t, r, eq): r""" The equations are .. math:: x'' = f(t) (a_1 x + b_1 y) .. math:: y'' = f(t) (a_2 x + b_2 y) If `k_1` and `k_2` are roots of the quadratic equation .. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0 Then by multiplying appropriate constants and adding together original equations we obtain two independent equations: .. math:: z_1'' = k_1 f(t) z_1, z_1 = a_2 x + (k_1 - a_1) y .. math:: z_2'' = k_2 f(t) z_2, z_2 = a_2 x + (k_2 - a_1) y Solving the equations will give the values of `x` and `y` after obtaining the value of `z_1` and `z_2` by solving the differential equation and substituting the result. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') z = Function('z') num, den = cancel( (r['c1']*x(t) + r['d1']*y(t))/ (r['c2']*x(t) + r['d2']*y(t))).as_numer_denom() f = r['c1']/num.coeff(x(t)) a1 = num.coeff(x(t)) b1 = num.coeff(y(t)) a2 = den.coeff(x(t)) b2 = den.coeff(y(t)) chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1 k1, k2 = [rootof(chareq, k) for k in range(Poly(chareq).degree())] z1 = dsolve(diff(z(t),t,t) - k1*f*z(t)).rhs z2 = dsolve(diff(z(t),t,t) - k2*f*z(t)).rhs sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2)) sol2 = (z1 - z2)/(k1 - k2) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type7(x, y, t, r, eq): r""" The equations are given as .. math:: x'' = f(t) (a_1 x' + b_1 y') .. math:: y'' = f(t) (a_2 x' + b_2 y') If `k_1` and 'k_2` are roots of the quadratic equation .. math:: k^2 - (a_1 + b_2) k + a_1 b_2 - a_2 b_1 = 0 Then the system can be reduced by adding together the two equations multiplied by appropriate constants give following two independent equations: .. math:: z_1'' = k_1 f(t) z_1', z_1 = a_2 x + (k_1 - a_1) y .. math:: z_2'' = k_2 f(t) z_2', z_2 = a_2 x + (k_2 - a_1) y Integrating these and returning to the original variables, one arrives at a linear algebraic system for the unknowns `x` and `y`: .. math:: a_2 x + (k_1 - a_1) y = C_1 \int e^{k_1 F(t)} \,dt + C_2 .. math:: a_2 x + (k_2 - a_1) y = C_3 \int e^{k_2 F(t)} \,dt + C_4 where `C_1,...,C_4` are arbitrary constants and `F(t) = \int f(t) \,dt` """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') num, den = cancel( (r['a1']*x(t) + r['b1']*y(t))/ (r['a2']*x(t) + r['b2']*y(t))).as_numer_denom() f = r['a1']/num.coeff(x(t)) a1 = num.coeff(x(t)) b1 = num.coeff(y(t)) a2 = den.coeff(x(t)) b2 = den.coeff(y(t)) chareq = k**2 - (a1 + b2)*k + a1*b2 - a2*b1 [k1, k2] = [rootof(chareq, k) for k in range(Poly(chareq).degree())] F = Integral(f, t) z1 = C1*Integral(exp(k1*F), t) + C2 z2 = C3*Integral(exp(k2*F), t) + C4 sol1 = (k1*z2 - k2*z1 + a1*(z1 - z2))/(a2*(k1-k2)) sol2 = (z1 - z2)/(k1 - k2) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type8(x, y, t, r, eq): r""" The equation of this category are .. math:: x'' = a f(t) (t y' - y) .. math:: y'' = b f(t) (t x' - x) The transformation .. math:: u = t x' - x, v = t y' - y leads to the system of first-order equations .. math:: u' = a t f(t) v, v' = b t f(t) u The general solution of this system has the form If `ab > 0`: .. math:: u = C_1 a e^{\sqrt{ab} \int t f(t) \,dt} + C_2 a e^{-\sqrt{ab} \int t f(t) \,dt} .. math:: v = C_1 \sqrt{ab} e^{\sqrt{ab} \int t f(t) \,dt} - C_2 \sqrt{ab} e^{-\sqrt{ab} \int t f(t) \,dt} If `ab < 0`: .. math:: u = C_1 a \cos(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 a \sin(-\sqrt{\left|ab\right|} \int t f(t) \,dt) .. math:: v = C_1 \sqrt{\left|ab\right|} \sin(\sqrt{\left|ab\right|} \int t f(t) \,dt) + C_2 \sqrt{\left|ab\right|} \cos(-\sqrt{\left|ab\right|} \int t f(t) \,dt) where `C_1` and `C_2` are arbitrary constants. On substituting the value of `u` and `v` in above equations and integrating the resulting expressions, the general solution will become .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt, y = C_4 t + t \int \frac{u}{t^2} \,dt where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) num, den = cancel(r['d1']/r['c2']).as_numer_denom() f = -r['d1']/num a = num b = den mul = sqrt(abs(a*b)) Igral = Integral(t*f, t) if a*b > 0: u = C1*a*exp(mul*Igral) + C2*a*exp(-mul*Igral) v = C1*mul*exp(mul*Igral) - C2*mul*exp(-mul*Igral) else: u = C1*a*cos(mul*Igral) + C2*a*sin(mul*Igral) v = -C1*mul*sin(mul*Igral) + C2*mul*cos(mul*Igral) sol1 = C3*t + t*Integral(u/t**2, t) sol2 = C4*t + t*Integral(v/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type9(x, y, t, r, eq): r""" .. math:: t^2 x'' + a_1 t x' + b_1 t y' + c_1 x + d_1 y = 0 .. math:: t^2 y'' + a_2 t x' + b_2 t y' + c_2 x + d_2 y = 0 These system of equations are euler type. The substitution of `t = \sigma e^{\tau} (\sigma \neq 0)` leads to the system of constant coefficient linear differential equations .. math:: x'' + (a_1 - 1) x' + b_1 y' + c_1 x + d_1 y = 0 .. math:: y'' + a_2 x' + (b_2 - 1) y' + c_2 x + d_2 y = 0 The general solution of the homogeneous system of differential equations is determined by a linear combination of linearly independent particular solutions determined by the method of undetermined coefficients in the form of exponentials .. math:: x = A e^{\lambda t}, y = B e^{\lambda t} On substituting these expressions into the original system and collecting the coefficients of the unknown `A` and `B`, one obtains .. math:: (\lambda^{2} + (a_1 - 1) \lambda + c_1) A + (b_1 \lambda + d_1) B = 0 .. math:: (a_2 \lambda + c_2) A + (\lambda^{2} + (b_2 - 1) \lambda + d_2) B = 0 The determinant of this system must vanish for nontrivial solutions A, B to exist. This requirement results in the following characteristic equation for `\lambda` .. math:: (\lambda^2 + (a_1 - 1) \lambda + c_1) (\lambda^2 + (b_2 - 1) \lambda + d_2) - (b_1 \lambda + d_1) (a_2 \lambda + c_2) = 0 If all roots `k_1,...,k_4` of this equation are distinct, the general solution of the original system of the differential equations has the form .. math:: x = C_1 (b_1 \lambda_1 + d_1) e^{\lambda_1 t} - C_2 (b_1 \lambda_2 + d_1) e^{\lambda_2 t} - C_3 (b_1 \lambda_3 + d_1) e^{\lambda_3 t} - C_4 (b_1 \lambda_4 + d_1) e^{\lambda_4 t} .. math:: y = C_1 (\lambda_1^{2} + (a_1 - 1) \lambda_1 + c_1) e^{\lambda_1 t} + C_2 (\lambda_2^{2} + (a_1 - 1) \lambda_2 + c_1) e^{\lambda_2 t} + C_3 (\lambda_3^{2} + (a_1 - 1) \lambda_3 + c_1) e^{\lambda_3 t} + C_4 (\lambda_4^{2} + (a_1 - 1) \lambda_4 + c_1) e^{\lambda_4 t} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) k = Symbol('k') a1 = -r['a1']*t; a2 = -r['a2']*t b1 = -r['b1']*t; b2 = -r['b2']*t c1 = -r['c1']*t**2; c2 = -r['c2']*t**2 d1 = -r['d1']*t**2; d2 = -r['d2']*t**2 eq = (k**2+(a1-1)*k+c1)*(k**2+(b2-1)*k+d2)-(b1*k+d1)*(a2*k+c2) [k1, k2, k3, k4] = roots_quartic(Poly(eq)) sol1 = -C1*(b1*k1+d1)*exp(k1*log(t)) - C2*(b1*k2+d1)*exp(k2*log(t)) - \ C3*(b1*k3+d1)*exp(k3*log(t)) - C4*(b1*k4+d1)*exp(k4*log(t)) a1_ = (a1-1) sol2 = C1*(k1**2+a1_*k1+c1)*exp(k1*log(t)) + C2*(k2**2+a1_*k2+c1)*exp(k2*log(t)) \ + C3*(k3**2+a1_*k3+c1)*exp(k3*log(t)) + C4*(k4**2+a1_*k4+c1)*exp(k4*log(t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type10(x, y, t, r, eq): r""" The equation of this category are .. math:: (\alpha t^2 + \beta t + \gamma)^{2} x'' = ax + by .. math:: (\alpha t^2 + \beta t + \gamma)^{2} y'' = cx + dy The transformation .. math:: \tau = \int \frac{1}{\alpha t^2 + \beta t + \gamma} \,dt , u = \frac{x}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}} , v = \frac{y}{\sqrt{\left|\alpha t^2 + \beta t + \gamma\right|}} leads to a constant coefficient linear system of equations .. math:: u'' = (a - \alpha \gamma + \frac{1}{4} \beta^{2}) u + b v .. math:: v'' = c u + (d - \alpha \gamma + \frac{1}{4} \beta^{2}) v These system of equations obtained can be solved by type1 of System of two constant-coefficient second-order linear homogeneous differential equations. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) u, v = symbols('u, v', cls=Function) assert False T = Symbol('T') p = Wild('p', exclude=[t, t**2]) q = Wild('q', exclude=[t, t**2]) s = Wild('s', exclude=[t, t**2]) n = Wild('n', exclude=[t, t**2]) num, den = r['c1'].as_numer_denom() dic = den.match((n*(p*t**2+q*t+s)**2).expand()) eqz = dic[p]*t**2 + dic[q]*t + dic[s] a = num/dic[n] b = cancel(r['d1']*eqz**2) c = cancel(r['c2']*eqz**2) d = cancel(r['d2']*eqz**2) [msol1, msol2] = dsolve([Eq(diff(u(t), t, t), (a - dic[p]*dic[s] + dic[q]**2/4)*u(t) \ + b*v(t)), Eq(diff(v(t),t,t), c*u(t) + (d - dic[p]*dic[s] + dic[q]**2/4)*v(t))]) sol1 = (msol1.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t)) sol2 = (msol2.rhs*sqrt(abs(eqz))).subs(t, Integral(1/eqz, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order2_type11(x, y, t, r, eq): r""" The equations which comes under this type are .. math:: x'' = f(t) (t x' - x) + g(t) (t y' - y) .. math:: y'' = h(t) (t x' - x) + p(t) (t y' - y) The transformation .. math:: u = t x' - x, v = t y' - y leads to the linear system of first-order equations .. math:: u' = t f(t) u + t g(t) v, v' = t h(t) u + t p(t) v On substituting the value of `u` and `v` in transformed equation gives value of `x` and `y` as .. math:: x = C_3 t + t \int \frac{u}{t^2} \,dt , y = C_4 t + t \int \frac{v}{t^2} \,dt. where `C_3` and `C_4` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) u, v = symbols('u, v', cls=Function) f = -r['c1'] ; g = -r['d1'] h = -r['c2'] ; p = -r['d2'] [msol1, msol2] = dsolve([Eq(diff(u(t),t), t*f*u(t) + t*g*v(t)), Eq(diff(v(t),t), t*h*u(t) + t*p*v(t))]) sol1 = C3*t + t*Integral(msol1.rhs/t**2, t) sol2 = C4*t + t*Integral(msol2.rhs/t**2, t) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_linear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] C1, C2, C3, C4 = get_numbered_constants(eq, num=4) r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations: # Eq(g1*diff(x(t),t), a1*x(t)+b1*y(t)+c1*z(t)+d1), # Eq(g2*diff(y(t),t), a2*x(t)+b2*y(t)+c2*z(t)+d2), and # Eq(g3*diff(z(t),t), a3*x(t)+b3*y(t)+c3*z(t)+d3) r['a1'] = fc[0,x(t),0]/fc[0,x(t),1]; r['a2'] = fc[1,x(t),0]/fc[1,y(t),1]; r['a3'] = fc[2,x(t),0]/fc[2,z(t),1] r['b1'] = fc[0,y(t),0]/fc[0,x(t),1]; r['b2'] = fc[1,y(t),0]/fc[1,y(t),1]; r['b3'] = fc[2,y(t),0]/fc[2,z(t),1] r['c1'] = fc[0,z(t),0]/fc[0,x(t),1]; r['c2'] = fc[1,z(t),0]/fc[1,y(t),1]; r['c3'] = fc[2,z(t),0]/fc[2,z(t),1] for i in range(3): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t), z(t)): raise NotImplementedError("Only homogeneous problems are supported, non-homogenous are not supported currently.") if match_['type_of_equation'] == 'type1': sol = _linear_3eq_order1_type1(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type2': sol = _linear_3eq_order1_type2(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type3': sol = _linear_3eq_order1_type3(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type4': sol = _linear_3eq_order1_type4(x, y, z, t, r, eq) if match_['type_of_equation'] == 'type6': sol = _linear_neq_order1_type1(match_) return sol def _linear_3eq_order1_type1(x, y, z, t, r, eq): r""" .. math:: x' = ax .. math:: y' = bx + cy .. math:: z' = dx + ky + pz Solution of such equations are forward substitution. Solving first equations gives the value of `x`, substituting it in second and third equation and solving second equation gives `y` and similarly substituting `y` in third equation give `z`. .. math:: x = C_1 e^{at} .. math:: y = \frac{b C_1}{a - c} e^{at} + C_2 e^{ct} .. math:: z = \frac{C_1}{a - p} (d + \frac{bk}{a - c}) e^{at} + \frac{k C_2}{c - p} e^{ct} + C_3 e^{pt} where `C_1, C_2` and `C_3` are arbitrary constants. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) a = -r['a1']; b = -r['a2']; c = -r['b2'] d = -r['a3']; k = -r['b3']; p = -r['c3'] sol1 = C1*exp(a*t) sol2 = b*C1*exp(a*t)/(a-c) + C2*exp(c*t) sol3 = C1*(d+b*k/(a-c))*exp(a*t)/(a-p) + k*C2*exp(c*t)/(c-p) + C3*exp(p*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type2(x, y, z, t, r, eq): r""" The equations of this type are .. math:: x' = cy - bz .. math:: y' = az - cx .. math:: z' = bx - ay 1. First integral: .. math:: ax + by + cz = A \qquad - (1) .. math:: x^2 + y^2 + z^2 = B^2 \qquad - (2) where `A` and `B` are arbitrary constants. It follows from these integrals that the integral lines are circles formed by the intersection of the planes `(1)` and sphere `(2)` 2. Solution: .. math:: x = a C_0 + k C_1 \cos(kt) + (c C_2 - b C_3) \sin(kt) .. math:: y = b C_0 + k C_2 \cos(kt) + (a C_2 - c C_3) \sin(kt) .. math:: z = c C_0 + k C_3 \cos(kt) + (b C_2 - a C_3) \sin(kt) where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration, `C_1,...,C_4` are constrained by a single relation, .. math:: a C_1 + b C_2 + c C_3 = 0 """ C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0) a = -r['c2']; b = -r['a3']; c = -r['b1'] k = sqrt(a**2 + b**2 + c**2) C3 = (-a*C1 - b*C2)/c sol1 = a*C0 + k*C1*cos(k*t) + (c*C2-b*C3)*sin(k*t) sol2 = b*C0 + k*C2*cos(k*t) + (a*C3-c*C1)*sin(k*t) sol3 = c*C0 + k*C3*cos(k*t) + (b*C1-a*C2)*sin(k*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type3(x, y, z, t, r, eq): r""" Equations of this system of ODEs .. math:: a x' = bc (y - z) .. math:: b y' = ac (z - x) .. math:: c z' = ab (x - y) 1. First integral: .. math:: a^2 x + b^2 y + c^2 z = A where A is an arbitrary constant. It follows that the integral lines are plane curves. 2. Solution: .. math:: x = C_0 + k C_1 \cos(kt) + a^{-1} bc (C_2 - C_3) \sin(kt) .. math:: y = C_0 + k C_2 \cos(kt) + a b^{-1} c (C_3 - C_1) \sin(kt) .. math:: z = C_0 + k C_3 \cos(kt) + ab c^{-1} (C_1 - C_2) \sin(kt) where `k = \sqrt{a^2 + b^2 + c^2}` and the four constants of integration, `C_1,...,C_4` are constrained by a single relation .. math:: a^2 C_1 + b^2 C_2 + c^2 C_3 = 0 """ C0, C1, C2, C3 = get_numbered_constants(eq, num=4, start=0) c = sqrt(r['b1']*r['c2']) b = sqrt(r['b1']*r['a3']) a = sqrt(r['c2']*r['a3']) C3 = (-a**2*C1-b**2*C2)/c**2 k = sqrt(a**2 + b**2 + c**2) sol1 = C0 + k*C1*cos(k*t) + a**-1*b*c*(C2-C3)*sin(k*t) sol2 = C0 + k*C2*cos(k*t) + a*b**-1*c*(C3-C1)*sin(k*t) sol3 = C0 + k*C3*cos(k*t) + a*b*c**-1*(C1-C2)*sin(k*t) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def _linear_3eq_order1_type4(x, y, z, t, r, eq): r""" Equations: .. math:: x' = (a_1 f(t) + g(t)) x + a_2 f(t) y + a_3 f(t) z .. math:: y' = b_1 f(t) x + (b_2 f(t) + g(t)) y + b_3 f(t) z .. math:: z' = c_1 f(t) x + c_2 f(t) y + (c_3 f(t) + g(t)) z The transformation .. math:: x = e^{\int g(t) \,dt} u, y = e^{\int g(t) \,dt} v, z = e^{\int g(t) \,dt} w, \tau = \int f(t) \,dt leads to the system of constant coefficient linear differential equations .. math:: u' = a_1 u + a_2 v + a_3 w .. math:: v' = b_1 u + b_2 v + b_3 w .. math:: w' = c_1 u + c_2 v + c_3 w These system of equations are solved by homogeneous linear system of constant coefficients of `n` equations of first order. Then substituting the value of `u, v` and `w` in transformed equation gives value of `x, y` and `z`. """ u, v, w = symbols('u, v, w', cls=Function) a2, a3 = cancel(r['b1']/r['c1']).as_numer_denom() f = cancel(r['b1']/a2) b1 = cancel(r['a2']/f); b3 = cancel(r['c2']/f) c1 = cancel(r['a3']/f); c2 = cancel(r['b3']/f) a1, g = div(r['a1'],f) b2 = div(r['b2'],f)[0] c3 = div(r['c3'],f)[0] trans_eq = (diff(u(t),t)-a1*u(t)-a2*v(t)-a3*w(t), diff(v(t),t)-b1*u(t)-\ b2*v(t)-b3*w(t), diff(w(t),t)-c1*u(t)-c2*v(t)-c3*w(t)) sol = dsolve(trans_eq) sol1 = exp(Integral(g,t))*((sol[0].rhs).subs(t, Integral(f,t))) sol2 = exp(Integral(g,t))*((sol[1].rhs).subs(t, Integral(f,t))) sol3 = exp(Integral(g,t))*((sol[2].rhs).subs(t, Integral(f,t))) return [Eq(x(t), sol1), Eq(y(t), sol2), Eq(z(t), sol3)] def sysode_linear_neq_order1(match_): sol = _linear_neq_order1_type1(match_) return sol def _linear_neq_order1_type1(match_): r""" System of n first-order constant-coefficient linear nonhomogeneous differential equation .. math:: y'_k = a_{k1} y_1 + a_{k2} y_2 +...+ a_{kn} y_n; k = 1,2,...,n or that can be written as `\vec{y'} = A . \vec{y}` where `\vec{y}` is matrix of `y_k` for `k = 1,2,...n` and `A` is a `n \times n` matrix. Since these equations are equivalent to a first order homogeneous linear differential equation. So the general solution will contain `n` linearly independent parts and solution will consist some type of exponential functions. Assuming `y = \vec{v} e^{rt}` is a solution of the system where `\vec{v}` is a vector of coefficients of `y_1,...,y_n`. Substituting `y` and `y' = r v e^{r t}` into the equation `\vec{y'} = A . \vec{y}`, we get .. math:: r \vec{v} e^{rt} = A \vec{v} e^{rt} .. math:: r \vec{v} = A \vec{v} where `r` comes out to be eigenvalue of `A` and vector `\vec{v}` is the eigenvector of `A` corresponding to `r`. There are three possibilities of eigenvalues of `A` - `n` distinct real eigenvalues - complex conjugate eigenvalues - eigenvalues with multiplicity `k` 1. When all eigenvalues `r_1,..,r_n` are distinct with `n` different eigenvectors `v_1,...v_n` then the solution is given by .. math:: \vec{y} = C_1 e^{r_1 t} \vec{v_1} + C_2 e^{r_2 t} \vec{v_2} +...+ C_n e^{r_n t} \vec{v_n} where `C_1,C_2,...,C_n` are arbitrary constants. 2. When some eigenvalues are complex then in order to make the solution real, we take a linear combination: if `r = a + bi` has an eigenvector `\vec{v} = \vec{w_1} + i \vec{w_2}` then to obtain real-valued solutions to the system, replace the complex-valued solutions `e^{rx} \vec{v}` with real-valued solution `e^{ax} (\vec{w_1} \cos(bx) - \vec{w_2} \sin(bx))` and for `r = a - bi` replace the solution `e^{-r x} \vec{v}` with `e^{ax} (\vec{w_1} \sin(bx) + \vec{w_2} \cos(bx))` 3. If some eigenvalues are repeated. Then we get fewer than `n` linearly independent eigenvectors, we miss some of the solutions and need to construct the missing ones. We do this via generalized eigenvectors, vectors which are not eigenvectors but are close enough that we can use to write down the remaining solutions. For a eigenvalue `r` with eigenvector `\vec{w}` we obtain `\vec{w_2},...,\vec{w_k}` using .. math:: (A - r I) . \vec{w_2} = \vec{w} .. math:: (A - r I) . \vec{w_3} = \vec{w_2} .. math:: \vdots .. math:: (A - r I) . \vec{w_k} = \vec{w_{k-1}} Then the solutions to the system for the eigenspace are `e^{rt} [\vec{w}], e^{rt} [t \vec{w} + \vec{w_2}], e^{rt} [\frac{t^2}{2} \vec{w} + t \vec{w_2} + \vec{w_3}], ...,e^{rt} [\frac{t^{k-1}}{(k-1)!} \vec{w} + \frac{t^{k-2}}{(k-2)!} \vec{w_2} +...+ t \vec{w_{k-1}} + \vec{w_k}]` So, If `\vec{y_1},...,\vec{y_n}` are `n` solution of obtained from three categories of `A`, then general solution to the system `\vec{y'} = A . \vec{y}` .. math:: \vec{y} = C_1 \vec{y_1} + C_2 \vec{y_2} + \cdots + C_n \vec{y_n} """ eq = match_['eq'] func = match_['func'] fc = match_['func_coeff'] n = len(eq) t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] constants = numbered_symbols(prefix='C', cls=Symbol, start=1) M = Matrix(n,n,lambda i,j:-fc[i,func[j],0]) evector = M.eigenvects(simplify=True) def is_complex(mat, root): return Matrix(n, 1, lambda i,j: re(mat[i])*cos(im(root)*t) - im(mat[i])*sin(im(root)*t)) def is_complex_conjugate(mat, root): return Matrix(n, 1, lambda i,j: re(mat[i])*sin(abs(im(root))*t) + im(mat[i])*cos(im(root)*t)*abs(im(root))/im(root)) conjugate_root = [] e_vector = zeros(n,1) for evects in evector: if evects[0] not in conjugate_root: # If number of column of an eigenvector is not equal to the multiplicity # of its eigenvalue then the legt eigenvectors are calculated if len(evects[2])!=evects[1]: var_mat = Matrix(n, 1, lambda i,j: Symbol('x'+str(i))) Mnew = (M - evects[0]*eye(evects[2][-1].rows))*var_mat w = [0 for i in range(evects[1])] w[0] = evects[2][-1] for r in range(1, evects[1]): w_ = Mnew - w[r-1] sol_dict = solve(list(w_), var_mat[1:]) sol_dict[var_mat[0]] = var_mat[0] for key, value in sol_dict.items(): sol_dict[key] = value.subs(var_mat[0],1) w[r] = Matrix(n, 1, lambda i,j: sol_dict[var_mat[i]]) evects[2].append(w[r]) for i in range(evects[1]): C = next(constants) for j in range(i+1): if evects[0].has(I): evects[2][j] = simplify(evects[2][j]) e_vector += C*is_complex(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j) C = next(constants) e_vector += C*is_complex_conjugate(evects[2][j], evects[0])*t**(i-j)*exp(re(evects[0])*t)/factorial(i-j) else: e_vector += C*evects[2][j]*t**(i-j)*exp(evects[0]*t)/factorial(i-j) if evects[0].has(I): conjugate_root.append(conjugate(evects[0])) sol = [] for i in range(len(eq)): sol.append(Eq(func[i],e_vector[i])) return sol def sysode_nonlinear_2eq_order1(match_): func = match_['func'] eq = match_['eq'] fc = match_['func_coeff'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type5': sol = _nonlinear_2eq_order1_type5(func, t, eq) return sol x = func[0].func y = func[1].func for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs if match_['type_of_equation'] == 'type1': sol = _nonlinear_2eq_order1_type1(x, y, t, eq) elif match_['type_of_equation'] == 'type2': sol = _nonlinear_2eq_order1_type2(x, y, t, eq) elif match_['type_of_equation'] == 'type3': sol = _nonlinear_2eq_order1_type3(x, y, t, eq) elif match_['type_of_equation'] == 'type4': sol = _nonlinear_2eq_order1_type4(x, y, t, eq) return sol def _nonlinear_2eq_order1_type1(x, y, t, eq): r""" Equations: .. math:: x' = x^n F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `n \neq 1` .. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}} if `n = 1` .. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy} where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - x(t)**n*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n!=1: phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n)) else: phi = C1*exp(Integral(1/g, v)) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type2(x, y, t, eq): r""" Equations: .. math:: x' = e^{\lambda x} F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `\lambda \neq 0` .. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy) if `\lambda = 0` .. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n: phi = -1/n*log(C1 - n*Integral(1/g, v)) else: phi = C1 + Integral(1/g, v) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type3(x, y, t, eq): r""" Autonomous system of general form .. math:: x' = F(x,y) .. math:: y' = G(x,y) Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general solution of the first-order equation .. math:: F(x,y) y'_x = G(x,y) Then the general solution of the original system of equations has the form .. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1 """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) v = Function('v') u = Symbol('u') f = Wild('f') g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) F = r1[f].subs(x(t), u).subs(y(t), v(u)) G = r2[g].subs(x(t), u).subs(y(t), v(u)) sol2r = dsolve(Eq(diff(v(u), u), G/F)) for sol2s in sol2r: sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u) sol = [] for sols in sol1: sol.append(Eq(x(t), sols)) sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols))) return sol def _nonlinear_2eq_order1_type4(x, y, t, eq): r""" Equation: .. math:: x' = f_1(x) g_1(y) \phi(x,y,t) .. math:: y' = f_2(x) g_2(y) \phi(x,y,t) First integral: .. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C where `C` is an arbitrary constant. On solving the first integral for `x` (resp., `y` ) and on substituting the resulting expression into either equation of the original solution, one arrives at a first-order equation for determining `y` (resp., `x` ). """ C1, C2 = get_numbered_constants(eq, num=2) u, v = symbols('u, v') U, V = symbols('U, V', cls=Function) f = Wild('f') g = Wild('g') f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) phi = (r1[f].subs(x(t),u).subs(y(t),v))/num F1 = R1[f1]; F2 = R2[f2] G1 = R1[g1]; G2 = R2[g2] sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u) sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v) sol = [] for sols in sol1r: sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs)) for sols in sol2r: sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs)) return set(sol) def _nonlinear_2eq_order1_type5(func, t, eq): r""" Clairaut system of ODEs .. math:: x = t x' + F(x',y') .. math:: y = t y' + G(x',y') The following are solutions of the system `(i)` straight lines: .. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2) where `C_1` and `C_2` are arbitrary constants; `(ii)` envelopes of the above lines; `(iii)` continuously differentiable lines made up from segments of the lines `(i)` and `(ii)`. """ C1, C2 = get_numbered_constants(eq, num=2) f = Wild('f') g = Wild('g') def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) return [r1, r2] for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func [r1, r2] = check_type(x, y) if not (r1 and r2): [r1, r2] = check_type(y, x) x, y = y, x x1 = diff(x(t),t); y1 = diff(y(t),t) return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))} def sysode_nonlinear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func eq = match_['eq'] fc = match_['func_coeff'] func = match_['func'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type1': sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq) if match_['type_of_equation'] == 'type2': sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq) if match_['type_of_equation'] == 'type3': sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq) if match_['type_of_equation'] == 'type4': sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq) if match_['type_of_equation'] == 'type5': sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq) return sol def _nonlinear_3eq_order1_type1(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on `x`. Similarly doing that for other two equations, we will arrive at first order equation on `y` and `z` too. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t)) r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t))) r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) b = vals[0].subs(w,c) a = vals[1].subs(w,c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type2(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z f(x, y, z, t) .. math:: b y' = (c - a) z x f(x, y, z, t) .. math:: c z' = (a - b) x y f(x, y, z, t) First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on `x`. Similarly doing that for other two equations we will arrive at first order equation on `y` and `z`. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) f = Wild('f') r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f) r = collect_const(r1[f]).match(p*f) r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t))) r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) a = vals[0].subs(w,c) b = vals[1].subs(w,c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f]) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f]) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f]) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type3(x, y, z, t, eq): r""" Equations: .. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2 where `F_n = F_n(x, y, z, t)`. 1. First Integral: .. math:: a x + b y + c z = C_1, where C is an arbitrary constant. 2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)` Then, on eliminating `t` and `z` from the first two equation of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) - b F_3 (x, y, z)} where `z = \frac{1}{c} (C_1 - a x - b y)` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = (diff(x(t),t) - eq[0]).match(F2-F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(p*r[F3] - r[s]*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) z_xy = (C1-a*u-b*v)/c y_zx = (C1-a*u-c*w)/b x_yz = (C1-b*v-c*w)/a y_x = dsolve(diff(v(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type4(x, y, z, t, eq): r""" Equations: .. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2 where `F_n = F_n (x, y, z, t)` 1. First integral: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 where `C` is an arbitrary constant. 2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on eliminating `t` and `z` from the first two equations of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)} {c z F_2 (x, y, z) - b y F_3 (x, y, z)} where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) x_yz = sqrt((C1 - b*v**2 - c*w**2)/a) y_zx = sqrt((C1 - c*w**2 - a*u**2)/b) z_xy = sqrt((C1 - a*u**2 - b*v**2)/c) y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type5(x, y, t, eq): r""" .. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2) where `F_n = F_n (x, y, z, t)` and are arbitrary functions. First Integral: .. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1 where `C` is an arbitrary constant. If the function `F_n` is independent of `t`, then, by eliminating `t` and `z` from the first two equations of the system, one arrives at a first-order equation. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t),t) - x(t)*(F2 - F3)) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(y(t)*(a*r[F3] - r[c]*F1))) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) x_yz = (C1*v**-b*w**-c)**-a y_zx = (C1*w**-c*u**-a)**-b z_xy = (C1*u**-a*v**-b)**-c y_x = dsolve(diff(v(u),u) - ((v*(a*F3-c*F1))/(u*(c*F2-b*F3))).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((w*(b*F1-a*F2))/(u*(c*F2-b*F3))).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((w*(b*F1-a*F2))/(v*(a*F3-c*F1))).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((u*(c*F2-b*F3))/(v*(a*F3-c*F1))).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((v*(a*F3-c*F1))/(w*(b*F1-a*F2))).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((u*(c*F2-b*F3))/(w*(b*F1-a*F2))).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (u*(c*F2-b*F3)).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (v*(a*F3-c*F1)).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (w*(b*F1-a*F2)).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3]
632d6aa713a40b2901e1fddb3ab29b07510d59cdbfaacdc00301182956de7703
""" This module contains functions to: - solve a single equation for a single variable, in any domain either real or complex. - solve a single transcendental equation for a single variable in any domain either real or complex. (currently supports solving in real domain only) - solve a system of linear equations with N variables and M equations. - solve a system of Non Linear Equations with N variables and M equations """ from __future__ import print_function, division from sympy.core.sympify import sympify from sympy.core import (S, Pow, Dummy, pi, Expr, Wild, Mul, Equality, Add) from sympy.core.containers import Tuple from sympy.core.facts import InconsistentAssumptions from sympy.core.numbers import I, Number, Rational, oo from sympy.core.function import (Lambda, expand_complex, AppliedUndef, expand_log, _mexpand) from sympy.core.relational import Eq, Ne from sympy.core.symbol import Symbol from sympy.core.sympify import _sympify from sympy.simplify.simplify import simplify, fraction, trigsimp from sympy.simplify import powdenest, logcombine from sympy.functions import (log, Abs, tan, cot, sin, cos, sec, csc, exp, acos, asin, acsc, asec, arg, piecewise_fold, Piecewise) from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.functions.elementary.miscellaneous import real_root from sympy.logic.boolalg import And from sympy.sets import (FiniteSet, EmptySet, imageset, Interval, Intersection, Union, ConditionSet, ImageSet, Complement, Contains) from sympy.sets.sets import Set from sympy.matrices import Matrix, MatrixBase from sympy.polys import (roots, Poly, degree, together, PolynomialError, RootOf, factor) from sympy.solvers.solvers import (checksol, denoms, unrad, _simple_dens, recast_to_symbols) from sympy.solvers.polysys import solve_poly_system from sympy.solvers.inequalities import solve_univariate_inequality from sympy.utilities import filldedent from sympy.utilities.iterables import numbered_symbols, has_dups from sympy.calculus.util import periodicity, continuous_domain from sympy.core.compatibility import ordered, default_sort_key, is_sequence from types import GeneratorType from collections import defaultdict def _masked(f, *atoms): """Return ``f``, with all objects given by ``atoms`` replaced with Dummy symbols, ``d``, and the list of replacements, ``(d, e)``, where ``e`` is an object of type given by ``atoms`` in which any other instances of atoms have been recursively replaced with Dummy symbols, too. The tuples are ordered so that if they are applied in sequence, the origin ``f`` will be restored. Examples ======== >>> from sympy import cos >>> from sympy.abc import x >>> from sympy.solvers.solveset import _masked >>> f = cos(cos(x) + 1) >>> f, reps = _masked(cos(1 + cos(x)), cos) >>> f _a1 >>> reps [(_a1, cos(_a0 + 1)), (_a0, cos(x))] >>> for d, e in reps: ... f = f.xreplace({d: e}) >>> f cos(cos(x) + 1) """ sym = numbered_symbols('a', cls=Dummy, real=True) mask = [] for a in ordered(f.atoms(*atoms)): for i in mask: a = a.replace(*i) mask.append((a, next(sym))) for i, (o, n) in enumerate(mask): f = f.replace(o, n) mask[i] = (n, o) mask = list(reversed(mask)) return f, mask def _invert(f_x, y, x, domain=S.Complexes): r""" Reduce the complex valued equation ``f(x) = y`` to a set of equations ``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is a simpler function than ``f(x)``. The return value is a tuple ``(g(x), set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``. Here, ``y`` is not necessarily a symbol. The ``set_h`` contains the functions, along with the information about the domain in which they are valid, through set operations. For instance, if ``y = Abs(x) - n`` is inverted in the real domain, then ``set_h`` is not simply `{-n, n}` as the nature of `n` is unknown; rather, it is: `Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})` By default, the complex domain is used which means that inverting even seemingly simple functions like ``exp(x)`` will give very different results from those obtained in the real domain. (In the case of ``exp(x)``, the inversion via ``log`` is multi-valued in the complex domain, having infinitely many branches.) If you are working with real values only (or you are not sure which function to use) you should probably set the domain to ``S.Reals`` (or use `invert\_real` which does that automatically). Examples ======== >>> from sympy.solvers.solveset import invert_complex, invert_real >>> from sympy.abc import x, y >>> from sympy import exp, log When does exp(x) == y? >>> invert_complex(exp(x), y, x) (x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers)) >>> invert_real(exp(x), y, x) (x, Intersection(Reals, {log(y)})) When does exp(x) == 1? >>> invert_complex(exp(x), 1, x) (x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers)) >>> invert_real(exp(x), 1, x) (x, {0}) See Also ======== invert_real, invert_complex """ x = sympify(x) if not x.is_Symbol: raise ValueError("x must be a symbol") f_x = sympify(f_x) if x not in f_x.free_symbols: raise ValueError("Inverse of constant function doesn't exist") y = sympify(y) if x in y.free_symbols: raise ValueError("y should be independent of x ") if domain.is_subset(S.Reals): x1, s = _invert_real(f_x, FiniteSet(y), x) else: x1, s = _invert_complex(f_x, FiniteSet(y), x) if not isinstance(s, FiniteSet) or x1 != x: return x1, s return x1, s.intersection(domain) invert_complex = _invert def invert_real(f_x, y, x, domain=S.Reals): """ Inverts a real-valued function. Same as _invert, but sets the domain to ``S.Reals`` before inverting. """ return _invert(f_x, y, x, domain) def _invert_real(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol: return (f, g_ys) n = Dummy('n', real=True) if hasattr(f, 'inverse') and not isinstance(f, ( TrigonometricFunction, HyperbolicFunction, )): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_abs(f.args[0], g_ys, symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: numer, denom = expo.as_numer_denom() if denom % 2 == 0: base_positive = solveset(base >= 0, symbol, S.Reals) res = imageset(Lambda(n, real_root(n, expo) ), g_ys.intersect( Interval.Ropen(S.Zero, S.Infinity))) _inv, _set = _invert_real(base, res, symbol) return (_inv, _set.intersect(base_positive)) elif numer % 2 == 0: n = Dummy('n') neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) else: return _invert_real(base, res, symbol) else: if not base.is_positive: raise ValueError("x**w where w is irrational is not " "defined for negative x") return _invert_real(base, res, symbol) if not base_has_sym: rhs = g_ys.args[0] if base.is_positive: return _invert_real(expo, imageset(Lambda(n, log(n, base, evaluate=False)), g_ys), symbol) elif base.is_negative: from sympy.core.power import integer_log s, b = integer_log(rhs, base) if b: return _invert_real(expo, FiniteSet(s), symbol) else: return _invert_real(expo, S.EmptySet, symbol) elif base.is_zero: one = Eq(rhs, 1) if one == S.true: # special case: 0**x - 1 return _invert_real(expo, FiniteSet(0), symbol) elif one == S.false: return _invert_real(expo, S.EmptySet, symbol) if isinstance(f, TrigonometricFunction): if isinstance(g_ys, FiniteSet): def inv(trig): if isinstance(f, (sin, csc)): F = asin if isinstance(f, sin) else acsc return (lambda a: n*pi + (-1)**n*F(a),) if isinstance(f, (cos, sec)): F = acos if isinstance(f, cos) else asec return ( lambda a: 2*n*pi + F(a), lambda a: 2*n*pi - F(a),) if isinstance(f, (tan, cot)): return (lambda a: n*pi + f.inverse()(a),) n = Dummy('n', integer=True) invs = S.EmptySet for L in inv(f): invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys]) return _invert_real(f.args[0], invs, symbol) return (f, g_ys) def _invert_complex(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol: return (f, g_ys) n = Dummy('n') if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: if g in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): return (h, S.EmptySet) return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol) if hasattr(f, 'inverse') and \ not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction) and \ not isinstance(f, exp): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_complex(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, exp): if isinstance(g_ys, FiniteSet): exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) + log(Abs(g_y))), S.Integers) for g_y in g_ys if g_y != 0]) return _invert_complex(f.args[0], exp_invs, symbol) return (f, g_ys) def _invert_abs(f, g_ys, symbol): """Helper function for inverting absolute value functions. Returns the complete result of inverting an absolute value function along with the conditions which must also be satisfied. If it is certain that all these conditions are met, a `FiniteSet` of all possible solutions is returned. If any condition cannot be satisfied, an `EmptySet` is returned. Otherwise, a `ConditionSet` of the solutions, with all the required conditions specified, is returned. """ if not g_ys.is_FiniteSet: # this could be used for FiniteSet, but the # results are more compact if they aren't, e.g. # ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) vs # Union(Intersection(Interval(0, oo), {n}), Intersection(Interval(-oo, 0), {-n})) # for the solution of abs(x) - n pos = Intersection(g_ys, Interval(0, S.Infinity)) parg = _invert_real(f, pos, symbol) narg = _invert_real(-f, pos, symbol) if parg[0] != narg[0]: raise NotImplementedError return parg[0], Union(narg[1], parg[1]) # check conditions: all these must be true. If any are unknown # then return them as conditions which must be satisfied unknown = [] for a in g_ys.args: ok = a.is_nonnegative if a.is_Number else a.is_positive if ok is None: unknown.append(a) elif not ok: return symbol, S.EmptySet if unknown: conditions = And(*[Contains(i, Interval(0, oo)) for i in unknown]) else: conditions = True n = Dummy('n', real=True) # this is slightly different than above: instead of solving # +/-f on positive values, here we solve for f on +/- g_ys g_x, values = _invert_real(f, Union( imageset(Lambda(n, n), g_ys), imageset(Lambda(n, -n), g_ys)), symbol) return g_x, ConditionSet(g_x, conditions, values) def domain_check(f, symbol, p): """Returns False if point p is infinite or any subexpression of f is infinite or becomes so after replacing symbol with p. If none of these conditions is met then True will be returned. Examples ======== >>> from sympy import Mul, oo >>> from sympy.abc import x >>> from sympy.solvers.solveset import domain_check >>> g = 1/(1 + (1/(x + 1))**2) >>> domain_check(g, x, -1) False >>> domain_check(x**2, x, 0) True >>> domain_check(1/x, x, oo) False * The function relies on the assumption that the original form of the equation has not been changed by automatic simplification. >>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1 True * To deal with automatic evaluations use evaluate=False: >>> domain_check(Mul(x, 1/x, evaluate=False), x, 0) False """ f, p = sympify(f), sympify(p) if p.is_infinite: return False return _domain_check(f, symbol, p) def _domain_check(f, symbol, p): # helper for domain check if f.is_Atom and f.is_finite: return True elif f.subs(symbol, p).is_infinite: return False else: return all([_domain_check(g, symbol, p) for g in f.args]) def _is_finite_with_finite_vars(f, domain=S.Complexes): """ Return True if the given expression is finite. For symbols that don't assign a value for `complex` and/or `real`, the domain will be used to assign a value; symbols that don't assign a value for `finite` will be made finite. All other assumptions are left unmodified. """ def assumptions(s): A = s.assumptions0 A.setdefault('finite', A.get('finite', True)) if domain.is_subset(S.Reals): # if this gets set it will make complex=True, too A.setdefault('real', True) else: # don't change 'real' because being complex implies # nothing about being real A.setdefault('complex', True) return A reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols} return f.xreplace(reps).is_finite def _is_function_class_equation(func_class, f, symbol): """ Tests whether the equation is an equation of the given function class. The given equation belongs to the given function class if it is comprised of functions of the function class which are multiplied by or added to expressions independent of the symbol. In addition, the arguments of all such functions must be linear in the symbol as well. Examples ======== >>> from sympy.solvers.solveset import _is_function_class_equation >>> from sympy import tan, sin, tanh, sinh, exp >>> from sympy.abc import x >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction, ... HyperbolicFunction) >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) True >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x) True >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) True """ if f.is_Mul or f.is_Add: return all(_is_function_class_equation(func_class, arg, symbol) for arg in f.args) if f.is_Pow: if not f.exp.has(symbol): return _is_function_class_equation(func_class, f.base, symbol) else: return False if not f.has(symbol): return True if isinstance(f, func_class): try: g = Poly(f.args[0], symbol) return g.degree() <= 1 except PolynomialError: return False else: return False def _solve_as_rational(f, symbol, domain): """ solve rational functions""" f = together(f, deep=True) g, h = fraction(f) if not h.has(symbol): try: return _solve_as_poly(g, symbol, domain) except NotImplementedError: # The polynomial formed from g could end up having # coefficients in a ring over which finding roots # isn't implemented yet, e.g. ZZ[a] for some symbol a return ConditionSet(symbol, Eq(f, 0), domain) else: valid_solns = _solveset(g, symbol, domain) invalid_solns = _solveset(h, symbol, domain) return valid_solns - invalid_solns def _solve_trig(f, symbol, domain): """Function to call other helpers to solve trigonometric equations """ sol1 = sol = None try: sol1 = _solve_trig1(f, symbol, domain) except BaseException as error: pass if sol1 is None or isinstance(sol1, ConditionSet): try: sol = _solve_trig2(f, symbol, domain) except BaseException as error: sol = sol1 if isinstance(sol1, ConditionSet) and isinstance(sol, ConditionSet): if sol1.count_ops() < sol.count_ops(): sol = sol1 else: sol = sol1 if sol is None: raise NotImplementedError(filldedent(''' Solution to this kind of trigonometric equations is yet to be implemented''')) return sol def _solve_trig1(f, symbol, domain): """Primary Helper to solve trigonometric equations """ f = trigsimp(f) f_original = f f = f.rewrite(exp) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(exp(I*symbol), y), h.subs(exp(I*symbol), y) if g.has(symbol) or h.has(symbol): return ConditionSet(symbol, Eq(f, 0), S.Reals) solns = solveset_complex(g, y) - solveset_complex(h, y) if isinstance(solns, ConditionSet): raise NotImplementedError if isinstance(solns, FiniteSet): if any(isinstance(s, RootOf) for s in solns): raise NotImplementedError result = Union(*[invert_complex(exp(I*symbol), s, symbol)[1] for s in solns]) return Intersection(result, domain) elif solns is S.EmptySet: return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals) def _solve_trig2(f, symbol, domain): """Secondary helper to solve trigonometric equations, called when first helper fails """ from sympy import ilcm, igcd, expand_trig, degree, simplify f = trigsimp(f) f_original = f trig_functions = f.atoms(sin, cos, tan, sec, cot, csc) trig_arguments = [e.args[0] for e in trig_functions] denominators = [] numerators = [] for ar in trig_arguments: try: poly_ar = Poly(ar, symbol) except ValueError: raise ValueError("give up, we can't solve if this is not a polynomial in x") if poly_ar.degree() > 1: # degree >1 still bad raise ValueError("degree of variable inside polynomial should not exceed one") if poly_ar.degree() == 0: # degree 0, don't care continue c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol' numerators.append(Rational(c).p) denominators.append(Rational(c).q) x = Dummy('x') # ilcm() and igcd() require more than one argument if len(numerators) > 1: mu = Rational(2)*ilcm(*denominators)/igcd(*numerators) else: assert len(numerators) == 1 mu = Rational(2)*denominators[0]/numerators[0] f = f.subs(symbol, mu*x) f = f.rewrite(tan) f = expand_trig(f) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(tan(x), y), h.subs(tan(x), y) if g.has(x) or h.has(x): return ConditionSet(symbol, Eq(f_original, 0), domain) solns = solveset(g, y, S.Reals) - solveset(h, y, S.Reals) if isinstance(solns, FiniteSet): result = Union(*[invert_real(tan(symbol/mu), s, symbol)[1] for s in solns]) dsol = invert_real(tan(symbol/mu), oo, symbol)[1] if degree(h) > degree(g): # If degree(denom)>degree(num) then there result = Union(result, dsol) # would be another sol at Lim(denom-->oo) return Intersection(result, domain) elif solns is S.EmptySet: return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals) def _solve_as_poly(f, symbol, domain=S.Complexes): """ Solve the equation using polynomial techniques if it already is a polynomial equation or, with a change of variables, can be made so. """ result = None if f.is_polynomial(symbol): solns = roots(f, symbol, cubics=True, quartics=True, quintics=True, domain='EX') num_roots = sum(solns.values()) if degree(f, symbol) <= num_roots: result = FiniteSet(*solns.keys()) else: poly = Poly(f, symbol) solns = poly.all_roots() if poly.degree() <= len(solns): result = FiniteSet(*solns) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: poly = Poly(f) if poly is None: result = ConditionSet(symbol, Eq(f, 0), domain) gens = [g for g in poly.gens if g.has(symbol)] if len(gens) == 1: poly = Poly(poly, gens[0]) gen = poly.gen deg = poly.degree() poly = Poly(poly.as_expr(), poly.gen, composite=True) poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True, quintics=True).keys()) if len(poly_solns) < deg: result = ConditionSet(symbol, Eq(f, 0), domain) if gen != symbol: y = Dummy('y') inverter = invert_real if domain.is_subset(S.Reals) else invert_complex lhs, rhs_s = inverter(gen, y, symbol) if lhs == symbol: result = Union(*[rhs_s.subs(y, s) for s in poly_solns]) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: result = ConditionSet(symbol, Eq(f, 0), domain) if result is not None: if isinstance(result, FiniteSet): # this is to simplify solutions like -sqrt(-I) to sqrt(2)/2 # - sqrt(2)*I/2. We are not expanding for solution with symbols # or undefined functions because that makes the solution more complicated. # For example, expand_complex(a) returns re(a) + I*im(a) if all([s.atoms(Symbol, AppliedUndef) == set() and not isinstance(s, RootOf) for s in result]): s = Dummy('s') result = imageset(Lambda(s, expand_complex(s)), result) if isinstance(result, FiniteSet): result = result.intersection(domain) return result else: return ConditionSet(symbol, Eq(f, 0), domain) def _has_rational_power(expr, symbol): """ Returns (bool, den) where bool is True if the term has a non-integer rational power and den is the denominator of the expression's exponent. Examples ======== >>> from sympy.solvers.solveset import _has_rational_power >>> from sympy import sqrt >>> from sympy.abc import x >>> _has_rational_power(sqrt(x), x) (True, 2) >>> _has_rational_power(x**2, x) (False, 1) """ a, p, q = Wild('a'), Wild('p'), Wild('q') pattern_match = expr.match(a*p**q) or {} if pattern_match.get(a, S.Zero) is S.Zero: return (False, S.One) elif p not in pattern_match.keys(): return (False, S.One) elif isinstance(pattern_match[q], Rational) \ and pattern_match[p].has(symbol): if not pattern_match[q].q == S.One: return (True, pattern_match[q].q) if not isinstance(pattern_match[a], Pow) \ or isinstance(pattern_match[a], Mul): return (False, S.One) else: return _has_rational_power(pattern_match[a], symbol) def _solve_radical(f, symbol, solveset_solver): """ Helper function to solve equations with radicals """ eq, cov = unrad(f) if not cov: result = solveset_solver(eq, symbol) - \ Union(*[solveset_solver(g, symbol) for g in denoms(f, symbol)]) else: y, yeq = cov if not solveset_solver(y - I, y): yreal = Dummy('yreal', real=True) yeq = yeq.xreplace({y: yreal}) eq = eq.xreplace({y: yreal}) y = yreal g_y_s = solveset_solver(yeq, symbol) f_y_sols = solveset_solver(eq, y) result = Union(*[imageset(Lambda(y, g_y), f_y_sols) for g_y in g_y_s]) if isinstance(result, Complement) or isinstance(result,ConditionSet): solution_set = result else: f_set = [] # solutions for FiniteSet c_set = [] # solutions for ConditionSet for s in result: if checksol(f, symbol, s): f_set.append(s) else: c_set.append(s) solution_set = FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set)) return solution_set def _solve_abs(f, symbol, domain): """ Helper function to solve equation involving absolute value function """ if not domain.is_subset(S.Reals): raise ValueError(filldedent(''' Absolute values cannot be inverted in the complex domain.''')) p, q, r = Wild('p'), Wild('q'), Wild('r') pattern_match = f.match(p*Abs(q) + r) or {} f_p, f_q, f_r = [pattern_match.get(i, S.Zero) for i in (p, q, r)] if not (f_p.is_zero or f_q.is_zero): domain = continuous_domain(f_q, symbol, domain) q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol, relational=False, domain=domain, continuous=True) q_neg_cond = q_pos_cond.complement(domain) sols_q_pos = solveset_real(f_p*f_q + f_r, symbol).intersect(q_pos_cond) sols_q_neg = solveset_real(f_p*(-f_q) + f_r, symbol).intersect(q_neg_cond) return Union(sols_q_pos, sols_q_neg) else: return ConditionSet(symbol, Eq(f, 0), domain) def solve_decomposition(f, symbol, domain): """ Function to solve equations via the principle of "Decomposition and Rewriting". Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solve_decomposition as sd >>> x = Symbol('x') >>> f1 = exp(2*x) - 3*exp(x) + 2 >>> sd(f1, x, S.Reals) {0, log(2)} >>> f2 = sin(x)**2 + 2*sin(x) + 1 >>> pprint(sd(f2, x, S.Reals), use_unicode=False) 3*pi {2*n*pi + ---- | n in Integers} 2 >>> f3 = sin(x + 2) >>> pprint(sd(f3, x, S.Reals), use_unicode=False) {2*n*pi - 2 | n in Integers} U {2*n*pi - 2 + pi | n in Integers} """ from sympy.solvers.decompogen import decompogen from sympy.calculus.util import function_range # decompose the given function g_s = decompogen(f, symbol) # `y_s` represents the set of values for which the function `g` is to be # solved. # `solutions` represent the solutions of the equations `g = y_s` or # `g = 0` depending on the type of `y_s`. # As we are interested in solving the equation: f = 0 y_s = FiniteSet(0) for g in g_s: frange = function_range(g, symbol, domain) y_s = Intersection(frange, y_s) result = S.EmptySet if isinstance(y_s, FiniteSet): for y in y_s: solutions = solveset(Eq(g, y), symbol, domain) if not isinstance(solutions, ConditionSet): result += solutions else: if isinstance(y_s, ImageSet): iter_iset = (y_s,) elif isinstance(y_s, Union): iter_iset = y_s.args elif isinstance(y_s, EmptySet): # y_s is not in the range of g in g_s, so no solution exists #in the given domain return y_s for iset in iter_iset: new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain) dummy_var = tuple(iset.lamda.expr.free_symbols)[0] base_set = iset.base_set if isinstance(new_solutions, FiniteSet): new_exprs = new_solutions elif isinstance(new_solutions, Intersection): if isinstance(new_solutions.args[1], FiniteSet): new_exprs = new_solutions.args[1] for new_expr in new_exprs: result += ImageSet(Lambda(dummy_var, new_expr), base_set) if result is S.EmptySet: return ConditionSet(symbol, Eq(f, 0), domain) y_s = result return y_s def _solveset(f, symbol, domain, _check=False): """Helper for solveset to return a result from an expression that has already been sympify'ed and is known to contain the given symbol.""" # _check controls whether the answer is checked or not from sympy.simplify.simplify import signsimp orig_f = f if f.is_Mul: coeff, f = f.as_independent(symbol, as_Add=False) if coeff in set([S.ComplexInfinity, S.NegativeInfinity, S.Infinity]): f = together(orig_f) elif f.is_Add: a, h = f.as_independent(symbol) m, h = h.as_independent(symbol, as_Add=False) if m not in set([S.ComplexInfinity, S.Zero, S.Infinity, S.NegativeInfinity]): f = a/m + h # XXX condition `m != 0` should be added to soln # assign the solvers to use solver = lambda f, x, domain=domain: _solveset(f, x, domain) inverter = lambda f, rhs, symbol: _invert(f, rhs, symbol, domain) result = EmptySet() if f.expand().is_zero: return domain elif not f.has(symbol): return EmptySet() elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain) for m in f.args): # if f(x) and g(x) are both finite we can say that the solution of # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in # general. g(x) can grow to infinitely large for the values where # f(x) == 0. To be sure that we are not silently allowing any # wrong solutions we are using this technique only if both f and g are # finite for a finite input. result = Union(*[solver(m, symbol) for m in f.args]) elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \ _is_function_class_equation(HyperbolicFunction, f, symbol): result = _solve_trig(f, symbol, domain) elif isinstance(f, arg): a = f.args[0] result = solveset_real(a > 0, symbol) elif f.is_Piecewise: result = EmptySet() expr_set_pairs = f.as_expr_set_pairs(domain) for (expr, in_set) in expr_set_pairs: if in_set.is_Relational: in_set = in_set.as_set() solns = solver(expr, symbol, in_set) result += solns elif isinstance(f, Eq): result = solver(Add(f.lhs, - f.rhs, evaluate=False), symbol, domain) elif f.is_Relational: if not domain.is_subset(S.Reals): raise NotImplementedError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) try: result = solve_univariate_inequality( f, symbol, domain=domain, relational=False) except NotImplementedError: result = ConditionSet(symbol, f, domain) return result else: lhs, rhs_s = inverter(f, 0, symbol) if lhs == symbol: # do some very minimal simplification since # repeated inversion may have left the result # in a state that other solvers (e.g. poly) # would have simplified; this is done here # rather than in the inverter since here it # is only done once whereas there it would # be repeated for each step of the inversion if isinstance(rhs_s, FiniteSet): rhs_s = FiniteSet(*[Mul(* signsimp(i).as_content_primitive()) for i in rhs_s]) result = rhs_s elif isinstance(rhs_s, FiniteSet): for equation in [lhs - rhs for rhs in rhs_s]: if equation == f: if any(_has_rational_power(g, symbol)[0] for g in equation.args) or _has_rational_power( equation, symbol)[0]: result += _solve_radical(equation, symbol, solver) elif equation.has(Abs): result += _solve_abs(f, symbol, domain) else: result_rational = _solve_as_rational(equation, symbol, domain) if isinstance(result_rational, ConditionSet): # may be a transcendental type equation result += _transolve(equation, symbol, domain) else: result += result_rational else: result += solver(equation, symbol) elif rhs_s is not S.EmptySet: result = ConditionSet(symbol, Eq(f, 0), domain) if isinstance(result, ConditionSet): num, den = f.as_numer_denom() if den.has(symbol): _result = _solveset(num, symbol, domain) if not isinstance(_result, ConditionSet): singularities = _solveset(den, symbol, domain) result = _result - singularities if _check: if isinstance(result, ConditionSet): # it wasn't solved or has enumerated all conditions # -- leave it alone return result # whittle away all but the symbol-containing core # to use this for testing fx = orig_f.as_independent(symbol, as_Add=True)[1] fx = fx.as_independent(symbol, as_Add=False)[1] if isinstance(result, FiniteSet): # check the result for invalid solutions result = FiniteSet(*[s for s in result if isinstance(s, RootOf) or domain_check(fx, symbol, s)]) return result def _term_factors(f): """ Iterator to get the factors of all terms present in the given equation. Parameters ========== f : Expr Equation that needs to be addressed Returns ======= Factors of all terms present in the equation. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.solveset import _term_factors >>> x = symbols('x') >>> list(_term_factors(-2 - x**2 + x*(x + 1))) [-2, -1, x**2, x, x + 1] """ for add_arg in Add.make_args(f): for mul_arg in Mul.make_args(add_arg): yield mul_arg def _solve_exponential(lhs, rhs, symbol, domain): r""" Helper function for solving (supported) exponential equations. Exponential equations are the sum of (currently) at most two terms with one or both of them having a power with a symbol-dependent exponent. For example .. math:: 5^{2x + 3} - 5^{3x - 1} .. math:: 4^{5 - 9x} - e^{2 - x} Parameters ========== lhs, rhs : Expr The exponential equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable or if the assumptions are not properly defined, in that case a different style of ``ConditionSet`` is returned having the solution(s) of the equation with the desired assumptions. Examples ======== >>> from sympy.solvers.solveset import _solve_exponential as solve_expo >>> from sympy import symbols, S >>> x = symbols('x', real=True) >>> a, b = symbols('a b') >>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals) >>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions ConditionSet(x, (a > 0) & (b > 0), {0}) >>> solve_expo(3**(2*x) - 2**(x + 3), 0, x, S.Reals) {-3*log(2)/(-2*log(3) + log(2))} >>> solve_expo(2**x - 4**x, 0, x, S.Reals) {0} * Proof of correctness of the method The logarithm function is the inverse of the exponential function. The defining relation between exponentiation and logarithm is: .. math:: {\log_b x} = y \enspace if \enspace b^y = x Therefore if we are given an equation with exponent terms, we can convert every term to its corresponding logarithmic form. This is achieved by taking logarithms and expanding the equation using logarithmic identities so that it can easily be handled by ``solveset``. For example: .. math:: 3^{2x} = 2^{x + 3} Taking log both sides will reduce the equation to .. math:: (2x)\log(3) = (x + 3)\log(2) This form can be easily handed by ``solveset``. """ unsolved_result = ConditionSet(symbol, Eq(lhs - rhs), domain) newlhs = powdenest(lhs) if lhs != newlhs: # it may also be advantageous to factor the new expr return _solveset(factor(newlhs - rhs), symbol, domain) # try again with _solveset if not (isinstance(lhs, Add) and len(lhs.args) == 2): # solving for the sum of more than two powers is possible # but not yet implemented return unsolved_result if rhs != 0: return unsolved_result a, b = list(ordered(lhs.args)) a_term = a.as_independent(symbol)[1] b_term = b.as_independent(symbol)[1] a_base, a_exp = a_term.base, a_term.exp b_base, b_exp = b_term.base, b_term.exp from sympy.functions.elementary.complexes import im if domain.is_subset(S.Reals): conditions = And( a_base > 0, b_base > 0, Eq(im(a_exp), 0), Eq(im(b_exp), 0)) else: conditions = And( Ne(a_base, 0), Ne(b_base, 0)) L, R = map(lambda i: expand_log(log(i), force=True), (a, -b)) solutions = _solveset(L - R, symbol, domain) return ConditionSet(symbol, conditions, solutions) def _is_exponential(f, symbol): r""" Return ``True`` if one or more terms contain ``symbol`` only in exponents, else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Examples ======== >>> from sympy import symbols, cos, exp >>> from sympy.solvers.solveset import _is_exponential as check >>> x, y = symbols('x y') >>> check(y, y) False >>> check(x**y - 1, y) True >>> check(x**y*2**y - 1, y) True >>> check(exp(x + 3) + 3**x, x) True >>> check(cos(2**x), x) False * Philosophy behind the helper The function extracts each term of the equation and checks if it is of exponential form w.r.t ``symbol``. """ rv = False for expr_arg in _term_factors(f): if symbol not in expr_arg.free_symbols: continue if (isinstance(expr_arg, Pow) and symbol not in expr_arg.base.free_symbols or isinstance(expr_arg, exp)): rv = True # symbol in exponent else: return False # dependent on symbol in non-exponential way return rv def _solve_logarithm(lhs, rhs, symbol, domain): r""" Helper to solve logarithmic equations which are reducible to a single instance of `\log`. Logarithmic equations are (currently) the equations that contains `\log` terms which can be reduced to a single `\log` term or a constant using various logarithmic identities. For example: .. math:: \log(x) + \log(x - 4) can be reduced to: .. math:: \log(x(x - 4)) Parameters ========== lhs, rhs : Expr The logarithmic equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable. Examples ======== >>> from sympy import symbols, log, S >>> from sympy.solvers.solveset import _solve_logarithm as solve_log >>> x = symbols('x') >>> f = log(x - 3) + log(x + 3) >>> solve_log(f, 0, x, S.Reals) {-sqrt(10), sqrt(10)} * Proof of correctness A logarithm is another way to write exponent and is defined by .. math:: {\log_b x} = y \enspace if \enspace b^y = x When one side of the equation contains a single logarithm, the equation can be solved by rewriting the equation as an equivalent exponential equation as defined above. But if one side contains more than one logarithm, we need to use the properties of logarithm to condense it into a single logarithm. Take for example .. math:: \log(2x) - 15 = 0 contains single logarithm, therefore we can directly rewrite it to exponential form as .. math:: x = \frac{e^{15}}{2} But if the equation has more than one logarithm as .. math:: \log(x - 3) + \log(x + 3) = 0 we use logarithmic identities to convert it into a reduced form Using, .. math:: \log(a) + \log(b) = \log(ab) the equation becomes, .. math:: \log((x - 3)(x + 3)) This equation contains one logarithm and can be solved by rewriting to exponents. """ new_lhs = logcombine(lhs, force=True) new_f = new_lhs - rhs return _solveset(new_f, symbol, domain) def _is_logarithmic(f, symbol): r""" Return ``True`` if the equation is in the form `a\log(f(x)) + b\log(g(x)) + ... + c` else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Returns ======= ``True`` if the equation is logarithmic otherwise ``False``. Examples ======== >>> from sympy import symbols, tan, log >>> from sympy.solvers.solveset import _is_logarithmic as check >>> x, y = symbols('x y') >>> check(log(x + 2) - log(x + 3), x) True >>> check(tan(log(2*x)), x) False >>> check(x*log(x), x) False >>> check(x + log(x), x) False >>> check(y + log(x), x) True * Philosophy behind the helper The function extracts each term and checks whether it is logarithmic w.r.t ``symbol``. """ rv = False for term in Add.make_args(f): saw_log = False for term_arg in Mul.make_args(term): if symbol not in term_arg.free_symbols: continue if isinstance(term_arg, log): if saw_log: return False # more than one log in term saw_log = True else: return False # dependent on symbol in non-log way if saw_log: rv = True return rv def _transolve(f, symbol, domain): r""" Function to solve transcendental equations. It is a helper to ``solveset`` and should be used internally. ``_transolve`` currently supports the following class of equations: - Exponential equations - Logarithmic equations Parameters ========== f : Any transcendental equation that needs to be solved. This needs to be an expression, which is assumed to be equal to ``0``. symbol : The variable for which the equation is solved. This needs to be of class ``Symbol``. domain : A set over which the equation is solved. This needs to be of class ``Set``. Returns ======= Set A set of values for ``symbol`` for which ``f`` is equal to zero. An ``EmptySet`` is returned if ``f`` does not have solutions in respective domain. A ``ConditionSet`` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. How to use ``_transolve`` ========================= ``_transolve`` should not be used as an independent function, because it assumes that the equation (``f``) and the ``symbol`` comes from ``solveset`` and might have undergone a few modification(s). To use ``_transolve`` as an independent function the equation (``f``) and the ``symbol`` should be passed as they would have been by ``solveset``. Examples ======== >>> from sympy.solvers.solveset import _transolve as transolve >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy import symbols, S, pprint >>> x = symbols('x', real=True) # assumption added >>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals) {-(log(3) + 3*log(5))/(-log(5) + 2*log(3))} How ``_transolve`` works ======================== ``_transolve`` uses two types of helper functions to solve equations of a particular class: Identifying helpers: To determine whether a given equation belongs to a certain class of equation or not. Returns either ``True`` or ``False``. Solving helpers: Once an equation is identified, a corresponding helper either solves the equation or returns a form of the equation that ``solveset`` might better be able to handle. * Philosophy behind the module The purpose of ``_transolve`` is to take equations which are not already polynomial in their generator(s) and to either recast them as such through a valid transformation or to solve them outright. A pair of helper functions for each class of supported transcendental functions are employed for this purpose. One identifies the transcendental form of an equation and the other either solves it or recasts it into a tractable form that can be solved by ``solveset``. For example, an equation in the form `ab^{f(x)} - cd^{g(x)} = 0` can be transformed to `\log(a) + f(x)\log(b) - \log(c) - g(x)\log(d) = 0` (under certain assumptions) and this can be solved with ``solveset`` if `f(x)` and `g(x)` are in polynomial form. How ``_transolve`` is better than ``_tsolve`` ============================================= 1) Better output ``_transolve`` provides expressions in a more simplified form. Consider a simple exponential equation >>> f = 3**(2*x) - 2**(x + 3) >>> pprint(transolve(f, x, S.Reals), use_unicode=False) -3*log(2) {------------------} -2*log(3) + log(2) >>> pprint(tsolve(f, x), use_unicode=False) / 3 \ | --------| | log(2/9)| [-log\2 /] 2) Extensible The API of ``_transolve`` is designed such that it is easily extensible, i.e. the code that solves a given class of equations is encapsulated in a helper and not mixed in with the code of ``_transolve`` itself. 3) Modular ``_transolve`` is designed to be modular i.e, for every class of equation a separate helper for identification and solving is implemented. This makes it easy to change or modify any of the method implemented directly in the helpers without interfering with the actual structure of the API. 4) Faster Computation Solving equation via ``_transolve`` is much faster as compared to ``_tsolve``. In ``solve``, attempts are made computing every possibility to get the solutions. This series of attempts makes solving a bit slow. In ``_transolve``, computation begins only after a particular type of equation is identified. How to add new class of equations ================================= Adding a new class of equation solver is a three-step procedure: - Identify the type of the equations Determine the type of the class of equations to which they belong: it could be of ``Add``, ``Pow``, etc. types. Separate internal functions are used for each type. Write identification and solving helpers and use them from within the routine for the given type of equation (after adding it, if necessary). Something like: .. code-block:: python def add_type(lhs, rhs, x): .... if _is_exponential(lhs, x): new_eq = _solve_exponential(lhs, rhs, x) .... rhs, lhs = eq.as_independent(x) if lhs.is_Add: result = add_type(lhs, rhs, x) - Define the identification helper. - Define the solving helper. Apart from this, a few other things needs to be taken care while adding an equation solver: - Naming conventions: Name of the identification helper should be as ``_is_class`` where class will be the name or abbreviation of the class of equation. The solving helper will be named as ``_solve_class``. For example: for exponential equations it becomes ``_is_exponential`` and ``_solve_expo``. - The identifying helpers should take two input parameters, the equation to be checked and the variable for which a solution is being sought, while solving helpers would require an additional domain parameter. - Be sure to consider corner cases. - Add tests for each helper. - Add a docstring to your helper that describes the method implemented. The documentation of the helpers should identify: - the purpose of the helper, - the method used to identify and solve the equation, - a proof of correctness - the return values of the helpers """ def add_type(lhs, rhs, symbol, domain): """ Helper for ``_transolve`` to handle equations of ``Add`` type, i.e. equations taking the form as ``a*f(x) + b*g(x) + .... = c``. For example: 4**x + 8**x = 0 """ result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain) # check if it is exponential type equation if _is_exponential(lhs, symbol): result = _solve_exponential(lhs, rhs, symbol, domain) # check if it is logarithmic type equation elif _is_logarithmic(lhs, symbol): result = _solve_logarithm(lhs, rhs, symbol, domain) return result result = ConditionSet(symbol, Eq(f, 0), domain) # invert_complex handles the call to the desired inverter based # on the domain specified. lhs, rhs_s = invert_complex(f, 0, symbol, domain) if isinstance(rhs_s, FiniteSet): assert (len(rhs_s.args)) == 1 rhs = rhs_s.args[0] if lhs.is_Add: result = add_type(lhs, rhs, symbol, domain) else: result = rhs_s return result def solveset(f, symbol=None, domain=S.Complexes): r"""Solves a given inequality or equation with set as output Parameters ========== f : Expr or a relational. The target equation or inequality symbol : Symbol The variable for which the equation is solved domain : Set The domain over which the equation is solved Returns ======= Set A set of values for `symbol` for which `f` is True or is equal to zero. An `EmptySet` is returned if `f` is False or nonzero. A `ConditionSet` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. `solveset` claims to be complete in the solution set that it returns. Raises ====== NotImplementedError The algorithms to solve inequalities in complex domain are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report to the github issue tracker. Notes ===== Python interprets 0 and 1 as False and True, respectively, but in this function they refer to solutions of an expression. So 0 and 1 return the Domain and EmptySet, respectively, while True and False return the opposite (as they are assumed to be solutions of relational expressions). See Also ======== solveset_real: solver for real domain solveset_complex: solver for complex domain Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solveset, solveset_real * The default domain is complex. Not specifying a domain will lead to the solving of the equation in the complex domain (and this is not affected by the assumptions on the symbol): >>> x = Symbol('x') >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} >>> x = Symbol('x', real=True) >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} * If you want to use `solveset` to solve the equation in the real domain, provide a real domain. (Using ``solveset_real`` does this automatically.) >>> R = S.Reals >>> x = Symbol('x') >>> solveset(exp(x) - 1, x, R) {0} >>> solveset_real(exp(x) - 1, x) {0} The solution is mostly unaffected by assumptions on the symbol, but there may be some slight difference: >>> pprint(solveset(sin(x)/x,x), use_unicode=False) ({2*n*pi | n in Integers} \ {0}) U ({2*n*pi + pi | n in Integers} \ {0}) >>> p = Symbol('p', positive=True) >>> pprint(solveset(sin(p)/p, p), use_unicode=False) {2*n*pi | n in Integers} U {2*n*pi + pi | n in Integers} * Inequalities can be solved over the real domain only. Use of a complex domain leads to a NotImplementedError. >>> solveset(exp(x) > 1, x, R) Interval.open(0, oo) """ f = sympify(f) symbol = sympify(symbol) if f is S.true: return domain if f is S.false: return S.EmptySet if not isinstance(f, (Expr, Number)): raise ValueError("%s is not a valid SymPy expression" % f) if not isinstance(symbol, Expr) and symbol is not None: raise ValueError("%s is not a valid SymPy symbol" % symbol) if not isinstance(domain, Set): raise ValueError("%s is not a valid domain" %(domain)) free_symbols = f.free_symbols if symbol is None and not free_symbols: b = Eq(f, 0) if b is S.true: return domain elif b is S.false: return S.EmptySet else: raise NotImplementedError(filldedent(''' relationship between value and 0 is unknown: %s''' % b)) if symbol is None: if len(free_symbols) == 1: symbol = free_symbols.pop() elif free_symbols: raise ValueError(filldedent(''' The independent variable must be specified for a multivariate equation.''')) elif not isinstance(symbol, Symbol): f, s, swap = recast_to_symbols([f], [symbol]) # the xreplace will be needed if a ConditionSet is returned return solveset(f[0], s[0], domain).xreplace(swap) if domain.is_subset(S.Reals): if not symbol.is_real: assumptions = symbol.assumptions0 assumptions['real'] = True try: r = Dummy('r', **assumptions) return solveset(f.xreplace({symbol: r}), r, domain ).xreplace({r: symbol}) except InconsistentAssumptions: pass # Abs has its own handling method which avoids the # rewriting property that the first piece of abs(x) # is for x >= 0 and the 2nd piece for x < 0 -- solutions # can look better if the 2nd condition is x <= 0. Since # the solution is a set, duplication of results is not # an issue, e.g. {y, -y} when y is 0 will be {0} f, mask = _masked(f, Abs) f = f.rewrite(Piecewise) # everything that's not an Abs for d, e in mask: # everything *in* an Abs e = e.func(e.args[0].rewrite(Piecewise)) f = f.xreplace({d: e}) f = piecewise_fold(f) return _solveset(f, symbol, domain, _check=True) def solveset_real(f, symbol): return solveset(f, symbol, S.Reals) def solveset_complex(f, symbol): return solveset(f, symbol, S.Complexes) def solvify(f, symbol, domain): """Solves an equation using solveset and returns the solution in accordance with the `solve` output API. Returns ======= We classify the output based on the type of solution returned by `solveset`. Solution | Output ---------------------------------------- FiniteSet | list ImageSet, | list (if `f` is periodic) Union | EmptySet | empty list Others | None Raises ====== NotImplementedError A ConditionSet is the input. Examples ======== >>> from sympy.solvers.solveset import solvify, solveset >>> from sympy.abc import x >>> from sympy import S, tan, sin, exp >>> solvify(x**2 - 9, x, S.Reals) [-3, 3] >>> solvify(sin(x) - 1, x, S.Reals) [pi/2] >>> solvify(tan(x), x, S.Reals) [0] >>> solvify(exp(x) - 1, x, S.Complexes) >>> solvify(exp(x) - 1, x, S.Reals) [0] """ solution_set = solveset(f, symbol, domain) result = None if solution_set is S.EmptySet: result = [] elif isinstance(solution_set, ConditionSet): raise NotImplementedError('solveset is unable to solve this equation.') elif isinstance(solution_set, FiniteSet): result = list(solution_set) else: period = periodicity(f, symbol) if period is not None: solutions = S.EmptySet iter_solutions = () if isinstance(solution_set, ImageSet): iter_solutions = (solution_set,) elif isinstance(solution_set, Union): if all(isinstance(i, ImageSet) for i in solution_set.args): iter_solutions = solution_set.args for solution in iter_solutions: solutions += solution.intersect(Interval(0, period, False, True)) if isinstance(solutions, FiniteSet): result = list(solutions) else: solution = solution_set.intersect(domain) if isinstance(solution, FiniteSet): result += solution return result ############################################################################### ################################ LINSOLVE ##################################### ############################################################################### def linear_coeffs(eq, *syms, **_kw): """Return a list whose elements are the coefficients of the corresponding symbols in the sum of terms in ``eq``. The additive constant is returned as the last element of the list. Examples ======== >>> from sympy.solvers.solveset import linear_coeffs >>> from sympy.abc import x, y, z >>> linear_coeffs(3*x + 2*y - 1, x, y) [3, 2, -1] It is not necessary to expand the expression: >>> linear_coeffs(x + y*(z*(x*3 + 2) + 3), x) [3*y*z + 1, y*(2*z + 3)] But if there are nonlinear or cross terms -- even if they would cancel after simplification -- an error is raised so the situation does not pass silently past the caller's attention: >>> eq = 1/x*(x - 1) + 1/x >>> linear_coeffs(eq.expand(), x) [0, 1] >>> linear_coeffs(eq, x) Traceback (most recent call last): ... ValueError: nonlinear term encountered: 1/x >>> linear_coeffs(x*(y + 1) - x*y, x, y) Traceback (most recent call last): ... ValueError: nonlinear term encountered: x*(y + 1) """ d = defaultdict(list) c, terms = _sympify(eq).as_coeff_add(*syms) d[0].extend(Add.make_args(c)) for t in terms: m, f = t.as_coeff_mul(*syms) if len(f) != 1: break f = f[0] if f in syms: d[f].append(m) elif f.is_Add: d1 = linear_coeffs(f, *syms, **{'dict': True}) d[0].append(m*d1.pop(0)) xf, vf = list(d1.items())[0] d[xf].append(m*vf) else: break else: for k, v in d.items(): d[k] = Add(*v) if not _kw: return [d.get(s, S.Zero) for s in syms] + [d[0]] return d # default is still list but this won't matter raise ValueError('nonlinear term encountered: %s' % t) def linear_eq_to_matrix(equations, *symbols): r""" Converts a given System of Equations into Matrix form. Here `equations` must be a linear system of equations in `symbols`. Element M[i, j] corresponds to the coefficient of the jth symbol in the ith equation. The Matrix form corresponds to the augmented matrix form. For example: .. math:: 4x + 2y + 3z = 1 .. math:: 3x + y + z = -6 .. math:: 2x + 4y + 9z = 2 This system would return `A` & `b` as given below: :: [ 4 2 3 ] [ 1 ] A = [ 3 1 1 ] b = [-6 ] [ 2 4 9 ] [ 2 ] The only simplification performed is to convert `Eq(a, b) -> a - b`. Raises ====== ValueError The equations contain a nonlinear term. The symbols are not given or are not unique. Examples ======== >>> from sympy import linear_eq_to_matrix, symbols >>> c, x, y, z = symbols('c, x, y, z') The coefficients (numerical or symbolic) of the symbols will be returned as matrices: >>> eqns = [c*x + z - 1 - c, y + z, x - y] >>> A, b = linear_eq_to_matrix(eqns, [x, y, z]) >>> A Matrix([ [c, 0, 1], [0, 1, 1], [1, -1, 0]]) >>> b Matrix([ [c + 1], [ 0], [ 0]]) This routine does not simplify expressions and will raise an error if nonlinearity is encountered: >>> eqns = [ ... (x**2 - 3*x)/(x - 3) - 3, ... y**2 - 3*y - y*(y - 4) + x - 4] >>> linear_eq_to_matrix(eqns, [x, y]) Traceback (most recent call last): ... ValueError: The term (x**2 - 3*x)/(x - 3) is nonlinear in {x, y} Simplifying these equations will discard the removable singularity in the first, reveal the linear structure of the second: >>> [e.simplify() for e in eqns] [x - 3, x + y - 4] Any such simplification needed to eliminate nonlinear terms must be done before calling this routine. """ if not symbols: raise ValueError(filldedent(''' Symbols must be given, for which coefficients are to be found. ''')) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] for i in symbols: if not isinstance(i, Symbol): raise ValueError(filldedent(''' Expecting a Symbol but got %s ''' % i)) if has_dups(symbols): raise ValueError('Symbols must be unique') equations = sympify(equations) if isinstance(equations, MatrixBase): equations = list(equations) elif isinstance(equations, Expr): equations = [equations] elif not is_sequence(equations): raise ValueError(filldedent(''' Equation(s) must be given as a sequence, Expr, Eq or Matrix. ''')) A, b = [], [] for i, f in enumerate(equations): if isinstance(f, Equality): f = f.rewrite(Add, evaluate=False) coeff_list = linear_coeffs(f, *symbols) b.append(-coeff_list.pop()) A.append(coeff_list) A, b = map(Matrix, (A, b)) return A, b def linsolve(system, *symbols): r""" Solve system of N linear equations with M variables; both underdetermined and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Zero solutions throws a ValueError, whereas infinite solutions are represented parametrically in terms of the given symbols. For unique solution a FiniteSet of ordered tuples is returned. All Standard input formats are supported: For the given set of Equations, the respective input types are given below: .. math:: 3x + 2y - z = 1 .. math:: 2x - 2y + 4z = -2 .. math:: 2x - y + 2z = 0 * Augmented Matrix Form, `system` given below: :: [3 2 -1 1] system = [2 -2 4 -2] [2 -1 2 0] * List Of Equations Form `system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]` * Input A & b Matrix Form (from Ax = b) are given as below: :: [3 2 -1 ] [ 1 ] A = [2 -2 4 ] b = [ -2 ] [2 -1 2 ] [ 0 ] `system = (A, b)` Symbols can always be passed but are actually only needed when 1) a system of equations is being passed and 2) the system is passed as an underdetermined matrix and one wants to control the name of the free variables in the result. An error is raised if no symbols are used for case 1, but if no symbols are provided for case 2, internally generated symbols will be provided. When providing symbols for case 2, there should be at least as many symbols are there are columns in matrix A. The algorithm used here is Gauss-Jordan elimination, which results, after elimination, in a row echelon form matrix. Returns ======= A FiniteSet containing an ordered tuple of values for the unknowns for which the `system` has a solution. (Wrapping the tuple in FiniteSet is used to maintain a consistent output format throughout solveset.) Returns EmptySet(), if the linear system is inconsistent. Raises ====== ValueError The input is not valid. The symbols are not given. Examples ======== >>> from sympy import Matrix, S, linsolve, symbols >>> x, y, z = symbols("x, y, z") >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b = Matrix([3, 6, 9]) >>> A Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b Matrix([ [3], [6], [9]]) >>> linsolve((A, b), [x, y, z]) {(-1, 2, 0)} * Parametric Solution: In case the system is underdetermined, the function will return a parametric solution in terms of the given symbols. Those that are free will be returned unchanged. e.g. in the system below, `z` is returned as the solution for variable z; it can take on any value. >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> b = Matrix([3, 6, 9]) >>> linsolve((A, b), x, y, z) {(z - 1, -2*z + 2, z)} If no symbols are given, internally generated symbols will be used. The `tau0` in the 3rd position indicates (as before) that the 3rd variable -- whatever it's named -- can take on any value: >>> linsolve((A, b)) {(tau0 - 1, -2*tau0 + 2, tau0)} * List of Equations as input >>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + y/2 - z] >>> linsolve(Eqns, x, y, z) {(1, -2, -2)} * Augmented Matrix as input >>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> aug Matrix([ [2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> linsolve(aug, x, y, z) {(3/10, 2/5, 0)} * Solve for symbolic coefficients >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f') >>> eqns = [a*x + b*y - c, d*x + e*y - f] >>> linsolve(eqns, x, y) {((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))} * A degenerate system returns solution as set of given symbols. >>> system = Matrix(([0, 0, 0], [0, 0, 0], [0, 0, 0])) >>> linsolve(system, x, y) {(x, y)} * For an empty system linsolve returns empty set >>> linsolve([], x) EmptySet() * An error is raised if, after expansion, any nonlinearity is detected: >>> linsolve([x*(1/x - 1), (y - 1)**2 - y**2 + 1], x, y) {(1, 1)} >>> linsolve([x**2 - 1], x) Traceback (most recent call last): ... ValueError: The term x**2 is nonlinear in {x} """ if not system: return S.EmptySet # If second argument is an iterable if symbols and hasattr(symbols[0], '__iter__'): symbols = symbols[0] sym_gen = isinstance(symbols, GeneratorType) swap = {} b = None # if we don't get b the input was bad syms_needed_msg = None # unpack system if hasattr(system, '__iter__'): # 1). (A, b) if len(system) == 2 and isinstance(system[0], Matrix): A, b = system # 2). (eq1, eq2, ...) if not isinstance(system[0], Matrix): if sym_gen or not symbols: raise ValueError(filldedent(''' When passing a system of equations, the explicit symbols for which a solution is being sought must be given as a sequence, too. ''')) system = [ _mexpand(i.lhs - i.rhs if isinstance(i, Eq) else i, recursive=True) for i in system] system, symbols, swap = recast_to_symbols(system, symbols) A, b = linear_eq_to_matrix(system, symbols) syms_needed_msg = 'free symbols in the equations provided' elif isinstance(system, Matrix) and not ( symbols and not isinstance(symbols, GeneratorType) and isinstance(symbols[0], Matrix)): # 3). A augmented with b A, b = system[:, :-1], system[:, -1:] if b is None: raise ValueError("Invalid arguments") syms_needed_msg = syms_needed_msg or 'columns of A' if sym_gen: symbols = [next(symbols) for i in range(A.cols)] if any(set(symbols) & (A.free_symbols | b.free_symbols)): raise ValueError(filldedent(''' At least one of the symbols provided already appears in the system to be solved. One way to avoid this is to use Dummy symbols in the generator, e.g. numbered_symbols('%s', cls=Dummy) ''' % symbols[0].name.rstrip('1234567890'))) try: solution, params, free_syms = A.gauss_jordan_solve(b, freevar=True) except ValueError: # No solution return S.EmptySet # Replace free parameters with free symbols if params: if not symbols: symbols = [_ for _ in params] # re-use the parameters but put them in order # params [x, y, z] # free_symbols [2, 0, 4] # idx [1, 0, 2] idx = list(zip(*sorted(zip(free_syms, range(len(free_syms))))))[1] # simultaneous replacements {y: x, x: y, z: z} replace_dict = dict(zip(symbols, [symbols[i] for i in idx])) elif len(symbols) >= A.cols: replace_dict = {v: symbols[free_syms[k]] for k, v in enumerate(params)} else: raise IndexError(filldedent(''' the number of symbols passed should have a length equal to the number of %s. ''' % syms_needed_msg)) solution = [sol.xreplace(replace_dict) for sol in solution] solution = [simplify(sol).xreplace(swap) for sol in solution] return FiniteSet(tuple(solution)) ############################################################################## # ------------------------------nonlinsolve ---------------------------------# ############################################################################## def _return_conditionset(eqs, symbols): # return conditionset condition_set = ConditionSet( Tuple(*symbols), FiniteSet(*eqs), S.Complexes) return condition_set def substitution(system, symbols, result=[{}], known_symbols=[], exclude=[], all_symbols=None): r""" Solves the `system` using substitution method. It is used in `nonlinsolve`. This will be called from `nonlinsolve` when any equation(s) is non polynomial equation. Parameters ========== system : list of equations The target system of equations symbols : list of symbols to be solved. The variable(s) for which the system is solved known_symbols : list of solved symbols Values are known for these variable(s) result : An empty list or list of dict If No symbol values is known then empty list otherwise symbol as keys and corresponding value in dict. exclude : Set of expression. Mostly denominator expression(s) of the equations of the system. Final solution should not satisfy these expressions. all_symbols : known_symbols + symbols(unsolved). Returns ======= A FiniteSet of ordered tuple of values of `all_symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `all_symbols`. If parameter `all_symbols` is None then same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> x, y = symbols('x, y', real=True) >>> from sympy.solvers.solveset import substitution >>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) {(-1, 1)} * when you want soln should not satisfy eq `x + 1 = 0` >>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x]) EmptySet() >>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x]) {(1, -1)} >>> substitution([x + y - 1, y - x**2 + 5], [x, y]) {(-3, 4), (2, -1)} * Returns both real and complex solution >>> x, y, z = symbols('x, y, z') >>> from sympy import exp, sin >>> substitution([exp(x) - sin(y), y**2 - 4], [x, y]) {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(log(sin(2)), 2*I*pi)), Integers), 2)} >>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)] >>> substitution(eqs, [y, z]) {(-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (-log(3), sqrt(-exp(2*x) - sin(log(3)))), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers), ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi + Mod(-log(3), 2*I*pi)))), Integers)), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers), ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi + Mod(-log(3), 2*I*pi)))), Integers))} """ from sympy import Complement from sympy.core.compatibility import is_sequence if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if not is_sequence(symbols): msg = ('symbols should be given as a sequence, e.g. a list.' 'Not type %s: %s') raise TypeError(filldedent(msg % (type(symbols), symbols))) try: sym = symbols[0].is_Symbol except AttributeError: sym = False if not sym: msg = ('Iterable of symbols must be given as ' 'second argument, not type %s: %s') raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0]))) # By default `all_symbols` will be same as `symbols` if all_symbols is None: all_symbols = symbols old_result = result # storing complements and intersection for particular symbol complements = {} intersections = {} # when total_solveset_call is equals to total_conditionset # means solvest fail to solve all the eq. total_conditionset = -1 total_solveset_call = -1 def _unsolved_syms(eq, sort=False): """Returns the unsolved symbol present in the equation `eq`. """ free = eq.free_symbols unsolved = (free - set(known_symbols)) & set(all_symbols) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved # end of _unsolved_syms() # sort such that equation with the fewest potential symbols is first. # means eq with less number of variable first in the list. eqs_in_better_order = list( ordered(system, lambda _: len(_unsolved_syms(_)))) def add_intersection_complement(result, sym_set, **flags): # If solveset have returned some intersection/complement # for any symbol. It will be added in final solution. final_result = [] for res in result: res_copy = res for key_res, value_res in res.items(): # Intersection/complement is in Interval or Set. intersection_true = flags.get('Intersection', True) complements_true = flags.get('Complement', True) for key_sym, value_sym in sym_set.items(): if key_sym == key_res: if intersection_true: # testcase is not added for this line(intersection) new_value = \ Intersection(FiniteSet(value_res), value_sym) if new_value is not S.EmptySet: res_copy[key_res] = new_value if complements_true: new_value = \ Complement(FiniteSet(value_res), value_sym) if new_value is not S.EmptySet: res_copy[key_res] = new_value final_result.append(res_copy) return final_result # end of def add_intersection_complement() def _extract_main_soln(sol, soln_imageset): """separate the Complements, Intersections, ImageSet lambda expr and it's base_set. """ # if there is union, then need to check # Complement, Intersection, Imageset. # Order should not be changed. if isinstance(sol, Complement): # extract solution and complement complements[sym] = sol.args[1] sol = sol.args[0] # complement will be added at the end # using `add_intersection_complement` method if isinstance(sol, Intersection): # Interval/Set will be at 0th index always if sol.args[0] != Interval(-oo, oo): # sometimes solveset returns soln # with intersection `S.Reals`, to confirm that # soln is in `domain=S.Reals` or not. We don't consider # that intersection. intersections[sym] = sol.args[0] sol = sol.args[1] # after intersection and complement Imageset should # be checked. if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest # if there is union of Imageset or other in soln. # no testcase is written for this if block if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet # We need in sequence so append finteset elements # and then imageset or other. for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: # ImageSet, Intersection, complement then # append them directly sol += FiniteSet(sol_arg2) if not isinstance(sol, FiniteSet): sol = FiniteSet(sol) return sol, soln_imageset # end of def _extract_main_soln() # helper function for _append_new_soln def _check_exclude(rnew, imgset_yes): rnew_ = rnew if imgset_yes: # replace all dummy variables (Imageset lambda variables) # with zero before `checksol`. Considering fundamental soln # for `checksol`. rnew_copy = rnew.copy() dummy_n = imgset_yes[0] for key_res, value_res in rnew_copy.items(): rnew_copy[key_res] = value_res.subs(dummy_n, 0) rnew_ = rnew_copy # satisfy_exclude == true if it satisfies the expr of `exclude` list. try: # something like : `Mod(-log(3), 2*I*pi)` can't be # simplified right now, so `checksol` returns `TypeError`. # when this issue is fixed this try block should be # removed. Mod(-log(3), 2*I*pi) == -log(3) satisfy_exclude = any( checksol(d, rnew_) for d in exclude) except TypeError: satisfy_exclude = None return satisfy_exclude # end of def _check_exclude() # helper function for _append_new_soln def _restore_imgset(rnew, original_imageset, newresult): restore_sym = set(rnew.keys()) & \ set(original_imageset.keys()) for key_sym in restore_sym: img = original_imageset[key_sym] rnew[key_sym] = img if rnew not in newresult: newresult.append(rnew) # end of def _restore_imgset() def _append_eq(eq, result, res, delete_soln, n=None): u = Dummy('u') if n: eq = eq.subs(n, 0) satisfy = checksol(u, u, eq, minimal=True) if satisfy is False: delete_soln = True res = {} else: result.append(res) return result, res, delete_soln def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): """If `rnew` (A dict <symbol: soln>) contains valid soln append it to `newresult` list. `imgset_yes` is (base, dummy_var) if there was imageset in previously calculated result(otherwise empty tuple). `original_imageset` is dict of imageset expr and imageset from this result. `soln_imageset` dict of imageset expr and imageset of new soln. """ satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False # soln should not satisfy expr present in `exclude` list. if not satisfy_exclude: local_n = None # if it is imageset if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if sym and sol: # when `sym` and `sol` is `None` means no new # soln. In that case we will append rnew directly after # substituting original imagesets in rnew values if present # (second last line of this function using _restore_imgset) dummy_list = list(sol.atoms(Dummy)) # use one dummy `n` which is in # previous imageset local_n_list = [ local_n for i in range( 0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln, local_n) elif eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln) elif soln_imageset: rnew[sym] = soln_imageset[sol] # restore original imageset _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return newresult, delete_soln # end of def _append_new_soln() def _new_order_result(result, eq): # separate first, second priority. `res` that makes `eq` value equals # to zero, should be used first then other result(second priority). # If it is not done then we may miss some soln. first_priority = [] second_priority = [] for res in result: if not any(isinstance(val, ImageSet) for val in res.values()): if eq.subs(res) == 0: first_priority.append(res) else: second_priority.append(res) if first_priority or second_priority: return first_priority + second_priority return result def _solve_using_known_values(result, solver): """Solves the system using already known solution (result contains the dict <symbol: value>). solver is `solveset_complex` or `solveset_real`. """ # stores imageset <expr: imageset(Lambda(n, expr), base)>. soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 # sort such that equation with the fewest potential symbols is first. # means eq with less variable first for index, eq in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} # if imageset expr is used to solve other symbol imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() # symbols solved in one iteration if soln_imageset: # find the imageset and use its expr. for key_res, value_res in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() base = value_res.base_set imgset_yes = (dummy_n, base) # update eq with everything that is known so far eq2 = eq.subs(res) unsolved_syms = _unsolved_syms(eq2, sort=True) if not unsolved_syms: if res: newresult, delete_res = _append_new_soln( res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: # `delete_res` is true, means substituting `res` in # eq2 doesn't return `zero` or deleting the `res` # (a soln) since it staisfies expr of `exclude` # list. result.remove(res) continue # skip as it's independent of desired symbols depen = eq2.as_independent(unsolved_syms)[0] if depen.has(Abs) and solver == solveset_complex: # Absolute values cannot be inverted in the # complex domain continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): # separate solution and complement complements[sym] = soln.args[1] soln = soln.args[0] # complement will be added at the end if isinstance(soln, Intersection): # Interval will be at 0th index always if soln.args[0] != Interval(-oo, oo): # sometimes solveset returns soln # with intersection S.Reals, to confirm that # soln is in domain=S.Reals intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = soln_new if soln_new else soln if index > 0 and solver == solveset_real: # one symbol's real soln , another symbol may have # corresponding complex soln. if not isinstance(soln, (ImageSet, ConditionSet)): soln += solveset_complex(eq2, sym) except NotImplementedError: # If sovleset is not able to solve equation `eq2`. Next # time we may get soln using next equation `eq2` continue if isinstance(soln, ConditionSet): soln = S.EmptySet # don't do `continue` we may get soln # in terms of other symbol(s) not_solvable = True total_conditionst += 1 if soln is not S.EmptySet: soln, soln_imageset = _extract_main_soln( soln, soln_imageset) for sol in soln: # sol is not a `Union` since we checked it # before this loop sol, soln_imageset = _extract_main_soln( sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if got_symbol and any([ ss in free for ss in got_symbol ]): # sol depends on previously solved symbols # then continue continue rnew = res.copy() # put each solution in res and append the new result # in the new result list (solution for symbol `s`) # along with old results. for k, v in res.items(): if isinstance(v, Expr): # if any unsolved symbol is present # Then subs known value rnew[k] = v.subs(sym, sol) # and add this new solution if soln_imageset: # replace all lambda variables with 0. imgst = soln_imageset[sol] rnew[sym] = imgst.lamda( *[0 for i in range(0, len( imgst.lamda.variables))]) else: rnew[sym] = sol newresult, delete_res = _append_new_soln( rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: # deleting the `res` (a soln) since it staisfies # eq of `exclude` list result.remove(res) # solution got for sym if not not_solvable: got_symbol.add(sym) # next time use this new soln if newresult: result = newresult return result, total_solvest_call, total_conditionst # end def _solve_using_know_values() new_result_real, solve_call1, cnd_call1 = _solve_using_known_values( old_result, solveset_real) new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values( old_result, solveset_complex) # when `total_solveset_call` is equals to `total_conditionset` # means solvest fails to solve all the eq. # return conditionset in this case total_conditionset += (cnd_call1 + cnd_call2) total_solveset_call += (solve_call1 + solve_call2) if total_conditionset == total_solveset_call and total_solveset_call != -1: return _return_conditionset(eqs_in_better_order, all_symbols) # overall result result = new_result_real + new_result_complex result_all_variables = [] result_infinite = [] for res in result: if not res: # means {None : None} continue # If length < len(all_symbols) means infinite soln. # Some or all the soln is dependent on 1 symbol. # eg. {x: y+2} then final soln {x: y+2, y: y} if len(res) < len(all_symbols): solved_symbols = res.keys() unsolved = list(filter( lambda x: x not in solved_symbols, all_symbols)) for unsolved_sym in unsolved: res[unsolved_sym] = unsolved_sym result_infinite.append(res) if res not in result_all_variables: result_all_variables.append(res) if result_infinite: # we have general soln # eg : [{x: -1, y : 1}, {x : -y , y: y}] then # return [{x : -y, y : y}] result_all_variables = result_infinite if intersections and complements: # no testcase is added for this block result_all_variables = add_intersection_complement( result_all_variables, intersections, Intersection=True, Complement=True) elif intersections: result_all_variables = add_intersection_complement( result_all_variables, intersections, Intersection=True) elif complements: result_all_variables = add_intersection_complement( result_all_variables, complements, Complement=True) # convert to ordered tuple result = S.EmptySet for r in result_all_variables: temp = [r[symb] for symb in all_symbols] result += FiniteSet(tuple(temp)) return result # end of def substitution() def _solveset_work(system, symbols): soln = solveset(system[0], symbols[0]) if isinstance(soln, FiniteSet): _soln = FiniteSet(*[tuple((s,)) for s in soln]) return _soln else: return FiniteSet(tuple(FiniteSet(soln))) def _handle_positive_dimensional(polys, symbols, denominators): from sympy.polys.polytools import groebner # substitution method where new system is groebner basis of the system _symbols = list(symbols) _symbols.sort(key=default_sort_key) basis = groebner(polys, _symbols, polys=True) new_system = [] for poly_eq in basis: new_system.append(poly_eq.as_expr()) result = [{}] result = substitution( new_system, symbols, result, [], denominators) return result # end of def _handle_positive_dimensional() def _handle_zero_dimensional(polys, symbols, system): # solve 0 dimensional poly system using `solve_poly_system` result = solve_poly_system(polys, *symbols) # May be some extra soln is added because # we used `unrad` in `_separate_poly_nonpoly`, so # need to check and remove if it is not a soln. result_update = S.EmptySet for res in result: dict_sym_value = dict(list(zip(symbols, res))) if all(checksol(eq, dict_sym_value) for eq in system): result_update += FiniteSet(res) return result_update # end of def _handle_zero_dimensional() def _separate_poly_nonpoly(system, symbols): polys = [] polys_expr = [] nonpolys = [] denominators = set() poly = None for eq in system: # Store denom expression if it contains symbol denominators.update(_simple_dens(eq, symbols)) # try to remove sqrt and rational power without_radicals = unrad(simplify(eq)) if without_radicals: eq_unrad, cov = without_radicals if not cov: eq = eq_unrad if isinstance(eq, Expr): eq = eq.as_numer_denom()[0] poly = eq.as_poly(*symbols, extension=True) elif simplify(eq).is_number: continue if poly is not None: polys.append(poly) polys_expr.append(poly.as_expr()) else: nonpolys.append(eq) return polys, polys_expr, nonpolys, denominators # end of def _separate_poly_nonpoly() def nonlinsolve(system, *symbols): r""" Solve system of N non linear equations with M variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said to be positive-dimensional). In Positive dimensional system solution will be dependent on at least one symbol. Returns both real solution and complex solution(If system have). The possible number of solutions is zero, one or infinite. Parameters ========== system : list of equations The target system of equations symbols : list of Symbols symbols should be given as a sequence eg. list Returns ======= A FiniteSet of ordered tuple of values of `symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. For the given set of Equations, the respective input types are given below: .. math:: x*y - 1 = 0 .. math:: 4*x**2 + y**2 - 5 = 0 `system = [x*y - 1, 4*x**2 + y**2 - 5]` `symbols = [x, y]` Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> from sympy.solvers.solveset import nonlinsolve >>> x, y, z = symbols('x, y, z', real=True) >>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y]) {(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)} 1. Positive dimensional system and complements: >>> from sympy import pprint >>> from sympy.polys.polytools import is_zero_dimensional >>> a, b, c, d = symbols('a, b, c, d', real=True) >>> eq1 = a + b + c + d >>> eq2 = a*b + b*c + c*d + d*a >>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b >>> eq4 = a*b*c*d - 1 >>> system = [eq1, eq2, eq3, eq4] >>> is_zero_dimensional(system) False >>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False) -1 1 1 -1 {(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})} d d d d >>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y]) {(-y + 2, y)} 2. If some of the equations are non polynomial equation then `nonlinsolve` will call `substitution` function and returns real and complex solutions, if present. >>> from sympy import exp, sin >>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y]) {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(log(sin(2)), 2*I*pi)), Integers), 2)} 3. If system is Non linear polynomial zero dimensional then it returns both solution (real and complex solutions, if present using `solve_poly_system`): >>> from sympy import sqrt >>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y]) {(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)} 4. `nonlinsolve` can solve some linear(zero or positive dimensional) system (because it is using `groebner` function to get the groebner basis and then `substitution` function basis as the new `system`). But it is not recommended to solve linear system using `nonlinsolve`, because `linsolve` is better for all kind of linear system. >>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z]) {(3*z - 5, -z + 4, z)} 5. System having polynomial equations and only real solution is present (will be solved using `solve_poly_system`): >>> e1 = sqrt(x**2 + y**2) - 10 >>> e2 = sqrt(y**2 + (-x + 10)**2) - 3 >>> nonlinsolve((e1, e2), (x, y)) {(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y]) {(1, 2), (1 + sqrt(5), -sqrt(5) + 2), (-sqrt(5) + 1, 2 + sqrt(5))} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x]) {(2, 1), (2 + sqrt(5), -sqrt(5) + 1), (-sqrt(5) + 2, 1 + sqrt(5))} 6. It is better to use symbols instead of Trigonometric Function or Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol and so on. Get soln from `nonlinsolve` and then using `solveset` get the value of `x`) How nonlinsolve is better than old solver `_solve_system` : =========================================================== 1. A positive dimensional system solver : nonlinsolve can return solution for positive dimensional system. It finds the Groebner Basis of the positive dimensional system(calling it as basis) then we can start solving equation(having least number of variable first in the basis) using solveset and substituting that solved solutions into other equation(of basis) to get solution in terms of minimum variables. Here the important thing is how we are substituting the known values and in which equations. 2. Real and Complex both solutions : nonlinsolve returns both real and complex solution. If all the equations in the system are polynomial then using `solve_poly_system` both real and complex solution is returned. If all the equations in the system are not polynomial equation then goes to `substitution` method with this polynomial and non polynomial equation(s), to solve for unsolved variables. Here to solve for particular variable solveset_real and solveset_complex is used. For both real and complex solution function `_solve_using_know_values` is used inside `substitution` function.(`substitution` function will be called when there is any non polynomial equation(s) is present). When solution is valid then add its general solution in the final result. 3. Complement and Intersection will be added if any : nonlinsolve maintains dict for complements and Intersections. If solveset find complements or/and Intersection with any Interval or set during the execution of `substitution` function ,then complement or/and Intersection for that variable is added before returning final solution. """ from sympy.polys.polytools import is_zero_dimensional from sympy.polys import RR if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] if not is_sequence(symbols) or not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise IndexError(filldedent(msg)) system, symbols, swap = recast_to_symbols(system, symbols) if swap: soln = nonlinsolve(system, symbols) return FiniteSet(*[tuple(i.xreplace(swap) for i in s) for s in soln]) if len(system) == 1 and len(symbols) == 1: return _solveset_work(system, symbols) # main code of def nonlinsolve() starts from here polys, polys_expr, nonpolys, denominators = _separate_poly_nonpoly( system, symbols) if len(symbols) == len(polys): # If all the equations in the system are poly if is_zero_dimensional(polys, symbols): # finite number of soln (Zero dimensional system) try: return _handle_zero_dimensional(polys, symbols, system) except NotImplementedError: # Right now it doesn't fail for any polynomial system of # equation. If `solve_poly_system` fails then `substitution` # method will handle it. result = substitution( polys_expr, symbols, exclude=denominators) return result # positive dimensional system res = _handle_positive_dimensional(polys, symbols, denominators) if isinstance(res, EmptySet) and any(not p.domain.is_Exact for p in polys): raise NotImplementedError("Equation not in exact domain. Try converting to rational") else: return res else: # If all the equations are not polynomial. # Use `substitution` method for the system result = substitution( polys_expr + nonpolys, symbols, exclude=denominators) return result
95c8b7e591806fd809bf3e78d5deb0fd959ad15caf008ab516535c4144ce5d99
""" This module contain solvers for all kinds of equations: - algebraic or transcendental, use solve() - recurrence, use rsolve() - differential, use dsolve() - nonlinear (numerically), use nsolve() (you will need a good starting point) """ from __future__ import print_function, division from sympy import divisors from sympy.core.compatibility import (iterable, is_sequence, ordered, default_sort_key, range) from sympy.core.sympify import sympify from sympy.core import (S, Add, Symbol, Equality, Dummy, Expr, Mul, Pow, Unequality) from sympy.core.exprtools import factor_terms from sympy.core.function import (expand_mul, expand_multinomial, expand_log, Derivative, AppliedUndef, UndefinedFunction, nfloat, Function, expand_power_exp, Lambda, _mexpand, expand) from sympy.integrals.integrals import Integral from sympy.core.numbers import ilcm, Float, Rational from sympy.core.relational import Relational, Ge, _canonical from sympy.core.logic import fuzzy_not, fuzzy_and from sympy.core.power import integer_log from sympy.logic.boolalg import And, Or, BooleanAtom from sympy.core.basic import preorder_traversal from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan, Abs, re, im, arg, sqrt, atan2) from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.simplify import (simplify, collect, powsimp, posify, powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction) from sympy.simplify.sqrtdenest import sqrt_depth from sympy.simplify.fu import TR1 from sympy.matrices import Matrix, zeros from sympy.polys import roots, cancel, factor, Poly, together, degree from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise from sympy.utilities.lambdify import lambdify from sympy.utilities.misc import filldedent from sympy.utilities.iterables import uniq, generate_bell, flatten from sympy.utilities.decorator import conserve_mpmath_dps from mpmath import findroot from sympy.solvers.polysys import solve_poly_system from sympy.solvers.inequalities import reduce_inequalities from types import GeneratorType from collections import defaultdict import warnings def recast_to_symbols(eqs, symbols): """Return (e, s, d) where e and s are versions of eqs and symbols in which any non-Symbol objects in symbols have been replaced with generic Dummy symbols and d is a dictionary that can be used to restore the original expressions. Examples ======== >>> from sympy.solvers.solvers import recast_to_symbols >>> from sympy import symbols, Function >>> x, y = symbols('x y') >>> fx = Function('f')(x) >>> eqs, syms = [fx + 1, x, y], [fx, y] >>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d) ([_X0 + 1, x, y], [_X0, y], {_X0: f(x)}) The original equations and symbols can be restored using d: >>> assert [i.xreplace(d) for i in eqs] == eqs >>> assert [d.get(i, i) for i in s] == syms """ if not iterable(eqs) and iterable(symbols): raise ValueError('Both eqs and symbols must be iterable') new_symbols = list(symbols) swap_sym = {} for i, s in enumerate(symbols): if not isinstance(s, Symbol) and s not in swap_sym: swap_sym[s] = Dummy('X%d' % i) new_symbols[i] = swap_sym[s] new_f = [] for i in eqs: try: new_f.append(i.subs(swap_sym)) except AttributeError: new_f.append(i) swap_sym = {v: k for k, v in swap_sym.items()} return new_f, new_symbols, swap_sym def _ispow(e): """Return True if e is a Pow or is exp.""" return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp)) def _simple_dens(f, symbols): # when checking if a denominator is zero, we can just check the # base of powers with nonzero exponents since if the base is zero # the power will be zero, too. To keep it simple and fast, we # limit simplification to exponents that are Numbers dens = set() for d in denoms(f, symbols): if d.is_Pow and d.exp.is_Number: if d.exp.is_zero: continue # foo**0 is never 0 d = d.base dens.add(d) return dens def denoms(eq, *symbols): """Return (recursively) set of all denominators that appear in eq that contain any symbol in ``symbols``; if ``symbols`` are not provided then all denominators will be returned. Examples ======== >>> from sympy.solvers.solvers import denoms >>> from sympy.abc import x, y, z >>> from sympy import sqrt >>> denoms(x/y) {y} >>> denoms(x/(y*z)) {y, z} >>> denoms(3/x + y/z) {x, z} >>> denoms(x/2 + y/z) {2, z} If `symbols` are provided then only denominators containing those symbols will be returned >>> denoms(1/x + 1/y + 1/z, y, z) {y, z} """ pot = preorder_traversal(eq) dens = set() for p in pot: den = denom(p) if den is S.One: continue for d in Mul.make_args(den): dens.add(d) if not symbols: return dens elif len(symbols) == 1: if iterable(symbols[0]): symbols = symbols[0] rv = [] for d in dens: free = d.free_symbols if any(s in free for s in symbols): rv.append(d) return set(rv) def checksol(f, symbol, sol=None, **flags): """Checks whether sol is a solution of equation f == 0. Input can be either a single symbol and corresponding value or a dictionary of symbols and values. When given as a dictionary and flag ``simplify=True``, the values in the dictionary will be simplified. ``f`` can be a single equation or an iterable of equations. A solution must satisfy all equations in ``f`` to be considered valid; if a solution does not satisfy any equation, False is returned; if one or more checks are inconclusive (and none are False) then None is returned. Examples ======== >>> from sympy import symbols >>> from sympy.solvers import checksol >>> x, y = symbols('x,y') >>> checksol(x**4 - 1, x, 1) True >>> checksol(x**4 - 1, x, 0) False >>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4}) True To check if an expression is zero using checksol, pass it as ``f`` and send an empty dictionary for ``symbol``: >>> checksol(x**2 + x - x*(x + 1), {}) True None is returned if checksol() could not conclude. flags: 'numerical=True (default)' do a fast numerical check if ``f`` has only one symbol. 'minimal=True (default is False)' a very fast, minimal testing. 'warn=True (default is False)' show a warning if checksol() could not conclude. 'simplify=True (default)' simplify solution before substituting into function and simplify the function before trying specific simplifications 'force=True (default is False)' make positive all symbols without assumptions regarding sign. """ from sympy.physics.units import Unit minimal = flags.get('minimal', False) if sol is not None: sol = {symbol: sol} elif isinstance(symbol, dict): sol = symbol else: msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)' raise ValueError(msg % (symbol, sol)) if iterable(f): if not f: raise ValueError('no functions to check') rv = True for fi in f: check = checksol(fi, sol, **flags) if check: continue if check is False: return False rv = None # don't return, wait to see if there's a False return rv if isinstance(f, Poly): f = f.as_expr() elif isinstance(f, (Equality, Unequality)): if f.rhs in (S.true, S.false): f = f.reversed B, E = f.args if B in (S.true, S.false): f = f.subs(sol) if f not in (S.true, S.false): return else: f = f.rewrite(Add, evaluate=False) if isinstance(f, BooleanAtom): return bool(f) elif not f.is_Relational and not f: return True if sol and not f.free_symbols & set(sol.keys()): # if f(y) == 0, x=3 does not set f(y) to zero...nor does it not return None illegal = set([S.NaN, S.ComplexInfinity, S.Infinity, S.NegativeInfinity]) if any(sympify(v).atoms() & illegal for k, v in sol.items()): return False was = f attempt = -1 numerical = flags.get('numerical', True) while 1: attempt += 1 if attempt == 0: val = f.subs(sol) if isinstance(val, Mul): val = val.as_independent(Unit)[0] if val.atoms() & illegal: return False elif attempt == 1: if val.free_symbols: if not val.is_constant(*list(sol.keys()), simplify=not minimal): return False # there are free symbols -- simple expansion might work _, val = val.as_content_primitive() val = _mexpand(val.as_numer_denom()[0], recursive=True) elif attempt == 2: if minimal: return if flags.get('simplify', True): for k in sol: sol[k] = simplify(sol[k]) # start over without the failed expanded form, possibly # with a simplified solution val = simplify(f.subs(sol)) if flags.get('force', True): val, reps = posify(val) # expansion may work now, so try again and check exval = _mexpand(val, recursive=True) if exval.is_number or not exval.free_symbols: # we can decide now val = exval else: # if there are no radicals and no functions then this can't be # zero anymore -- can it? pot = preorder_traversal(expand_mul(val)) seen = set() saw_pow_func = False for p in pot: if p in seen: continue seen.add(p) if p.is_Pow and not p.exp.is_Integer: saw_pow_func = True elif p.is_Function: saw_pow_func = True elif isinstance(p, UndefinedFunction): saw_pow_func = True if saw_pow_func: break if saw_pow_func is False: return False if flags.get('force', True): # don't do a zero check with the positive assumptions in place val = val.subs(reps) nz = fuzzy_not(val.is_zero) if nz is not None: # issue 5673: nz may be True even when False # so these are just hacks to keep a false positive # from being returned # HACK 1: LambertW (issue 5673) if val.is_number and val.has(LambertW): # don't eval this to verify solution since if we got here, # numerical must be False return None # add other HACKs here if necessary, otherwise we assume # the nz value is correct return not nz break if val == was: continue elif val.is_Rational: return val == 0 if numerical and not val.free_symbols: if val in (S.true, S.false): return bool(val) return bool(abs(val.n(18).n(12, chop=True)) < 1e-9) was = val if flags.get('warn', False): warnings.warn("\n\tWarning: could not verify solution %s." % sol) # returns None if it can't conclude # TODO: improve solution testing def failing_assumptions(expr, **assumptions): """Return a dictionary containing assumptions with values not matching those of the passed assumptions. Examples ======== >>> from sympy import failing_assumptions, Symbol >>> x = Symbol('x', real=True, positive=True) >>> y = Symbol('y') >>> failing_assumptions(6*x + y, real=True, positive=True) {'positive': None, 'real': None} >>> failing_assumptions(x**2 - 1, positive=True) {'positive': None} If all assumptions satisfy the `expr` an empty dictionary is returned. >>> failing_assumptions(x**2, positive=True) {} """ expr = sympify(expr) failed = {} for key in list(assumptions.keys()): test = getattr(expr, 'is_%s' % key, None) if test is not assumptions[key]: failed[key] = test return failed # {} or {assumption: value != desired} def check_assumptions(expr, against=None, **assumptions): """Checks whether expression `expr` satisfies all assumptions. `assumptions` is a dict of assumptions: {'assumption': True|False, ...}. Examples ======== >>> from sympy import Symbol, pi, I, exp, check_assumptions >>> check_assumptions(-5, integer=True) True >>> check_assumptions(pi, real=True, integer=False) True >>> check_assumptions(pi, real=True, negative=True) False >>> check_assumptions(exp(I*pi/7), real=False) True >>> x = Symbol('x', real=True, positive=True) >>> check_assumptions(2*x + 1, real=True, positive=True) True >>> check_assumptions(-2*x - 5, real=True, positive=True) False To check assumptions of ``expr`` against another variable or expression, pass the expression or variable as ``against``. >>> check_assumptions(2*x + 1, x) True `None` is returned if check_assumptions() could not conclude. >>> check_assumptions(2*x - 1, real=True, positive=True) >>> z = Symbol('z') >>> check_assumptions(z, real=True) See Also ======== failing_assumptions """ expr = sympify(expr) if against: if not isinstance(against, Symbol): raise TypeError('against should be of type Symbol') if assumptions: raise AssertionError('No assumptions should be specified') assumptions = against.assumptions0 def _test(key): v = getattr(expr, 'is_' + key, None) if v is not None: return assumptions[key] is v return fuzzy_and(_test(key) for key in assumptions) def solve(f, *symbols, **flags): r""" Algebraically solves equations and systems of equations. Currently supported are: - polynomial, - transcendental - piecewise combinations of the above - systems of linear and polynomial equations - systems containing relational expressions. Input is formed as: * f - a single Expr or Poly that must be zero, - an Equality - a Relational expression or boolean - iterable of one or more of the above * symbols (object(s) to solve for) specified as - none given (other non-numeric objects will be used) - single symbol - denested list of symbols e.g. solve(f, x, y) - ordered iterable of symbols e.g. solve(f, [x, y]) * flags 'dict'=True (default is False) return list (perhaps empty) of solution mappings 'set'=True (default is False) return list of symbols and set of tuple(s) of solution(s) 'exclude=[] (default)' don't try to solve for any of the free symbols in exclude; if expressions are given, the free symbols in them will be extracted automatically. 'check=True (default)' If False, don't do any testing of solutions. This can be useful if one wants to include solutions that make any denominator zero. 'numerical=True (default)' do a fast numerical check if ``f`` has only one symbol. 'minimal=True (default is False)' a very fast, minimal testing. 'warn=True (default is False)' show a warning if checksol() could not conclude. 'simplify=True (default)' simplify all but polynomials of order 3 or greater before returning them and (if check is not False) use the general simplify function on the solutions and the expression obtained when they are substituted into the function which should be zero 'force=True (default is False)' make positive all symbols without assumptions regarding sign. 'rational=True (default)' recast Floats as Rational; if this option is not used, the system containing floats may fail to solve because of issues with polys. If rational=None, Floats will be recast as rationals but the answer will be recast as Floats. If the flag is False then nothing will be done to the Floats. 'manual=True (default is False)' do not use the polys/matrix method to solve a system of equations, solve them one at a time as you might "manually" 'implicit=True (default is False)' allows solve to return a solution for a pattern in terms of other functions that contain that pattern; this is only needed if the pattern is inside of some invertible function like cos, exp, .... 'particular=True (default is False)' instructs solve to try to find a particular solution to a linear system with as many zeros as possible; this is very expensive 'quick=True (default is False)' when using particular=True, use a fast heuristic instead to find a solution with many zeros (instead of using the very slow method guaranteed to find the largest number of zeros possible) 'cubics=True (default)' return explicit solutions when cubic expressions are encountered 'quartics=True (default)' return explicit solutions when quartic expressions are encountered 'quintics=True (default)' return explicit solutions (if possible) when quintic expressions are encountered Examples ======== The output varies according to the input and can be seen by example:: >>> from sympy import solve, Poly, Eq, Function, exp >>> from sympy.abc import x, y, z, a, b >>> f = Function('f') * boolean or univariate Relational >>> solve(x < 3) (-oo < x) & (x < 3) * to always get a list of solution mappings, use flag dict=True >>> solve(x - 3, dict=True) [{x: 3}] >>> sol = solve([x - 3, y - 1], dict=True) >>> sol [{x: 3, y: 1}] >>> sol[0][x] 3 >>> sol[0][y] 1 * to get a list of symbols and set of solution(s) use flag set=True >>> solve([x**2 - 3, y - 1], set=True) ([x, y], {(-sqrt(3), 1), (sqrt(3), 1)}) * single expression and single symbol that is in the expression >>> solve(x - y, x) [y] >>> solve(x - 3, x) [3] >>> solve(Eq(x, 3), x) [3] >>> solve(Poly(x - 3), x) [3] >>> solve(x**2 - y**2, x, set=True) ([x], {(-y,), (y,)}) >>> solve(x**4 - 1, x, set=True) ([x], {(-1,), (1,), (-I,), (I,)}) * single expression with no symbol that is in the expression >>> solve(3, x) [] >>> solve(x - 3, y) [] * single expression with no symbol given In this case, all free symbols will be selected as potential symbols to solve for. If the equation is univariate then a list of solutions is returned; otherwise -- as is the case when symbols are given as an iterable of length > 1 -- a list of mappings will be returned. >>> solve(x - 3) [3] >>> solve(x**2 - y**2) [{x: -y}, {x: y}] >>> solve(z**2*x**2 - z**2*y**2) [{x: -y}, {x: y}, {z: 0}] >>> solve(z**2*x - z**2*y**2) [{x: y**2}, {z: 0}] * when an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save one from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the subs method. >>> solve(f(x) - x, f(x)) [x] >>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x)) [x + f(x)] >>> solve(f(x).diff(x) - f(x) - x, f(x)) [-x + Derivative(f(x), x)] >>> solve(x + exp(x)**2, exp(x), set=True) ([exp(x)], {(-sqrt(-x),), (sqrt(-x),)}) >>> from sympy import Indexed, IndexedBase, Tuple, sqrt >>> A = IndexedBase('A') >>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1) >>> solve(eqs, eqs.atoms(Indexed)) {A[1]: 1, A[2]: 2} * To solve for a *symbol* implicitly, use 'implicit=True': >>> solve(x + exp(x), x) [-LambertW(1)] >>> solve(x + exp(x), x, implicit=True) [-exp(x)] * It is possible to solve for anything that can be targeted with subs: >>> solve(x + 2 + sqrt(3), x + 2) [-sqrt(3)] >>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2) {y: -2 + sqrt(3), x + 2: -sqrt(3)} * Nothing heroic is done in this implicit solving so you may end up with a symbol still in the solution: >>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y) >>> solve(eqs, y, x + 2) {y: -sqrt(3)/(x + 3), x + 2: (-2*x - 6 + sqrt(3))/(x + 3)} >>> solve(eqs, y*x, x) {x: -y - 4, x*y: -3*y - sqrt(3)} * if you attempt to solve for a number remember that the number you have obtained does not necessarily mean that the value is equivalent to the expression obtained: >>> solve(sqrt(2) - 1, 1) [sqrt(2)] >>> solve(x - y + 1, 1) # /!\ -1 is targeted, too [x/(y - 1)] >>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)] [-x + y] * To solve for a function within a derivative, use dsolve. * single expression and more than 1 symbol * when there is a linear solution >>> solve(x - y**2, x, y) [(y**2, y)] >>> solve(x**2 - y, x, y) [(x, x**2)] >>> solve(x**2 - y, x, y, dict=True) [{y: x**2}] * when undetermined coefficients are identified * that are linear >>> solve((a + b)*x - b + 2, a, b) {a: -2, b: 2} * that are nonlinear >>> solve((a + b)*x - b**2 + 2, a, b, set=True) ([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}) * if there is no linear solution then the first successful attempt for a nonlinear solution will be returned >>> solve(x**2 - y**2, x, y, dict=True) [{x: -y}, {x: y}] >>> solve(x**2 - y**2/exp(x), x, y, dict=True) [{x: 2*LambertW(y/2)}] >>> solve(x**2 - y**2/exp(x), y, x) [(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)] * iterable of one or more of the above * involving relationals or bools >>> solve([x < 3, x - 2]) Eq(x, 2) >>> solve([x > 3, x - 2]) False * when the system is linear * with a solution >>> solve([x - 3], x) {x: 3} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y) {x: -5*y + 2, z: 21*y - 6} * without a solution >>> solve([x + 3, x - 3]) [] * when the system is not linear >>> solve([x**2 + y -2, y**2 - 4], x, y, set=True) ([x, y], {(-2, -2), (0, 2), (2, -2)}) * if no symbols are given, all free symbols will be selected and a list of mappings returned >>> solve([x - 2, x**2 + y]) [{x: 2, y: -4}] >>> solve([x - 2, x**2 + f(x)], {f(x), x}) [{x: 2, f(x): -4}] * if any equation doesn't depend on the symbol(s) given it will be eliminated from the equation set and an answer may be given implicitly in terms of variables that were not of interest >>> solve([x - y, y - 3], x) {x: y} Notes ===== solve() with check=True (default) will run through the symbol tags to elimate unwanted solutions. If no assumptions are included all possible solutions will be returned. >>> from sympy import Symbol, solve >>> x = Symbol("x") >>> solve(x**2 - 1) [-1, 1] By using the positive tag only one solution will be returned: >>> pos = Symbol("pos", positive=True) >>> solve(pos**2 - 1) [1] Assumptions aren't checked when `solve()` input involves relationals or bools. When the solutions are checked, those that make any denominator zero are automatically excluded. If you do not want to exclude such solutions then use the check=False option: >>> from sympy import sin, limit >>> solve(sin(x)/x) # 0 is excluded [pi] If check=False then a solution to the numerator being zero is found: x = 0. In this case, this is a spurious solution since sin(x)/x has the well known limit (without dicontinuity) of 1 at x = 0: >>> solve(sin(x)/x, check=False) [0, pi] In the following case, however, the limit exists and is equal to the value of x = 0 that is excluded when check=True: >>> eq = x**2*(1/x - z**2/x) >>> solve(eq, x) [] >>> solve(eq, x, check=False) [0] >>> limit(eq, x, 0, '-') 0 >>> limit(eq, x, 0, '+') 0 Disabling high-order, explicit solutions ---------------------------------------- When solving polynomial expressions, one might not want explicit solutions (which can be quite long). If the expression is univariate, CRootOf instances will be returned instead: >>> solve(x**3 - x + 1) [-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)] >>> solve(x**3 - x + 1, cubics=False) [CRootOf(x**3 - x + 1, 0), CRootOf(x**3 - x + 1, 1), CRootOf(x**3 - x + 1, 2)] If the expression is multivariate, no solution might be returned: >>> solve(x**3 - x + a, x, cubics=False) [] Sometimes solutions will be obtained even when a flag is False because the expression could be factored. In the following example, the equation can be factored as the product of a linear and a quadratic factor so explicit solutions (which did not require solving a cubic expression) are obtained: >>> eq = x**3 + 3*x**2 + x - 1 >>> solve(eq, cubics=False) [-1, -1 + sqrt(2), -sqrt(2) - 1] Solving equations involving radicals ------------------------------------ Because of SymPy's use of the principle root (issue #8789), some solutions to radical equations will be missed unless check=False: >>> from sympy import root >>> eq = root(x**3 - 3*x**2, 3) + 1 - x >>> solve(eq) [] >>> solve(eq, check=False) [1/3] In the above example there is only a single solution to the equation. Other expressions will yield spurious roots which must be checked manually; roots which give a negative argument to odd-powered radicals will also need special checking: >>> from sympy import real_root, S >>> eq = root(x, 3) - root(x, 5) + S(1)/7 >>> solve(eq) # this gives 2 solutions but misses a 3rd [CRootOf(7*_p**5 - 7*_p**3 + 1, 1)**15, CRootOf(7*_p**5 - 7*_p**3 + 1, 2)**15] >>> sol = solve(eq, check=False) >>> [abs(eq.subs(x,i).n(2)) for i in sol] [0.48, 0.e-110, 0.e-110, 0.052, 0.052] The first solution is negative so real_root must be used to see that it satisfies the expression: >>> abs(real_root(eq.subs(x, sol[0])).n(2)) 0.e-110 If the roots of the equation are not real then more care will be necessary to find the roots, especially for higher order equations. Consider the following expression: >>> expr = root(x, 3) - root(x, 5) We will construct a known value for this expression at x = 3 by selecting the 1-th root for each radical: >>> expr1 = root(x, 3, 1) - root(x, 5, 1) >>> v = expr1.subs(x, -3) The solve function is unable to find any exact roots to this equation: >>> eq = Eq(expr, v); eq1 = Eq(expr1, v) >>> solve(eq, check=False), solve(eq1, check=False) ([], []) The function unrad, however, can be used to get a form of the equation for which numerical roots can be found: >>> from sympy.solvers.solvers import unrad >>> from sympy import nroots >>> e, (p, cov) = unrad(eq) >>> pvals = nroots(e) >>> inversion = solve(cov, x)[0] >>> xvals = [inversion.subs(p, i) for i in pvals] Although eq or eq1 could have been used to find xvals, the solution can only be verified with expr1: >>> z = expr - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9] [] >>> z1 = expr1 - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9] [-3.0] See Also ======== - rsolve() for solving recurrence relationships - dsolve() for solving differential equations """ # keeping track of how f was passed since if it is a list # a dictionary of results will be returned. ########################################################################### def _sympified_list(w): return list(map(sympify, w if iterable(w) else [w])) bare_f = not iterable(f) ordered_symbols = (symbols and symbols[0] and (isinstance(symbols[0], Symbol) or is_sequence(symbols[0], include=GeneratorType) ) ) f, symbols = (_sympified_list(w) for w in [f, symbols]) implicit = flags.get('implicit', False) # preprocess symbol(s) ########################################################################### if not symbols: # get symbols from equations symbols = set().union(*[fi.free_symbols for fi in f]) if len(symbols) < len(f): for fi in f: pot = preorder_traversal(fi) for p in pot: if isinstance(p, AppliedUndef): flags['dict'] = True # better show symbols symbols.add(p) pot.skip() # don't go any deeper symbols = list(symbols) ordered_symbols = False elif len(symbols) == 1 and iterable(symbols[0]): symbols = symbols[0] # remove symbols the user is not interested in exclude = flags.pop('exclude', set()) if exclude: if isinstance(exclude, Expr): exclude = [exclude] exclude = set().union(*[e.free_symbols for e in sympify(exclude)]) symbols = [s for s in symbols if s not in exclude] # preprocess equation(s) ########################################################################### for i, fi in enumerate(f): if isinstance(fi, (Equality, Unequality)): if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]: fi = fi.lhs - fi.rhs else: args = fi.args if args[1] in (S.true, S.false): args = args[1], args[0] L, R = args if L in (S.false, S.true): if isinstance(fi, Unequality): L = ~L if R.is_Relational: fi = ~R if L is S.false else R elif R.is_Symbol: return L elif R.is_Boolean and (~R).is_Symbol: return ~L else: raise NotImplementedError(filldedent(''' Unanticipated argument of Eq when other arg is True or False. ''')) else: fi = fi.rewrite(Add, evaluate=False) f[i] = fi if isinstance(fi, (bool, BooleanAtom)) or fi.is_Relational: return reduce_inequalities(f, symbols=symbols) if isinstance(fi, Poly): f[i] = fi.as_expr() # rewrite hyperbolics in terms of exp f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction), lambda w: w.rewrite(exp)) # if we have a Matrix, we need to iterate over its elements again if f[i].is_Matrix: bare_f = False f.extend(list(f[i])) f[i] = S.Zero # if we can split it into real and imaginary parts then do so freei = f[i].free_symbols if freei and all(s.is_real or s.is_imaginary for s in freei): fr, fi = f[i].as_real_imag() # accept as long as new re, im, arg or atan2 are not introduced had = f[i].atoms(re, im, arg, atan2) if fr and fi and fr != fi and not any( i.atoms(re, im, arg, atan2) - had for i in (fr, fi)): if bare_f: bare_f = False f[i: i + 1] = [fr, fi] # real/imag handling ----------------------------- w = Dummy('w') piece = Lambda(w, Piecewise((w, Ge(w, 0)), (-w, True))) for i, fi in enumerate(f): # Abs reps = [] for a in fi.atoms(Abs): if not a.has(*symbols): continue if a.args[0].is_real is None: raise NotImplementedError('solving %s when the argument ' 'is not real or imaginary.' % a) reps.append((a, piece(a.args[0]) if a.args[0].is_real else \ piece(a.args[0]*S.ImaginaryUnit))) fi = fi.subs(reps) # arg _arg = [a for a in fi.atoms(arg) if a.has(*symbols)] fi = fi.xreplace(dict(list(zip(_arg, [atan(im(a.args[0])/re(a.args[0])) for a in _arg])))) # save changes f[i] = fi # see if re(s) or im(s) appear irf = [] for s in symbols: if s.is_real or s.is_imaginary: continue # neither re(x) nor im(x) will appear # if re(s) or im(s) appear, the auxiliary equation must be present if any(fi.has(re(s), im(s)) for fi in f): irf.append((s, re(s) + S.ImaginaryUnit*im(s))) if irf: for s, rhs in irf: for i, fi in enumerate(f): f[i] = fi.xreplace({s: rhs}) f.append(s - rhs) symbols.extend([re(s), im(s)]) if bare_f: bare_f = False flags['dict'] = True # end of real/imag handling ----------------------------- symbols = list(uniq(symbols)) if not ordered_symbols: # we do this to make the results returned canonical in case f # contains a system of nonlinear equations; all other cases should # be unambiguous symbols = sorted(symbols, key=default_sort_key) # we can solve for non-symbol entities by replacing them with Dummy symbols f, symbols, swap_sym = recast_to_symbols(f, symbols) # this is needed in the next two events symset = set(symbols) # get rid of equations that have no symbols of interest; we don't # try to solve them because the user didn't ask and they might be # hard to solve; this means that solutions may be given in terms # of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y} newf = [] for fi in f: # let the solver handle equations that.. # - have no symbols but are expressions # - have symbols of interest # - have no symbols of interest but are constant # but when an expression is not constant and has no symbols of # interest, it can't change what we obtain for a solution from # the remaining equations so we don't include it; and if it's # zero it can be removed and if it's not zero, there is no # solution for the equation set as a whole # # The reason for doing this filtering is to allow an answer # to be obtained to queries like solve((x - y, y), x); without # this mod the return value is [] ok = False if fi.has(*symset): ok = True else: free = fi.free_symbols if not free: if fi.is_Number: if fi.is_zero: continue return [] ok = True else: if fi.is_constant(): ok = True if ok: newf.append(fi) if not newf: return [] f = newf del newf # mask off any Object that we aren't going to invert: Derivative, # Integral, etc... so that solving for anything that they contain will # give an implicit solution seen = set() non_inverts = set() for fi in f: pot = preorder_traversal(fi) for p in pot: if not isinstance(p, Expr) or isinstance(p, Piecewise): pass elif (isinstance(p, bool) or not p.args or p in symset or p.is_Add or p.is_Mul or p.is_Pow and not implicit or p.is_Function and not implicit) and p.func not in (re, im): continue elif not p in seen: seen.add(p) if p.free_symbols & symset: non_inverts.add(p) else: continue pot.skip() del seen non_inverts = dict(list(zip(non_inverts, [Dummy() for d in non_inverts]))) f = [fi.subs(non_inverts) for fi in f] # Both xreplace and subs are needed below: xreplace to force substitution # inside Derivative, subs to handle non-straightforward substitutions non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()] # rationalize Floats floats = False if flags.get('rational', True) is not False: for i, fi in enumerate(f): if fi.has(Float): floats = True f[i] = nsimplify(fi, rational=True) # capture any denominators before rewriting since # they may disappear after the rewrite, e.g. issue 14779 flags['_denominators'] = _simple_dens(f[0], symbols) # Any embedded piecewise functions need to be brought out to the # top level so that the appropriate strategy gets selected. # However, this is necessary only if one of the piecewise # functions depends on one of the symbols we are solving for. def _has_piecewise(e): if e.is_Piecewise: return e.has(*symbols) return any([_has_piecewise(a) for a in e.args]) for i, fi in enumerate(f): if _has_piecewise(fi): f[i] = piecewise_fold(fi) # # try to get a solution ########################################################################### if bare_f: solution = _solve(f[0], *symbols, **flags) else: solution = _solve_system(f, symbols, **flags) # # postprocessing ########################################################################### # Restore masked-off objects if non_inverts: def _do_dict(solution): return dict([(k, v.subs(non_inverts)) for k, v in solution.items()]) for i in range(1): if isinstance(solution, dict): solution = _do_dict(solution) break elif solution and isinstance(solution, list): if isinstance(solution[0], dict): solution = [_do_dict(s) for s in solution] break elif isinstance(solution[0], tuple): solution = [tuple([v.subs(non_inverts) for v in s]) for s in solution] break else: solution = [v.subs(non_inverts) for v in solution] break elif not solution: break else: raise NotImplementedError(filldedent(''' no handling of %s was implemented''' % solution)) # Restore original "symbols" if a dictionary is returned. # This is not necessary for # - the single univariate equation case # since the symbol will have been removed from the solution; # - the nonlinear poly_system since that only supports zero-dimensional # systems and those results come back as a list # # ** unless there were Derivatives with the symbols, but those were handled # above. if swap_sym: symbols = [swap_sym.get(k, k) for k in symbols] if isinstance(solution, dict): solution = dict([(swap_sym.get(k, k), v.subs(swap_sym)) for k, v in solution.items()]) elif solution and isinstance(solution, list) and isinstance(solution[0], dict): for i, sol in enumerate(solution): solution[i] = dict([(swap_sym.get(k, k), v.subs(swap_sym)) for k, v in sol.items()]) # undo the dictionary solutions returned when the system was only partially # solved with poly-system if all symbols are present if ( not flags.get('dict', False) and solution and ordered_symbols and not isinstance(solution, dict) and all(isinstance(sol, dict) for sol in solution) ): solution = [tuple([r.get(s, s).subs(r) for s in symbols]) for r in solution] # Get assumptions about symbols, to filter solutions. # Note that if assumptions about a solution can't be verified, it is still # returned. check = flags.get('check', True) # restore floats if floats and solution and flags.get('rational', None) is None: solution = nfloat(solution, exponent=False) if check and solution: # assumption checking warn = flags.get('warn', False) got_None = [] # solutions for which one or more symbols gave None no_False = [] # solutions for which no symbols gave False if isinstance(solution, tuple): # this has already been checked and is in as_set form return solution elif isinstance(solution, list): if isinstance(solution[0], tuple): for sol in solution: for symb, val in zip(symbols, sol): test = check_assumptions(val, **symb.assumptions0) if test is False: break if test is None: got_None.append(sol) else: no_False.append(sol) elif isinstance(solution[0], dict): for sol in solution: a_None = False for symb, val in sol.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: break a_None = True else: no_False.append(sol) if a_None: got_None.append(sol) else: # list of expressions for sol in solution: test = check_assumptions(sol, **symbols[0].assumptions0) if test is False: continue no_False.append(sol) if test is None: got_None.append(sol) elif isinstance(solution, dict): a_None = False for symb, val in solution.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: no_False = None break a_None = True else: no_False = solution if a_None: got_None.append(solution) elif isinstance(solution, (Relational, And, Or)): if len(symbols) != 1: raise ValueError("Length should be 1") if warn and symbols[0].assumptions0: warnings.warn(filldedent(""" \tWarning: assumptions about variable '%s' are not handled currently.""" % symbols[0])) # TODO: check also variable assumptions for inequalities else: raise TypeError('Unrecognized solution') # improve the checker solution = no_False if warn and got_None: warnings.warn(filldedent(""" \tWarning: assumptions concerning following solution(s) can't be checked:""" + '\n\t' + ', '.join(str(s) for s in got_None))) # # done ########################################################################### as_dict = flags.get('dict', False) as_set = flags.get('set', False) if not as_set and isinstance(solution, list): # Make sure that a list of solutions is ordered in a canonical way. solution.sort(key=default_sort_key) if not as_dict and not as_set: return solution or [] # return a list of mappings or [] if not solution: solution = [] else: if isinstance(solution, dict): solution = [solution] elif iterable(solution[0]): solution = [dict(list(zip(symbols, s))) for s in solution] elif isinstance(solution[0], dict): pass else: if len(symbols) != 1: raise ValueError("Length should be 1") solution = [{symbols[0]: s} for s in solution] if as_dict: return solution assert as_set if not solution: return [], set() k = list(ordered(solution[0].keys())) return k, {tuple([s[ki] for ki in k]) for s in solution} def _solve(f, *symbols, **flags): """Return a checked solution for f in terms of one or more of the symbols. A list should be returned except for the case when a linear undetermined-coefficients equation is encountered (in which case a dictionary is returned). If no method is implemented to solve the equation, a NotImplementedError will be raised. In the case that conversion of an expression to a Poly gives None a ValueError will be raised.""" not_impl_msg = "No algorithms are implemented to solve equation %s" if len(symbols) != 1: soln = None free = f.free_symbols ex = free - set(symbols) if len(ex) != 1: ind, dep = f.as_independent(*symbols) ex = ind.free_symbols & dep.free_symbols if len(ex) == 1: ex = ex.pop() try: # soln may come back as dict, list of dicts or tuples, or # tuple of symbol list and set of solution tuples soln = solve_undetermined_coeffs(f, symbols, ex, **flags) except NotImplementedError: pass if soln: if flags.get('simplify', True): if isinstance(soln, dict): for k in soln: soln[k] = simplify(soln[k]) elif isinstance(soln, list): if isinstance(soln[0], dict): for d in soln: for k in d: d[k] = simplify(d[k]) elif isinstance(soln[0], tuple): soln = [tuple(simplify(i) for i in j) for j in soln] else: raise TypeError('unrecognized args in list') elif isinstance(soln, tuple): sym, sols = soln soln = sym, {tuple(simplify(i) for i in j) for j in sols} else: raise TypeError('unrecognized solution type') return soln # find first successful solution failed = [] got_s = set([]) result = [] for s in symbols: xi, v = solve_linear(f, symbols=[s]) if xi == s: # no need to check but we should simplify if desired if flags.get('simplify', True): v = simplify(v) vfree = v.free_symbols if got_s and any([ss in vfree for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(xi) result.append({xi: v}) elif xi: # there might be a non-linear solution if xi is not 0 failed.append(s) if not failed: return result for s in failed: try: soln = _solve(f, s, **flags) for sol in soln: if got_s and any([ss in sol.free_symbols for ss in got_s]): # sol depends on previously solved symbols: discard it continue got_s.add(s) result.append({s: sol}) except NotImplementedError: continue if got_s: return result else: raise NotImplementedError(not_impl_msg % f) symbol = symbols[0] # /!\ capture this flag then set it to False so that no checking in # recursive calls will be done; only the final answer is checked flags['check'] = checkdens = check = flags.pop('check', True) # build up solutions if f is a Mul if f.is_Mul: result = set() for m in f.args: if m in set([S.NegativeInfinity, S.ComplexInfinity, S.Infinity]): result = set() break soln = _solve(m, symbol, **flags) result.update(set(soln)) result = list(result) if check: # all solutions have been checked but now we must # check that the solutions do not set denominators # in any factor to zero dens = flags.get('_denominators', _simple_dens(f, symbols)) result = [s for s in result if all(not checksol(den, {symbol: s}, **flags) for den in dens)] # set flags for quick exit at end; solutions for each # factor were already checked and simplified check = False flags['simplify'] = False elif f.is_Piecewise: result = set() for i, (expr, cond) in enumerate(f.args): if expr.is_zero: raise NotImplementedError( 'solve cannot represent interval solutions') candidates = _solve(expr, symbol, **flags) # the explicit condition for this expr is the current cond # and none of the previous conditions args = [~c for _, c in f.args[:i]] + [cond] cond = And(*args) for candidate in candidates: if candidate in result: # an unconditional value was already there continue try: v = cond.subs(symbol, candidate) try: # unconditionally take the simplification of v v = v._eval_simpify( ratio=2, measure=lambda x: 1) except AttributeError: pass except TypeError: # incompatible type with condition(s) continue if v == False: continue result.add(Piecewise( (candidate, v), (S.NaN, True))) # set flags for quick exit at end; solutions for each # piece were already checked and simplified check = False flags['simplify'] = False else: # first see if it really depends on symbol and whether there # is only a linear solution f_num, sol = solve_linear(f, symbols=symbols) if f_num is S.Zero or sol is S.NaN: return [] elif f_num.is_Symbol: # no need to check but simplify if desired if flags.get('simplify', True): sol = simplify(sol) return [sol] result = False # no solution was obtained msg = '' # there is no failure message # Poly is generally robust enough to convert anything to # a polynomial and tell us the different generators that it # contains, so we will inspect the generators identified by # polys to figure out what to do. # try to identify a single generator that will allow us to solve this # as a polynomial, followed (perhaps) by a change of variables if the # generator is not a symbol try: poly = Poly(f_num) if poly is None: raise ValueError('could not convert %s to Poly' % f_num) except GeneratorsNeeded: simplified_f = simplify(f_num) if simplified_f != f_num: return _solve(simplified_f, symbol, **flags) raise ValueError('expression appears to be a constant') gens = [g for g in poly.gens if g.has(symbol)] def _as_base_q(x): """Return (b**e, q) for x = b**(p*e/q) where p/q is the leading Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3) """ b, e = x.as_base_exp() if e.is_Rational: return b, e.q if not e.is_Mul: return x, 1 c, ee = e.as_coeff_Mul() if c.is_Rational and c is not S.One: # c could be a Float return b**ee, c.q return x, 1 if len(gens) > 1: # If there is more than one generator, it could be that the # generators have the same base but different powers, e.g. # >>> Poly(exp(x) + 1/exp(x)) # Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ') # # If unrad was not disabled then there should be no rational # exponents appearing as in # >>> Poly(sqrt(x) + sqrt(sqrt(x))) # Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ') bases, qs = list(zip(*[_as_base_q(g) for g in gens])) bases = set(bases) if len(bases) > 1 or not all(q == 1 for q in qs): funcs = set(b for b in bases if b.is_Function) trig = set([_ for _ in funcs if isinstance(_, TrigonometricFunction)]) other = funcs - trig if not other and len(funcs.intersection(trig)) > 1: newf = TR1(f_num).rewrite(tan) if newf != f_num: # don't check the rewritten form --check # solutions in the un-rewritten form below flags['check'] = False result = _solve(newf, symbol, **flags) flags['check'] = check # just a simple case - see if replacement of single function # clears all symbol-dependent functions, e.g. # log(x) - log(log(x) - 1) - 3 can be solved even though it has # two generators. if result is False and funcs: funcs = list(ordered(funcs)) # put shallowest function first f1 = funcs[0] t = Dummy('t') # perform the substitution ftry = f_num.subs(f1, t) # if no Functions left, we can proceed with usual solve if not ftry.has(symbol): cv_sols = _solve(ftry, t, **flags) cv_inv = _solve(t - f1, symbol, **flags)[0] sols = list() for sol in cv_sols: sols.append(cv_inv.subs(t, sol)) result = list(ordered(sols)) if result is False: msg = 'multiple generators %s' % gens else: # e.g. case where gens are exp(x), exp(-x) u = bases.pop() t = Dummy('t') inv = _solve(u - t, symbol, **flags) if isinstance(u, (Pow, exp)): # this will be resolved by factor in _tsolve but we might # as well try a simple expansion here to get things in # order so something like the following will work now without # having to factor: # # >>> eq = (exp(I*(-x-2))+exp(I*(x+2))) # >>> eq.subs(exp(x),y) # fails # exp(I*(-x - 2)) + exp(I*(x + 2)) # >>> eq.expand().subs(exp(x),y) # works # y**I*exp(2*I) + y**(-I)*exp(-2*I) def _expand(p): b, e = p.as_base_exp() e = expand_mul(e) return expand_power_exp(b**e) ftry = f_num.replace( lambda w: w.is_Pow or isinstance(w, exp), _expand).subs(u, t) if not ftry.has(symbol): soln = _solve(ftry, t, **flags) sols = list() for sol in soln: for i in inv: sols.append(i.subs(t, sol)) result = list(ordered(sols)) elif len(gens) == 1: # There is only one generator that we are interested in, but # there may have been more than one generator identified by # polys (e.g. for symbols other than the one we are interested # in) so recast the poly in terms of our generator of interest. # Also use composite=True with f_num since Poly won't update # poly as documented in issue 8810. poly = Poly(f_num, gens[0], composite=True) # if we aren't on the tsolve-pass, use roots if not flags.pop('tsolve', False): soln = None deg = poly.degree() flags['tsolve'] = True solvers = dict([(k, flags.get(k, True)) for k in ('cubics', 'quartics', 'quintics')]) soln = roots(poly, **solvers) if sum(soln.values()) < deg: # e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 + # 5000*x**2 + 6250*x + 3189) -> {} # so all_roots is used and RootOf instances are # returned *unless* the system is multivariate # or high-order EX domain. try: soln = poly.all_roots() except NotImplementedError: if not flags.get('incomplete', True): raise NotImplementedError( filldedent(''' Neither high-order multivariate polynomials nor sorting of EX-domain polynomials is supported. If you want to see any results, pass keyword incomplete=True to solve; to see numerical values of roots for univariate expressions, use nroots. ''')) else: pass else: soln = list(soln.keys()) if soln is not None: u = poly.gen if u != symbol: try: t = Dummy('t') iv = _solve(u - t, symbol, **flags) soln = list(ordered({i.subs(t, s) for i in iv for s in soln})) except NotImplementedError: # perhaps _tsolve can handle f_num soln = None else: check = False # only dens need to be checked if soln is not None: if len(soln) > 2: # if the flag wasn't set then unset it since high-order # results are quite long. Perhaps one could base this # decision on a certain critical length of the # roots. In addition, wester test M2 has an expression # whose roots can be shown to be real with the # unsimplified form of the solution whereas only one of # the simplified forms appears to be real. flags['simplify'] = flags.get('simplify', False) result = soln # fallback if above fails # ----------------------- if result is False: # try unrad if flags.pop('_unrad', True): try: u = unrad(f_num, symbol) except (ValueError, NotImplementedError): u = False if u: eq, cov = u if cov: isym, ieq = cov inv = _solve(ieq, symbol, **flags)[0] rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)} else: try: rv = set(_solve(eq, symbol, **flags)) except NotImplementedError: rv = None if rv is not None: result = list(ordered(rv)) # if the flag wasn't set then unset it since unrad results # can be quite long or of very high order flags['simplify'] = flags.get('simplify', False) else: pass # for coverage # try _tsolve if result is False: flags.pop('tsolve', None) # allow tsolve to be used on next pass try: soln = _tsolve(f_num, symbol, **flags) if soln is not None: result = soln except PolynomialError: pass # ----------- end of fallback ---------------------------- if result is False: raise NotImplementedError('\n'.join([msg, not_impl_msg % f])) if flags.get('simplify', True): result = list(map(simplify, result)) # we just simplified the solution so we now set the flag to # False so the simplification doesn't happen again in checksol() flags['simplify'] = False if checkdens: # reject any result that makes any denom. affirmatively 0; # if in doubt, keep it dens = _simple_dens(f, symbols) result = [s for s in result if all(not checksol(d, {symbol: s}, **flags) for d in dens)] if check: # keep only results if the check is not False result = [r for r in result if checksol(f_num, {symbol: r}, **flags) is not False] return result def _solve_system(exprs, symbols, **flags): if not exprs: return [] polys = [] dens = set() failed = [] result = False linear = False manual = flags.get('manual', False) checkdens = check = flags.get('check', True) for j, g in enumerate(exprs): dens.update(_simple_dens(g, symbols)) i, d = _invert(g, *symbols) g = d - i g = g.as_numer_denom()[0] if manual: failed.append(g) continue poly = g.as_poly(*symbols, extension=True) if poly is not None: polys.append(poly) else: failed.append(g) if not polys: solved_syms = [] else: if all(p.is_linear for p in polys): n, m = len(polys), len(symbols) matrix = zeros(n, m + 1) for i, poly in enumerate(polys): for monom, coeff in poly.terms(): try: j = monom.index(1) matrix[i, j] = coeff except ValueError: matrix[i, m] = -coeff # returns a dictionary ({symbols: values}) or None if flags.pop('particular', False): result = minsolve_linear_system(matrix, *symbols, **flags) else: result = solve_linear_system(matrix, *symbols, **flags) if failed: if result: solved_syms = list(result.keys()) else: solved_syms = [] else: linear = True else: if len(symbols) > len(polys): from sympy.utilities.iterables import subsets free = set().union(*[p.free_symbols for p in polys]) free = list(ordered(free.intersection(symbols))) got_s = set() result = [] for syms in subsets(free, len(polys)): try: # returns [] or list of tuples of solutions for syms res = solve_poly_system(polys, *syms) if res: for r in res: skip = False for r1 in r: if got_s and any([ss in r1.free_symbols for ss in got_s]): # sol depends on previously # solved symbols: discard it skip = True if not skip: got_s.update(syms) result.extend([dict(list(zip(syms, r)))]) except NotImplementedError: pass if got_s: solved_syms = list(got_s) else: raise NotImplementedError('no valid subset found') else: try: result = solve_poly_system(polys, *symbols) if result: solved_syms = symbols # we don't know here if the symbols provided # were given or not, so let solve resolve that. # A list of dictionaries is going to always be # returned from here. result = [dict(list(zip(solved_syms, r))) for r in result] except NotImplementedError: failed.extend([g.as_expr() for g in polys]) solved_syms = [] result = None if result: if isinstance(result, dict): result = [result] else: result = [{}] if failed: # For each failed equation, see if we can solve for one of the # remaining symbols from that equation. If so, we update the # solution set and continue with the next failed equation, # repeating until we are done or we get an equation that can't # be solved. def _ok_syms(e, sort=False): rv = (e.free_symbols - solved_syms) & legal if sort: rv = list(rv) rv.sort(key=default_sort_key) return rv solved_syms = set(solved_syms) # set of symbols we have solved for legal = set(symbols) # what we are interested in # sort so equation with the fewest potential symbols is first u = Dummy() # used in solution checking for eq in ordered(failed, lambda _: len(_ok_syms(_))): newresult = [] bad_results = [] got_s = set() hit = False for r in result: # update eq with everything that is known so far eq2 = eq.subs(r) # if check is True then we see if it satisfies this # equation, otherwise we just accept it if check and r: b = checksol(u, u, eq2, minimal=True) if b is not None: # this solution is sufficient to know whether # it is valid or not so we either accept or # reject it, then continue if b: newresult.append(r) else: bad_results.append(r) continue # search for a symbol amongst those available that # can be solved for ok_syms = _ok_syms(eq2, sort=True) if not ok_syms: if r: newresult.append(r) break # skip as it's independent of desired symbols for s in ok_syms: try: soln = _solve(eq2, s, **flags) except NotImplementedError: continue # put each solution in r and append the now-expanded # result in the new result list; use copy since the # solution for s in being added in-place for sol in soln: if got_s and any([ss in sol.free_symbols for ss in got_s]): # sol depends on previously solved symbols: discard it continue rnew = r.copy() for k, v in r.items(): rnew[k] = v.subs(s, sol) # and add this new solution rnew[s] = sol newresult.append(rnew) hit = True got_s.add(s) if not hit: raise NotImplementedError('could not solve %s' % eq2) else: result = newresult for b in bad_results: if b in result: result.remove(b) default_simplify = bool(failed) # rely on system-solvers to simplify if flags.get('simplify', default_simplify): for r in result: for k in r: r[k] = simplify(r[k]) flags['simplify'] = False # don't need to do so in checksol now if checkdens: result = [r for r in result if not any(checksol(d, r, **flags) for d in dens)] if check and not linear: result = [r for r in result if not any(checksol(e, r, **flags) is False for e in exprs)] result = [r for r in result if r] if linear and result: result = result[0] return result def solve_linear(lhs, rhs=0, symbols=[], exclude=[]): r""" Return a tuple derived from f = lhs - rhs that is one of the following: (0, 1) meaning that ``f`` is independent of the symbols in ``symbols`` that aren't in ``exclude``, e.g:: >>> from sympy.solvers.solvers import solve_linear >>> from sympy.abc import x, y, z >>> from sympy import cos, sin >>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 >>> solve_linear(eq) (0, 1) >>> eq = cos(x)**2 + sin(x)**2 # = 1 >>> solve_linear(eq) (0, 1) >>> solve_linear(x, exclude=[x]) (0, 1) (0, 0) meaning that there is no solution to the equation amongst the symbols given. (If the first element of the tuple is not zero then the function is guaranteed to be dependent on a symbol in ``symbols``.) (symbol, solution) where symbol appears linearly in the numerator of ``f``, is in ``symbols`` (if given) and is not in ``exclude`` (if given). No simplification is done to ``f`` other than a ``mul=True`` expansion, so the solution will correspond strictly to a unique solution. ``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f`` when the numerator was not linear in any symbol of interest; ``n`` will never be a symbol unless a solution for that symbol was found (in which case the second element is the solution, not the denominator). Examples ======== >>> from sympy.core.power import Pow >>> from sympy.polys.polytools import cancel The variable ``x`` appears as a linear variable in each of the following: >>> solve_linear(x + y**2) (x, -y**2) >>> solve_linear(1/x - y**2) (x, y**(-2)) When not linear in x or y then the numerator and denominator are returned. >>> solve_linear(x**2/y**2 - 3) (x**2 - 3*y**2, y**2) If the numerator of the expression is a symbol then (0, 0) is returned if the solution for that symbol would have set any denominator to 0: >>> eq = 1/(1/x - 2) >>> eq.as_numer_denom() (x, -2*x + 1) >>> solve_linear(eq) (0, 0) But automatic rewriting may cause a symbol in the denominator to appear in the numerator so a solution will be returned: >>> (1/x)**-1 x >>> solve_linear((1/x)**-1) (x, 0) Use an unevaluated expression to avoid this: >>> solve_linear(Pow(1/x, -1, evaluate=False)) (0, 0) If ``x`` is allowed to cancel in the following expression, then it appears to be linear in ``x``, but this sort of cancellation is not done by ``solve_linear`` so the solution will always satisfy the original expression without causing a division by zero error. >>> eq = x**2*(1/x - z**2/x) >>> solve_linear(cancel(eq)) (x, 0) >>> solve_linear(eq) (x**2*(-z**2 + 1), x) A list of symbols for which a solution is desired may be given: >>> solve_linear(x + y + z, symbols=[y]) (y, -x - z) A list of symbols to ignore may also be given: >>> solve_linear(x + y + z, exclude=[x]) (y, -x - z) (A solution for ``y`` is obtained because it is the first variable from the canonically sorted list of symbols that had a linear solution.) """ if isinstance(lhs, Equality): if rhs: raise ValueError(filldedent(''' If lhs is an Equality, rhs must be 0 but was %s''' % rhs)) rhs = lhs.rhs lhs = lhs.lhs dens = None eq = lhs - rhs n, d = eq.as_numer_denom() if not n: return S.Zero, S.One free = n.free_symbols if not symbols: symbols = free else: bad = [s for s in symbols if not s.is_Symbol] if bad: if len(bad) == 1: bad = bad[0] if len(symbols) == 1: eg = 'solve(%s, %s)' % (eq, symbols[0]) else: eg = 'solve(%s, *%s)' % (eq, list(symbols)) raise ValueError(filldedent(''' solve_linear only handles symbols, not %s. To isolate non-symbols use solve, e.g. >>> %s <<<. ''' % (bad, eg))) symbols = free.intersection(symbols) symbols = symbols.difference(exclude) if not symbols: return S.Zero, S.One dfree = d.free_symbols # derivatives are easy to do but tricky to analyze to see if they # are going to disallow a linear solution, so for simplicity we # just evaluate the ones that have the symbols of interest derivs = defaultdict(list) for der in n.atoms(Derivative): csym = der.free_symbols & symbols for c in csym: derivs[c].append(der) all_zero = True for xi in sorted(symbols, key=default_sort_key): # canonical order # if there are derivatives in this var, calculate them now if isinstance(derivs[xi], list): derivs[xi] = {der: der.doit() for der in derivs[xi]} newn = n.subs(derivs[xi]) dnewn_dxi = newn.diff(xi) # dnewn_dxi can be nonzero if it survives differentation by any # of its free symbols free = dnewn_dxi.free_symbols if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free)): all_zero = False if dnewn_dxi is S.NaN: break if xi not in dnewn_dxi.free_symbols: vi = -1/dnewn_dxi*(newn.subs(xi, 0)) if dens is None: dens = _simple_dens(eq, symbols) if not any(checksol(di, {xi: vi}, minimal=True) is True for di in dens): # simplify any trivial integral irep = [(i, i.doit()) for i in vi.atoms(Integral) if i.function.is_number] # do a slight bit of simplification vi = expand_mul(vi.subs(irep)) return xi, vi if all_zero: return S.Zero, S.One if n.is_Symbol: # no solution for this symbol was found return S.Zero, S.Zero return n, d def minsolve_linear_system(system, *symbols, **flags): r""" Find a particular solution to a linear system. In particular, try to find a solution with the minimal possible number of non-zero variables using a naive algorithm with exponential complexity. If ``quick=True``, a heuristic is used. """ quick = flags.get('quick', False) # Check if there are any non-zero solutions at all s0 = solve_linear_system(system, *symbols, **flags) if not s0 or all(v == 0 for v in s0.values()): return s0 if quick: # We just solve the system and try to heuristically find a nice # solution. s = solve_linear_system(system, *symbols) def update(determined, solution): delete = [] for k, v in solution.items(): solution[k] = v.subs(determined) if not solution[k].free_symbols: delete.append(k) determined[k] = solution[k] for k in delete: del solution[k] determined = {} update(determined, s) while s: # NOTE sort by default_sort_key to get deterministic result k = max((k for k in s.values()), key=lambda x: (len(x.free_symbols), default_sort_key(x))) x = max(k.free_symbols, key=default_sort_key) if len(k.free_symbols) != 1: determined[x] = S(0) else: val = solve(k)[0] if val == 0 and all(v.subs(x, val) == 0 for v in s.values()): determined[x] = S(1) else: determined[x] = val update(determined, s) return determined else: # We try to select n variables which we want to be non-zero. # All others will be assumed zero. We try to solve the modified system. # If there is a non-trivial solution, just set the free variables to # one. If we do this for increasing n, trying all combinations of # variables, we will find an optimal solution. # We speed up slightly by starting at one less than the number of # variables the quick method manages. from itertools import combinations from sympy.utilities.misc import debug N = len(symbols) bestsol = minsolve_linear_system(system, *symbols, quick=True) n0 = len([x for x in bestsol.values() if x != 0]) for n in range(n0 - 1, 1, -1): debug('minsolve: %s' % n) thissol = None for nonzeros in combinations(list(range(N)), n): subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T s = solve_linear_system(subm, *[symbols[i] for i in nonzeros]) if s and not all(v == 0 for v in s.values()): subs = [(symbols[v], S(1)) for v in nonzeros] for k, v in s.items(): s[k] = v.subs(subs) for sym in symbols: if sym not in s: if symbols.index(sym) in nonzeros: s[sym] = S(1) else: s[sym] = S(0) thissol = s break if thissol is None: break bestsol = thissol return bestsol def solve_linear_system(system, *symbols, **flags): r""" Solve system of N linear equations with M variables, which means both under- and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Respectively, this procedure will return None or a dictionary with solutions. In the case of underdetermined systems, all arbitrary parameters are skipped. This may cause a situation in which an empty dictionary is returned. In that case, all symbols can be assigned arbitrary values. Input to this functions is a Nx(M+1) matrix, which means it has to be in augmented form. If you prefer to enter N equations and M unknowns then use `solve(Neqs, *Msymbols)` instead. Note: a local copy of the matrix is made by this routine so the matrix that is passed will not be modified. The algorithm used here is fraction-free Gaussian elimination, which results, after elimination, in an upper-triangular matrix. Then solutions are found using back-substitution. This approach is more efficient and compact than the Gauss-Jordan method. >>> from sympy import Matrix, solve_linear_system >>> from sympy.abc import x, y Solve the following system:: x + 4 y == 2 -2 x + y == 14 >>> system = Matrix(( (1, 4, 2), (-2, 1, 14))) >>> solve_linear_system(system, x, y) {x: -6, y: 2} A degenerate system returns an empty dictionary. >>> system = Matrix(( (0,0,0), (0,0,0) )) >>> solve_linear_system(system, x, y) {} """ do_simplify = flags.get('simplify', True) if system.rows == system.cols - 1 == len(symbols): try: # well behaved n-equations and n-unknowns inv = inv_quick(system[:, :-1]) rv = dict(zip(symbols, inv*system[:, -1])) if do_simplify: for k, v in rv.items(): rv[k] = simplify(v) if not all(i.is_zero for i in rv.values()): # non-trivial solution return rv except ValueError: pass matrix = system[:, :] syms = list(symbols) i, m = 0, matrix.cols - 1 # don't count augmentation while i < matrix.rows: if i == m: # an overdetermined system if any(matrix[i:, m]): return None # no solutions else: # remove trailing rows matrix = matrix[:i, :] break if not matrix[i, i]: # there is no pivot in current column # so try to find one in other columns for k in range(i + 1, m): if matrix[i, k]: break else: if matrix[i, m]: # We need to know if this is always zero or not. We # assume that if there are free symbols that it is not # identically zero (or that there is more than one way # to make this zero). Otherwise, if there are none, this # is a constant and we assume that it does not simplify # to zero XXX are there better (fast) ways to test this? # The .equals(0) method could be used but that can be # slow; numerical testing is prone to errors of scaling. if not matrix[i, m].free_symbols: return None # no solution # A row of zeros with a non-zero rhs can only be accepted # if there is another equivalent row. Any such rows will # be deleted. nrows = matrix.rows rowi = matrix.row(i) ip = None j = i + 1 while j < matrix.rows: # do we need to see if the rhs of j # is a constant multiple of i's rhs? rowj = matrix.row(j) if rowj == rowi: matrix.row_del(j) elif rowj[:-1] == rowi[:-1]: if ip is None: _, ip = rowi[-1].as_content_primitive() _, jp = rowj[-1].as_content_primitive() if not (simplify(jp - ip) or simplify(jp + ip)): matrix.row_del(j) j += 1 if nrows == matrix.rows: # no solution return None # zero row or was a linear combination of # other rows or was a row with a symbolic # expression that matched other rows, e.g. [0, 0, x - y] # so now we can safely skip it matrix.row_del(i) if not matrix: # every choice of variable values is a solution # so we return an empty dict instead of None return dict() continue # we want to change the order of columns so # the order of variables must also change syms[i], syms[k] = syms[k], syms[i] matrix.col_swap(i, k) pivot_inv = S.One/matrix[i, i] # divide all elements in the current row by the pivot matrix.row_op(i, lambda x, _: x * pivot_inv) for k in range(i + 1, matrix.rows): if matrix[k, i]: coeff = matrix[k, i] # subtract from the current row the row containing # pivot and multiplied by extracted coefficient matrix.row_op(k, lambda x, j: simplify(x - matrix[i, j]*coeff)) i += 1 # if there weren't any problems, augmented matrix is now # in row-echelon form so we can check how many solutions # there are and extract them using back substitution if len(syms) == matrix.rows: # this system is Cramer equivalent so there is # exactly one solution to this system of equations k, solutions = i - 1, {} while k >= 0: content = matrix[k, m] # run back-substitution for variables for j in range(k + 1, m): content -= matrix[k, j]*solutions[syms[j]] if do_simplify: solutions[syms[k]] = simplify(content) else: solutions[syms[k]] = content k -= 1 return solutions elif len(syms) > matrix.rows: # this system will have infinite number of solutions # dependent on exactly len(syms) - i parameters k, solutions = i - 1, {} while k >= 0: content = matrix[k, m] # run back-substitution for variables for j in range(k + 1, i): content -= matrix[k, j]*solutions[syms[j]] # run back-substitution for parameters for j in range(i, m): content -= matrix[k, j]*syms[j] if do_simplify: solutions[syms[k]] = simplify(content) else: solutions[syms[k]] = content k -= 1 return solutions else: return [] # no solutions def solve_undetermined_coeffs(equ, coeffs, sym, **flags): """Solve equation of a type p(x; a_1, ..., a_k) == q(x) where both p, q are univariate polynomials and f depends on k parameters. The result of this functions is a dictionary with symbolic values of those parameters with respect to coefficients in q. This functions accepts both Equations class instances and ordinary SymPy expressions. Specification of parameters and variable is obligatory for efficiency and simplicity reason. >>> from sympy import Eq >>> from sympy.abc import a, b, c, x >>> from sympy.solvers import solve_undetermined_coeffs >>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x) {a: 1/2, b: -1/2} >>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x) {a: 1/c, b: -1/c} """ if isinstance(equ, Equality): # got equation, so move all the # terms to the left hand side equ = equ.lhs - equ.rhs equ = cancel(equ).as_numer_denom()[0] system = list(collect(equ.expand(), sym, evaluate=False).values()) if not any(equ.has(sym) for equ in system): # consecutive powers in the input expressions have # been successfully collected, so solve remaining # system using Gaussian elimination algorithm return solve(system, *coeffs, **flags) else: return None # no solutions def solve_linear_system_LU(matrix, syms): """ Solves the augmented matrix system using LUsolve and returns a dictionary in which solutions are keyed to the symbols of syms *as ordered*. The matrix must be invertible. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> from sympy.solvers.solvers import solve_linear_system_LU >>> solve_linear_system_LU(Matrix([ ... [1, 2, 0, 1], ... [3, 2, 2, 1], ... [2, 0, 0, 1]]), [x, y, z]) {x: 1/2, y: 1/4, z: -1/2} See Also ======== sympy.matrices.LUsolve """ if matrix.rows != matrix.cols - 1: raise ValueError("Rows should be equal to columns - 1") A = matrix[:matrix.rows, :matrix.rows] b = matrix[:, matrix.cols - 1:] soln = A.LUsolve(b) solutions = {} for i in range(soln.rows): solutions[syms[i]] = soln[i, 0] return solutions def det_perm(M): """Return the det(``M``) by using permutations to select factors. For size larger than 8 the number of permutations becomes prohibitively large, or if there are no symbols in the matrix, it is better to use the standard determinant routines, e.g. `M.det()`. See Also ======== det_minor det_quick """ args = [] s = True n = M.rows try: list = M._mat except AttributeError: list = flatten(M.tolist()) for perm in generate_bell(n): fac = [] idx = 0 for j in perm: fac.append(list[idx + j]) idx += n term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7 args.append(term if s else -term) s = not s return Add(*args) def det_minor(M): """Return the ``det(M)`` computed from minors without introducing new nesting in products. See Also ======== det_perm det_quick """ n = M.rows if n == 2: return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1] else: return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in Add.make_args(det_minor(M.minor_submatrix(0, i)))]) if M[0, i] else S.Zero for i in range(n)]) def det_quick(M, method=None): """Return ``det(M)`` assuming that either there are lots of zeros or the size of the matrix is small. If this assumption is not met, then the normal Matrix.det function will be used with method = ``method``. See Also ======== det_minor det_perm """ if any(i.has(Symbol) for i in M): if M.rows < 8 and all(i.has(Symbol) for i in M): return det_perm(M) return det_minor(M) else: return M.det(method=method) if method else M.det() def inv_quick(M): """Return the inverse of ``M``, assuming that either there are lots of zeros or the size of the matrix is small. """ from sympy.matrices import zeros if not all(i.is_Number for i in M): if not any(i.is_Number for i in M): det = lambda _: det_perm(_) else: det = lambda _: det_minor(_) else: return M.inv() n = M.rows d = det(M) if d is S.Zero: raise ValueError("Matrix det == 0; not invertible.") ret = zeros(n) s1 = -1 for i in range(n): s = s1 = -s1 for j in range(n): di = det(M.minor_submatrix(i, j)) ret[j, i] = s*di/d s = -s return ret # these are functions that have multiple inverse values per period multi_inverses = { sin: lambda x: (asin(x), S.Pi - asin(x)), cos: lambda x: (acos(x), 2*S.Pi - acos(x)), } def _tsolve(eq, sym, **flags): """ Helper for _solve that solves a transcendental equation with respect to the given symbol. Various equations containing powers and logarithms, can be solved. There is currently no guarantee that all solutions will be returned or that a real solution will be favored over a complex one. Either a list of potential solutions will be returned or None will be returned (in the case that no method was known to get a solution for the equation). All other errors (like the inability to cast an expression as a Poly) are unhandled. Examples ======== >>> from sympy import log >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy.abc import x >>> tsolve(3**(2*x + 5) - 4, x) [-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)] >>> tsolve(log(x) + 2*x, x) [LambertW(2)/2] """ if 'tsolve_saw' not in flags: flags['tsolve_saw'] = [] if eq in flags['tsolve_saw']: return None else: flags['tsolve_saw'].append(eq) rhs, lhs = _invert(eq, sym) if lhs == sym: return [rhs] try: if lhs.is_Add: # it's time to try factoring; powdenest is used # to try get powers in standard form for better factoring f = factor(powdenest(lhs - rhs)) if f.is_Mul: return _solve(f, sym, **flags) if rhs: f = logcombine(lhs, force=flags.get('force', True)) if f.count(log) != lhs.count(log): if isinstance(f, log): return _solve(f.args[0] - exp(rhs), sym, **flags) return _tsolve(f - rhs, sym, **flags) elif lhs.is_Pow: if lhs.exp.is_Integer: if lhs - rhs != eq: return _solve(lhs - rhs, sym, **flags) if sym not in lhs.exp.free_symbols: return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags) # _tsolve calls this with Dummy before passing the actual number in. if any(t.is_Dummy for t in rhs.free_symbols): raise NotImplementedError # _tsolve will call here again... # a ** g(x) == 0 if not rhs: # f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at # the same place sol_base = _solve(lhs.base, sym, **flags) return [s for s in sol_base if lhs.exp.subs(sym, s) != 0] # a ** g(x) == b if not lhs.base.has(sym): if lhs.base == 0: return _solve(lhs.exp, sym, **flags) if rhs != 0 else [] # Gets most solutions... if lhs.base == rhs.as_base_exp()[0]: # handles case when bases are equal sol = _solve(lhs.exp - rhs.as_base_exp()[1], sym, **flags) else: # handles cases when bases are not equal and exp # may or may not be equal sol = _solve(exp(log(lhs.base)*lhs.exp)-exp(log(rhs)), sym, **flags) # Check for duplicate solutions def equal(expr1, expr2): return expr1.equals(expr2) or nsimplify(expr1) == nsimplify(expr2) # Guess a rational exponent e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base))) e_rat = simplify(posify(e_rat)[0]) n, d = fraction(e_rat) if expand(lhs.base**n - rhs**d) == 0: sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)] sol.extend(_solve(lhs.exp - e_rat, sym, **flags)) return list(ordered(set(sol))) # f(x) ** g(x) == c else: sol = [] logform = lhs.exp*log(lhs.base) - log(rhs) if logform != lhs - rhs: try: sol.extend(_solve(logform, sym, **flags)) except NotImplementedError: pass # Collect possible solutions and check with subtitution later. check = [] if rhs == 1: # f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1 check.extend(_solve(lhs.exp, sym, **flags)) check.extend(_solve(lhs.base - 1, sym, **flags)) check.extend(_solve(lhs.base + 1, sym, **flags)) elif rhs.is_Rational: for d in (i for i in divisors(abs(rhs.p)) if i != 1): e, t = integer_log(rhs.p, d) if not t: continue # rhs.p != d**b for s in divisors(abs(rhs.q)): if s**e== rhs.q: r = Rational(d, s) check.extend(_solve(lhs.base - r, sym, **flags)) check.extend(_solve(lhs.base + r, sym, **flags)) check.extend(_solve(lhs.exp - e, sym, **flags)) elif rhs.is_irrational: b_l, e_l = lhs.base.as_base_exp() n, d = e_l*lhs.exp.as_numer_denom() b, e = sqrtdenest(rhs).as_base_exp() check = [sqrtdenest(i) for i in (_solve(lhs.base - b, sym, **flags))] check.extend([sqrtdenest(i) for i in (_solve(lhs.exp - e, sym, **flags))]) if (e_l*d) !=1 : check.extend(_solve(b_l**(n) - rhs**(e_l*d), sym, **flags)) sol.extend(s for s in check if eq.subs(sym, s).equals(0)) return list(ordered(set(sol))) elif lhs.is_Mul and rhs.is_positive: llhs = expand_log(log(lhs)) if llhs.is_Add: return _solve(llhs - log(rhs), sym, **flags) elif lhs.is_Function and len(lhs.args) == 1: if lhs.func in multi_inverses: # sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3)) soln = [] for i in multi_inverses[lhs.func](rhs): soln.extend(_solve(lhs.args[0] - i, sym, **flags)) return list(ordered(soln)) elif lhs.func == LambertW: return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags) rewrite = lhs.rewrite(exp) if rewrite != lhs: return _solve(rewrite - rhs, sym, **flags) except NotImplementedError: pass # maybe it is a lambert pattern if flags.pop('bivariate', True): # lambert forms may need some help being recognized, e.g. changing # 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1 # to 2**(3*x) + (x*log(2) + 1)**3 g = _filtered_gens(eq.as_poly(), sym) up_or_log = set() for gi in g: if isinstance(gi, exp) or isinstance(gi, log): up_or_log.add(gi) elif gi.is_Pow: gisimp = powdenest(expand_power_exp(gi)) if gisimp.is_Pow and sym in gisimp.exp.free_symbols: up_or_log.add(gi) down = g.difference(up_or_log) eq_down = expand_log(expand_power_exp(eq)).subs( dict(list(zip(up_or_log, [0]*len(up_or_log))))) eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down)) rhs, lhs = _invert(eq, sym) if lhs.has(sym): try: poly = lhs.as_poly() g = _filtered_gens(poly, sym) sols = _solve_lambert(lhs - rhs, sym, g) for n, s in enumerate(sols): ns = nsimplify(s) if ns != s and eq.subs(sym, ns).equals(0): sols[n] = ns return sols except NotImplementedError: # maybe it's a convoluted function if len(g) == 2: try: gpu = bivariate_type(lhs - rhs, *g) if gpu is None: raise NotImplementedError g, p, u = gpu flags['bivariate'] = False inversion = _tsolve(g - u, sym, **flags) if inversion: sol = _solve(p, u, **flags) return list(ordered(set([i.subs(u, s) for i in inversion for s in sol]))) except NotImplementedError: pass else: pass if flags.pop('force', True): flags['force'] = False pos, reps = posify(lhs - rhs) for u, s in reps.items(): if s == sym: break else: u = sym if pos.has(u): try: soln = _solve(pos, u, **flags) return list(ordered([s.subs(reps) for s in soln])) except NotImplementedError: pass else: pass # here for coverage return # here for coverage # TODO: option for calculating J numerically @conserve_mpmath_dps def nsolve(*args, **kwargs): r""" Solve a nonlinear equation system numerically:: nsolve(f, [args,] x0, modules=['mpmath'], **kwargs) f is a vector function of symbolic expressions representing the system. args are the variables. If there is only one variable, this argument can be omitted. x0 is a starting vector close to a solution. Use the modules keyword to specify which modules should be used to evaluate the function and the Jacobian matrix. Make sure to use a module that supports matrices. For more information on the syntax, please see the docstring of lambdify. If the keyword arguments contain 'dict'=True (default is False) nsolve will return a list (perhaps empty) of solution mappings. This might be especially useful if you want to use nsolve as a fallback to solve since using the dict argument for both methods produces return values of consistent type structure. Please note: to keep this consistency with solve, the solution will be returned in a list even though nsolve (currently at least) only finds one solution at a time. Overdetermined systems are supported. >>> from sympy import Symbol, nsolve >>> import sympy >>> import mpmath >>> mpmath.mp.dps = 15 >>> x1 = Symbol('x1') >>> x2 = Symbol('x2') >>> f1 = 3 * x1**2 - 2 * x2**2 - 1 >>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8 >>> print(nsolve((f1, f2), (x1, x2), (-1, 1))) Matrix([[-1.19287309935246], [1.27844411169911]]) For one-dimensional functions the syntax is simplified: >>> from sympy import sin, nsolve >>> from sympy.abc import x >>> nsolve(sin(x), x, 2) 3.14159265358979 >>> nsolve(sin(x), 2) 3.14159265358979 To solve with higher precision than the default, use the prec argument. >>> from sympy import cos >>> nsolve(cos(x) - x, 1) 0.739085133215161 >>> nsolve(cos(x) - x, 1, prec=50) 0.73908513321516064165531208767387340401341175890076 >>> cos(_) 0.73908513321516064165531208767387340401341175890076 To solve for complex roots of real functions, a nonreal initial point must be specified: >>> from sympy import I >>> nsolve(x**2 + 2, I) 1.4142135623731*I mpmath.findroot is used and you can find there more extensive documentation, especially concerning keyword parameters and available solvers. Note, however, that functions which are very steep near the root the verification of the solution may fail. In this case you should use the flag `verify=False` and independently verify the solution. >>> from sympy import cos, cosh >>> from sympy.abc import i >>> f = cos(x)*cosh(x) - 1 >>> nsolve(f, 3.14*100) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19) >>> ans = nsolve(f, 3.14*100, verify=False); ans 312.588469032184 >>> f.subs(x, ans).n(2) 2.1e+121 >>> (f/f.diff(x)).subs(x, ans).n(2) 7.4e-15 One might safely skip the verification if bounds of the root are known and a bisection method is used: >>> bounds = lambda i: (3.14*i, 3.14*(i + 1)) >>> nsolve(f, bounds(100), solver='bisect', verify=False) 315.730061685774 Alternatively, a function may be better behaved when the denominator is ignored. Since this is not always the case, however, the decision of what function to use is left to the discretion of the user. >>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100 >>> nsolve(eq, 0.46) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19) Try another starting point or tweak arguments. >>> nsolve(eq.as_numer_denom()[0], 0.46) 0.46792545969349058 """ # there are several other SymPy functions that use method= so # guard against that here if 'method' in kwargs: raise ValueError(filldedent(''' Keyword "method" should not be used in this context. When using some mpmath solvers directly, the keyword "method" is used, but when using nsolve (and findroot) the keyword to use is "solver".''')) if 'prec' in kwargs: prec = kwargs.pop('prec') import mpmath mpmath.mp.dps = prec else: prec = None # keyword argument to return result as a dictionary as_dict = kwargs.pop('dict', False) # interpret arguments if len(args) == 3: f = args[0] fargs = args[1] x0 = args[2] if iterable(fargs) and iterable(x0): if len(x0) != len(fargs): raise TypeError('nsolve expected exactly %i guess vectors, got %i' % (len(fargs), len(x0))) elif len(args) == 2: f = args[0] fargs = None x0 = args[1] if iterable(f): raise TypeError('nsolve expected 3 arguments, got 2') elif len(args) < 2: raise TypeError('nsolve expected at least 2 arguments, got %i' % len(args)) else: raise TypeError('nsolve expected at most 3 arguments, got %i' % len(args)) modules = kwargs.get('modules', ['mpmath']) if iterable(f): f = list(f) for i, fi in enumerate(f): if isinstance(fi, Equality): f[i] = fi.lhs - fi.rhs f = Matrix(f).T if iterable(x0): x0 = list(x0) if not isinstance(f, Matrix): # assume it's a sympy expression if isinstance(f, Equality): f = f.lhs - f.rhs syms = f.free_symbols if fargs is None: fargs = syms.copy().pop() if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)): raise ValueError(filldedent(''' expected a one-dimensional and numerical function''')) # the function is much better behaved if there is no denominator # but sending the numerator is left to the user since sometimes # the function is better behaved when the denominator is present # e.g., issue 11768 f = lambdify(fargs, f, modules) x = sympify(findroot(f, x0, **kwargs)) if as_dict: return [dict([(fargs, x)])] return x if len(fargs) > f.cols: raise NotImplementedError(filldedent(''' need at least as many equations as variables''')) verbose = kwargs.get('verbose', False) if verbose: print('f(x):') print(f) # derive Jacobian J = f.jacobian(fargs) if verbose: print('J(x):') print(J) # create functions f = lambdify(fargs, f.T, modules) J = lambdify(fargs, J, modules) # solve the system numerically x = findroot(f, x0, J=J, **kwargs) if as_dict: return [dict(zip(fargs, [sympify(xi) for xi in x]))] return Matrix(x) def _invert(eq, *symbols, **kwargs): """Return tuple (i, d) where ``i`` is independent of ``symbols`` and ``d`` contains symbols. ``i`` and ``d`` are obtained after recursively using algebraic inversion until an uninvertible ``d`` remains. If there are no free symbols then ``d`` will be zero. Some (but not necessarily all) solutions to the expression ``i - d`` will be related to the solutions of the original expression. Examples ======== >>> from sympy.solvers.solvers import _invert as invert >>> from sympy import sqrt, cos >>> from sympy.abc import x, y >>> invert(x - 3) (3, x) >>> invert(3) (3, 0) >>> invert(2*cos(x) - 1) (1/2, cos(x)) >>> invert(sqrt(x) - 3) (3, sqrt(x)) >>> invert(sqrt(x) + y, x) (-y, sqrt(x)) >>> invert(sqrt(x) + y, y) (-sqrt(x), y) >>> invert(sqrt(x) + y, x, y) (0, sqrt(x) + y) If there is more than one symbol in a power's base and the exponent is not an Integer, then the principal root will be used for the inversion: >>> invert(sqrt(x + y) - 2) (4, x + y) >>> invert(sqrt(x + y) - 2) (4, x + y) If the exponent is an integer, setting ``integer_power`` to True will force the principal root to be selected: >>> invert(x**2 - 4, integer_power=True) (2, x) """ eq = sympify(eq) if eq.args: # make sure we are working with flat eq eq = eq.func(*eq.args) free = eq.free_symbols if not symbols: symbols = free if not free & set(symbols): return eq, S.Zero dointpow = bool(kwargs.get('integer_power', False)) lhs = eq rhs = S.Zero while True: was = lhs while True: indep, dep = lhs.as_independent(*symbols) # dep + indep == rhs if lhs.is_Add: # this indicates we have done it all if indep is S.Zero: break lhs = dep rhs -= indep # dep * indep == rhs else: # this indicates we have done it all if indep is S.One: break lhs = dep rhs /= indep # collect like-terms in symbols if lhs.is_Add: terms = {} for a in lhs.args: i, d = a.as_independent(*symbols) terms.setdefault(d, []).append(i) if any(len(v) > 1 for v in terms.values()): args = [] for d, i in terms.items(): if len(i) > 1: args.append(Add(*i)*d) else: args.append(i[0]*d) lhs = Add(*args) # if it's a two-term Add with rhs = 0 and two powers we can get the # dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3 if lhs.is_Add and not rhs and len(lhs.args) == 2 and \ not lhs.is_polynomial(*symbols): a, b = ordered(lhs.args) ai, ad = a.as_independent(*symbols) bi, bd = b.as_independent(*symbols) if any(_ispow(i) for i in (ad, bd)): a_base, a_exp = ad.as_base_exp() b_base, b_exp = bd.as_base_exp() if a_base == b_base: # a = -b lhs = powsimp(powdenest(ad/bd)) rhs = -bi/ai else: rat = ad/bd _lhs = powsimp(ad/bd) if _lhs != rat: lhs = _lhs rhs = -bi/ai elif ai == -bi: if isinstance(ad, Function) and ad.func == bd.func: if len(ad.args) == len(bd.args) == 1: lhs = ad.args[0] - bd.args[0] elif len(ad.args) == len(bd.args): # should be able to solve # f(x, y) - f(2 - x, 0) == 0 -> x == 1 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') elif lhs.is_Mul and any(_ispow(a) for a in lhs.args): lhs = powsimp(powdenest(lhs)) if lhs.is_Function: if hasattr(lhs, 'inverse') and len(lhs.args) == 1: # -1 # f(x) = g -> x = f (g) # # /!\ inverse should not be defined if there are multiple values # for the function -- these are handled in _tsolve # rhs = lhs.inverse()(rhs) lhs = lhs.args[0] elif isinstance(lhs, atan2): y, x = lhs.args lhs = 2*atan(y/(sqrt(x**2 + y**2) + x)) elif lhs.func == rhs.func: if len(lhs.args) == len(rhs.args) == 1: lhs = lhs.args[0] rhs = rhs.args[0] elif len(lhs.args) == len(rhs.args): # should be able to solve # f(x, y) == f(2, 3) -> x == 2 # f(x, x + y) == f(2, 3) -> x == 2 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0: lhs = 1/lhs rhs = 1/rhs # base**a = b -> base = b**(1/a) if # a is an Integer and dointpow=True (this gives real branch of root) # a is not an Integer and the equation is multivariate and the # base has more than 1 symbol in it # The rationale for this is that right now the multi-system solvers # doesn't try to resolve generators to see, for example, if the whole # system is written in terms of sqrt(x + y) so it will just fail, so we # do that step here. if lhs.is_Pow and ( lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1): rhs = rhs**(1/lhs.exp) lhs = lhs.base if lhs == was: break return rhs, lhs def unrad(eq, *syms, **flags): """ Remove radicals with symbolic arguments and return (eq, cov), None or raise an error: None is returned if there are no radicals to remove. NotImplementedError is raised if there are radicals and they cannot be removed or if the relationship between the original symbols and the change of variable needed to rewrite the system as a polynomial cannot be solved. Otherwise the tuple, ``(eq, cov)``, is returned where:: ``eq``, ``cov`` ``eq`` is an equation without radicals (in the symbol(s) of interest) whose solutions are a superset of the solutions to the original expression. ``eq`` might be re-written in terms of a new variable; the relationship to the original variables is given by ``cov`` which is a list containing ``v`` and ``v**p - b`` where ``p`` is the power needed to clear the radical and ``b`` is the radical now expressed as a polynomial in the symbols of interest. For example, for sqrt(2 - x) the tuple would be ``(c, c**2 - 2 + x)``. The solutions of ``eq`` will contain solutions to the original equation (if there are any). ``syms`` an iterable of symbols which, if provided, will limit the focus of radical removal: only radicals with one or more of the symbols of interest will be cleared. All free symbols are used if ``syms`` is not set. ``flags`` are used internally for communication during recursive calls. Two options are also recognized:: ``take``, when defined, is interpreted as a single-argument function that returns True if a given Pow should be handled. Radicals can be removed from an expression if:: * all bases of the radicals are the same; a change of variables is done in this case. * if all radicals appear in one term of the expression * there are only 4 terms with sqrt() factors or there are less than four terms having sqrt() factors * there are only two terms with radicals Examples ======== >>> from sympy.solvers.solvers import unrad >>> from sympy.abc import x >>> from sympy import sqrt, Rational, root, real_roots, solve >>> unrad(sqrt(x)*x**Rational(1, 3) + 2) (x**5 - 64, []) >>> unrad(sqrt(x) + root(x + 1, 3)) (x**3 - x**2 - 2*x - 1, []) >>> eq = sqrt(x) + root(x, 3) - 2 >>> unrad(eq) (_p**3 + _p**2 - 2, [_p, _p**6 - x]) """ _inv_error = 'cannot get an analytical solution for the inversion' uflags = dict(check=False, simplify=False) def _cov(p, e): if cov: # XXX - uncovered oldp, olde = cov if Poly(e, p).degree(p) in (1, 2): cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])] else: raise NotImplementedError else: cov[:] = [p, e] def _canonical(eq, cov): if cov: # change symbol to vanilla so no solutions are eliminated p, e = cov rep = {p: Dummy(p.name)} eq = eq.xreplace(rep) cov = [p.xreplace(rep), e.xreplace(rep)] # remove constants and powers of factors since these don't change # the location of the root; XXX should factor or factor_terms be used? eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True) if eq.is_Mul: args = [] for f in eq.args: if f.is_number: continue if f.is_Pow and _take(f, True): args.append(f.base) else: args.append(f) eq = Mul(*args) # leave as Mul for more efficient solving # make the sign canonical free = eq.free_symbols if len(free) == 1: if eq.coeff(free.pop()**degree(eq)).could_extract_minus_sign(): eq = -eq elif eq.could_extract_minus_sign(): eq = -eq return eq, cov def _Q(pow): # return leading Rational of denominator of Pow's exponent c = pow.as_base_exp()[1].as_coeff_Mul()[0] if not c.is_Rational: return S.One return c.q # define the _take method that will determine whether a term is of interest def _take(d, take_int_pow): # return True if coefficient of any factor's exponent's den is not 1 for pow in Mul.make_args(d): if not (pow.is_Symbol or pow.is_Pow): continue b, e = pow.as_base_exp() if not b.has(*syms): continue if not take_int_pow and _Q(pow) == 1: continue free = pow.free_symbols if free.intersection(syms): return True return False _take = flags.setdefault('_take', _take) cov, nwas, rpt = [flags.setdefault(k, v) for k, v in sorted(dict(cov=[], n=None, rpt=0).items())] # preconditioning eq = powdenest(factor_terms(eq, radical=True, clear=True)) eq, d = eq.as_numer_denom() eq = _mexpand(eq, recursive=True) if eq.is_number: return syms = set(syms) or eq.free_symbols poly = eq.as_poly() gens = [g for g in poly.gens if _take(g, True)] if not gens: return # check for trivial case # - already a polynomial in integer powers if all(_Q(g) == 1 for g in gens): return # - an exponent has a symbol of interest (don't handle) if any(g.as_base_exp()[1].has(*syms) for g in gens): return def _rads_bases_lcm(poly): # if all the bases are the same or all the radicals are in one # term, `lcm` will be the lcm of the denominators of the # exponents of the radicals lcm = 1 rads = set() bases = set() for g in poly.gens: if not _take(g, False): continue q = _Q(g) if q != 1: rads.add(g) lcm = ilcm(lcm, q) bases.add(g.base) return rads, bases, lcm rads, bases, lcm = _rads_bases_lcm(poly) if not rads: return covsym = Dummy('p', nonnegative=True) # only keep in syms symbols that actually appear in radicals; # and update gens newsyms = set() for r in rads: newsyms.update(syms & r.free_symbols) if newsyms != syms: syms = newsyms gens = [g for g in gens if g.free_symbols & syms] # get terms together that have common generators drad = dict(list(zip(rads, list(range(len(rads)))))) rterms = {(): []} args = Add.make_args(poly.as_expr()) for t in args: if _take(t, False): common = set(t.as_poly().gens).intersection(rads) key = tuple(sorted([drad[i] for i in common])) else: key = () rterms.setdefault(key, []).append(t) others = Add(*rterms.pop(())) rterms = [Add(*rterms[k]) for k in rterms.keys()] # the output will depend on the order terms are processed, so # make it canonical quickly rterms = list(reversed(list(ordered(rterms)))) ok = False # we don't have a solution yet depth = sqrt_depth(eq) if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2): eq = rterms[0]**lcm - ((-others)**lcm) ok = True else: if len(rterms) == 1 and rterms[0].is_Add: rterms = list(rterms[0].args) if len(bases) == 1: b = bases.pop() if len(syms) > 1: free = b.free_symbols x = {g for g in gens if g.is_Symbol} & free if not x: x = free x = ordered(x) else: x = syms x = list(x)[0] try: inv = _solve(covsym**lcm - b, x, **uflags) if not inv: raise NotImplementedError eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0]) _cov(covsym, covsym**lcm - b) return _canonical(eq, cov) except NotImplementedError: pass else: # no longer consider integer powers as generators gens = [g for g in gens if _Q(g) != 1] if len(rterms) == 2: if not others: eq = rterms[0]**lcm - (-rterms[1])**lcm ok = True elif not log(lcm, 2).is_Integer: # the lcm-is-power-of-two case is handled below r0, r1 = rterms if flags.get('_reverse', False): r1, r0 = r0, r1 i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly()) i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly()) for reverse in range(2): if reverse: i0, i1 = i1, i0 r0, r1 = r1, r0 _rads1, _, lcm1 = i1 _rads1 = Mul(*_rads1) t1 = _rads1**lcm1 c = covsym**lcm1 - t1 for x in syms: try: sol = _solve(c, x, **uflags) if not sol: raise NotImplementedError neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \ others tmp = unrad(neweq, covsym) if tmp: eq, newcov = tmp if newcov: newp, newc = newcov _cov(newp, c.subs(covsym, _solve(newc, covsym, **uflags)[0])) else: _cov(covsym, c) else: eq = neweq _cov(covsym, c) ok = True break except NotImplementedError: if reverse: raise NotImplementedError( 'no successful change of variable found') else: pass if ok: break elif len(rterms) == 3: # two cube roots and another with order less than 5 # (so an analytical solution can be found) or a base # that matches one of the cube root bases info = [_rads_bases_lcm(i.as_poly()) for i in rterms] RAD = 0 BASES = 1 LCM = 2 if info[0][LCM] != 3: info.append(info.pop(0)) rterms.append(rterms.pop(0)) elif info[1][LCM] != 3: info.append(info.pop(1)) rterms.append(rterms.pop(1)) if info[0][LCM] == info[1][LCM] == 3: if info[1][BASES] != info[2][BASES]: info[0], info[1] = info[1], info[0] rterms[0], rterms[1] = rterms[1], rterms[0] if info[1][BASES] == info[2][BASES]: eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3 ok = True elif info[2][LCM] < 5: # a*root(A, 3) + b*root(B, 3) + others = c a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB'] # zz represents the unraded expression into which the # specifics for this case are substituted zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 - 3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 + 3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 - 63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 - 21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d + 45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 - 18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 + 9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 + 3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 - 60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 + 3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 - 126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 - 9*c*d**8 + d**9) def _t(i): b = Mul(*info[i][RAD]) return cancel(rterms[i]/b), Mul(*info[i][BASES]) aa, AA = _t(0) bb, BB = _t(1) cc = -rterms[2] dd = others eq = zz.xreplace(dict(zip( (a, A, b, B, c, d), (aa, AA, bb, BB, cc, dd)))) ok = True # handle power-of-2 cases if not ok: if log(lcm, 2).is_Integer and (not others and len(rterms) == 4 or len(rterms) < 4): def _norm2(a, b): return a**2 + b**2 + 2*a*b if len(rterms) == 4: # (r0+r1)**2 - (r2+r3)**2 r0, r1, r2, r3 = rterms eq = _norm2(r0, r1) - _norm2(r2, r3) ok = True elif len(rterms) == 3: # (r1+r2)**2 - (r0+others)**2 r0, r1, r2 = rterms eq = _norm2(r1, r2) - _norm2(r0, others) ok = True elif len(rterms) == 2: # r0**2 - (r1+others)**2 r0, r1 = rterms eq = r0**2 - _norm2(r1, others) ok = True new_depth = sqrt_depth(eq) if ok else depth rpt += 1 # XXX how many repeats with others unchanging is enough? if not ok or ( nwas is not None and len(rterms) == nwas and new_depth is not None and new_depth == depth and rpt > 3): raise NotImplementedError('Cannot remove all radicals') flags.update(dict(cov=cov, n=len(rterms), rpt=rpt)) neq = unrad(eq, *syms, **flags) if neq: eq, cov = neq eq, cov = _canonical(eq, cov) return eq, cov from sympy.solvers.bivariate import ( bivariate_type, _solve_lambert, _filtered_gens)
9ad041625e1e92ec7a3f66ab9d40746411721972ff6b5b970f5d7e4e268e45a7
"""Calculus-related methods.""" from .euler import euler_equations from .singularities import (singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic) from .finite_diff import finite_diff_weights, apply_finite_diff, as_finite_diff, differentiate_finite from .util import periodicity, not_empty_in, AccumBounds, is_convex __all__ = [ 'euler_equations', 'singularities', 'is_increasing', 'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing', 'is_monotonic', 'finite_diff_weights', 'apply_finite_diff', 'as_finite_diff', 'differentiate_finite', 'periodicity', 'not_empty_in', 'AccumBounds', 'is_convex' ]
821275c7c1887d7b7d3434f590965c0aca0b0574e95e8b1bba59dd3351341bd0
from sympy import Order, S, log, limit, lcm_list, pi, Abs from sympy.core.basic import Basic from sympy.core import Add, Mul, Pow from sympy.logic.boolalg import And from sympy.core.expr import AtomicExpr, Expr from sympy.core.numbers import _sympifyit, oo from sympy.core.sympify import _sympify from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union, Complement, EmptySet) from sympy.sets.conditionset import ConditionSet from sympy.functions.elementary.miscellaneous import Min, Max from sympy.utilities import filldedent from sympy.simplify.radsimp import denom from sympy.polys.rationaltools import together from sympy.core.compatibility import iterable from sympy.solvers.inequalities import solve_univariate_inequality def continuous_domain(f, symbol, domain): """ Returns the intervals in the given domain for which the function is continuous. This method is limited by the ability to determine the various singularities and discontinuities of the given function. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the intervals are to be determined. domain : Interval The domain over which the continuity of the symbol has to be checked. Examples ======== >>> from sympy import Symbol, S, tan, log, pi, sqrt >>> from sympy.sets import Interval >>> from sympy.calculus.util import continuous_domain >>> x = Symbol('x') >>> continuous_domain(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> continuous_domain(tan(x), x, Interval(0, pi)) Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi)) >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5)) Interval(2, 5) >>> continuous_domain(log(2*x - 1), x, S.Reals) Interval.open(1/2, oo) Returns ======= Interval Union of all intervals where the function is continuous. Raises ====== NotImplementedError If the method to determine continuity of such a function has not yet been developed. """ from sympy.solvers.inequalities import solve_univariate_inequality from sympy.solvers.solveset import solveset, _has_rational_power if domain.is_subset(S.Reals): constrained_interval = domain for atom in f.atoms(Pow): predicate, denomin = _has_rational_power(atom, symbol) constraint = S.EmptySet if predicate and denomin == 2: constraint = solve_univariate_inequality(atom.base >= 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) for atom in f.atoms(log): constraint = solve_univariate_inequality(atom.args[0] > 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) domain = constrained_interval try: sings = S.EmptySet if f.has(Abs): sings = solveset(1/f, symbol, domain) + \ solveset(denom(together(f)), symbol, domain) else: for atom in f.atoms(Pow): predicate, denomin = _has_rational_power(atom, symbol) if predicate and denomin == 2: sings = solveset(1/f, symbol, domain) +\ solveset(denom(together(f)), symbol, domain) break else: sings = Intersection(solveset(1/f, symbol), domain) + \ solveset(denom(together(f)), symbol, domain) except NotImplementedError: import sys raise (NotImplementedError("Methods for determining the continuous domains" " of this function have not been developed."), None, sys.exc_info()[2]) return domain - sings def function_range(f, symbol, domain): """ Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the range of function is to be determined. domain : Interval The domain under which the range of the function has to be found. Examples ======== >>> from sympy import Symbol, S, exp, log, pi, sqrt, sin, tan >>> from sympy.sets import Interval >>> from sympy.calculus.util import function_range >>> x = Symbol('x') >>> function_range(sin(x), x, Interval(0, 2*pi)) Interval(-1, 1) >>> function_range(tan(x), x, Interval(-pi/2, pi/2)) Interval(-oo, oo) >>> function_range(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> function_range(exp(x), x, S.Reals) Interval.open(0, oo) >>> function_range(log(x), x, S.Reals) Interval(-oo, oo) >>> function_range(sqrt(x), x , Interval(-5, 9)) Interval(0, 3) Returns ======= Interval Union of all ranges for all intervals under domain where function is continuous. Raises ====== NotImplementedError If any of the intervals, in the given domain, for which function is continuous are not finite or real, OR if the critical points of the function on the domain can't be found. """ from sympy.solvers.solveset import solveset if isinstance(domain, EmptySet): return S.EmptySet period = periodicity(f, symbol) if period is S.Zero: # the expression is constant wrt symbol return FiniteSet(f.expand()) if period is not None: if isinstance(domain, Interval): if (domain.inf - domain.sup).is_infinite: domain = Interval(0, period) elif isinstance(domain, Union): for sub_dom in domain.args: if isinstance(sub_dom, Interval) and \ ((sub_dom.inf - sub_dom.sup).is_infinite): domain = Interval(0, period) intervals = continuous_domain(f, symbol, domain) range_int = S.EmptySet if isinstance(intervals,(Interval, FiniteSet)): interval_iter = (intervals,) elif isinstance(intervals, Union): interval_iter = intervals.args else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) for interval in interval_iter: if isinstance(interval, FiniteSet): for singleton in interval: if singleton in domain: range_int += FiniteSet(f.subs(symbol, singleton)) elif isinstance(interval, Interval): vals = S.EmptySet critical_points = S.EmptySet critical_values = S.EmptySet bounds = ((interval.left_open, interval.inf, '+'), (interval.right_open, interval.sup, '-')) for is_open, limit_point, direction in bounds: if is_open: critical_values += FiniteSet(limit(f, symbol, limit_point, direction)) vals += critical_values else: vals += FiniteSet(f.subs(symbol, limit_point)) solution = solveset(f.diff(symbol), symbol, interval) if not iterable(solution): raise NotImplementedError('Unable to find critical points for {}'.format(f)) critical_points += solution for critical_point in critical_points: vals += FiniteSet(f.subs(symbol, critical_point)) left_open, right_open = False, False if critical_values is not S.EmptySet: if critical_values.inf == vals.inf: left_open = True if critical_values.sup == vals.sup: right_open = True range_int += Interval(vals.inf, vals.sup, left_open, right_open) else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) return range_int def not_empty_in(finset_intersection, *syms): """ Finds the domain of the functions in `finite_set` in which the `finite_set` is not-empty Parameters ========== finset_intersection : The unevaluated intersection of FiniteSet containing real-valued functions with Union of Sets syms : Tuple of symbols Symbol for which domain is to be found Raises ====== NotImplementedError The algorithms to find the non-emptiness of the given FiniteSet are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report it to the github issue tracker (https://github.com/sympy/sympy/issues). Examples ======== >>> from sympy import FiniteSet, Interval, not_empty_in, oo >>> from sympy.abc import x >>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x) Interval(0, 2) >>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) Union(Interval(-sqrt(2), -1), Interval(1, 2)) >>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) Union(Interval.Lopen(-2, -1), Interval(2, oo)) """ # TODO: handle piecewise defined functions # TODO: handle transcendental functions # TODO: handle multivariate functions if len(syms) == 0: raise ValueError("One or more symbols must be given in syms.") if finset_intersection.is_EmptySet: return EmptySet() if isinstance(finset_intersection, Union): elm_in_sets = finset_intersection.args[0] return Union(not_empty_in(finset_intersection.args[1], *syms), elm_in_sets) if isinstance(finset_intersection, FiniteSet): finite_set = finset_intersection _sets = S.Reals else: finite_set = finset_intersection.args[1] _sets = finset_intersection.args[0] if not isinstance(finite_set, FiniteSet): raise ValueError('A FiniteSet must be given, not %s: %s' % (type(finite_set), finite_set)) if len(syms) == 1: symb = syms[0] else: raise NotImplementedError('more than one variables %s not handled' % (syms,)) def elm_domain(expr, intrvl): """ Finds the domain of an expression in any given interval """ from sympy.solvers.solveset import solveset _start = intrvl.start _end = intrvl.end _singularities = solveset(expr.as_numer_denom()[1], symb, domain=S.Reals) if intrvl.right_open: if _end is S.Infinity: _domain1 = S.Reals else: _domain1 = solveset(expr < _end, symb, domain=S.Reals) else: _domain1 = solveset(expr <= _end, symb, domain=S.Reals) if intrvl.left_open: if _start is S.NegativeInfinity: _domain2 = S.Reals else: _domain2 = solveset(expr > _start, symb, domain=S.Reals) else: _domain2 = solveset(expr >= _start, symb, domain=S.Reals) # domain in the interval expr_with_sing = Intersection(_domain1, _domain2) expr_domain = Complement(expr_with_sing, _singularities) return expr_domain if isinstance(_sets, Interval): return Union(*[elm_domain(element, _sets) for element in finite_set]) if isinstance(_sets, Union): _domain = S.EmptySet for intrvl in _sets.args: _domain_element = Union(*[elm_domain(element, intrvl) for element in finite_set]) _domain = Union(_domain, _domain_element) return _domain def periodicity(f, symbol, check=False): """ Tests the given function for periodicity in the given symbol. Parameters ========== f : Expr. The concerned function. symbol : Symbol The variable for which the period is to be determined. check : Boolean, optional The flag to verify whether the value being returned is a period or not. Returns ======= period The period of the function is returned. `None` is returned when the function is aperiodic or has a complex period. The value of `0` is returned as the period of a constant function. Raises ====== NotImplementedError The value of the period computed cannot be verified. Notes ===== Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as `exp`, `sinh` is evaluated to `None`. The value returned might not be the "fundamental" period of the given function i.e. it may not be the smallest periodic value of the function. The verification of the period through the `check` flag is not reliable due to internal simplification of the given expression. Hence, it is set to `False` by default. Examples ======== >>> from sympy import Symbol, sin, cos, tan, exp >>> from sympy.calculus.util import periodicity >>> x = Symbol('x') >>> f = sin(x) + sin(2*x) + sin(3*x) >>> periodicity(f, x) 2*pi >>> periodicity(sin(x)*cos(x), x) pi >>> periodicity(exp(tan(2*x) - 1), x) pi/2 >>> periodicity(sin(4*x)**cos(2*x), x) pi >>> periodicity(exp(x), x) """ from sympy.core.function import diff from sympy.core.mod import Mod from sympy.core.relational import Relational from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, sin, cos, csc, sec) from sympy.simplify.simplify import simplify from sympy.solvers.decompogen import decompogen from sympy.polys.polytools import degree, lcm_list def _check(orig_f, period): '''Return the checked period or raise an error.''' new_f = orig_f.subs(symbol, symbol + period) if new_f.equals(orig_f): return period else: raise NotImplementedError(filldedent(''' The period of the given function cannot be verified. When `%s` was replaced with `%s + %s` in `%s`, the result was `%s` which was not recognized as being the same as the original function. So either the period was wrong or the two forms were not recognized as being equal. Set check=False to obtain the value.''' % (symbol, symbol, period, orig_f, new_f))) orig_f = f period = None if isinstance(f, Relational): f = f.lhs - f.rhs f = simplify(f) if symbol not in f.free_symbols: return S.Zero if isinstance(f, TrigonometricFunction): try: period = f.period(symbol) except NotImplementedError: pass if isinstance(f, Abs): arg = f.args[0] if isinstance(arg, (sec, csc, cos)): # all but tan and cot might have a # a period that is half as large # so recast as sin arg = sin(arg.args[0]) period = periodicity(arg, symbol) if period is not None and isinstance(arg, sin): # the argument of Abs was a trigonometric other than # cot or tan; test to see if the half-period # is valid. Abs(arg) has behaviour equivalent to # orig_f, so use that for test: orig_f = Abs(arg) try: return _check(orig_f, period/2) except NotImplementedError as err: if check: raise NotImplementedError(err) # else let new orig_f and period be # checked below if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if base_has_sym and not expo_has_sym: period = periodicity(base, symbol) elif expo_has_sym and not base_has_sym: period = periodicity(expo, symbol) else: period = _periodicity(f.args, symbol) elif f.is_Mul: coeff, g = f.as_independent(symbol, as_Add=False) if isinstance(g, TrigonometricFunction) or coeff is not S.One: period = periodicity(g, symbol) else: period = _periodicity(g.args, symbol) elif f.is_Add: k, g = f.as_independent(symbol) if k is not S.Zero: return periodicity(g, symbol) period = _periodicity(g.args, symbol) elif isinstance(f, Mod): a, n = f.args if a == symbol: period = n elif isinstance(a, TrigonometricFunction): period = periodicity(a, symbol) #check if 'f' is linear in 'symbol' elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and symbol not in n.free_symbols): period = Abs(n / a.diff(symbol)) elif period is None: from sympy.solvers.decompogen import compogen g_s = decompogen(f, symbol) num_of_gs = len(g_s) if num_of_gs > 1: for index, g in enumerate(reversed(g_s)): start_index = num_of_gs - 1 - index g = compogen(g_s[start_index:], symbol) if g != orig_f and g != f: # Fix for issue 12620 period = periodicity(g, symbol) if period is not None: break if period is not None: if check: return _check(orig_f, period) return period return None def _periodicity(args, symbol): """ Helper for `periodicity` to find the period of a list of simpler functions. It uses the `lcim` method to find the least common period of all the functions. Parameters ========== args : Tuple of Symbol All the symbols present in a function. symbol : Symbol The symbol over which the function is to be evaluated. Returns ======= period The least common period of the function for all the symbols of the function. None if for at least one of the symbols the function is aperiodic """ periods = [] for f in args: period = periodicity(f, symbol) if period is None: return None if period is not S.Zero: periods.append(period) if len(periods) > 1: return lcim(periods) return periods[0] def lcim(numbers): """Returns the least common integral multiple of a list of numbers. The numbers can be rational or irrational or a mixture of both. `None` is returned for incommensurable numbers. Parameters ========== numbers : list Numbers (rational and/or irrational) for which lcim is to be found. Returns ======= number lcim if it exists, otherwise `None` for incommensurable numbers. Examples ======== >>> from sympy import S, pi >>> from sympy.calculus.util import lcim >>> lcim([S(1)/2, S(3)/4, S(5)/6]) 15/2 >>> lcim([2*pi, 3*pi, pi, pi/2]) 6*pi >>> lcim([S(1), 2*pi]) """ result = None if all(num.is_irrational for num in numbers): factorized_nums = list(map(lambda num: num.factor(), numbers)) factors_num = list( map(lambda num: num.as_coeff_Mul(), factorized_nums)) term = factors_num[0][1] if all(factor == term for coeff, factor in factors_num): common_term = term coeffs = [coeff for coeff, factor in factors_num] result = lcm_list(coeffs) * common_term elif all(num.is_rational for num in numbers): result = lcm_list(numbers) else: pass return result def is_convex(f, *syms, **kwargs): """Determines the convexity of the function passed in the argument. Parameters ========== f : Expr The concerned function. syms : Tuple of symbols The variables with respect to which the convexity is to be determined. domain : Interval, optional The domain over which the convexity of the function has to be checked. If unspecified, S.Reals will be the default domain. Returns ======= Boolean The method returns `True` if the function is convex otherwise it returns `False`. Raises ====== NotImplementedError The check for the convexity of multivariate functions is not implemented yet. Notes ===== To determine concavity of a function pass `-f` as the concerned function. To determine logarithmic convexity of a function pass log(f) as concerned function. To determine logartihmic concavity of a function pass -log(f) as concerned function. Currently, convexity check of multivariate functions is not handled. Examples ======== >>> from sympy import symbols, exp, oo, Interval >>> from sympy.calculus.util import is_convex >>> x = symbols('x') >>> is_convex(exp(x), x) True >>> is_convex(x**3, x, domain = Interval(-1, oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Convex_function .. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf .. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function .. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function .. [5] https://en.wikipedia.org/wiki/Concave_function """ if len(syms) > 1: raise NotImplementedError( "The check for the convexity of multivariate functions is not implemented yet.") f = _sympify(f) domain = kwargs.get('domain', S.Reals) var = syms[0] condition = f.diff(var, 2) < 0 if solve_univariate_inequality(condition, var, False, domain): return False return True class AccumulationBounds(AtomicExpr): r""" # Note AccumulationBounds has an alias: AccumBounds AccumulationBounds represent an interval `[a, b]`, which is always closed at the ends. Here `a` and `b` can be any value from extended real numbers. The intended meaning of AccummulationBounds is to give an approximate location of the accumulation points of a real function at a limit point. Let `a` and `b` be reals such that a <= b. `\left\langle a, b\right\rangle = \{x \in \mathbb{R} \mid a \le x \le b\}` `\left\langle -\infty, b\right\rangle = \{x \in \mathbb{R} \mid x \le b\} \cup \{-\infty, \infty\}` `\left\langle a, \infty \right\rangle = \{x \in \mathbb{R} \mid a \le x\} \cup \{-\infty, \infty\}` `\left\langle -\infty, \infty \right\rangle = \mathbb{R} \cup \{-\infty, \infty\}` `oo` and `-oo` are added to the second and third definition respectively, since if either `-oo` or `oo` is an argument, then the other one should be included (though not as an end point). This is forced, since we have, for example, `1/AccumBounds(0, 1) = AccumBounds(1, oo)`, and the limit at `0` is not one-sided. As x tends to `0-`, then `1/x -> -oo`, so `-oo` should be interpreted as belonging to `AccumBounds(1, oo)` though it need not appear explicitly. In many cases it suffices to know that the limit set is bounded. However, in some other cases more exact information could be useful. For example, all accumulation values of cos(x) + 1 are non-negative. (AccumBounds(-1, 1) + 1 = AccumBounds(0, 2)) A AccumulationBounds object is defined to be real AccumulationBounds, if its end points are finite reals. Let `X`, `Y` be real AccumulationBounds, then their sum, difference, product are defined to be the following sets: `X + Y = \{ x+y \mid x \in X \cap y \in Y\}` `X - Y = \{ x-y \mid x \in X \cap y \in Y\}` `X * Y = \{ x*y \mid x \in X \cap y \in Y\}` There is, however, no consensus on Interval division. `X / Y = \{ z \mid \exists x \in X, y \in Y \mid y \neq 0, z = x/y\}` Note: According to this definition the quotient of two AccumulationBounds may not be a AccumulationBounds object but rather a union of AccumulationBounds. Note ==== The main focus in the interval arithmetic is on the simplest way to calculate upper and lower endpoints for the range of values of a function in one or more variables. These barriers are not necessarily the supremum or infimum, since the precise calculation of those values can be difficult or impossible. Examples ======== >>> from sympy import AccumBounds, sin, exp, log, pi, E, S, oo >>> from sympy.abc import x >>> AccumBounds(0, 1) + AccumBounds(1, 2) AccumBounds(1, 3) >>> AccumBounds(0, 1) - AccumBounds(0, 2) AccumBounds(-2, 1) >>> AccumBounds(-2, 3)*AccumBounds(-1, 1) AccumBounds(-3, 3) >>> AccumBounds(1, 2)*AccumBounds(3, 5) AccumBounds(3, 10) The exponentiation of AccumulationBounds is defined as follows: If 0 does not belong to `X` or `n > 0` then `X^n = \{ x^n \mid x \in X\}` otherwise `X^n = \{ x^n \mid x \neq 0, x \in X\} \cup \{-\infty, \infty\}` Here for fractional `n`, the part of `X` resulting in a complex AccumulationBounds object is neglected. >>> AccumBounds(-1, 4)**(S(1)/2) AccumBounds(0, 2) >>> AccumBounds(1, 2)**2 AccumBounds(1, 4) >>> AccumBounds(-1, oo)**(-1) AccumBounds(-oo, oo) Note: `<a, b>^2` is not same as `<a, b>*<a, b>` >>> AccumBounds(-1, 1)**2 AccumBounds(0, 1) >>> AccumBounds(1, 3) < 4 True >>> AccumBounds(1, 3) < -1 False Some elementary functions can also take AccumulationBounds as input. A function `f` evaluated for some real AccumulationBounds `<a, b>` is defined as `f(\left\langle a, b\right\rangle) = \{ f(x) \mid a \le x \le b \}` >>> sin(AccumBounds(pi/6, pi/3)) AccumBounds(1/2, sqrt(3)/2) >>> exp(AccumBounds(0, 1)) AccumBounds(1, E) >>> log(AccumBounds(1, E)) AccumBounds(0, 1) Some symbol in an expression can be substituted for a AccumulationBounds object. But it doesn't necessarily evaluate the AccumulationBounds for that expression. Same expression can be evaluated to different values depending upon the form it is used for substitution. For example: >>> (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) AccumBounds(-1, 4) >>> ((x + 1)**2).subs(x, AccumBounds(-1, 1)) AccumBounds(0, 4) References ========== .. [1] https://en.wikipedia.org/wiki/Interval_arithmetic .. [2] http://fab.cba.mit.edu/classes/S62.12/docs/Hickey_interval.pdf Notes ===== Do not use ``AccumulationBounds`` for floating point interval arithmetic calculations, use ``mpmath.iv`` instead. """ is_real = True def __new__(cls, min, max): min = _sympify(min) max = _sympify(max) inftys = [S.Infinity, S.NegativeInfinity] # Only allow real intervals (use symbols with 'is_real=True'). if not (min.is_real or min in inftys) \ or not (max.is_real or max in inftys): raise ValueError("Only real AccumulationBounds are supported") # Make sure that the created AccumBounds object will be valid. if max.is_comparable and min.is_comparable: if max < min: raise ValueError( "Lower limit should be smaller than upper limit") if max == min: return max return Basic.__new__(cls, min, max) # setting the operation priority _op_priority = 11.0 @property def min(self): """ Returns the minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).min 1 """ return self.args[0] @property def max(self): """ Returns the maximum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).max 3 """ return self.args[1] @property def delta(self): """ Returns the difference of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).delta 2 """ return self.max - self.min @property def mid(self): """ Returns the mean of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).mid 2 """ return (self.min + self.max) / 2 @_sympifyit('other', NotImplemented) def _eval_power(self, other): return self.__pow__(other) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, other.min), Add(self.max, other.max)) if other is S.Infinity and self.min is S.NegativeInfinity or \ other is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_real: return AccumBounds(Add(self.min, other), Add(self.max, other)) return Add(self, other, evaluate=False) return NotImplemented __radd__ = __add__ def __neg__(self): return AccumBounds(-self.max, -self.min) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, -other.max), Add(self.max, -other.min)) if other is S.NegativeInfinity and self.min is S.NegativeInfinity or \ other is S.Infinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_real: return AccumBounds( Add(self.min, -other), Add(self.max, -other)) return Add(self, -other, evaluate=False) return NotImplemented @_sympifyit('other', NotImplemented) def __rsub__(self, other): return self.__neg__() + other @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds(Min(Mul(self.min, other.min), Mul(self.min, other.max), Mul(self.max, other.min), Mul(self.max, other.max)), Max(Mul(self.min, other.min), Mul(self.min, other.max), Mul(self.max, other.min), Mul(self.max, other.max))) if other is S.Infinity: if self.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero: return AccumBounds(-oo, 0) if other is S.NegativeInfinity: if self.min.is_zero: return AccumBounds(-oo, 0) if self.max.is_zero: return AccumBounds(0, oo) if other.is_real: if other.is_zero: if self == AccumBounds(-oo, oo): return AccumBounds(-oo, oo) if self.max is S.Infinity: return AccumBounds(0, oo) if self.min is S.NegativeInfinity: return AccumBounds(-oo, 0) return S.Zero if other.is_positive: return AccumBounds( Mul(self.min, other), Mul(self.max, other)) elif other.is_negative: return AccumBounds( Mul(self.max, other), Mul(self.min, other)) if isinstance(other, Order): return other return Mul(self, other, evaluate=False) return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): if S.Zero not in other: return self * AccumBounds(1/other.max, 1/other.min) if S.Zero in self and S.Zero in other: if self.min.is_zero and other.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero and other.min.is_zero: return AccumBounds(-oo, 0) return AccumBounds(-oo, oo) if self.max.is_negative: if other.min.is_negative: if other.max.is_zero: return AccumBounds(self.max / other.min, oo) if other.max.is_positive: # the actual answer is a Union of AccumBounds, # Union(AccumBounds(-oo, self.max/other.max), # AccumBounds(self.max/other.min, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_positive: return AccumBounds(-oo, self.max / other.max) if self.min.is_positive: if other.min.is_negative: if other.max.is_zero: return AccumBounds(-oo, self.min / other.min) if other.max.is_positive: # the actual answer is a Union of AccumBounds, # Union(AccumBounds(-oo, self.min/other.min), # AccumBounds(self.min/other.max, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_positive: return AccumBounds(self.min / other.max, oo) elif other.is_real: if other is S.Infinity or other is S.NegativeInfinity: if self == AccumBounds(-oo, oo): return AccumBounds(-oo, oo) if self.max is S.Infinity: return AccumBounds(Min(0, other), Max(0, other)) if self.min is S.NegativeInfinity: return AccumBounds(Min(0, -other), Max(0, -other)) if other.is_positive: return AccumBounds(self.min / other, self.max / other) elif other.is_negative: return AccumBounds(self.max / other, self.min / other) return Mul(self, 1 / other, evaluate=False) return NotImplemented __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __rdiv__(self, other): if isinstance(other, Expr): if other.is_real: if other.is_zero: return S.Zero if S.Zero in self: if self.min == S.Zero: if other.is_positive: return AccumBounds(Mul(other, 1 / self.max), oo) if other.is_negative: return AccumBounds(-oo, Mul(other, 1 / self.max)) if self.max == S.Zero: if other.is_positive: return AccumBounds(-oo, Mul(other, 1 / self.min)) if other.is_negative: return AccumBounds(Mul(other, 1 / self.min), oo) return AccumBounds(-oo, oo) else: return AccumBounds(Min(other / self.min, other / self.max), Max(other / self.min, other / self.max)) return Mul(other, 1 / self, evaluate=False) else: return NotImplemented __rtruediv__ = __rdiv__ @_sympifyit('other', NotImplemented) def __pow__(self, other): from sympy.functions.elementary.miscellaneous import real_root if isinstance(other, Expr): if other is S.Infinity: if self.min.is_nonnegative: if self.max < 1: return S.Zero if self.min > 1: return S.Infinity return AccumBounds(0, oo) elif self.max.is_negative: if self.min > -1: return S.Zero if self.max < -1: return FiniteSet(-oo, oo) return AccumBounds(-oo, oo) else: if self.min > -1: if self.max < 1: return S.Zero return AccumBounds(0, oo) return AccumBounds(-oo, oo) if other is S.NegativeInfinity: return (1 / self)**oo if other.is_real and other.is_number: if other.is_zero: return S.One if other.is_Integer: if self.min.is_positive: return AccumBounds( Min(self.min ** other, self.max ** other), Max(self.min ** other, self.max ** other)) elif self.max.is_negative: return AccumBounds( Min(self.max ** other, self.min ** other), Max(self.max ** other, self.min ** other)) if other % 2 == 0: if other.is_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(self.min**other, oo) return AccumBounds(0, oo) return AccumBounds( S.Zero, Max(self.min**other, self.max**other)) else: if other.is_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(-oo, self.min**other) return AccumBounds(-oo, oo) return AccumBounds(self.min**other, self.max**other) num, den = other.as_numer_denom() if num == S(1): if den % 2 == 0: if S.Zero in self: if self.min.is_negative: return AccumBounds(0, real_root(self.max, den)) return AccumBounds(real_root(self.min, den), real_root(self.max, den)) num_pow = self**num return num_pow**(1 / den) return Pow(self, other, evaluate=False) return NotImplemented def __abs__(self): if self.max.is_negative: return self.__neg__() elif self.min.is_negative: return AccumBounds(S.Zero, Max(abs(self.min), self.max)) else: return self def __lt__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is less than the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) < AccumBounds(4, oo) True >>> AccumBounds(1, 4) < AccumBounds(3, 4) AccumBounds(1, 4) < AccumBounds(3, 4) >>> AccumBounds(1, oo) < -1 False """ other = _sympify(other) if isinstance(other, AccumBounds): if self.max < other.min: return True if self.min >= other.max: return False elif not(other.is_real or other is S.Infinity or other is S.NegativeInfinity): raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.max < other: return True if self.min >= other: return False return super(AccumulationBounds, self).__lt__(other) def __le__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is less than or equal to the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) <= AccumBounds(4, oo) True >>> AccumBounds(1, 4) <= AccumBounds(3, 4) AccumBounds(1, 4) <= AccumBounds(3, 4) >>> AccumBounds(1, 3) <= 0 False """ other = _sympify(other) if isinstance(other, AccumBounds): if self.max <= other.min: return True if self.min > other.max: return False elif not(other.is_real or other is S.Infinity or other is S.NegativeInfinity): raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.max <= other: return True if self.min > other: return False return super(AccumulationBounds, self).__le__(other) def __gt__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is greater than the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) > AccumBounds(4, oo) False >>> AccumBounds(1, 4) > AccumBounds(3, 4) AccumBounds(1, 4) > AccumBounds(3, 4) >>> AccumBounds(1, oo) > -1 True """ other = _sympify(other) if isinstance(other, AccumBounds): if self.min > other.max: return True if self.max <= other.min: return False elif not(other.is_real or other is S.Infinity or other is S.NegativeInfinity): raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.min > other: return True if self.max <= other: return False return super(AccumulationBounds, self).__gt__(other) def __ge__(self, other): """ Returns True if range of values attained by `self` AccumulationBounds object is less that the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) >= AccumBounds(4, oo) False >>> AccumBounds(1, 4) >= AccumBounds(3, 4) AccumBounds(1, 4) >= AccumBounds(3, 4) >>> AccumBounds(1, oo) >= 1 True """ other = _sympify(other) if isinstance(other, AccumBounds): if self.min >= other.max: return True if self.max < other.min: return False elif not(other.is_real or other is S.Infinity or other is S.NegativeInfinity): raise TypeError( "Invalid comparison of %s %s" % (type(other), other)) elif other.is_comparable: if self.min >= other: return True if self.max < other: return False return super(AccumulationBounds, self).__ge__(other) def __contains__(self, other): """ Returns True if other is contained in self, where other belongs to extended real numbers, False if not contained, otherwise TypeError is raised. Examples ======== >>> from sympy import AccumBounds, oo >>> 1 in AccumBounds(-1, 3) True -oo and oo go together as limits (in AccumulationBounds). >>> -oo in AccumBounds(1, oo) True >>> oo in AccumBounds(-oo, 0) True """ other = _sympify(other) if other is S.Infinity or other is S.NegativeInfinity: if self.min is S.NegativeInfinity or self.max is S.Infinity: return True return False rv = And(self.min <= other, self.max >= other) if rv not in (True, False): raise TypeError("input failed to evaluate") return rv def intersection(self, other): """ Returns the intersection of 'self' and 'other'. Here other can be an instance of FiniteSet or AccumulationBounds. Examples ======== >>> from sympy import AccumBounds, FiniteSet >>> AccumBounds(1, 3).intersection(AccumBounds(2, 4)) AccumBounds(2, 3) >>> AccumBounds(1, 3).intersection(AccumBounds(4, 6)) EmptySet() >>> AccumBounds(1, 4).intersection(FiniteSet(1, 2, 5)) {1, 2} """ if not isinstance(other, (AccumBounds, FiniteSet)): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if isinstance(other, FiniteSet): fin_set = S.EmptySet for i in other: if i in self: fin_set = fin_set + FiniteSet(i) return fin_set if self.max < other.min or self.min > other.max: return S.EmptySet if self.min <= other.min: if self.max <= other.max: return AccumBounds(other.min, self.max) if self.max > other.max: return other if other.min <= self.min: if other.max < self.max: return AccumBounds(self.min, other.max) if other.max > self.max: return self def union(self, other): # TODO : Devise a better method for Union of AccumBounds # this method is not actually correct and # can be made better if not isinstance(other, AccumBounds): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if self.min <= other.min and self.max >= other.min: return AccumBounds(self.min, Max(self.max, other.max)) if other.min <= self.min and other.max >= self.min: return AccumBounds(other.min, Max(self.max, other.max)) # setting an alias for AccumulationBounds AccumBounds = AccumulationBounds
64a3fcb24288a2f16e70130c694ece967da30b926d1be0e99b54fd9ee02f4277
from __future__ import print_function, division from sympy.printing.mathml import mathml import tempfile import os def print_gtk(x, start_viewer=True): """Print to Gtkmathview, a gtk widget capable of rendering MathML. Needs libgtkmathview-bin """ from sympy.utilities.mathml import c2p tmp = tempfile.mktemp() # create a temp file to store the result with open(tmp, 'wb') as file: file.write( c2p(mathml(x), simple=True) ) if start_viewer: os.system("mathmlviewer " + tmp)
37f74add11b8c0ad1a40ab9ab4e3fa941d26e05e1e8fc199bd25310a3f76c832
""" Python code printers This module contains python code printers for plain python as well as NumPy & SciPy enabled code. """ from collections import defaultdict from itertools import chain from sympy.core import S, Number, Symbol from .precedence import precedence from .codeprinter import CodePrinter _kw_py2and3 = { 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist } _kw_only_py2 = {'exec', 'print'} _kw_only_py3 = {'False', 'nonlocal', 'True'} _known_functions = { 'Abs': 'abs', } _known_functions_math = { 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'erf': 'erf', 'erfc': 'erfc', 'exp': 'exp', 'expm1': 'expm1', 'factorial': 'factorial', 'floor': 'floor', 'gamma': 'gamma', 'hypot': 'hypot', 'loggamma': 'lgamma', 'log': 'log', 'ln': 'log', 'log10': 'log10', 'log1p': 'log1p', 'log2': 'log2', 'sin': 'sin', 'sinh': 'sinh', 'Sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh' } # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf # radians trunc fmod fsum gcd degrees fabs] _known_constants_math = { 'Exp1': 'e', 'Pi': 'pi', 'E': 'e' # Only in python >= 3.5: # 'Infinity': 'inf', # 'NaN': 'nan' } def _print_known_func(self, expr): known = self.known_functions[expr.__class__.__name__] return '{name}({args})'.format(name=self._module_format(known), args=', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_known_const(self, expr): known = self.known_constants[expr.__class__.__name__] return self._module_format(known) class AbstractPythonCodePrinter(CodePrinter): printmethod = "_pythoncode" language = "Python" standard = "python3" reserved_words = _kw_py2and3.union(_kw_only_py3) modules = None # initialized to a set in __init__ tab = ' ' _kf = dict(chain( _known_functions.items(), [(k, 'math.' + v) for k, v in _known_functions_math.items()] )) _kc = {k: 'math.'+v for k, v in _known_constants_math.items()} _operators = {'and': 'and', 'or': 'or', 'not': 'not'} _default_settings = dict( CodePrinter._default_settings, user_functions={}, precision=17, inline=True, fully_qualified_modules=True, contract=False ) def __init__(self, settings=None): super(AbstractPythonCodePrinter, self).__init__(settings) self.module_imports = defaultdict(set) self.known_functions = dict(self._kf, **(settings or {}).get( 'user_functions', {})) self.known_constants = dict(self._kc, **(settings or {}).get( 'user_constants', {})) def _declare_number_const(self, name, value): return "%s = %s" % (name, value) def _module_format(self, fqn, register=True): parts = fqn.split('.') if register and len(parts) > 1: self.module_imports['.'.join(parts[:-1])].add(parts[-1]) if self._settings['fully_qualified_modules']: return fqn else: return fqn.split('(')[0].split('[')[0].split('.')[-1] def _format_code(self, lines): return lines def _get_statement(self, codestring): return "{}".format(codestring) def _get_comment(self, text): return " # {0}".format(text) def _expand_fold_binary_op(self, op, args): """ This method expands a fold on binary operations. ``functools.reduce`` is an example of a folded operation. For example, the expression `A + B + C + D` is folded into `((A + B) + C) + D` """ if len(args) == 1: return self._print(args[0]) else: return "%s(%s, %s)" % ( self._module_format(op), self._expand_fold_binary_op(op, args[:-1]), self._print(args[-1]), ) def _expand_reduce_binary_op(self, op, args): """ This method expands a reductin on binary operations. Notice: this is NOT the same as ``functools.reduce``. For example, the expression `A + B + C + D` is reduced into: `(A + B) + (C + D)` """ if len(args) == 1: return self._print(args[0]) else: N = len(args) Nhalf = N // 2 return "%s(%s, %s)" % ( self._module_format(op), self._expand_reduce_binary_op(args[:Nhalf]), self._expand_reduce_binary_op(args[Nhalf:]), ) def _get_einsum_string(self, subranks, contraction_indices): letters = self._get_letter_generator_for_einsum() contraction_string = "" counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) mapping = {} letters_free = [] letters_dum = [] for i in indices: for j in i: if j not in mapping: l = next(letters) mapping[j] = l else: l = mapping[j] contraction_string += l if j in d: if l not in letters_dum: letters_dum.append(l) else: letters_free.append(l) contraction_string += "," contraction_string = contraction_string[:-1] return contraction_string, letters_free, letters_dum def _print_NaN(self, expr): return "float('nan')" def _print_Infinity(self, expr): return "float('inf')" def _print_NegativeInfinity(self, expr): return "float('-inf')" def _print_ComplexInfinity(self, expr): return self._print_NaN(expr) def _print_Mod(self, expr): PREC = precedence(expr) return ('{0} % {1}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args))) def _print_Piecewise(self, expr): result = [] i = 0 for arg in expr.args: e = arg.expr c = arg.cond if i == 0: result.append('(') result.append('(') result.append(self._print(e)) result.append(')') result.append(' if ') result.append(self._print(c)) result.append(' else ') i += 1 result = result[:-1] if result[-1] == 'True': result = result[:-2] result.append(')') else: result.append(' else None)') return ''.join(result) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs) return super(AbstractPythonCodePrinter, self)._print_Relational(expr) def _print_ITE(self, expr): from sympy.functions.elementary.piecewise import Piecewise return self._print(expr.rewrite(Piecewise)) def _print_Sum(self, expr): loops = ( 'for {i} in range({a}, {b}+1)'.format( i=self._print(i), a=self._print(a), b=self._print(b)) for i, a, b in expr.limits) return '(builtins.sum({function} {loops}))'.format( function=self._print(expr.function), loops=' '.join(loops)) def _print_ImaginaryUnit(self, expr): return '1j' def _print_MatrixBase(self, expr): name = expr.__class__.__name__ func = self.known_functions.get(name, name) return "%s(%s)" % (func, self._print(expr.tolist())) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ lambda self, expr: self._print_MatrixBase(expr) def _indent_codestring(self, codestring): return '\n'.join([self.tab + line for line in codestring.split('\n')]) def _print_FunctionDefinition(self, fd): body = '\n'.join(map(lambda arg: self._print(arg), fd.body)) return "def {name}({parameters}):\n{body}".format( name=self._print(fd.name), parameters=', '.join([self._print(var.symbol) for var in fd.parameters]), body=self._indent_codestring(body) ) def _print_While(self, whl): body = '\n'.join(map(lambda arg: self._print(arg), whl.body)) return "while {cond}:\n{body}".format( cond=self._print(whl.condition), body=self._indent_codestring(body) ) def _print_Declaration(self, decl): return '%s = %s' % ( self._print(decl.variable.symbol), self._print(decl.variable.value) ) def _print_Return(self, ret): arg, = ret.args return 'return %s' % self._print(arg) def _print_Print(self, prnt): print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args)) if prnt.format_string != None: print_args = '{0} % ({1})'.format( self._print(prnt.format_string), print_args) if prnt.file != None: print_args += ', file=%s' % self._print(prnt.file) return 'print(%s)' % print_args def _print_Stream(self, strm): if str(strm.name) == 'stdout': return self._module_format('sys.stdout') elif str(strm.name) == 'stderr': return self._module_format('sys.stderr') else: return self._print(strm.name) def _print_NoneToken(self, arg): return 'None' class PythonCodePrinter(AbstractPythonCodePrinter): def _print_sign(self, e): return '(0.0 if {e} == 0 else {f}(1, {e}))'.format( f=self._module_format('math.copysign'), e=self._print(e.args[0])) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) for k in PythonCodePrinter._kf: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_math: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const) def pycode(expr, **settings): """ Converts an expr to a string of Python code Parameters ========== expr : Expr A SymPy expression. fully_qualified_modules : bool Whether or not to write out full module names of functions (``math.sin`` vs. ``sin``). default: ``True``. Examples ======== >>> from sympy import tan, Symbol >>> from sympy.printing.pycode import pycode >>> pycode(tan(Symbol('x')) + 1) 'math.tan(x) + 1' """ return PythonCodePrinter(settings).doprint(expr) _not_in_mpmath = 'log1p log2'.split() _in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath] _known_functions_mpmath = dict(_in_mpmath, **{ 'sign': 'sign', }) _known_constants_mpmath = { 'Pi': 'pi' } class MpmathPrinter(PythonCodePrinter): """ Lambda printer for mpmath which maintains precision for floats """ printmethod = "_mpmathcode" _kf = dict(chain( _known_functions.items(), [(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()] )) def _print_Float(self, e): # XXX: This does not handle setting mpmath.mp.dps. It is assumed that # the caller of the lambdified function will have set it to sufficient # precision to match the Floats in the expression. # Remove 'mpz' if gmpy is installed. args = str(tuple(map(int, e._mpf_))) return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args) def _print_Rational(self, e): return '{0}({1})/{0}({2})'.format( self._module_format('mpmath.mpf'), e.p, e.q, ) def _print_uppergamma(self, e): return "{0}({1}, {2}, {3})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1]), self._module_format('mpmath.inf')) def _print_lowergamma(self, e): return "{0}({1}, 0, {2})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1])) def _print_log2(self, e): return '{0}({1})/{0}(2)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_log1p(self, e): return '{0}({1}+1)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) for k in MpmathPrinter._kf: setattr(MpmathPrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_mpmath: setattr(MpmathPrinter, '_print_%s' % k, _print_known_const) _not_in_numpy = 'erf erfc factorial gamma loggamma'.split() _in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy] _known_functions_numpy = dict(_in_numpy, **{ 'acos': 'arccos', 'acosh': 'arccosh', 'asin': 'arcsin', 'asinh': 'arcsinh', 'atan': 'arctan', 'atan2': 'arctan2', 'atanh': 'arctanh', 'exp2': 'exp2', 'sign': 'sign', }) class NumPyPrinter(PythonCodePrinter): """ Numpy printer which handles vectorized piecewise functions, logical operators, etc. """ printmethod = "_numpycode" _kf = dict(chain( PythonCodePrinter._kf.items(), [(k, 'numpy.' + v) for k, v in _known_functions_numpy.items()] )) _kc = {k: 'numpy.'+v for k, v in _known_constants_math.items()} def _print_seq(self, seq): "General sequence printer: converts to tuple" # Print tuples here instead of lists because numba supports # tuples in nopython mode. delimiter=', ' return '({},)'.format(delimiter.join(self._print(item) for item in seq)) def _print_MatMul(self, expr): "Matrix multiplication printer" if isinstance(S(expr.args[0]), (Number, Symbol)): return '({0})'.format(').dot('.join([self._print(expr.args[1]), self._print(expr.args[0])])) return '({0})'.format(').dot('.join(self._print(i) for i in expr.args)) def _print_MatPow(self, expr): "Matrix power printer" return '{0}({1}, {2})'.format(self._module_format('numpy.linalg.matrix_power'), self._print(expr.args[0]), self._print(expr.args[1])) def _print_Inverse(self, expr): "Matrix inverse printer" return '{0}({1})'.format(self._module_format('numpy.linalg.inv'), self._print(expr.args[0])) def _print_DotProduct(self, expr): # DotProduct allows any shape order, but numpy.dot does matrix # multiplication, so we have to make sure it gets 1 x n by n x 1. arg1, arg2 = expr.args if arg1.shape[0] != 1: arg1 = arg1.T if arg2.shape[1] != 1: arg2 = arg2.T return "%s(%s, %s)" % (self._module_format('numpy.dot'), self._print(arg1), self._print(arg2)) def _print_Piecewise(self, expr): "Piecewise function printer" exprs = '[{0}]'.format(','.join(self._print(arg.expr) for arg in expr.args)) conds = '[{0}]'.format(','.join(self._print(arg.cond) for arg in expr.args)) # If [default_value, True] is a (expr, cond) sequence in a Piecewise object # it will behave the same as passing the 'default' kwarg to select() # *as long as* it is the last element in expr.args. # If this is not the case, it may be triggered prematurely. return '{0}({1}, {2}, default=numpy.nan)'.format(self._module_format('numpy.select'), conds, exprs) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '{op}({lhs}, {rhs})'.format(op=self._module_format('numpy.'+op[expr.rel_op]), lhs=lhs, rhs=rhs) return super(NumPyPrinter, self)._print_Relational(expr) def _print_And(self, expr): "Logical And printer" # We have to override LambdaPrinter because it uses Python 'and' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_and' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_and'), ','.join(self._print(i) for i in expr.args)) def _print_Or(self, expr): "Logical Or printer" # We have to override LambdaPrinter because it uses Python 'or' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_or' to NUMPY_TRANSLATIONS. return '{0}.reduce(({1}))'.format(self._module_format('numpy.logical_or'), ','.join(self._print(i) for i in expr.args)) def _print_Not(self, expr): "Logical Not printer" # We have to override LambdaPrinter because it uses Python 'not' keyword. # If LambdaPrinter didn't define it, we would still have to define our # own because StrPrinter doesn't define it. return '{0}({1})'.format(self._module_format('numpy.logical_not'), ','.join(self._print(i) for i in expr.args)) def _print_Min(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amin'), ','.join(self._print(i) for i in expr.args)) def _print_Max(self, expr): return '{0}(({1}))'.format(self._module_format('numpy.amax'), ','.join(self._print(i) for i in expr.args)) def _print_Pow(self, expr): if expr.exp == 0.5: return '{0}({1})'.format(self._module_format('numpy.sqrt'), self._print(expr.base)) else: return super(NumPyPrinter, self)._print_Pow(expr) def _print_arg(self, expr): return "%s(%s)" % (self._module_format('numpy.angle'), self._print(expr.args[0])) def _print_im(self, expr): return "%s(%s)" % (self._module_format('numpy.imag'), self._print(expr.args[0])) def _print_Mod(self, expr): return "%s(%s)" % (self._module_format('numpy.mod'), ', '.join( map(lambda arg: self._print(arg), expr.args))) def _print_re(self, expr): return "%s(%s)" % (self._module_format('numpy.real'), self._print(expr.args[0])) def _print_sinc(self, expr): return "%s(%s)" % (self._module_format('numpy.sinc'), self._print(expr.args[0]/S.Pi)) def _print_MatrixBase(self, expr): func = self.known_functions.get(expr.__class__.__name__, None) if func is None: func = self._module_format('numpy.array') return "%s(%s)" % (func, self._print(expr.tolist())) def _print_CodegenArrayTensorProduct(self, expr): array_list = [j for i, arg in enumerate(expr.args) for j in (self._print(arg), "[%i, %i]" % (2*i, 2*i+1))] return "%s(%s)" % (self._module_format('numpy.einsum'), ", ".join(array_list)) def _print_CodegenArrayContraction(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct base = expr.expr contraction_indices = expr.contraction_indices if len(contraction_indices) == 0: return self._print(base) if isinstance(base, CodegenArrayTensorProduct): counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in base.subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) elems = ["%s, %s" % (self._print(arg), ind) for arg, ind in zip(base.args, indices)] return "%s(%s)" % ( self._module_format('numpy.einsum'), ", ".join(elems) ) raise NotImplementedError() def _print_CodegenArrayDiagonal(self, expr): diagonal_indices = list(expr.diagonal_indices) if len(diagonal_indices) > 1: # TODO: this should be handled in sympy.codegen.array_utils, # possibly by creating the possibility of unfolding the # CodegenArrayDiagonal object into nested ones. Same reasoning for # the array contraction. raise NotImplementedError if len(diagonal_indices[0]) != 2: raise NotImplementedError return "%s(%s, 0, axis1=%s, axis2=%s)" % ( self._module_format("numpy.diagonal"), self._print(expr.expr), diagonal_indices[0][0], diagonal_indices[0][1], ) def _print_CodegenArrayPermuteDims(self, expr): return "%s(%s, %s)" % ( self._module_format("numpy.transpose"), self._print(expr.expr), self._print(expr.permutation.args[0]), ) def _print_CodegenArrayElementwiseAdd(self, expr): return self._expand_fold_binary_op('numpy.add', expr.args) for k in NumPyPrinter._kf: setattr(NumPyPrinter, '_print_%s' % k, _print_known_func) for k in NumPyPrinter._kc: setattr(NumPyPrinter, '_print_%s' % k, _print_known_const) _known_functions_scipy_special = { 'erf': 'erf', 'erfc': 'erfc', 'besselj': 'jv', 'bessely': 'yv', 'besseli': 'iv', 'besselk': 'kv', 'factorial': 'factorial', 'gamma': 'gamma', 'loggamma': 'gammaln', 'digamma': 'psi', 'RisingFactorial': 'poch', 'jacobi': 'eval_jacobi', 'gegenbauer': 'eval_gegenbauer', 'chebyshevt': 'eval_chebyt', 'chebyshevu': 'eval_chebyu', 'legendre': 'eval_legendre', 'hermite': 'eval_hermite', 'laguerre': 'eval_laguerre', 'assoc_laguerre': 'eval_genlaguerre', } _known_constants_scipy_constants = { 'GoldenRatio': 'golden_ratio', 'Pi': 'pi', 'E': 'e' } class SciPyPrinter(NumPyPrinter): _kf = dict(chain( NumPyPrinter._kf.items(), [(k, 'scipy.special.' + v) for k, v in _known_functions_scipy_special.items()] )) _kc = {k: 'scipy.constants.' + v for k, v in _known_constants_scipy_constants.items()} def _print_SparseMatrix(self, expr): i, j, data = [], [], [] for (r, c), v in expr._smat.items(): i.append(r) j.append(c) data.append(v) return "{name}({data}, ({i}, {j}), shape={shape})".format( name=self._module_format('scipy.sparse.coo_matrix'), data=data, i=i, j=j, shape=expr.shape ) _print_ImmutableSparseMatrix = _print_SparseMatrix # SciPy's lpmv has a different order of arguments from assoc_legendre def _print_assoc_legendre(self, expr): return "{0}({2}, {1}, {3})".format( self._module_format('scipy.special.lpmv'), self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) for k in SciPyPrinter._kf: setattr(SciPyPrinter, '_print_%s' % k, _print_known_func) for k in SciPyPrinter._kc: setattr(SciPyPrinter, '_print_%s' % k, _print_known_const) class SymPyPrinter(PythonCodePrinter): _kf = dict([(k, 'sympy.' + v) for k, v in chain( _known_functions.items(), _known_functions_math.items() )]) def _print_Function(self, expr): mod = expr.func.__module__ or '' return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__), ', '.join(map(lambda arg: self._print(arg), expr.args)))
2a65caf9680ddc2537e0723819e638ab2a1ba7db4825177843af8bc6a3b1386a
""" A Printer for generating readable representation of most sympy classes. """ from __future__ import print_function, division from sympy.core import S, Rational, Pow, Basic, Mul from sympy.core.mul import _keep_coeff from .printer import Printer from sympy.printing.precedence import precedence, PRECEDENCE from mpmath.libmp import prec_to_dps, to_str as mlib_to_str from sympy.utilities import default_sort_key class StrPrinter(Printer): printmethod = "_sympystr" _default_settings = { "order": None, "full_prec": "auto", "sympy_integers": False, "abbrev": False, } _relationals = dict() def parenthesize(self, item, level, strict=False): if (precedence(item) < level) or ((not strict) and precedence(item) <= level): return "(%s)" % self._print(item) else: return self._print(item) def stringify(self, args, sep, level=0): return sep.join([self.parenthesize(item, level) for item in args]) def emptyPrinter(self, expr): if isinstance(expr, str): return expr elif isinstance(expr, Basic): if hasattr(expr, "args"): return repr(expr) else: raise else: return str(expr) def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) PREC = precedence(expr) l = [] for term in terms: t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: l.extend([sign, "(%s)" % t]) else: l.extend([sign, t]) sign = l.pop(0) if sign == '+': sign = "" return sign + ' '.join(l) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_Not(self, expr): return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"])) def _print_And(self, expr): return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"]) def _print_Or(self, expr): return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"]) def _print_AppliedPredicate(self, expr): return '%s(%s)' % (self._print(expr.func), self._print(expr.arg)) def _print_Basic(self, expr): l = [self._print(o) for o in expr.args] return expr.__class__.__name__ + "(%s)" % ", ".join(l) def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_Catalan(self, expr): return 'Catalan' def _print_ComplexInfinity(self, expr): return 'zoo' def _print_ConditionSet(self, s): args = tuple([self._print(i) for i in (s.sym, s.condition)]) if s.base_set is S.UniversalSet: return 'ConditionSet(%s, %s)' % args args += (self._print(s.base_set),) return 'ConditionSet(%s, %s, %s)' % args def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars)) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(d[key])) items.append(item) return "{%s}" % ", ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return 'Domain: ' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('Domain: ' + self._print(d.symbols) + ' in ' + self._print(d.set)) else: return 'Domain on ' + self._print(d.symbols) def _print_Dummy(self, expr): return '_' + expr.name def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Exp1(self, expr): return 'E' def _print_ExprCondPair(self, expr): return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond)) def _print_FiniteSet(self, s): s = sorted(s, key=default_sort_key) if len(s) > 10: printset = s[:3] + ['...'] + s[-3:] else: printset = s return '{' + ', '.join(self._print(el) for el in printset) + '}' def _print_Function(self, expr): return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ") def _print_GeometryEntity(self, expr): # GeometryEntity is special -- it's base is tuple return str(expr) def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): return 'TribonacciConstant' def _print_ImaginaryUnit(self, expr): return 'I' def _print_Infinity(self, expr): return 'oo' def _print_Integral(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Integral(%s, %s)' % (self._print(expr.function), L) def _print_Interval(self, i): fin = 'Interval{m}({a}, {b})' a, b, l, r = i.args if a.is_infinite and b.is_infinite: m = '' elif a.is_infinite and not r: m = '' elif b.is_infinite and not l: m = '' elif not l and not r: m = '' elif l and r: m = '.open' elif l: m = '.Lopen' else: m = '.Ropen' return fin.format(**{'a': a, 'b': b, 'm': m}) def _print_AccumulationBounds(self, i): return "AccumBounds(%s, %s)" % (self._print(i.min), self._print(i.max)) def _print_Inverse(self, I): return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"]) def _print_Lambda(self, obj): args, expr = obj.args if len(args) == 1: return "Lambda(%s, %s)" % (self._print(args.args[0]), self._print(expr)) else: arg_string = ", ".join(self._print(arg) for arg in args) return "Lambda((%s), %s)" % (arg_string, self._print(expr)) def _print_LatticeOp(self, expr): args = sorted(expr.args, key=default_sort_key) return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args) def _print_Limit(self, expr): e, z, z0, dir = expr.args if str(dir) == "+": return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0))) else: return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir))) def _print_list(self, expr): return "[%s]" % self.stringify(expr, ", ") def _print_MatrixBase(self, expr): return expr._format_str(self) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s, %s]' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def strslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(lambda arg: self._print(arg), x)) return (self._print(expr.parent) + '[' + strslice(expr.rowslice) + ', ' + strslice(expr.colslice) + ']') def _print_DeferredVector(self, expr): return expr.name def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec, strict=False) for x in a] b_str = [self.parenthesize(x, prec, strict=False) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if len(b) == 0: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_MatMul(self, expr): c, m = expr.as_coeff_mmul() if c.is_number and c < 0: expr = _keep_coeff(-c, m) sign = "-" else: sign = "" return sign + '*'.join( [self.parenthesize(arg, precedence(expr)) for arg in expr.args] ) def _print_HadamardProduct(self, expr): return '.*'.join([self.parenthesize(arg, precedence(expr)) for arg in expr.args]) def _print_NaN(self, expr): return 'nan' def _print_NegativeInfinity(self, expr): return '-oo' def _print_Normal(self, expr): return "Normal(%s, %s)" % (self._print(expr.mu), self._print(expr.sigma)) def _print_Order(self, expr): if all(p is S.Zero for p in expr.point) or not len(expr.variables): if len(expr.variables) <= 1: return 'O(%s)' % self._print(expr.expr) else: return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0) else: return 'O(%s)' % self.stringify(expr.args, ', ', 0) def _print_Ordinal(self, expr): return expr.__str__() def _print_Cycle(self, expr): return expr.__str__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle if Permutation.print_cyclic: if not expr.size: return '()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] s = s.replace(',', '') return s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % self._print(expr.array_form) return 'Permutation([], size=%s)' % self._print(expr.size) trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size) use = full = self._print(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Subs(self, obj): expr, old, new = obj.args if len(obj.point) == 1: old = old[0] new = new[0] return "Subs(%s, %s, %s)" % ( self._print(expr), self._print(old), self._print(new)) def _print_TensorIndex(self, expr): return expr._print() def _print_TensorHead(self, expr): return expr._print() def _print_Tensor(self, expr): return expr._print() def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "*".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): return expr._print() def _print_PermutationGroup(self, expr): p = [' %s' % self._print(a) for a in expr.args] return 'PermutationGroup([\n%s])' % ',\n'.join(p) def _print_PDF(self, expr): return 'PDF(%s, (%s, %s, %s))' % \ (self._print(expr.pdf.args[1]), self._print(expr.pdf.args[0]), self._print(expr.domain[0]), self._print(expr.domain[1])) def _print_Pi(self, expr): return 'pi' def _print_PolyRing(self, ring): return "Polynomial ring in %s over %s with %s order" % \ (", ".join(map(lambda rs: self._print(rs), ring.symbols)), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "Rational function field in %s over %s with %s order" % \ (", ".join(map(lambda fs: self._print(fs), field.symbols)), self._print(field.domain), self._print(field.order)) def _print_FreeGroupElement(self, elm): return elm.__str__() def _print_PolyElement(self, poly): return poly.str(self, PRECEDENCE, "%s**%s", "*") def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True) denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True) return numer + "/" + denom def _print_Poly(self, expr): ATOM_PREC = PRECEDENCE["Atom"] - 1 terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ] for monom, coeff in expr.terms(): s_monom = [] for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom.append(gens[i]) else: s_monom.append(gens[i] + "**%d" % exp) s_monom = "*".join(s_monom) if coeff.is_Add: if s_monom: s_coeff = "(" + self._print(coeff) + ")" else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + "*" + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] format = expr.__class__.__name__ + "(%s, %s" from sympy.polys.polyerrors import PolynomialError try: format += ", modulus=%s" % expr.get_modulus() except PolynomialError: format += ", domain='%s'" % expr.get_domain() format += ")" for index, item in enumerate(gens): if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"): gens[index] = item[1:len(item) - 1] return format % (' '.join(terms), ', '.join(gens)) def _print_ProductSet(self, p): return ' x '.join(self._print(set) for set in p.sets) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_Pow(self, expr, rational=False): PREC = precedence(expr) if expr.exp is S.Half and not rational: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if -expr.exp is S.Half and not rational: # Note: Don't test "expr.exp == -S.Half" here, because that will # match -0.5, which we don't want. return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base))) if expr.exp is -S.One: # Similarly to the S.Half case, don't test with "==" here. return '%s/%s' % (self._print(S.One), self.parenthesize(expr.base, PREC, strict=False)) e = self.parenthesize(expr.exp, PREC, strict=False) if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1: # the parenthesized exp should be '(Rational(a, b))' so strip parens, # but just check to be sure. if e.startswith('(Rational'): return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1]) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), self.parenthesize(expr.exp, PREC, strict=False)) def _print_ImmutableDenseNDimArray(self, expr): return str(expr) def _print_ImmutableSparseNDimArray(self, expr): return str(expr) def _print_Integer(self, expr): if self._settings.get("sympy_integers", False): return "S(%s)" % (expr) return str(expr.p) def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Reals(self, expr): return 'Reals' def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_Rational(self, expr): if expr.q == 1: return str(expr.p) else: if self._settings.get("sympy_integers", False): return "S(%s)/%s" % (expr.p, expr.q) return "%s/%s" % (expr.p, expr.q) def _print_PythonRational(self, expr): if expr.q == 1: return str(expr.p) else: return "%d/%d" % (expr.p, expr.q) def _print_Fraction(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_mpq(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_Float(self, expr): prec = expr._prec if prec < 5: dps = 0 else: dps = prec_to_dps(expr._prec) if self._settings["full_prec"] is True: strip = False elif self._settings["full_prec"] is False: strip = True elif self._settings["full_prec"] == "auto": strip = self._print_level > 1 rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip) if rv.startswith('-.0'): rv = '-0.' + rv[3:] elif rv.startswith('.0'): rv = '0.' + rv[2:] if rv.startswith('+'): # e.g., +inf -> inf rv = rv[1:] return rv def _print_Relational(self, expr): charmap = { "==": "Eq", "!=": "Ne", ":=": "Assignment", '+=': "AddAugmentedAssignment", "-=": "SubAugmentedAssignment", "*=": "MulAugmentedAssignment", "/=": "DivAugmentedAssignment", "%=": "ModAugmentedAssignment", } if expr.rel_op in charmap: return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs), self._print(expr.rhs)) return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)), self._relationals.get(expr.rel_op) or expr.rel_op, self.parenthesize(expr.rhs, precedence(expr))) def _print_ComplexRootOf(self, expr): return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), expr.index) def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) return "RootSum(%s)" % ", ".join(args) def _print_GroebnerBasis(self, basis): cls = basis.__class__.__name__ exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs] exprs = "[%s]" % ", ".join(exprs) gens = [ self._print(gen) for gen in basis.gens ] domain = "domain='%s'" % self._print(basis.domain) order = "order='%s'" % self._print(basis.order) args = [exprs] + gens + [domain, order] return "%s(%s)" % (cls, ", ".join(args)) def _print_Sample(self, expr): return "Sample([%s])" % self.stringify(expr, ", ", 0) def _print_set(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(item) for item in items) if not args: return "set()" return '{%s}' % args def _print_frozenset(self, s): if not s: return "frozenset()" return "frozenset(%s)" % self._print_set(s) def _print_SparseMatrix(self, expr): from sympy.matrices import Matrix return self._print(Matrix(expr)) def _print_Sum(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Sum(%s, %s)' % (self._print(expr.function), L) def _print_Symbol(self, expr): return expr.name _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Identity(self, expr): return "I" def _print_ZeroMatrix(self, expr): return "0" def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_str(self, expr): return str(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_Transpose(self, T): return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"]) def _print_Uniform(self, expr): return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b)) def _print_Union(self, expr): return 'Union(%s)' %(', '.join([self._print(a) for a in expr.args])) def _print_Complement(self, expr): return r' \ '.join(self._print(set_) for set_ in expr.args) def _print_Quantity(self, expr): if self._settings.get("abbrev", False): return "%s" % expr.abbrev return "%s" % expr.name def _print_Quaternion(self, expr): s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_Dimension(self, expr): return str(expr) def _print_Wild(self, expr): return expr.name + '_' def _print_WildFunction(self, expr): return expr.name + '_' def _print_Zero(self, expr): if self._settings.get("sympy_integers", False): return "S(0)" return "0" def _print_DMP(self, p): from sympy.core.sympify import SympifyError try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) ring = self._print(p.ring) return "%s(%s, %s, %s)" % (cls, rep, dom, ring) def _print_DMF(self, expr): return self._print_DMP(expr) def _print_Object(self, obj): return 'Object("%s")' % obj.name def _print_IdentityMorphism(self, morphism): return 'IdentityMorphism(%s)' % morphism.domain def _print_NamedMorphism(self, morphism): return 'NamedMorphism(%s, %s, "%s")' % \ (morphism.domain, morphism.codomain, morphism.name) def _print_Category(self, category): return 'Category("%s")' % category.name def _print_BaseScalarField(self, field): return field._coord_sys._names[field._index] def _print_BaseVectorField(self, field): return 'e_%s' % field._coord_sys._names[field._index] def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): return 'd%s' % field._coord_sys._names[field._index] else: return 'd(%s)' % self._print(field) def _print_Tr(self, expr): #TODO : Handle indices return "%s(%s)" % ("Tr", self._print(expr.args[0])) def sstr(expr, **settings): """Returns the expression as a string. For large expressions where speed is a concern, use the setting order='none'. If abbrev=True setting is used then units are printed in abbreviated form. Examples ======== >>> from sympy import symbols, Eq, sstr >>> a, b = symbols('a b') >>> sstr(Eq(a + b, 0)) 'Eq(a + b, 0)' """ p = StrPrinter(settings) s = p.doprint(expr) return s class StrReprPrinter(StrPrinter): """(internal) -- see sstrrepr""" def _print_str(self, s): return repr(s) def sstrrepr(expr, **settings): """return expr in mixed str/repr form i.e. strings are returned in repr form with quotes, and everything else is returned in str form. This function could be useful for hooking into sys.displayhook """ p = StrReprPrinter(settings) s = p.doprint(expr) return s
693388a27f5012c0af69e74b02a8df6da0a40d1750af8bd4ec735286f39cfa29
from __future__ import print_function, division def pprint_nodes(subtrees): """ Prettyprints systems of nodes. Examples ======== >>> from sympy.printing.tree import pprint_nodes >>> print(pprint_nodes(["a", "b1\\nb2", "c"])) +-a +-b1 | b2 +-c """ def indent(s, type=1): x = s.split("\n") r = "+-%s\n" % x[0] for a in x[1:]: if a == "": continue if type == 1: r += "| %s\n" % a else: r += " %s\n" % a return r if len(subtrees) == 0: return "" f = "" for a in subtrees[:-1]: f += indent(a) f += indent(subtrees[-1], 2) return f def print_node(node): """ Returns information about the "node". This includes class name, string representation and assumptions. """ s = "%s: %s\n" % (node.__class__.__name__, str(node)) d = node._assumptions if len(d) > 0: for a in sorted(d): v = d[a] if v is None: continue s += "%s: %s\n" % (a, v) return s def tree(node): """ Returns a tree representation of "node" as a string. It uses print_node() together with pprint_nodes() on node.args recursively. See Also ======== print_tree """ subtrees = [] for arg in node.args: subtrees.append(tree(arg)) s = print_node(node) + pprint_nodes(subtrees) return s def print_tree(node): """ Prints a tree representation of "node". Examples ======== >>> from sympy.printing import print_tree >>> from sympy import Symbol >>> x = Symbol('x', odd=True) >>> y = Symbol('y', even=True) >>> print_tree(y**x) Pow: y**x +-Symbol: y | algebraic: True | commutative: True | complex: True | even: True | hermitian: True | imaginary: False | integer: True | irrational: False | noninteger: False | odd: False | rational: True | real: True | transcendental: False +-Symbol: x algebraic: True commutative: True complex: True even: False hermitian: True imaginary: False integer: True irrational: False noninteger: False nonzero: True odd: True rational: True real: True transcendental: False zero: False See Also ======== tree """ print(tree(node))
97070b7b544a7ac9165dd561c8e7b897f438b0b8f40b82b07caca0f87b3a38aa
from __future__ import print_function, division ''' Use llvmlite to create executable functions from Sympy expressions This module requires llvmlite (https://github.com/numba/llvmlite). ''' import ctypes from sympy.external import import_module from sympy.printing.printer import Printer from sympy import S, IndexedBase from sympy.utilities.decorator import doctest_depends_on llvmlite = import_module('llvmlite') if llvmlite: ll = import_module('llvmlite.ir').ir llvm = import_module('llvmlite.binding').binding llvm.initialize() llvm.initialize_native_target() llvm.initialize_native_asmprinter() __doctest_requires__ = {('llvm_callable'): ['llvmlite']} class LLVMJitPrinter(Printer): '''Convert expressions to LLVM IR''' def __init__(self, module, builder, fn, *args, **kwargs): self.func_arg_map = kwargs.pop("func_arg_map", {}) if not llvmlite: raise ImportError("llvmlite is required for LLVMJITPrinter") super(LLVMJitPrinter, self).__init__(*args, **kwargs) self.fp_type = ll.DoubleType() self.module = module self.builder = builder self.fn = fn self.ext_fn = {} # keep track of wrappers to external functions self.tmp_var = {} def _add_tmp_var(self, name, value): self.tmp_var[name] = value def _print_Number(self, n): return ll.Constant(self.fp_type, float(n)) def _print_Integer(self, expr): return ll.Constant(self.fp_type, float(expr.p)) def _print_Symbol(self, s): val = self.tmp_var.get(s) if not val: # look up parameter with name s val = self.func_arg_map.get(s) if not val: raise LookupError("Symbol not found: %s" % s) return val def _print_Pow(self, expr): base0 = self._print(expr.base) if expr.exp == S.NegativeOne: return self.builder.fdiv(ll.Constant(self.fp_type, 1.0), base0) if expr.exp == S.Half: fn = self.ext_fn.get("sqrt") if not fn: fn_type = ll.FunctionType(self.fp_type, [self.fp_type]) fn = ll.Function(self.module, fn_type, "sqrt") self.ext_fn["sqrt"] = fn return self.builder.call(fn, [base0], "sqrt") if expr.exp == 2: return self.builder.fmul(base0, base0) exp0 = self._print(expr.exp) fn = self.ext_fn.get("pow") if not fn: fn_type = ll.FunctionType(self.fp_type, [self.fp_type, self.fp_type]) fn = ll.Function(self.module, fn_type, "pow") self.ext_fn["pow"] = fn return self.builder.call(fn, [base0, exp0], "pow") def _print_Mul(self, expr): nodes = [self._print(a) for a in expr.args] e = nodes[0] for node in nodes[1:]: e = self.builder.fmul(e, node) return e def _print_Add(self, expr): nodes = [self._print(a) for a in expr.args] e = nodes[0] for node in nodes[1:]: e = self.builder.fadd(e, node) return e # TODO - assumes all called functions take one double precision argument. # Should have a list of math library functions to validate this. def _print_Function(self, expr): name = expr.func.__name__ e0 = self._print(expr.args[0]) fn = self.ext_fn.get(name) if not fn: fn_type = ll.FunctionType(self.fp_type, [self.fp_type]) fn = ll.Function(self.module, fn_type, name) self.ext_fn[name] = fn return self.builder.call(fn, [e0], name) def emptyPrinter(self, expr): raise TypeError("Unsupported type for LLVM JIT conversion: %s" % type(expr)) # Used when parameters are passed by array. Often used in callbacks to # handle a variable number of parameters. class LLVMJitCallbackPrinter(LLVMJitPrinter): def __init__(self, *args, **kwargs): super(LLVMJitCallbackPrinter, self).__init__(*args, **kwargs) def _print_Indexed(self, expr): array, idx = self.func_arg_map[expr.base] offset = int(expr.indices[0].evalf()) array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), offset)]) fp_array_ptr = self.builder.bitcast(array_ptr, ll.PointerType(self.fp_type)) value = self.builder.load(fp_array_ptr) return value def _print_Symbol(self, s): val = self.tmp_var.get(s) if val: return val array, idx = self.func_arg_map.get(s, [None, 0]) if not array: raise LookupError("Symbol not found: %s" % s) array_ptr = self.builder.gep(array, [ll.Constant(ll.IntType(32), idx)]) fp_array_ptr = self.builder.bitcast(array_ptr, ll.PointerType(self.fp_type)) value = self.builder.load(fp_array_ptr) return value # ensure lifetime of the execution engine persists (else call to compiled # function will seg fault) exe_engines = [] # ensure names for generated functions are unique link_names = set() current_link_suffix = 0 class LLVMJitCode(object): def __init__(self, signature): self.signature = signature self.fp_type = ll.DoubleType() self.module = ll.Module('mod1') self.fn = None self.llvm_arg_types = [] self.llvm_ret_type = self.fp_type self.param_dict = {} # map symbol name to LLVM function argument self.link_name = '' def _from_ctype(self, ctype): if ctype == ctypes.c_int: return ll.IntType(32) if ctype == ctypes.c_double: return self.fp_type if ctype == ctypes.POINTER(ctypes.c_double): return ll.PointerType(self.fp_type) if ctype == ctypes.c_void_p: return ll.PointerType(ll.IntType(32)) if ctype == ctypes.py_object: return ll.PointerType(ll.IntType(32)) print("Unhandled ctype = %s" % str(ctype)) def _create_args(self, func_args): """Create types for function arguments""" self.llvm_ret_type = self._from_ctype(self.signature.ret_type) self.llvm_arg_types = \ [self._from_ctype(a) for a in self.signature.arg_ctypes] def _create_function_base(self): """Create function with name and type signature""" global link_names, current_link_suffix default_link_name = 'jit_func' current_link_suffix += 1 self.link_name = default_link_name + str(current_link_suffix) link_names.add(self.link_name) fn_type = ll.FunctionType(self.llvm_ret_type, self.llvm_arg_types) self.fn = ll.Function(self.module, fn_type, name=self.link_name) def _create_param_dict(self, func_args): """Mapping of symbolic values to function arguments""" for i, a in enumerate(func_args): self.fn.args[i].name = str(a) self.param_dict[a] = self.fn.args[i] def _create_function(self, expr): """Create function body and return LLVM IR""" bb_entry = self.fn.append_basic_block('entry') builder = ll.IRBuilder(bb_entry) lj = LLVMJitPrinter(self.module, builder, self.fn, func_arg_map=self.param_dict) ret = self._convert_expr(lj, expr) lj.builder.ret(self._wrap_return(lj, ret)) strmod = str(self.module) return strmod def _wrap_return(self, lj, vals): # Return a single double if there is one return value, # else return a tuple of doubles. # Don't wrap return value in this case if self.signature.ret_type == ctypes.c_double: return vals[0] # Use this instead of a real PyObject* void_ptr = ll.PointerType(ll.IntType(32)) # Create a wrapped double: PyObject* PyFloat_FromDouble(double v) wrap_type = ll.FunctionType(void_ptr, [self.fp_type]) wrap_fn = ll.Function(lj.module, wrap_type, "PyFloat_FromDouble") wrapped_vals = [lj.builder.call(wrap_fn, [v]) for v in vals] if len(vals) == 1: final_val = wrapped_vals[0] else: # Create a tuple: PyObject* PyTuple_Pack(Py_ssize_t n, ...) # This should be Py_ssize_t tuple_arg_types = [ll.IntType(32)] tuple_arg_types.extend([void_ptr]*len(vals)) tuple_type = ll.FunctionType(void_ptr, tuple_arg_types) tuple_fn = ll.Function(lj.module, tuple_type, "PyTuple_Pack") tuple_args = [ll.Constant(ll.IntType(32), len(wrapped_vals))] tuple_args.extend(wrapped_vals) final_val = lj.builder.call(tuple_fn, tuple_args) return final_val def _convert_expr(self, lj, expr): try: # Match CSE return data structure. if len(expr) == 2: tmp_exprs = expr[0] final_exprs = expr[1] if len(final_exprs) != 1 and self.signature.ret_type == ctypes.c_double: raise NotImplementedError("Return of multiple expressions not supported for this callback") for name, e in tmp_exprs: val = lj._print(e) lj._add_tmp_var(name, val) except TypeError: final_exprs = [expr] vals = [lj._print(e) for e in final_exprs] return vals def _compile_function(self, strmod): global exe_engines llmod = llvm.parse_assembly(strmod) pmb = llvm.create_pass_manager_builder() pmb.opt_level = 2 pass_manager = llvm.create_module_pass_manager() pmb.populate(pass_manager) pass_manager.run(llmod) target_machine = \ llvm.Target.from_default_triple().create_target_machine() exe_eng = llvm.create_mcjit_compiler(llmod, target_machine) exe_eng.finalize_object() exe_engines.append(exe_eng) if False: print("Assembly") print(target_machine.emit_assembly(llmod)) fptr = exe_eng.get_function_address(self.link_name) return fptr class LLVMJitCodeCallback(LLVMJitCode): def __init__(self, signature): super(LLVMJitCodeCallback, self).__init__(signature) def _create_param_dict(self, func_args): for i, a in enumerate(func_args): if isinstance(a, IndexedBase): self.param_dict[a] = (self.fn.args[i], i) self.fn.args[i].name = str(a) else: self.param_dict[a] = (self.fn.args[self.signature.input_arg], i) def _create_function(self, expr): """Create function body and return LLVM IR""" bb_entry = self.fn.append_basic_block('entry') builder = ll.IRBuilder(bb_entry) lj = LLVMJitCallbackPrinter(self.module, builder, self.fn, func_arg_map=self.param_dict) ret = self._convert_expr(lj, expr) if self.signature.ret_arg: output_fp_ptr = builder.bitcast(self.fn.args[self.signature.ret_arg], ll.PointerType(self.fp_type)) for i, val in enumerate(ret): index = ll.Constant(ll.IntType(32), i) output_array_ptr = builder.gep(output_fp_ptr, [index]) builder.store(val, output_array_ptr) builder.ret(ll.Constant(ll.IntType(32), 0)) # return success else: lj.builder.ret(self._wrap_return(lj, ret)) strmod = str(self.module) return strmod class CodeSignature(object): def __init__(self, ret_type): self.ret_type = ret_type self.arg_ctypes = [] # Input argument array element index self.input_arg = 0 # For the case output value is referenced through a parameter rather # than the return value self.ret_arg = None def _llvm_jit_code(args, expr, signature, callback_type): """Create a native code function from a Sympy expression""" if callback_type is None: jit = LLVMJitCode(signature) else: jit = LLVMJitCodeCallback(signature) jit._create_args(args) jit._create_function_base() jit._create_param_dict(args) strmod = jit._create_function(expr) if False: print("LLVM IR") print(strmod) fptr = jit._compile_function(strmod) return fptr @doctest_depends_on(modules=('llvmlite', 'scipy')) def llvm_callable(args, expr, callback_type=None): '''Compile function from a Sympy expression Expressions are evaluated using double precision arithmetic. Some single argument math functions (exp, sin, cos, etc.) are supported in expressions. Parameters ========== args : List of Symbol Arguments to the generated function. Usually the free symbols in the expression. Currently each one is assumed to convert to a double precision scalar. expr : Expr, or (Replacements, Expr) as returned from 'cse' Expression to compile. callback_type : string Create function with signature appropriate to use as a callback. Currently supported: 'scipy.integrate' 'scipy.integrate.test' 'cubature' Returns ======= Compiled function that can evaluate the expression. Examples ======== >>> import sympy.printing.llvmjitcode as jit >>> from sympy.abc import a >>> e = a*a + a + 1 >>> e1 = jit.llvm_callable([a], e) >>> e.subs(a, 1.1) # Evaluate via substitution 3.31000000000000 >>> e1(1.1) # Evaluate using JIT-compiled code 3.3100000000000005 Callbacks for integration functions can be JIT compiled. >>> import sympy.printing.llvmjitcode as jit >>> from sympy.abc import a >>> from sympy import integrate >>> from scipy.integrate import quad >>> e = a*a >>> e1 = jit.llvm_callable([a], e, callback_type='scipy.integrate') >>> integrate(e, (a, 0.0, 2.0)) 2.66666666666667 >>> quad(e1, 0.0, 2.0)[0] 2.66666666666667 The 'cubature' callback is for the Python wrapper around the cubature package ( https://github.com/saullocastro/cubature ) and ( http://ab-initio.mit.edu/wiki/index.php/Cubature ) There are two signatures for the SciPy integration callbacks. The first ('scipy.integrate') is the function to be passed to the integration routine, and will pass the signature checks. The second ('scipy.integrate.test') is only useful for directly calling the function using ctypes variables. It will not pass the signature checks for scipy.integrate. The return value from the cse module can also be compiled. This can improve the performance of the compiled function. If multiple expressions are given to cse, the compiled function returns a tuple. The 'cubature' callback handles multiple expressions (set `fdim` to match in the integration call.) >>> import sympy.printing.llvmjitcode as jit >>> from sympy import cse, exp >>> from sympy.abc import x,y >>> e1 = x*x + y*y >>> e2 = 4*(x*x + y*y) + 8.0 >>> after_cse = cse([e1,e2]) >>> after_cse ([(x0, x**2), (x1, y**2)], [x0 + x1, 4*x0 + 4*x1 + 8.0]) >>> j1 = jit.llvm_callable([x,y], after_cse) >>> j1(1.0, 2.0) (5.0, 28.0) ''' if not llvmlite: raise ImportError("llvmlite is required for llvmjitcode") signature = CodeSignature(ctypes.py_object) arg_ctypes = [] if callback_type is None: for arg in args: arg_ctype = ctypes.c_double arg_ctypes.append(arg_ctype) elif callback_type == 'scipy.integrate' or callback_type == 'scipy.integrate.test': signature.ret_type = ctypes.c_double arg_ctypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_double)] arg_ctypes_formal = [ctypes.c_int, ctypes.c_double] signature.input_arg = 1 elif callback_type == 'cubature': arg_ctypes = [ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_void_p, ctypes.c_int, ctypes.POINTER(ctypes.c_double) ] signature.ret_type = ctypes.c_int signature.input_arg = 1 signature.ret_arg = 4 else: raise ValueError("Unknown callback type: %s" % callback_type) signature.arg_ctypes = arg_ctypes fptr = _llvm_jit_code(args, expr, signature, callback_type) if callback_type and callback_type == 'scipy.integrate': arg_ctypes = arg_ctypes_formal cfunc = ctypes.CFUNCTYPE(signature.ret_type, *arg_ctypes)(fptr) return cfunc
6994eefcc84be4532eea91a084e5bf37c19463640337159372a1da3a1ee5291c
""" A few practical conventions common to all printers. """ from __future__ import print_function, division import re from sympy.core.compatibility import Iterable _name_with_digits_p = re.compile(r'^([a-zA-Z]+)([0-9]+)$') def split_super_sub(text): """Split a symbol name into a name, superscripts and subscripts The first part of the symbol name is considered to be its actual 'name', followed by super- and subscripts. Each superscript is preceded with a "^" character or by "__". Each subscript is preceded by a "_" character. The three return values are the actual name, a list with superscripts and a list with subscripts. Examples ======== >>> from sympy.printing.conventions import split_super_sub >>> split_super_sub('a_x^1') ('a', ['1'], ['x']) >>> split_super_sub('var_sub1__sup_sub2') ('var', ['sup'], ['sub1', 'sub2']) """ if len(text) == 0: return text, [], [] pos = 0 name = None supers = [] subs = [] while pos < len(text): start = pos + 1 if text[pos:pos + 2] == "__": start += 1 pos_hat = text.find("^", start) if pos_hat < 0: pos_hat = len(text) pos_usc = text.find("_", start) if pos_usc < 0: pos_usc = len(text) pos_next = min(pos_hat, pos_usc) part = text[pos:pos_next] pos = pos_next if name is None: name = part elif part.startswith("^"): supers.append(part[1:]) elif part.startswith("__"): supers.append(part[2:]) elif part.startswith("_"): subs.append(part[1:]) else: raise RuntimeError("This should never happen.") # make a little exception when a name ends with digits, i.e. treat them # as a subscript too. m = _name_with_digits_p.match(name) if m: name, sub = m.groups() subs.insert(0, sub) return name, supers, subs def requires_partial(expr): """Return whether a partial derivative symbol is required for printing This requires checking how many free variables there are, filtering out the ones that are integers. Some expressions don't have free variables. In that case, check its variable list explicitly to get the context of the expression. """ if not isinstance(expr.free_symbols, Iterable): return len(set(expr.variables)) > 1 return sum(not s.is_integer for s in expr.free_symbols) > 1
9a9f2eb0fa1f189829fb7cb64b3460afe8197f32048c896024358a114ab9b02b
""" A Printer which converts an expression into its LaTeX equivalent. """ from __future__ import print_function, division import itertools from sympy.core import S, Add, Symbol, Mod from sympy.core.alphabets import greeks from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg, AppliedUndef, Derivative from sympy.core.operations import AssocOp from sympy.core.sympify import SympifyError from sympy.logic.boolalg import true ## sympy.printing imports from sympy.printing.precedence import precedence_traditional from sympy.printing.printer import Printer from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence, PRECEDENCE import mpmath.libmp as mlib from mpmath.libmp import prec_to_dps from sympy.core.compatibility import default_sort_key, range from sympy.utilities.iterables import has_variety import re # Hand-picked functions which can be used directly in both LaTeX and MathJax # Complete list at https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands # This variable only contains those functions which sympy uses. accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg', ] tex_greek_dictionary = { 'Alpha': 'A', 'Beta': 'B', 'Gamma': r'\Gamma', 'Delta': r'\Delta', 'Epsilon': 'E', 'Zeta': 'Z', 'Eta': 'H', 'Theta': r'\Theta', 'Iota': 'I', 'Kappa': 'K', 'Lambda': r'\Lambda', 'Mu': 'M', 'Nu': 'N', 'Xi': r'\Xi', 'omicron': 'o', 'Omicron': 'O', 'Pi': r'\Pi', 'Rho': 'P', 'Sigma': r'\Sigma', 'Tau': 'T', 'Upsilon': r'\Upsilon', 'Phi': r'\Phi', 'Chi': 'X', 'Psi': r'\Psi', 'Omega': r'\Omega', 'lamda': r'\lambda', 'Lamda': r'\Lambda', 'khi': r'\chi', 'Khi': r'X', 'varepsilon': r'\varepsilon', 'varkappa': r'\varkappa', 'varphi': r'\varphi', 'varpi': r'\varpi', 'varrho': r'\varrho', 'varsigma': r'\varsigma', 'vartheta': r'\vartheta', } other_symbols = set(['aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', 'hslash', 'mho', 'wp', ]) # Variable name modifiers modifier_dict = { # Accents 'mathring': lambda s: r'\mathring{'+s+r'}', 'ddddot': lambda s: r'\ddddot{'+s+r'}', 'dddot': lambda s: r'\dddot{'+s+r'}', 'ddot': lambda s: r'\ddot{'+s+r'}', 'dot': lambda s: r'\dot{'+s+r'}', 'check': lambda s: r'\check{'+s+r'}', 'breve': lambda s: r'\breve{'+s+r'}', 'acute': lambda s: r'\acute{'+s+r'}', 'grave': lambda s: r'\grave{'+s+r'}', 'tilde': lambda s: r'\tilde{'+s+r'}', 'hat': lambda s: r'\hat{'+s+r'}', 'bar': lambda s: r'\bar{'+s+r'}', 'vec': lambda s: r'\vec{'+s+r'}', 'prime': lambda s: "{"+s+"}'", 'prm': lambda s: "{"+s+"}'", # Faces 'bold': lambda s: r'\boldsymbol{'+s+r'}', 'bm': lambda s: r'\boldsymbol{'+s+r'}', 'cal': lambda s: r'\mathcal{'+s+r'}', 'scr': lambda s: r'\mathscr{'+s+r'}', 'frak': lambda s: r'\mathfrak{'+s+r'}', # Brackets 'norm': lambda s: r'\left\|{'+s+r'}\right\|', 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', 'abs': lambda s: r'\left|{'+s+r'}\right|', 'mag': lambda s: r'\left|{'+s+r'}\right|', } greek_letters_set = frozenset(greeks) _between_two_numbers_p = ( re.compile(r'[0-9][} ]*$'), # search re.compile(r'[{ ]*[-+0-9]'), # match ) class LatexPrinter(Printer): printmethod = "_latex" _default_settings = { "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "itex": False, "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_str": None, "mode": "plain", "mul_symbol": None, "order": None, "symbol_names": {}, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", } def __init__(self, settings=None): Printer.__init__(self, settings) if 'mode' in self._settings: valid_modes = ['inline', 'plain', 'equation', 'equation*'] if self._settings['mode'] not in valid_modes: raise ValueError("'mode' must be one of 'inline', 'plain', " "'equation' or 'equation*'") if self._settings['fold_short_frac'] is None and \ self._settings['mode'] == 'inline': self._settings['fold_short_frac'] = True mul_symbol_table = { None: r" ", "ldot": r" \,.\, ", "dot": r" \cdot ", "times": r" \times " } try: self._settings['mul_symbol_latex'] = \ mul_symbol_table[self._settings['mul_symbol']] except KeyError: self._settings['mul_symbol_latex'] = \ self._settings['mul_symbol'] try: self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table[self._settings['mul_symbol'] or 'dot'] except KeyError: if (self._settings['mul_symbol'].strip() in ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table['dot'] else: self._settings['mul_symbol_latex_numbers'] = \ self._settings['mul_symbol'] self._delim_dict = {'(': ')', '[': ']'} imaginary_unit_table = { None: r"i", "i": r"i", "ri": r"\mathrm{i}", "ti": r"\text{i}", "j": r"j", "rj": r"\mathrm{j}", "tj": r"\text{j}", } try: self._settings['imaginary_unit_latex'] = \ imaginary_unit_table[self._settings['imaginary_unit']] except KeyError: self._settings['imaginary_unit_latex'] = \ self._settings['imaginary_unit'] def parenthesize(self, item, level, strict=False): prec_val = precedence_traditional(item) if (prec_val < level) or ((not strict) and prec_val <= level): return r"\left(%s\right)" % self._print(item) else: return self._print(item) def doprint(self, expr): tex = Printer.doprint(self, expr) if self._settings['mode'] == 'plain': return tex elif self._settings['mode'] == 'inline': return r"$%s$" % tex elif self._settings['itex']: return r"$$%s$$" % tex else: env_str = self._settings['mode'] return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) def _needs_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed, False otherwise. For example: a + b => True; a => False; 10 => False; -10 => True. """ return not ((expr.is_Integer and expr.is_nonnegative) or (expr.is_Atom and (expr is not S.NegativeOne and expr.is_Rational is False))) def _needs_function_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when passed as an argument to a function, False otherwise. This is a more liberal version of _needs_brackets, in that many expressions which need to be wrapped in brackets when added/subtracted/raised to a power do not need them when passed to a function. Such an example is a*b. """ if not self._needs_brackets(expr): return False else: # Muls of the form a*b*c... can be folded if expr.is_Mul and not self._mul_is_clean(expr): return True # Pows which don't need brackets can be folded elif expr.is_Pow and not self._pow_is_clean(expr): return True # Add and Function always need brackets elif expr.is_Add or expr.is_Function: return True else: return False def _needs_mul_brackets(self, expr, first=False, last=False): """ Returns True if the expression needs to be wrapped in brackets when printed as part of a Mul, False otherwise. This is True for Add, but also for some container objects that would not need brackets when appearing last in a Mul, e.g. an Integral. ``last=True`` specifies that this expr is the last to appear in a Mul. ``first=True`` specifies that this expr is the first to appear in a Mul. """ from sympy import Integral, Product, Sum if expr.is_Mul: if not first and _coeff_isneg(expr): return True elif precedence_traditional(expr) < PRECEDENCE["Mul"]: return True elif expr.is_Relational: return True if expr.is_Piecewise: return True if any([expr.has(x) for x in (Mod,)]): return True if (not last and any([expr.has(x) for x in (Integral, Product, Sum)])): return True return False def _needs_add_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed as part of an Add, False otherwise. This is False for most things. """ if expr.is_Relational: return True if any([expr.has(x) for x in (Mod,)]): return True if expr.is_Add: return True return False def _mul_is_clean(self, expr): for arg in expr.args: if arg.is_Function: return False return True def _pow_is_clean(self, expr): return not self._needs_brackets(expr.base) def _do_exponent(self, expr, exp): if exp is not None: return r"\left(%s\right)^{%s}" % (expr, exp) else: return expr def _print_Basic(self, expr): l = [self._print(o) for o in expr.args] return self._deal_with_super_sub(expr.__class__.__name__) + r"\left(%s\right)" % ", ".join(l) def _print_bool(self, e): return r"\mathrm{%s}" % e _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): return r"\mathrm{%s}" % e def _print_Add(self, expr, order=None): if self.order == 'none': terms = list(expr.args) else: terms = self._as_ordered_terms(expr, order=order) tex = "" for i, term in enumerate(terms): if i == 0: pass elif _coeff_isneg(term): tex += " - " term = -term else: tex += " + " term_tex = self._print(term) if self._needs_add_brackets(term): term_tex = r"\left(%s\right)" % term_tex tex += term_tex return tex def _print_Cycle(self, expr): from sympy.combinatorics.permutations import Permutation if expr.size == 0: return r"\left( \right)" expr = Permutation(expr) expr_perm = expr.cyclic_form siz = expr.size if expr.array_form[-1] == siz - 1: expr_perm = expr_perm + [[siz - 1]] term_tex = '' for i in expr_perm: term_tex += str(i).replace(',', r"\;") term_tex = term_tex.replace('[', r"\left( ") term_tex = term_tex.replace(']', r"\right)") return term_tex _print_Permutation = _print_Cycle def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) str_real = mlib.to_str(expr._mpf_, dps, strip_zeros=True) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_latex_numbers'] if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] return r"%s%s10^{%s}" % (mant, separator, exp) elif str_real == "+inf": return r"\infty" elif str_real == "-inf": return r"- \infty" else: return str_real def _print_Cross(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Curl(self, expr): vec = expr._expr return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Divergence(self, expr): vec = expr._expr return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Dot(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Gradient(self, expr): func = expr._expr return r"\nabla\cdot %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Mul(self, expr): from sympy.core.power import Pow from sympy.physics.units import Quantity include_parens = False if _coeff_isneg(expr): expr = -expr tex = "- " if expr.is_Add: tex += "(" include_parens = True else: tex = "" from sympy.simplify import fraction numer, denom = fraction(expr, exact=True) separator = self._settings['mul_symbol_latex'] numbersep = self._settings['mul_symbol_latex_numbers'] def convert(expr): if not expr.is_Mul: return str(self._print(expr)) else: _tex = last_term_tex = "" if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: args = list(expr.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) for i, term in enumerate(args): term_tex = self._print(term) if self._needs_mul_brackets(term, first=(i == 0), last=(i == len(args) - 1)): term_tex = r"\left(%s\right)" % term_tex if _between_two_numbers_p[0].search(last_term_tex) and \ _between_two_numbers_p[1].match(term_tex): # between two numbers _tex += numbersep elif _tex: _tex += separator _tex += term_tex last_term_tex = term_tex return _tex if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: # use the original expression here, since fraction() may have # altered it when producing numer and denom tex += convert(expr) else: snumer = convert(numer) sdenom = convert(denom) ldenom = len(sdenom.split()) ratio = self._settings['long_frac_ratio'] if self._settings['fold_short_frac'] \ and ldenom <= 2 and not "^" in sdenom: # handle short fractions if self._needs_mul_brackets(numer, last=False): tex += r"\left(%s\right) / %s" % (snumer, sdenom) else: tex += r"%s / %s" % (snumer, sdenom) elif ratio is not None and \ len(snumer.split()) > ratio*ldenom: # handle long fractions if self._needs_mul_brackets(numer, last=True): tex += r"\frac{1}{%s}%s\left(%s\right)" \ % (sdenom, separator, snumer) elif numer.is_Mul: # split a long numerator a = S.One b = S.One for x in numer.args: if self._needs_mul_brackets(x, last=False) or \ len(convert(a*x).split()) > ratio*ldenom or \ (b.is_commutative is x.is_commutative is False): b *= x else: a *= x if self._needs_mul_brackets(b, last=True): tex += r"\frac{%s}{%s}%s\left(%s\right)" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{%s}{%s}%s%s" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) else: tex += r"\frac{%s}{%s}" % (snumer, sdenom) if include_parens: tex += ")" return tex def _print_Pow(self, expr): # Treat x**Rational(1,n) as special case if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 and self._settings['root_notation']: base = self._print(expr.base) expq = expr.exp.q if expq == 2: tex = r"\sqrt{%s}" % base elif self._settings['itex']: tex = r"\root{%d}{%s}" % (expq, base) else: tex = r"\sqrt[%d]{%s}" % (expq, base) if expr.exp.is_negative: return r"\frac{1}{%s}" % tex else: return tex elif self._settings['fold_frac_powers'] \ and expr.exp.is_Rational \ and expr.exp.q != 1: base, p, q = self.parenthesize(expr.base, PRECEDENCE['Pow']), expr.exp.p, expr.exp.q # issue #12886: add parentheses for superscripts raised to powers if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base if expr.base.is_Function: return self._print(expr.base, exp="%s/%s" % (p, q)) return r"%s^{%s/%s}" % (base, p, q) elif expr.exp.is_Rational and expr.exp.is_negative and expr.base.is_commutative: # special case for 1^(-x), issue 9216 if expr.base == 1: return r"%s^{%s}" % (expr.base, expr.exp) # things like 1/x return self._print_Mul(expr) else: if expr.base.is_Function: return self._print(expr.base, exp=self._print(expr.exp)) else: tex = r"%s^{%s}" exp = self._print(expr.exp) # issue #12886: add parentheses around superscripts raised to powers base = self.parenthesize(expr.base, PRECEDENCE['Pow']) if '^' in base and expr.base.is_Symbol: base = r"\left(%s\right)" % base elif isinstance(expr.base, Derivative ) and base.startswith(r'\left(' ) and re.match(r'\\left\(\\d?d?dot', base ) and base.endswith(r'\right)'): # don't use parentheses around dotted derivative base = base[6: -7] # remove outermost added parens return tex % (base, exp) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_Sum(self, expr): if len(expr.limits) == 1: tex = r"\sum_{%s=%s}^{%s} " % \ tuple([ self._print(i) for i in expr.limits[0] ]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\sum_{\substack{%s}} " % \ str.join('\\\\', [ _format_ineq(l) for l in expr.limits ]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_Product(self, expr): if len(expr.limits) == 1: tex = r"\prod_{%s=%s}^{%s} " % \ tuple([ self._print(i) for i in expr.limits[0] ]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\prod_{\substack{%s}} " % \ str.join('\\\\', [ _format_ineq(l) for l in expr.limits ]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_BasisDependent(self, expr): from sympy.vector import Vector o1 = [] if expr == expr.zero: return expr.zero._latex_form if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x:x[0].__str__()) for k, v in inneritems: if v == 1: o1.append(' + ' + k._latex_form) elif v == -1: o1.append(' - ' + k._latex_form) else: arg_str = '(' + LatexPrinter().doprint(v) + ')' o1.append(' + ' + arg_str + k._latex_form) outstr = (''.join(o1)) if outstr[1] != '-': outstr = outstr[3:] else: outstr = outstr[1:] return outstr def _print_Indexed(self, expr): tex_base = self._print(expr.base) tex = '{'+tex_base+'}'+'_{%s}' % ','.join( map(self._print, expr.indices)) return tex def _print_IndexedBase(self, expr): return self._print(expr.label) def _print_Derivative(self, expr): if requires_partial(expr): diff_symbol = r'\partial' else: diff_symbol = r'd' tex = "" dim = 0 for x, num in reversed(expr.variable_count): dim += num if num == 1: tex += r"%s %s" % (diff_symbol, self._print(x)) else: tex += r"%s %s^{%s}" % (diff_symbol, self._print(x), num) if dim == 1: tex = r"\frac{%s}{%s}" % (diff_symbol, tex) else: tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, dim, tex) return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], strict=True)) def _print_Subs(self, subs): expr, old, new = subs.args latex_expr = self._print(expr) latex_old = (self._print(e) for e in old) latex_new = (self._print(e) for e in new) latex_subs = r'\\ '.join( e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, latex_subs) def _print_Integral(self, expr): tex, symbols = "", [] # Only up to \iiiint exists if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): # Use len(expr.limits)-1 so that syntax highlighters don't think # \" is an escaped quote tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" symbols = [r"\, d%s" % self._print(symbol[0]) for symbol in expr.limits] else: for lim in reversed(expr.limits): symbol = lim[0] tex += r"\int" if len(lim) > 1: if self._settings['mode'] != 'inline' \ and not self._settings['itex']: tex += r"\limits" if len(lim) == 3: tex += "_{%s}^{%s}" % (self._print(lim[1]), self._print(lim[2])) if len(lim) == 2: tex += "^{%s}" % (self._print(lim[1])) symbols.insert(0, r"\, d%s" % self._print(symbol)) return r"%s %s%s" % (tex, self.parenthesize(expr.function, PRECEDENCE["Mul"], strict=True), "".join(symbols)) def _print_Limit(self, expr): e, z, z0, dir = expr.args tex = r"\lim_{%s \to " % self._print(z) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): tex += r"%s}" % self._print(z0) else: tex += r"%s^%s}" % (self._print(z0), self._print(dir)) if isinstance(e, AssocOp): return r"%s\left(%s\right)" % (tex, self._print(e)) else: return r"%s %s" % (tex, self._print(e)) def _hprint_Function(self, func): r''' Logic to decide how to render a function to latex - if it is a recognized latex name, use the appropriate latex command - if it is a single letter, just use that letter - if it is a longer name, then put \operatorname{} around it and be mindful of undercores in the name ''' func = self._deal_with_super_sub(func) if func in accepted_latex_functions: name = r"\%s" % func elif len(func) == 1 or func.startswith('\\'): name = func else: name = r"\operatorname{%s}" % func return name def _print_Function(self, expr, exp=None): r''' Render functions to LaTeX, handling functions that LaTeX knows about e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). For single-letter function names, render them as regular LaTeX math symbols. For multi-letter function names that LaTeX does not know about, (e.g., Li, sech) use \operatorname{} so that the function name is rendered in Roman font and LaTeX handles spacing properly. expr is the expression involving the function exp is an exponent ''' func = expr.func.__name__ if hasattr(self, '_print_' + func) and \ not isinstance(expr, AppliedUndef): return getattr(self, '_print_' + func)(expr, exp) else: args = [ str(self._print(arg)) for arg in expr.args ] # How inverse trig functions should be displayed, formats are: # abbreviated: asin, full: arcsin, power: sin^-1 inv_trig_style = self._settings['inv_trig_style'] # If we are dealing with a power-style inverse trig function inv_trig_power_case = False # If it is applicable to fold the argument brackets can_fold_brackets = self._settings['fold_func_brackets'] and \ len(args) == 1 and \ not self._needs_function_brackets(expr.args[0]) inv_trig_table = ["asin", "acos", "atan", "acsc", "asec", "acot"] # If the function is an inverse trig function, handle the style if func in inv_trig_table: if inv_trig_style == "abbreviated": func = func elif inv_trig_style == "full": func = "arc" + func[1:] elif inv_trig_style == "power": func = func[1:] inv_trig_power_case = True # Can never fold brackets if we're raised to a power if exp is not None: can_fold_brackets = False if inv_trig_power_case: if func in accepted_latex_functions: name = r"\%s^{-1}" % func else: name = r"\operatorname{%s}^{-1}" % func elif exp is not None: name = r'%s^{%s}' % (self._hprint_Function(func), exp) else: name = self._hprint_Function(func) if can_fold_brackets: if func in accepted_latex_functions: # Wrap argument safely to avoid parse-time conflicts # with the function name itself name += r" {%s}" else: name += r"%s" else: name += r"{\left(%s \right)}" if inv_trig_power_case and exp is not None: name += r"^{%s}" % exp return name % ",".join(args) def _print_UndefinedFunction(self, expr): return self._hprint_Function(str(expr)) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: r'\delta', gamma: r'\Gamma', lowergamma: r'\gamma', beta: r'\operatorname{B}', DiracDelta: r'\delta', Chi: r'\operatorname{Chi}'} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: return self._special_function_classes[cls] return self._hprint_Function(str(expr)) def _print_Lambda(self, expr): symbols, expr = expr.args if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(tuple(symbols)) tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) return tex def _hprint_variadic_function(self, expr, exp=None): args = sorted(expr.args, key=default_sort_key) texargs = [r"%s" % self._print(symbol) for symbol in args] tex = r"\%s\left(%s\right)" % (self._print((str(expr.func)).lower()), ", ".join(texargs)) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Min = _print_Max = _hprint_variadic_function def _print_floor(self, expr, exp=None): tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_ceiling(self, expr, exp=None): tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_log(self, expr, exp=None): if not self._settings["ln_notation"]: tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) else: tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_Abs(self, expr, exp=None): tex = r"\left|{%s}\right|" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Determinant = _print_Abs def _print_re(self, expr, exp=None): tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) return self._do_exponent(tex, exp) def _print_im(self, expr, exp=None): tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Func']) return self._do_exponent(tex, exp) def _print_Not(self, e): from sympy import Equivalent, Implies if isinstance(e.args[0], Equivalent): return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") if isinstance(e.args[0], Implies): return self._print_Implies(e.args[0], r"\not\Rightarrow") if (e.args[0].is_Boolean): return r"\neg (%s)" % self._print(e.args[0]) else: return r"\neg %s" % self._print(e.args[0]) def _print_LogOp(self, args, char): arg = args[0] if arg.is_Boolean and not arg.is_Not: tex = r"\left(%s\right)" % self._print(arg) else: tex = r"%s" % self._print(arg) for arg in args[1:]: if arg.is_Boolean and not arg.is_Not: tex += r" %s \left(%s\right)" % (char, self._print(arg)) else: tex += r" %s %s" % (char, self._print(arg)) return tex def _print_And(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\wedge") def _print_Or(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\vee") def _print_Xor(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\veebar") def _print_Implies(self, e, altchar=None): return self._print_LogOp(e.args, altchar or r"\Rightarrow") def _print_Equivalent(self, e, altchar=None): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, altchar or r"\Leftrightarrow") def _print_conjugate(self, expr, exp=None): tex = r"\overline{%s}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_polar_lift(self, expr, exp=None): func = r"\operatorname{polar\_lift}" arg = r"{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (func, exp, arg) else: return r"%s%s" % (func, arg) def _print_ExpBase(self, expr, exp=None): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? tex = r"e^{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_elliptic_k(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"K^{%s}%s" % (exp, tex) else: return r"K%s" % tex def _print_elliptic_f(self, expr, exp=None): tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"F^{%s}%s" % (exp, tex) else: return r"F%s" % tex def _print_elliptic_e(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"E^{%s}%s" % (exp, tex) else: return r"E%s" % tex def _print_elliptic_pi(self, expr, exp=None): if len(expr.args) == 3: tex = r"\left(%s; %s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1]), \ self._print(expr.args[2])) else: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Pi^{%s}%s" % (exp, tex) else: return r"\Pi%s" % tex def _print_beta(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\operatorname{B}^{%s}%s" % (exp, tex) else: return r"\operatorname{B}%s" % tex def _print_uppergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Gamma^{%s}%s" % (exp, tex) else: return r"\Gamma%s" % tex def _print_lowergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\gamma^{%s}%s" % (exp, tex) else: return r"\gamma%s" % tex def _hprint_one_arg_func(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) else: return r"%s%s" % (self._print(expr.func), tex) _print_gamma = _hprint_one_arg_func def _print_Chi(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\operatorname{Chi}^{%s}%s" % (exp, tex) else: return r"\operatorname{Chi}%s" % tex def _print_expint(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[1]) nu = self._print(expr.args[0]) if exp is not None: return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) else: return r"\operatorname{E}_{%s}%s" % (nu, tex) def _print_fresnels(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"S^{%s}%s" % (exp, tex) else: return r"S%s" % tex def _print_fresnelc(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"C^{%s}%s" % (exp, tex) else: return r"C%s" % tex def _print_subfactorial(self, expr, exp=None): tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_factorial(self, expr, exp=None): tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_factorial2(self, expr, exp=None): tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_binomial(self, expr, exp=None): tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_RisingFactorial(self, expr, exp=None): n, k = expr.args base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) return self._do_exponent(tex, exp) def _print_FallingFactorial(self, expr, exp=None): n, k = expr.args sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) return self._do_exponent(tex, exp) def _hprint_BesselBase(self, expr, exp, sym): tex = r"%s" % (sym) need_exp = False if exp is not None: if tex.find('^') == -1: tex = r"%s^{%s}" % (tex, self._print(exp)) else: need_exp = True tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), self._print(expr.argument)) if need_exp: tex = self._do_exponent(tex, exp) return tex def _hprint_vec(self, vec): if len(vec) == 0: return "" s = "" for i in vec[:-1]: s += "%s, " % self._print(i) s += self._print(vec[-1]) return s def _print_besselj(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'J') def _print_besseli(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'I') def _print_besselk(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'K') def _print_bessely(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'Y') def _print_yn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'y') def _print_jn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'j') def _print_hankel1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(1)}') def _print_hankel2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(2)}') def _print_hn1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(1)}') def _print_hn2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(2)}') def _hprint_airy(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (notation, exp, tex) else: return r"%s%s" % (notation, tex) def _hprint_airy_prime(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) else: return r"%s^\prime%s" % (notation, tex) def _print_airyai(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Ai') def _print_airybi(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Bi') def _print_airyaiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Ai') def _print_airybiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Bi') def _print_hyper(self, expr, exp=None): tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ r"\middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_meijerg(self, expr, exp=None): tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._print(len(expr.bm)), self._print(len(expr.an)), self._hprint_vec(expr.an), self._hprint_vec(expr.aother), self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, self._print(exp)) return tex def _print_dirichlet_eta(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\eta^{%s}%s" % (self._print(exp), tex) return r"\eta%s" % tex def _print_zeta(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\zeta^{%s}%s" % (self._print(exp), tex) return r"\zeta%s" % tex def _print_lerchphi(self, expr, exp=None): tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) if exp is None: return r"\Phi%s" % tex return r"\Phi^{%s}%s" % (self._print(exp), tex) def _print_polylog(self, expr, exp=None): s, z = map(self._print, expr.args) tex = r"\left(%s\right)" % z if exp is None: return r"\operatorname{Li}_{%s}%s" % (s, tex) return r"\operatorname{Li}_{%s}^{%s}%s" % (s, self._print(exp), tex) def _print_jacobi(self, expr, exp=None): n, a, b, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_gegenbauer(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevt(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"T_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_chebyshevu(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"U_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_legendre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"P_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_legendre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_hermite(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"H_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_laguerre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"L_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_assoc_laguerre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Ynm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Znm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (self._print(exp)) return tex def _print_Rational(self, expr): if expr.q != 1: sign = "" p = expr.p if expr.p < 0: sign = "- " p = -p if self._settings['fold_short_frac']: return r"%s%d / %d" % (sign, p, expr.q) return r"%s\frac{%d}{%d}" % (sign, p, expr.q) else: return self._print(expr.p) def _print_Order(self, expr): s = self._print(expr.expr) if expr.point and any(p != S.Zero for p in expr.point) or \ len(expr.variables) > 1: s += '; ' if len(expr.variables) > 1: s += self._print(expr.variables) elif len(expr.variables): s += self._print(expr.variables[0]) s += r'\rightarrow ' if len(expr.point) > 1: s += self._print(expr.point) else: s += self._print(expr.point[0]) return r"O\left(%s\right)" % s def _print_Symbol(self, expr, style='plain'): if expr in self._settings['symbol_names']: return self._settings['symbol_names'][expr] result = self._deal_with_super_sub(expr.name) if \ '\\' not in expr.name else expr.name if style == 'bold': result = r"\mathbf{{{}}}".format(result) return result _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, expr): return self._print_Symbol(expr, style=self._settings['mat_symbol_style']) def _deal_with_super_sub(self, string): if '{' in string: return string name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] # glue all items together: if len(supers) > 0: name += "^{%s}" % " ".join(supers) if len(subs) > 0: name += "_{%s}" % " ".join(subs) return name def _print_Relational(self, expr): if self._settings['itex']: gt = r"\gt" lt = r"\lt" else: gt = ">" lt = "<" charmap = { "==": "=", ">": gt, "<": lt, ">=": r"\geq", "<=": r"\leq", "!=": r"\neq", } return "%s %s %s" % (self._print(expr.lhs), charmap[expr.rel_op], self._print(expr.rhs)) def _print_Piecewise(self, expr): ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) for e, c in expr.args[:-1]] if expr.args[-1].cond == true: ecpairs.append(r"%s & \text{otherwise}" % self._print(expr.args[-1].expr)) else: ecpairs.append(r"%s & \text{for}\: %s" % (self._print(expr.args[-1].expr), self._print(expr.args[-1].cond))) tex = r"\begin{cases} %s \end{cases}" return tex % r" \\".join(ecpairs) def _print_MatrixBase(self, expr): lines = [] for line in range(expr.rows): # horrible, should be 'rows' lines.append(" & ".join([ self._print(i) for i in expr[line, :] ])) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.cols <= 10) is True: mat_str = 'matrix' else: mat_str = 'array' out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' out_str = out_str.replace('%MATSTR%', mat_str) if mat_str == 'array': out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] out_str = r'\left' + left_delim + out_str + \ r'\right' + right_delim return out_str % r"\\".join(lines) _print_ImmutableMatrix = _print_ImmutableDenseMatrix \ = _print_Matrix \ = _print_MatrixBase def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '_{%s, %s}' % ( self._print(expr.i), self._print(expr.j) ) def _print_MatrixSlice(self, expr): def latexslice(x): x = list(x) if x[2] == 1: del x[2] if x[1] == x[0] + 1: del x[1] if x[0] == 0: x[0] = '' return ':'.join(map(self._print, x)) return (self._print(expr.parent) + r'\left[' + latexslice(expr.rowslice) + ', ' + latexslice(expr.colslice) + r'\right]') def _print_BlockMatrix(self, expr): return self._print(expr.blocks) def _print_Transpose(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^T" % self._print(mat) else: return "%s^T" % self._print(mat) def _print_Trace(self, expr): mat = expr.arg return r"\mathrm{tr}\left(%s \right)" % self._print(mat) def _print_Adjoint(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^\dagger" % self._print(mat) else: return r"%s^\dagger" % self._print(mat) def _print_MatMul(self, expr): from sympy import MatMul, Mul parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and _coeff_isneg(expr): if args[0] == -1: args = args[1:] else: args[0] = -args[0] return '- ' + ' '.join(map(parens, args)) else: return ' '.join(map(parens, args)) def _print_Mod(self, expr, exp=None): if exp is not None: return r'\left(%s\bmod{%s}\right)^{%s}' % (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1]), self._print(exp)) return r'%s\bmod{%s}' % (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self._print(expr.args[1])) def _print_HadamardProduct(self, expr): from sympy import Add, MatAdd, MatMul def parens(x): if isinstance(x, (Add, MatAdd, MatMul)): return r"\left(%s\right)" % self._print(x) return self._print(x) return r' \circ '.join(map(parens, expr.args)) def _print_KroneckerProduct(self, expr): from sympy import Add, MatAdd, MatMul def parens(x): if isinstance(x, (Add, MatAdd, MatMul)): return r"\left(%s\right)" % self._print(x) return self._print(x) return r' \otimes '.join(map(parens, expr.args)) def _print_MatPow(self, expr): base, exp = expr.base, expr.exp from sympy.matrices import MatrixSymbol if not isinstance(base, MatrixSymbol): return r"\left(%s\right)^{%s}" % (self._print(base), self._print(exp)) else: return "%s^{%s}" % (self._print(base), self._print(exp)) def _print_ZeroMatrix(self, Z): return r"\mathbb{0}" def _print_Identity(self, I): return r"\mathbb{I}" def _print_NDimArray(self, expr): if expr.rank() == 0: return self._print(expr[()]) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.rank() == 0) or (expr.shape[-1] <= 10): mat_str = 'matrix' else: mat_str = 'array' block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' block_str = block_str.replace('%MATSTR%', mat_str) if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] block_str = r'\left' + left_delim + block_str + \ r'\right' + right_delim if expr.rank() == 0: return block_str % "" level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] for outer_i in itertools.product(*shape_ranges): level_str[-1].append(self._print(expr[outer_i])) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append(r" & ".join(level_str[back_outer_i+1])) else: level_str[back_outer_i].append(block_str % (r"\\".join(level_str[back_outer_i+1]))) if len(level_str[back_outer_i+1]) == 1: level_str[back_outer_i][-1] = r"\left[" + level_str[back_outer_i][-1] + r"\right]" even = not even level_str[back_outer_i+1] = [] out_str = level_str[0][0] if expr.rank() % 2 == 1: out_str = block_str % out_str return out_str _print_ImmutableDenseNDimArray = _print_NDimArray _print_ImmutableSparseNDimArray = _print_NDimArray _print_MutableDenseNDimArray = _print_NDimArray _print_MutableSparseNDimArray = _print_NDimArray def _printer_tensor_indices(self, name, indices, index_map={}): out_str = self._print(name) last_valence = None prev_map = None for index in indices: new_valence = index.is_up if ((index in index_map) or prev_map) and last_valence == new_valence: out_str += "," if last_valence != new_valence: if last_valence is not None: out_str += "}" if index.is_up: out_str += "{}^{" else: out_str += "{}_{" out_str += self._print(index.args[0]) if index in index_map: out_str += "=" out_str += self._print(index_map[index]) prev_map = True else: prev_map = False last_valence = new_valence if last_valence is not None: out_str += "}" return out_str def _print_Tensor(self, expr): name = expr.args[0].args[0] indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].args[0] indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): a = [] args = expr.args for x in args: a.append(self.parenthesize(x, precedence(expr))) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _print_TensorIndex(self, expr): return "{}%s{%s}" % ( "^" if expr.is_up else "_", self._print(expr.args[0]) ) return self._print(expr.args[0]) def _print_tuple(self, expr): return r"\left( %s\right)" % \ r", \ ".join([ self._print(i) for i in expr ]) def _print_TensorProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \otimes '.join(elements) def _print_WedgeProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \wedge '.join(elements) def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_list(self, expr): return r"\left[ %s\right]" % \ r", \ ".join([ self._print(i) for i in expr ]) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: val = d[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\left\{ %s\right\}" % r", \ ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_DiracDelta(self, expr, exp=None): if len(expr.args) == 1 or expr.args[1] == 0: tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( self._print(expr.args[1]), self._print(expr.args[0])) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_SingularityFunction(self, expr): shift = self._print(expr.args[0] - expr.args[1]) power = self._print(expr.args[2]) tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) return tex def _print_Heaviside(self, expr, exp=None): tex = r"\theta\left(%s\right)" % self._print(expr.args[0]) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_KroneckerDelta(self, expr, exp=None): i = self._print(expr.args[0]) j = self._print(expr.args[1]) if expr.args[0].is_Atom and expr.args[1].is_Atom: tex = r'\delta_{%s %s}' % (i, j) else: tex = r'\delta_{%s, %s}' % (i, j) if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_LeviCivita(self, expr, exp=None): indices = map(self._print, expr.args) if all(x.is_Atom for x in expr.args): tex = r'\varepsilon_{%s}' % " ".join(indices) else: tex = r'\varepsilon_{%s}' % ", ".join(indices) if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_ProductSet(self, p): if len(p.sets) > 1 and not has_variety(p.sets): return self._print(p.sets[0]) + "^{%d}" % len(p.sets) else: return r" \times ".join(self._print(set) for set in p.sets) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return 'Domain: ' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('Domain: ' + self._print(d.symbols) + ' in ' + self._print(d.set)) elif hasattr(d, 'symbols'): return 'Domain on ' + self._print(d.symbols) else: return self._print(None) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_set(items) def _print_set(self, s): items = sorted(s, key=default_sort_key) items = ", ".join(map(self._print, items)) return r"\left\{%s\right\}" % items _print_frozenset = _print_set def _print_Range(self, s): dots = r'\ldots' if s.start.is_infinite: printset = s.start, dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite or len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return (r"\left\{" + r", ".join(self._print(el) for el in printset) + r"\right\}") def _print_SeqFormula(self, s): if s.start is S.NegativeInfinity: stop = s.stop printset = (r'\ldots', s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(r'\ldots') else: printset = tuple(s) return (r"\left[" + r", ".join(self._print(el) for el in printset) + r"\right]") _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_Interval(self, i): if i.start == i.end: return r"\left\{%s\right\}" % self._print(i.start) else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return r"\left%s%s, %s\right%s" % \ (left, self._print(i.start), self._print(i.end), right) def _print_AccumulationBounds(self, i): return r"\left\langle %s, %s\right\rangle" % \ (self._print(i.min), self._print(i.max)) def _print_Union(self, u): return r" \cup ".join([self._print(i) for i in u.args]) def _print_Complement(self, u): return r" \setminus ".join([self._print(i) for i in u.args]) def _print_Intersection(self, u): return r" \cap ".join([self._print(i) for i in u.args]) def _print_SymmetricDifference(self, u): return r" \triangle ".join([self._print(i) for i in u.args]) def _print_EmptySet(self, e): return r"\emptyset" def _print_Naturals(self, n): return r"\mathbb{N}" def _print_Naturals0(self, n): return r"\mathbb{N}_0" def _print_Integers(self, i): return r"\mathbb{Z}" def _print_Reals(self, i): return r"\mathbb{R}" def _print_Complexes(self, i): return r"\mathbb{C}" def _print_ImageSet(self, s): sets = s.args[1:] varsets = [r"%s \in %s" % (self._print(var), self._print(setv)) for var, setv in zip(s.lamda.variables, sets)] return r"\left\{%s\; |\; %s\right\}" % ( self._print(s.lamda.expr), ', '.join(varsets)) def _print_ConditionSet(self, s): vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) if s.base_set is S.UniversalSet: return r"\left\{%s \mid %s \right\}" % ( vars_print, self._print(s.condition.as_expr())) return r"\left\{%s \mid %s \in %s \wedge %s \right\}" % ( vars_print, vars_print, self._print(s.base_set), self._print(s.condition.as_expr())) def _print_ComplexRegion(self, s): vars_print = ', '.join([self._print(var) for var in s.variables]) return r"\left\{%s\; |\; %s \in %s \right\}" % ( self._print(s.expr), vars_print, self._print(s.sets)) def _print_Contains(self, e): return r"%s \in %s" % tuple(self._print(a) for a in e.args) def _print_FourierSeries(self, s): return self._print_Add(s.truncate()) + self._print(r' + \ldots') def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_FiniteField(self, expr): return r"\mathbb{F}_{%s}" % expr.mod def _print_IntegerRing(self, expr): return r"\mathbb{Z}" def _print_RationalField(self, expr): return r"\mathbb{Q}" def _print_RealField(self, expr): return r"\mathbb{R}" def _print_ComplexField(self, expr): return r"\mathbb{C}" def _print_PolynomialRing(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left[%s\right]" % (domain, symbols) def _print_FractionField(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left(%s\right)" % (domain, symbols) def _print_PolynomialRingBase(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) inv = "" if not expr.is_Poly: inv = r"S_<^{-1}" return r"%s%s\left[%s\right]" % (inv, domain, symbols) def _print_Poly(self, poly): cls = poly.__class__.__name__ terms = [] for monom, coeff in poly.terms(): s_monom = '' for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom += self._print(poly.gens[i]) else: s_monom += self._print(pow(poly.gens[i], exp)) if coeff.is_Add: if s_monom: s_coeff = r"\left(%s\right)" % self._print(coeff) else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + " " + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] expr = ' '.join(terms) gens = list(map(self._print, poly.gens)) domain = "domain=%s" % self._print(poly.get_domain()) args = ", ".join([expr] + gens + [domain]) if cls in accepted_latex_functions: tex = r"\%s {\left(%s \right)}" % (cls, args) else: tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) return tex def _print_ComplexRootOf(self, root): cls = root.__class__.__name__ if cls == "ComplexRootOf": cls = "CRootOf" expr = self._print(root.expr) index = root.index if cls in accepted_latex_functions: return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) else: return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, index) def _print_RootSum(self, expr): cls = expr.__class__.__name__ args = [self._print(expr.expr)] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) if cls in accepted_latex_functions: return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) else: return r"\operatorname{%s} {\left(%s\right)}" % (cls, ", ".join(args)) def _print_PolyElement(self, poly): mul_symbol = self._settings['mul_symbol_latex'] return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self._print(frac.numer) denom = self._print(frac.denom) return r"\frac{%s}{%s}" % (numer, denom) def _print_euler(self, expr, exp=None): m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args tex = r"E_{%s}" % self._print(m) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) if x is not None: tex = r"%s\left(%s\right)" % (tex, self._print(x)) return tex def _print_catalan(self, expr, exp=None): tex = r"C_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, self._print(exp)) return tex def _print_MellinTransform(self, expr): return r"\mathcal{M}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_InverseMellinTransform(self, expr): return r"\mathcal{M}^{-1}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_LaplaceTransform(self, expr): return r"\mathcal{L}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_InverseLaplaceTransform(self, expr): return r"\mathcal{L}^{-1}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_FourierTransform(self, expr): return r"\mathcal{F}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_InverseFourierTransform(self, expr): return r"\mathcal{F}^{-1}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_SineTransform(self, expr): return r"\mathcal{SIN}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_InverseSineTransform(self, expr): return r"\mathcal{SIN}^{-1}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_CosineTransform(self, expr): return r"\mathcal{COS}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_InverseCosineTransform(self, expr): return r"\mathcal{COS}^{-1}_{%s}\left[%s\right]\left(%s\right)" % (self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(Symbol(object.name)) def _print_Morphism(self, morphism): domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) return "%s\\rightarrow %s" % (domain, codomain) def _print_NamedMorphism(self, morphism): pretty_name = self._print(Symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return "%s:%s" % (pretty_name, pretty_morphism) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism(NamedMorphism( morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [self._print(Symbol(component.name)) for component in morphism.components] component_names_list.reverse() component_names = "\\circ ".join(component_names_list) + ":" pretty_morphism = self._print_Morphism(morphism) return component_names + pretty_morphism def _print_Category(self, morphism): return "\\mathbf{%s}" % self._print(Symbol(morphism.name)) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) latex_result = self._print(diagram.premises) if diagram.conclusions: latex_result += "\\Longrightarrow %s" % \ self._print(diagram.conclusions) return latex_result def _print_DiagramGrid(self, grid): latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) for i in range(grid.height): for j in range(grid.width): if grid[i, j]: latex_result += latex(grid[i, j]) latex_result += " " if j != grid.width - 1: latex_result += "& " if i != grid.height - 1: latex_result += "\\\\" latex_result += "\n" latex_result += "\\end{array}\n" return latex_result def _print_FreeModule(self, M): return '{%s}^{%s}' % (self._print(M.ring), self._print(M.rank)) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return r"\left[ %s \right]" % ",".join( '{' + self._print(x) + '}' for x in m) def _print_SubModule(self, m): return r"\left\langle %s \right\rangle" % ",".join( '{' + self._print(x) + '}' for x in m.gens) def _print_ModuleImplementedIdeal(self, m): return r"\left\langle %s \right\rangle" % ",".join( '{' + self._print(x) + '}' for [x] in m._module.gens) def _print_Quaternion(self, expr): # TODO: This expression is potentially confusing, # shall we print it as `Quaternion( ... )`? s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_QuotientRing(self, R): # TODO nicer fractions for few generators... return r"\frac{%s}{%s}" % (self._print(R.ring), self._print(R.base_ideal)) def _print_QuotientRingElement(self, x): return r"{%s} + {%s}" % (self._print(x.data), self._print(x.ring.base_ideal)) def _print_QuotientModuleElement(self, m): return r"{%s} + {%s}" % (self._print(m.data), self._print(m.module.killed_module)) def _print_QuotientModule(self, M): # TODO nicer fractions for few generators... return r"\frac{%s}{%s}" % (self._print(M.base), self._print(M.killed_module)) def _print_MatrixHomomorphism(self, h): return r"{%s} : {%s} \to {%s}" % (self._print(h._sympy_matrix()), self._print(h.domain), self._print(h.codomain)) def _print_BaseScalarField(self, field): string = field._coord_sys._names[field._index] return r'\boldsymbol{\mathrm{%s}}' % self._print(Symbol(string)) def _print_BaseVectorField(self, field): string = field._coord_sys._names[field._index] return r'\partial_{%s}' % self._print(Symbol(string)) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys._names[field._index] return r'\mathrm{d}%s' % self._print(Symbol(string)) else: return 'd(%s)' % self._print(field) string = self._print(field) return r'\mathrm{d}\left(%s\right)' % string def _print_Tr(self, p): #Todo: Handle indices contents = self._print(p.args[0]) return r'\mbox{Tr}\left(%s\right)' % (contents) def _print_totient(self, expr, exp=None): if exp is not None: return r'\left(\phi\left(%s\right)\right)^{%s}' % (self._print(expr.args[0]), self._print(exp)) return r'\phi\left(%s\right)' % self._print(expr.args[0]) def _print_reduced_totient(self, expr, exp=None): if exp is not None: return r'\left(\lambda\left(%s\right)\right)^{%s}' % (self._print(expr.args[0]), self._print(exp)) return r'\lambda\left(%s\right)' % self._print(expr.args[0]) def _print_divisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^{%s}%s" % (self._print(exp), tex) return r"\sigma%s" % tex def _print_udivisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^*^{%s}%s" % (self._print(exp), tex) return r"\sigma^*%s" % tex def _print_primenu(self, expr, exp=None): if exp is not None: return r'\left(\nu\left(%s\right)\right)^{%s}' % (self._print(expr.args[0]), self._print(exp)) return r'\nu\left(%s\right)' % self._print(expr.args[0]) def _print_primeomega(self, expr, exp=None): if exp is not None: return r'\left(\Omega\left(%s\right)\right)^{%s}' % (self._print(expr.args[0]), self._print(exp)) return r'\Omega\left(%s\right)' % self._print(expr.args[0]) def translate(s): r''' Check for a modifier ending the string. If present, convert the modifier to latex and translate the rest recursively. Given a description of a Greek letter or other special character, return the appropriate latex. Let everything else pass as given. >>> from sympy.printing.latex import translate >>> translate('alphahatdotprime') "{\\dot{\\hat{\\alpha}}}'" ''' # Process the rest tex = tex_greek_dictionary.get(s) if tex: return tex elif s.lower() in greek_letters_set: return "\\" + s.lower() elif s in other_symbols: return "\\" + s else: # Process modifiers, if any, and recurse for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True): if s.lower().endswith(key) and len(s)>len(key): return modifier_dict[key](translate(s[:-len(key)])) return s def latex(expr, fold_frac_powers=False, fold_func_brackets=False, fold_short_frac=None, inv_trig_style="abbreviated", itex=False, ln_notation=False, long_frac_ratio=None, mat_delim="[", mat_str=None, mode="plain", mul_symbol=None, order=None, symbol_names=None, root_notation=True, mat_symbol_style="plain", imaginary_unit="i"): r"""Convert the given expression to LaTeX string representation. Parameters ========== fold_frac_powers : boolean, optional Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. fold_func_brackets : boolean, optional Fold function brackets where applicable. fold_short_frac : boolean, optional Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is simple enough (at most two terms and no powers). The default value is ``True`` for inline mode, ``False`` otherwise. inv_trig_style : string, optional How inverse trig functions should be displayed. Can be one of ``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``. itex : boolean, optional Specifies if itex-specific syntax is used, including emitting ``$$...$$``. ln_notation : boolean, optional If set to ``True``, ``\ln`` is used instead of default ``\log``. long_frac_ratio : float or None, optional The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If ``None`` (the default value), long fractions are not broken up. mat_delim : string, optional The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or the empty string. Defaults to ``[``. mat_str : string, optional Which matrix environment string to emit. ``smallmatrix``, ``matrix``, ``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix`` for matrices of no more than 10 columns, and ``array`` otherwise. mode: string, optional Specifies how the generated code will be delimited. ``mode`` can be one of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode`` is set to ``plain``, then the resulting code will not be delimited at all (this is the default). If ``mode`` is set to ``inline`` then inline LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or ``equation*``, the resulting code will be enclosed in the ``equation`` or ``equation*`` environment (remember to import ``amsmath`` for ``equation*``), unless the ``itex`` option is set. In the latter case, the ``$$...$$`` syntax is used. mul_symbol : string or None, optional The symbol to use for multiplication. Can be one of ``None``, ``ldot``, ``dot``, or ``times``. order: string, optional Any of the supported monomial orderings (currently ``lex``, ``grlex``, or ``grevlex``), ``old``, and ``none``. This parameter does nothing for Mul objects. Setting order to ``old`` uses the compatibility ordering for Add defined in Printer. For very large expressions, set the ``order`` keyword to ``none`` if speed is a concern. symbol_names : dictionary of strings mapped to symbols, optional Dictionary of symbols and the custom strings they should be emitted as. root_notation : boolean, optional If set to ``False``, exponents of the form 1/n are printed in fractonal form. Default is ``True``, to print exponent in root form. mat_symbol_style : string, optional Can be either ``plain`` (default) or ``bold``. If set to ``bold``, a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``. imaginary_unit : string, optional String to use for the imaginary unit. Defined options are "i" (default) and "j". Adding "b" or "t" in front gives ``\mathrm`` or ``\text``, so "bi" leads to ``\mathrm{i}`` which gives `\mathrm{i}`. Notes ===== Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings. >>> from sympy import latex, Rational >>> from sympy.abc import tau >>> latex((2*tau)**Rational(7,2)) '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} Examples ======== >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log >>> from sympy.abc import x, y, mu, r, tau Basic usage: >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} ``mode`` and ``itex`` options: >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ Fraction options: >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) 8 \sqrt{2} \tau^{7/2} >>> print(latex((2*tau)**sin(Rational(7,2)))) \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) \left(2 \tau\right)^{\sin {\frac{7}{2}}} >>> print(latex(3*x**2/y)) \frac{3 x^{2}}{y} >>> print(latex(3*x**2/y, fold_short_frac=True)) 3 x^{2} / y >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) \frac{\int r\, dr}{2 \pi} >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) \frac{1}{2 \pi} \int r\, dr Multiplication options: >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} Trig options: >>> print(latex(asin(Rational(7,2)))) \operatorname{asin}{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) \arcsin{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) \sin^{-1}{\left(\frac{7}{2} \right)} Matrix options: >>> print(latex(Matrix(2, 1, [x, y]))) \left[\begin{matrix}x\\y\end{matrix}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) \left[\begin{array}{c}x\\y\end{array}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) \left(\begin{matrix}x\\y\end{matrix}\right) Custom printing of symbols: >>> print(latex(x**2, symbol_names={x: 'x_i'})) x_i^{2} Logarithms: >>> print(latex(log(10))) \log{\left(10 \right)} >>> print(latex(log(10), ln_notation=True)) \ln{\left(10 \right)} ``latex()`` also supports the builtin container types list, tuple, and dictionary. >>> print(latex([2/x, y], mode='inline')) $\left[ 2 / x, \ y\right]$ """ if symbol_names is None: symbol_names = {} settings = { 'fold_frac_powers' : fold_frac_powers, 'fold_func_brackets' : fold_func_brackets, 'fold_short_frac' : fold_short_frac, 'inv_trig_style' : inv_trig_style, 'itex' : itex, 'ln_notation' : ln_notation, 'long_frac_ratio' : long_frac_ratio, 'mat_delim' : mat_delim, 'mat_str' : mat_str, 'mode' : mode, 'mul_symbol' : mul_symbol, 'order' : order, 'symbol_names' : symbol_names, 'root_notation' : root_notation, 'mat_symbol_style' : mat_symbol_style, 'imaginary_unit' : imaginary_unit, } return LatexPrinter(settings).doprint(expr) def print_latex(expr, **settings): """Prints LaTeX representation of the given expression. Takes the same settings as ``latex()``.""" print(latex(expr, **settings))
109be8cab102538528fd23e89a1e4bc61e1111c4b755c63209c9c88bf8c2b886
from __future__ import print_function, division from sympy.core.compatibility import range from sympy.core.containers import Tuple from types import FunctionType class TableForm(object): r""" Create a nice table representation of data. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]]) >>> print(t) 5 7 4 2 10 3 You can use the SymPy's printing system to produce tables in any format (ascii, latex, html, ...). >>> print(t.as_latex()) \begin{tabular}{l l} $5$ & $7$ \\ $4$ & $2$ \\ $10$ & $3$ \\ \end{tabular} """ def __init__(self, data, **kwarg): """ Creates a TableForm. Parameters: data ... 2D data to be put into the table; data can be given as a Matrix headings ... gives the labels for rows and columns: Can be a single argument that applies to both dimensions: - None ... no labels - "automatic" ... labels are 1, 2, 3, ... Can be a list of labels for rows and columns: The labels for each dimension can be given as None, "automatic", or [l1, l2, ...] e.g. ["automatic", None] will number the rows [default: None] alignments ... alignment of the columns with: - "left" or "<" - "center" or "^" - "right" or ">" When given as a single value, the value is used for all columns. The row headings (if given) will be right justified unless an explicit alignment is given for it and all other columns. [default: "left"] formats ... a list of format strings or functions that accept 3 arguments (entry, row number, col number) and return a string for the table entry. (If a function returns None then the _print method will be used.) wipe_zeros ... Don't show zeros in the table. [default: True] pad ... the string to use to indicate a missing value (e.g. elements that are None or those that are missing from the end of a row (i.e. any row that is shorter than the rest is assumed to have missing values). When None, nothing will be shown for values that are missing from the end of a row; values that are None, however, will be shown. [default: None] Examples ======== >>> from sympy import TableForm, Matrix >>> TableForm([[5, 7], [4, 2], [10, 3]]) 5 7 4 2 10 3 >>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic') | 1 2 3 --------- 1 | . 2 | . . 3 | . . . >>> TableForm([['.'*(j if not i%2 else 1) for i in range(3)] ... for j in range(4)], alignments='rcl') . . . . .. . .. ... . ... """ from sympy import Symbol, S, Matrix from sympy.core.sympify import SympifyError # We only support 2D data. Check the consistency: if isinstance(data, Matrix): data = data.tolist() _w = len(data[0]) _h = len(data) # fill out any short lines pad = kwarg.get('pad', None) ok_None = False if pad is None: pad = " " ok_None = True pad = Symbol(pad) _w = max(len(line) for line in data) for i, line in enumerate(data): if len(line) != _w: line.extend([pad]*(_w - len(line))) for j, lj in enumerate(line): if lj is None: if not ok_None: lj = pad else: try: lj = S(lj) except SympifyError: lj = Symbol(str(lj)) line[j] = lj data[i] = line _lines = Tuple(*data) headings = kwarg.get("headings", [None, None]) if headings == "automatic": _headings = [range(1, _h + 1), range(1, _w + 1)] else: h1, h2 = headings if h1 == "automatic": h1 = range(1, _h + 1) if h2 == "automatic": h2 = range(1, _w + 1) _headings = [h1, h2] allow = ('l', 'r', 'c') alignments = kwarg.get("alignments", "l") def _std_align(a): a = a.strip().lower() if len(a) > 1: return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a) else: return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a) std_align = _std_align(alignments) if std_align in allow: _alignments = [std_align]*_w else: _alignments = [] for a in alignments: std_align = _std_align(a) _alignments.append(std_align) if std_align not in ('l', 'r', 'c'): raise ValueError('alignment "%s" unrecognized' % alignments) if _headings[0] and len(_alignments) == _w + 1: _head_align = _alignments[0] _alignments = _alignments[1:] else: _head_align = 'r' if len(_alignments) != _w: raise ValueError( 'wrong number of alignments: expected %s but got %s' % (_w, len(_alignments))) _column_formats = kwarg.get("formats", [None]*_w) _wipe_zeros = kwarg.get("wipe_zeros", True) self._w = _w self._h = _h self._lines = _lines self._headings = _headings self._head_align = _head_align self._alignments = _alignments self._column_formats = _column_formats self._wipe_zeros = _wipe_zeros def __repr__(self): from .str import sstr return sstr(self, order=None) def __str__(self): from .str import sstr return sstr(self, order=None) def as_matrix(self): """Returns the data of the table in Matrix form. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]], headings='automatic') >>> t | 1 2 -------- 1 | 5 7 2 | 4 2 3 | 10 3 >>> t.as_matrix() Matrix([ [ 5, 7], [ 4, 2], [10, 3]]) """ from sympy import Matrix return Matrix(self._lines) def as_str(self): # XXX obsolete ? return str(self) def as_latex(self): from .latex import latex return latex(self) def _sympystr(self, p): """ Returns the string representation of 'self'. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]]) >>> s = t.as_str() """ column_widths = [0] * self._w lines = [] for line in self._lines: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(line[i]) if self._wipe_zeros and (s == "0"): s = " " w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) lines.append(new_line) # Check heading: if self._headings[0]: self._headings[0] = [str(x) for x in self._headings[0]] _head_width = max([len(x) for x in self._headings[0]]) if self._headings[1]: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(self._headings[1][i]) w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) self._headings[1] = new_line format_str = [] def _align(align, w): return '%%%s%ss' % ( ("-" if align == "l" else ""), str(w)) format_str = [_align(align, w) for align, w in zip(self._alignments, column_widths)] if self._headings[0]: format_str.insert(0, _align(self._head_align, _head_width)) format_str.insert(1, '|') format_str = ' '.join(format_str) + '\n' s = [] if self._headings[1]: d = self._headings[1] if self._headings[0]: d = [""] + d first_line = format_str % tuple(d) s.append(first_line) s.append("-" * (len(first_line) - 1) + "\n") for i, line in enumerate(lines): d = [l if self._alignments[j] != 'c' else l.center(column_widths[j]) for j, l in enumerate(line)] if self._headings[0]: l = self._headings[0][i] l = (l if self._head_align != 'c' else l.center(_head_width)) d = [l] + d s.append(format_str % tuple(d)) return ''.join(s)[:-1] # don't include trailing newline def _latex(self, printer): """ Returns the string representation of 'self'. """ # Check heading: if self._headings[1]: new_line = [] for i in range(self._w): # Format the item somehow if needed: new_line.append(str(self._headings[1][i])) self._headings[1] = new_line alignments = [] if self._headings[0]: self._headings[0] = [str(x) for x in self._headings[0]] alignments = [self._head_align] alignments.extend(self._alignments) s = r"\begin{tabular}{" + " ".join(alignments) + "}\n" if self._headings[1]: d = self._headings[1] if self._headings[0]: d = [""] + d first_line = " & ".join(d) + r" \\" + "\n" s += first_line s += r"\hline" + "\n" for i, line in enumerate(self._lines): d = [] for j, x in enumerate(line): if self._wipe_zeros and (x in (0, "0")): d.append(" ") continue f = self._column_formats[j] if f: if isinstance(f, FunctionType): v = f(x, i, j) if v is None: v = printer._print(x) else: v = f % x d.append(v) else: v = printer._print(x) d.append("$%s$" % v) if self._headings[0]: d = [self._headings[0][i]] + d s += " & ".join(d) + r" \\" + "\n" s += r"\end{tabular}" return s
58c6d645bac6672f7951d00559e9e13c83436c25b53be551dca236d9f950530c
from __future__ import print_function, division from .pycode import ( PythonCodePrinter, MpmathPrinter, # MpmathPrinter is imported for backward compatibility NumPyPrinter # NumPyPrinter is imported for backward compatibility ) from sympy.utilities import default_sort_key class LambdaPrinter(PythonCodePrinter): """ This printer converts expressions into strings that can be used by lambdify. """ printmethod = "_lambdacode" def _print_And(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' and ') result = result[:-1] result.append(')') return ''.join(result) def _print_Or(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' or ') result = result[:-1] result.append(')') return ''.join(result) def _print_Not(self, expr): result = ['(', 'not (', self._print(expr.args[0]), '))'] return ''.join(result) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_ITE(self, expr): result = [ '((', self._print(expr.args[1]), ') if (', self._print(expr.args[0]), ') else (', self._print(expr.args[2]), '))' ] return ''.join(result) def _print_NumberSymbol(self, expr): return str(expr) # numexpr works by altering the string passed to numexpr.evaluate # rather than by populating a namespace. Thus a special printer... class NumExprPrinter(LambdaPrinter): # key, value pairs correspond to sympy name and numexpr name # functions not appearing in this dict will raise a TypeError printmethod = "_numexprcode" _numexpr_functions = { 'sin' : 'sin', 'cos' : 'cos', 'tan' : 'tan', 'asin': 'arcsin', 'acos': 'arccos', 'atan': 'arctan', 'atan2' : 'arctan2', 'sinh' : 'sinh', 'cosh' : 'cosh', 'tanh' : 'tanh', 'asinh': 'arcsinh', 'acosh': 'arccosh', 'atanh': 'arctanh', 'ln' : 'log', 'log': 'log', 'exp': 'exp', 'sqrt' : 'sqrt', 'Abs' : 'abs', 'conjugate' : 'conj', 'im' : 'imag', 're' : 'real', 'where' : 'where', 'complex' : 'complex', 'contains' : 'contains', } def _print_ImaginaryUnit(self, expr): return '1j' def _print_seq(self, seq, delimiter=', '): # simplified _print_seq taken from pretty.py s = [self._print(item) for item in seq] if s: return delimiter.join(s) else: return "" def _print_Function(self, e): func_name = e.func.__name__ nstr = self._numexpr_functions.get(func_name, None) if nstr is None: # check for implemented_function if hasattr(e, '_imp_'): return "(%s)" % self._print(e._imp_(*e.args)) else: raise TypeError("numexpr does not support function '%s'" % func_name) return "%s(%s)" % (nstr, self._print_seq(e.args)) def blacklisted(self, expr): raise TypeError("numexpr cannot be used with %s" % expr.__class__.__name__) # blacklist all Matrix printing _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ blacklisted # blacklist some python expressions _print_list = \ _print_tuple = \ _print_Tuple = \ _print_dict = \ _print_Dict = \ blacklisted def doprint(self, expr): lstr = super(NumExprPrinter, self).doprint(expr) return "evaluate('%s', truediv=True)" % lstr for k in NumExprPrinter._numexpr_functions: setattr(NumExprPrinter, '_print_%s' % k, NumExprPrinter._print_Function) def lambdarepr(expr, **settings): """ Returns a string usable for lambdifying. """ return LambdaPrinter(settings).doprint(expr)
777f4ca6a3e50b2aae82f2897b10167e5a1e18737aab9148fb5dd80156ca302f
""" Mathematica code printer """ from __future__ import print_function, division from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence from sympy.printing.str import StrPrinter # Used in MCodePrinter._print_Function(self) known_functions = { "exp": [(lambda x: True, "Exp")], "log": [(lambda x: True, "Log")], "sin": [(lambda x: True, "Sin")], "cos": [(lambda x: True, "Cos")], "tan": [(lambda x: True, "Tan")], "cot": [(lambda x: True, "Cot")], "asin": [(lambda x: True, "ArcSin")], "acos": [(lambda x: True, "ArcCos")], "atan": [(lambda x: True, "ArcTan")], "sinh": [(lambda x: True, "Sinh")], "cosh": [(lambda x: True, "Cosh")], "tanh": [(lambda x: True, "Tanh")], "coth": [(lambda x: True, "Coth")], "sech": [(lambda x: True, "Sech")], "csch": [(lambda x: True, "Csch")], "asinh": [(lambda x: True, "ArcSinh")], "acosh": [(lambda x: True, "ArcCosh")], "atanh": [(lambda x: True, "ArcTanh")], "acoth": [(lambda x: True, "ArcCoth")], "asech": [(lambda x: True, "ArcSech")], "acsch": [(lambda x: True, "ArcCsch")], "conjugate": [(lambda x: True, "Conjugate")], "Max": [(lambda *x: True, "Max")], "Min": [(lambda *x: True, "Min")], } class MCodePrinter(CodePrinter): """A printer to convert python expressions to strings of the Wolfram's Mathematica code """ printmethod = "_mcode" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 15, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, } _number_symbols = set() _not_supported = set() def __init__(self, settings={}): """Register function mappings supplied by user""" CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) for k, v in userfuncs.items(): if not isinstance(v, list): userfuncs[k] = [(lambda *x: True, v)] self.known_functions.update(userfuncs) doprint = StrPrinter.doprint def _print_Pow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Mul(self, expr): PREC = precedence(expr) c, nc = expr.args_cnc() res = super(MCodePrinter, self)._print_Mul(expr.func(*c)) if nc: res += '*' res += '**'.join(self.parenthesize(a, PREC) for a in nc) return res def _print_Pi(self, expr): return 'Pi' def _print_Infinity(self, expr): return 'Infinity' def _print_NegativeInfinity(self, expr): return '-Infinity' def _print_list(self, expr): return '{' + ', '.join(self.doprint(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_Matrix(self, expr): return self._print_list( [self._print_list(expr.row(i)) for i in range(expr.rows)] ) _print_ImmutableMatrix = _print_Matrix _print_ImmutableDenseMatrix = _print_Matrix _print_MutableDenseMatrix = _print_Matrix def _print_SparseMatrix(self, expr): from sympy.core.compatibility import default_sort_key def print_rule(pos, val): return '{} -> {}'.format( self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val)) def print_data(): return self._print_list( [print_rule(key, value) for key, value in sorted(expr._smat.items(), key=default_sort_key)] ) def print_dims(): return self._print_list( [self.doprint(expr.rows), self.doprint(expr.cols)] ) return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) _print_MutableSparseMatrix = _print_SparseMatrix _print_ImmutableSparseMatrix = _print_SparseMatrix def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_mfunc = self.known_functions[expr.func.__name__] for cond, mfunc in cond_mfunc: if cond(*expr.args): return "%s[%s]" % (mfunc, self.stringify(expr.args, ", ")) return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ") _print_MinMaxBase = _print_Function def _print_Integral(self, expr): if len(expr.variables) == 1 and not expr.limits[0][1:]: args = [expr.args[0], expr.variables[0]] else: args = expr.args return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]" def _print_Sum(self, expr): return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]" def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]" def mathematica_code(expr, **settings): r"""Converts an expr to a string of the Wolfram Mathematica code Examples ======== >>> from sympy import mathematica_code as mcode, symbols, sin >>> x = symbols('x') >>> mcode(sin(x).series(x).removeO()) '(1/120)*x^5 - 1/6*x^3 + x' """ return MCodePrinter(settings).doprint(expr)
6033dd00d9d98595a4486ffcf23a54bf387512e7891e75ad298c4acf7e3fb089
""" C code printer The C89CodePrinter & C99CodePrinter converts single sympy expressions into single C expressions, using the functions defined in math.h where possible. A complete code generator, which uses ccode extensively, can be found in sympy.utilities.codegen. The codegen module can be used to generate complete source code files that are compilable without further modifications. """ from __future__ import print_function, division from functools import wraps from itertools import chain from sympy.core import S from sympy.core.compatibility import string_types, range from sympy.core.decorators import deprecated from sympy.codegen.ast import ( Assignment, Pointer, Variable, Declaration, real, complex_, integer, bool_, float32, float64, float80, complex64, complex128, intc, value_const, pointer_const, int8, int16, int32, int64, uint8, uint16, uint32, uint64, untyped ) from sympy.printing.codeprinter import CodePrinter, requires from sympy.printing.precedence import precedence, PRECEDENCE from sympy.sets.fancysets import Range # dictionary mapping sympy function to (argument_conditions, C_function). # Used in C89CodePrinter._print_Function(self) known_functions_C89 = { "Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "exp": "exp", "log": "log", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "floor": "floor", "ceiling": "ceil", } # move to C99 once CCodePrinter is removed: _known_functions_C9X = dict(known_functions_C89, **{ "asinh": "asinh", "acosh": "acosh", "atanh": "atanh", "erf": "erf", "gamma": "tgamma", }) known_functions = _known_functions_C9X known_functions_C99 = dict(_known_functions_C9X, **{ 'exp2': 'exp2', 'expm1': 'expm1', 'expm1': 'expm1', 'log10': 'log10', 'log2': 'log2', 'log1p': 'log1p', 'Cbrt': 'cbrt', 'hypot': 'hypot', 'fma': 'fma', 'loggamma': 'lgamma', 'erfc': 'erfc', 'Max': 'fmax', 'Min': 'fmin' }) # These are the core reserved words in the C language. Taken from: # http://en.cppreference.com/w/c/keyword reserved_words = [ 'auto', 'break', 'case', 'char', 'const', 'continue', 'default', 'do', 'double', 'else', 'enum', 'extern', 'float', 'for', 'goto', 'if', 'int', 'long', 'register', 'return', 'short', 'signed', 'sizeof', 'static', 'struct', 'entry', # never standardized, we'll leave it here anyway 'switch', 'typedef', 'union', 'unsigned', 'void', 'volatile', 'while' ] reserved_words_c99 = ['inline', 'restrict'] def get_math_macros(): """ Returns a dictionary with math-related macros from math.h/cmath Note that these macros are not strictly required by the C/C++-standard. For MSVC they are enabled by defining "_USE_MATH_DEFINES" (preferably via a compilation flag). Returns ======= Dictionary mapping sympy expressions to strings (macro names) """ from sympy.codegen.cfunctions import log2, Sqrt from sympy.functions.elementary.exponential import log from sympy.functions.elementary.miscellaneous import sqrt return { S.Exp1: 'M_E', log2(S.Exp1): 'M_LOG2E', 1/log(2): 'M_LOG2E', log(2): 'M_LN2', log(10): 'M_LN10', S.Pi: 'M_PI', S.Pi/2: 'M_PI_2', S.Pi/4: 'M_PI_4', 1/S.Pi: 'M_1_PI', 2/S.Pi: 'M_2_PI', 2/sqrt(S.Pi): 'M_2_SQRTPI', 2/Sqrt(S.Pi): 'M_2_SQRTPI', sqrt(2): 'M_SQRT2', Sqrt(2): 'M_SQRT2', 1/sqrt(2): 'M_SQRT1_2', 1/Sqrt(2): 'M_SQRT1_2' } def _as_macro_if_defined(meth): """ Decorator for printer methods When a Printer's method is decorated using this decorator the expressions printed will first be looked for in the attribute ``math_macros``, and if present it will print the macro name in ``math_macros`` followed by a type suffix for the type ``real``. e.g. printing ``sympy.pi`` would print ``M_PIl`` if real is mapped to float80. """ @wraps(meth) def _meth_wrapper(self, expr, **kwargs): if expr in self.math_macros: return '%s%s' % (self.math_macros[expr], self._get_math_macro_suffix(real)) else: return meth(self, expr, **kwargs) return _meth_wrapper class C89CodePrinter(CodePrinter): """A printer to convert python expressions to strings of c code""" printmethod = "_ccode" language = "C" standard = "C89" reserved_words = set(reserved_words) _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'dereference': set(), 'error_on_reserved': False, 'reserved_word_suffix': '_', } type_aliases = { real: float64, complex_: complex128, integer: intc } type_mappings = { real: 'double', intc: 'int', float32: 'float', float64: 'double', integer: 'int', bool_: 'bool', int8: 'int8_t', int16: 'int16_t', int32: 'int32_t', int64: 'int64_t', uint8: 'int8_t', uint16: 'int16_t', uint32: 'int32_t', uint64: 'int64_t', } type_headers = { bool_: {'stdbool.h'}, int8: {'stdint.h'}, int16: {'stdint.h'}, int32: {'stdint.h'}, int64: {'stdint.h'}, uint8: {'stdint.h'}, uint16: {'stdint.h'}, uint32: {'stdint.h'}, uint64: {'stdint.h'}, } type_macros = {} # Macros needed to be defined when using a Type type_func_suffixes = { float32: 'f', float64: '', float80: 'l' } type_literal_suffixes = { float32: 'F', float64: '', float80: 'L' } type_math_macro_suffixes = { float80: 'l' } math_macros = None _ns = '' # namespace, C++ uses 'std::' _kf = known_functions_C89 # known_functions-dict to copy def __init__(self, settings={}): if self.math_macros is None: self.math_macros = settings.pop('math_macros', get_math_macros()) self.type_aliases = dict(chain(self.type_aliases.items(), settings.pop('type_aliases', {}).items())) self.type_mappings = dict(chain(self.type_mappings.items(), settings.pop('type_mappings', {}).items())) self.type_headers = dict(chain(self.type_headers.items(), settings.pop('type_headers', {}).items())) self.type_macros = dict(chain(self.type_macros.items(), settings.pop('type_macros', {}).items())) self.type_func_suffixes = dict(chain(self.type_func_suffixes.items(), settings.pop('type_func_suffixes', {}).items())) self.type_literal_suffixes = dict(chain(self.type_literal_suffixes.items(), settings.pop('type_literal_suffixes', {}).items())) self.type_math_macro_suffixes = dict(chain(self.type_math_macro_suffixes.items(), settings.pop('type_math_macro_suffixes', {}).items())) super(C89CodePrinter, self).__init__(settings) self.known_functions = dict(self._kf, **settings.get('user_functions', {})) self._dereference = set(settings.get('dereference', [])) self.headers = set() self.libraries = set() self.macros = set() def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): """ Get code string as a statement - i.e. ending with a semicolon. """ return codestring if codestring.endswith(';') else codestring + ';' def _get_comment(self, text): return "// {0}".format(text) def _declare_number_const(self, name, value): type_ = self.type_aliases[real] var = Variable(name, type=type_, value=value.evalf(type_.decimal_dig), attrs={value_const}) decl = Declaration(var) return self._get_statement(self._print(decl)) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) @_as_macro_if_defined def _print_Mul(self, expr, **kwargs): return super(C89CodePrinter, self)._print_Mul(expr, **kwargs) @_as_macro_if_defined def _print_Pow(self, expr): if "Pow" in self.known_functions: return self._print_Function(expr) PREC = precedence(expr) suffix = self._get_func_suffix(real) if expr.exp == -1: return '1.0%s/%s' % (suffix.upper(), self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: return '%ssqrt%s(%s)' % (self._ns, suffix, self._print(expr.base)) elif expr.exp == S.One/3 and self.standard != 'C89': return '%scbrt%s(%s)' % (self._ns, suffix, self._print(expr.base)) else: return '%spow%s(%s, %s)' % (self._ns, suffix, self._print(expr.base), self._print(expr.exp)) def _print_Mod(self, expr): num, den = expr.args if num.is_integer and den.is_integer: return "(({}) % ({}))".format(self._print(num), self._print(den)) else: return self._print_math_func(expr, known='fmod') def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) suffix = self._get_literal_suffix(real) return '%d.0%s/%d.0%s' % (p, suffix, q, suffix) def _print_Indexed(self, expr): # calculate index for 1d array offset = getattr(expr.base, 'offset', S.Zero) strides = getattr(expr.base, 'strides', None) indices = expr.indices if strides is None or isinstance(strides, string_types): dims = expr.shape shift = S.One temp = tuple() if strides == 'C' or strides is None: traversal = reversed(range(expr.rank)) indices = indices[::-1] elif strides == 'F': traversal = range(expr.rank) for i in traversal: temp += (shift,) shift *= dims[i] strides = temp flat_index = sum([x[0]*x[1] for x in zip(indices, strides)]) + offset return "%s[%s]" % (self._print(expr.base.label), self._print(flat_index)) def _print_Idx(self, expr): return self._print(expr.label) @_as_macro_if_defined def _print_NumberSymbol(self, expr): return super(C89CodePrinter, self)._print_NumberSymbol(expr) def _print_Infinity(self, expr): return 'HUGE_VAL' def _print_NegativeInfinity(self, expr): return '-HUGE_VAL' def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else {") else: lines.append("else if (%s) {" % self._print(c)) code0 = self._print(e) lines.append(code0) lines.append("}") return "\n".join(lines) else: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) for e, c in expr.args[:-1]] last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) def _print_ITE(self, expr): from sympy.functions import Piecewise _piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True)) return self._print(_piecewise) def _print_MatrixElement(self, expr): return "{0}[{1}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.j + expr.i*expr.parent.shape[1]) def _print_Symbol(self, expr): name = super(C89CodePrinter, self)._print_Symbol(expr) if expr in self._settings['dereference']: return '(*{0})'.format(name) else: return name def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return ("{0} {1} {2}").format(lhs_code, op, rhs_code) def _print_sinc(self, expr): from sympy.functions.elementary.trigonometric import sin from sympy.core.relational import Ne from sympy.functions import Piecewise _piecewise = Piecewise( (sin(expr.args[0]) / expr.args[0], Ne(expr.args[0], 0)), (1, True)) return self._print(_piecewise) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return ('for ({target} = {start}; {target} < {stop}; {target} += ' '{step}) {{\n{body}\n}}').format(target=target, start=start, stop=stop, step=step, body=body) def _print_sign(self, func): return '((({0}) > 0) - (({0}) < 0))'.format(self._print(func.args[0])) def _print_Max(self, expr): if "Max" in self.known_functions: return self._print_Function(expr) from sympy import Max if len(expr.args) == 1: return self._print(expr.args[0]) return "((%(a)s > %(b)s) ? %(a)s : %(b)s)" % { 'a': expr.args[0], 'b': self._print(Max(*expr.args[1:]))} def _print_Min(self, expr): if "Min" in self.known_functions: return self._print_Function(expr) from sympy import Min if len(expr.args) == 1: return self._print(expr.args[0]) return "((%(a)s < %(b)s) ? %(a)s : %(b)s)" % { 'a': expr.args[0], 'b': self._print(Min(*expr.args[1:]))} def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [line.lstrip(' \t') for line in code] increase = [int(any(map(line.endswith, inc_token))) for line in code] decrease = [int(any(map(line.startswith, dec_token))) for line in code] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def _get_func_suffix(self, type_): return self.type_func_suffixes[self.type_aliases.get(type_, type_)] def _get_literal_suffix(self, type_): return self.type_literal_suffixes[self.type_aliases.get(type_, type_)] def _get_math_macro_suffix(self, type_): alias = self.type_aliases.get(type_, type_) dflt = self.type_math_macro_suffixes.get(alias, '') return self.type_math_macro_suffixes.get(type_, dflt) def _print_Type(self, type_): self.headers.update(self.type_headers.get(type_, set())) self.macros.update(self.type_macros.get(type_, set())) return self._print(self.type_mappings.get(type_, type_.name)) def _print_Declaration(self, decl): from sympy.codegen.cnodes import restrict var = decl.variable val = var.value if var.type == untyped: raise ValueError("C does not support untyped variables") if isinstance(var, Pointer): result = '{vc}{t} *{pc} {r}{s}'.format( vc='const ' if value_const in var.attrs else '', t=self._print(var.type), pc=' const' if pointer_const in var.attrs else '', r='restrict ' if restrict in var.attrs else '', s=self._print(var.symbol) ) elif isinstance(var, Variable): result = '{vc}{t} {s}'.format( vc='const ' if value_const in var.attrs else '', t=self._print(var.type), s=self._print(var.symbol) ) else: raise NotImplementedError("Unknown type of var: %s" % type(var)) if val != None: result += ' = %s' % self._print(val) return result def _print_Float(self, flt): type_ = self.type_aliases.get(real, real) self.macros.update(self.type_macros.get(type_, set())) suffix = self._get_literal_suffix(type_) num = str(flt.evalf(type_.decimal_dig)) if 'e' not in num and '.' not in num: num += '.0' num_parts = num.split('e') num_parts[0] = num_parts[0].rstrip('0') if num_parts[0].endswith('.'): num_parts[0] += '0' return 'e'.join(num_parts) + suffix @requires(headers={'stdbool.h'}) def _print_BooleanTrue(self, expr): return 'true' @requires(headers={'stdbool.h'}) def _print_BooleanFalse(self, expr): return 'false' def _print_Element(self, elem): if elem.strides == None: if elem.offset != None: raise ValueError("Expected strides when offset is given") idxs = ']['.join(map(lambda arg: self._print(arg), elem.indices)) else: global_idx = sum([i*s for i, s in zip(elem.indices, elem.strides)]) if elem.offset != None: global_idx += elem.offset idxs = self._print(global_idx) return "{symb}[{idxs}]".format( symb=self._print(elem.symbol), idxs=idxs ) def _print_CodeBlock(self, expr): """ Elements of code blocks printed as statements. """ return '\n'.join([self._get_statement(self._print(i)) for i in expr.args]) def _print_While(self, expr): return 'while ({condition}) {{\n{body}\n}}'.format(**expr.kwargs( apply=lambda arg: self._print(arg))) def _print_Scope(self, expr): return '{\n%s\n}' % self._print_CodeBlock(expr.body) @requires(headers={'stdio.h'}) def _print_Print(self, expr): return 'printf({fmt}, {pargs})'.format( fmt=self._print(expr.format_string), pargs=', '.join(map(lambda arg: self._print(arg), expr.print_args)) ) def _print_FunctionPrototype(self, expr): pars = ', '.join(map(lambda arg: self._print(Declaration(arg)), expr.parameters)) return "%s %s(%s)" % ( tuple(map(lambda arg: self._print(arg), (expr.return_type, expr.name))) + (pars,) ) def _print_FunctionDefinition(self, expr): return "%s%s" % (self._print_FunctionPrototype(expr), self._print_Scope(expr)) def _print_Return(self, expr): arg, = expr.args return 'return %s' % self._print(arg) def _print_CommaOperator(self, expr): return '(%s)' % ', '.join(map(lambda arg: self._print(arg), expr.args)) def _print_Label(self, expr): return '%s:' % str(expr) def _print_goto(self, expr): return 'goto %s' % expr.label def _print_PreIncrement(self, expr): arg, = expr.args return '++(%s)' % self._print(arg) def _print_PostIncrement(self, expr): arg, = expr.args return '(%s)++' % self._print(arg) def _print_PreDecrement(self, expr): arg, = expr.args return '--(%s)' % self._print(arg) def _print_PostDecrement(self, expr): arg, = expr.args return '(%s)--' % self._print(arg) def _print_struct(self, expr): return "%(keyword)s %(name)s {\n%(lines)s}" % dict( keyword=expr.__class__.__name__, name=expr.name, lines=';\n'.join( [self._print(decl) for decl in expr.declarations] + ['']) ) def _print_BreakToken(self, _): return 'break' def _print_ContinueToken(self, _): return 'continue' _print_union = _print_struct class _C9XCodePrinter(object): # Move these methods to C99CodePrinter when removing CCodePrinter def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for (int %(var)s=%(start)s; %(var)s<%(end)s; %(var)s++){" # C99 for i in indices: # C arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'var': self._print(i.label), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines @deprecated( last_supported_version='1.0', useinstead="C89CodePrinter or C99CodePrinter, e.g. ccode(..., standard='C99')", issue=12220, deprecated_since_version='1.1') class CCodePrinter(_C9XCodePrinter, C89CodePrinter): """ Deprecated. Alias for C89CodePrinter, for backwards compatibility. """ _kf = _known_functions_C9X # known_functions-dict to copy class C99CodePrinter(_C9XCodePrinter, C89CodePrinter): standard = 'C99' reserved_words = set(reserved_words + reserved_words_c99) type_mappings=dict(chain(C89CodePrinter.type_mappings.items(), { complex64: 'float complex', complex128: 'double complex', }.items())) type_headers = dict(chain(C89CodePrinter.type_headers.items(), { complex64: {'complex.h'}, complex128: {'complex.h'} }.items())) _kf = known_functions_C99 # known_functions-dict to copy # functions with versions with 'f' and 'l' suffixes: _prec_funcs = ('fabs fmod remainder remquo fma fmax fmin fdim nan exp exp2' ' expm1 log log10 log2 log1p pow sqrt cbrt hypot sin cos tan' ' asin acos atan atan2 sinh cosh tanh asinh acosh atanh erf' ' erfc tgamma lgamma ceil floor trunc round nearbyint rint' ' frexp ldexp modf scalbn ilogb logb nextafter copysign').split() def _print_Infinity(self, expr): return 'INFINITY' def _print_NegativeInfinity(self, expr): return '-INFINITY' def _print_NaN(self, expr): return 'NAN' # tgamma was already covered by 'known_functions' dict @requires(headers={'math.h'}, libraries={'m'}) @_as_macro_if_defined def _print_math_func(self, expr, nest=False, known=None): if known is None: known = self.known_functions[expr.__class__.__name__] if not isinstance(known, string_types): for cb, name in known: if cb(*expr.args): known = name break else: raise ValueError("No matching printer") try: return known(self, *expr.args) except TypeError: suffix = self._get_func_suffix(real) if self._ns + known in self._prec_funcs else '' if nest: args = self._print(expr.args[0]) if len(expr.args) > 1: args += ', %s' % self._print(expr.func(*expr.args[1:])) else: args = ', '.join(map(lambda arg: self._print(arg), expr.args)) return '{ns}{name}{suffix}({args})'.format( ns=self._ns, name=known, suffix=suffix, args=args ) def _print_Max(self, expr): return self._print_math_func(expr, nest=True) def _print_Min(self, expr): return self._print_math_func(expr, nest=True) for k in ('Abs Sqrt exp exp2 expm1 log log10 log2 log1p Cbrt hypot fma' ' loggamma sin cos tan asin acos atan atan2 sinh cosh tanh asinh acosh ' 'atanh erf erfc loggamma gamma ceiling floor').split(): setattr(C99CodePrinter, '_print_%s' % k, C99CodePrinter._print_math_func) class C11CodePrinter(C99CodePrinter): @requires(headers={'stdalign.h'}) def _print_alignof(self, expr): arg, = expr.args return 'alignof(%s)' % self._print(arg) c_code_printers = { 'c89': C89CodePrinter, 'c99': C99CodePrinter, 'c11': C11CodePrinter } def ccode(expr, assign_to=None, standard='c99', **settings): """Converts an expr to a string of c code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. standard : str, optional String specifying the standard. If your compiler supports a more modern standard you may set this to 'c99' to allow the printer to use more math functions. [default='c89']. precision : integer, optional The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples. dereference : iterable, optional An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if ``dereference=[a]``, the resulting code would print ``(*a)`` instead of ``a``. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> expr = (2*tau)**Rational(7, 2) >>> ccode(expr) '8*M_SQRT2*pow(tau, 7.0/2.0)' >>> ccode(expr, math_macros={}) '8*sqrt(2)*pow(tau, 7.0/2.0)' >>> ccode(sin(x), assign_to="s") 's = sin(x);' >>> from sympy.codegen.ast import real, float80 >>> ccode(expr, type_aliases={real: float80}) '8*M_SQRT2l*powl(tau, 7.0L/2.0L)' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions) 'f(fabs(x) + CEIL(x))' or if the C-function takes a subset of the original arguments: >>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(ccode(expr, tau, standard='C89')) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89') 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(ccode(mat, A, standard='C89')) A[0] = pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = sin(x); """ return c_code_printers[standard.lower()](settings).doprint(expr, assign_to) def print_ccode(expr, **settings): """Prints C representation of the given expression.""" print(ccode(expr, **settings))
e0f52fca9dc9ffc55d89323679c11da746ddcccc4caac15c82139dcf60bb4a05
""" A MathML printer. """ from __future__ import print_function, division from sympy import sympify, S, Mul from sympy.core.function import _coeff_isneg from sympy.core.compatibility import range from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.pretty.pretty_symbology import greek_unicode from sympy.printing.printer import Printer class MathMLPrinterBase(Printer): """Contains common code required for MathMLContentPrinter and MathMLPresentationPrinter. """ _default_settings = { "order": None, "encoding": "utf-8", "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_symbol_style": "plain", "mul_symbol": None, "root_notation": True, "symbol_names": {}, } def __init__(self, settings=None): Printer.__init__(self, settings) from xml.dom.minidom import Document,Text self.dom = Document() # Workaround to allow strings to remain unescaped # Based on https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-please-dont-escape-my-strings/38041194 class RawText(Text): def writexml(self, writer, indent='', addindent='', newl=''): if self.data: writer.write(u'{}{}{}'.format(indent, self.data, newl)) def createRawTextNode(data): r = RawText() r.data = data r.ownerDocument = self.dom return r self.dom.createTextNode = createRawTextNode def doprint(self, expr): """ Prints the expression as MathML. """ mathML = Printer._print(self, expr) unistr = mathML.toxml() xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace') res = xmlbstr.decode() return res def apply_patch(self): # Applying the patch of xml.dom.minidom bug # Date: 2011-11-18 # Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom-\ # toprettyxml-and-silly-whitespace/#best-solution # Issue: http://bugs.python.org/issue4147 # Patch: http://hg.python.org/cpython/rev/7262f8f276ff/ from xml.dom.minidom import Element, Text, Node, _write_data def writexml(self, writer, indent="", addindent="", newl=""): # indent = current indentation # addindent = indentation to add to higher levels # newl = newline string writer.write(indent + "<" + self.tagName) attrs = self._get_attributes() a_names = list(attrs.keys()) a_names.sort() for a_name in a_names: writer.write(" %s=\"" % a_name) _write_data(writer, attrs[a_name].value) writer.write("\"") if self.childNodes: writer.write(">") if (len(self.childNodes) == 1 and self.childNodes[0].nodeType == Node.TEXT_NODE): self.childNodes[0].writexml(writer, '', '', '') else: writer.write(newl) for node in self.childNodes: node.writexml( writer, indent + addindent, addindent, newl) writer.write(indent) writer.write("</%s>%s" % (self.tagName, newl)) else: writer.write("/>%s" % (newl)) self._Element_writexml_old = Element.writexml Element.writexml = writexml def writexml(self, writer, indent="", addindent="", newl=""): _write_data(writer, "%s%s%s" % (indent, self.data, newl)) self._Text_writexml_old = Text.writexml Text.writexml = writexml def restore_patch(self): from xml.dom.minidom import Element, Text Element.writexml = self._Element_writexml_old Text.writexml = self._Text_writexml_old class MathMLContentPrinter(MathMLPrinterBase): """Prints an expression to the Content MathML markup language. References: https://www.w3.org/TR/MathML2/chapter4.html """ printmethod = "_mathml_content" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Add': 'plus', 'Mul': 'times', 'Derivative': 'diff', 'Number': 'cn', 'int': 'cn', 'Pow': 'power', 'Symbol': 'ci', 'MatrixSymbol': 'ci', 'RandomSymbol': 'ci', 'Integral': 'int', 'Sum': 'sum', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'log': 'ln', 'Equality': 'eq', 'Unequality': 'neq', 'GreaterThan': 'geq', 'LessThan': 'leq', 'StrictGreaterThan': 'gt', 'StrictLessThan': 'lt', } for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set n = e.__class__.__name__ return n.lower() def _print_Mul(self, expr): if _coeff_isneg(expr): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self._print_Mul(-expr)) return x from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) x.appendChild(self._print(numer)) x.appendChild(self._print(denom)) return x coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: # XXX since the negative coefficient has been handled, I don't # think a coeff of 1 can remain return self._print(terms[0]) if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('times')) if(coeff != 1): x.appendChild(self._print(coeff)) for term in terms: x.appendChild(self._print(term)) return x def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) lastProcessed = self._print(args[0]) plusNodes = [] for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(lastProcessed) x.appendChild(self._print(-arg)) # invert expression since this is now minused lastProcessed = x if(arg == args[-1]): plusNodes.append(lastProcessed) else: plusNodes.append(lastProcessed) lastProcessed = self._print(arg) if(arg == args[-1]): plusNodes.append(self._print(arg)) if len(plusNodes) == 1: return lastProcessed x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('plus')) while len(plusNodes) > 0: x.appendChild(plusNodes.pop(0)) return x def _print_MatrixBase(self, m): x = self.dom.createElement('matrix') for i in range(m.rows): x_r = self.dom.createElement('matrixrow') for j in range(m.cols): x_r.appendChild(self._print(m[i, j])) x.appendChild(x_r) return x def _print_Rational(self, e): if e.q == 1: # don't divide x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(str(e.p))) return x x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) # numerator xnum = self.dom.createElement('cn') xnum.appendChild(self.dom.createTextNode(str(e.p))) # denominator xdenom = self.dom.createElement('cn') xdenom.appendChild(self.dom.createTextNode(str(e.q))) x.appendChild(xnum) x.appendChild(xdenom) return x def _print_Limit(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x_1 = self.dom.createElement('bvar') x_2 = self.dom.createElement('lowlimit') x_1.appendChild(self._print(e.args[1])) x_2.appendChild(self._print(e.args[2])) x.appendChild(x_1) x.appendChild(x_2) x.appendChild(self._print(e.args[0])) return x def _print_ImaginaryUnit(self, e): return self.dom.createElement('imaginaryi') def _print_EulerGamma(self, e): return self.dom.createElement('eulergamma') def _print_GoldenRatio(self, e): """We use unicode #x3c6 for Greek letter phi as defined here http://www.w3.org/2003/entities/2007doc/isogrk1.html""" x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(u"\N{GREEK SMALL LETTER PHI}")) return x def _print_Exp1(self, e): return self.dom.createElement('exponentiale') def _print_Pi(self, e): return self.dom.createElement('pi') def _print_Infinity(self, e): return self.dom.createElement('infinity') def _print_Negative_Infinity(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self.dom.createElement('infinity')) return x def _print_Integral(self, e): def lime_recur(limits): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) bvar_elem = self.dom.createElement('bvar') bvar_elem.appendChild(self._print(limits[0][0])) x.appendChild(bvar_elem) if len(limits[0]) == 3: low_elem = self.dom.createElement('lowlimit') low_elem.appendChild(self._print(limits[0][1])) x.appendChild(low_elem) up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][2])) x.appendChild(up_elem) if len(limits[0]) == 2: up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][1])) x.appendChild(up_elem) if len(limits) == 1: x.appendChild(self._print(e.function)) else: x.appendChild(lime_recur(limits[1:])) return x limits = list(e.limits) limits.reverse() return lime_recur(limits) def _print_Sum(self, e): # Printer can be shared because Sum and Integral have the # same internal representation. return self._print_Integral(e) def _print_Symbol(self, sym): ci = self.dom.createElement(self.mathml_tag(sym)) def join(items): if len(items) > 1: mrow = self.dom.createElement('mml:mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mml:mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mml:mi') mname.appendChild(self.dom.createTextNode(name)) if len(supers) == 0: if len(subs) == 0: ci.appendChild(self.dom.createTextNode(name)) else: msub = self.dom.createElement('mml:msub') msub.appendChild(mname) msub.appendChild(join(subs)) ci.appendChild(msub) else: if len(subs) == 0: msup = self.dom.createElement('mml:msup') msup.appendChild(mname) msup.appendChild(join(supers)) ci.appendChild(msup) else: msubsup = self.dom.createElement('mml:msubsup') msubsup.appendChild(mname) msubsup.appendChild(join(subs)) msubsup.appendChild(join(supers)) ci.appendChild(msubsup) return ci _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Pow(self, e): # Here we use root instead of power if the exponent is the reciprocal of an integer if self._settings['root_notation'] and e.exp.is_Rational and e.exp.p == 1: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('root')) if e.exp.q != 2: xmldeg = self.dom.createElement('degree') xmlci = self.dom.createElement('ci') xmlci.appendChild(self.dom.createTextNode(str(e.exp.q))) xmldeg.appendChild(xmlci) x.appendChild(xmldeg) x.appendChild(self._print(e.base)) return x x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_Derivative(self, e): x = self.dom.createElement('apply') diff_symbol = self.mathml_tag(e) if requires_partial(e): diff_symbol = 'partialdiff' x.appendChild(self.dom.createElement(diff_symbol)) x_1 = self.dom.createElement('bvar') for sym in e.variables: x_1.appendChild(self._print(sym)) x.appendChild(x_1) x.appendChild(self._print(e.expr)) return x def _print_Function(self, e): x = self.dom.createElement("apply") x.appendChild(self.dom.createElement(self.mathml_tag(e))) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Basic(self, e): x = self.dom.createElement(self.mathml_tag(e)) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_AssocOp(self, e): x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Relational(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x.appendChild(self._print(e.lhs)) x.appendChild(self._print(e.rhs)) return x def _print_list(self, seq): """MathML reference for the <list> element: http://www.w3.org/TR/MathML2/chapter4.html#contm.list""" dom_element = self.dom.createElement('list') for item in seq: dom_element.appendChild(self._print(item)) return dom_element def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element class MathMLPresentationPrinter(MathMLPrinterBase): """Prints an expression to the Presentation MathML markup language. References: https://www.w3.org/TR/MathML2/chapter3.html """ printmethod = "_mathml_presentation" def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Mul': '&InvisibleTimes;', 'Number': 'mn', 'Limit' : '&#x2192;', 'Derivative': '&dd;', 'int': 'mn', 'Symbol': 'mi', 'Integral': '&int;', 'Sum': '&#x2211;', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'Equality': '=', 'Unequality': '&#x2260;', 'GreaterThan': '&#x2265;', 'LessThan': '&#x2264;', 'StrictGreaterThan': '>', 'StrictLessThan': '<', } for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set n = e.__class__.__name__ return n.lower() def _print_Mul(self, expr): def multiply(expr, mrow): from sympy.simplify import fraction numer, denom = fraction(expr) if denom is not S.One: frac = self.dom.createElement('mfrac') xnum = self._print(numer) xden = self._print(denom) frac.appendChild(xnum) frac.appendChild(xden) return frac coeff, terms = expr.as_coeff_mul() if coeff is S.One and len(terms) == 1: return self._print(terms[0]) if self.order != 'old': terms = Mul._from_args(terms).as_ordered_factors() if(coeff != 1): x = self._print(coeff) y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(x) mrow.appendChild(y) for term in terms: x = self._print(term) mrow.appendChild(x) if not term == terms[-1]: y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) mrow.appendChild(y) return mrow mrow = self.dom.createElement('mrow') if _coeff_isneg(expr): x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) mrow.appendChild(x) mrow = multiply(-expr, mrow) else: mrow = multiply(expr, mrow) return mrow def _print_Add(self, expr, order=None): mrow = self.dom.createElement('mrow') args = self._as_ordered_terms(expr, order=order) mrow.appendChild(self._print(args[0])) for arg in args[1:]: if _coeff_isneg(arg): # use minus x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('-')) y = self._print(-arg) # invert expression since this is now minused else: x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode('+')) y = self._print(arg) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_MatrixBase(self, m): brac = self.dom.createElement('mfenced') table = self.dom.createElement('mtable') for i in range(m.rows): x = self.dom.createElement('mtr') for j in range(m.cols): y = self.dom.createElement('mtd') y.appendChild(self._print(m[i, j])) x.appendChild(y) table.appendChild(x) brac.appendChild(table) return brac def _print_Rational(self, e): if e.q == 1: # don't divide x = self.dom.createElement('mn') x.appendChild(self.dom.createTextNode(str(e.p))) return x x = self.dom.createElement('mfrac') num = self.dom.createElement('mn') num.appendChild(self.dom.createTextNode(str(e.p))) x.appendChild(num) den = self.dom.createElement('mn') den.appendChild(self.dom.createTextNode(str(e.q))) x.appendChild(den) return x def _print_Limit(self, e): mrow = self.dom.createElement('mrow') munder = self.dom.createElement('munder') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode('lim')) x = self.dom.createElement('mrow') x_1 = self._print(e.args[1]) arrow = self.dom.createElement('mo') arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e))) x_2 = self._print(e.args[2]) x.appendChild(x_1) x.appendChild(arrow) x.appendChild(x_2) munder.appendChild(mi) munder.appendChild(x) mrow.appendChild(munder) mrow.appendChild(self._print(e.args[0])) return mrow def _print_ImaginaryUnit(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ImaginaryI;')) return x def _print_GoldenRatio(self, e): """We use unicode #x3c6 for Greek letter phi as defined here http://www.w3.org/2003/entities/2007doc/isogrk1.html""" x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode(u"\N{GREEK SMALL LETTER PHI}")) return x def _print_Exp1(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&ExponentialE;')) return x def _print_Pi(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&pi;')) return x def _print_Infinity(self, e): x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode('&#x221E;')) return x def _print_Negative_Infinity(self, e): mrow = self.dom.createElement('mrow') y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode('-')) x = self._print_Infinity(-e) mrow.appendChild(y) mrow.appendChild(x) return mrow def _print_Integral(self, e): limits = list(e.limits) if len(limits[0]) == 3: subsup = self.dom.createElement('msubsup') low_elem = self._print(limits[0][1]) up_elem = self._print(limits[0][2]) integral = self.dom.createElement('mo') integral.appendChild(self.dom.createTextNode(self.mathml_tag(e))) subsup.appendChild(integral) subsup.appendChild(low_elem) subsup.appendChild(up_elem) if len(limits[0]) == 1: subsup = self.dom.createElement('mrow') integral = self.dom.createElement('mo') integral.appendChild(self.dom.createTextNode(self.mathml_tag(e))) subsup.appendChild(integral) mrow = self.dom.createElement('mrow') diff = self.dom.createElement('mo') diff.appendChild(self.dom.createTextNode('&dd;')) if len(str(limits[0][0])) > 1: var = self.dom.createElement('mfenced') var.appendChild(self._print(limits[0][0])) else: var = self._print(limits[0][0]) mrow.appendChild(subsup) if len(str(e.function)) == 1: mrow.appendChild(self._print(e.function)) else: fence = self.dom.createElement('mfenced') fence.appendChild(self._print(e.function)) mrow.appendChild(fence) mrow.appendChild(diff) mrow.appendChild(var) return mrow def _print_Sum(self, e): limits = list(e.limits) subsup = self.dom.createElement('munderover') low_elem = self._print(limits[0][1]) up_elem = self._print(limits[0][2]) summand = self.dom.createElement('mo') summand.appendChild(self.dom.createTextNode(self.mathml_tag(e))) low = self.dom.createElement('mrow') var = self._print(limits[0][0]) equal = self.dom.createElement('mo') equal.appendChild(self.dom.createTextNode('=')) low.appendChild(var) low.appendChild(equal) low.appendChild(low_elem) subsup.appendChild(summand) subsup.appendChild(low) subsup.appendChild(up_elem) mrow = self.dom.createElement('mrow') mrow.appendChild(subsup) if len(str(e.function)) == 1: mrow.appendChild(self._print(e.function)) else: fence = self.dom.createElement('mfenced') fence.appendChild(self._print(e.function)) mrow.appendChild(fence) return mrow def _print_Symbol(self, sym, style='plain'): x = self.dom.createElement('mi') if style == 'bold': x.setAttribute('mathvariant', 'bold') def join(items): if len(items) > 1: mrow = self.dom.createElement('mrow') for i, item in enumerate(items): if i > 0: mo = self.dom.createElement('mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi # translate name, supers and subs to unicode characters def translate(s): if s in greek_unicode: return greek_unicode.get(s) else: return s name, supers, subs = split_super_sub(sym.name) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] mname = self.dom.createElement('mi') mname.appendChild(self.dom.createTextNode(name)) if len(supers) == 0: if len(subs) == 0: x.appendChild(self.dom.createTextNode(name)) else: msub = self.dom.createElement('msub') msub.appendChild(mname) msub.appendChild(join(subs)) x.appendChild(msub) else: if len(subs) == 0: msup = self.dom.createElement('msup') msup.appendChild(mname) msup.appendChild(join(supers)) x.appendChild(msup) else: msubsup = self.dom.createElement('msubsup') msubsup.appendChild(mname) msubsup.appendChild(join(subs)) msubsup.appendChild(join(supers)) x.appendChild(msubsup) return x def _print_MatrixSymbol(self, sym): return self._print_Symbol(sym, style=self._settings['mat_symbol_style']) _print_RandomSymbol = _print_Symbol def _print_Pow(self, e): # Here we use root instead of power if the exponent is the reciprocal of an integer if e.exp.is_negative or len(str(e.base)) > 1: mrow = self.dom.createElement('mrow') x = self.dom.createElement('mfenced') x.appendChild(self._print(e.base)) mrow.appendChild(x) x = self.dom.createElement('msup') x.appendChild(mrow) x.appendChild(self._print(e.exp)) return x if e.exp.is_Rational and e.exp.p == 1 and self._settings['root_notation']: if e.exp.q == 2: x = self.dom.createElement('msqrt') x.appendChild(self._print(e.base)) if e.exp.q != 2: x = self.dom.createElement('mroot') x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp.q)) return x x = self.dom.createElement('msup') x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_Derivative(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mo') if requires_partial(e): x.appendChild(self.dom.createTextNode('&#x2202;')) y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode('&#x2202;')) else: x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) y = self.dom.createElement('mo') y.appendChild(self.dom.createTextNode(self.mathml_tag(e))) brac = self.dom.createElement('mfenced') brac.appendChild(self._print(e.expr)) mrow = self.dom.createElement('mrow') mrow.appendChild(x) mrow.appendChild(brac) for sym in e.variables: frac = self.dom.createElement('mfrac') m = self.dom.createElement('mrow') x = self.dom.createElement('mo') if requires_partial(e): x.appendChild(self.dom.createTextNode('&#x2202;')) else: x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) y = self._print(sym) m.appendChild(x) m.appendChild(y) frac.appendChild(mrow) frac.appendChild(m) mrow = frac return frac def _print_Function(self, e): mrow = self.dom.createElement('mrow') x = self.dom.createElement('mi') x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) y = self.dom.createElement('mfenced') for arg in e.args: y.appendChild(self._print(arg)) mrow.appendChild(x) mrow.appendChild(y) return mrow def _print_Basic(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) brac = self.dom.createElement('mfenced') for arg in e.args: brac.appendChild(self._print(arg)) mrow.appendChild(brac) return mrow def _print_AssocOp(self, e): mrow = self.dom.createElement('mrow') mi = self.dom.createElement('mi') mi.append(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(mi) for arg in e.args: mrow.appendChild(self._print(arg)) return mrow def _print_Relational(self, e): mrow = self.dom.createElement('mrow') mrow.appendChild(self._print(e.lhs)) x = self.dom.createElement('mo') x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) mrow.appendChild(x) mrow.appendChild(self._print(e.rhs)) return mrow def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element def mathml(expr, printer='content', **settings): """Returns the MathML representation of expr. If printer is presentation then prints Presentation MathML else prints content MathML. """ if printer == 'presentation': return MathMLPresentationPrinter(settings).doprint(expr) else: return MathMLContentPrinter(settings).doprint(expr) def print_mathml(expr, printer='content', **settings): """ Prints a pretty representation of the MathML code for expr. If printer is presentation then prints Presentation MathML else prints content MathML. Examples ======== >>> ## >>> from sympy.printing.mathml import print_mathml >>> from sympy.abc import x >>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE <apply> <plus/> <ci>x</ci> <cn>1</cn> </apply> >>> print_mathml(x+1, printer='presentation') <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> """ if printer == 'presentation': s = MathMLPresentationPrinter(settings) else: s = MathMLContentPrinter(settings) xml = s._print(sympify(expr)) s.apply_patch() pretty_xml = xml.toprettyxml() s.restore_patch() print(pretty_xml) #For backward compatibility MathMLPrinter = MathMLContentPrinter
eeda12ac4d1630e1892dfe888b08d512bc9f55bdca4ff7563761c6ae6b698bf3
""" R code printer The RCodePrinter converts single sympy expressions into single R expressions, using the functions defined in math.h where possible. """ from __future__ import print_function, division from sympy.codegen.ast import Assignment from sympy.core.compatibility import string_types, range from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE from sympy.sets.fancysets import Range # dictionary mapping sympy function to (argument_conditions, C_function). # Used in RCodePrinter._print_Function(self) known_functions = { #"Abs": [(lambda x: not x.is_integer, "fabs")], "Abs": "abs", "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "exp": "exp", "log": "log", "erf": "erf", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "asinh": "asinh", "acosh": "acosh", "atanh": "atanh", "floor": "floor", "ceiling": "ceiling", "sign": "sign", "Max": "max", "Min": "min", "factorial": "factorial", "gamma": "gamma", "digamma": "digamma", "trigamma": "trigamma", "beta": "beta", } # These are the core reserved words in the R language. Taken from: # https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Reserved-words reserved_words = ['if', 'else', 'repeat', 'while', 'function', 'for', 'in', 'next', 'break', 'TRUE', 'FALSE', 'NULL', 'Inf', 'NaN', 'NA', 'NA_integer_', 'NA_real_', 'NA_complex_', 'NA_character_', 'volatile'] class RCodePrinter(CodePrinter): """A printer to convert python expressions to strings of R code""" printmethod = "_rcode" language = "R" _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 15, 'user_functions': {}, 'human': True, 'contract': True, 'dereference': set(), 'error_on_reserved': False, 'reserved_word_suffix': '_', } _operators = { 'and': '&', 'or': '|', 'not': '!', } _relationals = { } def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) self._dereference = set(settings.get('dereference', [])) self.reserved_words = set(reserved_words) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// {0}".format(text) def _declare_number_const(self, name, value): return "{0} = {1};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) def _get_loop_opening_ending(self, indices): """Returns a tuple (open_lines, close_lines) containing lists of codelines """ open_lines = [] close_lines = [] loopstart = "for (%(var)s in %(start)s:%(end)s){" for i in indices: # R arrays start at 1 and end at dimension open_lines.append(loopstart % { 'var': self._print(i.label), 'start': self._print(i.lower+1), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_Pow(self, expr): if "Pow" in self.known_functions: return self._print_Function(expr) PREC = precedence(expr) if expr.exp == -1: return '1.0/%s' % (self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: return 'sqrt(%s)' % self._print(expr.base) else: return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return '%d.0/%d.0' % (p, q) def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s[%s]" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_Exp1(self, expr): return "exp(1)" def _print_Pi(self, expr): return 'pi' def _print_Infinity(self, expr): return 'Inf' def _print_NegativeInfinity(self, expr): return '-Inf' def _print_Assignment(self, expr): from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines #if isinstance(expr.rhs, Piecewise): # from sympy.functions.elementary.piecewise import Piecewise # # Here we modify Piecewise so each expression is now # # an Assignment, and then continue on the print. # expressions = [] # conditions = [] # for (e, c) in rhs.args: # expressions.append(Assignment(lhs, e)) # conditions.append(c) # temp = Piecewise(*zip(expressions, conditions)) # return self._print(temp) #elif isinstance(lhs, MatrixSymbol): if isinstance(lhs, MatrixSymbol): # Here we form an Assignment for each element in the array, # printing each one. lines = [] for (i, j) in self._traverse_matrix_indices(lhs): temp = Assignment(lhs[i, j], rhs[i, j]) code0 = self._print(temp) lines.append(code0) return "\n".join(lines) elif self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_Piecewise(self, expr): # This method is called only for inline if constructs # Top level piecewise is handled in doprint() if expr.args[-1].cond == True: last_line = "%s" % self._print(expr.args[-1].expr) else: last_line = "ifelse(%s,%s,NA)" % (self._print(expr.args[-1].cond), self._print(expr.args[-1].expr)) code=last_line for e, c in reversed(expr.args[:-1]): code= "ifelse(%s,%s," % (self._print(c), self._print(e))+code+")" return(code) def _print_ITE(self, expr): from sympy.functions import Piecewise _piecewise = Piecewise((expr.args[1], expr.args[0]), (expr.args[2], True)) return self._print(_piecewise) def _print_MatrixElement(self, expr): return "{0}[{1}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.j + expr.i*expr.parent.shape[1]) def _print_Symbol(self, expr): name = super(RCodePrinter, self)._print_Symbol(expr) if expr in self._dereference: return '(*{0})'.format(name) else: return name def _print_Relational(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) op = expr.rel_op return ("{0} {1} {2}").format(lhs_code, op, rhs_code) def _print_sinc(self, expr): from sympy.functions.elementary.trigonometric import sin from sympy.core.relational import Ne from sympy.functions import Piecewise _piecewise = Piecewise( (sin(expr.args[0]) / expr.args[0], Ne(expr.args[0], 0)), (1, True)) return self._print(_piecewise) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) op = expr.op rhs_code = self._print(expr.rhs) return "{0} {1} {2};".format(lhs_code, op, rhs_code) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return ('for ({target} = {start}; {target} < {stop}; {target} += ' '{step}) {{\n{body}\n}}').format(target=target, start=start, stop=stop, step=step, body=body) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [ line.lstrip(' \t') for line in code ] increase = [ int(any(map(line.endswith, inc_token))) for line in code ] decrease = [ int(any(map(line.startswith, dec_token))) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def rcode(expr, assign_to=None, **settings): """Converts an expr to a string of r code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired R string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, rfunction_string)] or [(argument_test, rfunction_formater)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> rcode((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau^(7.0/2.0)' >>> rcode(sin(x), assign_to="s") 's = sin(x);' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions) 'f(fabs(x) + CEIL(x))' or if the R-function takes a subset of the original arguments: >>> rcode(2**x + 3**x, user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(rcode(expr, assign_to=tau)) tau = ifelse(x > 0,x + 1,x); Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> rcode(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(rcode(mat, A)) A[0] = x^2; A[1] = ifelse(x > 0,x + 1,x); A[2] = sin(x); """ return RCodePrinter(settings).doprint(expr, assign_to) def print_rcode(expr, **settings): """Prints R representation of the given expression.""" print(rcode(expr, **settings))
bde64552552a37a625e9e3d7d600974b137be3baf960e8f507c7b8fa25323017
""" Octave (and Matlab) code printer The `OctaveCodePrinter` converts SymPy expressions into Octave expressions. It uses a subset of the Octave language for Matlab compatibility. A complete code generator, which uses `octave_code` extensively, can be found in `sympy.utilities.codegen`. The `codegen` module can be used to generate complete source code files. """ from __future__ import print_function, division from sympy.codegen.ast import Assignment from sympy.core import Mul, Pow, S, Rational from sympy.core.compatibility import string_types, range from sympy.core.mul import _keep_coeff from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE from re import search # List of known functions. First, those that have the same name in # SymPy and Octave. This is almost certainly incomplete! known_fcns_src1 = ["sin", "cos", "tan", "cot", "sec", "csc", "asin", "acos", "acot", "atan", "atan2", "asec", "acsc", "sinh", "cosh", "tanh", "coth", "csch", "sech", "asinh", "acosh", "atanh", "acoth", "asech", "acsch", "erfc", "erfi", "erf", "erfinv", "erfcinv", "besseli", "besselj", "besselk", "bessely", "bernoulli", "beta", "euler", "exp", "factorial", "floor", "fresnelc", "fresnels", "gamma", "harmonic", "log", "polylog", "sign", "zeta"] # These functions have different names ("Sympy": "Octave"), more # generally a mapping to (argument_conditions, octave_function). known_fcns_src2 = { "Abs": "abs", "arg": "angle", # arg/angle ok in Octave but only angle in Matlab "ceiling": "ceil", "chebyshevu": "chebyshevU", "chebyshevt": "chebyshevT", "Chi": "coshint", "Ci": "cosint", "conjugate": "conj", "DiracDelta": "dirac", "Heaviside": "heaviside", "im": "imag", "laguerre": "laguerreL", "LambertW": "lambertw", "li": "logint", "loggamma": "gammaln", "Max": "max", "Min": "min", "polygamma": "psi", "re": "real", "RisingFactorial": "pochhammer", "Shi": "sinhint", "Si": "sinint", } class OctaveCodePrinter(CodePrinter): """ A printer to convert expressions to strings of Octave/Matlab code. """ printmethod = "_octave" language = "Octave" _operators = { 'and': '&', 'or': '|', 'not': '~', } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'inline': True, } # Note: contract is for expressing tensors as loops (if True), or just # assignment (if False). FIXME: this should be looked a more carefully # for Octave. def __init__(self, settings={}): super(OctaveCodePrinter, self).__init__(settings) self.known_functions = dict(zip(known_fcns_src1, known_fcns_src1)) self.known_functions.update(dict(known_fcns_src2)) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "% {0}".format(text) def _declare_number_const(self, name, value): return "{0} = {1};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): # Octave uses Fortran order (column-major) rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # Octave arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("for %s = %s:%s" % (var, start, stop)) close_lines.append("end") return open_lines, close_lines def _print_Mul(self, expr): # print complex numbers nicely in Octave if (expr.is_number and expr.is_imaginary and (S.ImaginaryUnit*expr).is_Integer): return "%si" % self._print(-S.ImaginaryUnit*expr) # cribbed from str.py prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if (item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative): if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] # from here it differs from str.py to deal with "*" and ".*" def multjoin(a, a_str): # here we probably are assuming the constants will come first r = a_str[0] for i in range(1, len(a)): mulsym = '*' if a[i-1].is_number else '.*' r = r + mulsym + a_str[i] return r if len(b) == 0: return sign + multjoin(a, a_str) elif len(b) == 1: divsym = '/' if b[0].is_number else './' return sign + multjoin(a, a_str) + divsym + b_str[0] else: divsym = '/' if all([bi.is_number for bi in b]) else './' return (sign + multjoin(a, a_str) + divsym + "(%s)" % multjoin(b, b_str)) def _print_Pow(self, expr): powsymbol = '^' if all([x.is_number for x in expr.args]) else '.^' PREC = precedence(expr) if expr.exp == S.Half: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if expr.exp == -S.Half: sym = '/' if expr.base.is_number else './' return "1" + sym + "sqrt(%s)" % self._print(expr.base) if expr.exp == -S.One: sym = '/' if expr.base.is_number else './' return "1" + sym + "%s" % self.parenthesize(expr.base, PREC) return '%s%s%s' % (self.parenthesize(expr.base, PREC), powsymbol, self.parenthesize(expr.exp, PREC)) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s^%s' % (self.parenthesize(expr.base, PREC), self.parenthesize(expr.exp, PREC)) def _print_Pi(self, expr): return 'pi' def _print_ImaginaryUnit(self, expr): return "1i" def _print_Exp1(self, expr): return "exp(1)" def _print_GoldenRatio(self, expr): # FIXME: how to do better, e.g., for octave_code(2*GoldenRatio)? #return self._print((1+sqrt(S(5)))/2) return "(1+sqrt(5))/2" def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.tensor.indexed import IndexedBase # Copied from codeprinter, but remove special MatrixSymbol treatment lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if not self._settings["inline"] and isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) if self._settings["contract"] and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_Infinity(self, expr): return 'inf' def _print_NegativeInfinity(self, expr): return '-inf' def _print_NaN(self, expr): return 'NaN' def _print_list(self, expr): return '{' + ', '.join(self._print(a) for a in expr) + '}' _print_tuple = _print_list _print_Tuple = _print_list def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_bool(self, expr): return str(expr).lower() # Could generate quadrature code for definite Integrals? #_print_Integral = _print_not_supported def _print_MatrixBase(self, A): # Handle zero dimensions: if (A.rows, A.cols) == (0, 0): return '[]' elif A.rows == 0 or A.cols == 0: return 'zeros(%s, %s)' % (A.rows, A.cols) elif (A.rows, A.cols) == (1, 1): # Octave does not distinguish between scalars and 1x1 matrices return self._print(A[0, 0]) return "[%s]" % "; ".join(" ".join([self._print(a) for a in A[r, :]]) for r in range(A.rows)) def _print_SparseMatrix(self, A): from sympy.matrices import Matrix L = A.col_list(); # make row vectors of the indices and entries I = Matrix([[k[0] + 1 for k in L]]) J = Matrix([[k[1] + 1 for k in L]]) AIJ = Matrix([[k[2] for k in L]]) return "sparse(%s, %s, %s, %s, %s)" % (self._print(I), self._print(J), self._print(AIJ), A.rows, A.cols) # FIXME: Str/CodePrinter could define each of these to call the _print # method from higher up the class hierarchy (see _print_NumberSymbol). # Then subclasses like us would not need to repeat all this. _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_SparseMatrix def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '(%s, %s)' % (expr.i + 1, expr.j + 1) def _print_MatrixSlice(self, expr): def strslice(x, lim): l = x[0] + 1 h = x[1] step = x[2] lstr = self._print(l) hstr = 'end' if h == lim else self._print(h) if step == 1: if l == 1 and h == lim: return ':' if l == h: return lstr else: return lstr + ':' + hstr else: return ':'.join((lstr, self._print(step), hstr)) return (self._print(expr.parent) + '(' + strslice(expr.rowslice, expr.parent.shape[0]) + ', ' + strslice(expr.colslice, expr.parent.shape[1]) + ')') def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_KroneckerDelta(self, expr): prec = PRECEDENCE["Pow"] return "double(%s == %s)" % tuple(self.parenthesize(x, prec) for x in expr.args) def _print_Identity(self, expr): shape = expr.shape if len(shape) == 2 and shape[0] == shape[1]: shape = [shape[0]] s = ", ".join(self._print(n) for n in shape) return "eye(" + s + ")" def _print_uppergamma(self, expr): return "gammainc(%s, %s, 'upper')" % (self._print(expr.args[1]), self._print(expr.args[0])) def _print_lowergamma(self, expr): return "gammainc(%s, %s, 'lower')" % (self._print(expr.args[1]), self._print(expr.args[0])) def _print_sinc(self, expr): #Note: Divide by pi because Octave implements normalized sinc function. return "sinc(%s)" % self._print(expr.args[0]/S.Pi) def _print_hankel1(self, expr): return "besselh(%s, 1, %s)" % (self._print(expr.order), self._print(expr.argument)) def _print_hankel2(self, expr): return "besselh(%s, 2, %s)" % (self._print(expr.order), self._print(expr.argument)) # Note: as of 2015, Octave doesn't have spherical Bessel functions def _print_jn(self, expr): from sympy.functions import sqrt, besselj x = expr.argument expr2 = sqrt(S.Pi/(2*x))*besselj(expr.order + S.Half, x) return self._print(expr2) def _print_yn(self, expr): from sympy.functions import sqrt, bessely x = expr.argument expr2 = sqrt(S.Pi/(2*x))*bessely(expr.order + S.Half, x) return self._print(expr2) def _print_airyai(self, expr): return "airy(0, %s)" % self._print(expr.args[0]) def _print_airyaiprime(self, expr): return "airy(1, %s)" % self._print(expr.args[0]) def _print_airybi(self, expr): return "airy(2, %s)" % self._print(expr.args[0]) def _print_airybiprime(self, expr): return "airy(3, %s)" % self._print(expr.args[0]) def _print_expint(self, expr): mu, x = expr.args if mu != 1: return self._print_not_supported(expr) return "expint(%s)" % self._print(x) def _one_or_two_reversed_args(self, expr): assert len(expr.args) <= 2 return '{name}({args})'.format( name=self.known_functions[expr.__class__.__name__], args=", ".join([self._print(x) for x in reversed(expr.args)]) ) _print_DiracDelta = _print_LambertW = _one_or_two_reversed_args def _nested_binary_math_func(self, expr): return '{name}({arg1}, {arg2})'.format( name=self.known_functions[expr.__class__.__name__], arg1=self._print(expr.args[0]), arg2=self._print(expr.func(*expr.args[1:])) ) _print_Max = _print_Min = _nested_binary_math_func def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if self._settings["inline"]: # Express each (cond, expr) pair in a nested Horner form: # (condition) .* (expr) + (not cond) .* (<others>) # Expressions that result in multiple statements won't work here. ecpairs = ["({0}).*({1}) + (~({0})).*(".format (self._print(c), self._print(e)) for e, c in expr.args[:-1]] elast = "%s" % self._print(expr.args[-1].expr) pw = " ...\n".join(ecpairs) + elast + ")"*len(ecpairs) # Note: current need these outer brackets for 2*pw. Would be # nicer to teach parenthesize() to do this for us when needed! return "(" + pw + ")" else: for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s)" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("elseif (%s)" % self._print(c)) code0 = self._print(e) lines.append(code0) if i == len(expr.args) - 1: lines.append("end") return "\n".join(lines) def _print_zeta(self, expr): if len(expr.args) == 1: return "zeta(%s)" % self._print(expr.args[0]) else: # Matlab two argument zeta is not equivalent to SymPy's return self._print_not_supported(expr) def indent_code(self, code): """Accepts a string of code or a list of code lines""" # code mostly copied from ccode if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_regex = ('^function ', '^if ', '^elseif ', '^else$', '^for ') dec_regex = ('^end$', '^elseif ', '^else$') # pre-strip left-space from the code code = [ line.lstrip(' \t') for line in code ] increase = [ int(any([search(re, line) for re in inc_regex])) for line in code ] decrease = [ int(any([search(re, line) for re in dec_regex])) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def octave_code(expr, assign_to=None, **settings): r"""Converts `expr` to a string of Octave (or Matlab) code. The string uses a subset of the Octave language for Matlab compatibility. Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=16]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. inline: bool, optional If True, we try to create single-statement code instead of multiple statements. [default=True]. Examples ======== >>> from sympy import octave_code, symbols, sin, pi >>> x = symbols('x') >>> octave_code(sin(x).series(x).removeO()) 'x.^5/120 - x.^3/6 + x' >>> from sympy import Rational, ceiling, Abs >>> x, y, tau = symbols("x, y, tau") >>> octave_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*tau.^(7/2)' Note that element-wise (Hadamard) operations are used by default between symbols. This is because its very common in Octave to write "vectorized" code. It is harmless if the values are scalars. >>> octave_code(sin(pi*x*y), assign_to="s") 's = sin(pi*x.*y);' If you need a matrix product "*" or matrix power "^", you can specify the symbol as a ``MatrixSymbol``. >>> from sympy import Symbol, MatrixSymbol >>> n = Symbol('n', integer=True, positive=True) >>> A = MatrixSymbol('A', n, n) >>> octave_code(3*pi*A**3) '(3*pi)*A^3' This class uses several rules to decide which symbol to use a product. Pure numbers use "*", Symbols use ".*" and MatrixSymbols use "*". A HadamardProduct can be used to specify componentwise multiplication ".*" of two MatrixSymbols. There is currently there is no easy way to specify scalar symbols, so sometimes the code might have some minor cosmetic issues. For example, suppose x and y are scalars and A is a Matrix, then while a human programmer might write "(x^2*y)*A^3", we generate: >>> octave_code(x**2*y*A**3) '(x.^2.*y)*A^3' Matrices are supported using Octave inline notation. When using ``assign_to`` with matrices, the name can be specified either as a string or as a ``MatrixSymbol``. The dimensions must align in the latter case. >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([[x**2, sin(x), ceiling(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 sin(x) ceil(x)];' ``Piecewise`` expressions are implemented with logical masking by default. Alternatively, you can pass "inline=False" to use if-else conditionals. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> pw = Piecewise((x + 1, x > 0), (x, True)) >>> octave_code(pw, assign_to=tau) 'tau = ((x > 0).*(x + 1) + (~(x > 0)).*(x));' Note that any expression that can be generated normally can also exist inside a Matrix: >>> mat = Matrix([[x**2, pw, sin(x)]]) >>> octave_code(mat, assign_to='A') 'A = [x.^2 ((x > 0).*(x + 1) + (~(x > 0)).*(x)) sin(x)];' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e., [(argument_test, cfunction_string)]. This can be used to call a custom Octave function. >>> from sympy import Function >>> f = Function('f') >>> g = Function('g') >>> custom_functions = { ... "f": "existing_octave_fcn", ... "g": [(lambda x: x.is_Matrix, "my_mat_fcn"), ... (lambda x: not x.is_Matrix, "my_fcn")] ... } >>> mat = Matrix([[1, x]]) >>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions) 'existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])' Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx, ccode >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> octave_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy(i) = (y(i + 1) - y(i))./(t(i + 1) - t(i));' """ return OctaveCodePrinter(settings).doprint(expr, assign_to) def print_octave_code(expr, **settings): """Prints the Octave (or Matlab) representation of the given expression. See `octave_code` for the meaning of the optional arguments. """ print(octave_code(expr, **settings))
2655f76d9995329ef902d2dbe7e40ac559c46bd0618056332dd4483122cfe524
""" Fortran code printer The FCodePrinter converts single sympy expressions into single Fortran expressions, using the functions defined in the Fortran 77 standard where possible. Some useful pointers to Fortran can be found on wikipedia: https://en.wikipedia.org/wiki/Fortran Most of the code below is based on the "Professional Programmer\'s Guide to Fortran77" by Clive G. Page: http://www.star.le.ac.uk/~cgp/prof77.html Fortran is a case-insensitive language. This might cause trouble because SymPy is case sensitive. So, fcode adds underscores to variable names when it is necessary to make them different for Fortran. """ from __future__ import print_function, division from collections import defaultdict from itertools import chain import string from sympy.codegen.ast import ( Assignment, Declaration, Pointer, value_const, float32, float64, float80, complex64, complex128, int8, int16, int32, int64, intc, real, integer, bool_, complex_ ) from sympy.codegen.fnodes import ( allocatable, isign, dsign, cmplx, merge, literal_dp, elemental, pure, intent_in, intent_out, intent_inout ) from sympy.core import S, Add, N, Float, Symbol from sympy.core.compatibility import string_types, range from sympy.core.function import Function from sympy.core.relational import Eq from sympy.sets import Range from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE from sympy.printing.printer import printer_context known_functions = { "sin": "sin", "cos": "cos", "tan": "tan", "asin": "asin", "acos": "acos", "atan": "atan", "atan2": "atan2", "sinh": "sinh", "cosh": "cosh", "tanh": "tanh", "log": "log", "exp": "exp", "erf": "erf", "Abs": "abs", "conjugate": "conjg", "Max": "max", "Min": "min", } class FCodePrinter(CodePrinter): """A printer to convert sympy expressions to strings of Fortran code""" printmethod = "_fcode" language = "Fortran" type_aliases = { integer: int32, real: float64, complex_: complex128, } type_mappings = { intc: 'integer(c_int)', float32: 'real*4', # real(kind(0.e0)) float64: 'real*8', # real(kind(0.d0)) float80: 'real*10', # real(kind(????)) complex64: 'complex*8', complex128: 'complex*16', int8: 'integer*1', int16: 'integer*2', int32: 'integer*4', int64: 'integer*8', bool_: 'logical' } type_modules = { intc: {'iso_c_binding': 'c_int'} } _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'source_format': 'fixed', 'contract': True, 'standard': 77, 'name_mangling' : True, } _operators = { 'and': '.and.', 'or': '.or.', 'xor': '.neqv.', 'equivalent': '.eqv.', 'not': '.not. ', } _relationals = { '!=': '/=', } def __init__(self, settings={}): self.mangled_symbols = {} ## Dict showing mapping of all words self.used_name= [] self.type_aliases = dict(chain(self.type_aliases.items(), settings.pop('type_aliases', {}).items())) self.type_mappings = dict(chain(self.type_mappings.items(), settings.pop('type_mappings', {}).items())) super(FCodePrinter, self).__init__(settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) # leading columns depend on fixed or free format standards = {66, 77, 90, 95, 2003, 2008} if self._settings['standard'] not in standards: raise ValueError("Unknown Fortran standard: %s" % self._settings[ 'standard']) self.module_uses = defaultdict(set) # e.g.: use iso_c_binding, only: c_int @property def _lead(self): if self._settings['source_format'] == 'fixed': return {'code': " ", 'cont': " @ ", 'comment': "C "} elif self._settings['source_format'] == 'free': return {'code': "", 'cont': " ", 'comment': "! "} else: raise ValueError("Unknown source format: %s" % self._settings['source_format']) def _print_Symbol(self, expr): if self._settings['name_mangling'] == True: if expr not in self.mangled_symbols: name = expr.name while name.lower() in self.used_name: name += '_' self.used_name.append(name.lower()) if name == expr.name: self.mangled_symbols[expr] = expr else: self.mangled_symbols[expr] = Symbol(name) expr = expr.xreplace(self.mangled_symbols) name = super(FCodePrinter, self)._print_Symbol(expr) return name def _rate_index_position(self, p): return -p*5 def _get_statement(self, codestring): return codestring def _get_comment(self, text): return "! {0}".format(text) def _declare_number_const(self, name, value): return "parameter ({0} = {1})".format(name, self._print(value)) def _print_NumberSymbol(self, expr): # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings['precision'])))) return str(expr) def _format_code(self, lines): return self._wrap_fortran(self.indent_code(lines)) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for j in range(cols) for i in range(rows)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] for i in indices: # fortran arrays start at 1 and end at dimension var, start, stop = map(self._print, [i.label, i.lower + 1, i.upper + 1]) open_lines.append("do %s = %s, %s" % (var, start, stop)) close_lines.append("end do") return open_lines, close_lines def _print_sign(self, expr): from sympy import Abs arg, = expr.args if arg.is_integer: new_expr = merge(0, isign(1, arg), Eq(arg, 0)) elif arg.is_complex: new_expr = merge(cmplx(literal_dp(0), literal_dp(0)), arg/Abs(arg), Eq(Abs(arg), literal_dp(0))) else: new_expr = merge(literal_dp(0), dsign(literal_dp(1), arg), Eq(arg, literal_dp(0))) return self._print(new_expr) def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) then" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else") else: lines.append("else if (%s) then" % self._print(c)) lines.append(self._print(e)) lines.append("end if") return "\n".join(lines) elif self._settings["standard"] >= 95: # Only supported in F95 and newer: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). pattern = "merge({T}, {F}, {COND})" code = self._print(expr.args[-1].expr) terms = list(expr.args[:-1]) while terms: e, c = terms.pop() expr = self._print(e) cond = self._print(c) code = pattern.format(T=expr, F=code, COND=cond) return code else: # `merge` is not supported prior to F95 raise NotImplementedError("Using Piecewise as an expression using " "inline operators is not supported in " "standards earlier than Fortran95.") def _print_MatrixElement(self, expr): return "{0}({1}, {2})".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.i + 1, expr.j + 1) def _print_Add(self, expr): # purpose: print complex numbers nicely in Fortran. # collect the purely real and purely imaginary parts: pure_real = [] pure_imaginary = [] mixed = [] for arg in expr.args: if arg.is_number and arg.is_real: pure_real.append(arg) elif arg.is_number and arg.is_imaginary: pure_imaginary.append(arg) else: mixed.append(arg) if len(pure_imaginary) > 0: if len(mixed) > 0: PREC = precedence(expr) term = Add(*mixed) t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: t = "(%s)" % t return "cmplx(%s,%s) %s %s" % ( self._print(Add(*pure_real)), self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), sign, t, ) else: return "cmplx(%s,%s)" % ( self._print(Add(*pure_real)), self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), ) else: return CodePrinter._print_Add(self, expr) def _print_Function(self, expr): # All constant function args are evaluated as floats prec = self._settings['precision'] args = [N(a, prec) for a in expr.args] eval_expr = expr.func(*args) if not isinstance(eval_expr, Function): return self._print(eval_expr) else: return CodePrinter._print_Function(self, expr.func(*args)) def _print_Mod(self, expr): # NOTE : Fortran has the functions mod() and modulo(). modulo() behaves # the same wrt to the sign of the arguments as Python and SymPy's # modulus computations (% and Mod()) but is not available in Fortran 66 # or Fortran 77, thus we raise an error. if self._settings['standard'] in [66, 77]: msg = ("Python % operator and SymPy's Mod() function are not " "supported by Fortran 66 or 77 standards.") raise NotImplementedError(msg) else: x, y = expr.args return " modulo({}, {})".format(self._print(x), self._print(y)) def _print_ImaginaryUnit(self, expr): # purpose: print complex numbers nicely in Fortran. return "cmplx(0,1)" def _print_int(self, expr): return str(expr) def _print_Mul(self, expr): # purpose: print complex numbers nicely in Fortran. if expr.is_number and expr.is_imaginary: return "cmplx(0,%s)" % ( self._print(-S.ImaginaryUnit*expr) ) else: return CodePrinter._print_Mul(self, expr) def _print_Pow(self, expr): PREC = precedence(expr) if expr.exp == -1: return '%s/%s' % ( self._print(literal_dp(1)), self.parenthesize(expr.base, PREC) ) elif expr.exp == 0.5: if expr.base.is_integer: # Fortran intrinsic sqrt() does not accept integer argument if expr.base.is_Number: return 'sqrt(%s.0d0)' % self._print(expr.base) else: return 'sqrt(dble(%s))' % self._print(expr.base) else: return 'sqrt(%s)' % self._print(expr.base) else: return CodePrinter._print_Pow(self, expr) def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return "%d.0d0/%d.0d0" % (p, q) def _print_Float(self, expr): printed = CodePrinter._print_Float(self, expr) e = printed.find('e') if e > -1: return "%sd%s" % (printed[:e], printed[e + 1:]) return "%sd0" % printed def _print_Indexed(self, expr): inds = [ self._print(i) for i in expr.indices ] return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) def _print_Idx(self, expr): return self._print(expr.label) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) return self._get_statement("{0} = {0} {1} {2}".format( *map(lambda arg: self._print(arg), [lhs_code, expr.binop, rhs_code]))) def _print_sum_(self, sm): params = self._print(sm.array) if sm.dim != None: params += ', ' + self._print(sm.dim) if sm.mask != None: params += ', mask=' + self._print(sm.mask) return '%s(%s)' % (sm.__class__.__name__.rstrip('_'), params) def _print_product_(self, prod): return self._print_sum_(prod) def _print_Do(self, do): excl = ['concurrent'] if do.step == 1: excl.append('step') step = '' else: step = ', {step}' return ( 'do {concurrent}{counter} = {first}, {last}'+step+'\n' '{body}\n' 'end do\n' ).format( concurrent='concurrent ' if do.concurrent else '', **do.kwargs(apply=lambda arg: self._print(arg), exclude=excl) ) def _print_ImpliedDoLoop(self, idl): step = '' if idl.step == 1 else ', {step}' return ('({expr}, {counter} = {first}, {last}'+step+')').format( **idl.kwargs(apply=lambda arg: self._print(arg)) ) def _print_For(self, expr): target = self._print(expr.target) if isinstance(expr.iterable, Range): start, stop, step = expr.iterable.args else: raise NotImplementedError("Only iterable currently supported is Range") body = self._print(expr.body) return ('do {target} = {start}, {stop}, {step}\n' '{body}\n' 'end do').format(target=target, start=start, stop=stop, step=step, body=body) def _print_Equality(self, expr): lhs, rhs = expr.args return ' == '.join(map(lambda arg: self._print(arg), (lhs, rhs))) def _print_Unequality(self, expr): lhs, rhs = expr.args return ' /= '.join(map(lambda arg: self._print(arg), (lhs, rhs))) def _print_Type(self, type_): type_ = self.type_aliases.get(type_, type_) type_str = self.type_mappings.get(type_, type_.name) module_uses = self.type_modules.get(type_) if module_uses: for k, v in module_uses: self.module_uses[k].add(v) return type_str def _print_Element(self, elem): return '{symbol}({idxs})'.format( symbol=self._print(elem.symbol), idxs=', '.join(map(lambda arg: self._print(arg), elem.indices)) ) def _print_Extent(self, ext): return str(ext) def _print_Declaration(self, expr): var = expr.variable val = var.value dim = var.attr_params('dimension') intents = [intent in var.attrs for intent in (intent_in, intent_out, intent_inout)] if intents.count(True) == 0: intent = '' elif intents.count(True) == 1: intent = ', intent(%s)' % ['in', 'out', 'inout'][intents.index(True)] else: raise ValueError("Multiple intents specified for %s" % self) if isinstance(var, Pointer): raise NotImplementedError("Pointers are not available by default in Fortran.") if self._settings["standard"] >= 90: result = '{t}{vc}{dim}{intent}{alloc} :: {s}'.format( t=self._print(var.type), vc=', parameter' if value_const in var.attrs else '', dim=', dimension(%s)' % ', '.join(map(lambda arg: self._print(arg), dim)) if dim else '', intent=intent, alloc=', allocatable' if allocatable in var.attrs else '', s=self._print(var.symbol) ) if val != None: result += ' = %s' % self._print(val) else: if value_const in var.attrs or val: raise NotImplementedError("F77 init./parameter statem. req. multiple lines.") result = ' '.join(map(lambda arg: self._print(arg), [var.type, var.symbol])) return result def _print_Infinity(self, expr): return '(huge(%s) + 1)' % self._print(literal_dp(0)) def _print_While(self, expr): return 'do while ({condition})\n{body}\nend do'.format(**expr.kwargs( apply=lambda arg: self._print(arg))) def _print_BooleanTrue(self, expr): return '.true.' def _print_BooleanFalse(self, expr): return '.false.' def _pad_leading_columns(self, lines): result = [] for line in lines: if line.startswith('!'): result.append(self._lead['comment'] + line[1:].lstrip()) else: result.append(self._lead['code'] + line) return result def _wrap_fortran(self, lines): """Wrap long Fortran lines Argument: lines -- a list of lines (without \\n character) A comment line is split at white space. Code lines are split with a more complex rule to give nice results. """ # routine to find split point in a code line my_alnum = set("_+-." + string.digits + string.ascii_letters) my_white = set(" \t()") def split_pos_code(line, endpos): if len(line) <= endpos: return len(line) pos = endpos split = lambda pos: \ (line[pos] in my_alnum and line[pos - 1] not in my_alnum) or \ (line[pos] not in my_alnum and line[pos - 1] in my_alnum) or \ (line[pos] in my_white and line[pos - 1] not in my_white) or \ (line[pos] not in my_white and line[pos - 1] in my_white) while not split(pos): pos -= 1 if pos == 0: return endpos return pos # split line by line and add the split lines to result result = [] if self._settings['source_format'] == 'free': trailing = ' &' else: trailing = '' for line in lines: if line.startswith(self._lead['comment']): # comment line if len(line) > 72: pos = line.rfind(" ", 6, 72) if pos == -1: pos = 72 hunk = line[:pos] line = line[pos:].lstrip() result.append(hunk) while len(line) > 0: pos = line.rfind(" ", 0, 66) if pos == -1 or len(line) < 66: pos = 66 hunk = line[:pos] line = line[pos:].lstrip() result.append("%s%s" % (self._lead['comment'], hunk)) else: result.append(line) elif line.startswith(self._lead['code']): # code line pos = split_pos_code(line, 72) hunk = line[:pos].rstrip() line = line[pos:].lstrip() if line: hunk += trailing result.append(hunk) while len(line) > 0: pos = split_pos_code(line, 65) hunk = line[:pos].rstrip() line = line[pos:].lstrip() if line: hunk += trailing result.append("%s%s" % (self._lead['cont'], hunk)) else: result.append(line) return result def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) free = self._settings['source_format'] == 'free' code = [ line.lstrip(' \t') for line in code ] inc_keyword = ('do ', 'if(', 'if ', 'do\n', 'else', 'program', 'interface') dec_keyword = ('end do', 'enddo', 'end if', 'endif', 'else', 'end program', 'end interface') increase = [ int(any(map(line.startswith, inc_keyword))) for line in code ] decrease = [ int(any(map(line.startswith, dec_keyword))) for line in code ] continuation = [ int(any(map(line.endswith, ['&', '&\n']))) for line in code ] level = 0 cont_padding = 0 tabwidth = 3 new_code = [] for i, line in enumerate(code): if line == '' or line == '\n': new_code.append(line) continue level -= decrease[i] if free: padding = " "*(level*tabwidth + cont_padding) else: padding = " "*level*tabwidth line = "%s%s" % (padding, line) if not free: line = self._pad_leading_columns([line])[0] new_code.append(line) if continuation[i]: cont_padding = 2*tabwidth else: cont_padding = 0 level += increase[i] if not free: return self._wrap_fortran(new_code) return new_code def _print_GoTo(self, goto): if goto.expr: # computed goto return "go to ({labels}), {expr}".format( labels=', '.join(map(lambda arg: self._print(arg), goto.labels)), expr=self._print(goto.expr) ) else: lbl, = goto.labels return "go to %s" % self._print(lbl) def _print_Program(self, prog): return ( "program {name}\n" "{body}\n" "end program\n" ).format(**prog.kwargs(apply=lambda arg: self._print(arg))) def _print_Module(self, mod): return ( "module {name}\n" "{declarations}\n" "\ncontains\n\n" "{definitions}\n" "end module\n" ).format(**mod.kwargs(apply=lambda arg: self._print(arg))) def _print_Stream(self, strm): if strm.name == 'stdout' and self._settings["standard"] >= 2003: self.module_uses['iso_c_binding'].add('stdint=>input_unit') return 'input_unit' elif strm.name == 'stderr' and self._settings["standard"] >= 2003: self.module_uses['iso_c_binding'].add('stdint=>error_unit') return 'error_unit' else: if strm.name == 'stdout': return '*' else: return strm.name def _print_Print(self, ps): if ps.format_string != None: fmt = self._print(ps.format_string) else: fmt = "*" return "print {fmt}, {iolist}".format(fmt=fmt, iolist=', '.join( map(lambda arg: self._print(arg), ps.print_args))) def _print_Return(self, rs): arg, = rs.args return "{result_name} = {arg}".format( result_name=self._context.get('result_name', 'sympy_result'), arg=self._print(arg) ) def _print_FortranReturn(self, frs): arg, = frs.args if arg: return 'return %s' % self._print(arg) else: return 'return' def _head(self, entity, fp, **kwargs): bind_C_params = fp.attr_params('bind_C') if bind_C_params is None: bind = '' else: bind = ' bind(C, name="%s")' % bind_C_params[0] if bind_C_params else ' bind(C)' result_name = self._settings.get('result_name', None) return ( "{entity}{name}({arg_names}){result}{bind}\n" "{arg_declarations}" ).format( entity=entity, name=self._print(fp.name), arg_names=', '.join([self._print(arg.symbol) for arg in fp.parameters]), result=(' result(%s)' % result_name) if result_name else '', bind=bind, arg_declarations='\n'.join(map(lambda arg: self._print(Declaration(arg)), fp.parameters)) ) def _print_FunctionPrototype(self, fp): entity = "{0} function ".format(self._print(fp.return_type)) return ( "interface\n" "{function_head}\n" "end function\n" "end interface" ).format(function_head=self._head(entity, fp)) def _print_FunctionDefinition(self, fd): if elemental in fd.attrs: prefix = 'elemental ' elif pure in fd.attrs: prefix = 'pure ' else: prefix = '' entity = "{0} function ".format(self._print(fd.return_type)) with printer_context(self, result_name=fd.name): return ( "{prefix}{function_head}\n" "{body}\n" "end function\n" ).format( prefix=prefix, function_head=self._head(entity, fd), body=self._print(fd.body) ) def _print_Subroutine(self, sub): return ( '{subroutine_head}\n' '{body}\n' 'end subroutine\n' ).format( subroutine_head=self._head('subroutine ', sub), body=self._print(sub.body) ) def _print_SubroutineCall(self, scall): return 'call {name}({args})'.format( name=self._print(scall.name), args=', '.join(map(lambda arg: self._print(arg), scall.subroutine_args)) ) def _print_use_rename(self, rnm): return "%s => %s" % tuple(map(lambda arg: self._print(arg), rnm.args)) def _print_use(self, use): result = 'use %s' % self._print(use.namespace) if use.rename != None: result += ', ' + ', '.join([self._print(rnm) for rnm in use.rename]) if use.only != None: result += ', only: ' + ', '.join([self._print(nly) for nly in use.only]) return result def _print_BreakToken(self, _): return 'exit' def _print_ContinueToken(self, _): return 'cycle' def _print_ArrayConstructor(self, ac): fmtstr = "[%s]" if self._settings["standard"] >= 2003 else '(/%s/)' return fmtstr % ', '.join(map(lambda arg: self._print(arg), ac.elements)) def fcode(expr, assign_to=None, **settings): """Converts an expr to a string of fortran code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. source_format : optional The source format can be either 'fixed' or 'free'. [default='fixed'] standard : integer, optional The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added. name_mangling : bool, optional If True, then the variables that would become identical in case-insensitive Fortran are mangled by appending different number of ``_`` at the end. If False, SymPy won't interfere with naming of variables. [default=True] Examples ======== >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor >>> x, tau = symbols("x, tau") >>> fcode((2*tau)**Rational(7, 2)) ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)' >>> fcode(sin(x), assign_to="s") ' s = sin(x)' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "floor": [(lambda x: not x.is_integer, "FLOOR1"), ... (lambda x: x.is_integer, "FLOOR2")] ... } >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions) ' CEIL(x) + FLOOR1(x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(fcode(expr, tau)) if (x > 0) then tau = x + 1 else tau = x end if Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> fcode(e.rhs, assign_to=e.lhs, contract=False) ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(fcode(mat, A)) A(1, 1) = x**2 if (x > 0) then A(2, 1) = x + 1 else A(2, 1) = x end if A(3, 1) = sin(x) """ return FCodePrinter(settings).doprint(expr, assign_to) def print_fcode(expr, **settings): """Prints the Fortran representation of the given expression. See fcode for the meaning of the optional arguments. """ print(fcode(expr, **settings))
584e238be395ef8463c60a18ee3c6cf60539740b44fabc5b6c6db1c4014a2c6f
from __future__ import print_function, division from functools import wraps from sympy.core import Add, Mul, Pow, S, sympify, Float from sympy.core.basic import Basic from sympy.core.compatibility import default_sort_key, string_types from sympy.core.function import Lambda from sympy.core.mul import _keep_coeff from sympy.core.symbol import Symbol from sympy.printing.str import StrPrinter from sympy.printing.precedence import precedence # Backwards compatibility from sympy.codegen.ast import Assignment class requires(object): """ Decorator for registering requirements on print methods. """ def __init__(self, **kwargs): self._req = kwargs def __call__(self, method): def _method_wrapper(self_, *args, **kwargs): for k, v in self._req.items(): getattr(self_, k).update(v) return method(self_, *args, **kwargs) return wraps(method)(_method_wrapper) class AssignmentError(Exception): """ Raised if an assignment variable for a loop is missing. """ pass class CodePrinter(StrPrinter): """ The base class for code-printing subclasses. """ _operators = { 'and': '&&', 'or': '||', 'not': '!', } _default_settings = { 'order': None, 'full_prec': 'auto', 'error_on_reserved': False, 'reserved_word_suffix': '_', 'human': True, 'inline': False, 'allow_unknown_functions': False, } def __init__(self, settings=None): super(CodePrinter, self).__init__(settings=settings) if not hasattr(self, 'reserved_words'): self.reserved_words = set() def doprint(self, expr, assign_to=None): """ Print the expression as code. Parameters ---------- expr : Expression The expression to be printed. assign_to : Symbol, MatrixSymbol, or string (optional) If provided, the printed code will set the expression to a variable with name ``assign_to``. """ from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(assign_to, string_types): if expr.is_Matrix: assign_to = MatrixSymbol(assign_to, *expr.shape) else: assign_to = Symbol(assign_to) elif not isinstance(assign_to, (Basic, type(None))): raise TypeError("{0} cannot assign to object of type {1}".format( type(self).__name__, type(assign_to))) if assign_to: expr = Assignment(assign_to, expr) else: # _sympify is not enough b/c it errors on iterables expr = sympify(expr) # keep a set of expressions that are not strictly translatable to Code # and number constants that must be declared and initialized self._not_supported = set() self._number_symbols = set() lines = self._print(expr).splitlines() # format the output if self._settings["human"]: frontlines = [] if len(self._not_supported) > 0: frontlines.append(self._get_comment( "Not supported in {0}:".format(self.language))) for expr in sorted(self._not_supported, key=str): frontlines.append(self._get_comment(type(expr).__name__)) for name, value in sorted(self._number_symbols, key=str): frontlines.append(self._declare_number_const(name, value)) lines = frontlines + lines lines = self._format_code(lines) result = "\n".join(lines) else: lines = self._format_code(lines) num_syms = set([(k, self._print(v)) for k, v in self._number_symbols]) result = (num_syms, self._not_supported, "\n".join(lines)) self._not_supported = set() self._number_symbols = set() return result def _doprint_loops(self, expr, assign_to=None): # Here we print an expression that contains Indexed objects, they # correspond to arrays in the generated code. The low-level implementation # involves looping over array elements and possibly storing results in temporary # variables or accumulate it in the assign_to object. if self._settings.get('contract', True): from sympy.tensor import get_contraction_structure # Setup loops over non-dummy indices -- all terms need these indices = self._get_expression_indices(expr, assign_to) # Setup loops over dummy indices -- each term needs separate treatment dummies = get_contraction_structure(expr) else: indices = [] dummies = {None: (expr,)} openloop, closeloop = self._get_loop_opening_ending(indices) # terms with no summations first if None in dummies: text = StrPrinter.doprint(self, Add(*dummies[None])) else: # If all terms have summations we must initialize array to Zero text = StrPrinter.doprint(self, 0) # skip redundant assignments (where lhs == rhs) lhs_printed = self._print(assign_to) lines = [] if text != lhs_printed: lines.extend(openloop) if assign_to is not None: text = self._get_statement("%s = %s" % (lhs_printed, text)) lines.append(text) lines.extend(closeloop) # then terms with summations for d in dummies: if isinstance(d, tuple): indices = self._sort_optimized(d, expr) openloop_d, closeloop_d = self._get_loop_opening_ending( indices) for term in dummies[d]: if term in dummies and not ([list(f.keys()) for f in dummies[term]] == [[None] for f in dummies[term]]): # If one factor in the term has it's own internal # contractions, those must be computed first. # (temporary variables?) raise NotImplementedError( "FIXME: no support for contractions in factor yet") else: # We need the lhs expression as an accumulator for # the loops, i.e # # for (int d=0; d < dim; d++){ # lhs[] = lhs[] + term[][d] # } ^.................. the accumulator # # We check if the expression already contains the # lhs, and raise an exception if it does, as that # syntax is currently undefined. FIXME: What would be # a good interpretation? if assign_to is None: raise AssignmentError( "need assignment variable for loops") if term.has(assign_to): raise ValueError("FIXME: lhs present in rhs,\ this is undefined in CodePrinter") lines.extend(openloop) lines.extend(openloop_d) text = "%s = %s" % (lhs_printed, StrPrinter.doprint( self, assign_to + term)) lines.append(self._get_statement(text)) lines.extend(closeloop_d) lines.extend(closeloop) return "\n".join(lines) def _get_expression_indices(self, expr, assign_to): from sympy.tensor import get_indices rinds, junk = get_indices(expr) linds, junk = get_indices(assign_to) # support broadcast of scalar if linds and not rinds: rinds = linds if rinds != linds: raise ValueError("lhs indices must match non-dummy" " rhs indices in %s" % expr) return self._sort_optimized(rinds, assign_to) def _sort_optimized(self, indices, expr): from sympy.tensor.indexed import Indexed if not indices: return [] # determine optimized loop order by giving a score to each index # the index with the highest score are put in the innermost loop. score_table = {} for i in indices: score_table[i] = 0 arrays = expr.atoms(Indexed) for arr in arrays: for p, ind in enumerate(arr.indices): try: score_table[ind] += self._rate_index_position(p) except KeyError: pass return sorted(indices, key=lambda x: score_table[x]) def _rate_index_position(self, p): """function to calculate score based on position among indices This method is used to sort loops in an optimized order, see CodePrinter._sort_optimized() """ raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_statement(self, codestring): """Formats a codestring with the proper line ending.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_comment(self, text): """Formats a text string as a comment.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _declare_number_const(self, name, value): """Declare a numeric constant at the top of a function""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _format_code(self, lines): """Take in a list of lines of code, and format them accordingly. This may include indenting, wrapping long lines, etc...""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_loop_opening_ending(self, indices): """Returns a tuple (open_lines, close_lines) containing lists of codelines""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _print_Dummy(self, expr): if expr.name.startswith('Dummy_'): return '_' + expr.name else: return '%s_%d' % (expr.name, expr.dummy_index) def _print_CodeBlock(self, expr): return '\n'.join([self._print(i) for i in expr.args]) def _print_String(self, string): return str(string) def _print_QuotedString(self, arg): return '"%s"' % arg.text def _print_Comment(self, string): return self._get_comment(str(string)) def _print_Assignment(self, expr): from sympy.functions.elementary.piecewise import Piecewise from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) elif isinstance(lhs, MatrixSymbol): # Here we form an Assignment for each element in the array, # printing each one. lines = [] for (i, j) in self._traverse_matrix_indices(lhs): temp = Assignment(lhs[i, j], rhs[i, j]) code0 = self._print(temp) lines.append(code0) return "\n".join(lines) elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) return self._get_statement("{0} {1} {2}".format( *map(lambda arg: self._print(arg), [lhs_code, expr.op, rhs_code]))) def _print_FunctionCall(self, expr): return '%s(%s)' % ( expr.name, ', '.join(map(lambda arg: self._print(arg), expr.function_args))) def _print_Variable(self, expr): return self._print(expr.symbol) def _print_Statement(self, expr): arg, = expr.args return self._get_statement(self._print(arg)) def _print_Symbol(self, expr): name = super(CodePrinter, self)._print_Symbol(expr) if name in self.reserved_words: if self._settings['error_on_reserved']: msg = ('This expression includes the symbol "{}" which is a ' 'reserved keyword in this language.') raise ValueError(msg.format(name)) return name + self._settings['reserved_word_suffix'] else: return name def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_func = self.known_functions[expr.func.__name__] func = None if isinstance(cond_func, str): func = cond_func else: for cond, func in cond_func: if cond(*expr.args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in expr.args]) except TypeError: return "%s(%s)" % (func, self.stringify(expr.args, ", ")) elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda): # inlined function return self._print(expr._imp_(*expr.args)) elif expr.is_Function and self._settings.get('allow_unknown_functions', False): return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args))) else: return self._print_not_supported(expr) _print_Expr = _print_Function def _print_NumberSymbol(self, expr): if self._settings.get("inline", False): return self._print(Float(expr.evalf(self._settings["precision"]))) else: # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings["precision"])))) return str(expr) def _print_Catalan(self, expr): return self._print_NumberSymbol(expr) def _print_EulerGamma(self, expr): return self._print_NumberSymbol(expr) def _print_GoldenRatio(self, expr): return self._print_NumberSymbol(expr) def _print_TribonacciConstant(self, expr): return self._print_NumberSymbol(expr) def _print_Exp1(self, expr): return self._print_NumberSymbol(expr) def _print_Pi(self, expr): return self._print_NumberSymbol(expr) def _print_And(self, expr): PREC = precedence(expr) return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Or(self, expr): PREC = precedence(expr) return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Xor(self, expr): if self._operators.get('xor') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Equivalent(self, expr): if self._operators.get('equivalent') is None: return self._print_not_supported(expr) PREC = precedence(expr) return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if len(b) == 0: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_not_supported(self, expr): self._not_supported.add(expr) return self.emptyPrinter(expr) # The following can not be simply translated into C or Fortran _print_Basic = _print_not_supported _print_ComplexInfinity = _print_not_supported _print_Derivative = _print_not_supported _print_ExprCondPair = _print_not_supported _print_GeometryEntity = _print_not_supported _print_Infinity = _print_not_supported _print_Integral = _print_not_supported _print_Interval = _print_not_supported _print_AccumulationBounds = _print_not_supported _print_Limit = _print_not_supported _print_Matrix = _print_not_supported _print_ImmutableMatrix = _print_not_supported _print_ImmutableDenseMatrix = _print_not_supported _print_MutableDenseMatrix = _print_not_supported _print_MatrixBase = _print_not_supported _print_DeferredVector = _print_not_supported _print_NaN = _print_not_supported _print_NegativeInfinity = _print_not_supported _print_Normal = _print_not_supported _print_Order = _print_not_supported _print_PDF = _print_not_supported _print_RootOf = _print_not_supported _print_RootsOf = _print_not_supported _print_RootSum = _print_not_supported _print_Sample = _print_not_supported _print_SparseMatrix = _print_not_supported _print_MutableSparseMatrix = _print_not_supported _print_ImmutableSparseMatrix = _print_not_supported _print_Uniform = _print_not_supported _print_Unit = _print_not_supported _print_Wild = _print_not_supported _print_WildFunction = _print_not_supported
fad7eb881588b8b90a003eb4e2b3d574986a3edf9b5278563bba640306b8b0e6
from distutils.version import LooseVersion as V from sympy import Mul from sympy.core.compatibility import Iterable from sympy.external import import_module from sympy.printing.precedence import PRECEDENCE from sympy.printing.pycode import AbstractPythonCodePrinter import sympy class TensorflowPrinter(AbstractPythonCodePrinter): """ Tensorflow printer which handles vectorized piecewise functions, logical operators, max/min, and relational operators. """ printmethod = "_tensorflowcode" mapping = { sympy.Abs: "tensorflow.abs", sympy.sign: "tensorflow.sign", sympy.ceiling: "tensorflow.ceil", sympy.floor: "tensorflow.floor", sympy.log: "tensorflow.log", sympy.exp: "tensorflow.exp", sympy.sqrt: "tensorflow.sqrt", sympy.cos: "tensorflow.cos", sympy.acos: "tensorflow.acos", sympy.sin: "tensorflow.sin", sympy.asin: "tensorflow.asin", sympy.tan: "tensorflow.tan", sympy.atan: "tensorflow.atan", sympy.atan2: "tensorflow.atan2", sympy.cosh: "tensorflow.cosh", sympy.acosh: "tensorflow.acosh", sympy.sinh: "tensorflow.sinh", sympy.asinh: "tensorflow.asinh", sympy.tanh: "tensorflow.tanh", sympy.atanh: "tensorflow.atanh", sympy.re: "tensorflow.real", sympy.im: "tensorflow.imag", sympy.arg: "tensorflow.angle", sympy.erf: "tensorflow.erf", sympy.loggamma: "tensorflow.gammaln", sympy.Pow: "tensorflow.pow", sympy.Eq: "tensorflow.equal", sympy.Ne: "tensorflow.not_equal", sympy.StrictGreaterThan: "tensorflow.greater", sympy.StrictLessThan: "tensorflow.less", sympy.LessThan: "tensorflow.less_equal", sympy.GreaterThan: "tensorflow.greater_equal", sympy.And: "tensorflow.logical_and", sympy.Or: "tensorflow.logical_or", sympy.Not: "tensorflow.logical_not", sympy.Max: "tensorflow.maximum", sympy.Min: "tensorflow.minimum", # Matrices sympy.MatAdd: "tensorflow.add", sympy.HadamardProduct: "tensorflow.multiply", sympy.Trace: "tensorflow.trace", sympy.Determinant : "tensorflow.matrix_determinant", sympy.Inverse: "tensorflow.matrix_inverse", sympy.Transpose: "tensorflow.matrix_transpose", } def _print_Function(self, expr): op = self.mapping.get(type(expr), None) if op is None: return super(TensorflowPrinter, self)._print_Basic(expr) children = [self._print(arg) for arg in expr.args] if len(children) == 1: return "%s(%s)" % ( self._module_format(op), children[0] ) else: return self._expand_fold_binary_op(op, children) _print_Expr = _print_Function _print_Application = _print_Function _print_MatrixExpr = _print_Function # TODO: a better class structure would avoid this mess: _print_Not = _print_Function _print_And = _print_Function _print_Or = _print_Function _print_Transpose = _print_Function _print_Trace = _print_Function def _print_Derivative(self, expr): variables = expr.variables if any(isinstance(i, Iterable) for i in variables): raise NotImplementedError("derivation by multiple variables is not supported") def unfold(expr, args): if len(args) == 0: return self._print(expr) return "%s(%s, %s)[0]" % ( self._module_format("tensorflow.gradients"), unfold(expr, args[:-1]), self._print(args[-1]), ) return unfold(expr.expr, variables) def _print_Piecewise(self, expr): tensorflow = import_module('tensorflow') if tensorflow and V(tensorflow.__version__) < '1.0': tensorflow_piecewise = "select" else: tensorflow_piecewise = "where" from sympy import Piecewise e, cond = expr.args[0].args if len(expr.args) == 1: return '{0}({1}, {2}, {3})'.format( tensorflow_piecewise, self._print(cond), self._print(e), 0) return '{0}({1}, {2}, {3})'.format( tensorflow_piecewise, self._print(cond), self._print(e), self._print(Piecewise(*expr.args[1:]))) def _print_MatrixBase(self, expr): tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant" data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]" return "%s(%s)" % ( self._module_format(tensorflow_f), data, ) def _print_MatMul(self, expr): from sympy.matrices.expressions import MatrixExpr mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)] args = [arg for arg in expr.args if arg not in mat_args] if args: return "%s*%s" % ( self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]), self._expand_fold_binary_op("tensorflow.matmul", mat_args) ) else: return self._expand_fold_binary_op("tensorflow.matmul", mat_args) def _print_MatPow(self, expr): return self._expand_fold_binary_op("tensorflow.matmul", [expr.base]*expr.exp) def _print_Assignment(self, expr): # TODO: is this necessary? return "%s = %s" % ( self._print(expr.lhs), self._print(expr.rhs), ) def _print_CodeBlock(self, expr): # TODO: is this necessary? ret = [] for subexpr in expr.args: ret.append(self._print(subexpr)) return "\n".join(ret) def _get_letter_generator_for_einsum(self): for i in range(97, 123): yield chr(i) for i in range(65, 91): yield chr(i) raise ValueError("out of letters") def _print_CodegenArrayTensorProduct(self, expr): array_list = [j for i, arg in enumerate(expr.args) for j in (self._print(arg), "[%i, %i]" % (2*i, 2*i+1))] letters = self._get_letter_generator_for_einsum() contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks]) return '%s("%s", %s)' % ( self._module_format('tensorflow.einsum'), contraction_string, ", ".join([self._print(arg) for arg in expr.args]) ) def _print_CodegenArrayContraction(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct base = expr.expr contraction_indices = expr.contraction_indices contraction_string, letters_free, letters_dum = self._get_einsum_string(base.subranks, contraction_indices) if len(contraction_indices) == 0: return self._print(base) if isinstance(base, CodegenArrayTensorProduct): elems = ["%s" % (self._print(arg)) for arg in base.args] return "%s(\"%s\", %s)" % ( self._module_format("tensorflow.einsum"), contraction_string, ", ".join(elems) ) raise NotImplementedError() def _print_CodegenArrayDiagonal(self, expr): from sympy.codegen.array_utils import CodegenArrayTensorProduct diagonal_indices = list(expr.diagonal_indices) if len(diagonal_indices) > 1: # TODO: this should be handled in sympy.codegen.array_utils, # possibly by creating the possibility of unfolding the # CodegenArrayDiagonal object into nested ones. Same reasoning for # the array contraction. raise NotImplementedError if len(diagonal_indices[0]) != 2: raise NotImplementedError if isinstance(expr.expr, CodegenArrayTensorProduct): subranks = expr.expr.subranks elems = expr.expr.args else: subranks = expr.subranks elems = [expr.expr] diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices) elems = [self._print(i) for i in elems] return '%s("%s", %s)' % ( self._module_format("tensorflow.einsum"), "{0}->{1}{2}".format(diagonal_string, "".join(letters_free), "".join(letters_dum)), ", ".join(elems) ) def _print_CodegenArrayPermuteDims(self, expr): return "%s(%s, %s)" % ( self._module_format("tensorflow.transpose"), self._print(expr.expr), self._print(expr.permutation.args[0]), ) def _print_CodegenArrayElementwiseAdd(self, expr): return self._expand_fold_binary_op('tensorflow.add', expr.args) def tensorflow_code(expr): printer = TensorflowPrinter() return printer.doprint(expr)
cd452db77a68dc42bab1fa37dd6e02027c7b8330b1899629b16adb0b1ad53ba8
from __future__ import print_function, division from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.symbol import Symbol from sympy.core.numbers import Integer, Rational, Float from sympy.core.compatibility import default_sort_key from sympy.core.add import Add from sympy.core.mul import Mul __all__ = ['dotprint'] default_styles = ((Basic, {'color': 'blue', 'shape': 'ellipse'}), (Expr, {'color': 'black'})) sort_classes = (Add, Mul) slotClasses = (Symbol, Integer, Rational, Float) # XXX: Why not just use srepr()? def purestr(x): """ A string that follows obj = type(obj)(*obj.args) exactly """ if not isinstance(x, Basic): return str(x) if type(x) in slotClasses: args = [getattr(x, slot) for slot in x.__slots__] elif type(x) in sort_classes: args = sorted(x.args, key=default_sort_key) else: args = x.args return "%s(%s)"%(type(x).__name__, ', '.join(map(purestr, args))) def styleof(expr, styles=default_styles): """ Merge style dictionaries in order Examples ======== >>> from sympy import Symbol, Basic, Expr >>> from sympy.printing.dot import styleof >>> styles = [(Basic, {'color': 'blue', 'shape': 'ellipse'}), ... (Expr, {'color': 'black'})] >>> styleof(Basic(1), styles) {'color': 'blue', 'shape': 'ellipse'} >>> x = Symbol('x') >>> styleof(x + 1, styles) # this is an Expr {'color': 'black', 'shape': 'ellipse'} """ style = dict() for typ, sty in styles: if isinstance(expr, typ): style.update(sty) return style def attrprint(d, delimiter=', '): """ Print a dictionary of attributes Examples ======== >>> from sympy.printing.dot import attrprint >>> print(attrprint({'color': 'blue', 'shape': 'ellipse'})) "color"="blue", "shape"="ellipse" """ return delimiter.join('"%s"="%s"'%item for item in sorted(d.items())) def dotnode(expr, styles=default_styles, labelfunc=str, pos=(), repeat=True): """ String defining a node Examples ======== >>> from sympy.printing.dot import dotnode >>> from sympy.abc import x >>> print(dotnode(x)) "Symbol(x)_()" ["color"="black", "label"="x", "shape"="ellipse"]; """ style = styleof(expr, styles) if isinstance(expr, Basic) and not expr.is_Atom: label = str(expr.__class__.__name__) else: label = labelfunc(expr) style['label'] = label expr_str = purestr(expr) if repeat: expr_str += '_%s' % str(pos) return '"%s" [%s];' % (expr_str, attrprint(style)) def dotedges(expr, atom=lambda x: not isinstance(x, Basic), pos=(), repeat=True): """ List of strings for all expr->expr.arg pairs See the docstring of dotprint for explanations of the options. Examples ======== >>> from sympy.printing.dot import dotedges >>> from sympy.abc import x >>> for e in dotedges(x+2): ... print(e) "Add(Integer(2), Symbol(x))_()" -> "Integer(2)_(0,)"; "Add(Integer(2), Symbol(x))_()" -> "Symbol(x)_(1,)"; """ if atom(expr): return [] else: # TODO: This is quadratic in complexity (purestr(expr) already # contains [purestr(arg) for arg in expr.args]). expr_str = purestr(expr) arg_strs = [purestr(arg) for arg in expr.args] if repeat: expr_str += '_%s' % str(pos) arg_strs = [arg_str + '_%s' % str(pos + (i,)) for i, arg_str in enumerate(arg_strs)] return ['"%s" -> "%s";' % (expr_str, arg_str) for arg_str in arg_strs] template = \ """digraph{ # Graph style %(graphstyle)s ######### # Nodes # ######### %(nodes)s ######### # Edges # ######### %(edges)s }""" _graphstyle = {'rankdir': 'TD', 'ordering': 'out'} def dotprint(expr, styles=default_styles, atom=lambda x: not isinstance(x, Basic), maxdepth=None, repeat=True, labelfunc=str, **kwargs): """ DOT description of a SymPy expression tree Options are ``styles``: Styles for different classes. The default is:: [(Basic, {'color': 'blue', 'shape': 'ellipse'}), (Expr, {'color': 'black'})]`` ``atom``: Function used to determine if an arg is an atom. The default is ``lambda x: not isinstance(x, Basic)``. Another good choice is ``lambda x: not x.args``. ``maxdepth``: The maximum depth. The default is None, meaning no limit. ``repeat``: Whether to different nodes for separate common subexpressions. The default is True. For example, for ``x + x*y`` with ``repeat=True``, it will have two nodes for ``x`` and with ``repeat=False``, it will have one (warning: even if it appears twice in the same object, like Pow(x, x), it will still only appear only once. Hence, with repeat=False, the number of arrows out of an object might not equal the number of args it has). ``labelfunc``: How to label leaf nodes. The default is ``str``. Another good option is ``srepr``. For example with ``str``, the leaf nodes of ``x + 1`` are labeled, ``x`` and ``1``. With ``srepr``, they are labeled ``Symbol('x')`` and ``Integer(1)``. Additional keyword arguments are included as styles for the graph. Examples ======== >>> from sympy.printing.dot import dotprint >>> from sympy.abc import x >>> print(dotprint(x+2)) # doctest: +NORMALIZE_WHITESPACE digraph{ <BLANKLINE> # Graph style "ordering"="out" "rankdir"="TD" <BLANKLINE> ######### # Nodes # ######### <BLANKLINE> "Add(Integer(2), Symbol(x))_()" ["color"="black", "label"="Add", "shape"="ellipse"]; "Integer(2)_(0,)" ["color"="black", "label"="2", "shape"="ellipse"]; "Symbol(x)_(1,)" ["color"="black", "label"="x", "shape"="ellipse"]; <BLANKLINE> ######### # Edges # ######### <BLANKLINE> "Add(Integer(2), Symbol(x))_()" -> "Integer(2)_(0,)"; "Add(Integer(2), Symbol(x))_()" -> "Symbol(x)_(1,)"; } """ # repeat works by adding a signature tuple to the end of each node for its # position in the graph. For example, for expr = Add(x, Pow(x, 2)), the x in the # Pow will have the tuple (1, 0), meaning it is expr.args[1].args[0]. graphstyle = _graphstyle.copy() graphstyle.update(kwargs) nodes = [] edges = [] def traverse(e, depth, pos=()): nodes.append(dotnode(e, styles, labelfunc=labelfunc, pos=pos, repeat=repeat)) if maxdepth and depth >= maxdepth: return edges.extend(dotedges(e, atom=atom, pos=pos, repeat=repeat)) [traverse(arg, depth+1, pos + (i,)) for i, arg in enumerate(e.args) if not atom(arg)] traverse(expr, 0) return template%{'graphstyle': attrprint(graphstyle, delimiter='\n'), 'nodes': '\n'.join(nodes), 'edges': '\n'.join(edges)}
6a79b210c21ec7172db3199bf5d70e08a434711241325f2636357ff8be1d3e8a
from __future__ import print_function, division import io from io import BytesIO import os from os.path import join import shutil import tempfile try: from subprocess import STDOUT, CalledProcessError, check_output except ImportError: pass from sympy.core.compatibility import unicode, u_decode from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.misc import find_executable from .latex import latex __doctest_requires__ = {('preview',): ['pyglet']} @doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',), disable_viewers=('evince', 'gimp', 'superior-dvi-viewer')) def preview(expr, output='png', viewer=None, euler=True, packages=(), filename=None, outputbuffer=None, preamble=None, dvioptions=None, outputTexFile=None, **latex_settings): r""" View expression or LaTeX markup in PNG, DVI, PostScript or PDF form. If the expr argument is an expression, it will be exported to LaTeX and then compiled using the available TeX distribution. The first argument, 'expr', may also be a LaTeX string. The function will then run the appropriate viewer for the given output format or use the user defined one. By default png output is generated. By default pretty Euler fonts are used for typesetting (they were used to typeset the well known "Concrete Mathematics" book). For that to work, you need the 'eulervm.sty' LaTeX style (in Debian/Ubuntu, install the texlive-fonts-extra package). If you prefer default AMS fonts or your system lacks 'eulervm' LaTeX package then unset the 'euler' keyword argument. To use viewer auto-detection, lets say for 'png' output, issue >>> from sympy import symbols, preview, Symbol >>> x, y = symbols("x,y") >>> preview(x + y, output='png') This will choose 'pyglet' by default. To select a different one, do >>> preview(x + y, output='png', viewer='gimp') The 'png' format is considered special. For all other formats the rules are slightly different. As an example we will take 'dvi' output format. If you would run >>> preview(x + y, output='dvi') then 'view' will look for available 'dvi' viewers on your system (predefined in the function, so it will try evince, first, then kdvi and xdvi). If nothing is found you will need to set the viewer explicitly. >>> preview(x + y, output='dvi', viewer='superior-dvi-viewer') This will skip auto-detection and will run user specified 'superior-dvi-viewer'. If 'view' fails to find it on your system it will gracefully raise an exception. You may also enter 'file' for the viewer argument. Doing so will cause this function to return a file object in read-only mode, if 'filename' is unset. However, if it was set, then 'preview' writes the genereted file to this filename instead. There is also support for writing to a BytesIO like object, which needs to be passed to the 'outputbuffer' argument. >>> from io import BytesIO >>> obj = BytesIO() >>> preview(x + y, output='png', viewer='BytesIO', ... outputbuffer=obj) The LaTeX preamble can be customized by setting the 'preamble' keyword argument. This can be used, e.g., to set a different font size, use a custom documentclass or import certain set of LaTeX packages. >>> preamble = "\\documentclass[10pt]{article}\n" \ ... "\\usepackage{amsmath,amsfonts}\\begin{document}" >>> preview(x + y, output='png', preamble=preamble) If the value of 'output' is different from 'dvi' then command line options can be set ('dvioptions' argument) for the execution of the 'dvi'+output conversion tool. These options have to be in the form of a list of strings (see subprocess.Popen). Additional keyword args will be passed to the latex call, e.g., the symbol_names flag. >>> phidd = Symbol('phidd') >>> preview(phidd, symbol_names={phidd:r'\ddot{\varphi}'}) For post-processing the generated TeX File can be written to a file by passing the desired filename to the 'outputTexFile' keyword argument. To write the TeX code to a file named "sample.tex" and run the default png viewer to display the resulting bitmap, do >>> preview(x + y, outputTexFile="sample.tex") """ special = [ 'pyglet' ] if viewer is None: if output == "png": viewer = "pyglet" else: # sorted in order from most pretty to most ugly # very discussable, but indeed 'gv' looks awful :) # TODO add candidates for windows to list candidates = { "dvi": [ "evince", "okular", "kdvi", "xdvi" ], "ps": [ "evince", "okular", "gsview", "gv" ], "pdf": [ "evince", "okular", "kpdf", "acroread", "xpdf", "gv" ], } try: for candidate in candidates[output]: path = find_executable(candidate) if path is not None: viewer = path break else: raise SystemError( "No viewers found for '%s' output format." % output) except KeyError: raise SystemError("Invalid output format: %s" % output) else: if viewer == "file": if filename is None: SymPyDeprecationWarning(feature="Using viewer=\"file\" without a " "specified filename", deprecated_since_version="0.7.3", useinstead="viewer=\"file\" and filename=\"desiredname\"", issue=7018).warn() elif viewer == "StringIO": SymPyDeprecationWarning(feature="The preview() viewer StringIO", useinstead="BytesIO", deprecated_since_version="0.7.4", issue=7083).warn() viewer = "BytesIO" if outputbuffer is None: raise ValueError("outputbuffer has to be a BytesIO " "compatible object if viewer=\"StringIO\"") elif viewer == "BytesIO": if outputbuffer is None: raise ValueError("outputbuffer has to be a BytesIO " "compatible object if viewer=\"BytesIO\"") elif viewer not in special and not find_executable(viewer): raise SystemError("Unrecognized viewer: %s" % viewer) if preamble is None: actual_packages = packages + ("amsmath", "amsfonts") if euler: actual_packages += ("euler",) package_includes = "\n" + "\n".join(["\\usepackage{%s}" % p for p in actual_packages]) preamble = r"""\documentclass[varwidth,12pt]{standalone} %s \begin{document} """ % (package_includes) else: if len(packages) > 0: raise ValueError("The \"packages\" keyword must not be set if a " "custom LaTeX preamble was specified") latex_main = preamble + '\n%s\n\n' + r"\end{document}" if isinstance(expr, str): latex_string = expr else: latex_string = ('$\\displaystyle ' + latex(expr, mode='plain', **latex_settings) + '$') try: workdir = tempfile.mkdtemp() with io.open(join(workdir, 'texput.tex'), 'w', encoding='utf-8') as fh: fh.write(unicode(latex_main) % u_decode(latex_string)) if outputTexFile is not None: shutil.copyfile(join(workdir, 'texput.tex'), outputTexFile) if not find_executable('latex'): raise RuntimeError("latex program is not installed") try: # Avoid showing a cmd.exe window when running this # on Windows if os.name == 'nt': creation_flag = 0x08000000 # CREATE_NO_WINDOW else: creation_flag = 0 # Default value check_output(['latex', '-halt-on-error', '-interaction=nonstopmode', 'texput.tex'], cwd=workdir, stderr=STDOUT, creationflags=creation_flag) except CalledProcessError as e: raise RuntimeError( "'latex' exited abnormally with the following output:\n%s" % e.output) if output != "dvi": defaultoptions = { "ps": [], "pdf": [], "png": ["-T", "tight", "-z", "9", "--truecolor"], "svg": ["--no-fonts"], } commandend = { "ps": ["-o", "texput.ps", "texput.dvi"], "pdf": ["texput.dvi", "texput.pdf"], "png": ["-o", "texput.png", "texput.dvi"], "svg": ["-o", "texput.svg", "texput.dvi"], } if output == "svg": cmd = ["dvisvgm"] else: cmd = ["dvi" + output] if not find_executable(cmd[0]): raise RuntimeError("%s is not installed" % cmd[0]) try: if dvioptions is not None: cmd.extend(dvioptions) else: cmd.extend(defaultoptions[output]) cmd.extend(commandend[output]) except KeyError: raise SystemError("Invalid output format: %s" % output) try: # Avoid showing a cmd.exe window when running this # on Windows if os.name == 'nt': creation_flag = 0x08000000 # CREATE_NO_WINDOW else: creation_flag = 0 # Default value check_output(cmd, cwd=workdir, stderr=STDOUT, creationflags=creation_flag) except CalledProcessError as e: raise RuntimeError( "'%s' exited abnormally with the following output:\n%s" % (' '.join(cmd), e.output)) src = "texput.%s" % (output) if viewer == "file": if filename is None: buffer = BytesIO() with open(join(workdir, src), 'rb') as fh: buffer.write(fh.read()) return buffer else: shutil.move(join(workdir,src), filename) elif viewer == "BytesIO": with open(join(workdir, src), 'rb') as fh: outputbuffer.write(fh.read()) elif viewer == "pyglet": try: from pyglet import window, image, gl from pyglet.window import key except ImportError: raise ImportError("pyglet is required for preview.\n visit http://www.pyglet.org/") if output == "png": from pyglet.image.codecs.png import PNGImageDecoder img = image.load(join(workdir, src), decoder=PNGImageDecoder()) else: raise SystemError("pyglet preview works only for 'png' files.") offset = 25 config = gl.Config(double_buffer=False) win = window.Window( width=img.width + 2*offset, height=img.height + 2*offset, caption="sympy", resizable=False, config=config ) win.set_vsync(False) try: def on_close(): win.has_exit = True win.on_close = on_close def on_key_press(symbol, modifiers): if symbol in [key.Q, key.ESCAPE]: on_close() win.on_key_press = on_key_press def on_expose(): gl.glClearColor(1.0, 1.0, 1.0, 1.0) gl.glClear(gl.GL_COLOR_BUFFER_BIT) img.blit( (win.width - img.width) / 2, (win.height - img.height) / 2 ) win.on_expose = on_expose while not win.has_exit: win.dispatch_events() win.flip() except KeyboardInterrupt: pass win.close() else: try: # Avoid showing a cmd.exe window when running this # on Windows if os.name == 'nt': creation_flag = 0x08000000 # CREATE_NO_WINDOW else: creation_flag = 0 # Default value check_output([viewer, src], cwd=workdir, stderr=STDOUT, creationflags=creation_flag) except CalledProcessError as e: raise RuntimeError( "'%s %s' exited abnormally with the following output:\n%s" % (viewer, src, e.output)) finally: try: shutil.rmtree(workdir) # delete directory except OSError as e: if e.errno != 2: # code 2 - no such file or directory raise
4bff496812d0ad4276ce2946dc13a368f6ff8f775f0788204539b180282544af
""" Javascript code printer The JavascriptCodePrinter converts single sympy expressions into single Javascript expressions, using the functions defined in the Javascript Math object where possible. """ from __future__ import print_function, division from sympy.codegen.ast import Assignment from sympy.core import S from sympy.core.compatibility import string_types, range from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence, PRECEDENCE # dictionary mapping sympy function to (argument_conditions, Javascript_function). # Used in JavascriptCodePrinter._print_Function(self) known_functions = { 'Abs': 'Math.abs', 'acos': 'Math.acos', 'acosh': 'Math.acosh', 'asin': 'Math.asin', 'asinh': 'Math.asinh', 'atan': 'Math.atan', 'atan2': 'Math.atan2', 'atanh': 'Math.atanh', 'ceiling': 'Math.ceil', 'cos': 'Math.cos', 'cosh': 'Math.cosh', 'exp': 'Math.exp', 'floor': 'Math.floor', 'log': 'Math.log', 'Max': 'Math.max', 'Min': 'Math.min', 'sign': 'Math.sign', 'sin': 'Math.sin', 'sinh': 'Math.sinh', 'tan': 'Math.tan', 'tanh': 'Math.tanh', } class JavascriptCodePrinter(CodePrinter): """"A Printer to convert python expressions to strings of javascript code """ printmethod = '_javascript' language = 'Javascript' _default_settings = { 'order': None, 'full_prec': 'auto', 'precision': 17, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True } def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// {0}".format(text) def _declare_number_const(self, name, value): return "var {0} = {1};".format(name, value.evalf(self._settings['precision'])) def _format_code(self, lines): return self.indent_code(lines) def _traverse_matrix_indices(self, mat): rows, cols = mat.shape return ((i, j) for i in range(rows) for j in range(cols)) def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){" for i in indices: # Javascript arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'varble': self._print(i.label), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_Pow(self, expr): PREC = precedence(expr) if expr.exp == -1: return '1/%s' % (self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: return 'Math.sqrt(%s)' % self._print(expr.base) elif expr.exp == S(1)/3: return 'Math.cbrt(%s)' % self._print(expr.base) else: return 'Math.pow(%s, %s)' % (self._print(expr.base), self._print(expr.exp)) def _print_Rational(self, expr): p, q = int(expr.p), int(expr.q) return '%d/%d' % (p, q) def _print_Indexed(self, expr): # calculate index for 1d array dims = expr.shape elem = S.Zero offset = S.One for i in reversed(range(expr.rank)): elem += expr.indices[i]*offset offset *= dims[i] return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) def _print_Idx(self, expr): return self._print(expr.label) def _print_Exp1(self, expr): return "Math.E" def _print_Pi(self, expr): return 'Math.PI' def _print_Infinity(self, expr): return 'Number.POSITIVE_INFINITY' def _print_NegativeInfinity(self, expr): return 'Number.NEGATIVE_INFINITY' def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else {") else: lines.append("else if (%s) {" % self._print(c)) code0 = self._print(e) lines.append(code0) lines.append("}") return "\n".join(lines) else: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) for e, c in expr.args[:-1]] last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) def _print_MatrixElement(self, expr): return "{0}[{1}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), expr.j + expr.i*expr.parent.shape[1]) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [ line.lstrip(' \t') for line in code ] increase = [ int(any(map(line.endswith, inc_token))) for line in code ] decrease = [ int(any(map(line.startswith, dec_token))) for line in code ] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def jscode(expr, assign_to=None, **settings): """Converts an expr to a string of javascript code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs >>> x, tau = symbols("x, tau") >>> jscode((2*tau)**Rational(7, 2)) '8*Math.sqrt(2)*Math.pow(tau, 7/2)' >>> jscode(sin(x), assign_to="s") 's = Math.sin(x);' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")] ... } >>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions) 'fabs(x) + CEIL(x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(jscode(expr, tau)) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> jscode(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(jscode(mat, A)) A[0] = Math.pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = Math.sin(x); """ return JavascriptCodePrinter(settings).doprint(expr, assign_to) def print_jscode(expr, **settings): """Prints the Javascript representation of the given expression. See jscode for the meaning of the optional arguments. """ print(jscode(expr, **settings))
48aa8cec0480fb90b2a6fd147a688c96d1a163a85ce77eb9e6178b4099e9dda0
""" A Printer for generating executable code. The most important function here is srepr that returns a string so that the relation eval(srepr(expr))=expr holds in an appropriate environment. """ from __future__ import print_function, division from sympy.core.function import AppliedUndef from .printer import Printer from mpmath.libmp import repr_dps, to_str as mlib_to_str from sympy.core.compatibility import range class ReprPrinter(Printer): printmethod = "_sympyrepr" _default_settings = { "order": None } def reprify(self, args, sep): """ Prints each item in `args` and joins them with `sep`. """ return sep.join([self.doprint(item) for item in args]) def emptyPrinter(self, expr): """ The fallback printer. """ if isinstance(expr, str): return expr elif hasattr(expr, "__srepr__"): return expr.__srepr__() elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"): l = [] for o in expr.args: l.append(self._print(o)) return expr.__class__.__name__ + '(%s)' % ', '.join(l) elif hasattr(expr, "__module__") and hasattr(expr, "__name__"): return "<'%s.%s'>" % (expr.__module__, expr.__name__) else: return str(expr) def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) nargs = len(args) args = map(self._print, args) if nargs > 255: # Issue #10259, Python < 3.7 return "Add(*[%s])" % ", ".join(args) return "Add(%s)" % ", ".join(args) def _print_Cycle(self, expr): return expr.__repr__() def _print_Function(self, expr): r = self._print(expr.func) r += '(%s)' % ', '.join([self._print(a) for a in expr.args]) return r def _print_FunctionClass(self, expr): if issubclass(expr, AppliedUndef): return 'Function(%r)' % (expr.__name__) else: return expr.__name__ def _print_Half(self, expr): return 'Rational(1, 2)' def _print_RationalConstant(self, expr): return str(expr) def _print_AtomicExpr(self, expr): return str(expr) def _print_NumberSymbol(self, expr): return str(expr) def _print_Integer(self, expr): return 'Integer(%i)' % expr.p def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Reals(self, expr): return 'Reals' def _print_list(self, expr): return "[%s]" % self.reprify(expr, ", ") def _print_MatrixBase(self, expr): # special case for some empty matrices if (expr.rows == 0) ^ (expr.cols == 0): return '%s(%s, %s, %s)' % (expr.__class__.__name__, self._print(expr.rows), self._print(expr.cols), self._print([])) l = [] for i in range(expr.rows): l.append([]) for j in range(expr.cols): l[-1].append(expr[i, j]) return '%s(%s)' % (expr.__class__.__name__, self._print(l)) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_NaN(self, expr): return "nan" def _print_Mul(self, expr, order=None): terms = expr.args if self.order != 'old': args = expr._new_rawargs(*terms).as_ordered_factors() else: args = terms nargs = len(args) args = map(self._print, args) if nargs > 255: # Issue #10259, Python < 3.7 return "Mul(*[%s])" % ", ".join(args) return "Mul(%s)" % ", ".join(args) def _print_Rational(self, expr): return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q)) def _print_PythonRational(self, expr): return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q) def _print_Fraction(self, expr): return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator)) def _print_Float(self, expr): r = mlib_to_str(expr._mpf_, repr_dps(expr._prec)) return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec) def _print_Sum2(self, expr): return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i), self._print(expr.a), self._print(expr.b)) def _print_Symbol(self, expr): d = expr._assumptions.generator # print the dummy_index like it was an assumption if expr.is_Dummy: d['dummy_index'] = expr.dummy_index if d == {}: return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.name), ', '.join(attr)) def _print_Predicate(self, expr): return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) def _print_AppliedPredicate(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, expr.func, expr.arg) def _print_str(self, expr): return repr(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.reprify(expr, ", ") def _print_WildFunction(self, expr): return "%s('%s')" % (expr.__class__.__name__, expr.name) def _print_AlgebraicNumber(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.root), self._print(expr.coeffs())) def _print_PolyRing(self, ring): return "%s(%s, %s, %s)" % (ring.__class__.__name__, self._print(ring.symbols), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "%s(%s, %s, %s)" % (field.__class__.__name__, self._print(field.symbols), self._print(field.domain), self._print(field.order)) def _print_PolyElement(self, poly): terms = list(poly.terms()) terms.sort(key=poly.ring.order, reverse=True) return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms)) def _print_FracElement(self, frac): numer_terms = list(frac.numer.terms()) numer_terms.sort(key=frac.field.order, reverse=True) denom_terms = list(frac.denom.terms()) denom_terms.sort(key=frac.field.order, reverse=True) numer = self._print(numer_terms) denom = self._print(denom_terms) return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom) def _print_FractionField(self, domain): cls = domain.__class__.__name__ field = self._print(domain.field) return "%s(%s)" % (cls, field) def _print_PolynomialRingBase(self, ring): cls = ring.__class__.__name__ dom = self._print(ring.domain) gens = ', '.join(map(self._print, ring.gens)) order = str(ring.order) if order != ring.default_order: orderstr = ", order=" + order else: orderstr = "" return "%s(%s, %s%s)" % (cls, dom, gens, orderstr) def _print_DMP(self, p): cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) if p.ring is not None: ringstr = ", ring=" + self._print(p.ring) else: ringstr = "" return "%s(%s, %s%s)" % (cls, rep, dom, ringstr) def _print_MonogenicFiniteExtension(self, ext): # The expanded tree shown by srepr(ext.modulus) # is not practical. return "FiniteExtension(%s)" % str(ext.modulus) def _print_ExtensionElement(self, f): rep = self._print(f.rep) ext = self._print(f.ext) return "ExtElem(%s, %s)" % (rep, ext) def srepr(expr, **settings): """return expr in repr form""" return ReprPrinter(settings).doprint(expr)
c6e72ea029eafa36ac0fc21404f7683d716b4620ac5109069362a4d5c43d7a49
from sympy.codegen.ast import Assignment from sympy.core import S from sympy.core.compatibility import string_types, range from sympy.core.function import _coeff_isneg, Lambda from sympy.printing.codeprinter import CodePrinter from sympy.printing.precedence import precedence from functools import reduce known_functions = { 'Abs': 'abs', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'acos': 'acos', 'asin': 'asin', 'atan': 'atan', 'atan2': 'atan', 'ceiling': 'ceil', 'floor': 'floor', 'sign': 'sign', 'exp': 'exp', 'log': 'log', 'add': 'add', 'sub': 'sub', 'mul': 'mul', 'pow': 'pow' } class GLSLPrinter(CodePrinter): """ Rudimentary, generic GLSL printing tools. Additional settings: 'use_operators': Boolean (should the printer use operators for +,-,*, or functions?) """ _not_supported = set() printmethod = "_glsl" language = "GLSL" _default_settings = { 'use_operators': True, 'mat_nested': False, 'mat_separator': ',\n', 'mat_transpose': False, 'glsl_types': True, 'order': None, 'full_prec': 'auto', 'precision': 9, 'user_functions': {}, 'human': True, 'allow_unknown_functions': False, 'contract': True, 'error_on_reserved': False, 'reserved_word_suffix': '_' } def __init__(self, settings={}): CodePrinter.__init__(self, settings) self.known_functions = dict(known_functions) userfuncs = settings.get('user_functions', {}) self.known_functions.update(userfuncs) def _rate_index_position(self, p): return p*5 def _get_statement(self, codestring): return "%s;" % codestring def _get_comment(self, text): return "// {0}".format(text) def _declare_number_const(self, name, value): return "float {0} = {1};".format(name, value) def _format_code(self, lines): return self.indent_code(lines) def indent_code(self, code): """Accepts a string of code or a list of code lines""" if isinstance(code, string_types): code_lines = self.indent_code(code.splitlines(True)) return ''.join(code_lines) tab = " " inc_token = ('{', '(', '{\n', '(\n') dec_token = ('}', ')') code = [line.lstrip(' \t') for line in code] increase = [int(any(map(line.endswith, inc_token))) for line in code] decrease = [int(any(map(line.startswith, dec_token))) for line in code] pretty = [] level = 0 for n, line in enumerate(code): if line == '' or line == '\n': pretty.append(line) continue level -= decrease[n] pretty.append("%s%s" % (tab*level, line)) level += increase[n] return pretty def _print_MatrixBase(self, mat): mat_separator = self._settings['mat_separator'] mat_transpose = self._settings['mat_transpose'] glsl_types = self._settings['glsl_types'] column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1) A = mat.transpose() if mat_transpose != column_vector else mat if A.cols == 1: return self._print(A[0]); if A.rows <= 4 and A.cols <= 4 and glsl_types: if A.rows == 1: return 'vec%s%s' % (A.cols, A.table(self,rowstart='(',rowend=')')) elif A.rows == A.cols: return 'mat%s(%s)' % (A.rows, A.table(self,rowsep=', ', rowstart='',rowend='')) else: return 'mat%sx%s(%s)' % (A.cols, A.rows, A.table(self,rowsep=', ', rowstart='',rowend='')) elif A.cols == 1 or A.rows == 1: return 'float[%s](%s)' % (A.cols*A.rows, A.table(self,rowsep=mat_separator,rowstart='',rowend='')) elif not self._settings['mat_nested']: return 'float[%s](\n%s\n) /* a %sx%s matrix */' % (A.cols*A.rows, A.table(self,rowsep=mat_separator,rowstart='',rowend=''), A.rows,A.cols) elif self._settings['mat_nested']: return 'float[%s][%s](\n%s\n)' % (A.rows,A.cols,A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')')) _print_Matrix = \ _print_MatrixElement = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _traverse_matrix_indices(self, mat): mat_transpose = self._settings['mat_transpose'] if mat_transpose: rows,cols = mat.shape else: cols,rows = mat.shape return ((i, j) for i in range(cols) for j in range(rows)) def _print_MatrixElement(self, expr): # print('begin _print_MatrixElement') nest = self._settings['mat_nested']; glsl_types = self._settings['glsl_types']; mat_transpose = self._settings['mat_transpose']; if mat_transpose: cols,rows = expr.parent.shape i,j = expr.j,expr.i else: rows,cols = expr.parent.shape i,j = expr.i,expr.j pnt = self._print(expr.parent) if glsl_types and ((rows <= 4 and cols <=4) or nest): # print('end _print_MatrixElement case A',nest,glsl_types) return "%s[%s][%s]" % (pnt, i, j) else: # print('end _print_MatrixElement case B',nest,glsl_types) return "{0}[{1}]".format(pnt, i + j*rows) def _print_list(self, expr): l = ', '.join(self._print(item) for item in expr) glsl_types = self._settings['glsl_types'] if len(expr) <= 4 and glsl_types: return 'vec%s(%s)' % (len(expr),l) else: return 'float[%s](%s)' % (len(expr),l) _print_tuple = _print_list _print_Tuple = _print_list def _get_loop_opening_ending(self, indices): open_lines = [] close_lines = [] loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){" for i in indices: # GLSL arrays start at 0 and end at dimension-1 open_lines.append(loopstart % { 'varble': self._print(i.label), 'start': self._print(i.lower), 'end': self._print(i.upper + 1)}) close_lines.append("}") return open_lines, close_lines def _print_Function_with_args(self, func, func_args): if func in self.known_functions: cond_func = self.known_functions[func] func = None if isinstance(cond_func, str): func = cond_func else: for cond, func in cond_func: if cond(func_args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in func_args]) except TypeError: return "%s(%s)" % (func, self.stringify(func_args, ", ")) elif isinstance(func, Lambda): # inlined function return self._print(func(*func_args)) else: return self._print_not_supported(func) def _print_Piecewise(self, expr): if expr.args[-1].cond != True: # We need the last conditional to be a True, otherwise the resulting # function may not return a result. raise ValueError("All Piecewise expressions must contain an " "(expr, True) statement to be used as a default " "condition. Without one, the generated " "expression may not evaluate to anything under " "some condition.") lines = [] if expr.has(Assignment): for i, (e, c) in enumerate(expr.args): if i == 0: lines.append("if (%s) {" % self._print(c)) elif i == len(expr.args) - 1 and c == True: lines.append("else {") else: lines.append("else if (%s) {" % self._print(c)) code0 = self._print(e) lines.append(code0) lines.append("}") return "\n".join(lines) else: # The piecewise was used in an expression, need to do inline # operators. This has the downside that inline operators will # not work for statements that span multiple lines (Matrix or # Indexed expressions). ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) for e, c in expr.args[:-1]] last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) def _print_Idx(self, expr): return self._print(expr.label) def _print_Indexed(self, expr): # calculate index for 1d array dims = expr.shape elem = S.Zero offset = S.One for i in reversed(range(expr.rank)): elem += expr.indices[i]*offset offset *= dims[i] return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) def _print_Pow(self, expr): PREC = precedence(expr) if expr.exp == -1: return '1.0/%s' % (self.parenthesize(expr.base, PREC)) elif expr.exp == 0.5: return 'sqrt(%s)' % self._print(expr.base) else: try: e = self._print(float(expr.exp)) except TypeError: e = self._print(expr.exp) # return self.known_functions['pow']+'(%s, %s)' % (self._print(expr.base),e) return self._print_Function_with_args('pow', ( self._print(expr.base), e )) def _print_int(self, expr): return str(float(expr)) def _print_Rational(self, expr): return "%s.0/%s.0" % (expr.p, expr.q) def _print_Add(self, expr, order=None): if(self._settings['use_operators']): return CodePrinter._print_Add(self, expr, order=order) terms = expr.as_ordered_terms() def partition(p,l): return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l, ([], [])) def add(a,b): return self._print_Function_with_args('add', (a, b)) # return self.known_functions['add']+'(%s, %s)' % (a,b) neg, pos = partition(lambda arg: _coeff_isneg(arg), terms) s = pos = reduce(lambda a,b: add(a,b), map(lambda t: self._print(t),pos)) if(len(neg) > 0): # sum the absolute values of the negative terms neg = reduce(lambda a,b: add(a,b), map(lambda n: self._print(-n),neg)) # then subtract them from the positive terms s = self._print_Function_with_args('sub', (pos,neg)) # s = self.known_functions['sub']+'(%s, %s)' % (pos,neg) return s def _print_Mul(self, expr, **kwargs): if(self._settings['use_operators']): return CodePrinter._print_Mul(self, expr, **kwargs) terms = expr.as_ordered_factors() def mul(a,b): # return self.known_functions['mul']+'(%s, %s)' % (a,b) return self._print_Function_with_args('mul', (a,b)) s = reduce(lambda a,b: mul(a,b), map(lambda t: self._print(t), terms)) return s def glsl_code(expr,assign_to=None,**settings): """Converts an expr to a string of GLSL code Parameters ========== expr : Expr A sympy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. use_operators: bool, optional If set to False, then *,/,+,- operators will be replaced with functions mul, add, and sub, which must be implemented by the user, e.g. for implementing non-standard rings or emulated quad/octal precision. [default=True] glsl_types: bool, optional Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat`` types. The printer will instead use arrays (or nested arrays). [default=True] mat_nested: bool, optional GLSL version 4.3 and above support nested arrays (arrays of arrays). Set this to ``True`` to render matrices as nested arrays. [default=False] mat_separator: str, optional By default, matrices are rendered with newlines using this separator, making them easier to read, but less compact. By removing the newline this option can be used to make them more vertically compact. [default=',\n'] mat_transpose: bool, optional GLSL's matrix multiplication implementation assumes column-major indexing. By default, this printer ignores that convention. Setting this option to ``True`` transposes all matrix output. [default=False] precision : integer, optional The precision for numbers such as pi [default=15]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs >>> x, tau = symbols("x, tau") >>> glsl_code((2*tau)**Rational(7, 2)) '8*sqrt(2)*pow(tau, 3.5)' >>> glsl_code(sin(x), assign_to="float y") 'float y = sin(x);' Various GLSL types are supported: >>> from sympy import Matrix, glsl_code >>> glsl_code(Matrix([1,2,3])) 'vec3(1, 2, 3)' >>> glsl_code(Matrix([[1, 2],[3, 4]])) 'mat2(1, 2, 3, 4)' Pass ``mat_transpose = True`` to switch to column-major indexing: >>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True) 'mat2(1, 3, 2, 4)' By default, larger matrices get collapsed into float arrays: >>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) )) float[10]( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) /* a 2x5 matrix */ Passing ``mat_nested = True`` instead prints out nested float arrays, which are supported in GLSL 4.3 and above. >>> mat = Matrix([ ... [ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8], ... [ 9, 10, 11], ... [12, 13, 14]]) >>> print(glsl_code( mat, mat_nested = True )) float[5][3]( float[]( 0, 1, 2), float[]( 3, 4, 5), float[]( 6, 7, 8), float[]( 9, 10, 11), float[](12, 13, 14) ) Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, js_function_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")] ... } >>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions) 'fabs(x) + CEIL(x)' If further control is needed, addition, subtraction, multiplication and division operators can be replaced with ``add``, ``sub``, and ``mul`` functions. This is done by passing ``use_operators = False``: >>> x,y,z = symbols('x,y,z') >>> glsl_code(x*(y+z), use_operators = False) 'mul(x, add(y, z))' >>> glsl_code(x*(y+z*(x-y)**z), use_operators = False) 'mul(x, add(y, mul(z, pow(sub(x, y), z))))' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(glsl_code(expr, tau)) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> glsl_code(e.rhs, assign_to=e.lhs, contract=False) 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(glsl_code(mat, A)) A[0][0] = pow(x, 2.0); if (x > 0) { A[1][0] = x + 1; } else { A[1][0] = x; } A[2][0] = sin(x); """ return GLSLPrinter(settings).doprint(expr,assign_to) def print_glsl(expr, **settings): """Prints the GLSL representation of the given expression. See GLSLPrinter init function for settings. """ print(glsl_code(expr, **settings))
1c688368c91f35de354016f1241ccfc1eee2de7747a60ce6e29ca3716865c4fa
from __future__ import print_function, division from sympy.core.compatibility import range, is_sequence from sympy.external import import_module from sympy.printing.printer import Printer import sympy from functools import partial theano = import_module('theano') if theano: ts = theano.scalar tt = theano.tensor from theano.sandbox import linalg as tlinalg mapping = { sympy.Add: tt.add, sympy.Mul: tt.mul, sympy.Abs: tt.abs_, sympy.sign: tt.sgn, sympy.ceiling: tt.ceil, sympy.floor: tt.floor, sympy.log: tt.log, sympy.exp: tt.exp, sympy.sqrt: tt.sqrt, sympy.cos: tt.cos, sympy.acos: tt.arccos, sympy.sin: tt.sin, sympy.asin: tt.arcsin, sympy.tan: tt.tan, sympy.atan: tt.arctan, sympy.atan2: tt.arctan2, sympy.cosh: tt.cosh, sympy.acosh: tt.arccosh, sympy.sinh: tt.sinh, sympy.asinh: tt.arcsinh, sympy.tanh: tt.tanh, sympy.atanh: tt.arctanh, sympy.re: tt.real, sympy.im: tt.imag, sympy.arg: tt.angle, sympy.erf: tt.erf, sympy.gamma: tt.gamma, sympy.loggamma: tt.gammaln, sympy.Pow: tt.pow, sympy.Eq: tt.eq, sympy.StrictGreaterThan: tt.gt, sympy.StrictLessThan: tt.lt, sympy.LessThan: tt.le, sympy.GreaterThan: tt.ge, sympy.And: tt.and_, sympy.Or: tt.or_, sympy.Max: tt.maximum, # Sympy accept >2 inputs, Theano only 2 sympy.Min: tt.minimum, # Sympy accept >2 inputs, Theano only 2 # Matrices sympy.MatAdd: tt.Elemwise(ts.add), sympy.HadamardProduct: tt.Elemwise(ts.mul), sympy.Trace: tlinalg.trace, sympy.Determinant : tlinalg.det, sympy.Inverse: tlinalg.matrix_inverse, sympy.Transpose: tt.DimShuffle((False, False), [1, 0]), } class TheanoPrinter(Printer): """ Code printer which creates Theano symbolic expression graphs. Parameters ========== cache : dict Cache dictionary to use (see :attr:`cache`). If None (default) will use the global cache. To create a printer which does not depend on or alter global state pass an empty dictionary. Note: the dictionary is not copied on initialization of the printer and will be updated in-place, so using the same dict object when creating multiple printers or making multiple calls to :func:`.theano_code` or :func:`.theano_function` means the cache is shared between all these applications. Attributes ========== cache : dict A cache of Theano variables which have been created for Sympy symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or :class:`sympy.matrices.expressions.MatrixSymbol`). This is used to ensure that all references to a given symbol in an expression (or multiple expressions) are printed as the same Theano variable, which is created only once. Symbols are differentiated only by name and type. The format of the cache's contents should be considered opaque to the user. """ printmethod = "_theano" def __init__(self, *args, **kwargs): self.cache = kwargs.pop('cache', dict()) super(TheanoPrinter, self).__init__(*args, **kwargs) def _get_key(self, s, name=None, dtype=None, broadcastable=None): """ Get the cache key for a Sympy object. Parameters ========== s : sympy.core.basic.Basic Sympy object to get key for. name : str Name of object, if it does not have a ``name`` attribute. """ if name is None: name = s.name return (name, type(s), s.args, dtype, broadcastable) def _get_or_create(self, s, name=None, dtype=None, broadcastable=None): """ Get the Theano variable for a Sympy symbol from the cache, or create it if it does not exist. """ # Defaults if name is None: name = s.name if dtype is None: dtype = 'floatX' if broadcastable is None: broadcastable = () key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable) if key in self.cache: return self.cache[key] value = tt.tensor(name=name, dtype=dtype, broadcastable=broadcastable) self.cache[key] = value return value def _print_Symbol(self, s, **kwargs): dtype = kwargs.get('dtypes', {}).get(s) bc = kwargs.get('broadcastables', {}).get(s) return self._get_or_create(s, dtype=dtype, broadcastable=bc) def _print_AppliedUndef(self, s, **kwargs): name = str(type(s)) + '_' + str(s.args[0]) dtype = kwargs.get('dtypes', {}).get(s) bc = kwargs.get('broadcastables', {}).get(s) return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc) def _print_Basic(self, expr, **kwargs): op = mapping[type(expr)] children = [self._print(arg, **kwargs) for arg in expr.args] return op(*children) def _print_Number(self, n, **kwargs): # Integers already taken care of below, interpret as float return float(n.evalf()) def _print_MatrixSymbol(self, X, **kwargs): dtype = kwargs.get('dtypes', {}).get(X) return self._get_or_create(X, dtype=dtype, broadcastable=(None, None)) def _print_DenseMatrix(self, X, **kwargs): try: tt.stacklists except AttributeError: raise NotImplementedError( "Matrix translation not yet supported in this version of Theano") return tt.stacklists([ [self._print(arg, **kwargs) for arg in L] for L in X.tolist() ]) _print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix def _print_MatMul(self, expr, **kwargs): children = [self._print(arg, **kwargs) for arg in expr.args] result = children[0] for child in children[1:]: result = tt.dot(result, child) return result def _print_MatPow(self, expr, **kwargs): children = [self._print(arg, **kwargs) for arg in expr.args] result = 1 if isinstance(children[1], int) and children[1] > 0: for i in range(children[1]): result = tt.dot(result, children[0]) else: raise NotImplementedError('''Only non-negative integer powers of matrices can be handled by Theano at the moment''') return result def _print_MatrixSlice(self, expr, **kwargs): parent = self._print(expr.parent, **kwargs) rowslice = self._print(slice(*expr.rowslice), **kwargs) colslice = self._print(slice(*expr.colslice), **kwargs) return parent[rowslice, colslice] def _print_BlockMatrix(self, expr, **kwargs): nrows, ncols = expr.blocks.shape blocks = [[self._print(expr.blocks[r, c], **kwargs) for c in range(ncols)] for r in range(nrows)] return tt.join(0, *[tt.join(1, *row) for row in blocks]) def _print_slice(self, expr, **kwargs): return slice(*[self._print(i, **kwargs) if isinstance(i, sympy.Basic) else i for i in (expr.start, expr.stop, expr.step)]) def _print_Pi(self, expr, **kwargs): return 3.141592653589793 def _print_Piecewise(self, expr, **kwargs): import numpy as np e, cond = expr.args[0].args # First condition and corresponding value # Print conditional expression and value for first condition p_cond = self._print(cond, **kwargs) p_e = self._print(e, **kwargs) # One condition only if len(expr.args) == 1: # Return value if condition else NaN return tt.switch(p_cond, p_e, np.nan) # Return value_1 if condition_1 else evaluate remaining conditions p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs) return tt.switch(p_cond, p_e, p_remaining) def _print_Rational(self, expr, **kwargs): return tt.true_div(self._print(expr.p, **kwargs), self._print(expr.q, **kwargs)) def _print_Integer(self, expr, **kwargs): return expr.p def _print_factorial(self, expr, **kwargs): return self._print(sympy.gamma(expr.args[0] + 1), **kwargs) def _print_Derivative(self, deriv, **kwargs): rv = self._print(deriv.expr, **kwargs) for var in deriv.variables: var = self._print(var, **kwargs) rv = tt.Rop(rv, var, tt.ones_like(var)) return rv def emptyPrinter(self, expr): return expr def doprint(self, expr, dtypes=None, broadcastables=None): """ Convert a Sympy expression to a Theano graph variable. The ``dtypes`` and ``broadcastables`` arguments are used to specify the data type, dimension, and broadcasting behavior of the Theano variables corresponding to the free symbols in ``expr``. Each is a mapping from Sympy symbols to the value of the corresponding argument to :func:`theano.tensor.Tensor`. See the corresponding `documentation page`__ for more information on broadcasting in Theano. .. __: http://deeplearning.net/software/theano/tutorial/broadcasting.html Parameters ========== expr : sympy.core.expr.Expr Sympy expression to print. dtypes : dict Mapping from Sympy symbols to Theano datatypes to use when creating new Theano variables for those symbols. Corresponds to the ``dtype`` argument to :func:`theano.tensor.Tensor`. Defaults to ``'floatX'`` for symbols not included in the mapping. broadcastables : dict Mapping from Sympy symbols to the value of the ``broadcastable`` argument to :func:`theano.tensor.Tensor` to use when creating Theano variables for those symbols. Defaults to the empty tuple for symbols not included in the mapping (resulting in a scalar). Returns ======= theano.gof.graph.Variable A variable corresponding to the expression's value in a Theano symbolic expression graph. See Also ======== theano.tensor.Tensor """ if dtypes is None: dtypes = {} if broadcastables is None: broadcastables = {} return self._print(expr, dtypes=dtypes, broadcastables=broadcastables) global_cache = {} def theano_code(expr, cache=None, **kwargs): """ Convert a Sympy expression into a Theano graph variable. Parameters ========== expr : sympy.core.expr.Expr Sympy expression object to convert. cache : dict Cached Theano variables (see :attr:`.TheanoPrinter.cache`). Defaults to the module-level global cache. dtypes : dict Passed to :meth:`.TheanoPrinter.doprint`. broadcastables : dict Passed to :meth:`.TheanoPrinter.doprint`. Returns ======= theano.gof.graph.Variable A variable corresponding to the expression's value in a Theano symbolic expression graph. """ if not theano: raise ImportError("theano is required for theano_code") if cache is None: cache = global_cache return TheanoPrinter(cache=cache, settings={}).doprint(expr, **kwargs) def dim_handling(inputs, dim=None, dims=None, broadcastables=None): """ Get value of ``broadcastables`` argument to :func:`.theano_code` from keyword arguments to :func:`.theano_function`. Included for backwards compatibility. Parameters ========== inputs Sequence of input symbols. dim : int Common number of dimensions for all inputs. Overrides other arguments if given. dims : dict Mapping from input symbols to number of dimensions. Overrides ``broadcastables`` argument if given. broadcastables : dict Explicit value of ``broadcastables`` argument to :meth:`.TheanoPrinter.doprint`. If not None function will return this value unchanged. Returns ======= dict Dictionary mapping elements of ``inputs`` to their "broadcastable" values (tuple of ``bool``s). """ if dim is not None: return {s: (False,) * dim for s in inputs} if dims is not None: maxdim = max(dims.values()) return { s: (False,) * d + (True,) * (maxdim - d) for s, d in dims.items() } if broadcastables != None: return broadcastables return {} def theano_function(inputs, outputs, scalar=False, **kwargs): """ Create a Theano function from SymPy expressions. The inputs and outputs are converted to Theano variables using :func:`.theano_code` and then passed to :func:`theano.function`. Parameters ========== inputs Sequence of symbols which constitute the inputs of the function. outputs Sequence of expressions which constitute the outputs(s) of the function. The free symbols of each expression must be a subset of ``inputs``. scalar : bool Convert 0-dimensional arrays in output to scalars. This will return a Python wrapper function around the Theano function object. cache : dict Cached Theano variables (see :attr:`.TheanoPrinter.cache`). Defaults to the module-level global cache. dtypes : dict Passed to :meth:`.TheanoPrinter.doprint`. broadcastables : dict Passed to :meth:`.TheanoPrinter.doprint`. dims : dict Alternative to ``broadcastables`` argument. Mapping from elements of ``inputs`` to integers indicating the dimension of their associated arrays/tensors. Overrides ``broadcastables`` argument if given. dim : int Another alternative to the ``broadcastables`` argument. Common number of dimensions to use for all arrays/tensors. ``theano_function([x, y], [...], dim=2)`` is equivalent to using ``broadcastables={x: (False, False), y: (False, False)}``. Returns ======= callable A callable object which takes values of ``inputs`` as positional arguments and returns an output array for each of the expressions in ``outputs``. If ``outputs`` is a single expression the function will return a Numpy array, if it is a list of multiple expressions the function will return a list of arrays. See description of the ``squeeze`` argument above for the behavior when a single output is passed in a list. The returned object will either be an instance of :class:`theano.compile.function_module.Function` or a Python wrapper function around one. In both cases, the returned value will have a ``theano_function`` attribute which points to the return value of :func:`theano.function`. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.printing.theanocode import theano_function A simple function with one input and one output: >>> f1 = theano_function([x], [x**2 - 1], scalar=True) >>> f1(3) 8.0 A function with multiple inputs and one output: >>> f2 = theano_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True) >>> f2(3, 4, 2) 5.0 A function with multiple inputs and multiple outputs: >>> f3 = theano_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True) >>> f3(2, 3) [13.0, -5.0] See also ======== theano.function dim_handling """ if not theano: raise ImportError("theano is required for theano_function") # Pop off non-theano keyword args cache = kwargs.pop('cache', {}) dtypes = kwargs.pop('dtypes', {}) broadcastables = dim_handling( inputs, dim=kwargs.pop('dim', None), dims=kwargs.pop('dims', None), broadcastables=kwargs.pop('broadcastables', None), ) # Print inputs/outputs code = partial(theano_code, cache=cache, dtypes=dtypes, broadcastables=broadcastables) tinputs = list(map(code, inputs)) toutputs = list(map(code, outputs)) if len(toutputs) == 1: toutputs = toutputs[0] # Compile theano func func = theano.function(tinputs, toutputs, **kwargs) is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs] # No wrapper required if not scalar or not any(is_0d): func.theano_function = func return func # Create wrapper to convert 0-dimensional outputs to scalars def wrapper(*args): out = func(*args) # out can be array(1.0) or [array(1.0), array(2.0)] if is_sequence(out): return [o[()] if is_0d[i] else o for i, o in enumerate(out)] else: return out[()] wrapper.__wrapped__ = func wrapper.__doc__ = func.__doc__ wrapper.theano_function = func return wrapper
7466b19e86a91d9ec295aba3002c9923352a4aca1606ba84ec1d06ffe7cec4ca
""" Module to implement integration of uni/bivariate polynomials over 2D Polytopes and uni/bi/trivariate polynomials over 3D Polytopes. Uses evaluation techniques as described in Chin et al. (2015) [1]. References =========== [1] : Chin, Eric B., Jean B. Lasserre, and N. Sukumar. "Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra." Computational Mechanics 56.6 (2015): 967-981 PDF link : http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf """ from __future__ import print_function, division from functools import cmp_to_key from sympy.core import S, diff, Expr, Symbol from sympy.simplify.simplify import nsimplify from sympy.geometry import Segment2D, Polygon, Point, Point2D from sympy.abc import x, y, z from sympy.polys.polytools import LC, gcd_list, degree_list def polytope_integrate(poly, expr=None, **kwargs): """Integrates polynomials over 2/3-Polytopes. This function accepts the polytope in `poly` and the function in `expr` (uni/bi/trivariate polynomials are implemented) and returns the exact integral of `expr` over `poly`. Parameters ========== poly : The input Polygon. expr : The input polynomial. clockwise : Binary value to sort input points of 2-Polytope clockwise.(Optional) max_degree : The maximum degree of any monomial of the input polynomial.(Optional) Examples ======== >>> from sympy.abc import x, y >>> from sympy.geometry.polygon import Polygon >>> from sympy.geometry.point import Point >>> from sympy.integrals.intpoly import polytope_integrate >>> polygon = Polygon(Point(0,0), Point(0,1), Point(1,1), Point(1,0)) >>> polys = [1, x, y, x*y, x**2*y, x*y**2] >>> expr = x*y >>> polytope_integrate(polygon, expr) 1/4 >>> polytope_integrate(polygon, polys, max_degree=3) {1: 1, x: 1/2, y: 1/2, x*y: 1/4, x*y**2: 1/6, x**2*y: 1/6} """ clockwise = kwargs.get('clockwise', False) max_degree = kwargs.get('max_degree', None) if clockwise: if isinstance(poly, Polygon): poly = Polygon(*point_sort(poly.vertices), evaluate=False) else: raise TypeError("clockwise=True works for only 2-Polytope" "V-representation input") if isinstance(poly, Polygon): # For Vertex Representation(2D case) hp_params = hyperplane_parameters(poly) facets = poly.sides elif len(poly[0]) == 2: # For Hyperplane Representation(2D case) plen = len(poly) if len(poly[0][0]) == 2: intersections = [intersection(poly[(i - 1) % plen], poly[i], "plane2D") for i in range(0, plen)] hp_params = poly lints = len(intersections) facets = [Segment2D(intersections[i], intersections[(i + 1) % lints]) for i in range(0, lints)] else: raise NotImplementedError("Integration for H-representation 3D" "case not implemented yet.") else: # For Vertex Representation(3D case) vertices = poly[0] facets = poly[1:] hp_params = hyperplane_parameters(facets, vertices) if max_degree is None: if expr is None: raise TypeError('Input expression be must' 'be a valid SymPy expression') return main_integrate3d(expr, facets, vertices, hp_params) if max_degree is not None: result = {} if not isinstance(expr, list) and expr is not None: raise TypeError('Input polynomials must be list of expressions') if len(hp_params[0][0]) == 3: result_dict = main_integrate3d(0, facets, vertices, hp_params, max_degree) else: result_dict = main_integrate(0, facets, hp_params, max_degree) if expr is None: return result_dict for poly in expr: if poly not in result: if poly is S.Zero: result[S.Zero] = S.Zero continue integral_value = S.Zero monoms = decompose(poly, separate=True) for monom in monoms: monom = nsimplify(monom) coeff, m = strip(monom) integral_value += result_dict[m] * coeff result[poly] = integral_value return result if expr is None: raise TypeError('Input expression be must' 'be a valid SymPy expression') return main_integrate(expr, facets, hp_params) def strip(monom): if monom == S.Zero: return 0, 0 elif monom.is_number: return monom, 1 else: coeff = LC(monom) return coeff, S(monom) / coeff def main_integrate3d(expr, facets, vertices, hp_params, max_degree=None): """Function to translate the problem of integrating uni/bi/tri-variate polynomials over a 3-Polytope to integrating over its faces. This is done using Generalized Stokes' Theorem and Euler's Theorem. Parameters =========== expr : The input polynomial facets : Faces of the 3-Polytope(expressed as indices of `vertices`) vertices : Vertices that constitute the Polytope hp_params : Hyperplane Parameters of the facets Optional Parameters ------------------- max_degree : Max degree of constituent monomial in given list of polynomial Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import main_integrate3d, \ hyperplane_parameters >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> vertices = cube[0] >>> faces = cube[1:] >>> hp_params = hyperplane_parameters(faces, vertices) >>> main_integrate3d(1, faces, vertices, hp_params) -125 """ result = {} dims = (x, y, z) dim_length = len(dims) if max_degree: grad_terms = gradient_terms(max_degree, 3) flat_list = [term for z_terms in grad_terms for x_term in z_terms for term in x_term] for term in flat_list: result[term[0]] = 0 for facet_count, hp in enumerate(hp_params): a, b = hp[0], hp[1] x0 = vertices[facets[facet_count][0]] for i, monom in enumerate(flat_list): # Every monomial is a tuple : # (term, x_degree, y_degree, z_degree, value over boundary) expr, x_d, y_d, z_d, z_index, y_index, x_index, _ = monom degree = x_d + y_d + z_d if b is S.Zero: value_over_face = S.Zero else: value_over_face = \ integration_reduction_dynamic(facets, facet_count, a, b, expr, degree, dims, x_index, y_index, z_index, x0, grad_terms, i, vertices, hp) monom[7] = value_over_face result[expr] += value_over_face * \ (b / norm(a)) / (dim_length + x_d + y_d + z_d) return result else: integral_value = S.Zero polynomials = decompose(expr) for deg in polynomials: poly_contribute = S.Zero facet_count = 0 for i, facet in enumerate(facets): hp = hp_params[i] if hp[1] == S.Zero: continue pi = polygon_integrate(facet, hp, i, facets, vertices, expr, deg) poly_contribute += pi *\ (hp[1] / norm(tuple(hp[0]))) facet_count += 1 poly_contribute /= (dim_length + deg) integral_value += poly_contribute return integral_value def main_integrate(expr, facets, hp_params, max_degree=None): """Function to translate the problem of integrating univariate/bivariate polynomials over a 2-Polytope to integrating over its boundary facets. This is done using Generalized Stokes's Theorem and Euler's Theorem. Parameters =========== expr : The input polynomial facets : Facets(Line Segments) of the 2-Polytope hp_params : Hyperplane Parameters of the facets Optional Parameters: -------------------- max_degree : The maximum degree of any monomial of the input polynomial. >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import main_integrate,\ hyperplane_parameters >>> from sympy.geometry.polygon import Polygon >>> from sympy.geometry.point import Point >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> hp_params = hyperplane_parameters(triangle) >>> main_integrate(x**2 + y**2, facets, hp_params) 325/6 """ dims = (x, y) dim_length = len(dims) result = {} integral_value = S.Zero if max_degree: grad_terms = [[0, 0, 0, 0]] + gradient_terms(max_degree) for facet_count, hp in enumerate(hp_params): a, b = hp[0], hp[1] x0 = facets[facet_count].points[0] for i, monom in enumerate(grad_terms): # Every monomial is a tuple : # (term, x_degree, y_degree, value over boundary) m, x_d, y_d, _ = monom value = result.get(m, None) degree = S.Zero if b is S.Zero: value_over_boundary = S.Zero else: degree = x_d + y_d value_over_boundary = \ integration_reduction_dynamic(facets, facet_count, a, b, m, degree, dims, x_d, y_d, max_degree, x0, grad_terms, i) monom[3] = value_over_boundary if value is not None: result[m] += value_over_boundary * \ (b / norm(a)) / (dim_length + degree) else: result[m] = value_over_boundary * \ (b / norm(a)) / (dim_length + degree) return result else: polynomials = decompose(expr) for deg in polynomials: poly_contribute = S.Zero facet_count = 0 for hp in hp_params: value_over_boundary = integration_reduction(facets, facet_count, hp[0], hp[1], polynomials[deg], dims, deg) poly_contribute += value_over_boundary * (hp[1] / norm(hp[0])) facet_count += 1 poly_contribute /= (dim_length + deg) integral_value += poly_contribute return integral_value def polygon_integrate(facet, hp_param, index, facets, vertices, expr, degree): """Helper function to integrate the input uni/bi/trivariate polynomial over a certain face of the 3-Polytope. Parameters =========== facet : Particular face of the 3-Polytope over which `expr` is integrated index : The index of `facet` in `facets` facets : Faces of the 3-Polytope(expressed as indices of `vertices`) vertices : Vertices that constitute the facet expr : The input polynomial degree : Degree of `expr` Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import polygon_integrate >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> facet = cube[1] >>> facets = cube[1:] >>> vertices = cube[0] >>> polygon_integrate(facet, [(0, 1, 0), 5], 0, facets, vertices, 1, 0) -25 """ expr = S(expr) if expr == S.Zero: return S.Zero result = S.Zero x0 = vertices[facet[0]] for i in range(len(facet)): side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]]) result += distance_to_side(x0, side, hp_param[0]) *\ lineseg_integrate(facet, i, side, expr, degree) if not expr.is_number: expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\ diff(expr, z) * x0[2] result += polygon_integrate(facet, hp_param, index, facets, vertices, expr, degree - 1) result /= (degree + 2) return result def distance_to_side(point, line_seg, A): """Helper function to compute the signed distance between given 3D point and a line segment. Parameters =========== point : 3D Point line_seg : Line Segment Examples ======== >>> from sympy.integrals.intpoly import distance_to_side >>> point = (0, 0, 0) >>> distance_to_side(point, [(0, 0, 1), (0, 1, 0)], (1, 0, 0)) -sqrt(2)/2 """ x1, x2 = line_seg rev_normal = [-1 * S(i)/norm(A) for i in A] vector = [x2[i] - x1[i] for i in range(0, 3)] vector = [vector[i]/norm(vector) for i in range(0, 3)] n_side = cross_product((0, 0, 0), rev_normal, vector) vectorx0 = [line_seg[0][i] - point[i] for i in range(0, 3)] dot_product = sum([vectorx0[i] * n_side[i] for i in range(0, 3)]) return dot_product def lineseg_integrate(polygon, index, line_seg, expr, degree): """Helper function to compute the line integral of `expr` over `line_seg` Parameters =========== polygon : Face of a 3-Polytope index : index of line_seg in polygon line_seg : Line Segment Examples ======== >>> from sympy.integrals.intpoly import lineseg_integrate >>> polygon = [(0, 5, 0), (5, 5, 0), (5, 5, 5), (0, 5, 5)] >>> line_seg = [(0, 5, 0), (5, 5, 0)] >>> lineseg_integrate(polygon, 0, line_seg, 1, 0) 5 """ if expr == S.Zero: return S.Zero result = S.Zero x0 = line_seg[0] distance = norm(tuple([line_seg[1][i] - line_seg[0][i] for i in range(3)])) if isinstance(expr, Expr): expr_dict = {x: line_seg[1][0], y: line_seg[1][1], z: line_seg[1][2]} result += distance * expr.subs(expr_dict) else: result += distance * expr expr = diff(expr, x) * x0[0] + diff(expr, y) * x0[1] +\ diff(expr, z) * x0[2] result += lineseg_integrate(polygon, index, line_seg, expr, degree - 1) result /= (degree + 1) return result def integration_reduction(facets, index, a, b, expr, dims, degree): """Helper method for main_integrate. Returns the value of the input expression evaluated over the polytope facet referenced by a given index. Parameters =========== facets : List of facets of the polytope. index : Index referencing the facet to integrate the expression over. a : Hyperplane parameter denoting direction. b : Hyperplane parameter denoting distance. expr : The expression to integrate over the facet. dims : List of symbols denoting axes. degree : Degree of the homogeneous polynomial. Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import integration_reduction,\ hyperplane_parameters >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> a, b = hyperplane_parameters(triangle)[0] >>> integration_reduction(facets, 0, a, b, 1, (x, y), 0) 5 """ if expr == S.Zero: return expr value = S.Zero x0 = facets[index].points[0] m = len(facets) gens = (x, y) inner_product = diff(expr, gens[0]) * x0[0] + diff(expr, gens[1]) * x0[1] if inner_product != 0: value += integration_reduction(facets, index, a, b, inner_product, dims, degree - 1) value += left_integral2D(m, index, facets, x0, expr, gens) return value/(len(dims) + degree - 1) def left_integral2D(m, index, facets, x0, expr, gens): """Computes the left integral of Eq 10 in Chin et al. For the 2D case, the integral is just an evaluation of the polynomial at the intersection of two facets which is multiplied by the distance between the first point of facet and that intersection. Parameters =========== m : No. of hyperplanes. index : Index of facet to find intersections with. facets : List of facets(Line Segments in 2D case). x0 : First point on facet referenced by index. expr : Input polynomial gens : Generators which generate the polynomial Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import left_integral2D >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> left_integral2D(3, 0, facets, facets[0].points[0], 1, (x, y)) 5 """ value = S.Zero for j in range(0, m): intersect = () if j == (index - 1) % m or j == (index + 1) % m: intersect = intersection(facets[index], facets[j], "segment2D") if intersect: distance_origin = norm(tuple(map(lambda x, y: x - y, intersect, x0))) if is_vertex(intersect): if isinstance(expr, Expr): if len(gens) == 3: expr_dict = {gens[0]: intersect[0], gens[1]: intersect[1], gens[2]: intersect[2]} else: expr_dict = {gens[0]: intersect[0], gens[1]: intersect[1]} value += distance_origin * expr.subs(expr_dict) else: value += distance_origin * expr return value def integration_reduction_dynamic(facets, index, a, b, expr, degree, dims, x_index, y_index, max_index, x0, monomial_values, monom_index, vertices=None, hp_param=None): """The same integration_reduction function which uses a dynamic programming approach to compute terms by using the values of the integral of previously computed terms. Parameters =========== facets : Facets of the Polytope index : Index of facet to find intersections with.(Used in left_integral()) a, b : Hyperplane parameters expr : Input monomial degree : Total degree of `expr` dims : Tuple denoting axes variables x_index : Exponent of 'x' in expr y_index : Exponent of 'y' in expr max_index : Maximum exponent of any monomial in monomial_values x0 : First point on facets[index] monomial_values : List of monomial values constituting the polynomial monom_index : Index of monomial whose integration is being found. Optional Parameters ------------------- vertices : Coordinates of vertices constituting the 3-Polytope hp_param : Hyperplane Parameter of the face of the facets[index] Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import integration_reduction_dynamic,\ hyperplane_parameters, gradient_terms >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> triangle = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) >>> facets = triangle.sides >>> a, b = hyperplane_parameters(triangle)[0] >>> x0 = facets[0].points[0] >>> monomial_values = [[0, 0, 0, 0], [1, 0, 0, 5],\ [y, 0, 1, 15], [x, 1, 0, None]] >>> integration_reduction_dynamic(facets, 0, a, b, x, 1, (x, y), 1, 0, 1,\ x0, monomial_values, 3) 25/2 """ value = S.Zero m = len(facets) if expr == S.Zero: return expr if len(dims) == 2: if not expr.is_number: _, x_degree, y_degree, _ = monomial_values[monom_index] x_index = monom_index - max_index + \ x_index - 2 if x_degree > 0 else 0 y_index = monom_index - 1 if y_degree > 0 else 0 x_value, y_value =\ monomial_values[x_index][3], monomial_values[y_index][3] value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1] value += left_integral2D(m, index, facets, x0, expr, dims) else: # For 3D use case the max_index contains the z_degree of the term z_index = max_index if not expr.is_number: x_degree, y_degree, z_degree = y_index,\ z_index - x_index - y_index, x_index x_value = monomial_values[z_index - 1][y_index - 1][x_index][7]\ if x_degree > 0 else 0 y_value = monomial_values[z_index - 1][y_index][x_index][7]\ if y_degree > 0 else 0 z_value = monomial_values[z_index - 1][y_index][x_index - 1][7]\ if z_degree > 0 else 0 value += x_degree * x_value * x0[0] + y_degree * y_value * x0[1] \ + z_degree * z_value * x0[2] value += left_integral3D(facets, index, expr, vertices, hp_param, degree) return value / (len(dims) + degree - 1) def left_integral3D(facets, index, expr, vertices, hp_param, degree): """Computes the left integral of Eq 10 in Chin et al. For the 3D case, this is the sum of the integral values over constituting line segments of the face (which is accessed by facets[index]) multiplied by the distance between the first point of facet and that line segment. Parameters =========== facets : List of faces of the 3-Polytope. index : Index of face over which integral is to be calculated. expr : Input polynomial vertices : List of vertices that constitute the 3-Polytope hp_param : The hyperplane parameters of the face degree : Degree of the expr >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import left_integral3D >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> facets = cube[1:] >>> vertices = cube[0] >>> left_integral3D(facets, 3, 1, vertices, ([0, -1, 0], -5), 0) -50 """ value = S.Zero facet = facets[index] x0 = vertices[facet[0]] for i in range(len(facet)): side = (vertices[facet[i]], vertices[facet[(i + 1) % len(facet)]]) value += distance_to_side(x0, side, hp_param[0]) * \ lineseg_integrate(facet, i, side, expr, degree) return value def gradient_terms(binomial_power=0, no_of_gens=2): """Returns a list of all the possible monomials between 0 and y**binomial_power for 2D case and z**binomial_power for 3D case. Parameters =========== binomial_power : Power upto which terms are generated. no_of_gens : Denotes whether terms are being generated for 2D or 3D case. Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import gradient_terms >>> gradient_terms(2) [[1, 0, 0, 0], [y, 0, 1, 0], [y**2, 0, 2, 0], [x, 1, 0, 0], [x*y, 1, 1, 0], [x**2, 2, 0, 0]] >>> gradient_terms(2, 3) [[[[1, 0, 0, 0, 0, 0, 0, 0]]], [[[y, 0, 1, 0, 1, 0, 0, 0], [z, 0, 0, 1, 1, 0, 1, 0]], [[x, 1, 0, 0, 1, 1, 0, 0]]], [[[y**2, 0, 2, 0, 2, 0, 0, 0], [y*z, 0, 1, 1, 2, 0, 1, 0], [z**2, 0, 0, 2, 2, 0, 2, 0]], [[x*y, 1, 1, 0, 2, 1, 0, 0], [x*z, 1, 0, 1, 2, 1, 1, 0]], [[x**2, 2, 0, 0, 2, 2, 0, 0]]]] """ if no_of_gens == 2: count = 0 terms = [None] * int((binomial_power ** 2 + 3 * binomial_power + 2) / 2) for x_count in range(0, binomial_power + 1): for y_count in range(0, binomial_power - x_count + 1): terms[count] = [x**x_count*y**y_count, x_count, y_count, 0] count += 1 else: terms = [[[[x ** x_count * y ** y_count * z ** (z_count - y_count - x_count), x_count, y_count, z_count - y_count - x_count, z_count, x_count, z_count - y_count - x_count, 0] for y_count in range(z_count - x_count, -1, -1)] for x_count in range(0, z_count + 1)] for z_count in range(0, binomial_power + 1)] return terms def hyperplane_parameters(poly, vertices=None): """A helper function to return the hyperplane parameters of which the facets of the polytope are a part of. Parameters ========== poly : The input 2/3-Polytope vertices : Vertex indices of 3-Polytope Examples ======== >>> from sympy.geometry.point import Point >>> from sympy.geometry.polygon import Polygon >>> from sympy.integrals.intpoly import hyperplane_parameters >>> hyperplane_parameters(Polygon(Point(0, 3), Point(5, 3), Point(1, 1))) [((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)] >>> cube = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0),\ (5, 0, 5), (5, 5, 0), (5, 5, 5)],\ [2, 6, 7, 3], [3, 7, 5, 1], [7, 6, 4, 5], [1, 5, 4, 0],\ [3, 1, 0, 2], [0, 4, 6, 2]] >>> hyperplane_parameters(cube[1:], cube[0]) [([0, -1, 0], -5), ([0, 0, -1], -5), ([-1, 0, 0], -5), ([0, 1, 0], 0), ([1, 0, 0], 0), ([0, 0, 1], 0)] """ if isinstance(poly, Polygon): vertices = list(poly.vertices) + [poly.vertices[0]] # Close the polygon params = [None] * (len(vertices) - 1) for i in range(len(vertices) - 1): v1 = vertices[i] v2 = vertices[i + 1] a1 = v1[1] - v2[1] a2 = v2[0] - v1[0] b = v2[0] * v1[1] - v2[1] * v1[0] factor = gcd_list([a1, a2, b]) b = S(b) / factor a = (S(a1) / factor, S(a2) / factor) params[i] = (a, b) else: params = [None] * len(poly) for i, polygon in enumerate(poly): v1, v2, v3 = [vertices[vertex] for vertex in polygon[:3]] normal = cross_product(v1, v2, v3) b = sum([normal[j] * v1[j] for j in range(0, 3)]) fac = gcd_list(normal) if fac is S.Zero: fac = 1 normal = [j / fac for j in normal] b = b / fac params[i] = (normal, b) return params def cross_product(v1, v2, v3): """Returns the cross-product of vectors (v2 - v1) and (v3 - v1) That is : (v2 - v1) X (v3 - v1) """ v2 = [v2[j] - v1[j] for j in range(0, 3)] v3 = [v3[j] - v1[j] for j in range(0, 3)] return [v3[2] * v2[1] - v3[1] * v2[2], v3[0] * v2[2] - v3[2] * v2[0], v3[1] * v2[0] - v3[0] * v2[1]] def best_origin(a, b, lineseg, expr): """Helper method for polytope_integrate. Currently not used in the main algorithm. Returns a point on the lineseg whose vector inner product with the divergence of `expr` yields an expression with the least maximum total power. Parameters ========== a : Hyperplane parameter denoting direction. b : Hyperplane parameter denoting distance. lineseg : Line segment on which to find the origin. expr : The expression which determines the best point. Algorithm(currently works only for 2D use case) =============================================== 1 > Firstly, check for edge cases. Here that would refer to vertical or horizontal lines. 2 > If input expression is a polynomial containing more than one generator then find out the total power of each of the generators. x**2 + 3 + x*y + x**4*y**5 ---> {x: 7, y: 6} If expression is a constant value then pick the first boundary point of the line segment. 3 > First check if a point exists on the line segment where the value of the highest power generator becomes 0. If not check if the value of the next highest becomes 0. If none becomes 0 within line segment constraints then pick the first boundary point of the line segment. Actually, any point lying on the segment can be picked as best origin in the last case. Examples ======== >>> from sympy.integrals.intpoly import best_origin >>> from sympy.abc import x, y >>> from sympy.geometry.line import Segment2D >>> from sympy.geometry.point import Point >>> l = Segment2D(Point(0, 3), Point(1, 1)) >>> expr = x**3*y**7 >>> best_origin((2, 1), 3, l, expr) (0, 3.0) """ a1, b1 = lineseg.points[0] def x_axis_cut(ls): """Returns the point where the input line segment intersects the x-axis. Parameters ========== ls : Line segment """ p, q = ls.points if p.y == S.Zero: return tuple(p) elif q.y == S.Zero: return tuple(q) elif p.y/q.y < S.Zero: return p.y * (p.x - q.x)/(q.y - p.y) + p.x, S.Zero else: return () def y_axis_cut(ls): """Returns the point where the input line segment intersects the y-axis. Parameters ========== ls : Line segment """ p, q = ls.points if p.x == S.Zero: return tuple(p) elif q.x == S.Zero: return tuple(q) elif p.x/q.x < S.Zero: return S.Zero, p.x * (p.y - q.y)/(q.x - p.x) + p.y else: return () gens = (x, y) power_gens = {} for i in gens: power_gens[i] = S.Zero if len(gens) > 1: # Special case for vertical and horizontal lines if len(gens) == 2: if a[0] == S.Zero: if y_axis_cut(lineseg): return S.Zero, b/a[1] else: return a1, b1 elif a[1] == S.Zero: if x_axis_cut(lineseg): return b/a[0], S.Zero else: return a1, b1 if isinstance(expr, Expr): # Find the sum total of power of each if expr.is_Add: # generator and store in a dictionary. for monomial in expr.args: if monomial.is_Pow: if monomial.args[0] in gens: power_gens[monomial.args[0]] += monomial.args[1] else: for univariate in monomial.args: term_type = len(univariate.args) if term_type == 0 and univariate in gens: power_gens[univariate] += 1 elif term_type == 2 and univariate.args[0] in gens: power_gens[univariate.args[0]] +=\ univariate.args[1] elif expr.is_Mul: for term in expr.args: term_type = len(term.args) if term_type == 0 and term in gens: power_gens[term] += 1 elif term_type == 2 and term.args[0] in gens: power_gens[term.args[0]] += term.args[1] elif expr.is_Pow: power_gens[expr.args[0]] = expr.args[1] elif expr.is_Symbol: power_gens[expr] += 1 else: # If `expr` is a constant take first vertex of the line segment. return a1, b1 # TODO : This part is quite hacky. Should be made more robust with # TODO : respect to symbol names and scalable w.r.t higher dimensions. power_gens = sorted(power_gens.items(), key=lambda k: str(k[0])) if power_gens[0][1] >= power_gens[1][1]: if y_axis_cut(lineseg): x0 = (S.Zero, b / a[1]) elif x_axis_cut(lineseg): x0 = (b / a[0], S.Zero) else: x0 = (a1, b1) else: if x_axis_cut(lineseg): x0 = (b/a[0], S.Zero) elif y_axis_cut(lineseg): x0 = (S.Zero, b/a[1]) else: x0 = (a1, b1) else: x0 = (b/a[0]) return x0 def decompose(expr, separate=False): """Decomposes an input polynomial into homogeneous ones of smaller or equal degree. Returns a dictionary with keys as the degree of the smaller constituting polynomials. Values are the constituting polynomials. Parameters ========== expr : Polynomial(SymPy expression) Optional Parameters: -------------------- separate : If True then simply return a list of the constituent monomials If not then break up the polynomial into constituent homogeneous polynomials. Examples ======== >>> from sympy.abc import x, y >>> from sympy.integrals.intpoly import decompose >>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5) {1: x + y, 2: x**2 + x*y, 5: x**3*y**2 + y**5} >>> decompose(x**2 + x*y + x + y + x**3*y**2 + y**5, True) {x, x**2, y, y**5, x*y, x**3*y**2} """ poly_dict = {} if isinstance(expr, Expr) and not expr.is_number: if expr.is_Symbol: poly_dict[1] = expr elif expr.is_Add: symbols = expr.atoms(Symbol) degrees = [(sum(degree_list(monom, *symbols)), monom) for monom in expr.args] if separate: return {monom[1] for monom in degrees} else: for monom in degrees: degree, term = monom if poly_dict.get(degree): poly_dict[degree] += term else: poly_dict[degree] = term elif expr.is_Pow: _, degree = expr.args poly_dict[degree] = expr else: # Now expr can only be of `Mul` type degree = 0 for term in expr.args: term_type = len(term.args) if term_type == 0 and term.is_Symbol: degree += 1 elif term_type == 2: degree += term.args[1] poly_dict[degree] = expr else: poly_dict[0] = expr if separate: return set(poly_dict.values()) return poly_dict def point_sort(poly, normal=None, clockwise=True): """Returns the same polygon with points sorted in clockwise or anti-clockwise order. Note that it's necessary for input points to be sorted in some order (clockwise or anti-clockwise) for the integration algorithm to work. As a convention algorithm has been implemented keeping clockwise orientation in mind. Parameters ========== poly: 2D or 3D Polygon Optional Parameters: --------------------- normal : The normal of the plane which the 3-Polytope is a part of. clockwise : Returns points sorted in clockwise order if True and anti-clockwise if False. Examples ======== >>> from sympy.integrals.intpoly import point_sort >>> from sympy.geometry.point import Point >>> point_sort([Point(0, 0), Point(1, 0), Point(1, 1)]) [Point2D(1, 1), Point2D(1, 0), Point2D(0, 0)] """ pts = poly.vertices if isinstance(poly, Polygon) else poly n = len(pts) if n < 2: return list(pts) order = S(1) if clockwise else S(-1) dim = len(pts[0]) if dim == 2: center = Point(sum(map(lambda vertex: vertex.x, pts)) / n, sum(map(lambda vertex: vertex.y, pts)) / n) else: center = Point(sum(map(lambda vertex: vertex.x, pts)) / n, sum(map(lambda vertex: vertex.y, pts)) / n, sum(map(lambda vertex: vertex.z, pts)) / n) def compare(a, b): if a.x - center.x >= S.Zero and b.x - center.x < S.Zero: return -order elif a.x - center.x < S.Zero and b.x - center.x >= S.Zero: return order elif a.x - center.x == S.Zero and b.x - center.x == S.Zero: if a.y - center.y >= S.Zero or b.y - center.y >= S.Zero: return -order if a.y > b.y else order return -order if b.y > a.y else order det = (a.x - center.x) * (b.y - center.y) -\ (b.x - center.x) * (a.y - center.y) if det < S.Zero: return -order elif det > S.Zero: return order first = (a.x - center.x) * (a.x - center.x) +\ (a.y - center.y) * (a.y - center.y) second = (b.x - center.x) * (b.x - center.x) +\ (b.y - center.y) * (b.y - center.y) return -order if first > second else order def compare3d(a, b): det = cross_product(center, a, b) dot_product = sum([det[i] * normal[i] for i in range(0, 3)]) if dot_product < S.Zero: return -order elif dot_product > S.Zero: return order return sorted(pts, key=cmp_to_key(compare if dim==2 else compare3d)) def norm(point): """Returns the Euclidean norm of a point from origin. Parameters ========== point: This denotes a point in the dimension_al spac_e. Examples ======== >>> from sympy.integrals.intpoly import norm >>> from sympy.geometry.point import Point >>> norm(Point(2, 7)) sqrt(53) """ half = S(1)/2 if isinstance(point, (list, tuple)): return sum([coord ** 2 for coord in point]) ** half elif isinstance(point, Point): if isinstance(point, Point2D): return (point.x ** 2 + point.y ** 2) ** half else: return (point.x ** 2 + point.y ** 2 + point.z) ** half elif isinstance(point, dict): return sum(i**2 for i in point.values()) ** half def intersection(geom_1, geom_2, intersection_type): """Returns intersection between geometric objects. Note that this function is meant for use in integration_reduction and at that point in the calling function the lines denoted by the segments surely intersect within segment boundaries. Coincident lines are taken to be non-intersecting. Also, the hyperplane intersection for 2D case is also implemented. Parameters ========== geom_1, geom_2: The input line segments Examples ======== >>> from sympy.integrals.intpoly import intersection >>> from sympy.geometry.point import Point >>> from sympy.geometry.line import Segment2D >>> l1 = Segment2D(Point(1, 1), Point(3, 5)) >>> l2 = Segment2D(Point(2, 0), Point(2, 5)) >>> intersection(l1, l2, "segment2D") (2, 3) >>> p1 = ((-1, 0), 0) >>> p2 = ((0, 1), 1) >>> intersection(p1, p2, "plane2D") (0, 1) """ if intersection_type[:-2] == "segment": if intersection_type == "segment2D": x1, y1 = geom_1.points[0] x2, y2 = geom_1.points[1] x3, y3 = geom_2.points[0] x4, y4 = geom_2.points[1] elif intersection_type == "segment3D": x1, y1, z1 = geom_1.points[0] x2, y2, z2 = geom_1.points[1] x3, y3, z3 = geom_2.points[0] x4, y4, z4 = geom_2.points[1] denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4) if denom: t1 = x1 * y2 - y1 * x2 t2 = x3 * y4 - x4 * y3 return (S(t1 * (x3 - x4) - t2 * (x1 - x2)) / denom, S(t1 * (y3 - y4) - t2 * (y1 - y2)) / denom) if intersection_type[:-2] == "plane": if intersection_type == "plane2D": # Intersection of hyperplanes a1x, a1y = geom_1[0] a2x, a2y = geom_2[0] b1, b2 = geom_1[1], geom_2[1] denom = a1x * a2y - a2x * a1y if denom: return (S(b1 * a2y - b2 * a1y) / denom, S(b2 * a1x - b1 * a2x) / denom) def is_vertex(ent): """If the input entity is a vertex return True Parameter ========= ent : Denotes a geometric entity representing a point Examples ======== >>> from sympy.geometry.point import Point >>> from sympy.integrals.intpoly import is_vertex >>> is_vertex((2, 3)) True >>> is_vertex((2, 3, 6)) True >>> is_vertex(Point(2, 3)) True """ if isinstance(ent, tuple): if len(ent) in [2, 3]: return True elif isinstance(ent, Point): return True return False def plot_polytope(poly): """Plots the 2D polytope using the functions written in plotting module which in turn uses matplotlib backend. Parameter ========= poly: Denotes a 2-Polytope """ from sympy.plotting.plot import Plot, List2DSeries xl = list(map(lambda vertex: vertex.x, poly.vertices)) yl = list(map(lambda vertex: vertex.y, poly.vertices)) xl.append(poly.vertices[0].x) # Closing the polygon yl.append(poly.vertices[0].y) l2ds = List2DSeries(xl, yl) p = Plot(l2ds, axes='label_axes=True') p.show() def plot_polynomial(expr): """Plots the polynomial using the functions written in plotting module which in turn uses matplotlib backend. Parameter ========= expr: Denotes a polynomial(SymPy expression) """ from sympy.plotting.plot import plot3d, plot gens = expr.free_symbols if len(gens) == 2: plot3d(expr) else: plot(expr)
376b2ca68d8c196f14ce253bd0b7495de0ad24f7928ca6f055207f4499e8fcbb
from __future__ import print_function, division from collections import defaultdict from functools import cmp_to_key from .basic import Basic from .compatibility import reduce, is_sequence, range from .logic import _fuzzy_group, fuzzy_or, fuzzy_not from .singleton import S from .operations import AssocOp from .cache import cacheit from .numbers import ilcm, igcd from .expr import Expr # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _addsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Add(*args): """Return a well-formed unevaluated Add: Numbers are collected and put in slot 0 and args are sorted. Use this when args have changed but you still want to return an unevaluated Add. Examples ======== >>> from sympy.core.add import _unevaluated_Add as uAdd >>> from sympy import S, Add >>> from sympy.abc import x, y >>> a = uAdd(*[S(1.0), x, S(2)]) >>> a.args[0] 3.00000000000000 >>> a.args[1] x Beyond the Number being in slot 0, there is no other assurance of order for the arguments since they are hash sorted. So, for testing purposes, output produced by this in some other function can only be tested against the output of this function or as one of several options: >>> opts = (Add(x, y, evaluated=False), Add(y, x, evaluated=False)) >>> a = uAdd(x, y) >>> assert a in opts and a == uAdd(x, y) >>> uAdd(x + 1, x + 2) x + x + 3 """ args = list(args) newargs = [] co = S.Zero while args: a = args.pop() if a.is_Add: # this will keep nesting from building up # so that x + (x + 1) -> x + x + 1 (3 args) args.extend(a.args) elif a.is_Number: co += a else: newargs.append(a) _addsort(newargs) if co: newargs.insert(0, co) return Add._from_args(newargs) class Add(Expr, AssocOp): __slots__ = [] is_Add = True @classmethod def flatten(cls, seq): """ Takes the sequence "seq" of nested Adds and returns a flatten list. Returns: (commutative_part, noncommutative_part, order_symbols) Applies associativity, all terms are commutable with respect to addition. NB: the removal of 0 is already handled by AssocOp.__new__ See also ======== sympy.core.mul.Mul.flatten """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr from sympy.tensor.tensor import TensExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a if a.is_Rational: if b.is_Mul: rv = [a, b], [], None if rv: if all(s.is_commutative for s in rv[0]): return rv return [], rv[0], None terms = {} # term -> coeff # e.g. x**2 -> 5 for ... + 5*x**2 + ... coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0 # e.g. 3 + ... order_factors = [] for o in seq: # O(x) if o.is_Order: for o1 in order_factors: if o1.contains(o): o = None break if o is None: continue order_factors = [o] + [ o1 for o1 in order_factors if not o.contains(o1)] continue # 3 or NaN elif o.is_Number: if (o is S.NaN or coeff is S.ComplexInfinity and o.is_finite is False): # we know for sure the result will be nan return [S.NaN], [], None if coeff.is_Number: coeff += o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__add__(coeff) continue elif isinstance(o, MatrixExpr): # can't add 0 to Matrix so make sure coeff is not 0 coeff = o.__add__(coeff) if coeff else o continue elif isinstance(o, TensExpr): coeff = o.__add__(coeff) if coeff else o continue elif o is S.ComplexInfinity: if coeff.is_finite is False: # we know for sure the result will be nan return [S.NaN], [], None coeff = S.ComplexInfinity continue # Add([...]) elif o.is_Add: # NB: here we assume Add is always commutative seq.extend(o.args) # TODO zerocopy? continue # Mul([...]) elif o.is_Mul: c, s = o.as_coeff_Mul() # check for unevaluated Pow, e.g. 2**3 or 2**(-1/2) elif o.is_Pow: b, e = o.as_base_exp() if b.is_Number and (e.is_Integer or (e.is_Rational and e.is_negative)): seq.append(b**e) continue c, s = S.One, o else: # everything else c = S.One s = o # now we have: # o = c*s, where # # c is a Number # s is an expression with number factor extracted # let's collect terms with the same s, so e.g. # 2*x**2 + 3*x**2 -> 5*x**2 if s in terms: terms[s] += c if terms[s] is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None else: terms[s] = c # now let's construct new args: # [2*x**2, x**3, 7*x**4, pi, ...] newseq = [] noncommutative = False for s, c in terms.items(): # 0*s if c is S.Zero: continue # 1*s elif c is S.One: newseq.append(s) # c*s else: if s.is_Mul: # Mul, already keeps its arguments in perfect order. # so we can simply put c in slot0 and go the fast way. cs = s._new_rawargs(*((c,) + s.args)) newseq.append(cs) elif s.is_Add: # we just re-create the unevaluated Mul newseq.append(Mul(c, s, evaluate=False)) else: # alternatively we have to call all Mul's machinery (slow) newseq.append(Mul(c, s)) noncommutative = noncommutative or not s.is_commutative # oo, -oo if coeff is S.Infinity: newseq = [f for f in newseq if not (f.is_nonnegative or f.is_real and f.is_finite)] elif coeff is S.NegativeInfinity: newseq = [f for f in newseq if not (f.is_nonpositive or f.is_real and f.is_finite)] if coeff is S.ComplexInfinity: # zoo might be # infinite_real + finite_im # finite_real + infinite_im # infinite_real + infinite_im # addition of a finite real or imaginary number won't be able to # change the zoo nature; adding an infinite qualtity would result # in a NaN condition if it had sign opposite of the infinite # portion of zoo, e.g., infinite_real - infinite_real. newseq = [c for c in newseq if not (c.is_finite and c.is_real is not None)] # process O(x) if order_factors: newseq2 = [] for t in newseq: for o in order_factors: # x + O(x) -> O(x) if o.contains(t): t = None break # x + O(x**2) -> x + O(x**2) if t is not None: newseq2.append(t) newseq = newseq2 + order_factors # 1 + O(1) -> O(1) for o in order_factors: if o.contains(coeff): coeff = S.Zero break # order args canonically _addsort(newseq) # current code expects coeff to be first if coeff is not S.Zero: newseq.insert(0, coeff) # we are done if noncommutative: return [], newseq, None else: return newseq, [], None @classmethod def class_key(cls): """Nice order of classes""" return 3, 1, cls.__name__ def as_coefficients_dict(a): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ d = defaultdict(list) for ai in a.args: c, m = ai.as_coeff_Mul() d[m].append(c) for k, v in d.items(): if len(v) == 1: d[k] = v[0] else: d[k] = Add(*v) di = defaultdict(int) di.update(d) return di @cacheit def as_coeff_add(self, *deps): """ Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms. Examples ======== >>> from sympy.abc import x >>> (7 + 3*x).as_coeff_add() (7, (3*x,)) >>> (7*x).as_coeff_add() (0, (7*x,)) """ if deps: l1 = [] l2 = [] for f in self.args: if f.has(*deps): l2.append(f) else: l1.append(f) return self._new_rawargs(*l1), tuple(l2) coeff, notrat = self.args[0].as_coeff_add() if coeff is not S.Zero: return coeff, notrat + self.args[1:] return S.Zero, self.args def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number and not rational or coeff.is_Rational: return coeff, self._new_rawargs(*args) return S.Zero, self # Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we # let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See # issue 5524. def _eval_power(self, e): if e.is_Rational and self.is_number: from sympy.core.evalf import pure_complex from sympy.core.mul import _unevaluated_Mul from sympy.core.exprtools import factor_terms from sympy.core.function import expand_multinomial from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.miscellaneous import sqrt ri = pure_complex(self) if ri: r, i = ri if e.q == 2: D = sqrt(r**2 + i**2) if D.is_Rational: # (r, i, D) is a Pythagorean triple root = sqrt(factor_terms((D - r)/2))**e.p return root*expand_multinomial(( # principle value (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p) elif e == -1: return _unevaluated_Mul( r - i*S.ImaginaryUnit, 1/(r**2 + i**2)) @cacheit def _eval_derivative(self, s): return self.func(*[a.diff(s) for a in self.args]) def _eval_nseries(self, x, n, logx): terms = [t.nseries(x, n=n, logx=logx) for t in self.args] return self.func(*terms) def _matches_simple(self, expr, repl_dict): # handle (w+3).matches('x+5') -> {w: x+2} coeff, terms = self.as_coeff_add() if len(terms) == 1: return terms[0].matches(expr - coeff, repl_dict) return def matches(self, expr, repl_dict={}, old=False): return AssocOp._matches_commutative(self, expr, repl_dict, old) @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs - rhs, but treats oo like a symbol so oo - oo returns 0, instead of a nan. """ from sympy.core.function import expand_mul from sympy.core.symbol import Dummy inf = (S.Infinity, S.NegativeInfinity) if lhs.has(*inf) or rhs.has(*inf): oo = Dummy('oo') reps = { S.Infinity: oo, S.NegativeInfinity: -oo} ireps = dict([(v, k) for k, v in reps.items()]) eq = expand_mul(lhs.xreplace(reps) - rhs.xreplace(reps)) if eq.has(oo): eq = eq.replace( lambda x: x.is_Pow and x.base == oo, lambda x: x.base) return eq.xreplace(ireps) else: return expand_mul(lhs - rhs) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_add() which gives the head and a tuple containing the arguments of the tail when treated as an Add. - if you want the coefficient when self is treated as a Mul then use self.as_coeff_mul()[0] >>> from sympy.abc import x, y >>> (3*x - 2*y + 5).as_two_terms() (5, 3*x - 2*y) """ return self.args[0], self._new_rawargs(*self.args[1:]) def as_numer_denom(self): # clear rational denominator content, expr = self.primitive() ncon, dcon = content.as_numer_denom() # collect numerators and denominators of the terms nd = defaultdict(list) for f in expr.args: ni, di = f.as_numer_denom() nd[di].append(ni) # check for quick exit if len(nd) == 1: d, n = nd.popitem() return self.func( *[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d) # sum up the terms having a common denominator for d, n in nd.items(): if len(n) == 1: nd[d] = n[0] else: nd[d] = self.func(*n) # assemble single numerator and denominator denoms, numers = [list(i) for i in zip(*iter(nd.items()))] n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:])) for i in range(len(numers))]), Mul(*denoms) return _keep_coeff(ncon, n), _keep_coeff(dcon, d) def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) # assumption methods _eval_is_real = lambda self: _fuzzy_group( (a.is_real for a in self.args), quick_exit=True) _eval_is_complex = lambda self: _fuzzy_group( (a.is_complex for a in self.args), quick_exit=True) _eval_is_antihermitian = lambda self: _fuzzy_group( (a.is_antihermitian for a in self.args), quick_exit=True) _eval_is_finite = lambda self: _fuzzy_group( (a.is_finite for a in self.args), quick_exit=True) _eval_is_hermitian = lambda self: _fuzzy_group( (a.is_hermitian for a in self.args), quick_exit=True) _eval_is_integer = lambda self: _fuzzy_group( (a.is_integer for a in self.args), quick_exit=True) _eval_is_rational = lambda self: _fuzzy_group( (a.is_rational for a in self.args), quick_exit=True) _eval_is_algebraic = lambda self: _fuzzy_group( (a.is_algebraic for a in self.args), quick_exit=True) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_imaginary(self): nz = [] im_I = [] for a in self.args: if a.is_real: if a.is_zero: pass elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im_I.append(a*S.ImaginaryUnit) elif (S.ImaginaryUnit*a).is_real: im_I.append(a*S.ImaginaryUnit) else: return b = self.func(*nz) if b.is_zero: return fuzzy_not(self.func(*im_I).is_zero) elif b.is_zero is False: return False def _eval_is_zero(self): if self.is_commutative is False: # issue 10528: there is no way to know if a nc symbol # is zero or not return nz = [] z = 0 im_or_z = False im = False for a in self.args: if a.is_real: if a.is_zero: z += 1 elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im = True elif (S.ImaginaryUnit*a).is_real: im_or_z = True else: return if z == len(self.args): return True if len(nz) == 0 or len(nz) == len(self.args): return None b = self.func(*nz) if b.is_zero: if not im_or_z and not im: return True if im and not im_or_z: return False if b.is_zero is False: return False def _eval_is_odd(self): l = [f for f in self.args if not (f.is_even is True)] if not l: return False if l[0].is_odd: return self._new_rawargs(*l[1:]).is_even def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all(x.is_rational is True for x in others): return True return None if a is None: return return False def _eval_is_positive(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super(Add, self)._eval_is_positive() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_positive and a.is_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_positive: return True pos = nonneg = nonpos = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: ispos = a.is_positive infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((ispos, a.is_nonnegative))) if True in saw_INF and False in saw_INF: return if ispos: pos = True continue elif a.is_nonnegative: nonneg = True continue elif a.is_nonpositive: nonpos = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonpos and not nonneg and pos: return True elif not nonpos and pos: return True elif not pos and not nonneg: return False def _eval_is_nonnegative(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_nonnegative: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_nonnegative: return True def _eval_is_nonpositive(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_nonpositive: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_nonpositive: return True def _eval_is_negative(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super(Add, self)._eval_is_negative() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_negative and a.is_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_negative: return True neg = nonpos = nonneg = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: isneg = a.is_negative infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((isneg, a.is_nonpositive))) if True in saw_INF and False in saw_INF: return if isneg: neg = True continue elif a.is_nonpositive: nonpos = True continue elif a.is_nonnegative: nonneg = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonneg and not nonpos and neg: return True elif not nonneg and neg: return True elif not neg and not nonpos: return False def _eval_subs(self, old, new): if not old.is_Add: if old is S.Infinity and -old in self.args: # foo - oo is foo + (-oo) internally return self.xreplace({-old: -new}) return None coeff_self, terms_self = self.as_coeff_Add() coeff_old, terms_old = old.as_coeff_Add() if coeff_self.is_Rational and coeff_old.is_Rational: if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y return self.func(new, coeff_self, -coeff_old) if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y return self.func(-new, coeff_self, coeff_old) if coeff_self.is_Rational and coeff_old.is_Rational \ or coeff_self == coeff_old: args_old, args_self = self.func.make_args( terms_old), self.func.make_args(terms_self) if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x self_set = set(args_self) old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(new, coeff_self, -coeff_old, *[s._subs(old, new) for s in ret_set]) args_old = self.func.make_args( -terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(-new, coeff_self, coeff_old, *[s._subs(old, new) for s in ret_set]) def removeO(self): args = [a for a in self.args if not a.is_Order] return self._new_rawargs(*args) def getO(self): args = [a for a in self.args if a.is_Order] if args: return self._new_rawargs(*args) @cacheit def extract_leading_order(self, symbols, point=None): """ Returns the leading term and its order. Examples ======== >>> from sympy.abc import x >>> (x + 1 + 1/x**5).extract_leading_order(x) ((x**(-5), O(x**(-5))),) >>> (1 + x).extract_leading_order(x) ((1, O(1)),) >>> (x + x**2).extract_leading_order(x) ((x, O(x)),) """ from sympy import Order lst = [] symbols = list(symbols if is_sequence(symbols) else [symbols]) if not point: point = [0]*len(symbols) seq = [(f, Order(f, *zip(symbols, point))) for f in self.args] for ef, of in seq: for e, o in lst: if o.contains(of) and o != of: of = None break if of is None: continue new_lst = [(ef, of)] for e, o in lst: if of.contains(o) and o != of: continue new_lst.append((e, o)) lst = new_lst return tuple(lst) def as_real_imag(self, deep=True, **hints): """ returns a tuple representing a complex number Examples ======== >>> from sympy import I >>> (7 + 9*I).as_real_imag() (7, 9) >>> ((1 + I)/(1 - I)).as_real_imag() (0, 1) >>> ((1 + 2*I)*(1 + 3*I)).as_real_imag() (-5, 5) """ sargs = self.args re_part, im_part = [], [] for term in sargs: re, im = term.as_real_imag(deep=deep) re_part.append(re) im_part.append(im) return (self.func(*re_part), self.func(*im_part)) def _eval_as_leading_term(self, x): from sympy import expand_mul, factor_terms old = self expr = expand_mul(self) if not expr.is_Add: return expr.as_leading_term(x) infinite = [t for t in expr.args if t.is_infinite] expr = expr.func(*[t.as_leading_term(x) for t in expr.args]).removeO() if not expr: # simple leading term analysis gave us 0 but we have to send # back a term, so compute the leading term (via series) return old.compute_leading_term(x) elif expr is S.NaN: return old.func._from_args(infinite) elif not expr.is_Add: return expr else: plain = expr.func(*[s for s, _ in expr.extract_leading_order(x)]) rv = factor_terms(plain, fraction=False) rv_simplify = rv.simplify() # if it simplifies to an x-free expression, return that; # tests don't fail if we don't but it seems nicer to do this if x not in rv_simplify.free_symbols: if rv_simplify.is_zero and plain.is_zero is not True: return (expr - plain)._eval_as_leading_term(x) return rv_simplify return rv def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args]) def __neg__(self): return self*(-1) def _sage_(self): s = 0 for x in self.args: s += x._sage_() return s def primitive(self): """ Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```. ``R`` is collected only from the leading coefficient of each term. Examples ======== >>> from sympy.abc import x, y >>> (2*x + 4*y).primitive() (2, x + 2*y) >>> (2*x/3 + 4*y/9).primitive() (2/9, 3*x + 2*y) >>> (2*x/3 + 4.2*y).primitive() (1/3, 2*x + 12.6*y) No subprocessing of term factors is performed: >>> ((2 + 2*x)*x + 2).primitive() (1, x*(2*x + 2) + 2) Recursive processing can be done with the ``as_content_primitive()`` method: >>> ((2 + 2*x)*x + 2).as_content_primitive() (2, x*(x + 1) + 1) See also: primitive() function in polytools.py """ terms = [] inf = False for a in self.args: c, m = a.as_coeff_Mul() if not c.is_Rational: c = S.One m = a inf = inf or m is S.ComplexInfinity terms.append((c.p, c.q, m)) if not inf: ngcd = reduce(igcd, [t[0] for t in terms], 0) dlcm = reduce(ilcm, [t[1] for t in terms], 1) else: ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0) dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1) if ngcd == dlcm == 1: return S.One, self if not inf: for i, (p, q, term) in enumerate(terms): terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: for i, (p, q, term) in enumerate(terms): if q: terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: terms[i] = _keep_coeff(Rational(p, q), term) # we don't need a complete re-flattening since no new terms will join # so we just use the same sort as is used in Add.flatten. When the # coefficient changes, the ordering of terms may change, e.g. # (3*x, 6*y) -> (2*y, x) # # We do need to make sure that term[0] stays in position 0, however. # if terms[0].is_Number or terms[0] is S.ComplexInfinity: c = terms.pop(0) else: c = None _addsort(terms) if c: terms.insert(0, c) return Rational(ngcd, dlcm), self._new_rawargs(*terms) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the primitive expression. Examples ======== >>> from sympy import sqrt >>> (3 + 3*sqrt(2)).as_content_primitive() (3, 1 + sqrt(2)) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) See docstring of Expr.as_content_primitive for more examples. """ con, prim = self.func(*[_keep_coeff(*a.as_content_primitive( radical=radical, clear=clear)) for a in self.args]).primitive() if not clear and not con.is_Integer and prim.is_Add: con, d = con.as_numer_denom() _p = prim/d if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args): prim = _p else: con /= d if radical and prim.is_Add: # look for common radicals that can be removed args = prim.args rads = [] common_q = None for m in args: term_rads = defaultdict(list) for ai in Mul.make_args(m): if ai.is_Pow: b, e = ai.as_base_exp() if e.is_Rational and b.is_Integer: term_rads[e.q].append(abs(int(b))**e.p) if not term_rads: break if common_q is None: common_q = set(term_rads.keys()) else: common_q = common_q & set(term_rads.keys()) if not common_q: break rads.append(term_rads) else: # process rads # keep only those in common_q for r in rads: for q in list(r.keys()): if q not in common_q: r.pop(q) for q in r: r[q] = prod(r[q]) # find the gcd of bases for each q G = [] for q in common_q: g = reduce(igcd, [r[q] for r in rads], 0) if g != 1: G.append(g**Rational(1, q)) if G: G = Mul(*G) args = [ai/G for ai in args] prim = G*prim.func(*args) return con, prim @property def _sorted_args(self): from sympy.core.compatibility import default_sort_key return tuple(sorted(self.args, key=default_sort_key)) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd return self.func(*[dd(a, n, step) for a in self.args]) @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float re_part, rest = self.as_coeff_Add() im_part, imag_unit = rest.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I") return (Float(re_part)._mpf_, Float(im_part)._mpf_) from .mul import Mul, _keep_coeff, prod from sympy.core.numbers import Rational
06bc5460cba032640342517032cf5f6c6d81d73e04982d06dc22a788a7f0cf46
from __future__ import print_function, division from .add import _unevaluated_Add, Add from .basic import S from .compatibility import ordered from .expr import Expr from .evalf import EvalfMixin from .sympify import _sympify from .evaluate import global_evaluate from sympy.logic.boolalg import Boolean, BooleanAtom __all__ = ( 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan', 'StrictGreaterThan', 'GreaterThan', ) # Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean # and Expr. def _canonical(cond): # return a condition in which all relationals are canonical try: reps = dict([(r, r.canonical) for r in cond.atoms(Relational)]) return cond.xreplace(reps) except AttributeError: return cond class Relational(Boolean, Expr, EvalfMixin): """Base class for all relation types. Subclasses of Relational should generally be instantiated directly, but Relational can be instantiated with a valid `rop` value to dispatch to the appropriate subclass. Parameters ========== rop : str or None Indicates what subclass to instantiate. Valid values can be found in the keys of Relational.ValidRelationalOperator. Examples ======== >>> from sympy import Rel >>> from sympy.abc import x, y >>> Rel(y, x + x**2, '==') Eq(y, x**2 + x) """ __slots__ = [] is_Relational = True # ValidRelationOperator - Defined below, because the necessary classes # have not yet been defined def __new__(cls, lhs, rhs, rop=None, **assumptions): # If called by a subclass, do nothing special and pass on to Expr. if cls is not Relational: return Expr.__new__(cls, lhs, rhs, **assumptions) # If called directly with an operator, look up the subclass # corresponding to that operator and delegate to it try: cls = cls.ValidRelationOperator[rop] rv = cls(lhs, rhs, **assumptions) # /// drop when Py2 is no longer supported # validate that Booleans are not being used in a relational # other than Eq/Ne; if isinstance(rv, (Eq, Ne)): pass elif isinstance(rv, Relational): # could it be otherwise? from sympy.core.symbol import Symbol from sympy.logic.boolalg import Boolean for a in rv.args: if isinstance(a, Symbol): continue if isinstance(a, Boolean): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) # \\\ return rv except KeyError: raise ValueError( "Invalid relational operator symbol: %r" % rop) @property def lhs(self): """The left-hand side of the relation.""" return self._args[0] @property def rhs(self): """The right-hand side of the relation.""" return self._args[1] @property def reversed(self): """Return the relationship with sides (and sign) reversed. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.reversed Eq(1, x) >>> x < 1 x < 1 >>> _.reversed 1 > x """ ops = {Gt: Lt, Ge: Le, Lt: Gt, Le: Ge} a, b = self.args return Relational.__new__(ops.get(self.func, self.func), b, a) @property def negated(self): """Return the negated relationship. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.negated Ne(x, 1) >>> x < 1 x < 1 >>> _.negated x >= 1 Notes ===== This works more or less identical to ``~``/``Not``. The difference is that ``negated`` returns the relationship even if `evaluate=False`. Hence, this is useful in code when checking for e.g. negated relations to exisiting ones as it will not be affected by the `evaluate` flag. """ ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq} # If there ever will be new Relational subclasses, the following line will work until it is properly sorted out # return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a, b, evaluate=evaluate)))(*self.args, evaluate=False) return Relational.__new__(ops.get(self.func), *self.args) def _eval_evalf(self, prec): return self.func(*[s._evalf(prec) for s in self.args]) @property def canonical(self): """Return a canonical form of the relational by putting a Number on the rhs else ordering the args. No other simplification is attempted. Examples ======== >>> from sympy.abc import x, y >>> x < 2 x < 2 >>> _.reversed.canonical x < 2 >>> (-y < x).canonical x > -y >>> (-y > x).canonical x < -y """ args = self.args r = self if r.rhs.is_Number: if r.lhs.is_Number and r.lhs > r.rhs: r = r.reversed elif r.lhs.is_Number: r = r.reversed elif tuple(ordered(args)) != args: r = r.reversed return r def equals(self, other, failing_expression=False): """Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value was unknown.""" if isinstance(other, Relational): if self == other or self.reversed == other: return True a, b = self, other if a.func in (Eq, Ne) or b.func in (Eq, Ne): if a.func != b.func: return False l, r = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.args)] if l is True: return r if r is True: return l lr, rl = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.reversed.args)] if lr is True: return rl if rl is True: return lr e = (l, r, lr, rl) if all(i is False for i in e): return False for i in e: if i not in (True, False): return i else: if b.func != a.func: b = b.reversed if a.func != b.func: return False l = a.lhs.equals(b.lhs, failing_expression=failing_expression) if l is False: return False r = a.rhs.equals(b.rhs, failing_expression=failing_expression) if r is False: return False if l is True: return r return l def _eval_simplify(self, ratio, measure, rational, inverse): r = self r = r.func(*[i.simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse) for i in r.args]) if r.is_Relational: dif = r.lhs - r.rhs # replace dif with a valid Number that will # allow a definitive comparison with 0 v = None if dif.is_comparable: v = dif.n(2) elif dif.equals(0): # XXX this is expensive v = S.Zero if v is not None: r = r.func._eval_relation(v, S.Zero) r = r.canonical if measure(r) < ratio*measure(self): return r else: return self def __nonzero__(self): raise TypeError("cannot determine truth value of Relational") __bool__ = __nonzero__ def _eval_as_set(self): # self is univariate and periodicity(self, x) in (0, None) from sympy.solvers.inequalities import solve_univariate_inequality syms = self.free_symbols assert len(syms) == 1 x = syms.pop() return solve_univariate_inequality(self, x, relational=False) @property def binary_symbols(self): # override where necessary return set() Rel = Relational class Equality(Relational): """An equal relation between two objects. Represents that two objects are equal. If they can be easily shown to be definitively equal (or unequal), this will reduce to True (or False). Otherwise, the relation is maintained as an unevaluated Equality object. Use the ``simplify`` function on this object for more nontrivial evaluation of the equality relation. As usual, the keyword argument ``evaluate=False`` can be used to prevent any evaluation. Examples ======== >>> from sympy import Eq, simplify, exp, cos >>> from sympy.abc import x, y >>> Eq(y, x + x**2) Eq(y, x**2 + x) >>> Eq(2, 5) False >>> Eq(2, 5, evaluate=False) Eq(2, 5) >>> _.doit() False >>> Eq(exp(x), exp(x).rewrite(cos)) Eq(exp(x), sinh(x) + cosh(x)) >>> simplify(_) True See Also ======== sympy.logic.boolalg.Equivalent : for representing equality between two boolean expressions Notes ===== This class is not the same as the == operator. The == operator tests for exact structural equality between two expressions; this class compares expressions mathematically. If either object defines an `_eval_Eq` method, it can be used in place of the default algorithm. If `lhs._eval_Eq(rhs)` or `rhs._eval_Eq(lhs)` returns anything other than None, that return value will be substituted for the Equality. If None is returned by `_eval_Eq`, an Equality object will be created as usual. Since this object is already an expression, it does not respond to the method `as_expr` if one tries to create `x - y` from Eq(x, y). This can be done with the `rewrite(Add)` method. """ rel_op = '==' __slots__ = [] is_Equality = True def __new__(cls, lhs, rhs=0, **options): from sympy.core.add import Add from sympy.core.logic import fuzzy_bool from sympy.core.expr import _n2 from sympy.simplify.simplify import clear_coefficients lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_evaluate[0]) if evaluate: # If one expression has an _eval_Eq, return its results. if hasattr(lhs, '_eval_Eq'): r = lhs._eval_Eq(rhs) if r is not None: return r if hasattr(rhs, '_eval_Eq'): r = rhs._eval_Eq(lhs) if r is not None: return r # If expressions have the same structure, they must be equal. if lhs == rhs: return S.true # e.g. True == True elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)): return S.false # True != False elif not (lhs.is_Symbol or rhs.is_Symbol) and ( isinstance(lhs, Boolean) != isinstance(rhs, Boolean)): return S.false # only Booleans can equal Booleans # check finiteness fin = L, R = [i.is_finite for i in (lhs, rhs)] if None not in fin: if L != R: return S.false if L is False: if lhs == -rhs: # Eq(oo, -oo) return S.false return S.true elif None in fin and False in fin: return Relational.__new__(cls, lhs, rhs, **options) if all(isinstance(i, Expr) for i in (lhs, rhs)): # see if the difference evaluates dif = lhs - rhs z = dif.is_zero if z is not None: if z is False and dif.is_commutative: # issue 10728 return S.false if z: return S.true # evaluate numerically if possible n2 = _n2(lhs, rhs) if n2 is not None: return _sympify(n2 == 0) # see if the ratio evaluates n, d = dif.as_numer_denom() rv = None if n.is_zero: rv = d.is_nonzero elif n.is_finite: if d.is_infinite: rv = S.true elif n.is_zero is False: rv = d.is_infinite if rv is None: # if the condition that makes the denominator infinite does not # make the original expression True then False can be returned l, r = clear_coefficients(d, S.Infinity) args = [_.subs(l, r) for _ in (lhs, rhs)] if args != [lhs, rhs]: rv = fuzzy_bool(Eq(*args)) if rv is True: rv = None elif any(a.is_infinite for a in Add.make_args(n)): # (inf or nan)/x != 0 rv = S.false if rv is not None: return _sympify(rv) return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs == rhs) def _eval_rewrite_as_Add(self, *args, **kwargs): """return Eq(L, R) as L - R. To control the evaluation of the result set pass `evaluate=True` to give L - R; if `evaluate=None` then terms in L and R will not cancel but they will be listed in canonical order; otherwise non-canonical args will be returned. Examples ======== >>> from sympy import Eq, Add >>> from sympy.abc import b, x >>> eq = Eq(x + b, x - b) >>> eq.rewrite(Add) 2*b >>> eq.rewrite(Add, evaluate=None).args (b, b, x, -x) >>> eq.rewrite(Add, evaluate=False).args (b, x, b, -x) """ L, R = args evaluate = kwargs.get('evaluate', True) if evaluate: # allow cancellation of args return L - R args = Add.make_args(L) + Add.make_args(-R) if evaluate is None: # no cancellation, but canonical return _unevaluated_Add(*args) # no cancellation, not canonical return Add._from_args(args) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return set([self.lhs]) elif self.rhs.is_Symbol: return set([self.rhs]) return set() def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.solvers.solveset import linear_coeffs # standard simplify e = super(Equality, self)._eval_simplify( ratio, measure, rational, inverse) if not isinstance(e, Equality): return e free = self.free_symbols if len(free) == 1: try: x = free.pop() m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) if m.is_zero is False: enew = e.func(x, -b/m) else: enew = e.func(m*x, -b) if measure(enew) <= ratio*measure(e): e = enew except ValueError: pass return e.canonical Eq = Equality class Unequality(Relational): """An unequal relation between two objects. Represents that two objects are not equal. If they can be shown to be definitively equal, this will reduce to False; if definitively unequal, this will reduce to True. Otherwise, the relation is maintained as an Unequality object. Examples ======== >>> from sympy import Ne >>> from sympy.abc import x, y >>> Ne(y, x+x**2) Ne(y, x**2 + x) See Also ======== Equality Notes ===== This class is not the same as the != operator. The != operator tests for exact structural equality between two expressions; this class compares expressions mathematically. This class is effectively the inverse of Equality. As such, it uses the same algorithms, including any available `_eval_Eq` methods. """ rel_op = '!=' __slots__ = [] def __new__(cls, lhs, rhs, **options): lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_evaluate[0]) if evaluate: is_equal = Equality(lhs, rhs) if isinstance(is_equal, BooleanAtom): return is_equal.negated return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs != rhs) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return set([self.lhs]) elif self.rhs.is_Symbol: return set([self.rhs]) return set() def _eval_simplify(self, ratio, measure, rational, inverse): # simplify as an equality eq = Equality(*self.args)._eval_simplify( ratio, measure, rational, inverse) if isinstance(eq, Equality): # send back Ne with the new args return self.func(*eq.args) return eq.negated # result of Ne is the negated Eq Ne = Unequality class _Inequality(Relational): """Internal base class for all *Than types. Each subclass must implement _eval_relation to provide the method for comparing two real numbers. """ __slots__ = [] def __new__(cls, lhs, rhs, **options): lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_evaluate[0]) if evaluate: # First we invoke the appropriate inequality method of `lhs` # (e.g., `lhs.__lt__`). That method will try to reduce to # boolean or raise an exception. It may keep calling # superclasses until it reaches `Expr` (e.g., `Expr.__lt__`). # In some cases, `Expr` will just invoke us again (if neither it # nor a subclass was able to reduce to boolean or raise an # exception). In that case, it must call us with # `evaluate=False` to prevent infinite recursion. r = cls._eval_relation(lhs, rhs) if r is not None: return r # Note: not sure r could be None, perhaps we never take this # path? In principle, could use this to shortcut out if a # class realizes the inequality cannot be evaluated further. # make a "non-evaluated" Expr for the inequality return Relational.__new__(cls, lhs, rhs, **options) class _Greater(_Inequality): """Not intended for general use _Greater is only used so that GreaterThan and StrictGreaterThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[0] @property def lts(self): return self._args[1] class _Less(_Inequality): """Not intended for general use. _Less is only used so that LessThan and StrictLessThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[1] @property def lts(self): return self._args[0] class GreaterThan(_Greater): """Class representations of inequalities. Extended Summary ================ The ``*Than`` classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation: lhs >= rhs In total, there are four ``*Than`` classes, to represent the four inequalities: +-----------------+--------+ |Class Name | Symbol | +=================+========+ |GreaterThan | (>=) | +-----------------+--------+ |LessThan | (<=) | +-----------------+--------+ |StrictGreaterThan| (>) | +-----------------+--------+ |StrictLessThan | (<) | +-----------------+--------+ All classes take two arguments, lhs and rhs. +----------------------------+-----------------+ |Signature Example | Math equivalent | +============================+=================+ |GreaterThan(lhs, rhs) | lhs >= rhs | +----------------------------+-----------------+ |LessThan(lhs, rhs) | lhs <= rhs | +----------------------------+-----------------+ |StrictGreaterThan(lhs, rhs) | lhs > rhs | +----------------------------+-----------------+ |StrictLessThan(lhs, rhs) | lhs < rhs | +----------------------------+-----------------+ In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes: >>> from sympy import GreaterThan, StrictGreaterThan >>> from sympy import LessThan, StrictLessThan >>> from sympy import And, Ge, Gt, Le, Lt, Rel, S >>> from sympy.abc import x, y, z >>> from sympy.core.relational import Relational >>> e = GreaterThan(x, 1) >>> e x >= 1 >>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts) 'x >= 1 is the same as 1 <= x' Examples ======== One generally does not instantiate these classes directly, but uses various convenience methods: >>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers ... print(f(x, 2)) x >= 2 x > 2 x <= 2 x < 2 Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below). >>> x >= 2 x >= 2 >>> _ == Ge(x, 2) True However, it is also perfectly valid to instantiate a ``*Than`` class less succinctly and less conveniently: >>> Rel(x, 1, ">") x > 1 >>> Relational(x, 1, ">") x > 1 >>> StrictGreaterThan(x, 1) x > 1 >>> GreaterThan(x, 1) x >= 1 >>> LessThan(x, 1) x <= 1 >>> StrictLessThan(x, 1) x < 1 Notes ===== There are a couple of "gotchas" to be aware of when using Python's operators. The first is that what your write is not always what you get: >>> 1 < x x > 1 Due to the order that Python parses a statement, it may not immediately find two objects comparable. When "1 < x" is evaluated, Python recognizes that the number 1 is a native number and that x is *not*. Because a native Python number does not know how to compare itself with a SymPy object Python will try the reflective operation, "x > 1" and that is the form that gets evaluated, hence returned. If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison >>> S(1) < x 1 < x (2) use one of the wrappers or less succinct methods described above >>> Lt(1, x) 1 < x >>> Relational(1, x, "<") 1 < x The second gotcha involves writing equality tests between relationals when one or both sides of the test involve a literal relational: >>> e = x < 1; e x < 1 >>> e == e # neither side is a literal True >>> e == x < 1 # expecting True, too False >>> e != x < 1 # expecting False x < 1 >>> x < 1 != x < 1 # expecting False or the same thing as before Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational The solution for this case is to wrap literal relationals in parentheses: >>> e == (x < 1) True >>> e != (x < 1) False >>> (x < 1) != (x < 1) False The third gotcha involves chained inequalities not involving '==' or '!='. Occasionally, one may be tempted to write: >>> e = x < y < z Traceback (most recent call last): ... TypeError: symbolic boolean expression has no truth value. Due to an implementation detail or decision of Python [1]_, there is no way for SymPy to create a chained inequality with that syntax so one must use And: >>> e = And(x < y, y < z) >>> type( e ) And >>> e (x < y) & (y < z) Although this can also be done with the '&' operator, it cannot be done with the 'and' operarator: >>> (x < y) & (y < z) (x < y) & (y < z) >>> (x < y) and (y < z) Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational .. [1] This implementation detail is that Python provides no reliable method to determine that a chained inequality is being built. Chained comparison operators are evaluated pairwise, using "and" logic (see http://docs.python.org/2/reference/expressions.html#notin). This is done in an efficient way, so that each object being compared is only evaluated once and the comparison can short-circuit. For example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2 > 3)``. The ``and`` operator coerces each side into a bool, returning the object itself when it short-circuits. The bool of the --Than operators will raise TypeError on purpose, because SymPy cannot determine the mathematical ordering of symbolic expressions. Thus, if we were to compute ``x > y > z``, with ``x``, ``y``, and ``z`` being Symbols, Python converts the statement (roughly) into these steps: (1) x > y > z (2) (x > y) and (y > z) (3) (GreaterThanObject) and (y > z) (4) (GreaterThanObject.__nonzero__()) and (y > z) (5) TypeError Because of the "and" added at step 2, the statement gets turned into a weak ternary statement, and the first object's __nonzero__ method will raise TypeError. Thus, creating a chained inequality is not possible. In Python, there is no way to override the ``and`` operator, or to control how it short circuits, so it is impossible to make something like ``x > y > z`` work. There was a PEP to change this, :pep:`335`, but it was officially closed in March, 2012. """ __slots__ = () rel_op = '>=' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__ge__(rhs)) Ge = GreaterThan class LessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<=' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__le__(rhs)) Le = LessThan class StrictGreaterThan(_Greater): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '>' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__gt__(rhs)) Gt = StrictGreaterThan class StrictLessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<' @classmethod def _eval_relation(cls, lhs, rhs): # We don't use the op symbol here: workaround issue #7951 return _sympify(lhs.__lt__(rhs)) Lt = StrictLessThan # A class-specific (not object-specific) data item used for a minor speedup. It # is defined here, rather than directly in the class, because the classes that # it references have not been defined until now (e.g. StrictLessThan). Relational.ValidRelationOperator = { None: Equality, '==': Equality, 'eq': Equality, '!=': Unequality, '<>': Unequality, 'ne': Unequality, '>=': GreaterThan, 'ge': GreaterThan, '<=': LessThan, 'le': LessThan, '>': StrictGreaterThan, 'gt': StrictGreaterThan, '<': StrictLessThan, 'lt': StrictLessThan, }
3f3d45abfe335dfda0520345e7b85d9305277bf5509a271c5b3445c5860be2f2
from __future__ import print_function, division import decimal import fractions import math import re as regex from .containers import Tuple from .sympify import converter, sympify, _sympify, SympifyError, _convert_numpy_types from .singleton import S, Singleton from .expr import Expr, AtomicExpr from .decorators import _sympifyit from .cache import cacheit, clear_cache from .logic import fuzzy_not from sympy.core.compatibility import ( as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY, SYMPY_INTS, int_info) from sympy.core.cache import lru_cache import mpmath import mpmath.libmp as mlib from mpmath.libmp.backend import MPZ from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed from mpmath.ctx_mp import mpnumeric from mpmath.libmp.libmpf import ( finf as _mpf_inf, fninf as _mpf_ninf, fnan as _mpf_nan, fzero as _mpf_zero, _normalize as mpf_normalize, prec_to_dps) from sympy.utilities.misc import debug, filldedent from .evaluate import global_evaluate from sympy.utilities.exceptions import SymPyDeprecationWarning rnd = mlib.round_nearest _LOG2 = math.log(2) def comp(z1, z2, tol=None): """Return a bool indicating whether the error between z1 and z2 is <= tol. If ``tol`` is None then True will be returned if there is a significant difference between the numbers: ``abs(z1 - z2)*10**p <= 1/2`` where ``p`` is the lower of the precisions of the values. A comparison of strings will be made if ``z1`` is a Number and a) ``z2`` is a string or b) ``tol`` is '' and ``z2`` is a Number. When ``tol`` is a nonzero value, if z2 is non-zero and ``|z1| > 1`` the error is normalized by ``|z1|``, so if you want to see if the absolute error between ``z1`` and ``z2`` is <= ``tol`` then call this as ``comp(z1 - z2, 0, tol)``. """ if type(z2) is str: if not isinstance(z1, Number): raise ValueError('when z2 is a str z1 must be a Number') return str(z1) == z2 if not z1: z1, z2 = z2, z1 if not z1: return True if not tol: if tol is None: if type(z2) is str and getattr(z1, 'is_Number', False): return str(z1) == z2 a, b = Float(z1), Float(z2) return int(abs(a - b)*10**prec_to_dps( min(a._prec, b._prec)))*2 <= 1 elif all(getattr(i, 'is_Number', False) for i in (z1, z2)): return z1._prec == z2._prec and str(z1) == str(z2) raise ValueError('exact comparison requires two Numbers') diff = abs(z1 - z2) az1 = abs(z1) if z2 and az1 > 1: return diff/az1 <= tol else: return diff <= tol def mpf_norm(mpf, prec): """Return the mpf tuple normalized appropriately for the indicated precision after doing a check to see if zero should be returned or not when the mantissa is 0. ``mpf_normlize`` always assumes that this is zero, but it may not be since the mantissa for mpf's values "+inf", "-inf" and "nan" have a mantissa of zero, too. Note: this is not intended to validate a given mpf tuple, so sending mpf tuples that were not created by mpmath may produce bad results. This is only a wrapper to ``mpf_normalize`` which provides the check for non- zero mpfs that have a 0 for the mantissa. """ sign, man, expt, bc = mpf if not man: # hack for mpf_normalize which does not do this; # it assumes that if man is zero the result is 0 # (see issue 6639) if not bc: return _mpf_zero else: # don't change anything; this should already # be a well formed mpf tuple return mpf # Necessary if mpmath is using the gmpy backend from mpmath.libmp.backend import MPZ rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) return rv # TODO: we should use the warnings module _errdict = {"divide": False} def seterr(divide=False): """ Should sympy raise an exception on 0/0 or return a nan? divide == True .... raise an exception divide == False ... return nan """ if _errdict["divide"] != divide: clear_cache() _errdict["divide"] = divide def _as_integer_ratio(p): neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) p = [1, -1][neg_pow % 2]*man if expt < 0: q = 2**-expt else: q = 1 p *= 2**expt return int(p), int(q) def _decimal_to_Rational_prec(dec): """Convert an ordinary decimal instance to a Rational.""" if not dec.is_finite(): raise TypeError("dec must be finite, got %s." % dec) s, d, e = dec.as_tuple() prec = len(d) if e >= 0: # it's an integer rv = Integer(int(dec)) else: s = (-1)**s d = sum([di*10**i for i, di in enumerate(reversed(d))]) rv = Rational(s*d, 10**-e) return rv, prec def _literal_float(f): """Return True if n can be interpreted as a floating point number.""" pat = r"[-+]?((\d*\.\d+)|(\d+\.?))(eE[-+]?\d+)?" return bool(regex.match(pat, f)) # (a,b) -> gcd(a,b) # TODO caching with decorator, but not to degrade performance @lru_cache(1024) def igcd(*args): """Computes nonnegative integer greatest common divisor. The algorithm is based on the well known Euclid's algorithm. To improve speed, igcd() has its own caching mechanism implemented. Examples ======== >>> from sympy.core.numbers import igcd >>> igcd(2, 4) 2 >>> igcd(5, 10, 15) 5 """ if len(args) < 2: raise TypeError( 'igcd() takes at least 2 arguments (%s given)' % len(args)) args_temp = [abs(as_int(i)) for i in args] if 1 in args_temp: return 1 a = args_temp.pop() for b in args_temp: a = igcd2(a, b) if b else a return a try: from math import gcd as igcd2 except ImportError: def igcd2(a, b): """Compute gcd of two Python integers a and b.""" if (a.bit_length() > BIGBITS and b.bit_length() > BIGBITS): return igcd_lehmer(a, b) a, b = abs(a), abs(b) while b: a, b = b, a % b return a # Use Lehmer's algorithm only for very large numbers. # The limit could be different on Python 2.7 and 3.x. # If so, then this could be defined in compatibility.py. BIGBITS = 5000 def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a def ilcm(*args): """Computes integer least common multiple. Examples ======== >>> from sympy.core.numbers import ilcm >>> ilcm(5, 10) 10 >>> ilcm(7, 3) 21 >>> ilcm(5, 10, 15) 30 """ if len(args) < 2: raise TypeError( 'ilcm() takes at least 2 arguments (%s given)' % len(args)) if 0 in args: return 0 a = args[0] for b in args[1:]: a = a // igcd(a, b) * b # since gcd(a,b) | a return a def igcdex(a, b): """Returns x, y, g such that g = x*a + y*b = gcd(a, b). >>> from sympy.core.numbers import igcdex >>> igcdex(2, 3) (-1, 1, 1) >>> igcdex(10, 12) (-1, 1, 2) >>> x, y, g = igcdex(100, 2004) >>> x, y, g (-20, 1, 4) >>> x*100 + y*2004 4 """ if (not a) and (not b): return (0, 1, 0) if not a: return (0, b//abs(b), abs(b)) if not b: return (a//abs(a), 0, abs(a)) if a < 0: a, x_sign = -a, -1 else: x_sign = 1 if b < 0: b, y_sign = -b, -1 else: y_sign = 1 x, y, r, s = 1, 0, 0, 1 while b: (c, q) = (a % b, a // b) (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) return (x*x_sign, y*y_sign, a) def mod_inverse(a, m): """ Return the number c such that, (a * c) = 1 (mod m) where c has the same sign as m. If no such value exists, a ValueError is raised. Examples ======== >>> from sympy import S >>> from sympy.core.numbers import mod_inverse Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that 3 * x = 1 (mod 11). One value of x that satisfies this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11). This is the value return by mod_inverse: >>> mod_inverse(3, 11) 4 >>> mod_inverse(-3, 11) 7 When there is a common factor between the numerators of ``a`` and ``m`` the inverse does not exist: >>> mod_inverse(2, 4) Traceback (most recent call last): ... ValueError: inverse of 2 mod 4 does not exist >>> mod_inverse(S(2)/7, S(5)/2) 7/2 References ========== - https://en.wikipedia.org/wiki/Modular_multiplicative_inverse - https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ c = None try: a, m = as_int(a), as_int(m) if m != 1 and m != -1: x, y, g = igcdex(a, m) if g == 1: c = x % m except ValueError: a, m = sympify(a), sympify(m) if not (a.is_number and m.is_number): raise TypeError(filldedent(''' Expected numbers for arguments; symbolic `mod_inverse` is not implemented but symbolic expressions can be handled with the similar function, sympy.polys.polytools.invert''')) big = (m > 1) if not (big is S.true or big is S.false): raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) elif big: c = 1/a if c is None: raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) return c class Number(AtomicExpr): """Represents atomic numbers in SymPy. Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational. For example, ``2/3`` is represented as ``Rational(2, 3)`` which is a different object from the floating point number obtained with Python division ``2/3``. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. The rational form is to be preferred in symbolic computations. Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or complex numbers ``3 + 4*I``, are not instances of Number class as they are not atomic. See Also ======== Float, Integer, Rational """ is_commutative = True is_number = True is_Number = True __slots__ = [] # Used to make max(x._prec, y._prec) return x._prec when only x is a float _prec = -1 def __new__(cls, *obj): if len(obj) == 1: obj = obj[0] if isinstance(obj, Number): return obj if isinstance(obj, SYMPY_INTS): return Integer(obj) if isinstance(obj, tuple) and len(obj) == 2: return Rational(*obj) if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): return Float(obj) if isinstance(obj, string_types): val = sympify(obj) if isinstance(val, Number): return val else: raise ValueError('String "%s" does not denote a Number' % obj) msg = "expected str|int|long|float|Decimal|Number object but got %r" raise TypeError(msg % type(obj).__name__) def invert(self, other, *gens, **args): from sympy.polys.polytools import invert if getattr(other, 'is_number', True): return mod_inverse(self, other) return invert(self, other, *gens, **args) def __divmod__(self, other): from .containers import Tuple try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" raise TypeError(msg % (type(self).__name__, type(other).__name__)) if not other: raise ZeroDivisionError('modulo by zero') if self.is_Integer and other.is_Integer: return Tuple(*divmod(self.p, other.p)) else: rat = self/other w = int(rat) if rat > 0 else int(rat) - 1 r = self - other*w return Tuple(w, r) def __rdivmod__(self, other): try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" raise TypeError(msg % (type(other).__name__, type(self).__name__)) return divmod(other, self) def __round__(self, *args): return round(float(self), *args) def _as_mpf_val(self, prec): """Evaluation of mpf tuple accurate to at least prec bits.""" raise NotImplementedError('%s needs ._as_mpf_val() method' % (self.__class__.__name__)) def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def _as_mpf_op(self, prec): prec = max(prec, self._prec) return self._as_mpf_val(prec), prec def __float__(self): return mlib.to_float(self._as_mpf_val(53)) def floor(self): raise NotImplementedError('%s needs .floor() method' % (self.__class__.__name__)) def ceiling(self): raise NotImplementedError('%s needs .ceiling() method' % (self.__class__.__name__)) def _eval_conjugate(self): return self def _eval_order(self, *symbols): from sympy import Order # Order(5, x, y) -> Order(1,x,y) return Order(S.One, *symbols) def _eval_subs(self, old, new): if old == -self: return -new return self # there is no other possibility def _eval_is_finite(self): return True @classmethod def class_key(cls): return 1, 0, 'Number' @cacheit def sort_key(self, order=None): return self.class_key(), (0, ()), (), self @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.Infinity elif other is S.NegativeInfinity: return S.NegativeInfinity return AtomicExpr.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.NegativeInfinity elif other is S.NegativeInfinity: return S.Infinity return AtomicExpr.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity: if self.is_zero: return S.NaN elif self.is_positive: return S.Infinity else: return S.NegativeInfinity elif other is S.NegativeInfinity: if self.is_zero: return S.NaN elif self.is_positive: return S.NegativeInfinity else: return S.Infinity elif isinstance(other, Tuple): return NotImplemented return AtomicExpr.__mul__(self, other) @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number) and global_evaluate[0]: if other is S.NaN: return S.NaN elif other is S.Infinity or other is S.NegativeInfinity: return S.Zero return AtomicExpr.__div__(self, other) __truediv__ = __div__ def __eq__(self, other): raise NotImplementedError('%s needs .__eq__() method' % (self.__class__.__name__)) def __ne__(self, other): raise NotImplementedError('%s needs .__ne__() method' % (self.__class__.__name__)) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) raise NotImplementedError('%s needs .__lt__() method' % (self.__class__.__name__)) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) raise NotImplementedError('%s needs .__le__() method' % (self.__class__.__name__)) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) return _sympify(other).__lt__(self) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) return _sympify(other).__le__(self) def __hash__(self): return super(Number, self).__hash__() def is_constant(self, *wrt, **flags): return True def as_coeff_mul(self, *deps, **kwargs): # a -> c*t if self.is_Rational or not kwargs.pop('rational', True): return self, tuple() elif self.is_negative: return S.NegativeOne, (-self,) return S.One, (self,) def as_coeff_add(self, *deps): # a -> c + t if self.is_Rational: return self, tuple() return S.Zero, (self,) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ if rational and not self.is_Rational: return S.One, self return (self, S.One) if self else (S.One, self) def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ if not rational: return self, S.Zero return S.Zero, self def gcd(self, other): """Compute GCD of `self` and `other`. """ from sympy.polys import gcd return gcd(self, other) def lcm(self, other): """Compute LCM of `self` and `other`. """ from sympy.polys import lcm return lcm(self, other) def cofactors(self, other): """Compute GCD and cofactors of `self` and `other`. """ from sympy.polys import cofactors return cofactors(self, other) class Float(Number): """Represent a floating-point number of arbitrary precision. Examples ======== >>> from sympy import Float >>> Float(3.5) 3.50000000000000 >>> Float(3) 3.00000000000000 Creating Floats from strings (and Python ``int`` and ``long`` types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered. >>> Float(1) 1.00000000000000 >>> Float(10**20) 100000000000000000000. >>> Float('1e20') 100000000000000000000. However, *floating-point* numbers (Python ``float`` types) retain only 15 digits of precision: >>> Float(1e20) 1.00000000000000e+20 >>> Float(1.23456789123456789) 1.23456789123457 It may be preferable to enter high-precision decimal numbers as strings: Float('1.23456789123456789') 1.23456789123456789 The desired number of digits can also be specified: >>> Float('1e-3', 3) 0.00100 >>> Float(100, 4) 100.0 Float can automatically count significant figures if a null string is sent for the precision; space are also allowed in the string. (Auto- counting is only allowed for strings, ints and longs). >>> Float('123 456 789 . 123 456', '') 123456789.123456 >>> Float('12e-3', '') 0.012 >>> Float(3, '') 3. If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the "e" signifies only how to move the decimal: >>> Float('60.e2', '') # 2 digits significant 6.0e+3 >>> Float('60e2', '') # 4 digits significant 6000. >>> Float('600e-2', '') # 3 digits significant 6.00 Notes ===== Floats are inexact by their nature unless their value is a binary-exact value. >>> approx, exact = Float(.1, 1), Float(.125, 1) For calculation purposes, evalf needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision: >>> approx.evalf(5) 0.099609 By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float or evalf to obtain an arbitrary precision with matching accuracy: >>> Float(exact, 5) 0.12500 >>> exact.evalf(20) 0.12500000000000000000 Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the *underlying float* (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction 5404319552844595/2**54. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros: >>> Float(0.3, 20) 0.29999999999999998890 If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used: >>> Float('0.3', 20) 0.30000000000000000000 Although you can increase the precision of an existing Float using Float it will not increase the accuracy -- the underlying value is not changed: >>> def show(f): # binary rep of Float ... from sympy import Mul, Pow ... s, m, e, b = f._mpf_ ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) ... print('%s at prec=%s' % (v, f._prec)) ... >>> t = Float('0.3', 3) >>> show(t) 4915/2**14 at prec=13 >>> show(Float(t, 20)) # higher prec, not higher accuracy 4915/2**14 at prec=70 >>> show(Float(t, 2)) # lower prec 307/2**10 at prec=10 The same thing happens when evalf is used on a Float: >>> show(t.evalf(20)) 4915/2**14 at prec=70 >>> show(t.evalf(2)) 307/2**10 at prec=10 Finally, Floats can be instantiated with an mpf tuple (n, c, p) to produce the number (-1)**n*c*2**p: >>> n, c, p = 1, 5, 0 >>> (-1)**n*c*2**p -5 >>> Float((1, 5, 0)) -5.00000000000000 An actual mpf tuple also contains the number of bits in c as the last element of the tuple: >>> _._mpf_ (1, 5, 0, 3) This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks. """ __slots__ = ['_mpf_', '_prec'] # A Float represents many real numbers, # both rational and irrational. is_rational = None is_irrational = None is_number = True is_real = True is_Float = True def __new__(cls, num, dps=None, prec=None, precision=None): if prec is not None: SymPyDeprecationWarning( feature="Using 'prec=XX' to denote decimal precision", useinstead="'dps=XX' for decimal precision and 'precision=XX' "\ "for binary precision", issue=12820, deprecated_since_version="1.1").warn() dps = prec del prec # avoid using this deprecated kwarg if dps is not None and precision is not None: raise ValueError('Both decimal and binary precision supplied. ' 'Supply only one. ') if isinstance(num, string_types): num = num.replace(' ', '') if num.startswith('.') and len(num) > 1: num = '0' + num elif num.startswith('-.') and len(num) > 2: num = '-0.' + num[2:] elif isinstance(num, float) and num == 0: num = '0' elif isinstance(num, (SYMPY_INTS, Integer)): num = str(num) # faster than mlib.from_int elif num is S.Infinity: num = '+inf' elif num is S.NegativeInfinity: num = '-inf' elif type(num).__module__ == 'numpy': # support for numpy datatypes num = _convert_numpy_types(num) elif isinstance(num, mpmath.mpf): if precision is None: if dps is None: precision = num.context.prec num = num._mpf_ if dps is None and precision is None: dps = 15 if isinstance(num, Float): return num if isinstance(num, string_types) and _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) dps = max(15, dps) precision = mlib.libmpf.dps_to_prec(dps) elif precision == '' and dps is None or precision is None and dps == '': if not isinstance(num, string_types): raise ValueError('The null string can only be used when ' 'the number to Float is passed as a string or an integer.') ok = None if _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) precision = mlib.libmpf.dps_to_prec(dps) ok = True if ok is None: raise ValueError('string-float not recognized: %s' % num) # decimal precision(dps) is set and maybe binary precision(precision) # as well.From here on binary precision is used to compute the Float. # Hence, if supplied use binary precision else translate from decimal # precision. if precision is None or precision == '': precision = mlib.libmpf.dps_to_prec(dps) precision = int(precision) if isinstance(num, float): _mpf_ = mlib.from_float(num, precision, rnd) elif isinstance(num, string_types): _mpf_ = mlib.from_str(num, precision, rnd) elif isinstance(num, decimal.Decimal): if num.is_finite(): _mpf_ = mlib.from_str(str(num), precision, rnd) elif num.is_nan(): _mpf_ = _mpf_nan elif num.is_infinite(): if num > 0: _mpf_ = _mpf_inf else: _mpf_ = _mpf_ninf else: raise ValueError("unexpected decimal value %s" % str(num)) elif isinstance(num, tuple) and len(num) in (3, 4): if type(num[1]) is str: # it's a hexadecimal (coming from a pickled object) # assume that it is in standard form num = list(num) # If we're loading an object pickled in Python 2 into # Python 3, we may need to strip a tailing 'L' because # of a shim for int on Python 3, see issue #13470. if num[1].endswith('L'): num[1] = num[1][:-1] num[1] = MPZ(num[1], 16) _mpf_ = tuple(num) else: if len(num) == 4: # handle normalization hack return Float._new(num, precision) else: return (S.NegativeOne**num[0]*num[1]*S(2)**num[2]).evalf(precision) else: try: _mpf_ = num._as_mpf_val(precision) except (NotImplementedError, AttributeError): _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ # special cases if _mpf_ == _mpf_zero: pass # we want a Float elif _mpf_ == _mpf_nan: return S.NaN obj = Expr.__new__(cls) obj._mpf_ = _mpf_ obj._prec = precision return obj @classmethod def _new(cls, _mpf_, _prec): # special cases if _mpf_ == _mpf_zero: return S.Zero # XXX this is different from Float which gives 0.0 elif _mpf_ == _mpf_nan: return S.NaN obj = Expr.__new__(cls) obj._mpf_ = mpf_norm(_mpf_, _prec) # XXX: Should this be obj._prec = obj._mpf_[3]? obj._prec = _prec return obj # mpz can't be pickled def __getnewargs__(self): return (mlib.to_pickable(self._mpf_),) def __getstate__(self): return {'_prec': self._prec} def _hashable_content(self): return (self._mpf_, self._prec) def floor(self): return Integer(int(mlib.to_int( mlib.mpf_floor(self._mpf_, self._prec)))) def ceiling(self): return Integer(int(mlib.to_int( mlib.mpf_ceil(self._mpf_, self._prec)))) @property def num(self): return mpmath.mpf(self._mpf_) def _as_mpf_val(self, prec): rv = mpf_norm(self._mpf_, prec) if rv != self._mpf_ and self._prec == prec: debug(self._mpf_, rv) return rv def _as_mpf_op(self, prec): return self._mpf_, max(prec, self._prec) def _eval_is_finite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return False return True def _eval_is_infinite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return True return False def _eval_is_integer(self): return self._mpf_ == _mpf_zero def _eval_is_negative(self): if self._mpf_ == _mpf_ninf: return True if self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_positive(self): if self._mpf_ == _mpf_inf: return True if self._mpf_ == _mpf_ninf: return False return self.num > 0 def _eval_is_zero(self): return self._mpf_ == _mpf_zero def __nonzero__(self): return self._mpf_ != _mpf_zero __bool__ = __nonzero__ def __neg__(self): return Float._new(mlib.mpf_neg(self._mpf_), self._prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) return Number.__mul__(self, other) @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number) and other != 0 and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) return Number.__div__(self, other) __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if isinstance(other, Rational) and other.q != 1 and global_evaluate[0]: # calculate mod with Rationals, *then* round the result return Float(Rational.__mod__(Rational(self), other), precision=self._prec) if isinstance(other, Float) and global_evaluate[0]: r = self/other if r == int(r): return Float(0, precision=max(self._prec, other._prec)) if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Float) and global_evaluate[0]: return other.__mod__(self) if isinstance(other, Number) and global_evaluate[0]: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) return Number.__rmod__(self, other) def _eval_power(self, expt): """ expt is symbolic object but not equal to 0, 1 (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> -> p**r*(sin(Pi*r) + cos(Pi*r)*I) """ if self == 0: if expt.is_positive: return S.Zero if expt.is_negative: return Float('inf') if isinstance(expt, Number): if isinstance(expt, Integer): prec = self._prec return Float._new( mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) elif isinstance(expt, Rational) and \ expt.p == 1 and expt.q % 2 and self.is_negative: return Pow(S.NegativeOne, expt, evaluate=False)*( -self)._eval_power(expt) expt, prec = expt._as_mpf_op(self._prec) mpfself = self._mpf_ try: y = mpf_pow(mpfself, expt, prec, rnd) return Float._new(y, prec) except mlib.ComplexResult: re, im = mlib.mpc_pow( (mpfself, _mpf_zero), (expt, _mpf_zero), prec, rnd) return Float._new(re, prec) + \ Float._new(im, prec)*S.ImaginaryUnit def __abs__(self): return Float._new(mlib.mpf_abs(self._mpf_), self._prec) def __int__(self): if self._mpf_ == _mpf_zero: return 0 return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down __long__ = __int__ def __eq__(self, other): if isinstance(other, float): # coerce to Float at same precision o = Float(other) try: ompf = o._as_mpf_val(self._prec) except ValueError: return False return bool(mlib.mpf_eq(self._mpf_, ompf)) try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Float: return bool(mlib.mpf_eq(self._mpf_, other._mpf_)) if other.is_Number: # numbers should compare at the same precision; # all _as_mpf_val routines should be sure to abide # by the request to change the prec if necessary; if # they don't, the equality test will fail since it compares # the mpf tuples ompf = other._as_mpf_val(self._prec) return bool(mlib.mpf_eq(self._mpf_, ompf)) return False # Float != non-Number def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_NumberSymbol: return other.__lt__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_gt(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__gt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_NumberSymbol: return other.__le__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_ge(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__ge__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_NumberSymbol: return other.__gt__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__lt__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_NumberSymbol: return other.__ge__(self) if other.is_Rational and not other.is_Integer: self *= other.q other = _sympify(other.p) elif other.is_comparable: other = other.evalf() if other.is_Number and other is not S.NaN: return _sympify(bool( mlib.mpf_le(self._mpf_, other._as_mpf_val(self._prec)))) return Expr.__le__(self, other) def __hash__(self): return super(Float, self).__hash__() def epsilon_eq(self, other, epsilon="1e-15"): return abs(self - other) < Float(epsilon) def _sage_(self): import sage.all as sage return sage.RealNumber(str(self)) def __format__(self, format_spec): return format(decimal.Decimal(str(self)), format_spec) # Add sympify converters converter[float] = converter[decimal.Decimal] = Float # this is here to work nicely in Sage RealNumber = Float class Rational(Number): """Represents rational numbers (p/q) of any size. Examples ======== >>> from sympy import Rational, nsimplify, S, pi >>> Rational(1, 2) 1/2 Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned: >>> Rational(.5) 1/2 >>> Rational(.2) 3602879701896397/18014398509481984 If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to 10**12): >>> Rational(str(.2)) 1/5 >>> Rational(.2).limit_denominator(10**12) 1/5 An arbitrarily precise Rational is obtained when a string literal is passed: >>> Rational("1.23") 123/100 >>> Rational('1e-2') 1/100 >>> Rational(".1") 1/10 >>> Rational('1e-2/3.2') 1/320 The conversion of other types of strings can be handled by the sympify() function, and conversion of floats to expressions or simple fractions can be handled with nsimplify: >>> S('.[3]') # repeating digits in brackets 1/3 >>> S('3**2/10') # general expressions 9/10 >>> nsimplify(.3) # numbers that have a simple form 3/10 But if the input does not reduce to a literal Rational, an error will be raised: >>> Rational(pi) Traceback (most recent call last): ... TypeError: invalid input: pi Low-level --------- Access numerator and denominator as .p and .q: >>> r = Rational(3, 4) >>> r 3/4 >>> r.p 3 >>> r.q 4 Note that p and q return integers (not SymPy Integers) so some care is needed when using them in expressions: >>> r.p/r.q 0.75 See Also ======== sympify, sympy.simplify.simplify.nsimplify """ is_real = True is_integer = False is_rational = True is_number = True __slots__ = ['p', 'q'] is_Rational = True @cacheit def __new__(cls, p, q=None, gcd=None): if q is None: if isinstance(p, Rational): return p if isinstance(p, SYMPY_INTS): pass else: if isinstance(p, (float, Float)): return Rational(*_as_integer_ratio(p)) if not isinstance(p, string_types): try: p = sympify(p) except (SympifyError, SyntaxError): pass # error will raise below else: if p.count('/') > 1: raise TypeError('invalid input: %s' % p) p = p.replace(' ', '') pq = p.rsplit('/', 1) if len(pq) == 2: p, q = pq fp = fractions.Fraction(p) fq = fractions.Fraction(q) p = fp/fq try: p = fractions.Fraction(p) except ValueError: pass # error will raise below else: return Rational(p.numerator, p.denominator, 1) if not isinstance(p, Rational): raise TypeError('invalid input: %s' % p) q = 1 gcd = 1 else: p = Rational(p) q = Rational(q) if isinstance(q, Rational): p *= q.q q = q.p if isinstance(p, Rational): q *= p.q p = p.p # p and q are now integers if q == 0: if p == 0: if _errdict["divide"]: raise ValueError("Indeterminate 0/0") else: return S.NaN return S.ComplexInfinity if q < 0: q = -q p = -p if not gcd: gcd = igcd(abs(p), q) if gcd > 1: p //= gcd q //= gcd if q == 1: return Integer(p) if p == 1 and q == 2: return S.Half obj = Expr.__new__(cls) obj.p = p obj.q = q return obj def limit_denominator(self, max_denominator=1000000): """Closest Rational to self with denominator at most max_denominator. >>> from sympy import Rational >>> Rational('3.141592653589793').limit_denominator(10) 22/7 >>> Rational('3.141592653589793').limit_denominator(100) 311/99 """ f = fractions.Fraction(self.p, self.q) return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) def __getnewargs__(self): return (self.p, self.q) def _hashable_content(self): return (self.p, self.q) def _eval_is_positive(self): return self.p > 0 def _eval_is_zero(self): return self.p == 0 def __neg__(self): return Rational(-self.p, self.q) @_sympifyit('other', NotImplemented) def __add__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p + self.q*other.p, self.q, 1) elif isinstance(other, Rational): #TODO: this can probably be optimized more return Rational(self.p*other.q + self.q*other.p, self.q*other.q) elif isinstance(other, Float): return other + self else: return Number.__add__(self, other) return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p - self.q*other.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.p*other.q - self.q*other.p, self.q*other.q) elif isinstance(other, Float): return -other + self else: return Number.__sub__(self, other) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.q*other.p - self.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.q*other.p - self.p*other.q, self.q*other.q) elif isinstance(other, Float): return -self + other else: return Number.__rsub__(self, other) return Number.__rsub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) elif isinstance(other, Rational): return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) elif isinstance(other, Float): return other*self else: return Number.__mul__(self, other) return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if global_evaluate[0]: if isinstance(other, Integer): if self.p and other.p == S.Zero: return S.ComplexInfinity else: return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return self*(1/other) else: return Number.__div__(self, other) return Number.__div__(self, other) @_sympifyit('other', NotImplemented) def __rdiv__(self, other): if global_evaluate[0]: if isinstance(other, Integer): return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return other*(1/self) else: return Number.__rdiv__(self, other) return Number.__rdiv__(self, other) __truediv__ = __div__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if global_evaluate[0]: if isinstance(other, Rational): n = (self.p*other.q) // (other.p*self.q) return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) if isinstance(other, Float): # calculate mod with Rationals, *then* round the answer return Float(self.__mod__(Rational(other)), precision=other._prec) return Number.__mod__(self, other) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Rational): return Rational.__mod__(other, self) return Number.__rmod__(self, other) def _eval_power(self, expt): if isinstance(expt, Number): if isinstance(expt, Float): return self._eval_evalf(expt._prec)**expt if expt.is_negative: # (3/4)**-2 -> (4/3)**2 ne = -expt if (ne is S.One): return Rational(self.q, self.p) if self.is_negative: return S.NegativeOne**expt*Rational(self.q, -self.p)**ne else: return Rational(self.q, self.p)**ne if expt is S.Infinity: # -oo already caught by test for negative if self.p > self.q: # (3/2)**oo -> oo return S.Infinity if self.p < -self.q: # (-3/2)**oo -> oo + I*oo return S.Infinity + S.Infinity*S.ImaginaryUnit return S.Zero if isinstance(expt, Integer): # (4/3)**2 -> 4**2 / 3**2 return Rational(self.p**expt.p, self.q**expt.p, 1) if isinstance(expt, Rational): if self.p != 1: # (4/3)**(5/6) -> 4**(5/6)*3**(-5/6) return Integer(self.p)**expt*Integer(self.q)**(-expt) # as the above caught negative self.p, now self is positive return Integer(self.q)**Rational( expt.p*(expt.q - 1), expt.q) / \ Integer(self.q)**Integer(expt.p) if self.is_negative and expt.is_even: return (-self)**expt return def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) def __abs__(self): return Rational(abs(self.p), self.q) def __int__(self): p, q = self.p, self.q if p < 0: return -int(-p//q) return int(p//q) __long__ = __int__ def floor(self): return Integer(self.p // self.q) def ceiling(self): return -Integer(-self.p // self.q) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Number: if other.is_Rational: # a Rational is always in reduced form so will never be 2/4 # so we can just check equivalence of args return self.p == other.p and self.q == other.q if other.is_Float: return mlib.mpf_eq(self._as_mpf_val(other._prec), other._mpf_) return False def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_NumberSymbol: return other.__lt__(self) expr = self if other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q > self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_gt( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__gt__(expr, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_NumberSymbol: return other.__le__(self) expr = self if other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q >= self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_ge( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__ge__(expr, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_NumberSymbol: return other.__gt__(self) expr = self if other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q < self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_lt( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__lt__(expr, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) expr = self if other.is_NumberSymbol: return other.__ge__(self) elif other.is_Number: if other.is_Rational: return _sympify(bool(self.p*other.q <= self.q*other.p)) if other.is_Float: return _sympify(bool(mlib.mpf_le( self._as_mpf_val(other._prec), other._mpf_))) elif other.is_number and other.is_real: expr, other = Integer(self.p), self.q*other return Expr.__le__(expr, other) def __hash__(self): return super(Rational, self).__hash__() def factors(self, limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): """A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used. """ from sympy.ntheory import factorrat return factorrat(self, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() @_sympifyit('other', NotImplemented) def gcd(self, other): if isinstance(other, Rational): if other is S.Zero: return other return Rational( Integer(igcd(self.p, other.p)), Integer(ilcm(self.q, other.q))) return Number.gcd(self, other) @_sympifyit('other', NotImplemented) def lcm(self, other): if isinstance(other, Rational): return Rational( self.p // igcd(self.p, other.p) * other.p, igcd(self.q, other.q)) return Number.lcm(self, other) def as_numer_denom(self): return Integer(self.p), Integer(self.q) def _sage_(self): import sage.all as sage return sage.Integer(self.p)/sage.Integer(self.q) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import S >>> (S(-3)/2).as_content_primitive() (3/2, -1) See docstring of Expr.as_content_primitive for more examples. """ if self: if self.is_positive: return self, S.One return -self, S.NegativeOne return S.One, self def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return self, S.One def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return self, S.Zero # int -> Integer _intcache = {} # TODO move this tracing facility to sympy/core/trace.py ? def _intcache_printinfo(): ints = sorted(_intcache.keys()) nhit = _intcache_hits nmiss = _intcache_misses if nhit == 0 and nmiss == 0: print() print('Integer cache statistic was not collected') return miss_ratio = float(nmiss) / (nhit + nmiss) print() print('Integer cache statistic') print('-----------------------') print() print('#items: %i' % len(ints)) print() print(' #hit #miss #total') print() print('%5i %5i (%7.5f %%) %5i' % ( nhit, nmiss, miss_ratio*100, nhit + nmiss) ) print() print(ints) _intcache_hits = 0 _intcache_misses = 0 def int_trace(f): import os if os.getenv('SYMPY_TRACE_INT', 'no').lower() != 'yes': return f def Integer_tracer(cls, i): global _intcache_hits, _intcache_misses try: _intcache_hits += 1 return _intcache[i] except KeyError: _intcache_hits -= 1 _intcache_misses += 1 return f(cls, i) # also we want to hook our _intcache_printinfo into sys.atexit import atexit atexit.register(_intcache_printinfo) return Integer_tracer class Integer(Rational): """Represents integer numbers of any size. Examples ======== >>> from sympy import Integer >>> Integer(3) 3 If a float or a rational is passed to Integer, the fractional part will be discarded; the effect is of rounding toward zero. >>> Integer(3.8) 3 >>> Integer(-3.8) -3 A string is acceptable input if it can be parsed as an integer: >>> Integer("9" * 20) 99999999999999999999 It is rarely needed to explicitly instantiate an Integer, because Python integers are automatically converted to Integer when they are used in SymPy expressions. """ q = 1 is_integer = True is_number = True is_Integer = True __slots__ = ['p'] def _as_mpf_val(self, prec): return mlib.from_int(self.p, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(self._as_mpf_val(prec)) # TODO caching with decorator, but not to degrade performance @int_trace def __new__(cls, i): if isinstance(i, string_types): i = i.replace(' ', '') # whereas we cannot, in general, make a Rational from an # arbitrary expression, we can make an Integer unambiguously # (except when a non-integer expression happens to round to # an integer). So we proceed by taking int() of the input and # let the int routines determine whether the expression can # be made into an int or whether an error should be raised. try: ival = int(i) except TypeError: raise TypeError( "Argument of Integer should be of numeric type, got %s." % i) try: return _intcache[ival] except KeyError: # We only work with well-behaved integer types. This converts, for # example, numpy.int32 instances. obj = Expr.__new__(cls) obj.p = ival _intcache[ival] = obj return obj def __getnewargs__(self): return (self.p,) # Arithmetic operations are here for efficiency def __int__(self): return self.p __long__ = __int__ def floor(self): return Integer(self.p) def ceiling(self): return Integer(self.p) def __neg__(self): return Integer(-self.p) def __abs__(self): if self.p >= 0: return self else: return Integer(-self.p) def __divmod__(self, other): from .containers import Tuple if isinstance(other, Integer) and global_evaluate[0]: return Tuple(*(divmod(self.p, other.p))) else: return Number.__divmod__(self, other) def __rdivmod__(self, other): from .containers import Tuple if isinstance(other, integer_types) and global_evaluate[0]: return Tuple(*(divmod(other, self.p))) else: try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" oname = type(other).__name__ sname = type(self).__name__ raise TypeError(msg % (oname, sname)) return Number.__divmod__(other, self) # TODO make it decorator + bytecodehacks? def __add__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p + other) elif isinstance(other, Integer): return Integer(self.p + other.p) elif isinstance(other, Rational): return Rational(self.p*other.q + other.p, other.q, 1) return Rational.__add__(self, other) else: return Add(self, other) def __radd__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other + self.p) elif isinstance(other, Rational): return Rational(other.p + self.p*other.q, other.q, 1) return Rational.__radd__(self, other) return Rational.__radd__(self, other) def __sub__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p - other) elif isinstance(other, Integer): return Integer(self.p - other.p) elif isinstance(other, Rational): return Rational(self.p*other.q - other.p, other.q, 1) return Rational.__sub__(self, other) return Rational.__sub__(self, other) def __rsub__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other - self.p) elif isinstance(other, Rational): return Rational(other.p - self.p*other.q, other.q, 1) return Rational.__rsub__(self, other) return Rational.__rsub__(self, other) def __mul__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p*other) elif isinstance(other, Integer): return Integer(self.p*other.p) elif isinstance(other, Rational): return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) return Rational.__mul__(self, other) return Rational.__mul__(self, other) def __rmul__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other*self.p) elif isinstance(other, Rational): return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) return Rational.__rmul__(self, other) return Rational.__rmul__(self, other) def __mod__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(self.p % other) elif isinstance(other, Integer): return Integer(self.p % other.p) return Rational.__mod__(self, other) return Rational.__mod__(self, other) def __rmod__(self, other): if global_evaluate[0]: if isinstance(other, integer_types): return Integer(other % self.p) elif isinstance(other, Integer): return Integer(other.p % self.p) return Rational.__rmod__(self, other) return Rational.__rmod__(self, other) def __eq__(self, other): if isinstance(other, integer_types): return (self.p == other) elif isinstance(other, Integer): return (self.p == other.p) return Rational.__eq__(self, other) def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_Integer: return _sympify(self.p > other.p) return Rational.__gt__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_Integer: return _sympify(self.p < other.p) return Rational.__lt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_Integer: return _sympify(self.p >= other.p) return Rational.__ge__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_Integer: return _sympify(self.p <= other.p) return Rational.__le__(self, other) def __hash__(self): return hash(self.p) def __index__(self): return self.p ######################################## def _eval_is_odd(self): return bool(self.p % 2) def _eval_power(self, expt): """ Tries to do some simplifications on self**expt Returns None if no further simplifications can be done When exponent is a fraction (so we have for example a square root), we try to find a simpler representation by factoring the argument up to factors of 2**15, e.g. - sqrt(4) becomes 2 - sqrt(-4) becomes 2*I - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) Further simplification would require a special call to factorint on the argument which is not done here for sake of speed. """ from sympy import perfect_power if expt is S.Infinity: if self.p > S.One: return S.Infinity # cases -1, 0, 1 are done in their respective classes return S.Infinity + S.ImaginaryUnit*S.Infinity if expt is S.NegativeInfinity: return Rational(1, self)**S.Infinity if not isinstance(expt, Number): # simplify when expt is even # (-2)**k --> 2**k if self.is_negative and expt.is_even: return (-self)**expt if isinstance(expt, Float): # Rational knows how to exponentiate by a Float return super(Integer, self)._eval_power(expt) if not isinstance(expt, Rational): return if expt is S.Half and self.is_negative: # we extract I for this special case since everyone is doing so return S.ImaginaryUnit*Pow(-self, expt) if expt.is_negative: # invert base and change sign on exponent ne = -expt if self.is_negative: return S.NegativeOne**expt*Rational(1, -self)**ne else: return Rational(1, self.p)**ne # see if base is a perfect root, sqrt(4) --> 2 x, xexact = integer_nthroot(abs(self.p), expt.q) if xexact: # if it's a perfect root we've finished result = Integer(x**abs(expt.p)) if self.is_negative: result *= S.NegativeOne**expt return result # The following is an algorithm where we collect perfect roots # from the factors of base. # if it's not an nth root, it still might be a perfect power b_pos = int(abs(self.p)) p = perfect_power(b_pos) if p is not False: dict = {p[0]: p[1]} else: dict = Integer(b_pos).factors(limit=2**15) # now process the dict of factors out_int = 1 # integer part out_rad = 1 # extracted radicals sqr_int = 1 sqr_gcd = 0 sqr_dict = {} for prime, exponent in dict.items(): exponent *= expt.p # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) div_e, div_m = divmod(exponent, expt.q) if div_e > 0: out_int *= prime**div_e if div_m > 0: # see if the reduced exponent shares a gcd with e.q # (2**2)**(1/10) -> 2**(1/5) g = igcd(div_m, expt.q) if g != 1: out_rad *= Pow(prime, Rational(div_m//g, expt.q//g)) else: sqr_dict[prime] = div_m # identify gcd of remaining powers for p, ex in sqr_dict.items(): if sqr_gcd == 0: sqr_gcd = ex else: sqr_gcd = igcd(sqr_gcd, ex) if sqr_gcd == 1: break for k, v in sqr_dict.items(): sqr_int *= k**(v//sqr_gcd) if sqr_int == b_pos and out_int == 1 and out_rad == 1: result = None else: result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) if self.is_negative: result *= Pow(S.NegativeOne, expt) return result def _eval_is_prime(self): from sympy.ntheory import isprime return isprime(self) def _eval_is_composite(self): if self > 1: return fuzzy_not(self.is_prime) else: return False def as_numer_denom(self): return self, S.One def __floordiv__(self, other): return Integer(self.p // Integer(other).p) def __rfloordiv__(self, other): return Integer(Integer(other).p // self.p) # Add sympify converters for i_type in integer_types: converter[i_type] = Integer class AlgebraicNumber(Expr): """Class for representing algebraic numbers in SymPy. """ __slots__ = ['rep', 'root', 'alias', 'minpoly'] is_AlgebraicNumber = True is_algebraic = True is_number = True def __new__(cls, expr, coeffs=None, alias=None, **args): """Construct a new algebraic number. """ from sympy import Poly from sympy.polys.polyclasses import ANP, DMP from sympy.polys.numberfields import minimal_polynomial from sympy.core.symbol import Symbol expr = sympify(expr) if isinstance(expr, (tuple, Tuple)): minpoly, root = expr if not minpoly.is_Poly: minpoly = Poly(minpoly) elif expr.is_AlgebraicNumber: minpoly, root = expr.minpoly, expr.root else: minpoly, root = minimal_polynomial( expr, args.get('gen'), polys=True), expr dom = minpoly.get_domain() if coeffs is not None: if not isinstance(coeffs, ANP): rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) scoeffs = Tuple(*coeffs) else: rep = DMP.from_list(coeffs.to_list(), 0, dom) scoeffs = Tuple(*coeffs.to_list()) if rep.degree() >= minpoly.degree(): rep = rep.rem(minpoly.rep) else: rep = DMP.from_list([1, 0], 0, dom) scoeffs = Tuple(1, 0) sargs = (root, scoeffs) if alias is not None: if not isinstance(alias, Symbol): alias = Symbol(alias) sargs = sargs + (alias,) obj = Expr.__new__(cls, *sargs) obj.rep = rep obj.root = root obj.alias = alias obj.minpoly = minpoly return obj def __hash__(self): return super(AlgebraicNumber, self).__hash__() def _eval_evalf(self, prec): return self.as_expr()._evalf(prec) @property def is_aliased(self): """Returns ``True`` if ``alias`` was set. """ return self.alias is not None def as_poly(self, x=None): """Create a Poly instance from ``self``. """ from sympy import Dummy, Poly, PurePoly if x is not None: return Poly.new(self.rep, x) else: if self.alias is not None: return Poly.new(self.rep, self.alias) else: return PurePoly.new(self.rep, Dummy('x')) def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.as_poly(x or self.root).as_expr().expand() def coeffs(self): """Returns all SymPy coefficients of an algebraic number. """ return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] def native_coeffs(self): """Returns all native coefficients of an algebraic number. """ return self.rep.all_coeffs() def to_algebraic_integer(self): """Convert ``self`` to an algebraic integer. """ from sympy import Poly f = self.minpoly if f.LC() == 1: return self coeff = f.LC()**(f.degree() - 1) poly = f.compose(Poly(f.gen/f.LC())) minpoly = poly*coeff root = f.LC()*self.root return AlgebraicNumber((minpoly, root), self.coeffs()) def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.polys import CRootOf, minpoly for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: if minpoly(self.root - r).is_Symbol: # use the matching root if it's simpler if measure(r) < ratio*measure(self.root): return AlgebraicNumber(r) return self class RationalConstant(Rational): """ Abstract base class for rationals with specific behaviors Derived classes must define class attributes p and q and should probably all be singletons. """ __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) class IntegerConstant(Integer): __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) class Zero(with_metaclass(Singleton, IntegerConstant)): """The number zero. Zero is a singleton, and can be accessed by ``S.Zero`` Examples ======== >>> from sympy import S, Integer, zoo >>> Integer(0) is S.Zero True >>> 1/S.Zero zoo References ========== .. [1] https://en.wikipedia.org/wiki/Zero """ p = 0 q = 1 is_positive = False is_negative = False is_zero = True is_number = True __slots__ = [] @staticmethod def __abs__(): return S.Zero @staticmethod def __neg__(): return S.Zero def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative: return S.ComplexInfinity if expt.is_real is False: return S.NaN # infinities are already handled with pos and neg # tests above; now throw away leading numbers on Mul # exponent coeff, terms = expt.as_coeff_Mul() if coeff.is_negative: return S.ComplexInfinity**terms if coeff is not S.One: # there is a Number to discard return self**terms def _eval_order(self, *symbols): # Order(0,x) -> 0 return self def __nonzero__(self): return False __bool__ = __nonzero__ def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted """Efficiently extract the coefficient of a summation. """ return S.One, self class One(with_metaclass(Singleton, IntegerConstant)): """The number one. One is a singleton, and can be accessed by ``S.One``. Examples ======== >>> from sympy import S, Integer >>> Integer(1) is S.One True References ========== .. [1] https://en.wikipedia.org/wiki/1_%28number%29 """ is_number = True p = 1 q = 1 __slots__ = [] @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.NegativeOne def _eval_power(self, expt): return self def _eval_order(self, *symbols): return @staticmethod def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): if visual: return S.One else: return {} class NegativeOne(with_metaclass(Singleton, IntegerConstant)): """The number negative one. NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. Examples ======== >>> from sympy import S, Integer >>> Integer(-1) is S.NegativeOne True See Also ======== One References ========== .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 """ is_number = True p = -1 q = 1 __slots__ = [] @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.One def _eval_power(self, expt): if expt.is_odd: return S.NegativeOne if expt.is_even: return S.One if isinstance(expt, Number): if isinstance(expt, Float): return Float(-1.0)**expt if expt is S.NaN: return S.NaN if expt is S.Infinity or expt is S.NegativeInfinity: return S.NaN if expt is S.Half: return S.ImaginaryUnit if isinstance(expt, Rational): if expt.q == 2: return S.ImaginaryUnit**Integer(expt.p) i, r = divmod(expt.p, expt.q) if i: return self**i*self**Rational(r, expt.q) return class Half(with_metaclass(Singleton, RationalConstant)): """The rational number 1/2. Half is a singleton, and can be accessed by ``S.Half``. Examples ======== >>> from sympy import S, Rational >>> Rational(1, 2) is S.Half True References ========== .. [1] https://en.wikipedia.org/wiki/One_half """ is_number = True p = 1 q = 2 __slots__ = [] @staticmethod def __abs__(): return S.Half class Infinity(with_metaclass(Singleton, Number)): r"""Positive infinite quantity. In real analysis the symbol `\infty` denotes an unbounded limit: `x\to\infty` means that `x` grows without bound. Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled `+\infty` and `-\infty` can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by ``S.Infinity``, or can be imported as ``oo``. Examples ======== >>> from sympy import oo, exp, limit, Symbol >>> 1 + oo oo >>> 42/oo 0 >>> x = Symbol('x') >>> limit(exp(x), x, oo) oo See Also ======== NegativeInfinity, NaN References ========== .. [1] https://en.wikipedia.org/wiki/Infinity """ is_commutative = True is_positive = True is_infinite = True is_number = True is_prime = False __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\infty" def _eval_subs(self, old, new): if self == old: return new @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number): if other is S.NegativeInfinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf'): return S.NaN else: return Float('inf') else: return S.Infinity return NotImplemented __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number): if other is S.Infinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('inf'): return S.NaN else: return Float('inf') else: return S.Infinity return NotImplemented @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number): if other is S.Zero or other is S.NaN: return S.NaN elif other.is_Float: if other == 0: return S.NaN if other > 0: return Float('inf') else: return Float('-inf') else: if other > 0: return S.Infinity else: return S.NegativeInfinity return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number): if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf') or \ other == Float('inf'): return S.NaN elif other.is_nonnegative: return Float('inf') else: return Float('-inf') else: if other >= 0: return S.Infinity else: return S.NegativeInfinity return NotImplemented __truediv__ = __div__ def __abs__(self): return S.Infinity def __neg__(self): return S.NegativeInfinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``oo ** nan`` ``nan`` ``oo ** -p`` ``0`` ``p`` is number, ``oo`` ================ ======= ============================== See Also ======== Pow NaN NegativeInfinity """ from sympy.functions import re if expt.is_positive: return S.Infinity if expt.is_negative: return S.Zero if expt is S.NaN: return S.NaN if expt is S.ComplexInfinity: return S.NaN if expt.is_real is False and expt.is_number: expt_real = re(expt) if expt_real.is_positive: return S.ComplexInfinity if expt_real.is_negative: return S.Zero if expt_real.is_zero: return S.NaN return self**expt.evalf() def _as_mpf_val(self, prec): return mlib.finf def _sage_(self): import sage.all as sage return sage.oo def __hash__(self): return super(Infinity, self).__hash__() def __eq__(self, other): return other is S.Infinity def __ne__(self, other): return other is not S.Infinity def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_real: return S.false return Expr.__lt__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_real: if other.is_finite or other is S.NegativeInfinity: return S.false elif other.is_nonpositive: return S.false elif other.is_infinite and other.is_positive: return S.true return Expr.__le__(self, other) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_real: if other.is_finite or other is S.NegativeInfinity: return S.true elif other.is_nonpositive: return S.true elif other.is_infinite and other.is_positive: return S.false return Expr.__gt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_real: return S.true return Expr.__ge__(self, other) def __mod__(self, other): return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self oo = S.Infinity class NegativeInfinity(with_metaclass(Singleton, Number)): """Negative infinite quantity. NegativeInfinity is a singleton, and can be accessed by ``S.NegativeInfinity``. See Also ======== Infinity """ is_commutative = True is_negative = True is_infinite = True is_number = True __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"-\infty" def _eval_subs(self, old, new): if self == old: return new @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number): if other is S.Infinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('inf'): return Float('nan') else: return Float('-inf') else: return S.NegativeInfinity return NotImplemented __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number): if other is S.NegativeInfinity or other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf'): return Float('nan') else: return Float('-inf') else: return S.NegativeInfinity return NotImplemented @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number): if other is S.Zero or other is S.NaN: return S.NaN elif other.is_Float: if other is S.NaN or other.is_zero: return S.NaN elif other.is_positive: return Float('-inf') else: return Float('inf') else: if other.is_positive: return S.NegativeInfinity else: return S.Infinity return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __div__(self, other): if isinstance(other, Number): if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN elif other.is_Float: if other == Float('-inf') or \ other == Float('inf') or \ other is S.NaN: return S.NaN elif other.is_nonnegative: return Float('-inf') else: return Float('inf') else: if other >= 0: return S.NegativeInfinity else: return S.Infinity return NotImplemented __truediv__ = __div__ def __abs__(self): return S.Infinity def __neg__(self): return S.Infinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``(-oo) ** nan`` ``nan`` ``(-oo) ** oo`` ``nan`` ``(-oo) ** -oo`` ``nan`` ``(-oo) ** e`` ``oo`` ``e`` is positive even integer ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer ================ ======= ============================== See Also ======== Infinity Pow NaN """ if expt.is_number: if expt is S.NaN or \ expt is S.Infinity or \ expt is S.NegativeInfinity: return S.NaN if isinstance(expt, Integer) and expt.is_positive: if expt.is_odd: return S.NegativeInfinity else: return S.Infinity return S.NegativeOne**expt*S.Infinity**expt def _as_mpf_val(self, prec): return mlib.fninf def _sage_(self): import sage.all as sage return -(sage.oo) def __hash__(self): return super(NegativeInfinity, self).__hash__() def __eq__(self, other): return other is S.NegativeInfinity def __ne__(self, other): return other is not S.NegativeInfinity def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) if other.is_real: if other.is_finite or other is S.Infinity: return S.true elif other.is_nonnegative: return S.true elif other.is_infinite and other.is_negative: return S.false return Expr.__lt__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) if other.is_real: return S.true return Expr.__le__(self, other) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) if other.is_real: return S.false return Expr.__gt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) if other.is_real: if other.is_finite or other is S.Infinity: return S.false elif other.is_nonnegative: return S.false elif other.is_infinite and other.is_negative: return S.true return Expr.__ge__(self, other) def __mod__(self, other): return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self class NaN(with_metaclass(Singleton, Number)): """ Not a Number. This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` and ``oo**0``, which all produce ``1`` (this is consistent with Python's float). NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python ``float('nan')``. Differences are noted below. NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with ``Eq`` and ``==`` in the examples below. NaN is not comparable so inequalities raise a TypeError. This is in constrast with floating point nan where all inequalities are false. NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported as ``nan``. Examples ======== >>> from sympy import nan, S, oo, Eq >>> nan is S.NaN True >>> oo - oo nan >>> nan + 1 nan >>> Eq(nan, nan) # mathematical equality False >>> nan == nan # structural equality True References ========== .. [1] https://en.wikipedia.org/wiki/NaN """ is_commutative = True is_real = None is_rational = None is_algebraic = None is_transcendental = None is_integer = None is_comparable = False is_finite = None is_zero = None is_prime = None is_positive = None is_negative = None is_number = True __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\mathrm{NaN}" @_sympifyit('other', NotImplemented) def __add__(self, other): return self @_sympifyit('other', NotImplemented) def __sub__(self, other): return self @_sympifyit('other', NotImplemented) def __mul__(self, other): return self @_sympifyit('other', NotImplemented) def __div__(self, other): return self __truediv__ = __div__ def floor(self): return self def ceiling(self): return self def _as_mpf_val(self, prec): return _mpf_nan def _sage_(self): import sage.all as sage return sage.NaN def __hash__(self): return super(NaN, self).__hash__() def __eq__(self, other): # NaN is structurally equal to another NaN return other is S.NaN def __ne__(self, other): return other is not S.NaN def _eval_Eq(self, other): # NaN is not mathematically equal to anything, even NaN return S.false # Expr will _sympify and raise TypeError __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ nan = S.NaN class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)): r"""Complex infinity. In complex analysis the symbol `\tilde\infty`, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase. ComplexInfinity is a singleton, and can be accessed by ``S.ComplexInfinity``, or can be imported as ``zoo``. Examples ======== >>> from sympy import zoo, oo >>> zoo + 42 zoo >>> 42/zoo 0 >>> zoo + zoo nan >>> zoo*zoo zoo See Also ======== Infinity """ is_commutative = True is_infinite = True is_number = True is_prime = False is_complex = True is_real = False __slots__ = [] def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\tilde{\infty}" @staticmethod def __abs__(): return S.Infinity def floor(self): return self def ceiling(self): return self @staticmethod def __neg__(): return S.ComplexInfinity def _eval_power(self, expt): if expt is S.ComplexInfinity: return S.NaN if isinstance(expt, Number): if expt is S.Zero: return S.NaN else: if expt.is_positive: return S.ComplexInfinity else: return S.Zero def _sage_(self): import sage.all as sage return sage.UnsignedInfinityRing.gen() zoo = S.ComplexInfinity class NumberSymbol(AtomicExpr): is_commutative = True is_finite = True is_number = True __slots__ = [] is_NumberSymbol = True def __new__(cls): return AtomicExpr.__new__(cls) def approximation(self, number_cls): """ Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None. """ def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if self is other: return True if other.is_Number and self.is_irrational: return False return False # NumberSymbol != non-(Number|self) def __ne__(self, other): return not self == other def __le__(self, other): if self is other: return S.true return Expr.__le__(self, other) def __ge__(self, other): if self is other: return S.true return Expr.__ge__(self, other) def __int__(self): # subclass with appropriate return value raise NotImplementedError def __long__(self): return self.__int__() def __hash__(self): return super(NumberSymbol, self).__hash__() class Exp1(with_metaclass(Singleton, NumberSymbol)): r"""The `e` constant. The transcendental number `e = 2.718281828\ldots` is the base of the natural logarithm and of the exponential function, `e = \exp(1)`. Sometimes called Euler's number or Napier's constant. Exp1 is a singleton, and can be accessed by ``S.Exp1``, or can be imported as ``E``. Examples ======== >>> from sympy import exp, log, E >>> E is exp(1) True >>> log(E) 1 References ========== .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 """ is_real = True is_positive = True is_negative = False # XXX Forces is_negative/is_nonnegative is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = [] def _latex(self, printer): return r"e" @staticmethod def __abs__(): return S.Exp1 def __int__(self): return 2 def _as_mpf_val(self, prec): return mpf_e(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(2), Integer(3)) elif issubclass(number_cls, Rational): pass def _eval_power(self, expt): from sympy import exp return exp(expt) def _eval_rewrite_as_sin(self, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I + S.Pi/2) - I*sin(I) def _eval_rewrite_as_cos(self, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I) + I*cos(I + S.Pi/2) def _sage_(self): import sage.all as sage return sage.e E = S.Exp1 class Pi(with_metaclass(Singleton, NumberSymbol)): r"""The `\pi` constant. The transcendental number `\pi = 3.141592654\ldots` represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Pi is a singleton, and can be accessed by ``S.Pi``, or can be imported as ``pi``. Examples ======== >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol >>> S.Pi pi >>> pi > 3 True >>> pi.is_irrational True >>> x = Symbol('x') >>> sin(x + 2*pi) sin(x) >>> integrate(exp(-x**2), (x, -oo, oo)) sqrt(pi) References ========== .. [1] https://en.wikipedia.org/wiki/Pi """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = [] def _latex(self, printer): return r"\pi" @staticmethod def __abs__(): return S.Pi def __int__(self): return 3 def _as_mpf_val(self, prec): return mpf_pi(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(3), Integer(4)) elif issubclass(number_cls, Rational): return (Rational(223, 71), Rational(22, 7)) def _sage_(self): import sage.all as sage return sage.pi pi = S.Pi class GoldenRatio(with_metaclass(Singleton, NumberSymbol)): r"""The golden ratio, `\phi`. `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. Examples ======== >>> from sympy import S >>> S.GoldenRatio > 1 True >>> S.GoldenRatio.expand(func=True) 1/2 + sqrt(5)/2 >>> S.GoldenRatio.is_irrational True References ========== .. [1] https://en.wikipedia.org/wiki/Golden_ratio """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return r"\phi" def __int__(self): return 1 def _as_mpf_val(self, prec): # XXX track down why this has to be increased rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) return mpf_norm(rv, prec) def _eval_expand_func(self, **hints): from sympy import sqrt return S.Half + S.Half*sqrt(5) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass def _sage_(self): import sage.all as sage return sage.golden_ratio _eval_rewrite_as_sqrt = _eval_expand_func class TribonacciConstant(with_metaclass(Singleton, NumberSymbol)): r"""The tribonacci constant. The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, and also satisfies the equation `x + x^{-3} = 2`. TribonacciConstant is a singleton, and can be accessed by ``S.TribonacciConstant``. Examples ======== >>> from sympy import S >>> S.TribonacciConstant > 1 True >>> S.TribonacciConstant.expand(func=True) 1/3 + (-3*sqrt(33) + 19)**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 >>> S.TribonacciConstant.is_irrational True >>> S.TribonacciConstant.n(20) 1.8392867552141611326 References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return r"\mathrm{TribonacciConstant}" def __int__(self): return 2 def _eval_evalf(self, prec): rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) return Float(rv, precision=prec) def _eval_expand_func(self, **hints): from sympy import sqrt, cbrt return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class EulerGamma(with_metaclass(Singleton, NumberSymbol)): r"""The Euler-Mascheroni constant. `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm: .. math:: \gamma = \lim\limits_{n\to\infty} \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. Examples ======== >>> from sympy import S >>> S.EulerGamma.is_irrational >>> S.EulerGamma > 0 True >>> S.EulerGamma > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = [] def _latex(self, printer): return r"\gamma" def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.libhyper.euler_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (S.Half, Rational(3, 5)) def _sage_(self): import sage.all as sage return sage.euler_gamma class Catalan(with_metaclass(Singleton, NumberSymbol)): r"""Catalan's constant. `K = 0.91596559\ldots` is given by the infinite series .. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} Catalan is a singleton, and can be accessed by ``S.Catalan``. Examples ======== >>> from sympy import S >>> S.Catalan.is_irrational >>> S.Catalan > 0 True >>> S.Catalan > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = [] def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.catalan_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (Rational(9, 10), S.One) def _sage_(self): import sage.all as sage return sage.catalan class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)): r"""The imaginary unit, `i = \sqrt{-1}`. I is a singleton, and can be accessed by ``S.I``, or can be imported as ``I``. Examples ======== >>> from sympy import I, sqrt >>> sqrt(-1) I >>> I*I -1 >>> 1/I -I References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_unit """ is_commutative = True is_imaginary = True is_finite = True is_number = True is_algebraic = True is_transcendental = False __slots__ = [] def _latex(self, printer): return printer._settings['imaginary_unit_latex'] @staticmethod def __abs__(): return S.One def _eval_evalf(self, prec): return self def _eval_conjugate(self): return -S.ImaginaryUnit def _eval_power(self, expt): """ b is I = sqrt(-1) e is symbolic object but not equal to 0, 1 I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal I**0 mod 4 -> 1 I**1 mod 4 -> I I**2 mod 4 -> -1 I**3 mod 4 -> -I """ if isinstance(expt, Number): if isinstance(expt, Integer): expt = expt.p % 4 if expt == 0: return S.One if expt == 1: return S.ImaginaryUnit if expt == 2: return -S.One return -S.ImaginaryUnit return def as_base_exp(self): return S.NegativeOne, S.Half def _sage_(self): import sage.all as sage return sage.I @property def _mpc_(self): return (Float(0)._mpf_, Float(1)._mpf_) I = S.ImaginaryUnit def sympify_fractions(f): return Rational(f.numerator, f.denominator, 1) converter[fractions.Fraction] = sympify_fractions try: if HAS_GMPY == 2: import gmpy2 as gmpy elif HAS_GMPY == 1: import gmpy else: raise ImportError def sympify_mpz(x): return Integer(long(x)) def sympify_mpq(x): return Rational(long(x.numerator), long(x.denominator)) converter[type(gmpy.mpz(1))] = sympify_mpz converter[type(gmpy.mpq(1, 2))] = sympify_mpq except ImportError: pass def sympify_mpmath(x): return Expr._from_mpmath(x, x.context.prec) converter[mpnumeric] = sympify_mpmath def sympify_mpq(x): p, q = x._mpq_ return Rational(p, q, 1) converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpq def sympify_complex(a): real, imag = list(map(sympify, (a.real, a.imag))) return real + S.ImaginaryUnit*imag converter[complex] = sympify_complex _intcache[0] = S.Zero _intcache[1] = S.One _intcache[-1] = S.NegativeOne from .power import Pow, integer_nthroot from .mul import Mul Mul.identity = One() from .add import Add Add.identity = Zero()
dbee10c360ba4e4bc1583bd8c893747ea1a37b3916dc8d27b0be2571881a96f3
from __future__ import division, print_function from sympy.core import Expr, S, Symbol, oo, pi, sympify from sympy.core.compatibility import as_int, range, ordered from sympy.core.symbol import _symbol, Dummy from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import cos, sin, tan from sympy.geometry.exceptions import GeometryError from sympy.logic import And from sympy.matrices import Matrix from sympy.simplify import simplify from sympy.utilities import default_sort_key from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation from sympy.utilities.misc import func_name from .entity import GeometryEntity, GeometrySet from .point import Point from .ellipse import Circle from .line import Line, Segment, Ray from sympy import sqrt import warnings class Polygon(GeometrySet): """A two-dimensional polygon. A simple polygon in space. Can be constructed from a sequence of points or from a center, radius, number of sides and rotation angle. Parameters ========== vertices : sequence of Points Attributes ========== area angles perimeter vertices centroid sides Raises ====== GeometryError If all parameters are not Points. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle Notes ===== Polygons are treated as closed paths rather than 2D areas so some calculations can be be negative or positive (e.g., area) based on the orientation of the points. Any consecutive identical points are reduced to a single point and any points collinear and between two points will be removed unless they are needed to define an explicit intersection (see examples). A Triangle, Segment or Point will be returned when there are 3 or fewer points provided. Examples ======== >>> from sympy import Point, Polygon, pi >>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)] >>> Polygon(p1, p2, p3, p4) Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)) >>> Polygon(p1, p2) Segment2D(Point2D(0, 0), Point2D(1, 0)) >>> Polygon(p1, p2, p5) Segment2D(Point2D(0, 0), Point2D(3, 0)) The area of a polygon is calculated as positive when vertices are traversed in a ccw direction. When the sides of a polygon cross the area will have positive and negative contributions. The following defines a Z shape where the bottom right connects back to the top left. >>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area 0 When the the keyword `n` is used to define the number of sides of the Polygon then a RegularPolygon is created and the other arguments are interpreted as center, radius and rotation. The unrotated RegularPolygon will always have a vertex at Point(r, 0) where `r` is the radius of the circle that circumscribes the RegularPolygon. Its method `spin` can be used to increment that angle. >>> p = Polygon((0,0), 1, n=3) >>> p RegularPolygon(Point2D(0, 0), 1, 3, 0) >>> p.vertices[0] Point2D(1, 0) >>> p.args[0] Point2D(0, 0) >>> p.spin(pi/2) >>> p.vertices[0] Point2D(0, 1) """ def __new__(cls, *args, **kwargs): if kwargs.get('n', 0): n = kwargs.pop('n') args = list(args) # return a virtual polygon with n sides if len(args) == 2: # center, radius args.append(n) elif len(args) == 3: # center, radius, rotation args.insert(2, n) return RegularPolygon(*args, **kwargs) vertices = [Point(a, dim=2, **kwargs) for a in args] # remove consecutive duplicates nodup = [] for p in vertices: if nodup and p == nodup[-1]: continue nodup.append(p) if len(nodup) > 1 and nodup[-1] == nodup[0]: nodup.pop() # last point was same as first # remove collinear points i = -3 while i < len(nodup) - 3 and len(nodup) > 2: a, b, c = nodup[i], nodup[i + 1], nodup[i + 2] if Point.is_collinear(a, b, c): nodup.pop(i + 1) if a == c: nodup.pop(i) else: i += 1 vertices = list(nodup) if len(vertices) > 3: return GeometryEntity.__new__(cls, *vertices, **kwargs) elif len(vertices) == 3: return Triangle(*vertices, **kwargs) elif len(vertices) == 2: return Segment(*vertices, **kwargs) else: return Point(*vertices, **kwargs) @property def area(self): """ The area of the polygon. Notes ===== The area calculation can be positive or negative based on the orientation of the points. If any side of the polygon crosses any other side, there will be areas having opposite signs. See Also ======== sympy.geometry.ellipse.Ellipse.area Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.area 3 In the Z shaped polygon (with the lower right connecting back to the upper left) the areas cancel out: >>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0)) >>> Z.area 0 In the M shaped polygon, areas do not cancel because no side crosses any other (though there is a point of contact). >>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0)) >>> M.area -3/2 """ area = 0 args = self.args for i in range(len(args)): x1, y1 = args[i - 1].args x2, y2 = args[i].args area += x1*y2 - x2*y1 return simplify(area) / 2 @staticmethod def _isright(a, b, c): """Return True/False for cw/ccw orientation. Examples ======== >>> from sympy import Point, Polygon >>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]] >>> Polygon._isright(a, b, c) True >>> Polygon._isright(a, c, b) False """ ba = b - a ca = c - a t_area = simplify(ba.x*ca.y - ca.x*ba.y) res = t_area.is_nonpositive if res is None: raise ValueError("Can't determine orientation") return res @property def angles(self): """The internal angle at each vertex. Returns ======= angles : dict A dictionary where each key is a vertex and each value is the internal angle at that vertex. The vertices are represented as Points. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.angles[p1] pi/2 >>> poly.angles[p2] acos(-4*sqrt(17)/17) """ # Determine orientation of points args = self.vertices cw = self._isright(args[-1], args[0], args[1]) ret = {} for i in range(len(args)): a, b, c = args[i - 2], args[i - 1], args[i] ang = Ray(b, a).angle_between(Ray(b, c)) if cw ^ self._isright(a, b, c): ret[b] = 2*S.Pi - ang else: ret[b] = ang return ret @property def ambient_dimension(self): return self.vertices[0].ambient_dimension @property def perimeter(self): """The perimeter of the polygon. Returns ======= perimeter : number or Basic instance See Also ======== sympy.geometry.line.Segment.length Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.perimeter sqrt(17) + 7 """ p = 0 args = self.vertices for i in range(len(args)): p += args[i - 1].distance(args[i]) return simplify(p) @property def vertices(self): """The vertices of the polygon. Returns ======= vertices : list of Points Notes ===== When iterating over the vertices, it is more efficient to index self rather than to request the vertices and index them. Only use the vertices when you want to process all of them at once. This is even more important with RegularPolygons that calculate each vertex. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.vertices [Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)] >>> poly.vertices[0] Point2D(0, 0) """ return list(self.args) @property def centroid(self): """The centroid of the polygon. Returns ======= centroid : Point See Also ======== sympy.geometry.point.Point, sympy.geometry.util.centroid Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.centroid Point2D(31/18, 11/18) """ A = 1/(6*self.area) cx, cy = 0, 0 args = self.args for i in range(len(args)): x1, y1 = args[i - 1].args x2, y2 = args[i].args v = x1*y2 - x2*y1 cx += v*(x1 + x2) cy += v*(y1 + y2) return Point(simplify(A*cx), simplify(A*cy)) def second_moment_of_area(self, point=None): """Returns the second moment and product moment of area of a two dimensional polygon. Parameters ========== point : Point, two-tuple of sympifiable objects, or None(default=None) point is the point about which second moment of area is to be found. If "point=None" it will be calculated about the axis passing through the centroid of the polygon. Returns ======= I_xx, I_yy, I_xy : number or sympy expression I_xx, I_yy are second moment of area of a two dimensional polygon. I_xy is product moment of area of a two dimensional polygon. Examples ======== >>> from sympy import Point, Polygon, symbols >>> a, b = symbols('a, b') >>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)] >>> rectangle = Polygon(p1, p2, p3, p4) >>> rectangle.second_moment_of_area() (a*b**3/12, a**3*b/12, 0) >>> rectangle.second_moment_of_area(p5) (a*b**3/9, a**3*b/9, a**2*b**2/36) References ========== https://en.wikipedia.org/wiki/Second_moment_of_area """ I_xx, I_yy, I_xy = 0, 0, 0 args = self.args for i in range(len(args)): x1, y1 = args[i-1].args x2, y2 = args[i].args v = x1*y2 - x2*y1 I_xx += (y1**2 + y1*y2 + y2**2)*v I_yy += (x1**2 + x1*x2 + x2**2)*v I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v A = self.area c_x = self.centroid[0] c_y = self.centroid[1] # parallel axis theorem I_xx_c = (I_xx/12) - (A*(c_y**2)) I_yy_c = (I_yy/12) - (A*(c_x**2)) I_xy_c = (I_xy/24) - (A*(c_x*c_y)) if point is None: return I_xx_c, I_yy_c, I_xy_c I_xx = (I_xx_c + A*((point[1]-c_y)**2)) I_yy = (I_yy_c + A*((point[0]-c_x)**2)) I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y))) return I_xx, I_yy, I_xy @property def sides(self): """The directed line segments that form the sides of the polygon. Returns ======= sides : list of sides Each side is a directed Segment. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.sides [Segment2D(Point2D(0, 0), Point2D(1, 0)), Segment2D(Point2D(1, 0), Point2D(5, 1)), Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))] """ res = [] args = self.vertices for i in range(-len(args), 0): res.append(Segment(args[i], args[i + 1])) return res @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ verts = self.vertices xs = [p.x for p in verts] ys = [p.y for p in verts] return (min(xs), min(ys), max(xs), max(ys)) def is_convex(self): """Is the polygon convex? A polygon is convex if all its interior angles are less than 180 degrees and there are no intersections between sides. Returns ======= is_convex : boolean True if this polygon is convex, False otherwise. See Also ======== sympy.geometry.util.convex_hull Examples ======== >>> from sympy import Point, Polygon >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly = Polygon(p1, p2, p3, p4) >>> poly.is_convex() True """ # Determine orientation of points args = self.vertices cw = self._isright(args[-2], args[-1], args[0]) for i in range(1, len(args)): if cw ^ self._isright(args[i - 2], args[i - 1], args[i]): return False # check for intersecting sides sides = self.sides for i, si in enumerate(sides): pts = si.args # exclude the sides connected to si for j in range(1 if i == len(sides) - 1 else 0, i - 1): sj = sides[j] if sj.p1 not in pts and sj.p2 not in pts: hit = si.intersection(sj) if hit: return False return True def encloses_point(self, p): """ Return True if p is enclosed by (is inside of) self. Notes ===== Being on the border of self is considered False. Parameters ========== p : Point Returns ======= encloses_point : True, False or None See Also ======== sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point Examples ======== >>> from sympy import Polygon, Point >>> from sympy.abc import t >>> p = Polygon((0, 0), (4, 0), (4, 4)) >>> p.encloses_point(Point(2, 1)) True >>> p.encloses_point(Point(2, 2)) False >>> p.encloses_point(Point(5, 5)) False References ========== [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly """ p = Point(p, dim=2) if p in self.vertices or any(p in s for s in self.sides): return False # move to p, checking that the result is numeric lit = [] for v in self.vertices: lit.append(v - p) # the difference is simplified if lit[-1].free_symbols: return None poly = Polygon(*lit) # polygon closure is assumed in the following test but Polygon removes duplicate pts so # the last point has to be added so all sides are computed. Using Polygon.sides is # not good since Segments are unordered. args = poly.args indices = list(range(-len(args), 1)) if poly.is_convex(): orientation = None for i in indices: a = args[i] b = args[i + 1] test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative if orientation is None: orientation = test elif test is not orientation: return False return True hit_odd = False p1x, p1y = args[0].args for i in indices[1:]: p2x, p2y = args[i].args if 0 > min(p1y, p2y): if 0 <= max(p1y, p2y): if 0 <= max(p1x, p2x): if p1y != p2y: xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x if p1x == p2x or 0 <= xinters: hit_odd = not hit_odd p1x, p1y = p2x, p2y return hit_odd def arbitrary_point(self, parameter='t'): """A parameterized point on the polygon. The parameter, varying from 0 to 1, assigns points to the position on the perimeter that is that fraction of the total perimeter. So the point evaluated at t=1/2 would return the point from the first vertex that is 1/2 way around the polygon. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= arbitrary_point : Point Raises ====== ValueError When `parameter` already appears in the Polygon's definition. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Polygon, S, Symbol >>> t = Symbol('t', real=True) >>> tri = Polygon((0, 0), (1, 0), (1, 1)) >>> p = tri.arbitrary_point('t') >>> perimeter = tri.perimeter >>> s1, s2 = [s.length for s in tri.sides[:2]] >>> p.subs(t, (s1 + s2/2)/perimeter) Point2D(1, 1/2) """ t = _symbol(parameter, real=True) if t.name in (f.name for f in self.free_symbols): raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name) sides = [] perimeter = self.perimeter perim_fraction_start = 0 for s in self.sides: side_perim_fraction = s.length/perimeter perim_fraction_end = perim_fraction_start + side_perim_fraction pt = s.arbitrary_point(parameter).subs( t, (t - perim_fraction_start)/side_perim_fraction) sides.append( (pt, (And(perim_fraction_start <= t, t < perim_fraction_end)))) perim_fraction_start = perim_fraction_end return Piecewise(*sides) def parameter_value(self, other, t): from sympy.solvers.solvers import solve if not isinstance(other,GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other,Point): raise ValueError("other must be a point") if other.free_symbols: raise NotImplementedError('non-numeric coordinates') unknown = False T = Dummy('t', real=True) p = self.arbitrary_point(T) for pt, cond in p.args: sol = solve(pt - other, T, dict=True) if not sol: continue value = sol[0][T] if simplify(cond.subs(T, value)) == True: return {t: value} unknown = True if unknown: raise ValueError("Given point may not be on %s" % func_name(self)) raise ValueError("Given point is not on %s" % func_name(self)) def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the polygon. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list (plot interval) [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Polygon >>> p = Polygon((0, 0), (1, 0), (1, 1)) >>> p.plot_interval() [t, 0, 1] """ t = Symbol(parameter, real=True) return [t, 0, 1] def intersection(self, o): """The intersection of polygon and geometry entity. The intersection may be empty and can contain individual Points and complete Line Segments. Parameters ========== other: GeometryEntity Returns ======= intersection : list The list of Segments and Points See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy import Point, Polygon, Line >>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) >>> poly1 = Polygon(p1, p2, p3, p4) >>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)]) >>> poly2 = Polygon(p5, p6, p7) >>> poly1.intersection(poly2) [Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)] >>> poly1.intersection(Line(p1, p2)) [Segment2D(Point2D(0, 0), Point2D(1, 0))] >>> poly1.intersection(p1) [Point2D(0, 0)] """ intersection_result = [] k = o.sides if isinstance(o, Polygon) else [o] for side in self.sides: for side1 in k: intersection_result.extend(side.intersection(side1)) intersection_result = list(uniq(intersection_result)) points = [entity for entity in intersection_result if isinstance(entity, Point)] segments = [entity for entity in intersection_result if isinstance(entity, Segment)] if points and segments: points_in_segments = list(uniq([point for point in points for segment in segments if point in segment])) if points_in_segments: for i in points_in_segments: points.remove(i) return list(ordered(segments + points)) else: return list(ordered(intersection_result)) def distance(self, o): """ Returns the shortest distance between self and o. If o is a point, then self does not need to be convex. If o is another polygon self and o must be convex. Examples ======== >>> from sympy import Point, Polygon, RegularPolygon >>> p1, p2 = map(Point, [(0, 0), (7, 5)]) >>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices) >>> poly.distance(p2) sqrt(61) """ if isinstance(o, Point): dist = oo for side in self.sides: current = side.distance(o) if current == 0: return S.Zero elif current < dist: dist = current return dist elif isinstance(o, Polygon) and self.is_convex() and o.is_convex(): return self._do_poly_distance(o) raise NotImplementedError() def _do_poly_distance(self, e2): """ Calculates the least distance between the exteriors of two convex polygons e1 and e2. Does not check for the convexity of the polygons as this is checked by Polygon.distance. Notes ===== - Prints a warning if the two polygons possibly intersect as the return value will not be valid in such a case. For a more through test of intersection use intersection(). See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy.geometry import Point, Polygon >>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)) >>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) >>> square._do_poly_distance(triangle) sqrt(2)/2 Description of method used ========================== Method: [1] http://cgm.cs.mcgill.ca/~orm/mind2p.html Uses rotating calipers: [2] https://en.wikipedia.org/wiki/Rotating_calipers and antipodal points: [3] https://en.wikipedia.org/wiki/Antipodal_point """ e1 = self '''Tests for a possible intersection between the polygons and outputs a warning''' e1_center = e1.centroid e2_center = e2.centroid e1_max_radius = S.Zero e2_max_radius = S.Zero for vertex in e1.vertices: r = Point.distance(e1_center, vertex) if e1_max_radius < r: e1_max_radius = r for vertex in e2.vertices: r = Point.distance(e2_center, vertex) if e2_max_radius < r: e2_max_radius = r center_dist = Point.distance(e1_center, e2_center) if center_dist <= e1_max_radius + e2_max_radius: warnings.warn("Polygons may intersect producing erroneous output") ''' Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2 ''' e1_ymax = Point(0, -oo) e2_ymin = Point(0, oo) for vertex in e1.vertices: if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x): e1_ymax = vertex for vertex in e2.vertices: if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x): e2_ymin = vertex min_dist = Point.distance(e1_ymax, e2_ymin) ''' Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points to which the vertex is connected as its value. The same is then done for e2. ''' e1_connections = {} e2_connections = {} for side in e1.sides: if side.p1 in e1_connections: e1_connections[side.p1].append(side.p2) else: e1_connections[side.p1] = [side.p2] if side.p2 in e1_connections: e1_connections[side.p2].append(side.p1) else: e1_connections[side.p2] = [side.p1] for side in e2.sides: if side.p1 in e2_connections: e2_connections[side.p1].append(side.p2) else: e2_connections[side.p1] = [side.p2] if side.p2 in e2_connections: e2_connections[side.p2].append(side.p1) else: e2_connections[side.p2] = [side.p1] e1_current = e1_ymax e2_current = e2_ymin support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero)) ''' Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax, this information combined with the above produced dictionaries determines the path that will be taken around the polygons ''' point1 = e1_connections[e1_ymax][0] point2 = e1_connections[e1_ymax][1] angle1 = support_line.angle_between(Line(e1_ymax, point1)) angle2 = support_line.angle_between(Line(e1_ymax, point2)) if angle1 < angle2: e1_next = point1 elif angle2 < angle1: e1_next = point2 elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2): e1_next = point2 else: e1_next = point1 point1 = e2_connections[e2_ymin][0] point2 = e2_connections[e2_ymin][1] angle1 = support_line.angle_between(Line(e2_ymin, point1)) angle2 = support_line.angle_between(Line(e2_ymin, point2)) if angle1 > angle2: e2_next = point1 elif angle2 > angle1: e2_next = point2 elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2): e2_next = point2 else: e2_next = point1 ''' Loop which determines the distance between anti-podal pairs and updates the minimum distance accordingly. It repeats until it reaches the starting position. ''' while True: e1_angle = support_line.angle_between(Line(e1_current, e1_next)) e2_angle = pi - support_line.angle_between(Line( e2_current, e2_next)) if (e1_angle < e2_angle) is True: support_line = Line(e1_current, e1_next) e1_segment = Segment(e1_current, e1_next) min_dist_current = e1_segment.distance(e2_current) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e1_connections[e1_next][0] != e1_current: e1_current = e1_next e1_next = e1_connections[e1_next][0] else: e1_current = e1_next e1_next = e1_connections[e1_next][1] elif (e1_angle > e2_angle) is True: support_line = Line(e2_next, e2_current) e2_segment = Segment(e2_current, e2_next) min_dist_current = e2_segment.distance(e1_current) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e2_connections[e2_next][0] != e2_current: e2_current = e2_next e2_next = e2_connections[e2_next][0] else: e2_current = e2_next e2_next = e2_connections[e2_next][1] else: support_line = Line(e1_current, e1_next) e1_segment = Segment(e1_current, e1_next) e2_segment = Segment(e2_current, e2_next) min1 = e1_segment.distance(e2_next) min2 = e2_segment.distance(e1_next) min_dist_current = min(min1, min2) if min_dist_current.evalf() < min_dist.evalf(): min_dist = min_dist_current if e1_connections[e1_next][0] != e1_current: e1_current = e1_next e1_next = e1_connections[e1_next][0] else: e1_current = e1_next e1_next = e1_connections[e1_next][1] if e2_connections[e2_next][0] != e2_current: e2_current = e2_next e2_next = e2_connections[e2_next][0] else: e2_current = e2_next e2_next = e2_connections[e2_next][1] if e1_current == e1_ymax and e2_current == e2_ymin: break return min_dist def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the Polygon. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ from sympy.core.evalf import N verts = map(N, self.vertices) coords = ["{0},{1}".format(p.x, p.y) for p in verts] path = "M {0} L {1} z".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" />' ).format(2. * scale_factor, path, fill_color) def _hashable_content(self): D = {} def ref_list(point_list): kee = {} for i, p in enumerate(ordered(set(point_list))): kee[p] = i D[i] = p return [kee[p] for p in point_list] S1 = ref_list(self.args) r_nor = rotate_left(S1, least_rotation(S1)) S2 = ref_list(list(reversed(self.args))) r_rev = rotate_left(S2, least_rotation(S2)) if r_nor < r_rev: r = r_nor else: r = r_rev canonical_args = [ D[order] for order in r ] return tuple(canonical_args) def __contains__(self, o): """ Return True if o is contained within the boundary lines of self.altitudes Parameters ========== other : GeometryEntity Returns ======= contained in : bool The points (and sides, if applicable) are contained in self. See Also ======== sympy.geometry.entity.GeometryEntity.encloses Examples ======== >>> from sympy import Line, Segment, Point >>> p = Point(0, 0) >>> q = Point(1, 1) >>> s = Segment(p, q*2) >>> l = Line(p, q) >>> p in q False >>> p in s True >>> q*3 in s False >>> s in l True """ if isinstance(o, Polygon): return self == o elif isinstance(o, Segment): return any(o in s for s in self.sides) elif isinstance(o, Point): if o in self.vertices: return True for side in self.sides: if o in side: return True return False class RegularPolygon(Polygon): """ A regular polygon. Such a polygon has all internal angles equal and all sides the same length. Parameters ========== center : Point radius : number or Basic instance The distance from the center to a vertex n : int The number of sides Attributes ========== vertices center radius rotation apothem interior_angle exterior_angle circumcircle incircle angles Raises ====== GeometryError If the `center` is not a Point, or the `radius` is not a number or Basic instance, or the number of sides, `n`, is less than three. Notes ===== A RegularPolygon can be instantiated with Polygon with the kwarg n. Regular polygons are instantiated with a center, radius, number of sides and a rotation angle. Whereas the arguments of a Polygon are vertices, the vertices of the RegularPolygon must be obtained with the vertices method. See Also ======== sympy.geometry.point.Point, Polygon Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r RegularPolygon(Point2D(0, 0), 5, 3, 0) >>> r.vertices[0] Point2D(5, 0) """ __slots__ = ['_n', '_center', '_radius', '_rot'] def __new__(self, c, r, n, rot=0, **kwargs): r, n, rot = map(sympify, (r, n, rot)) c = Point(c, dim=2, **kwargs) if not isinstance(r, Expr): raise GeometryError("r must be an Expr object, not %s" % r) if n.is_Number: as_int(n) # let an error raise if necessary if n < 3: raise GeometryError("n must be a >= 3, not %s" % n) obj = GeometryEntity.__new__(self, c, r, n, **kwargs) obj._n = n obj._center = c obj._radius = r obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot return obj @property def args(self): """ Returns the center point, the radius, the number of sides, and the orientation angle. Examples ======== >>> from sympy import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r.args (Point2D(0, 0), 5, 3, 0) """ return self._center, self._radius, self._n, self._rot def __str__(self): return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args) def __repr__(self): return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args) @property def area(self): """Returns the area. Examples ======== >>> from sympy.geometry import RegularPolygon >>> square = RegularPolygon((0, 0), 1, 4) >>> square.area 2 >>> _ == square.length**2 True """ c, r, n, rot = self.args return sign(r)*n*self.length**2/(4*tan(pi/n)) @property def length(self): """Returns the length of the sides. The half-length of the side and the apothem form two legs of a right triangle whose hypotenuse is the radius of the regular polygon. Examples ======== >>> from sympy.geometry import RegularPolygon >>> from sympy import sqrt >>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4) >>> s.length sqrt(2) >>> sqrt((_/2)**2 + s.apothem**2) == s.radius True """ return self.radius*2*sin(pi/self._n) @property def center(self): """The center of the RegularPolygon This is also the center of the circumscribing circle. Returns ======= center : Point See Also ======== sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.center Point2D(0, 0) """ return self._center centroid = center @property def circumcenter(self): """ Alias for center. Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.circumcenter Point2D(0, 0) """ return self.center @property def radius(self): """Radius of the RegularPolygon This is also the radius of the circumscribing circle. Returns ======= radius : number or instance of Basic See Also ======== sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.radius r """ return self._radius @property def circumradius(self): """ Alias for radius. Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.circumradius r """ return self.radius @property def rotation(self): """CCW angle by which the RegularPolygon is rotated Returns ======= rotation : number or instance of Basic Examples ======== >>> from sympy import pi >>> from sympy.abc import a >>> from sympy.geometry import RegularPolygon, Point >>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation pi/4 Numerical rotation angles are made canonical: >>> RegularPolygon(Point(0, 0), 3, 4, a).rotation a >>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation 0 """ return self._rot @property def apothem(self): """The inradius of the RegularPolygon. The apothem/inradius is the radius of the inscribed circle. Returns ======= apothem : number or instance of Basic See Also ======== sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.apothem sqrt(2)*r/2 """ return self.radius * cos(S.Pi/self._n) @property def inradius(self): """ Alias for apothem. Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import RegularPolygon, Point >>> radius = Symbol('r') >>> rp = RegularPolygon(Point(0, 0), radius, 4) >>> rp.inradius sqrt(2)*r/2 """ return self.apothem @property def interior_angle(self): """Measure of the interior angles. Returns ======= interior_angle : number See Also ======== sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.interior_angle 3*pi/4 """ return (self._n - 2)*S.Pi/self._n @property def exterior_angle(self): """Measure of the exterior angles. Returns ======= exterior_angle : number See Also ======== sympy.geometry.line.LinearEntity.angle_between Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.exterior_angle pi/4 """ return 2*S.Pi/self._n @property def circumcircle(self): """The circumcircle of the RegularPolygon. Returns ======= circumcircle : Circle See Also ======== circumcenter, sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 8) >>> rp.circumcircle Circle(Point2D(0, 0), 4) """ return Circle(self.center, self.radius) @property def incircle(self): """The incircle of the RegularPolygon. Returns ======= incircle : Circle See Also ======== inradius, sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 4, 7) >>> rp.incircle Circle(Point2D(0, 0), 4*cos(pi/7)) """ return Circle(self.center, self.apothem) @property def angles(self): """ Returns a dictionary with keys, the vertices of the Polygon, and values, the interior angle at each vertex. Examples ======== >>> from sympy import RegularPolygon, Point >>> r = RegularPolygon(Point(0, 0), 5, 3) >>> r.angles {Point2D(-5/2, -5*sqrt(3)/2): pi/3, Point2D(-5/2, 5*sqrt(3)/2): pi/3, Point2D(5, 0): pi/3} """ ret = {} ang = self.interior_angle for v in self.vertices: ret[v] = ang return ret def encloses_point(self, p): """ Return True if p is enclosed by (is inside of) self. Notes ===== Being on the border of self is considered False. The general Polygon.encloses_point method is called only if a point is not within or beyond the incircle or circumcircle, respectively. Parameters ========== p : Point Returns ======= encloses_point : True, False or None See Also ======== sympy.geometry.ellipse.Ellipse.encloses_point Examples ======== >>> from sympy import RegularPolygon, S, Point, Symbol >>> p = RegularPolygon((0, 0), 3, 4) >>> p.encloses_point(Point(0, 0)) True >>> r, R = p.inradius, p.circumradius >>> p.encloses_point(Point((r + R)/2, 0)) True >>> p.encloses_point(Point(R/2, R/2 + (R - r)/10)) False >>> t = Symbol('t', real=True) >>> p.encloses_point(p.arbitrary_point().subs(t, S.Half)) False >>> p.encloses_point(Point(5, 5)) False """ c = self.center d = Segment(c, p).length if d >= self.radius: return False elif d < self.inradius: return True else: # now enumerate the RegularPolygon like a general polygon. return Polygon.encloses_point(self, p) def spin(self, angle): """Increment *in place* the virtual Polygon's rotation by ccw angle. See also: rotate method which moves the center. >>> from sympy import Polygon, Point, pi >>> r = Polygon(Point(0,0), 1, n=3) >>> r.vertices[0] Point2D(1, 0) >>> r.spin(pi/6) >>> r.vertices[0] Point2D(sqrt(3)/2, 1/2) See Also ======== rotation rotate : Creates a copy of the RegularPolygon rotated about a Point """ self._rot += angle def rotate(self, angle, pt=None): """Override GeometryEntity.rotate to first rotate the RegularPolygon about its center. >>> from sympy import Point, RegularPolygon, Polygon, pi >>> t = RegularPolygon(Point(1, 0), 1, 3) >>> t.vertices[0] # vertex on x-axis Point2D(2, 0) >>> t.rotate(pi/2).vertices[0] # vertex on y axis now Point2D(0, 2) See Also ======== rotation spin : Rotates a RegularPolygon in place """ r = type(self)(*self.args) # need a copy or else changes are in-place r._rot += angle return GeometryEntity.rotate(r, angle, pt) def scale(self, x=1, y=1, pt=None): """Override GeometryEntity.scale since it is the radius that must be scaled (if x == y) or else a new Polygon must be returned. >>> from sympy import RegularPolygon Symmetric scaling returns a RegularPolygon: >>> RegularPolygon((0, 0), 1, 4).scale(2, 2) RegularPolygon(Point2D(0, 0), 2, 4, 0) Asymmetric scaling returns a kite as a Polygon: >>> RegularPolygon((0, 0), 1, 4).scale(2, 1) Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1)) """ if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) if x != y: return Polygon(*self.vertices).scale(x, y) c, r, n, rot = self.args r *= x return self.func(c, r, n, rot) def reflect(self, line): """Override GeometryEntity.reflect since this is not made of only points. Examples ======== >>> from sympy import RegularPolygon, Line >>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2)) RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3)) """ c, r, n, rot = self.args v = self.vertices[0] d = v - c cc = c.reflect(line) vv = v.reflect(line) dd = vv - cc # calculate rotation about the new center # which will align the vertices l1 = Ray((0, 0), dd) l2 = Ray((0, 0), d) ang = l1.closing_angle(l2) rot += ang # change sign of radius as point traversal is reversed return self.func(cc, -r, n, rot) @property def vertices(self): """The vertices of the RegularPolygon. Returns ======= vertices : list Each vertex is a Point. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import RegularPolygon, Point >>> rp = RegularPolygon(Point(0, 0), 5, 4) >>> rp.vertices [Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)] """ c = self._center r = abs(self._radius) rot = self._rot v = 2*S.Pi/self._n return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot)) for k in range(self._n)] def __eq__(self, o): if not isinstance(o, Polygon): return False elif not isinstance(o, RegularPolygon): return Polygon.__eq__(o, self) return self.args == o.args def __hash__(self): return super(RegularPolygon, self).__hash__() class Triangle(Polygon): """ A polygon with three vertices and three sides. Parameters ========== points : sequence of Points keyword: asa, sas, or sss to specify sides/angles of the triangle Attributes ========== vertices altitudes orthocenter circumcenter circumradius circumcircle inradius incircle exradii medians medial nine_point_circle Raises ====== GeometryError If the number of vertices is not equal to three, or one of the vertices is not a Point, or a valid keyword is not given. See Also ======== sympy.geometry.point.Point, Polygon Examples ======== >>> from sympy.geometry import Triangle, Point >>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3)) Keywords sss, sas, or asa can be used to give the desired side lengths (in order) and interior angles (in degrees) that define the triangle: >>> Triangle(sss=(3, 4, 5)) Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) >>> Triangle(asa=(30, 1, 30)) Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6)) >>> Triangle(sas=(1, 45, 2)) Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2)) """ def __new__(cls, *args, **kwargs): if len(args) != 3: if 'sss' in kwargs: return _sss(*[simplify(a) for a in kwargs['sss']]) if 'asa' in kwargs: return _asa(*[simplify(a) for a in kwargs['asa']]) if 'sas' in kwargs: return _sas(*[simplify(a) for a in kwargs['sas']]) msg = "Triangle instantiates with three points or a valid keyword." raise GeometryError(msg) vertices = [Point(a, dim=2, **kwargs) for a in args] # remove consecutive duplicates nodup = [] for p in vertices: if nodup and p == nodup[-1]: continue nodup.append(p) if len(nodup) > 1 and nodup[-1] == nodup[0]: nodup.pop() # last point was same as first # remove collinear points i = -3 while i < len(nodup) - 3 and len(nodup) > 2: a, b, c = sorted( [nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key) if Point.is_collinear(a, b, c): nodup[i] = a nodup[i + 1] = None nodup.pop(i + 1) i += 1 vertices = list(filter(lambda x: x is not None, nodup)) if len(vertices) == 3: return GeometryEntity.__new__(cls, *vertices, **kwargs) elif len(vertices) == 2: return Segment(*vertices, **kwargs) else: return Point(*vertices, **kwargs) @property def vertices(self): """The triangle's vertices Returns ======= vertices : tuple Each element in the tuple is a Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Triangle, Point >>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t.vertices (Point2D(0, 0), Point2D(4, 0), Point2D(4, 3)) """ return self.args def is_similar(t1, t2): """Is another triangle similar to this one. Two triangles are similar if one can be uniformly scaled to the other. Parameters ========== other: Triangle Returns ======= is_similar : boolean See Also ======== sympy.geometry.entity.GeometryEntity.is_similar Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3)) >>> t1.is_similar(t2) True >>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4)) >>> t1.is_similar(t2) False """ if not isinstance(t2, Polygon): return False s1_1, s1_2, s1_3 = [side.length for side in t1.sides] s2 = [side.length for side in t2.sides] def _are_similar(u1, u2, u3, v1, v2, v3): e1 = simplify(u1/v1) e2 = simplify(u2/v2) e3 = simplify(u3/v3) return bool(e1 == e2) and bool(e2 == e3) # There's only 6 permutations, so write them out return _are_similar(s1_1, s1_2, s1_3, *s2) or \ _are_similar(s1_1, s1_3, s1_2, *s2) or \ _are_similar(s1_2, s1_1, s1_3, *s2) or \ _are_similar(s1_2, s1_3, s1_1, *s2) or \ _are_similar(s1_3, s1_1, s1_2, *s2) or \ _are_similar(s1_3, s1_2, s1_1, *s2) def is_equilateral(self): """Are all the sides the same length? Returns ======= is_equilateral : boolean See Also ======== sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon is_isosceles, is_right, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t1.is_equilateral() False >>> from sympy import sqrt >>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))) >>> t2.is_equilateral() True """ return not has_variety(s.length for s in self.sides) def is_isosceles(self): """Are two or more of the sides the same length? Returns ======= is_isosceles : boolean See Also ======== is_equilateral, is_right, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4)) >>> t1.is_isosceles() True """ return has_dups(s.length for s in self.sides) def is_scalene(self): """Are all the sides of the triangle of different lengths? Returns ======= is_scalene : boolean See Also ======== is_equilateral, is_isosceles, is_right Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4)) >>> t1.is_scalene() True """ return not has_dups(s.length for s in self.sides) def is_right(self): """Is the triangle right-angled. Returns ======= is_right : boolean See Also ======== sympy.geometry.line.LinearEntity.is_perpendicular is_equilateral, is_isosceles, is_scalene Examples ======== >>> from sympy.geometry import Triangle, Point >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3)) >>> t1.is_right() True """ s = self.sides return Segment.is_perpendicular(s[0], s[1]) or \ Segment.is_perpendicular(s[1], s[2]) or \ Segment.is_perpendicular(s[0], s[2]) @property def altitudes(self): """The altitudes of the triangle. An altitude of a triangle is a segment through a vertex, perpendicular to the opposite side, with length being the height of the vertex measured from the line containing the side. Returns ======= altitudes : dict The dictionary consists of keys which are vertices and values which are Segments. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment.length Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.altitudes[p1] Segment2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ s = self.sides v = self.vertices return {v[0]: s[1].perpendicular_segment(v[0]), v[1]: s[2].perpendicular_segment(v[1]), v[2]: s[0].perpendicular_segment(v[2])} @property def orthocenter(self): """The orthocenter of the triangle. The orthocenter is the intersection of the altitudes of a triangle. It may lie inside, outside or on the triangle. Returns ======= orthocenter : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.orthocenter Point2D(0, 0) """ a = self.altitudes v = self.vertices return Line(a[v[0]]).intersection(Line(a[v[1]]))[0] @property def circumcenter(self): """The circumcenter of the triangle The circumcenter is the center of the circumcircle. Returns ======= circumcenter : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.circumcenter Point2D(1/2, 1/2) """ a, b, c = [x.perpendicular_bisector() for x in self.sides] if not a.intersection(b): print(a,b,a.intersection(b)) return a.intersection(b)[0] @property def circumradius(self): """The radius of the circumcircle of the triangle. Returns ======= circumradius : number of Basic instance See Also ======== sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy import Symbol >>> from sympy.geometry import Point, Triangle >>> a = Symbol('a') >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a) >>> t = Triangle(p1, p2, p3) >>> t.circumradius sqrt(a**2/4 + 1/4) """ return Point.distance(self.circumcenter, self.vertices[0]) @property def circumcircle(self): """The circle which passes through the three vertices of the triangle. Returns ======= circumcircle : Circle See Also ======== sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.circumcircle Circle(Point2D(1/2, 1/2), sqrt(2)/2) """ return Circle(self.circumcenter, self.circumradius) def bisectors(self): """The angle bisectors of the triangle. An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half. Returns ======= bisectors : dict Each key is a vertex (Point) and each value is the corresponding bisector (Segment). See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment Examples ======== >>> from sympy.geometry import Point, Triangle, Segment >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> from sympy import sqrt >>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1)) True """ s = self.sides v = self.vertices c = self.incenter l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0]) l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0]) l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0]) return {v[0]: l1, v[1]: l2, v[2]: l3} @property def incenter(self): """The center of the incircle. The incircle is the circle which lies inside the triangle and touches all three sides. Returns ======= incenter : Point See Also ======== incircle, sympy.geometry.point.Point Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.incenter Point2D(-sqrt(2)/2 + 1, -sqrt(2)/2 + 1) """ s = self.sides l = Matrix([s[i].length for i in [1, 2, 0]]) p = sum(l) v = self.vertices x = simplify(l.dot(Matrix([vi.x for vi in v]))/p) y = simplify(l.dot(Matrix([vi.y for vi in v]))/p) return Point(x, y) @property def inradius(self): """The radius of the incircle. Returns ======= inradius : number of Basic instance See Also ======== incircle, sympy.geometry.ellipse.Circle.radius Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3) >>> t = Triangle(p1, p2, p3) >>> t.inradius 1 """ return simplify(2 * self.area / self.perimeter) @property def incircle(self): """The incircle of the triangle. The incircle is the circle which lies inside the triangle and touches all three sides. Returns ======= incircle : Circle See Also ======== sympy.geometry.ellipse.Circle Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2) >>> t = Triangle(p1, p2, p3) >>> t.incircle Circle(Point2D(-sqrt(2) + 2, -sqrt(2) + 2), -sqrt(2) + 2) """ return Circle(self.incenter, self.inradius) @property def exradii(self): """The radius of excircles of a triangle. An excircle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Returns ======= exradii : dict See Also ======== sympy.geometry.polygon.Triangle.inradius Examples ======== The exradius touches the side of the triangle to which it is keyed, e.g. the exradius touching side 2 is: >>> from sympy.geometry import Point, Triangle, Segment2D, Point2D >>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2) >>> t = Triangle(p1, p2, p3) >>> t.exradii[t.sides[2]] -2 + sqrt(10) References ========== [1] http://mathworld.wolfram.com/Exradius.html [2] http://mathworld.wolfram.com/Excircles.html """ side = self.sides a = side[0].length b = side[1].length c = side[2].length s = (a+b+c)/2 area = self.area exradii = {self.sides[0]: simplify(area/(s-a)), self.sides[1]: simplify(area/(s-b)), self.sides[2]: simplify(area/(s-c))} return exradii @property def medians(self): """The medians of the triangle. A median of a triangle is a straight line through a vertex and the midpoint of the opposite side, and divides the triangle into two equal areas. Returns ======= medians : dict Each key is a vertex (Point) and each value is the median (Segment) at that point. See Also ======== sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.medians[p1] Segment2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ s = self.sides v = self.vertices return {v[0]: Segment(v[0], s[1].midpoint), v[1]: Segment(v[1], s[2].midpoint), v[2]: Segment(v[2], s[0].midpoint)} @property def medial(self): """The medial triangle of the triangle. The triangle which is formed from the midpoints of the three sides. Returns ======= medial : Triangle See Also ======== sympy.geometry.line.Segment.midpoint Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.medial Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2)) """ s = self.sides return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint) @property def nine_point_circle(self): """The nine-point circle of the triangle. Nine-point circle is the circumcircle of the medial triangle, which passes through the feet of altitudes and the middle points of segments connecting the vertices and the orthocenter. Returns ======= nine_point_circle : Circle See also ======== sympy.geometry.line.Segment.midpoint sympy.geometry.polygon.Triangle.medial sympy.geometry.polygon.Triangle.orthocenter Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.nine_point_circle Circle(Point2D(1/4, 1/4), sqrt(2)/4) """ return Circle(*self.medial.vertices) @property def eulerline(self): """The Euler line of the triangle. The line which passes through circumcenter, centroid and orthocenter. Returns ======= eulerline : Line (or Point for equilateral triangles in which case all centers coincide) Examples ======== >>> from sympy.geometry import Point, Triangle >>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) >>> t = Triangle(p1, p2, p3) >>> t.eulerline Line2D(Point2D(0, 0), Point2D(1/2, 1/2)) """ if self.is_equilateral(): return self.orthocenter return Line(self.orthocenter, self.circumcenter) def rad(d): """Return the radian value for the given degrees (pi = 180 degrees).""" return d*pi/180 def deg(r): """Return the degree value for the given radians (pi = 180 degrees).""" return r/pi*180 def _slope(d): rv = tan(rad(d)) return rv def _asa(d1, l, d2): """Return triangle having side with length l on the x-axis.""" xy = Line((0, 0), slope=_slope(d1)).intersection( Line((l, 0), slope=_slope(180 - d2)))[0] return Triangle((0, 0), (l, 0), xy) def _sss(l1, l2, l3): """Return triangle having side of length l1 on the x-axis.""" c1 = Circle((0, 0), l3) c2 = Circle((l1, 0), l2) inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative] if not inter: return None pt = inter[0] return Triangle((0, 0), (l1, 0), pt) def _sas(l1, d, l2): """Return triangle having side with length l2 on the x-axis.""" p1 = Point(0, 0) p2 = Point(l2, 0) p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1) return Triangle(p1, p2, p3)
381748492b068cf4de33da8a74584d9509cc211db4fa9d68d2e20cd16deb26dd
"""Numerical Methods for Holonomic Functions""" from __future__ import print_function, division from sympy.core.sympify import sympify from sympy.holonomic.holonomic import DMFsubs from mpmath import mp def _evalf(func, points, derivatives=False, method='RK4'): """ Numerical methods for numerical integration along a given set of points in the complex plane. """ ann = func.annihilator a = ann.order R = ann.parent.base K = R.get_field() if method == 'Euler': meth = _euler else: meth = _rk4 dmf = [] for j in ann.listofpoly: dmf.append(K.new(j.rep)) red = [-dmf[i] / dmf[a] for i in range(a)] y0 = func.y0 if len(y0) < a: raise TypeError("Not Enough Initial Conditions") x0 = func.x0 sol = [meth(red, x0, points[0], y0, a)] for i, j in enumerate(points[1:]): sol.append(meth(red, points[i], j, sol[-1], a)) if not derivatives: return [sympify(i[0]) for i in sol] else: return sympify(sol) def _euler(red, x0, x1, y0, a): """ Euler's method for numerical integration. From x0 to x1 with initial values given at x0 as vector y0. """ A = sympify(x0)._to_mpmath(mp.prec) B = sympify(x1)._to_mpmath(mp.prec) y_0 = [sympify(i)._to_mpmath(mp.prec) for i in y0] h = B - A f_0 = y_0[1:] f_0_n = 0 for i in range(a): f_0_n += sympify(DMFsubs(red[i], A, mpm=True))._to_mpmath(mp.prec) * y_0[i] f_0.append(f_0_n) sol = [] for i in range(a): sol.append(y_0[i] + h * f_0[i]) return sol def _rk4(red, x0, x1, y0, a): """ Runge-Kutta 4th order numerical method. """ A = sympify(x0)._to_mpmath(mp.prec) B = sympify(x1)._to_mpmath(mp.prec) y_0 = [sympify(i)._to_mpmath(mp.prec) for i in y0] h = B - A f_0_n = 0 f_1_n = 0 f_2_n = 0 f_3_n = 0 f_0 = y_0[1:] for i in range(a): f_0_n += sympify(DMFsubs(red[i], A, mpm=True))._to_mpmath(mp.prec) * y_0[i] f_0.append(f_0_n) f_1 = [y_0[i] + f_0[i]*h/2 for i in range(1, a)] for i in range(a): f_1_n += sympify(DMFsubs(red[i], A + h/2, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_0[i]*h/2) f_1.append(f_1_n) f_2 = [y_0[i] + f_1[i]*h/2 for i in range(1, a)] for i in range(a): f_2_n += sympify(DMFsubs(red[i], A + h/2, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_1[i]*h/2) f_2.append(f_2_n) f_3 = [y_0[i] + f_2[i]*h for i in range(1, a)] for i in range(a): f_3_n += sympify(DMFsubs(red[i], A + h, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_2[i]*h) f_3.append(f_3_n) sol = [] for i in range(a): sol.append(y_0[i] + h * (f_0[i]+2*f_1[i]+2*f_2[i]+f_3[i])/6) return sol
cec1ab45a3730b0043db14b31d8f90f8e3584e394c4e120a145c3e553ad77feb
"""Recurrence Operators""" from __future__ import print_function, division from sympy import symbols, Symbol, S from sympy.printing import sstr from sympy.core.compatibility import range from sympy.core.sympify import sympify def RecurrenceOperators(base, generator): """ Returns an Algebra of Recurrence Operators and the operator for shifting i.e. the `Sn` operator. The first argument needs to be the base polynomial ring for the algebra and the second argument must be a generator which can be either a noncommutative Symbol or a string. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.recurrence import RecurrenceOperators >>> n = symbols('n', integer=True) >>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn') """ ring = RecurrenceOperatorAlgebra(base, generator) return (ring, ring.shift_operator) class RecurrenceOperatorAlgebra(object): """ A Recurrence Operator Algebra is a set of noncommutative polynomials in intermediate `Sn` and coefficients in a base ring A. It follows the commutation rule: Sn * a(n) = a(n + 1) * Sn This class represents a Recurrence Operator Algebra and serves as the parent ring for Recurrence Operators. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.recurrence import RecurrenceOperators >>> n = symbols('n', integer=True) >>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn') >>> R Univariate Recurrence Operator Algebra in intermediate Sn over the base ring ZZ[n] See Also ======== RecurrenceOperator """ def __init__(self, base, generator): # the base ring for the algebra self.base = base # the operator representing shift i.e. `Sn` self.shift_operator = RecurrenceOperator( [base.zero, base.one], self) if generator is None: self.gen_symbol = symbols('Sn', commutative=False) else: if isinstance(generator, str): self.gen_symbol = symbols(generator, commutative=False) elif isinstance(generator, Symbol): self.gen_symbol = generator def __str__(self): string = 'Univariate Recurrence Operator Algebra in intermediate '\ + sstr(self.gen_symbol) + ' over the base ring ' + \ (self.base).__str__() return string __repr__ = __str__ def __eq__(self, other): if self.base == other.base and self.gen_symbol == other.gen_symbol: return True else: return False def _add_lists(list1, list2): if len(list1) <= len(list2): sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] else: sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] return sol class RecurrenceOperator(object): """ The Recurrence Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator. Takes a list of polynomials for each power of Sn and the parent ring which must be an instance of RecurrenceOperatorAlgebra. A Recurrence Operator can be created easily using the operator `Sn`. See examples below. Examples ======== >>> from sympy.holonomic.recurrence import RecurrenceOperator, RecurrenceOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> n = symbols('n', integer=True) >>> R, Sn = RecurrenceOperators(ZZ.old_poly_ring(n),'Sn') >>> RecurrenceOperator([0, 1, n**2], R) (1)Sn + (n**2)Sn**2 >>> Sn*n (n + 1)Sn >>> n*Sn*n + 1 - Sn**2*n (1) + (n**2 + n)Sn + (-n - 2)Sn**2 See Also ======== DifferentialOperatorAlgebra """ _op_priority = 20 def __init__(self, list_of_poly, parent): # the parent ring for this operator # must be an RecurrenceOperatorAlgebra object self.parent = parent # sequence of polynomials in n for each power of Sn # represents the operator # convert the expressions into ring elements using from_sympy if isinstance(list_of_poly, list): for i, j in enumerate(list_of_poly): if isinstance(j, int): list_of_poly[i] = self.parent.base.from_sympy(S(j)) elif not isinstance(j, self.parent.base.dtype): list_of_poly[i] = self.parent.base.from_sympy(j) self.listofpoly = list_of_poly self.order = len(self.listofpoly) - 1 def __mul__(self, other): """ Multiplies two Operators and returns another RecurrenceOperator instance using the commutation rule Sn * a(n) = a(n + 1) * Sn """ listofself = self.listofpoly base = self.parent.base if not isinstance(other, RecurrenceOperator): if not isinstance(other, self.parent.base.dtype): listofother = [self.parent.base.from_sympy(sympify(other))] else: listofother = [other] else: listofother = other.listofpoly # multiply a polynomial `b` with a list of polynomials def _mul_dmp_diffop(b, listofother): if isinstance(listofother, list): sol = [] for i in listofother: sol.append(i * b) return sol else: return [b * listofother] sol = _mul_dmp_diffop(listofself[0], listofother) # compute Sn^i * b def _mul_Sni_b(b): sol = [base.zero] if isinstance(b, list): for i in b: j = base.to_sympy(i).subs(base.gens[0], base.gens[0] + S(1)) sol.append(base.from_sympy(j)) else: j = b.subs(base.gens[0], base.gens[0] + S(1)) sol.append(base.from_sympy(j)) return sol for i in range(1, len(listofself)): # find Sn^i * b in ith iteration listofother = _mul_Sni_b(listofother) # solution = solution + listofself[i] * (Sn^i * b) sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) return RecurrenceOperator(sol, self.parent) def __rmul__(self, other): if not isinstance(other, RecurrenceOperator): if isinstance(other, int): other = S(other) if not isinstance(other, self.parent.base.dtype): other = (self.parent.base).from_sympy(other) sol = [] for j in self.listofpoly: sol.append(other * j) return RecurrenceOperator(sol, self.parent) def __add__(self, other): if isinstance(other, RecurrenceOperator): sol = _add_lists(self.listofpoly, other.listofpoly) return RecurrenceOperator(sol, self.parent) else: if isinstance(other, int): other = S(other) list_self = self.listofpoly if not isinstance(other, self.parent.base.dtype): list_other = [((self.parent).base).from_sympy(other)] else: list_other = [other] sol = [] sol.append(list_self[0] + list_other[0]) sol += list_self[1:] return RecurrenceOperator(sol, self.parent) __radd__ = __add__ def __sub__(self, other): return self + (-1) * other def __rsub__(self, other): return (-1) * self + other def __pow__(self, n): if n == 1: return self if n == 0: return RecurrenceOperator([self.parent.base.one], self.parent) # if self is `Sn` if self.listofpoly == self.parent.shift_operator.listofpoly: sol = [] for i in range(0, n): sol.append(self.parent.base.zero) sol.append(self.parent.base.one) return RecurrenceOperator(sol, self.parent) else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def __str__(self): listofpoly = self.listofpoly print_str = '' for i, j in enumerate(listofpoly): if j == self.parent.base.zero: continue if i == 0: print_str += '(' + sstr(j) + ')' continue if print_str: print_str += ' + ' if i == 1: print_str += '(' + sstr(j) + ')Sn' continue print_str += '(' + sstr(j) + ')' + 'Sn**' + sstr(i) return print_str __repr__ = __str__ def __eq__(self, other): if isinstance(other, RecurrenceOperator): if self.listofpoly == other.listofpoly and self.parent == other.parent: return True else: return False else: if self.listofpoly[0] == other: for i in self.listofpoly[1:]: if i is not self.parent.base.zero: return False return True else: return False class HolonomicSequence(object): """ A Holonomic Sequence is a type of sequence satisfying a linear homogeneous recurrence relation with Polynomial coefficients. Alternatively, A sequence is Holonomic if and only if its generating function is a Holonomic Function. """ def __init__(self, recurrence, u0=[]): self.recurrence = recurrence if not isinstance(u0, list): self.u0 = [u0] else: self.u0 = u0 if len(self.u0) == 0: self._have_init_cond = False else: self._have_init_cond = True self.n = recurrence.parent.base.gens[0] def __repr__(self): str_sol = 'HolonomicSequence(%s, %s)' % ((self.recurrence).__repr__(), sstr(self.n)) if not self._have_init_cond: return str_sol else: cond_str = '' seq_str = 0 for i in self.u0: cond_str += ', u(%s) = %s' % (sstr(seq_str), sstr(i)) seq_str += 1 sol = str_sol + cond_str return sol __str__ = __repr__ def __eq__(self, other): if self.recurrence == other.recurrence: if self.n == other.n: if self._have_init_cond and other._have_init_cond: if self.u0 == other.u0: return True else: return False else: return True else: return False else: return False
52f4d1555e909504e18cf13cbc11ae69c6539f889aa6f8ca6592d8b565c05cc0
""" Linear Solver for Holonomic Functions""" from __future__ import print_function, division from sympy.core import S from sympy.matrices.common import ShapeError from sympy.matrices.dense import MutableDenseMatrix class NewMatrix(MutableDenseMatrix): """ Supports elements which can't be Sympified. See docstrings in sympy/matrices/matrices.py """ @staticmethod def _sympify(a): return a def row_join(self, rhs): # Allows you to build a matrix even if it is null matrix if not self: return type(self)(rhs) if self.rows != rhs.rows: raise ShapeError( "`self` and `rhs` must have the same number of rows.") newmat = NewMatrix.zeros(self.rows, self.cols + rhs.cols) newmat[:, :self.cols] = self newmat[:, self.cols:] = rhs return type(self)(newmat) def col_join(self, bott): # Allows you to build a matrix even if it is null matrix if not self: return type(self)(bott) if self.cols != bott.cols: raise ShapeError( "`self` and `bott` must have the same number of columns.") newmat = NewMatrix.zeros(self.rows + bott.rows, self.cols) newmat[:self.rows, :] = self newmat[self.rows:, :] = bott return type(self)(newmat) def gauss_jordan_solve(self, b, freevar=False): from sympy.matrices import Matrix aug = self.hstack(self.copy(), b.copy()) row, col = aug[:, :-1].shape # solve by reduced row echelon form A, pivots = aug.rref() A, v = A[:, :-1], A[:, -1] pivots = list(filter(lambda p: p < col, pivots)) rank = len(pivots) # Bring to block form permutation = Matrix(range(col)).T A = A.vstack(A, permutation) for i, c in enumerate(pivots): A.col_swap(i, c) A, permutation = A[:-1, :], A[-1, :] # check for existence of solutions # rank of aug Matrix should be equal to rank of coefficient matrix if not v[rank:, 0].is_zero: raise ValueError("Linear system has no solution") # Get index of free symbols (free parameters) free_var_index = permutation[len(pivots):] # non-pivots columns are free variables # Free parameters tau = NewMatrix([S(1) for k in range(col - rank)]).reshape(col - rank, 1) # Full parametric solution V = A[:rank, rank:] vt = v[:rank, 0] free_sol = tau.vstack(vt - V*tau, tau) # Undo permutation sol = NewMatrix.zeros(col, 1) for k, v in enumerate(free_sol): sol[permutation[k], 0] = v if freevar: return sol, tau, free_var_index else: return sol, tau
9da9e06f0378e97245577ae93e31af7ddfb384a5df8636a4571a03b6dff382c0
""" This module implements Holonomic Functions and various operations on them. """ from __future__ import print_function, division from sympy import (Symbol, S, Dummy, Order, rf, meijerint, I, solve, limit, Float, nsimplify, gamma) from sympy.core.compatibility import range, ordered from sympy.core.numbers import NaN, Infinity, NegativeInfinity from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import exp_polar, exp from sympy.functions.special.hyper import hyper, meijerg from sympy.matrices import Matrix from sympy.polys.rings import PolyElement from sympy.polys.fields import FracElement from sympy.polys.domains import QQ, RR from sympy.polys.polyclasses import DMF from sympy.polys.polyroots import roots from sympy.polys.polytools import Poly from sympy.printing import sstr from sympy.simplify.hyperexpand import hyperexpand from .linearsolver import NewMatrix from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError, SingularityError, NotHolonomicError) def DifferentialOperators(base, generator): r""" This function is used to create annihilators using ``Dx``. Returns an Algebra of Differential Operators also called Weyl Algebra and the operator for differentiation i.e. the ``Dx`` operator. Parameters ========== base: Base polynomial ring for the algebra. The base polynomial ring is the ring of polynomials in :math:`x` that will appear as coefficients in the operators. generator: Generator of the algebra which can be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D". Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.abc import x >>> from sympy.holonomic.holonomic import DifferentialOperators >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] >>> Dx*x (1) + (x)*Dx """ ring = DifferentialOperatorAlgebra(base, generator) return (ring, ring.derivative_operator) class DifferentialOperatorAlgebra(object): r""" An Ore Algebra is a set of noncommutative polynomials in the intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`. It follows the commutation rule: .. math :: Dxa = \sigma(a)Dx + \delta(a) for :math:`a \subset A`. Where :math:`\sigma: A --> A` is an endomorphism and :math:`\delta: A --> A` is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) * b + \sigma(a) * \delta(b)`. If one takes the sigma as identity map and delta as the standard derivation then it becomes the algebra of Differential Operators also called a Weyl Algebra i.e. an algebra whose elements are Differential Operators. This class represents a Weyl Algebra and serves as the parent ring for Differential Operators. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.holonomic import DifferentialOperators >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] See Also ======== DifferentialOperator """ def __init__(self, base, generator): # the base polynomial ring for the algebra self.base = base # the operator representing differentiation i.e. `Dx` self.derivative_operator = DifferentialOperator( [base.zero, base.one], self) if generator is None: self.gen_symbol = Symbol('Dx', commutative=False) else: if isinstance(generator, str): self.gen_symbol = Symbol(generator, commutative=False) elif isinstance(generator, Symbol): self.gen_symbol = generator def __str__(self): string = 'Univariate Differential Operator Algebra in intermediate '\ + sstr(self.gen_symbol) + ' over the base ring ' + \ (self.base).__str__() return string __repr__ = __str__ def __eq__(self, other): if self.base == other.base and self.gen_symbol == other.gen_symbol: return True else: return False class DifferentialOperator(object): """ Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to. Takes a list of polynomials for each power of ``Dx`` and the parent ring which must be an instance of DifferentialOperatorAlgebra. A Differential Operator can be created easily using the operator ``Dx``. See examples below. Examples ======== >>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> DifferentialOperator([0, 1, x**2], R) (1)*Dx + (x**2)*Dx**2 >>> (x*Dx*x + 1 - Dx**2)**2 (2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4 See Also ======== DifferentialOperatorAlgebra """ _op_priority = 20 def __init__(self, list_of_poly, parent): """ Parameters ========== list_of_poly: List of polynomials belonging to the base ring of the algebra. parent: Parent algebra of the operator. """ # the parent ring for this operator # must be an DifferentialOperatorAlgebra object self.parent = parent base = self.parent.base self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0] # sequence of polynomials in x for each power of Dx # the list should not have trailing zeroes # represents the operator # convert the expressions into ring elements using from_sympy for i, j in enumerate(list_of_poly): if not isinstance(j, base.dtype): list_of_poly[i] = base.from_sympy(sympify(j)) else: list_of_poly[i] = base.from_sympy(base.to_sympy(j)) self.listofpoly = list_of_poly # highest power of `Dx` self.order = len(self.listofpoly) - 1 def __mul__(self, other): """ Multiplies two DifferentialOperator and returns another DifferentialOperator instance using the commutation rule Dx*a = a*Dx + a' """ listofself = self.listofpoly if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): listofother = [self.parent.base.from_sympy(sympify(other))] else: listofother = [other] else: listofother = other.listofpoly # multiplies a polynomial `b` with a list of polynomials def _mul_dmp_diffop(b, listofother): if isinstance(listofother, list): sol = [] for i in listofother: sol.append(i * b) return sol else: return [b * listofother] sol = _mul_dmp_diffop(listofself[0], listofother) # compute Dx^i * b def _mul_Dxi_b(b): sol1 = [self.parent.base.zero] sol2 = [] if isinstance(b, list): for i in b: sol1.append(i) sol2.append(i.diff()) else: sol1.append(self.parent.base.from_sympy(b)) sol2.append(self.parent.base.from_sympy(b).diff()) return _add_lists(sol1, sol2) for i in range(1, len(listofself)): # find Dx^i * b in ith iteration listofother = _mul_Dxi_b(listofother) # solution = solution + listofself[i] * (Dx^i * b) sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) return DifferentialOperator(sol, self.parent) def __rmul__(self, other): if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): other = (self.parent.base).from_sympy(sympify(other)) sol = [] for j in self.listofpoly: sol.append(other * j) return DifferentialOperator(sol, self.parent) def __add__(self, other): if isinstance(other, DifferentialOperator): sol = _add_lists(self.listofpoly, other.listofpoly) return DifferentialOperator(sol, self.parent) else: list_self = self.listofpoly if not isinstance(other, self.parent.base.dtype): list_other = [((self.parent).base).from_sympy(sympify(other))] else: list_other = [other] sol = [] sol.append(list_self[0] + list_other[0]) sol += list_self[1:] return DifferentialOperator(sol, self.parent) __radd__ = __add__ def __sub__(self, other): return self + (-1) * other def __rsub__(self, other): return (-1) * self + other def __neg__(self): return -1 * self def __div__(self, other): return self * (S.One / other) def __truediv__(self, other): return self.__div__(other) def __pow__(self, n): if n == 1: return self if n == 0: return DifferentialOperator([self.parent.base.one], self.parent) # if self is `Dx` if self.listofpoly == self.parent.derivative_operator.listofpoly: sol = [] for i in range(0, n): sol.append(self.parent.base.zero) sol.append(self.parent.base.one) return DifferentialOperator(sol, self.parent) # the general case else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def __str__(self): listofpoly = self.listofpoly print_str = '' for i, j in enumerate(listofpoly): if j == self.parent.base.zero: continue if i == 0: print_str += '(' + sstr(j) + ')' continue if print_str: print_str += ' + ' if i == 1: print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol) continue print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i) return print_str __repr__ = __str__ def __eq__(self, other): if isinstance(other, DifferentialOperator): if self.listofpoly == other.listofpoly and self.parent == other.parent: return True else: return False else: if self.listofpoly[0] == other: for i in self.listofpoly[1:]: if i is not self.parent.base.zero: return False return True else: return False def is_singular(self, x0): """ Checks if the differential equation is singular at x0. """ base = self.parent.base return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x) class HolonomicFunction(object): r""" A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions, initial conditions can also be provided along with the annihilator. Holonomic functions have closure properties and thus forms a ring. Given two Holonomic Functions f and g, their sum, product, integral and derivative is also a Holonomic Function. For ordinary points initial condition should be a vector of values of the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`. For regular singular points initial conditions can also be provided in this format: :math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}` where s0, s1, ... are the roots of indicial equation and vectors :math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial terms of the associated power series. See Examples below. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x >>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x) >>> p + q # annihilator of e^x + sin(x) HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1]) >>> p * q # annihilator of e^x * sin(x) HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1]) An example of initial conditions for regular singular points, the indicial equation has only one root `1/2`. >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}) HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]}) >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr() sqrt(x) To plot a Holonomic Function, one can use `.evalf()` for numerical computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib. >>> import sympy.holonomic # doctest: +SKIP >>> from sympy import var, sin # doctest: +SKIP >>> import matplotlib.pyplot as plt # doctest: +SKIP >>> import numpy as np # doctest: +SKIP >>> var("x") # doctest: +SKIP >>> r = np.linspace(1, 5, 100) # doctest: +SKIP >>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP >>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP >>> plt.show() # doctest: +SKIP """ _op_priority = 20 def __init__(self, annihilator, x, x0=0, y0=None): """ Parameters ========== annihilator: Annihilator of the Holonomic Function, represented by a `DifferentialOperator` object. x: Variable of the function. x0: The point at which initial conditions are stored. Generally an integer. y0: The initial condition. The proper format for the initial condition is described in class docstring. To make the function unique, length of the vector `y0` should be equal to or greater than the order of differential equation. """ # initial condition self.y0 = y0 # the point for initial conditions, default is zero. self.x0 = x0 # differential operator L such that L.f = 0 self.annihilator = annihilator self.x = x def __str__(self): if self._have_init_cond(): str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\ sstr(self.x), sstr(self.x0), sstr(self.y0)) else: str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\ sstr(self.x)) return str_sol __repr__ = __str__ def unify(self, other): """ Unifies the base polynomial ring of a given two Holonomic Functions. """ R1 = self.annihilator.parent.base R2 = other.annihilator.parent.base dom1 = R1.dom dom2 = R2.dom if R1 == R2: return (self, other) R = (dom1.unify(dom2)).old_poly_ring(self.x) newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol)) sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly] sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly] sol1 = DifferentialOperator(sol1, newparent) sol2 = DifferentialOperator(sol2, newparent) sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0) sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0) return (sol1, sol2) def is_singularics(self): """ Returns True if the function have singular initial condition in the dictionary format. Returns False if the function have ordinary initial condition in the list format. Returns None for all other cases. """ if isinstance(self.y0, dict): return True elif isinstance(self.y0, list): return False def _have_init_cond(self): """ Checks if the function have initial condition. """ return bool(self.y0) def _singularics_to_ord(self): """ Converts a singular initial condition to ordinary if possible. """ a = list(self.y0)[0] b = self.y0[a] if len(self.y0) == 1 and a == int(a) and a > 0: y0 = [] a = int(a) for i in range(a): y0.append(S(0)) y0 += [j * factorial(a + i) for i, j in enumerate(b)] return HolonomicFunction(self.annihilator, self.x, self.x0, y0) def __add__(self, other): # if the ground domains are different if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a + b deg1 = self.annihilator.order deg2 = other.annihilator.order dim = max(deg1, deg2) R = self.annihilator.parent.base K = R.get_field() rowsself = [self.annihilator] rowsother = [other.annihilator] gen = self.annihilator.parent.derivative_operator # constructing annihilators up to order dim for i in range(dim - deg1): diff1 = (gen * rowsself[-1]) rowsself.append(diff1) for i in range(dim - deg2): diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother # constructing the matrix of the ansatz r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(0) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) r = NewMatrix(r).transpose() homosys = [[S(0) for q in range(dim + 1)]] homosys = NewMatrix(homosys).transpose() # solving the linear system using gauss jordan solver solcomp = r.gauss_jordan_solve(homosys) sol = solcomp[0] # if a solution is not obtained then increasing the order by 1 in each # iteration while sol.is_zero: dim += 1 diff1 = (gen * rowsself[-1]) rowsself.append(diff1) diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(S(0)) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) r = NewMatrix(r).transpose() homosys = [[S(0) for q in range(dim + 1)]] homosys = NewMatrix(homosys).transpose() solcomp = r.gauss_jordan_solve(homosys) sol = solcomp[0] # taking only the coefficients needed to multiply with `self` # can be also be done the other way by taking R.H.S and multiplying with # `other` sol = sol[:dim + 1 - deg1] sol1 = _normalize(sol, self.annihilator.parent) # annihilator of the solution sol = sol1 * (self.annihilator) sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol, self.x) # both the functions have ordinary initial conditions if self.is_singularics() == False and other.is_singularics() == False: # directly add the corresponding value if self.x0 == other.x0: # try to extended the initial conditions # using the annihilator y1 = _extend_y0(self, sol.order) y2 = _extend_y0(other, sol.order) y0 = [a + b for a, b in zip(y1, y2)] return HolonomicFunction(sol, self.x, self.x0, y0) else: # change the intiial conditions to a same point selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self + other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) + other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self + other.change_ics(self.x0) else: return self.change_ics(other.x0) + other if self.x0 != other.x0: return HolonomicFunction(sol, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: # convert the ordinary initial condition to singular. _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S(0): _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S(0): _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 # computing singular initial condition for the result # taking union of the series terms of both functions y0 = {} for i in y1: # add corresponding initial terms if the power # on `x` is same if i in y2: y0[i] = [a + b for a, b in zip(y1[i], y2[i])] else: y0[i] = y1[i] for i in y2: if not i in y1: y0[i] = y2[i] return HolonomicFunction(sol, self.x, self.x0, y0) def integrate(self, limits, initcond=False): """ Integrates the given holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1 HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1]) >>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x)) HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0]) """ # to get the annihilator, just multiply by Dx from right D = self.annihilator.parent.derivative_operator # if the function have initial conditions of the series format if self.is_singularics() == True: r = self._singularics_to_ord() if r: return r.integrate(limits, initcond=initcond) # computing singular initial condition for the function # produced after integration. y0 = {} for i in self.y0: c = self.y0[i] c2 = [] for j in range(len(c)): if c[j] == 0: c2.append(S(0)) # if power on `x` is -1, the integration becomes log(x) # TODO: Implement this case elif i + j + 1 == 0: raise NotImplementedError("logarithmic terms in the series are not supported") else: c2.append(c[j] / S(i + j + 1)) y0[i + 1] = c2 if hasattr(limits, "__iter__"): raise NotImplementedError("Definite integration for singular initial conditions") return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) # if no initial conditions are available for the function if not self._have_init_cond(): if initcond: return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S(0)]) return HolonomicFunction(self.annihilator * D, self.x) # definite integral # initial conditions for the answer will be stored at point `a`, # where `a` is the lower limit of the integrand if hasattr(limits, "__iter__"): if len(limits) == 3 and limits[0] == self.x: x0 = self.x0 a = limits[1] b = limits[2] definite = True else: definite = False y0 = [S(0)] y0 += self.y0 indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) if not definite: return indefinite_integral # use evalf to get the values at `a` if x0 != a: try: indefinite_expr = indefinite_integral.to_expr() except (NotHyperSeriesError, NotPowerSeriesError): indefinite_expr = None if indefinite_expr: lower = indefinite_expr.subs(self.x, a) if isinstance(lower, NaN): lower = indefinite_expr.limit(self.x, a) else: lower = indefinite_integral.evalf(a) if b == self.x: y0[0] = y0[0] - lower return HolonomicFunction(self.annihilator * D, self.x, x0, y0) elif S(b).is_Number: if indefinite_expr: upper = indefinite_expr.subs(self.x, b) if isinstance(upper, NaN): upper = indefinite_expr.limit(self.x, b) else: upper = indefinite_integral.evalf(b) return upper - lower # if the upper limit is `x`, the answer will be a function if b == self.x: return HolonomicFunction(self.annihilator * D, self.x, a, y0) # if the upper limits is a Number, a numerical value will be returned elif S(b).is_Number: try: s = HolonomicFunction(self.annihilator * D, self.x, a,\ y0).to_expr() indefinite = s.subs(self.x, b) if not isinstance(indefinite, NaN): return indefinite else: return s.limit(self.x, b) except (NotHyperSeriesError, NotPowerSeriesError): return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b) return HolonomicFunction(self.annihilator * D, self.x) def diff(self, *args, **kwargs): r""" Differentiation of the given Holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr() cos(x) >>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr() 2*exp(2*x) See Also ======== .integrate() """ kwargs.setdefault('evaluate', True) if args: if args[0] != self.x: return S(0) elif len(args) == 2: sol = self for i in range(args[1]): sol = sol.diff(args[0]) return sol ann = self.annihilator # if the function is constant. if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1: return S(0) # if the coefficient of y in the differential equation is zero. # a shifting is done to compute the answer in this case. elif ann.listofpoly[0] == ann.parent.base.zero: sol = DifferentialOperator(ann.listofpoly[1:], ann.parent) if self._have_init_cond(): # if ordinary initial condition if self.is_singularics() == False: return HolonomicFunction(sol, self.x, self.x0, self.y0[1:]) # TODO: support for singular initial condition return HolonomicFunction(sol, self.x) else: return HolonomicFunction(sol, self.x) # the general algorithm R = ann.parent.base K = R.get_field() seq_dmf = [K.new(i.rep) for i in ann.listofpoly] # -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0 rhs = [i / seq_dmf[0] for i in seq_dmf[1:]] rhs.insert(0, K.zero) # differentiate both lhs and rhs sol = _derivate_diff_eq(rhs) # add the term y' in lhs to rhs sol = _add_lists(sol, [K.zero, K.one]) sol = _normalize(sol[1:], self.annihilator.parent, negative=False) if not self._have_init_cond() or self.is_singularics() == True: return HolonomicFunction(sol, self.x) y0 = _extend_y0(self, sol.order + 1)[1:] return HolonomicFunction(sol, self.x, self.x0, y0) def __eq__(self, other): if self.annihilator == other.annihilator: if self.x == other.x: if self._have_init_cond() and other._have_init_cond(): if self.x0 == other.x0 and self.y0 == other.y0: return True else: return False else: return True else: return False else: return False def __mul__(self, other): ann_self = self.annihilator if not isinstance(other, HolonomicFunction): other = sympify(other) if other.has(self.x): raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.") if not self._have_init_cond(): return self else: y0 = _extend_y0(self, ann_self.order) y1 = [] for j in y0: y1.append((Poly.new(j, self.x) * other).rep) return HolonomicFunction(ann_self, self.x, self.x0, y1) if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a * b ann_other = other.annihilator list_self = [] list_other = [] a = ann_self.order b = ann_other.order R = ann_self.parent.base K = R.get_field() for j in ann_self.listofpoly: list_self.append(K.new(j.rep)) for j in ann_other.listofpoly: list_other.append(K.new(j.rep)) # will be used to reduce the degree self_red = [-list_self[i] / list_self[a] for i in range(a)] other_red = [-list_other[i] / list_other[b] for i in range(b)] # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g) coeff_mul = [[S(0) for i in range(b + 1)] for j in range(a + 1)] coeff_mul[0][0] = S(1) # making the ansatz lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]] homo_sys = [[S(0) for q in range(a * b)]] homo_sys = NewMatrix(homo_sys).transpose() sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys) # until a non trivial solution is found while sol[0].is_zero: # updating the coefficients Dx^i(f).Dx^j(g) for next degree for i in range(a - 1, -1, -1): for j in range(b - 1, -1, -1): coeff_mul[i][j + 1] += coeff_mul[i][j] coeff_mul[i + 1][j] += coeff_mul[i][j] if isinstance(coeff_mul[i][j], K.dtype): coeff_mul[i][j] = DMFdiff(coeff_mul[i][j]) else: coeff_mul[i][j] = coeff_mul[i][j].diff(self.x) # reduce the terms to lower power using annihilators of f, g for i in range(a + 1): if not coeff_mul[i][b] == S(0): for j in range(b): coeff_mul[i][j] += other_red[j] * \ coeff_mul[i][b] coeff_mul[i][b] = S(0) # not d2 + 1, as that is already covered in previous loop for j in range(b): if not coeff_mul[a][j] == 0: for i in range(a): coeff_mul[i][j] += self_red[i] * \ coeff_mul[a][j] coeff_mul[a][j] = S(0) lin_sys.append([coeff_mul[i][j] for i in range(a) for j in range(b)]) sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys) sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol_ann, self.x) if self.is_singularics() == False and other.is_singularics() == False: # if both the conditions are at same point if self.x0 == other.x0: # try to find more initial conditions y0_self = _extend_y0(self, sol_ann.order) y0_other = _extend_y0(other, sol_ann.order) # h(x0) = f(x0) * g(x0) y0 = [y0_self[0] * y0_other[0]] # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg) for i in range(1, min(len(y0_self), len(y0_other))): coeff = [[0 for i in range(i + 1)] for j in range(i + 1)] for j in range(i + 1): for k in range(i + 1): if j + k == i: coeff[j][k] = binomial(i, j) sol = 0 for j in range(i + 1): for k in range(i + 1): sol += coeff[j][k]* y0_self[j] * y0_other[k] y0.append(sol) return HolonomicFunction(sol_ann, self.x, self.x0, y0) # if the points are different, consider one else: selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self * other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) * other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self * other.change_ics(self.x0) else: return self.change_ics(other.x0) * other if self.x0 != other.x0: return HolonomicFunction(sol_ann, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S(0): _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S(0): _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 y0 = {} # multiply every possible pair of the series terms for i in y1: for j in y2: k = min(len(y1[i]), len(y2[j])) c = [] for a in range(k): s = S(0) for b in range(a + 1): s += y1[i][b] * y2[j][a - b] c.append(s) if not i + j in y0: y0[i + j] = c else: y0[i + j] = [a + b for a, b in zip(c, y0[i + j])] return HolonomicFunction(sol_ann, self.x, self.x0, y0) __rmul__ = __mul__ def __sub__(self, other): return self + other * -1 def __rsub__(self, other): return self * -1 + other def __neg__(self): return -1 * self def __div__(self, other): return self * (S.One / other) def __truediv__(self, other): return self.__div__(other) def __pow__(self, n): if self.annihilator.order <= 1: ann = self.annihilator parent = ann.parent if self.y0 is None: y0 = None else: y0 = [list(self.y0)[0] ** n] p0 = ann.listofpoly[0] p1 = ann.listofpoly[1] p0 = (Poly.new(p0, self.x) * n).rep sol = [parent.base.to_sympy(i) for i in [p0, p1]] dd = DifferentialOperator(sol, parent) return HolonomicFunction(dd, self.x, self.x0, y0) if n < 0: raise NotHolonomicError("Negative Power on a Holonomic Function") if n == 0: Dx = self.annihilator.parent.derivative_operator return HolonomicFunction(Dx, self.x, S(0), [S(1)]) if n == 1: return self else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def degree(self): """ Returns the highest power of `x` in the annihilator. """ sol = [i.degree() for i in self.annihilator.listofpoly] return max(sol) def composition(self, expr, *args, **kwargs): """ Returns function after composition of a holonomic function with an algebraic function. The method can't compute initial conditions for the result by itself, so they can be also be provided. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1]) >>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0]) HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0]) See Also ======== from_hyper() """ R = self.annihilator.parent a = self.annihilator.order diff = expr.diff(self.x) listofpoly = self.annihilator.listofpoly for i, j in enumerate(listofpoly): if isinstance(j, self.annihilator.parent.base.dtype): listofpoly[i] = self.annihilator.parent.base.to_sympy(j) r = listofpoly[a].subs({self.x:expr}) subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)] coeffs = [S(0) for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a)) coeffs[0] = S(1) system = [coeffs] homogeneous = Matrix([[S(0) for i in range(a)]]).transpose() sol = S(0) while sol.is_zero: coeffs_next = [p.diff(self.x) for p in coeffs] for i in range(a - 1): coeffs_next[i + 1] += (coeffs[i] * diff) for i in range(a): coeffs_next[i] += (coeffs[-1] * subs[i] * diff) coeffs = coeffs_next # check for linear relations system.append(coeffs) sol, taus = (Matrix(system).transpose() ).gauss_jordan_solve(homogeneous) tau = list(taus)[0] sol = sol.subs(tau, 1) sol = _normalize(sol[0:], R, negative=False) # if initial conditions are given for the resulting function if args: return HolonomicFunction(sol, self.x, args[0], args[1]) return HolonomicFunction(sol, self.x) def to_sequence(self, lb=True): r""" Finds recurrence relation for the coefficients in the series expansion of the function about :math:`x_0`, where :math:`x_0` is the point at which the initial condition is stored. If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]` is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the smallest ``n`` for which the recurrence holds true. If the point :math:`x_0` is regular singular, a list of solutions in the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`. Each tuple in this vector represents a recurrence relation :math:`R` associated with a root of the indicial equation ``p``. Conditions of a different format can also be provided in this case, see the docstring of HolonomicFunction class. If it's not possible to numerically compute a initial condition, it is returned as a symbol :math:`C_j`, denoting the coefficient of :math:`(x - x_0)^j` in the power series about :math:`x_0`. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() [(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)] >>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence() [(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)] >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence() [(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)] See Also ======== HolonomicFunction.series() References ========== .. [1] https://hal.inria.fr/inria-00070025/document .. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf """ if self.x0 != 0: return self.shift_x(self.x0).to_sequence() # check whether a power series exists if the point is singular if self.annihilator.is_singular(self.x0): return self._frobenius(lb=lb) dict1 = {} n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') # substituting each term of the form `x^k Dx^j` in the # annihilator, according to the formula below: # x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo)) # for explanation see [2]. for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k) in dict1: dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i)) else: dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = self.degree() # the recurrence relation holds for all values of # n greater than smallest_n, i.e. n >= smallest_n smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] # an appropriate shift of the recurrence for j in range(lower, upper + 1): if j in keylist: temp = S(0) for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S(0)) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n y0 = _extend_y0(self, order) u0 = [] # u(n) = y^n(0)/factorial(n) for i, j in enumerate(y0): u0.append(j / factorial(i)) # if sufficient conditions can't be computed then # try to use the series method i.e. # equate the coefficients of x^k in the equation formed by # substituting the series in differential equation, to zero. if len(u0) < order: for i in range(degree): eq = S(0) for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S(0) elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: dummys[i + j[0]] = Symbol('C_%s' %(i + j[0])) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] def _frobenius(self, lb=True): # compute the roots of indicial equation indicialroots = self._indicial() reals = [] compl = [] for i in ordered(indicialroots.keys()): if i.is_real: reals.extend([i] * indicialroots[i]) else: a, b = i.as_real_imag() compl.extend([(i, a, b)] * indicialroots[i]) # sort the roots for a fixed ordering of solution compl.sort(key=lambda x : x[1]) compl.sort(key=lambda x : x[2]) reals.sort() # grouping the roots, roots differ by an integer are put in the same group. grp = [] for i in reals: intdiff = False if len(grp) == 0: grp.append([i]) continue for j in grp: if int(j[0] - i) == j[0] - i: j.append(i) intdiff = True break if not intdiff: grp.append([i]) # True if none of the roots differ by an integer i.e. # each element in group have only one member independent = True if all(len(i) == 1 for i in grp) else False allpos = all(i >= 0 for i in reals) allint = all(int(i) == i for i in reals) # if initial conditions are provided # then use them. if self.is_singularics() == True: rootstoconsider = [] for i in ordered(self.y0.keys()): for j in ordered(indicialroots.keys()): if j == i: rootstoconsider.append(i) elif allpos and allint: rootstoconsider = [min(reals)] elif independent: rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl] elif not allint: rootstoconsider = [] for i in reals: if not int(i) == i: rootstoconsider.append(i) elif not allpos: if not self._have_init_cond() or S(self.y0[0]).is_finite == False: rootstoconsider = [min(reals)] else: posroots = [] for i in reals: if i >= 0: posroots.append(i) rootstoconsider = [min(posroots)] n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') finalsol = [] char = ord('C') for p in rootstoconsider: dict1 = {} for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k - i) in dict1: dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) else: dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = max([i[1] for i in dict1]) degree2 = min([i[1] for i in dict1]) smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] for j in range(lower, upper + 1): if j in keylist: temp = S(0) for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S(0)) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n u0 = [] if self.is_singularics() == True: u0 = self.y0[p] elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1: y0 = _extend_y0(self, order + int(p)) # u(n) = y^n(0)/factorial(n) if len(y0) > int(p): for i in range(int(p), len(y0)): u0.append(y0[i] / factorial(i)) if len(u0) < order: for i in range(degree2, degree): eq = S(0) for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S(0) elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: letter = chr(char) + '_%s' %(i + j[0]) dummys[i + j[0]] = Symbol(letter) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) continue else: finalsol.append((HolonomicSequence(sol, u0), p)) continue for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) else: finalsol.append((HolonomicSequence(sol, u0), p)) char += 1 return finalsol def series(self, n=6, coefficient=False, order=True, _recur=None): r""" Finds the power series expansion of given holonomic function about :math:`x_0`. A list of series might be returned if :math:`x_0` is a regular point with multiple roots of the indicial equation. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x) x - x**3/6 + x**5/120 - x**7/5040 + O(x**8) See Also ======== HolonomicFunction.to_sequence() """ if _recur == None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = [] for i in recurrence: sol.append(self.series(_recur=i)) return sol n = n - int(constantpower) l = len(recurrence.u0) - 1 k = recurrence.recurrence.order x = self.x x0 = self.x0 seq_dmp = recurrence.recurrence.listofpoly R = recurrence.recurrence.parent.base K = R.get_field() seq = [] for i, j in enumerate(seq_dmp): seq.append(K.new(j.rep)) sub = [-seq[i] / seq[k] for i in range(k)] sol = [i for i in recurrence.u0] if l + 1 >= n: pass else: # use the initial conditions to find the next term for i in range(l + 1 - k, n - k): coeff = S(0) for j in range(k): if i + j >= 0: coeff += DMFsubs(sub[j], i) * sol[i + j] sol.append(coeff) if coefficient: return sol ser = S(0) for i, j in enumerate(sol): ser += x**(i + constantpower) * j if order: ser += Order(x**(n + int(constantpower)), x) if x0 != 0: return ser.subs(x, x - x0) return ser def _indicial(self): """ Computes roots of the Indicial equation. """ if self.x0 != 0: return self.shift_x(self.x0)._indicial() list_coeff = self.annihilator.listofpoly R = self.annihilator.parent.base x = self.x s = R.zero y = R.one def _pole_degree(poly): root_all = roots(R.to_sympy(poly), x, filter='Z') if 0 in root_all.keys(): return root_all[0] else: return 0 degree = [j.degree() for j in list_coeff] degree = max(degree) inf = 10 * (max(1, degree) + max(1, self.annihilator.order)) deg = lambda q: inf if q.is_zero else _pole_degree(q) b = deg(list_coeff[0]) for j in range(1, len(list_coeff)): b = min(b, deg(list_coeff[j]) - j) for i, j in enumerate(list_coeff): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 if - i - b <= 0 and degree - i - b >= 0: s = s + listofdmp[degree - i - b] * y y *= x - i return roots(R.to_sympy(s), x) def evalf(self, points, method='RK4', h=0.05, derivatives=False): r""" Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration. The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical values will be computed at each point in this order :math:`x_1 --> x_2 --> x_3 ... --> x_n`. Returns values of the function at :math:`x_1, x_2, ... x_n` in a list. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') A straight line on the real axis from (0 to 1) >>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] Runge-Kutta 4th order on e^x from 0.1 to 1. Exact solution at 1 is 2.71828182845905 >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r) [1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069, 1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232, 2.45960141378007, 2.71827974413517] Euler's method for the same >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler') [1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, 2.357947691, 2.5937424601] One can also observe that the value obtained using Runge-Kutta 4th order is much more accurate than Euler's method. """ from sympy.holonomic.numerical import _evalf lp = False # if a point `b` is given instead of a mesh if not hasattr(points, "__iter__"): lp = True b = S(points) if self.x0 == b: return _evalf(self, [b], method=method, derivatives=derivatives)[-1] if not b.is_Number: raise NotImplementedError a = self.x0 if a > b: h = -h n = int((b - a) / h) points = [a + h] for i in range(n - 1): points.append(points[-1] + h) for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x): if i == self.x0 or i in points: raise SingularityError(self, i) if lp: return _evalf(self, points, method=method, derivatives=derivatives)[-1] return _evalf(self, points, method=method, derivatives=derivatives) def change_x(self, z): """ Changes only the variable of Holonomic Function, for internal purposes. For composition use HolonomicFunction.composition() """ dom = self.annihilator.parent.base.dom R = dom.old_poly_ring(z) parent, _ = DifferentialOperators(R, 'Dx') sol = [] for j in self.annihilator.listofpoly: sol.append(R(j.rep)) sol = DifferentialOperator(sol, parent) return HolonomicFunction(sol, z, self.x0, self.y0) def shift_x(self, a): """ Substitute `x + a` for `x`. """ x = self.x listaftershift = self.annihilator.listofpoly base = self.annihilator.parent.base sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift] sol = DifferentialOperator(sol, self.annihilator.parent) x0 = self.x0 - a if not self._have_init_cond(): return HolonomicFunction(sol, x) return HolonomicFunction(sol, x, x0, self.y0) def to_hyper(self, as_list=False, _recur=None): r""" Returns a hypergeometric function (or linear combination of them) representing the given holonomic function. Returns an answer of the form: `a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...` This is very useful as one can now use ``hyperexpand`` to find the symbolic expressions/functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> # sin(x) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper() x*hyper((), (3/2,), -x**2/4) >>> # exp(x) >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper() hyper((), (), x) See Also ======== from_hyper, from_meijerg """ if _recur == None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: smallest_n = recurrence[1] recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: smallest_n = recurrence[2] constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: smallest_n = recurrence[0][1] recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: smallest_n = recurrence[0][2] constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = self.to_hyper(as_list=as_list, _recur=recurrence[0]) for i in recurrence[1:]: sol += self.to_hyper(as_list=as_list, _recur=i) return sol u0 = recurrence.u0 r = recurrence.recurrence x = self.x x0 = self.x0 # order of the recurrence relation m = r.order # when no recurrence exists, and the power series have finite terms if m == 0: nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R') sol = S(0) for j, i in enumerate(nonzeroterms): if i < 0 or int(i) != i: continue i = int(i) if i < len(u0): if isinstance(u0[i], (PolyElement, FracElement)): u0[i] = u0[i].as_expr() sol += u0[i] * x**i else: sol += Symbol('C_%s' %j) * x**i if isinstance(sol, (PolyElement, FracElement)): sol = sol.as_expr() * x**constantpower else: sol = sol * x**constantpower if as_list: if x0 != 0: return [(sol.subs(x, x - x0), )] return [(sol, )] if x0 != 0: return sol.subs(x, x - x0) return sol if smallest_n + m > len(u0): raise NotImplementedError("Can't compute sufficient Initial Conditions") # check if the recurrence represents a hypergeometric series is_hyper = True for i in range(1, len(r.listofpoly)-1): if r.listofpoly[i] != r.parent.base.zero: is_hyper = False break if not is_hyper: raise NotHyperSeriesError(self, self.x0) a = r.listofpoly[0] b = r.listofpoly[-1] # the constant multiple of argument of hypergeometric function if isinstance(a.rep[0], (PolyElement, FracElement)): c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree())) else: c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree())) sol = 0 arg1 = roots(r.parent.base.to_sympy(a), recurrence.n) arg2 = roots(r.parent.base.to_sympy(b), recurrence.n) # iterate thorugh the initial conditions to find # the hypergeometric representation of the given # function. # The answer will be a linear combination # of different hypergeometric series which satisfies # the recurrence. if as_list: listofsol = [] for i in range(smallest_n + m): # if the recurrence relation doesn't hold for `n = i`, # then a Hypergeometric representation doesn't exist. # add the algebraic term a * x**i to the solution, # where a is u0[i] if i < smallest_n: if as_list: listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), )) else: sol += S(u0[i]) * x**i continue # if the coefficient u0[i] is zero, then the # independent hypergeomtric series starting with # x**i is not a part of the answer. if S(u0[i]) == 0: continue ap = [] bq = [] # substitute m * n + i for n for k in ordered(arg1.keys()): ap.extend([nsimplify((i - k) / m)] * arg1[k]) for k in ordered(arg2.keys()): bq.extend([nsimplify((i - k) / m)] * arg2[k]) # convention of (k + 1) in the denominator if 1 in bq: bq.remove(1) else: ap.append(1) if as_list: listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0))) else: sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i if as_list: return listofsol sol = sol * x**constantpower if x0 != 0: return sol.subs(x, x - x0) return sol def to_expr(self): """ Converts a Holonomic Function back to elementary functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr() besselj(1, x) >>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr() x*log(x + 1) + log(x + 1) + 1 """ return hyperexpand(self.to_hyper()).simplify() def change_ics(self, b, lenics=None): """ Changes the point `x0` to `b` for initial conditions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import symbols, sin, cos, exp >>> x = symbols('x') >>> expr_to_holonomic(sin(x)).change_ics(1) HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)]) >>> expr_to_holonomic(exp(x)).change_ics(2) HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)]) """ symbolic = True if lenics == None and len(self.y0) > self.annihilator.order: lenics = len(self.y0) dom = self.annihilator.parent.base.domain try: sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom) except (NotPowerSeriesError, NotHyperSeriesError): symbolic = False if symbolic and sol.x0 == b: return sol y0 = self.evalf(b, derivatives=True) return HolonomicFunction(self.annihilator, self.x, b, y0) def to_meijerg(self): """ Returns a linear combination of Meijer G-functions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import sin, cos, hyperexpand, log, symbols >>> x = symbols('x') >>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg()) sin(x) + cos(x) >>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() log(x) See Also ======== to_hyper() """ # convert to hypergeometric first rep = self.to_hyper(as_list=True) sol = S(0) for i in rep: if len(i) == 1: sol += i[0] elif len(i) == 2: sol += i[0] * _hyper_to_meijerg(i[1]) return sol def from_hyper(func, x0=0, evalf=False): r""" Converts a hypergeometric function to holonomic. ``func`` is the Hypergeometric Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators >>> from sympy import symbols, hyper, S >>> x = symbols('x') >>> from_hyper(hyper([], [S(3)/2], x**2/4)) HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)]) """ a = func.ap b = func.bq z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # generalized hypergeometric differential equation r1 = 1 for i in range(len(a)): r1 = r1 * (x * Dx + a[i]) r2 = Dx for i in range(len(b)): r2 = r2 * (x * Dx + b[i] - 1) sol = r1 - r2 simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) # return None if it is Infinite or NaN if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # if the function is known symbolically if not isinstance(simp, hyper): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: # if values don't exist at 0, then try to find initial # conditions at 1. If it doesn't exist at 1 too then # try 2 and so on. x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, hyper): x0 = 1 # use evalf if the function can't be simpified y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ): """ Converts a Meijer G-function to Holonomic. ``func`` is the G-Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_meijerg, DifferentialOperators >>> from sympy import symbols, meijerg, S >>> x = symbols('x') >>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)]) """ a = func.ap b = func.bq n = len(func.an) m = len(func.bm) p = len(a) z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx') # compute the differential equation satisfied by the # Meijer G-function. mnp = (-1)**(m + n - p) r1 = x * mnp for i in range(len(a)): r1 *= x * Dx + 1 - a[i] r2 = 1 for i in range(len(b)): r2 *= x * Dx - b[i] sol = r1 - r2 if not initcond: return HolonomicFunction(sol, x).composition(z) simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # computing initial conditions if not isinstance(simp, meijerg): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, meijerg): x0 = 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) x_1 = Dummy('x_1') _lookup_table = None domain_for_table = None from sympy.integrals.meijerint import _mytype def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True): """ Converts a function or an expression to a holonomic function. Parameters ========== func: The expression to be converted. x: variable for the function. x0: point at which initial condition must be computed. y0: One can optionally provide initial condition if the method isn't able to do it automatically. lenics: Number of terms in the initial condition. By default it is equal to the order of the annihilator. domain: Ground domain for the polynomials in `x` appearing as coefficients in the annihilator. initcond: Set it false if you don't want the initial conditions to be computed. Examples ======== >>> from sympy.holonomic.holonomic import expr_to_holonomic >>> from sympy import sin, exp, symbols >>> x = symbols('x') >>> expr_to_holonomic(sin(x)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1]) >>> expr_to_holonomic(exp(x)) HolonomicFunction((-1) + (1)*Dx, x, 0, [1]) See Also ======== meijerint._rewrite1, _convert_poly_rat_alg, _create_table """ func = sympify(func) syms = func.free_symbols if not x: if len(syms) == 1: x= syms.pop() else: raise ValueError("Specify the variable for the function") elif x in syms: syms.remove(x) extra_syms = list(syms) if domain == None: if func.has(Float): domain = RR else: domain = QQ if len(extra_syms) != 0: domain = domain[extra_syms].get_field() # try to convert if the function is polynomial or rational solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond) if solpoly: return solpoly # create the lookup table global _lookup_table, domain_for_table if not _lookup_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) elif domain != domain_for_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) # use the table directly to convert to Holonomic if func.is_Function: f = func.subs(x, x_1) t = _mytype(f, x_1) if t in _lookup_table: l = _lookup_table[t] sol = l[0][1].change_x(x) else: sol = _convert_meijerint(func, x, initcond=False, domain=domain) if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) if y0 or not initcond: sol = sol.composition(func.args[0]) if y0: sol.y0 = y0 sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return sol.composition(func.args[0], x0, _y0) # iterate through the expression recursively args = func.args f = func.func from sympy.core import Add, Mul, Pow sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain) if f is Add: for i in range(1, len(args)): sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Mul: for i in range(1, len(args)): sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Pow: sol = sol**args[1] sol.x0 = x0 if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: return sol if sol.y0: return sol if not lenics: lenics = sol.annihilator.order if sol.annihilator.is_singular(x0): r = sol._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S(1): r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol.annihilator, x, x0, y0) _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) ## Some helper functions ## def _normalize(list_of, parent, negative=True): """ Normalize a given annihilator """ num = [] denom = [] base = parent.base K = base.get_field() lcm_denom = base.from_sympy(S(1)) list_of_coeff = [] # convert polynomials to the elements of associated # fraction field for i, j in enumerate(list_of): if isinstance(j, base.dtype): list_of_coeff.append(K.new(j.rep)) elif not isinstance(j, K.dtype): list_of_coeff.append(K.from_sympy(sympify(j))) else: list_of_coeff.append(j) # corresponding numerators of the sequence of polynomials num.append(list_of_coeff[i].numer()) # corresponding denominators denom.append(list_of_coeff[i].denom()) # lcm of denominators in the coefficients for i in denom: lcm_denom = i.lcm(lcm_denom) if negative: lcm_denom = -lcm_denom lcm_denom = K.new(lcm_denom.rep) # multiply the coefficients with lcm for i, j in enumerate(list_of_coeff): list_of_coeff[i] = j * lcm_denom gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep) # gcd of numerators in the coefficients for i in num: gcd_numer = i.gcd(gcd_numer) gcd_numer = K.new(gcd_numer.rep) # divide all the coefficients by the gcd for i, j in enumerate(list_of_coeff): frac_ans = j / gcd_numer list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep) return DifferentialOperator(list_of_coeff, parent) def _derivate_diff_eq(listofpoly): """ Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 where a0, a1,... are polynomials or rational functions. The function returns b0, b1, b2... such that the differential equation b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the former equation. """ sol = [] a = len(listofpoly) - 1 sol.append(DMFdiff(listofpoly[0])) for i, j in enumerate(listofpoly[1:]): sol.append(DMFdiff(j) + listofpoly[i]) sol.append(listofpoly[a]) return sol def _hyper_to_meijerg(func): """ Converts a `hyper` to meijerg. """ ap = func.ap bq = func.bq ispoly = any(i <= 0 and int(i) == i for i in ap) if ispoly: return hyperexpand(func) z = func.args[2] # parameters of the `meijerg` function. an = (1 - i for i in ap) anp = () bm = (S(0), ) bmq = (1 - i for i in bq) k = S(1) for i in bq: k = k * gamma(i) for i in ap: k = k / gamma(i) return k * meijerg(an, anp, bm, bmq, -z) def _add_lists(list1, list2): """Takes polynomial sequences of two annihilators a and b and returns the list of polynomials of sum of a and b. """ if len(list1) <= len(list2): sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] else: sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] return sol def _extend_y0(Holonomic, n): """ Tries to find more initial conditions by substituting the initial value point in the differential equation. """ if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True: return Holonomic.y0 annihilator = Holonomic.annihilator a = annihilator.order listofpoly = [] y0 = Holonomic.y0 R = annihilator.parent.base K = R.get_field() for i, j in enumerate(annihilator.listofpoly): if isinstance(j, annihilator.parent.base.dtype): listofpoly.append(K.new(j.rep)) if len(y0) < a or n <= len(y0): return y0 else: list_red = [-listofpoly[i] / listofpoly[a] for i in range(a)] if len(y0) > a: y1 = [y0[i] for i in range(a)] else: y1 = [i for i in y0] for i in range(n - a): sol = 0 for a, b in zip(y1, list_red): r = DMFsubs(b, Holonomic.x0) try: if not r.is_finite: return y0 except AttributeError: pass if isinstance(r, (PolyElement, FracElement)): r = r.as_expr() sol += a * r y1.append(sol) list_red = _derivate_diff_eq(list_red) return y0 + y1[len(y0):] def DMFdiff(frac): # differentiate a DMF object represented as p/q if not isinstance(frac, DMF): return frac.diff() K = frac.ring p = K.numer(frac) q = K.denom(frac) sol_num = - p * q.diff() + q * p.diff() sol_denom = q**2 return K((sol_num.rep, sol_denom.rep)) def DMFsubs(frac, x0, mpm=False): # substitute the point x0 in DMF object of the form p/q if not isinstance(frac, DMF): return frac p = frac.num q = frac.den sol_p = S(0) sol_q = S(0) if mpm: from mpmath import mp for i, j in enumerate(reversed(p)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_p += j * x0**i for i, j in enumerate(reversed(q)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_q += j * x0**i if isinstance(sol_p, (PolyElement, FracElement)): sol_p = sol_p.as_expr() if isinstance(sol_q, (PolyElement, FracElement)): sol_q = sol_q.as_expr() return sol_p / sol_q def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True): """ Converts polynomials, rationals and algebraic functions to holonomic. """ ispoly = func.is_polynomial() if not ispoly: israt = func.is_rational_function() else: israt = True if not (ispoly or israt): basepoly, ratexp = func.as_base_exp() if basepoly.is_polynomial() and ratexp.is_Number: if isinstance(ratexp, Float): ratexp = nsimplify(ratexp) m, n = ratexp.p, ratexp.q is_alg = True else: is_alg = False else: is_alg = True if not (ispoly or israt or is_alg): return None R = domain.old_poly_ring(x) _, Dx = DifferentialOperators(R, 'Dx') # if the function is constant if not func.has(x): return HolonomicFunction(Dx, x, 0, [func]) if ispoly: # differential equation satisfied by polynomial sol = func * Dx - func.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 == None and x0 == 0 and is_singular: rep = R.from_sympy(func).rep for i, j in enumerate(reversed(rep)): if j == 0: continue else: coeff = list(reversed(rep))[i:] indicial = i break for i, j in enumerate(coeff): if isinstance(j, (PolyElement, FracElement)): coeff[i] = j.as_expr() y0 = {indicial: S(coeff)} elif israt: p, q = func.as_numer_denom() # differential equation satisfied by rational sol = p * q * Dx + p * q.diff(x) - q * p.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) elif is_alg: sol = n * (x / m) * Dx - 1 sol = HolonomicFunction(sol, x).composition(basepoly).annihilator is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 == None and x0 == 0 and is_singular and \ (lenics == None or lenics <= 1): rep = R.from_sympy(basepoly).rep for i, j in enumerate(reversed(rep)): if j == 0: continue if isinstance(j, (PolyElement, FracElement)): j = j.as_expr() coeff = S(j)**ratexp indicial = S(i) * ratexp break if isinstance(coeff, (PolyElement, FracElement)): coeff = coeff.as_expr() y0 = {indicial: S([coeff])} if y0 or not initcond: return HolonomicFunction(sol, x, x0, y0) if not lenics: lenics = sol.order if sol.is_singular(x0): r = HolonomicFunction(sol, x, x0)._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S(1): r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol, x, x0, y0) y0 = _find_conditions(func, x, x0, lenics) while not y0: x0 += 1 y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol, x, x0, y0) def _convert_meijerint(func, x, initcond=True, domain=QQ): args = meijerint._rewrite1(func, x) if args: fac, po, g, _ = args else: return None # lists for sum of meijerg functions fac_list = [fac * i[0] for i in g] t = po.as_base_exp() s = t[1] if t[0] is x else S(0) po_list = [s + i[1] for i in g] G_list = [i[2] for i in g] # finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z) def _shift(func, s): z = func.args[-1] if z.has(I): z = z.subs(exp_polar, exp) d = z.collect(x, evaluate=False) b = list(d)[0] a = d[b] t = b.as_base_exp() b = t[1] if t[0] is x else S(0) r = s / b an = (i + r for i in func.args[0][0]) ap = (i + r for i in func.args[0][1]) bm = (i + r for i in func.args[1][0]) bq = (i + r for i in func.args[1][1]) return a**-r, meijerg((an, ap), (bm, bq), z) coeff, m = _shift(G_list[0], po_list[0]) sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain) # add all the meijerg functions after converting to holonomic for i in range(1, len(G_list)): coeff, m = _shift(G_list[i], po_list[i]) sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain) return sol def _create_table(table, domain=QQ): """ Creates the look-up table. For a similar implementation see meijerint._create_lookup_table. """ def add(formula, annihilator, arg, x0=0, y0=[]): """ Adds a formula in the dictionary """ table.setdefault(_mytype(formula, x_1), []).append((formula, HolonomicFunction(annihilator, arg, x0, y0))) R = domain.old_poly_ring(x_1) _, Dx = DifferentialOperators(R, 'Dx') from sympy import (sin, cos, exp, log, erf, sqrt, pi, sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi) # add some basic functions add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1]) add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0]) add(exp(x_1), Dx - 1, x_1, 0, 1) add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1]) add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)]) add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1]) add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0]) add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1) add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) def _find_conditions(func, x, x0, order): y0 = [] for i in range(order): val = func.subs(x, x0) if isinstance(val, NaN): val = limit(func, x, x0) if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN): return None y0.append(val) func = func.diff(x) return y0
8dd972478b89a47689c23fcbde79b21f0a733d5162c7af2802b26c88da9518ee
""" This module implements Pauli algebra by subclassing Symbol. Only algebraic properties of Pauli matrices are used (we don't use the Matrix class). See the documentation to the class Pauli for examples. References ~~~~~~~~~~ .. [1] https://en.wikipedia.org/wiki/Pauli_matrices """ from __future__ import print_function, division from sympy import Symbol, I, Mul, Pow, Add from sympy.physics.quantum import TensorProduct __all__ = ['evaluate_pauli_product'] def delta(i, j): """ Returns 1 if i == j, else 0. This is used in the multiplication of Pauli matrices. Examples ======== >>> from sympy.physics.paulialgebra import delta >>> delta(1, 1) 1 >>> delta(2, 3) 0 """ if i == j: return 1 else: return 0 def epsilon(i, j, k): """ Return 1 if i,j,k is equal to (1,2,3), (2,3,1), or (3,1,2); -1 if i,j,k is equal to (1,3,2), (3,2,1), or (2,1,3); else return 0. This is used in the multiplication of Pauli matrices. Examples ======== >>> from sympy.physics.paulialgebra import epsilon >>> epsilon(1, 2, 3) 1 >>> epsilon(1, 3, 2) -1 """ if (i, j, k) in [(1, 2, 3), (2, 3, 1), (3, 1, 2)]: return 1 elif (i, j, k) in [(1, 3, 2), (3, 2, 1), (2, 1, 3)]: return -1 else: return 0 class Pauli(Symbol): """ The class representing algebraic properties of Pauli matrices. The symbol used to display the Pauli matrices can be changed with an optional parameter ``label="sigma"``. Pauli matrices with different ``label`` attributes cannot multiply together. If the left multiplication of symbol or number with Pauli matrix is needed, please use parentheses to separate Pauli and symbolic multiplication (for example: 2*I*(Pauli(3)*Pauli(2))). Another variant is to use evaluate_pauli_product function to evaluate the product of Pauli matrices and other symbols (with commutative multiply rules). See Also ======== evaluate_pauli_product Examples ======== >>> from sympy.physics.paulialgebra import Pauli >>> Pauli(1) sigma1 >>> Pauli(1)*Pauli(2) I*sigma3 >>> Pauli(1)*Pauli(1) 1 >>> Pauli(3)**4 1 >>> Pauli(1)*Pauli(2)*Pauli(3) I >>> from sympy.physics.paulialgebra import Pauli >>> Pauli(1, label="tau") tau1 >>> Pauli(1)*Pauli(2, label="tau") sigma1*tau2 >>> Pauli(1, label="tau")*Pauli(2, label="tau") I*tau3 >>> from sympy import I >>> I*(Pauli(2)*Pauli(3)) -sigma1 >>> from sympy.physics.paulialgebra import evaluate_pauli_product >>> f = I*Pauli(2)*Pauli(3) >>> f I*sigma2*sigma3 >>> evaluate_pauli_product(f) -sigma1 """ __slots__ = ["i", "label"] def __new__(cls, i, label="sigma"): if not i in [1, 2, 3]: raise IndexError("Invalid Pauli index") obj = Symbol.__new__(cls, "%s%d" %(label,i), commutative=False, hermitian=True) obj.i = i obj.label = label return obj def __getnewargs__(self): return (self.i,self.label,) # FIXME don't work for -I*Pauli(2)*Pauli(3) def __mul__(self, other): if isinstance(other, Pauli): j = self.i k = other.i jlab = self.label klab = other.label if jlab == klab: return delta(j, k) \ + I*epsilon(j, k, 1)*Pauli(1,jlab) \ + I*epsilon(j, k, 2)*Pauli(2,jlab) \ + I*epsilon(j, k, 3)*Pauli(3,jlab) return super(Pauli, self).__mul__(other) def _eval_power(b, e): if e.is_Integer and e.is_positive: return super(Pauli, b).__pow__(int(e) % 2) def evaluate_pauli_product(arg): '''Help function to evaluate Pauli matrices product with symbolic objects Parameters ========== arg: symbolic expression that contains Paulimatrices Examples ======== >>> from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product >>> from sympy import I >>> evaluate_pauli_product(I*Pauli(1)*Pauli(2)) -sigma3 >>> from sympy.abc import x,y >>> evaluate_pauli_product(x**2*Pauli(2)*Pauli(1)) -I*x**2*sigma3 ''' start = arg end = arg if isinstance(arg, Pow) and isinstance(arg.args[0], Pauli): if arg.args[1].is_odd: return arg.args[0] else: return 1 if isinstance(arg, Add): return Add(*[evaluate_pauli_product(part) for part in arg.args]) if isinstance(arg, TensorProduct): return TensorProduct(*[evaluate_pauli_product(part) for part in arg.args]) elif not(isinstance(arg, Mul)): return arg while ((not(start == end)) | ((start == arg) & (end == arg))): start = end tmp = start.as_coeff_mul() sigma_product = 1 com_product = 1 keeper = 1 for el in tmp[1]: if isinstance(el, Pauli): sigma_product *= el elif not(el.is_commutative): if isinstance(el, Pow) and isinstance(el.args[0], Pauli): if el.args[1].is_odd: sigma_product *= el.args[0] elif isinstance(el, TensorProduct): keeper = keeper*sigma_product*\ TensorProduct( *[evaluate_pauli_product(part) for part in el.args] ) sigma_product = 1 else: keeper = keeper*sigma_product*el sigma_product = 1 else: com_product *= el end = (tmp[0]*keeper*sigma_product*com_product) if end == arg: break return end
6ed757092ed9796ccafed23740acf2e313a9121e4f2b7fc754fc73f2214d66f7
r"""Module that defines indexed objects The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a matrix element ``M[i, j]`` as in the following diagram:: 1) The Indexed class represents the entire indexed object. | ___|___ ' ' M[i, j] / \__\______ | | | | | 2) The Idx class represents indices; each Idx can | optionally contain information about its range. | 3) IndexedBase represents the 'stem' of an indexed object, here `M`. The stem used by itself is usually taken to represent the entire array. There can be any number of indices on an Indexed object. No transformation properties are implemented in these Base objects, but implicit contraction of repeated indices is supported. Note that the support for complicated (i.e. non-atomic) integer expressions as indices is limited. (This should be improved in future releases.) Examples ======== To express the above matrix element example you would write: >>> from sympy import symbols, IndexedBase, Idx >>> M = IndexedBase('M') >>> i, j = symbols('i j', cls=Idx) >>> M[i, j] M[i, j] Repeated indices in a product implies a summation, so to express a matrix-vector product in terms of Indexed objects: >>> x = IndexedBase('x') >>> M[i, j]*x[j] M[i, j]*x[j] If the indexed objects will be converted to component based arrays, e.g. with the code printers or the autowrap framework, you also need to provide (symbolic or numerical) dimensions. This can be done by passing an optional shape parameter to IndexedBase upon construction: >>> dim1, dim2 = symbols('dim1 dim2', integer=True) >>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2)) >>> A.shape (dim1, 2*dim1, dim2) >>> A[i, j, 3].shape (dim1, 2*dim1, dim2) If an IndexedBase object has no shape information, it is assumed that the array is as large as the ranges of its indices: >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> M[i, j].shape (m, n) >>> M[i, j].ranges [(0, m - 1), (0, n - 1)] The above can be compared with the following: >>> A[i, 2, j].shape (dim1, 2*dim1, dim2) >>> A[i, 2, j].ranges [(0, m - 1), None, (0, n - 1)] To analyze the structure of indexed expressions, you can use the methods get_indices() and get_contraction_structure(): >>> from sympy.tensor import get_indices, get_contraction_structure >>> get_indices(A[i, j, j]) ({i}, {}) >>> get_contraction_structure(A[i, j, j]) {(j,): {A[i, j, j]}} See the appropriate docstrings for a detailed explanation of the output. """ # TODO: (some ideas for improvement) # # o test and guarantee numpy compatibility # - implement full support for broadcasting # - strided arrays # # o more functions to analyze indexed expressions # - identify standard constructs, e.g matrix-vector product in a subexpression # # o functions to generate component based arrays (numpy and sympy.Matrix) # - generate a single array directly from Indexed # - convert simple sub-expressions # # o sophisticated indexing (possibly in subclasses to preserve simplicity) # - Idx with range smaller than dimension of Indexed # - Idx with stepsize != 1 # - Idx with step determined by function call from __future__ import print_function, division from sympy.core import Expr, Tuple, Symbol, sympify, S from sympy.core.compatibility import (is_sequence, string_types, NotIterable, Iterable) from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta class IndexException(Exception): pass class Indexed(Expr): """Represents a mathematical object with indices. >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j) A[i, j] It is recommended that ``Indexed`` objects be created via ``IndexedBase``: >>> A = IndexedBase('A') >>> Indexed('A', i, j) == A[i, j] True """ is_commutative = True is_Indexed = True is_symbol = True is_Atom = True def __new__(cls, base, *args, **kw_args): from sympy.utilities.misc import filldedent from sympy.tensor.array.ndim_array import NDimArray from sympy.matrices.matrices import MatrixBase if not args: raise IndexException("Indexed needs at least one index.") if isinstance(base, (string_types, Symbol)): base = IndexedBase(base) elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase): raise TypeError(filldedent(""" Indexed expects string, Symbol, or IndexedBase as base.""")) args = list(map(sympify, args)) if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]): if len(args) == 1: return base[args[0]] else: return base[args] return Expr.__new__(cls, base, *args, **kw_args) @property def name(self): return str(self) @property def _diff_wrt(self): """Allow derivatives with respect to an ``Indexed`` object.""" return True def _eval_derivative(self, wrt): from sympy.tensor.array.ndim_array import NDimArray if isinstance(wrt, Indexed) and wrt.base == self.base: if len(self.indices) != len(wrt.indices): msg = "Different # of indices: d({!s})/d({!s})".format(self, wrt) raise IndexException(msg) result = S.One for index1, index2 in zip(self.indices, wrt.indices): result *= KroneckerDelta(index1, index2) return result elif isinstance(self.base, NDimArray): from sympy.tensor.array import derive_by_array return Indexed(derive_by_array(self.base, wrt), *self.args[1:]) else: if Tuple(self.indices).has(wrt): return S.NaN return S.Zero @property def base(self): """Returns the ``IndexedBase`` of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).base A >>> B = IndexedBase('B') >>> B == B[i, j].base True """ return self.args[0] @property def indices(self): """ Returns the indices of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).indices (i, j) """ return self.args[1:] @property def rank(self): """ Returns the rank of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j, k, l, m = symbols('i:m', cls=Idx) >>> Indexed('A', i, j).rank 2 >>> q = Indexed('A', i, j, k, l, m) >>> q.rank 5 >>> q.rank == len(q.indices) True """ return len(self.args) - 1 @property def shape(self): """Returns a list with dimensions of each index. Dimensions is a property of the array, not of the indices. Still, if the ``IndexedBase`` does not define a shape attribute, it is assumed that the ranges of the indices correspond to the shape of the array. >>> from sympy import IndexedBase, Idx, symbols >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', m) >>> A = IndexedBase('A', shape=(n, n)) >>> B = IndexedBase('B') >>> A[i, j].shape (n, n) >>> B[i, j].shape (m, m) """ from sympy.utilities.misc import filldedent if self.base.shape: return self.base.shape try: return Tuple(*[i.upper - i.lower + 1 for i in self.indices]) except AttributeError: raise IndexException(filldedent(""" Range is not defined for all indices in: %s""" % self)) except TypeError: raise IndexException(filldedent(""" Shape cannot be inferred from Idx with undefined range: %s""" % self)) @property def ranges(self): """Returns a list of tuples with lower and upper range of each index. If an index does not define the data members upper and lower, the corresponding slot in the list contains ``None`` instead of a tuple. Examples ======== >>> from sympy import Indexed,Idx, symbols >>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges [(0, 1), (0, 3), (0, 7)] >>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges [(0, 2), (0, 2), (0, 2)] >>> x, y, z = symbols('x y z', integer=True) >>> Indexed('A', x, y, z).ranges [None, None, None] """ ranges = [] for i in self.indices: try: ranges.append(Tuple(i.lower, i.upper)) except AttributeError: ranges.append(None) return ranges def _sympystr(self, p): indices = list(map(p.doprint, self.indices)) return "%s[%s]" % (p.doprint(self.base), ", ".join(indices)) @property def free_symbols(self): base_free_symbols = self.base.free_symbols indices_free_symbols = { fs for i in self.indices for fs in i.free_symbols} if base_free_symbols: return {self} | base_free_symbols | indices_free_symbols else: return indices_free_symbols @property def expr_free_symbols(self): return {self} class IndexedBase(Expr, NotIterable): """Represent the base or stem of an indexed object The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed class. The __getitem__ method of IndexedBase returns an instance of Indexed. Alone, without indices, the IndexedBase class can be used as a notation for e.g. matrix equations, resembling what you could do with the Symbol class. But, the IndexedBase class adds functionality that is not available for Symbol instances: - An IndexedBase object can optionally store shape information. This can be used in to check array conformance and conditions for numpy broadcasting. (TODO) - An IndexedBase object implements syntactic sugar that allows easy symbolic representation of array operations, using implicit summation of repeated indices. - The IndexedBase object symbolizes a mathematical structure equivalent to arrays, and is recognized as such for code generation and automatic compilation and wrapping. >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> A = IndexedBase('A'); A A >>> type(A) <class 'sympy.tensor.indexed.IndexedBase'> When an IndexedBase object receives indices, it returns an array with named axes, represented by an Indexed object: >>> i, j = symbols('i j', integer=True) >>> A[i, j, 2] A[i, j, 2] >>> type(A[i, j, 2]) <class 'sympy.tensor.indexed.Indexed'> The IndexedBase constructor takes an optional shape argument. If given, it overrides any shape information in the indices. (But not the index ranges!) >>> m, n, o, p = symbols('m n o p', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> A[i, j].shape (m, n) >>> B = IndexedBase('B', shape=(o, p)) >>> B[i, j].shape (o, p) """ is_commutative = True is_symbol = True is_Atom = True def __new__(cls, label, shape=None, **kw_args): from sympy import MatrixBase, NDimArray if isinstance(label, string_types): label = Symbol(label) elif isinstance(label, Symbol): pass elif isinstance(label, (MatrixBase, NDimArray)): return label elif isinstance(label, Iterable): return _sympify(label) else: label = _sympify(label) if is_sequence(shape): shape = Tuple(*shape) elif shape is not None: shape = Tuple(shape) offset = kw_args.pop('offset', S.Zero) strides = kw_args.pop('strides', None) if shape is not None: obj = Expr.__new__(cls, label, shape) else: obj = Expr.__new__(cls, label) obj._shape = shape obj._offset = offset obj._strides = strides obj._name = str(label) return obj @property def name(self): return self._name def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. if self.shape and len(self.shape) != len(indices): raise IndexException("Rank mismatch.") return Indexed(self, *indices, **kw_args) else: if self.shape and len(self.shape) != 1: raise IndexException("Rank mismatch.") return Indexed(self, indices, **kw_args) @property def shape(self): """Returns the shape of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase, Idx, Symbol >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).shape (x, y) Note: If the shape of the ``IndexedBase`` is specified, it will override any shape information given by the indices. >>> A = IndexedBase('A', shape=(x, y)) >>> B = IndexedBase('B') >>> i = Idx('i', 2) >>> j = Idx('j', 1) >>> A[i, j].shape (x, y) >>> B[i, j].shape (2, 1) """ return self._shape @property def strides(self): """Returns the strided scheme for the ``IndexedBase`` object. Normally this is a tuple denoting the number of steps to take in the respective dimension when traversing an array. For code generation purposes strides='C' and strides='F' can also be used. strides='C' would mean that code printer would unroll in row-major order and 'F' means unroll in column major order. """ return self._strides @property def offset(self): """Returns the offset for the ``IndexedBase`` object. This is the value added to the resulting index when the 2D Indexed object is unrolled to a 1D form. Used in code generation. Examples ========== >>> from sympy.printing import ccode >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> l, m, n, o = symbols('l m n o', integer=True) >>> A = IndexedBase('A', strides=(l, m, n), offset=o) >>> i, j, k = map(Idx, 'ijk') >>> ccode(A[i, j, k]) 'A[l*i + m*j + n*k + o]' """ return self._offset @property def label(self): """Returns the label of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).label A """ return self.args[0] def _sympystr(self, p): return p.doprint(self.label) class Idx(Expr): """Represents an integer index as an ``Integer`` or integer expression. There are a number of ways to create an ``Idx`` object. The constructor takes two arguments: ``label`` An integer or a symbol that labels the index. ``range`` Optionally you can specify a range as either * ``Symbol`` or integer: This is interpreted as a dimension. Lower and upper bounds are set to ``0`` and ``range - 1``, respectively. * ``tuple``: The two elements are interpreted as the lower and upper bounds of the range, respectively. Note: bounds of the range are assumed to be either integer or infinite (oo and -oo are allowed to specify an unbounded range). If ``n`` is given as a bound, then ``n.is_integer`` must not return false. For convenience, if the label is given as a string it is automatically converted to an integer symbol. (Note: this conversion is not done for range or dimension arguments.) Examples ======== >>> from sympy import IndexedBase, Idx, symbols, oo >>> n, i, L, U = symbols('n i L U', integer=True) If a string is given for the label an integer ``Symbol`` is created and the bounds are both ``None``: >>> idx = Idx('qwerty'); idx qwerty >>> idx.lower, idx.upper (None, None) Both upper and lower bounds can be specified: >>> idx = Idx(i, (L, U)); idx i >>> idx.lower, idx.upper (L, U) When only a single bound is given it is interpreted as the dimension and the lower bound defaults to 0: >>> idx = Idx(i, n); idx.lower, idx.upper (0, n - 1) >>> idx = Idx(i, 4); idx.lower, idx.upper (0, 3) >>> idx = Idx(i, oo); idx.lower, idx.upper (0, oo) """ is_integer = True is_finite = True is_real = True is_symbol = True is_Atom = True _diff_wrt = True def __new__(cls, label, range=None, **kw_args): from sympy.utilities.misc import filldedent if isinstance(label, string_types): label = Symbol(label, integer=True) label, range = list(map(sympify, (label, range))) if label.is_Number: if not label.is_integer: raise TypeError("Index is not an integer number.") return label if not label.is_integer: raise TypeError("Idx object requires an integer label.") elif is_sequence(range): if len(range) != 2: raise ValueError(filldedent(""" Idx range tuple must have length 2, but got %s""" % len(range))) for bound in range: if bound.is_integer is False: raise TypeError("Idx object requires integer bounds.") args = label, Tuple(*range) elif isinstance(range, Expr): if not (range.is_integer or range is S.Infinity): raise TypeError("Idx object requires an integer dimension.") args = label, Tuple(0, range - 1) elif range: raise TypeError(filldedent(""" The range must be an ordered iterable or integer SymPy expression.""")) else: args = label, obj = Expr.__new__(cls, *args, **kw_args) obj._assumptions["finite"] = True obj._assumptions["real"] = True return obj @property def label(self): """Returns the label (Integer or integer expression) of the Idx object. Examples ======== >>> from sympy import Idx, Symbol >>> x = Symbol('x', integer=True) >>> Idx(x).label x >>> j = Symbol('j', integer=True) >>> Idx(j).label j >>> Idx(j + 1).label j + 1 """ return self.args[0] @property def lower(self): """Returns the lower bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).lower 0 >>> Idx('j', 5).lower 0 >>> Idx('j').lower is None True """ try: return self.args[1][0] except IndexError: return @property def upper(self): """Returns the upper bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).upper 1 >>> Idx('j', 5).upper 4 >>> Idx('j').upper is None True """ try: return self.args[1][1] except IndexError: return def _sympystr(self, p): return p.doprint(self.label) @property def name(self): return self.label.name if self.label.is_Symbol else str(self.label) @property def free_symbols(self): return {self} def __le__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.upper is not None and (self.upper <= other_lower) == True: return True if self.lower is not None and (self.lower > other_upper) == True: return False return super(Idx, self).__le__(other) def __ge__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.lower is not None and (self.lower >= other_upper) == True: return True if self.upper is not None and (self.upper < other_lower) == True: return False return super(Idx, self).__ge__(other) def __lt__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.upper is not None and (self.upper < other_lower) == True: return True if self.lower is not None and (self.lower >= other_upper) == True: return False return super(Idx, self).__lt__(other) def __gt__(self, other): if isinstance(other, Idx): other_upper = other if other.upper is None else other.upper other_lower = other if other.lower is None else other.lower else: other_upper = other other_lower = other if self.lower is not None and (self.lower > other_upper) == True: return True if self.upper is not None and (self.upper <= other_lower) == True: return False return super(Idx, self).__gt__(other)
26815af36d5d47ec15eb0ad3bc5566950fa2d57f7ca5cab5fbfdd7bb448bc0e7
""" Boolean algebra module for SymPy """ from __future__ import print_function, division from collections import defaultdict from itertools import combinations, product from sympy.core.add import Add from sympy.core.basic import Basic, as_Basic from sympy.core.cache import cacheit from sympy.core.numbers import Number, oo from sympy.core.operations import LatticeOp from sympy.core.function import Application, Derivative, count_ops from sympy.core.compatibility import (ordered, range, with_metaclass, as_int, reduce) from sympy.core.sympify import converter, _sympify, sympify from sympy.core.singleton import Singleton, S from sympy.utilities.misc import filldedent from sympy.utilities.iterables import sift def as_Boolean(e): """Like bool, return the Boolean value of an expression, e, which can be any instance of Boolean or bool. Examples ======== >>> from sympy import true, false, nan >>> from sympy.logic.boolalg import as_Boolean >>> from sympy.abc import x >>> as_Boolean(1) is true True >>> as_Boolean(x) x >>> as_Boolean(2) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `2`. """ from sympy.core.symbol import Symbol if e == True: return S.true if e == False: return S.false if isinstance(e, Symbol): z = e.is_zero if z is None: return e return S.false if z else S.true if isinstance(e, Boolean): return e raise TypeError('expecting bool or Boolean, not `%s`.' % e) class Boolean(Basic): """A boolean object is an object for which logic operations make sense.""" __slots__ = [] def __and__(self, other): """Overloading for & operator""" return And(self, other) __rand__ = __and__ def __or__(self, other): """Overloading for |""" return Or(self, other) __ror__ = __or__ def __invert__(self): """Overloading for ~""" return Not(self) def __rshift__(self, other): """Overloading for >>""" return Implies(self, other) def __lshift__(self, other): """Overloading for <<""" return Implies(other, self) __rrshift__ = __lshift__ __rlshift__ = __rshift__ def __xor__(self, other): return Xor(self, other) __rxor__ = __xor__ def equals(self, other): """ Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import And, Or, Not >>> (A >> B).equals(~B >> ~A) True >>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C))) False >>> Not(And(A, Not(A))).equals(Or(B, Not(B))) False """ from sympy.logic.inference import satisfiable from sympy.core.relational import Relational if self.has(Relational) or other.has(Relational): raise NotImplementedError('handling of relationals') return self.atoms() == other.atoms() and \ not satisfiable(Not(Equivalent(self, other))) def to_nnf(self, simplify=True): # override where necessary return self def as_set(self): """ Rewrites Boolean expression in terms of real sets. Examples ======== >>> from sympy import Symbol, Eq, Or, And >>> x = Symbol('x', real=True) >>> Eq(x, 0).as_set() {0} >>> (x > 0).as_set() Interval.open(0, oo) >>> And(-2 < x, x < 2).as_set() Interval.open(-2, 2) >>> Or(x < -2, 2 < x).as_set() Union(Interval.open(-oo, -2), Interval.open(2, oo)) """ from sympy.calculus.util import periodicity from sympy.core.relational import Relational free = self.free_symbols if len(free) == 1: x = free.pop() reps = {} for r in self.atoms(Relational): if periodicity(r, x) not in (0, None): s = r._eval_as_set() if s in (S.EmptySet, S.UniversalSet, S.Reals): reps[r] = s.as_relational(x) continue raise NotImplementedError(filldedent(''' as_set is not implemented for relationals with periodic solutions ''')) return self.subs(reps)._eval_as_set() else: raise NotImplementedError("Sorry, as_set has not yet been" " implemented for multivariate" " expressions") @property def binary_symbols(self): from sympy.core.relational import Eq, Ne return set().union(*[i.binary_symbols for i in self.args if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne))]) class BooleanAtom(Boolean): """ Base class of BooleanTrue and BooleanFalse. """ is_Boolean = True is_Atom = True _op_priority = 11 # higher than Expr def simplify(self, *a, **kw): return self def expand(self, *a, **kw): return self @property def canonical(self): return self def _noop(self, other=None): raise TypeError('BooleanAtom not allowed in this context.') __add__ = _noop __radd__ = _noop __sub__ = _noop __rsub__ = _noop __mul__ = _noop __rmul__ = _noop __pow__ = _noop __rpow__ = _noop __rdiv__ = _noop __truediv__ = _noop __div__ = _noop __rtruediv__ = _noop __mod__ = _noop __rmod__ = _noop _eval_power = _noop # /// drop when Py2 is no longer supported def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __gt__ = __lt__ __ge__ = __lt__ # \\\ class BooleanTrue(with_metaclass(Singleton, BooleanAtom)): """ SymPy version of True, a singleton that can be accessed via S.true. This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true. Notes ===== There is liable to be some confusion as to when ``True`` should be used and when ``S.true`` should be used in various contexts throughout SymPy. An important thing to remember is that ``sympify(True)`` returns ``S.true``. This means that for the most part, you can just use ``True`` and it will automatically be converted to ``S.true`` when necessary, similar to how you can generally use 1 instead of ``S.One``. The rule of thumb is: "If the boolean in question can be replaced by an arbitrary symbolic ``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``. Otherwise, use ``True``" In other words, use ``S.true`` only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the ``.args`` of any expression, then it must necessarily be ``S.true`` instead of ``True``, as elements of ``.args`` must be ``Basic``. On the other hand, ``==`` is not a symbolic operation in SymPy, since it always returns ``True`` or ``False``, and does so in terms of structural equality rather than mathematical, so it should return ``True``. The assumptions system should use ``True`` and ``False``. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false`` represent a two-valued logic. When in doubt, use ``True``. "``S.true == True is True``." While "``S.true is True``" is ``False``, "``S.true == True``" is ``True``, so if there is any doubt over whether a function or expression will return ``S.true`` or ``True``, just use ``==`` instead of ``is`` to do the comparison, and it will work in either case. Finally, for boolean flags, it's better to just use ``if x`` instead of ``if x is True``. To quote PEP 8: Don't compare boolean values to ``True`` or ``False`` using ``==``. * Yes: ``if greeting:`` * No: ``if greeting == True:`` * Worse: ``if greeting is True:`` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(True) True >>> _ is True, _ is true (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) See Also ======== sympy.logic.boolalg.BooleanFalse """ def __nonzero__(self): return True __bool__ = __nonzero__ def __hash__(self): return hash(True) @property def negated(self): return S.false def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import true >>> true.as_set() UniversalSet() """ return S.UniversalSet class BooleanFalse(with_metaclass(Singleton, BooleanAtom)): """ SymPy version of False, a singleton that can be accessed via S.false. This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with False they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false. Notes ====== See note in :py:class`sympy.logic.boolalg.BooleanTrue` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(False) False >>> _ is False, _ is false (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for false but a bitwise result for False >>> ~false, ~False (True, -1) >>> false >> false, False >> False (True, 0) See Also ======== sympy.logic.boolalg.BooleanTrue """ def __nonzero__(self): return False __bool__ = __nonzero__ def __hash__(self): return hash(False) @property def negated(self): return S.true def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import false >>> false.as_set() EmptySet() """ return S.EmptySet true = BooleanTrue() false = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: S.true if x else S.false class BooleanFunction(Application, Boolean): """Boolean function is a function that lives in a boolean space It is used as base class for And, Or, Not, etc. """ is_Boolean = True def _eval_simplify(self, ratio, measure, rational, inverse): rv = self.func(*[a._eval_simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse) for a in self.args]) return simplify_logic(rv) def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False): return self._eval_simplify(ratio, measure, rational, inverse) # /// drop when Py2 is no longer supported def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __ge__ = __lt__ __gt__ = __lt__ # \\\ @classmethod def binary_check_and_simplify(self, *args): from sympy.core.relational import Relational, Eq, Ne args = [as_Boolean(i) for i in args] bin = set().union(*[i.binary_symbols for i in args]) rel = set().union(*[i.atoms(Relational) for i in args]) reps = {} for x in bin: for r in rel: if x in bin and x in r.free_symbols: if isinstance(r, (Eq, Ne)): if not ( S.true in r.args or S.false in r.args): reps[r] = S.false else: raise TypeError(filldedent(''' Incompatible use of binary symbol `%s` as a real variable in `%s` ''' % (x, r))) return [i.subs(reps) for i in args] def to_nnf(self, simplify=True): return self._to_nnf(*self.args, simplify=simplify) @classmethod def _to_nnf(cls, *args, **kwargs): simplify = kwargs.get('simplify', True) argset = set([]) for arg in args: if not is_literal(arg): arg = arg.to_nnf(simplify) if simplify: if isinstance(arg, cls): arg = arg.args else: arg = (arg,) for a in arg: if Not(a) in argset: return cls.zero argset.add(a) else: argset.add(arg) return cls(*argset) # the diff method below is copied from Expr class def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) def _eval_derivative(self, x): from sympy.core.relational import Eq, Relational from sympy.functions.elementary.piecewise import Piecewise if x in self.binary_symbols: return Piecewise( (0, Eq(self.subs(x, 0), self.subs(x, 1))), (1, True)) elif x in self.free_symbols: # not implemented, see https://www.encyclopediaofmath.org/ # index.php/Boolean_differential_calculus pass else: return S.Zero class And(LatticeOp, BooleanFunction): """ Logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True. Examples ======== >>> from sympy.core import symbols >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import And >>> x & y x & y Notes ===== The ``&`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, ``And(a, b)`` and ``a & b`` will return different things if ``a`` and ``b`` are integers. >>> And(x, y).subs(x, 1) y """ zero = false identity = true nargs = None @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in reversed(args): if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.false] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, And) def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.core.relational import Equality, Relational from sympy.solvers.solveset import linear_coeffs # standard simplify rv = super(And, self)._eval_simplify( ratio, measure, rational, inverse) if not isinstance(rv, And): return rv # simplify args that are equalities involving # symbols so x == 0 & x == y -> x==0 & y == 0 Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if not Rel: return rv eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True) if not eqs: return rv reps = {} sifted = {} if eqs: # group by length of free symbols sifted = sift(ordered([ (i.free_symbols, i) for i in eqs]), lambda x: len(x[0])) eqs = [] while 1 in sifted: for free, e in sifted.pop(1): x = free.pop() if e.lhs != x or x in e.rhs.free_symbols: try: m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) enew = e.func(x, -b/m) if measure(enew) <= ratio*measure(e): e = enew else: eqs.append(e) continue except ValueError: pass if x in reps: eqs.append(e.func(e.rhs, reps[x])) else: reps[x] = e.rhs eqs.append(e) resifted = defaultdict(list) for k in sifted: for f, e in sifted[k]: e = e.subs(reps) f = e.free_symbols resifted[len(f)].append((f, e)) sifted = resifted for k in sifted: eqs.extend([e for f, e in sifted[k]]) other = [ei.subs(reps) for ei in other] rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel)) return rv def _eval_as_set(self): from sympy.sets.sets import Intersection return Intersection(*[arg.as_set() for arg in self.args]) class Or(LatticeOp, BooleanFunction): """ Logical OR function It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False. Examples ======== >>> from sympy.core import symbols >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import Or >>> x | y x | y Notes ===== The ``|`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if ``a`` and ``b`` are integers. >>> Or(x, y).subs(x, 0) y """ zero = true identity = false @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in args: if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.true] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, Or) def _eval_as_set(self): from sympy.sets.sets import Union return Union(*[arg.as_set() for arg in self.args]) class Not(BooleanFunction): """ Logical Not function (negation) Returns True if the statement is False Returns False if the statement is True Examples ======== >>> from sympy.logic.boolalg import Not, And, Or >>> from sympy.abc import x, A, B >>> Not(True) False >>> Not(False) True >>> Not(And(True, False)) True >>> Not(Or(True, False)) False >>> Not(And(And(True, x), Or(x, False))) ~x >>> ~x ~x >>> Not(And(Or(A, B), Or(~A, ~B))) ~((A | B) & (~A | ~B)) Notes ===== - The ``~`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is an integer. Furthermore, since bools in Python subclass from ``int``, ``~True`` is the same as ``~1`` which is ``-2``, which has a boolean value of True. To avoid this issue, use the SymPy boolean types ``true`` and ``false``. >>> from sympy import true >>> ~True -2 >>> ~true False """ is_Not = True @classmethod def eval(cls, arg): from sympy import ( Equality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality) if isinstance(arg, Number) or arg in (True, False): return false if arg else true if arg.is_Not: return arg.args[0] # Simplify Relational objects. if isinstance(arg, Equality): return Unequality(*arg.args) if isinstance(arg, Unequality): return Equality(*arg.args) if isinstance(arg, StrictLessThan): return GreaterThan(*arg.args) if isinstance(arg, StrictGreaterThan): return LessThan(*arg.args) if isinstance(arg, LessThan): return StrictGreaterThan(*arg.args) if isinstance(arg, GreaterThan): return StrictLessThan(*arg.args) def _eval_as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Not, Symbol >>> x = Symbol('x') >>> Not(x > 0).as_set() Interval(-oo, 0) """ return self.args[0].as_set().complement(S.Reals) def to_nnf(self, simplify=True): if is_literal(self): return self expr = self.args[0] func, args = expr.func, expr.args if func == And: return Or._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Or: return And._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Implies: a, b = args return And._to_nnf(a, ~b, simplify=simplify) if func == Equivalent: return And._to_nnf(Or(*args), Or(*[~arg for arg in args]), simplify=simplify) if func == Xor: result = [] for i in range(1, len(args)+1, 2): for neg in combinations(args, i): clause = [~s if s in neg else s for s in args] result.append(Or(*clause)) return And._to_nnf(*result, simplify=simplify) if func == ITE: a, b, c = args return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify) raise ValueError("Illegal operator %s in expression" % func) class Xor(BooleanFunction): """ Logical XOR (exclusive OR) function. Returns True if an odd number of the arguments are True and the rest are False. Returns False if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xor(True, False) True >>> Xor(True, True) False >>> Xor(True, False, True, True, False) True >>> Xor(True, False, True, False) False >>> x ^ y Xor(x, y) Notes ===== The ``^`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and ``b`` are integers. >>> Xor(x, y).subs(y, 0) x """ def __new__(cls, *args, **kwargs): argset = set([]) obj = super(Xor, cls).__new__(cls, *args, **kwargs) for arg in obj._args: if isinstance(arg, Number) or arg in (True, False): if arg: arg = true else: continue if isinstance(arg, Xor): for a in arg.args: argset.remove(a) if a in argset else argset.add(a) elif arg in argset: argset.remove(arg) else: argset.add(arg) rel = [(r, r.canonical, r.negated.canonical) for r in argset if r.is_Relational] odd = False # is number of complimentary pairs odd? start 0 -> False remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: odd = ~odd break elif cj == c: break else: continue remove.append((r, rj)) if odd: argset.remove(true) if true in argset else argset.add(true) for a, b in remove: argset.remove(a) argset.remove(b) if len(argset) == 0: return false elif len(argset) == 1: return argset.pop() elif True in argset: argset.remove(True) return Not(Xor(*argset)) else: obj._args = tuple(ordered(argset)) obj._argset = frozenset(argset) return obj @property @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for i in range(0, len(self.args)+1, 2): for neg in combinations(self.args, i): clause = [~s if s in neg else s for s in self.args] args.append(Or(*clause)) return And._to_nnf(*args, simplify=simplify) class Nand(BooleanFunction): """ Logical NAND function. It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True. Returns True if any of the arguments are False Returns False if all arguments are True Examples ======== >>> from sympy.logic.boolalg import Nand >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nand(False, True) True >>> Nand(True, True) False >>> Nand(x, y) ~(x & y) """ @classmethod def eval(cls, *args): return Not(And(*args)) class Nor(BooleanFunction): """ Logical NOR function. It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False. Returns False if any argument is True Returns True if all arguments are False Examples ======== >>> from sympy.logic.boolalg import Nor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nor(True, False) False >>> Nor(True, True) False >>> Nor(False, True) False >>> Nor(False, False) True >>> Nor(x, y) ~(x | y) """ @classmethod def eval(cls, *args): return Not(Or(*args)) class Xnor(BooleanFunction): """ Logical XNOR function. Returns False if an odd number of the arguments are True and the rest are False. Returns True if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xnor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xnor(True, False) False >>> Xnor(True, True) True >>> Xnor(True, False, True, True, False) False >>> Xnor(True, False, True, False) True """ @classmethod def eval(cls, *args): return Not(Xor(*args)) class Implies(BooleanFunction): """ Logical implication. A implies B is equivalent to !A v B Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise. Examples ======== >>> from sympy.logic.boolalg import Implies >>> from sympy import symbols >>> x, y = symbols('x y') >>> Implies(True, False) False >>> Implies(False, False) True >>> Implies(True, True) True >>> Implies(False, True) True >>> x >> y Implies(x, y) >>> y << x Implies(x, y) Notes ===== The ``>>`` and ``<<`` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different things if ``a`` and ``b`` are integers. In particular, since Python considers ``True`` and ``False`` to be integers, ``True >> True`` will be the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To avoid this issue, use the SymPy objects ``true`` and ``false``. >>> from sympy import true, false >>> True >> False 1 >>> true >> false False """ @classmethod def eval(cls, *args): try: newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) A, B = newargs except ValueError: raise ValueError( "%d operand(s) used for an Implies " "(pairs are required): %s" % (len(args), str(args))) if A == True or A == False or B == True or B == False: return Or(Not(A), B) elif A == B: return S.true elif A.is_Relational and B.is_Relational: if A.canonical == B.canonical: return S.true if A.negated.canonical == B.canonical: return B else: return Basic.__new__(cls, *args) def to_nnf(self, simplify=True): a, b = self.args return Or._to_nnf(~a, b, simplify=simplify) class Equivalent(BooleanFunction): """ Equivalence relation. Equivalent(A, B) is True iff A and B are both True or both False Returns True if all of the arguments are logically equivalent. Returns False otherwise. Examples ======== >>> from sympy.logic.boolalg import Equivalent, And >>> from sympy.abc import x, y >>> Equivalent(False, False, False) True >>> Equivalent(True, False, False) False >>> Equivalent(x, And(x, True)) True """ def __new__(cls, *args, **options): from sympy.core.relational import Relational args = [_sympify(arg) for arg in args] argset = set(args) for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) argset.add(True if x else False) rel = [] for r in argset: if isinstance(r, Relational): rel.append((r, r.canonical, r.negated.canonical)) remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: return false elif cj == c: remove.append((r, rj)) break for a, b in remove: argset.remove(a) argset.remove(b) argset.add(True) if len(argset) <= 1: return true if True in argset: argset.discard(True) return And(*argset) if False in argset: argset.discard(False) return And(*[~arg for arg in argset]) _args = frozenset(argset) obj = super(Equivalent, cls).__new__(cls, _args) obj._argset = _args return obj @property @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for a, b in zip(self.args, self.args[1:]): args.append(Or(~a, b)) args.append(Or(~self.args[-1], self.args[0])) return And._to_nnf(*args, simplify=simplify) class ITE(BooleanFunction): """ If then else clause. ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans. Examples ======== >>> from sympy.logic.boolalg import ITE, And, Xor, Or >>> from sympy.abc import x, y, z >>> ITE(True, False, True) False >>> ITE(Or(True, False), And(True, True), Xor(True, True)) True >>> ITE(x, y, z) ITE(x, y, z) >>> ITE(True, x, y) x >>> ITE(False, x, y) y >>> ITE(x, y, y) y Trying to use non-Boolean args will generate a TypeError: >>> ITE(True, [], ()) Traceback (most recent call last): ... TypeError: expecting bool, Boolean or ITE, not `[]` """ def __new__(cls, *args, **kwargs): from sympy.core.relational import Eq, Ne if len(args) != 3: raise ValueError('expecting exactly 3 args') a, b, c = args # check use of binary symbols if isinstance(a, (Eq, Ne)): # in this context, we can evaluate the Eq/Ne # if one arg is a binary symbol and the other # is true/false b, c = map(as_Boolean, (b, c)) bin = set().union(*[i.binary_symbols for i in (b, c)]) if len(set(a.args) - bin) == 1: # one arg is a binary_symbols _a = a if a.lhs is S.true: a = a.rhs elif a.rhs is S.true: a = a.lhs elif a.lhs is S.false: a = ~a.rhs elif a.rhs is S.false: a = ~a.lhs else: # binary can only equal True or False a = S.false if isinstance(_a, Ne): a = ~a else: a, b, c = BooleanFunction.binary_check_and_simplify( a, b, c) rv = None if kwargs.get('evaluate', True): rv = cls.eval(a, b, c) if rv is None: rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False) return rv @classmethod def eval(cls, *args): from sympy.core.relational import Eq, Ne # do the args give a singular result? a, b, c = args if isinstance(a, (Ne, Eq)): _a = a if S.true in a.args: a = a.lhs if a.rhs is S.true else a.rhs elif S.false in a.args: a = ~a.lhs if a.rhs is S.false else ~a.rhs else: _a = None if _a is not None and isinstance(_a, Ne): a = ~a if a is S.true: return b if a is S.false: return c if b == c: return b else: # or maybe the results allow the answer to be expressed # in terms of the condition if b is S.true and c is S.false: return a if b is S.false and c is S.true: return Not(a) if [a, b, c] != args: return cls(a, b, c, evaluate=False) def to_nnf(self, simplify=True): a, b, c = self.args return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify) def _eval_as_set(self): return self.to_nnf().as_set() def _eval_rewrite_as_Piecewise(self, *args, **kwargs): from sympy.functions import Piecewise return Piecewise((args[1], args[0]), (args[2], True)) ### end class definitions. Some useful methods def conjuncts(expr): """Return a list of the conjuncts in the expr s. Examples ======== >>> from sympy.logic.boolalg import conjuncts >>> from sympy.abc import A, B >>> conjuncts(A & B) frozenset({A, B}) >>> conjuncts(A | B) frozenset({A | B}) """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in the sentence s. Examples ======== >>> from sympy.logic.boolalg import disjuncts >>> from sympy.abc import A, B >>> disjuncts(A | B) frozenset({A, B}) >>> disjuncts(A & B) frozenset({A & B}) """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_and_over_or(Or(A, And(Not(B), Not(C)))) (A | ~B) & (A | ~C) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_or_over_and(And(Or(Not(A), B), C)) (B & C) | (C & ~A) """ return _distribute((expr, Or, And)) def _distribute(info): """ Distributes info[1] over info[2] with respect to info[0]. """ if isinstance(info[0], info[2]): for arg in info[0].args: if isinstance(arg, info[1]): conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, [(info[2](c, rest), info[1], info[2]) for c in conj.args]))) elif isinstance(info[0], info[1]): return info[1](*list(map(_distribute, [(x, info[1], info[2]) for x in info[0].args]))) else: return info[0] def to_nnf(expr, simplify=True): """ Converts expr to Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplify is True, the result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C, D >>> from sympy.logic.boolalg import Not, Equivalent, to_nnf >>> to_nnf(Not((~A & ~B) | (C & D))) (A | B) & (~C | ~D) >>> to_nnf(Equivalent(A >> B, B >> A)) (A | ~B | (A & ~B)) & (B | ~A | (B & ~A)) """ if is_nnf(expr, simplify): return expr return expr.to_nnf(simplify) def to_cnf(expr, simplify=False): """ Convert a propositional logical sentence s to conjunctive normal form. That is, of the form ((A | ~B | ...) & (B | C | ...) & ...) If simplify is True, the expr is evaluated to its simplest CNF form. Examples ======== >>> from sympy.logic.boolalg import to_cnf >>> from sympy.abc import A, B, D >>> to_cnf(~(A | B) | D) (D | ~A) & (D | ~B) >>> to_cnf((A | B) & (A | ~A), True) A | B """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'cnf', True) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) return distribute_and_over_or(expr) def to_dnf(expr, simplify=False): """ Convert a propositional logical sentence s to disjunctive normal form. That is, of the form ((A & ~B & ...) | (B & C & ...) | ...) If simplify is True, the expr is evaluated to its simplest DNF form. Examples ======== >>> from sympy.logic.boolalg import to_dnf >>> from sympy.abc import A, B, C >>> to_dnf(B & (A | C)) (A & B) | (B & C) >>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True) A | C """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'dnf', True) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr) def is_nnf(expr, simplified=True): """ Checks if expr is in Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simpified is True, checks if result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import Not, is_nnf >>> is_nnf(A & B | ~C) True >>> is_nnf((A | ~A) & (B | C)) False >>> is_nnf((A | ~A) & (B | C), False) True >>> is_nnf(Not(A & B) | C) False >>> is_nnf((A >> B) & (B >> A)) False """ expr = sympify(expr) if is_literal(expr): return True stack = [expr] while stack: expr = stack.pop() if expr.func in (And, Or): if simplified: args = expr.args for arg in args: if Not(arg) in args: return False stack.extend(expr.args) elif not is_literal(expr): return False return True def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_cnf >>> from sympy.abc import A, B, C >>> is_cnf(A | B | C) True >>> is_cnf(A & B & C) True >>> is_cnf((A & B) | C) False """ return _is_form(expr, And, Or) def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_dnf >>> from sympy.abc import A, B, C >>> is_dnf(A | B | C) True >>> is_dnf(A & B & C) True >>> is_dnf((A & B) | C) True >>> is_dnf(A & (B | C)) False """ return _is_form(expr, Or, And) def _is_form(expr, function1, function2): """ Test whether or not an expression is of the required form. """ expr = sympify(expr) # Special case of an Atom if expr.is_Atom: return True # Special case of a single expression of function2 if isinstance(expr, function2): for lit in expr.args: if isinstance(lit, Not): if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True # Special case of a single negation if isinstance(expr, Not): if not expr.args[0].is_Atom: return False if not isinstance(expr, function1): return False for cls in expr.args: if cls.is_Atom: continue if isinstance(cls, Not): if not cls.args[0].is_Atom: return False elif not isinstance(cls, function2): return False for lit in cls.args: if isinstance(lit, Not): if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True def eliminate_implications(expr): """ Change >>, <<, and Equivalent into &, |, and ~. That is, return an expression that is equivalent to s, but has only &, |, and ~ as logical operators. Examples ======== >>> from sympy.logic.boolalg import Implies, Equivalent, \ eliminate_implications >>> from sympy.abc import A, B, C >>> eliminate_implications(Implies(A, B)) B | ~A >>> eliminate_implications(Equivalent(A, B)) (A | ~B) & (B | ~A) >>> eliminate_implications(Equivalent(A, B, C)) (A | ~C) & (B | ~A) & (C | ~B) """ return to_nnf(expr, simplify=False) def is_literal(expr): """ Returns True if expr is a literal, else False. Examples ======== >>> from sympy import Or, Q >>> from sympy.abc import A, B >>> from sympy.logic.boolalg import is_literal >>> is_literal(A) True >>> is_literal(~A) True >>> is_literal(Q.zero(A)) True >>> is_literal(A + B) True >>> is_literal(Or(A, B)) False """ if isinstance(expr, Not): return not isinstance(expr.args[0], BooleanFunction) else: return not isinstance(expr, BooleanFunction) def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> from sympy.logic.boolalg import to_int_repr >>> from sympy.abc import x, y >>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}] True """ # Convert the symbol list into a dict symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1))))) def append_symbol(arg, symbols): if isinstance(arg, Not): return -symbols[arg.args[0]] else: return symbols[arg] return [set(append_symbol(arg, symbols) for arg in Or.make_args(c)) for c in clauses] def term_to_integer(term): """ Return an integer corresponding to the base-2 digits given by ``term``. Parameters ========== term : a string or list of ones and zeros Examples ======== >>> from sympy.logic.boolalg import term_to_integer >>> term_to_integer([1, 0, 0]) 4 >>> term_to_integer('100') 4 """ return int(''.join(list(map(str, list(term)))), 2) def integer_to_term(k, n_bits=None): """ Return a list of the base-2 digits in the integer, ``k``. Parameters ========== k : int n_bits : int If ``n_bits`` is given and the number of digits in the binary representation of ``k`` is smaller than ``n_bits`` then left-pad the list with 0s. Examples ======== >>> from sympy.logic.boolalg import integer_to_term >>> integer_to_term(4) [1, 0, 0] >>> integer_to_term(4, 6) [0, 0, 0, 1, 0, 0] """ s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0))) return list(map(int, s)) def truth_table(expr, variables, input=True): """ Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values. Parameters ========== expr : string or boolean expression variables : list of variables input : boolean (default True) indicates whether to return the input combinations. Examples ======== >>> from sympy.logic.boolalg import truth_table >>> from sympy.abc import x,y >>> table = truth_table(x >> y, [x, y]) >>> for t in table: ... print('{0} -> {1}'.format(*t)) [0, 0] -> True [0, 1] -> True [1, 0] -> False [1, 1] -> True >>> table = truth_table(x | y, [x, y]) >>> list(table) [([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)] If input is false, truth_table returns only a list of truth values. In this case, the corresponding input values of variables can be deduced from the index of a given output. >>> from sympy.logic.boolalg import integer_to_term >>> vars = [y, x] >>> values = truth_table(x >> y, vars, input=False) >>> values = list(values) >>> values [True, False, True, True] >>> for i, value in enumerate(values): ... print('{0} -> {1}'.format(list(zip( ... vars, integer_to_term(i, len(vars)))), value)) [(y, 0), (x, 0)] -> True [(y, 0), (x, 1)] -> False [(y, 1), (x, 0)] -> True [(y, 1), (x, 1)] -> True """ variables = [sympify(v) for v in variables] expr = sympify(expr) if not isinstance(expr, BooleanFunction) and not is_literal(expr): return table = product([0, 1], repeat=len(variables)) for term in table: term = list(term) value = expr.xreplace(dict(zip(variables, term))) if input: yield term, value else: yield value def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns -1. """ index = -1 for x, (i, j) in enumerate(zip(minterm1, minterm2)): if i != j: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for SOP). """ temp = [] for i, m in enumerate(minterm): if m == 0: temp.append(Not(variables[i])) elif m == 1: temp.append(variables[i]) else: pass # ignore the 3s return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for POS). """ temp = [] for i, m in enumerate(maxterm): if m == 1: temp.append(Not(variables[i])) elif m == 0: temp.append(variables[i]) else: pass # ignore the 3s return Or(*temp) def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ simplified_terms = [] todo = list(range(len(terms))) for i, ti in enumerate(terms[:-1]): for j_i, tj in enumerate(terms[(i + 1):]): index = _check_pair(ti, tj) if index != -1: todo[i] = todo[j_i + i + 1] = None newterm = ti[:] newterm[index] = 3 if newterm not in simplified_terms: simplified_terms.append(newterm) simplified_terms.extend( [terms[i] for i in [_ for _ in todo if _ is not None]]) return simplified_terms def _compare_term(minterm, term): """ Return True if a binary term is satisfied by the given term. Used for recognizing prime implicants. """ for i, x in enumerate(term): if x != 3 and x != minterm[i]: return False return True def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ essential = [] for x in terms: temporary = [] for y in l1: if _compare_term(x, y): temporary.append(y) if len(temporary) == 1: if temporary[0] not in essential: essential.append(temporary[0]) for x in terms: for y in essential: if _compare_term(x, y): break else: for z in l1: if _compare_term(x, z): if z not in essential: essential.append(z) break return essential def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import SOPform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (z & ~w) References ========== .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = [list(i) for i in minterms] dontcares = [list(i) for i in (dontcares or [])] for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) old = None new = minterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential]) def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import POSform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) References ========== .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = [list(i) for i in minterms] dontcares = [list(i) for i in (dontcares or [])] for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) maxterms = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) old = None new = maxterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential]) def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return {expr} return set().union(*(_find_predicates(i) for i in expr.args)) def simplify_logic(expr, form=None, deep=True): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy. Parameters ========== expr : string or boolean expression form : string ('cnf' or 'dnf') or None (default). If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default). deep : boolean (default True) indicates whether to recursively simplify any non-boolean functions contained within the input. Examples ======== >>> from sympy.logic import simplify_logic >>> from sympy.abc import x, y, z >>> from sympy import S >>> b = (~x & ~y & ~z) | ( ~x & ~y & z) >>> simplify_logic(b) ~x & ~y >>> S(b) (z & ~x & ~y) | (~x & ~y & ~z) >>> simplify_logic(_) ~x & ~y """ if form not in (None, 'cnf', 'dnf'): raise ValueError("form can be cnf or dnf only") expr = sympify(expr) if deep: variables = _find_predicates(expr) from sympy.simplify.simplify import simplify s = [simplify(v) for v in variables] expr = expr.xreplace(dict(zip(variables, s))) if not isinstance(expr, BooleanFunction): return expr # get variables in case not deep or after doing # deep simplification since they may have changed variables = _find_predicates(expr) # group into constants and variable values c, v = sift(variables, lambda x: x in (True, False), binary=True) variables = c + v truthtable = [] # standardize constants to be 1 or 0 in keeping with truthtable c = [1 if i==True else 0 for i in c] for t in product([0, 1], repeat=len(v)): if expr.xreplace(dict(zip(v, t))) == True: truthtable.append(c + list(t)) big = len(truthtable) >= (2 ** (len(variables) - 1)) if form == 'dnf' or form is None and big: return SOPform(variables, truthtable) return POSform(variables, truthtable) def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol, # of times it appeared as a Not(symbol), # of times it appeared as a Symbol in an And or Or, # of times it appeared as a Not(Symbol) in an And or Or, sum of the number of arguments with which it appeared as a Symbol, counting Symbol as 1 and Not(Symbol) as 2 and counting self as 1 ] >>> from sympy.logic.boolalg import _finger as finger >>> from sympy import And, Or, Not >>> from sympy.abc import a, b, x, y >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(finger(eq)) {(0, 0, 1, 0, 2): [x], (0, 0, 1, 0, 3): [a, b], (0, 0, 1, 2, 2): [y]} >>> dict(finger(x & ~y)) {(0, 1, 0, 0, 0): [y], (1, 0, 0, 0, 0): [x]} The equation must not have more than one level of nesting: >>> dict(finger(And(Or(x, y), y))) {(0, 0, 1, 0, 2): [x], (1, 0, 1, 0, 2): [y]} >>> dict(finger(And(Or(x, And(a, x)), y))) Traceback (most recent call last): ... NotImplementedError: unexpected level of nesting So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = dict(list(zip(f, [[0] * 5 for fi in f]))) for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args) + sum(isinstance(ai, Not) for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1] += o elif ai.is_Not: d[ai.args[0]][3] += 1 else: raise NotImplementedError('unexpected level of nesting') inv = defaultdict(list) for k, v in ordered(iter(d.items())): inv[tuple(v)].append(k) return inv def bool_map(bool1, bool2): """ Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And(x, y) is logically equivalent to And(a, b) for the mapping {x: a, y:b} or {x: b, y:a}. If no such mapping exists, return False. Examples ======== >>> from sympy import SOPform, bool_map, Or, And, Not, Xor >>> from sympy.abc import w, x, y, z, a, b, c, d >>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (y & ~z, {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(w, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq, eq2) ((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c,d)) >>> bool_map(eq, eq.subs(c, x)) (c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, And(x, Not(y), Or(w, Not(z))). Basic.match is not robust enough (see issue 4835) so this is a workaround that is valid for simplified boolean expressions """ # do some quick checks if function1.__class__ != function2.__class__: return None # maybe simplification would make them the same if len(function1.args) != len(function2.args): return None # maybe simplification would make them the same if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return False # assemble the match dictionary if possible matchdict = {} for k in f1.keys(): if k not in f2: return False if len(f1[k]) != len(f2[k]): return False for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m
fcf29c280b7ebb5f88e5346b46b26e42cdc945b9ac2b716f646e8d7097f79210
""" Basic methods common to all matrices to be used when creating more advanced matrices (e.g., matrices over rings, etc.). """ from __future__ import print_function, division from sympy.core.add import Add from sympy.core.basic import Basic, Atom from sympy.core.expr import Expr from sympy.core.symbol import Symbol from sympy.core.function import count_ops from sympy.core.singleton import S from sympy.core.sympify import sympify from sympy.core.compatibility import is_sequence, default_sort_key, range, \ NotIterable, Iterable from sympy.simplify import simplify as _simplify, signsimp, nsimplify from sympy.utilities.iterables import flatten from sympy.functions import Abs from sympy.core.compatibility import reduce, as_int, string_types from sympy.assumptions.refine import refine from sympy.core.decorators import call_highest_priority from types import FunctionType from collections import defaultdict class MatrixError(Exception): pass class ShapeError(ValueError, MatrixError): """Wrong matrix shape""" pass class NonSquareMatrixError(ShapeError): pass class MatrixRequired(object): """All subclasses of matrix objects must implement the required matrix properties listed here.""" rows = None cols = None shape = None _simplify = None @classmethod def _new(cls, *args, **kwargs): """`_new` must, at minimum, be callable as `_new(rows, cols, mat) where mat is a flat list of the elements of the matrix.""" raise NotImplementedError("Subclasses must implement this.") def __eq__(self, other): raise NotImplementedError("Subclasses must implement this.") def __getitem__(self, key): """Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) where a and b are any combintion of slices and integers.""" raise NotImplementedError("Subclasses must implement this.") def __len__(self): """The total number of entries in the matrix.""" raise NotImplementedError("Subclasses must implement this.") class MatrixShaping(MatrixRequired): """Provides basic matrix shaping and extracting of submatrices""" def _eval_col_del(self, col): def entry(i, j): return self[i, j] if j < col else self[i, j + 1] return self._new(self.rows, self.cols - 1, entry) def _eval_col_insert(self, pos, other): cols = self.cols def entry(i, j): if j < pos: return self[i, j] elif pos <= j < pos + other.cols: return other[i, j - pos] return self[i, j - other.cols] return self._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_col_join(self, other): rows = self.rows def entry(i, j): if i < rows: return self[i, j] return other[i - rows, j] return classof(self, other)._new(self.rows + other.rows, self.cols, lambda i, j: entry(i, j)) def _eval_extract(self, rowsList, colsList): mat = list(self) cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices)) def _eval_get_diag_blocks(self): sub_blocks = [] def recurse_sub_blocks(M): i = 1 while i <= M.shape[0]: if i == 1: to_the_right = M[0, i:] to_the_bottom = M[i:, 0] else: to_the_right = M[:i, i:] to_the_bottom = M[i:, :i] if any(to_the_right) or any(to_the_bottom): i += 1 continue else: sub_blocks.append(M[:i, :i]) if M.shape == M[:i, :i].shape: return else: recurse_sub_blocks(M[i:, i:]) return recurse_sub_blocks(self) return sub_blocks def _eval_row_del(self, row): def entry(i, j): return self[i, j] if i < row else self[i + 1, j] return self._new(self.rows - 1, self.cols, entry) def _eval_row_insert(self, pos, other): entries = list(self) insert_pos = pos * self.cols entries[insert_pos:insert_pos] = list(other) return self._new(self.rows + other.rows, self.cols, entries) def _eval_row_join(self, other): cols = self.cols def entry(i, j): if j < cols: return self[i, j] return other[i, j - cols] return classof(self, other)._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_tolist(self): return [list(self[i,:]) for i in range(self.rows)] def _eval_vec(self): rows = self.rows def entry(n, _): # we want to read off the columns first j = n // rows i = n - j * rows return self[i, j] return self._new(len(self), 1, entry) def col_del(self, col): """Delete the specified column.""" if col < 0: col += self.cols if not 0 <= col < self.cols: raise ValueError("Column {} out of range.".format(col)) return self._eval_col_del(col) def col_insert(self, pos, other): """Insert one or more columns at the given column position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.col_insert(1, V) Matrix([ [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]]) See Also ======== col row_insert """ # Allows you to build a matrix even if it is null matrix if not self: return type(self)(other) pos = as_int(pos) if pos < 0: pos = self.cols + pos if pos < 0: pos = 0 elif pos > self.cols: pos = self.cols if self.rows != other.rows: raise ShapeError( "`self` and `other` must have the same number of rows.") return self._eval_col_insert(pos, other) def col_join(self, other): """Concatenates two matrices along self's last and other's first row. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.col_join(V) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1]]) See Also ======== col row_join """ # A null matrix can always be stacked (see #10770) if self.rows == 0 and self.cols != other.cols: return self._new(0, other.cols, []).col_join(other) if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_col_join(other) def col(self, j): """Elementary column selector. Examples ======== >>> from sympy import eye >>> eye(2).col(0) Matrix([ [1], [0]]) See Also ======== row col_op col_swap col_del col_join col_insert """ return self[:, j] def extract(self, rowsList, colsList): """Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns. Examples ======== >>> from sympy import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]]) Rows or columns can be repeated: >>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]]) Every other row can be taken by using range to provide the indices: >>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]]) RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected: >>> m.extract([0, 1, 2, 3], [True, False, True]) Matrix([ [0, 2], [3, 5], [6, 8], [9, 11]]) """ if not is_sequence(rowsList) or not is_sequence(colsList): raise TypeError("rowsList and colsList must be iterable") # ensure rowsList and colsList are lists of integers if rowsList and all(isinstance(i, bool) for i in rowsList): rowsList = [index for index, item in enumerate(rowsList) if item] if colsList and all(isinstance(i, bool) for i in colsList): colsList = [index for index, item in enumerate(colsList) if item] # ensure everything is in range rowsList = [a2idx(k, self.rows) for k in rowsList] colsList = [a2idx(k, self.cols) for k in colsList] return self._eval_extract(rowsList, colsList) def get_diag_blocks(self): """Obtains the square sub-matrices on the main diagonal of a square matrix. Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) >>> a1, a2, a3 = A.get_diag_blocks() >>> a1 Matrix([ [1, 3], [y, z**2]]) >>> a2 Matrix([[x]]) >>> a3 Matrix([[0]]) """ return self._eval_get_diag_blocks() @classmethod def hstack(cls, *args): """Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.hstack(eye(2), 2*eye(2)) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.row_join, args) def reshape(self, rows, cols): """Reshape the matrix. Total number of elements must remain the same. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 3, lambda i, j: 1) >>> m Matrix([ [1, 1, 1], [1, 1, 1]]) >>> m.reshape(1, 6) Matrix([[1, 1, 1, 1, 1, 1]]) >>> m.reshape(3, 2) Matrix([ [1, 1], [1, 1], [1, 1]]) """ if self.rows * self.cols != rows * cols: raise ValueError("Invalid reshape parameters %d %d" % (rows, cols)) return self._new(rows, cols, lambda i, j: self[i * cols + j]) def row_del(self, row): """Delete the specified row.""" if row < 0: row += self.rows if not 0 <= row < self.rows: raise ValueError("Row {} out of range.".format(row)) return self._eval_row_del(row) def row_insert(self, pos, other): """Insert one or more rows at the given row position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.row_insert(1, V) Matrix([ [0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]]) See Also ======== row col_insert """ # Allows you to build a matrix even if it is null matrix if not self: return self._new(other) pos = as_int(pos) if pos < 0: pos = self.rows + pos if pos < 0: pos = 0 elif pos > self.rows: pos = self.rows if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_row_insert(pos, other) def row_join(self, other): """Concatenates two matrices along self's last and rhs's first column Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.row_join(V) Matrix([ [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]]) See Also ======== row col_join """ # A null matrix can always be stacked (see #10770) if self.cols == 0 and self.rows != other.rows: return self._new(other.rows, 0, []).row_join(other) if self.rows != other.rows: raise ShapeError( "`self` and `rhs` must have the same number of rows.") return self._eval_row_join(other) def row(self, i): """Elementary row selector. Examples ======== >>> from sympy import eye >>> eye(2).row(0) Matrix([[1, 0]]) See Also ======== col row_op row_swap row_del row_join row_insert """ return self[i, :] @property def shape(self): """The shape (dimensions) of the matrix as the 2-tuple (rows, cols). Examples ======== >>> from sympy.matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3 """ return (self.rows, self.cols) def tolist(self): """Return the Matrix as a nested Python list. Examples ======== >>> from sympy import Matrix, ones >>> m = Matrix(3, 3, range(9)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> m.tolist() [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> ones(3, 0).tolist() [[], [], []] When there are no rows then it will not be possible to tell how many columns were in the original matrix: >>> ones(0, 3).tolist() [] """ if not self.rows: return [] if not self.cols: return [[] for i in range(self.rows)] return self._eval_tolist() def vec(self): """Return the Matrix converted into a one column matrix by stacking columns Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 3], [2, 4]]) >>> m Matrix([ [1, 3], [2, 4]]) >>> m.vec() Matrix([ [1], [2], [3], [4]]) See Also ======== vech """ return self._eval_vec() @classmethod def vstack(cls, *args): """Return a matrix formed by joining args vertically (i.e. by repeated application of col_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.vstack(eye(2), 2*eye(2)) Matrix([ [1, 0], [0, 1], [2, 0], [0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.col_join, args) class MatrixSpecial(MatrixRequired): """Construction of special matrices""" @classmethod def _eval_diag(cls, rows, cols, diag_dict): """diag_dict is a defaultdict containing all the entries of the diagonal matrix.""" def entry(i, j): return diag_dict[(i,j)] return cls._new(rows, cols, entry) @classmethod def _eval_eye(cls, rows, cols): def entry(i, j): return S.One if i == j else S.Zero return cls._new(rows, cols, entry) @classmethod def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'): if band == 'lower': def entry(i, j): if i == j: return eigenvalue elif j + 1 == i: return S.One return S.Zero else: def entry(i, j): if i == j: return eigenvalue elif i + 1 == j: return S.One return S.Zero return cls._new(rows, cols, entry) @classmethod def _eval_ones(cls, rows, cols): def entry(i, j): return S.One return cls._new(rows, cols, entry) @classmethod def _eval_zeros(cls, rows, cols): def entry(i, j): return S.Zero return cls._new(rows, cols, entry) @classmethod def diag(kls, *args, **kwargs): """Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created. kwargs ====== rows : rows of the resulting matrix; computed if not given. cols : columns of the resulting matrix; computed if not given. cls : class for the resulting matrix Examples ======== >>> from sympy.matrices import Matrix >>> Matrix.diag(1, 2, 3) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> Matrix.diag([1, 2, 3]) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) The diagonal elements can be matrices; diagonal filling will continue on the diagonal from the last element of the matrix: >>> from sympy.abc import x, y, z >>> a = Matrix([x, y, z]) >>> b = Matrix([[1, 2], [3, 4]]) >>> c = Matrix([[5, 6]]) >>> Matrix.diag(a, 7, b, c) Matrix([ [x, 0, 0, 0, 0, 0], [y, 0, 0, 0, 0, 0], [z, 0, 0, 0, 0, 0], [0, 7, 0, 0, 0, 0], [0, 0, 1, 2, 0, 0], [0, 0, 3, 4, 0, 0], [0, 0, 0, 0, 5, 6]]) A given band off the diagonal can be made by padding with a vertical or horizontal "kerning" vector: >>> hpad = Matrix(0, 2, []) >>> vpad = Matrix(2, 0, []) >>> Matrix.diag(vpad, 1, 2, 3, hpad) + Matrix.diag(hpad, 4, 5, 6, vpad) Matrix([ [0, 0, 4, 0, 0], [0, 0, 0, 5, 0], [1, 0, 0, 0, 6], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) The type of the resulting matrix can be affected with the ``cls`` keyword. >>> type(Matrix.diag(1)) <class 'sympy.matrices.dense.MutableDenseMatrix'> >>> from sympy.matrices import ImmutableMatrix >>> type(Matrix.diag(1, cls=ImmutableMatrix)) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'> """ klass = kwargs.get('cls', kls) # allow a sequence to be passed in as the only argument if len(args) == 1 and is_sequence(args[0]) and not getattr(args[0], 'is_Matrix', False): args = args[0] def size(m): """Compute the size of the diagonal block""" if hasattr(m, 'rows'): return m.rows, m.cols return 1, 1 diag_rows = sum(size(m)[0] for m in args) diag_cols = sum(size(m)[1] for m in args) rows = kwargs.get('rows', diag_rows) cols = kwargs.get('cols', diag_cols) if rows < diag_rows or cols < diag_cols: raise ValueError("A {} x {} diagnal matrix cannot accommodate a" "diagonal of size at least {} x {}.".format(rows, cols, diag_rows, diag_cols)) # fill a default dict with the diagonal entries diag_entries = defaultdict(lambda: S.Zero) row_pos, col_pos = 0, 0 for m in args: if hasattr(m, 'rows'): # in this case, we're a matrix for i in range(m.rows): for j in range(m.cols): diag_entries[(i + row_pos, j + col_pos)] = m[i, j] row_pos += m.rows col_pos += m.cols else: # in this case, we're a single value diag_entries[(row_pos, col_pos)] = m row_pos += 1 col_pos += 1 return klass._eval_diag(rows, cols, diag_entries) @classmethod def eye(kls, rows, cols=None, **kwargs): """Returns an identity matrix. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_eye(rows, cols) @classmethod def jordan_block(kls, *args, **kwargs): """Returns a Jordan block with the specified size and eigenvalue. You may call `jordan_block` with two args (size, eigenvalue) or with keyword arguments. kwargs ====== size : rows and columns of the matrix rows : rows of the matrix (if None, rows=size) cols : cols of the matrix (if None, cols=size) eigenvalue : value on the diagonal of the matrix band : position of off-diagonal 1s. May be 'upper' or 'lower'. (Default: 'upper') cls : class of the returned matrix Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x >>> Matrix.jordan_block(4, x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) >>> Matrix.jordan_block(4, x, band='lower') Matrix([ [x, 0, 0, 0], [1, x, 0, 0], [0, 1, x, 0], [0, 0, 1, x]]) >>> Matrix.jordan_block(size=4, eigenvalue=x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) """ klass = kwargs.get('cls', kls) size, eigenvalue = None, None if len(args) == 2: size, eigenvalue = args elif len(args) == 1: size = args[0] elif len(args) != 0: raise ValueError("'jordan_block' accepts 0, 1, or 2 arguments, not {}".format(len(args))) rows, cols = kwargs.get('rows', None), kwargs.get('cols', None) size = kwargs.get('size', size) band = kwargs.get('band', 'upper') # allow for a shortened form of `eigenvalue` eigenvalue = kwargs.get('eigenval', eigenvalue) eigenvalue = kwargs.get('eigenvalue', eigenvalue) if eigenvalue is None: raise ValueError("Must supply an eigenvalue") if (size, rows, cols) == (None, None, None): raise ValueError("Must supply a matrix size") if size is not None: rows, cols = size, size elif rows is not None and cols is None: cols = rows elif cols is not None and rows is None: rows = cols rows, cols = as_int(rows), as_int(cols) return klass._eval_jordan_block(rows, cols, eigenvalue, band) @classmethod def ones(kls, rows, cols=None, **kwargs): """Returns a matrix of ones. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_ones(rows, cols) @classmethod def zeros(kls, rows, cols=None, **kwargs): """Returns a matrix of zeros. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_zeros(rows, cols) class MatrixProperties(MatrixRequired): """Provides basic properties of a matrix.""" def _eval_atoms(self, *types): result = set() for i in self: result.update(i.atoms(*types)) return result def _eval_free_symbols(self): return set().union(*(i.free_symbols for i in self)) def _eval_has(self, *patterns): return any(a.has(*patterns) for a in self) def _eval_is_anti_symmetric(self, simpfunc): if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)): return False return True def _eval_is_diagonal(self): for i in range(self.rows): for j in range(self.cols): if i != j and self[i, j]: return False return True # _eval_is_hermitian is called by some general sympy # routines and has a different *args signature. Make # sure the names don't clash by adding `_matrix_` in name. def _eval_is_matrix_hermitian(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate())) return mat.is_zero def _eval_is_Identity(self): def dirac(i, j): if i == j: return 1 return 0 return all(self[i, j] == dirac(i, j) for i in range(self.rows) for j in range(self.cols)) def _eval_is_lower_hessenberg(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 2, self.cols)) def _eval_is_lower(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 1, self.cols)) def _eval_is_symbolic(self): return self.has(Symbol) def _eval_is_symmetric(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i])) return mat.is_zero def _eval_is_zero(self): if any(i.is_zero == False for i in self): return False if any(i.is_zero == None for i in self): return None return True def _eval_is_upper_hessenberg(self): return all(self[i, j].is_zero for i in range(2, self.rows) for j in range(min(self.cols, (i - 1)))) def _eval_values(self): return [i for i in self if not i.is_zero] def atoms(self, *types): """Returns the atoms that form the current object. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import Matrix >>> Matrix([[x]]) Matrix([[x]]) >>> _.atoms() {x} """ types = tuple(t if isinstance(t, type) else type(t) for t in types) if not types: types = (Atom,) return self._eval_atoms(*types) @property def free_symbols(self): """Returns the free symbols within the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix([[x], [1]]).free_symbols {x} """ return self._eval_free_symbols() def has(self, *patterns): """Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import Matrix, SparseMatrix, Float >>> from sympy.abc import x, y >>> A = Matrix(((1, x), (0.2, 3))) >>> B = SparseMatrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True >>> B.has(x) True >>> B.has(y) False >>> B.has(Float) True """ return self._eval_has(*patterns) def is_anti_symmetric(self, simplify=True): """Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i]. When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives. Examples ======== >>> from sympy import Matrix, symbols >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_anti_symmetric() True >>> x, y = symbols('x y') >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) >>> m Matrix([ [ 0, 0, x], [-y, 0, 0]]) >>> m.is_anti_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, ... -(x + 1)**2 , 0, x*y, ... -y, -x*y, 0]) Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn't pass an equality test, the matrix is still reported as anti-symmetric: >>> m[0, 1] == -m[1, 0] False >>> m.is_anti_symmetric() True If 'simplify=False' is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric: >>> m.is_anti_symmetric(simplify=False) False But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed: >>> m = m.expand() >>> m.is_anti_symmetric(simplify=False) True """ # accept custom simplification simpfunc = simplify if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_anti_symmetric(simpfunc) def is_diagonal(self): """Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Matrix, diag >>> m = Matrix(2, 2, [1, 0, 0, 2]) >>> m Matrix([ [1, 0], [0, 2]]) >>> m.is_diagonal() True >>> m = Matrix(2, 2, [1, 1, 0, 2]) >>> m Matrix([ [1, 1], [0, 2]]) >>> m.is_diagonal() False >>> m = diag(1, 2, 3) >>> m Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> m.is_diagonal() True See Also ======== is_lower is_upper is_diagonalizable diagonalize """ return self._eval_is_diagonal() @property def is_hermitian(self, simplify=True): """Checks if the matrix is Hermitian. In a Hermitian matrix element i,j is the complex conjugate of element j,i. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy import I >>> from sympy.abc import x >>> a = Matrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False """ if not self.is_square: return False simpfunc = simplify if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x return self._eval_is_matrix_hermitian(simpfunc) @property def is_Identity(self): if not self.is_square: return False return self._eval_is_Identity() @property def is_lower_hessenberg(self): r"""Checks if the matrix is in the lower-Hessenberg form. The lower hessenberg matrix has zero entries above the first superdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a Matrix([ [1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a.is_lower_hessenberg True See Also ======== is_upper_hessenberg is_lower """ return self._eval_is_lower_hessenberg() @property def is_lower(self): """Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_lower True >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5]) >>> m Matrix([ [0, 0, 0], [2, 0, 0], [1, 4, 0], [6, 6, 5]]) >>> m.is_lower True >>> from sympy.abc import x, y >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) >>> m Matrix([ [x**2 + y, x + y**2], [ 0, x + y]]) >>> m.is_lower False See Also ======== is_upper is_diagonal is_lower_hessenberg """ return self._eval_is_lower() @property def is_square(self): """Checks if a matrix is square. A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[1, 2, 3], [4, 5, 6]]) >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> c = Matrix([]) >>> a.is_square False >>> b.is_square True >>> c.is_square True """ return self.rows == self.cols def is_symbolic(self): """Checks if any elements contain Symbols. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.is_symbolic() True """ return self._eval_is_symbolic() def is_symmetric(self, simplify=True): """Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose. By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [0, 1, 1, 2]) >>> m Matrix([ [0, 1], [1, 2]]) >>> m.is_symmetric() True >>> m = Matrix(2, 2, [0, 1, 2, 0]) >>> m Matrix([ [0, 1], [2, 0]]) >>> m.is_symmetric() False >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) >>> m Matrix([ [0, 0, 0], [0, 0, 0]]) >>> m.is_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3]) >>> m Matrix([ [ 1, x**2 + 2*x + 1, y], [(x + 1)**2, 2, 0], [ y, 0, 3]]) >>> m.is_symmetric() True If the matrix is already simplified, you may speed-up is_symmetric() test by using 'simplify=False'. >>> bool(m.is_symmetric(simplify=False)) False >>> m1 = m.expand() >>> m1.is_symmetric(simplify=False) True """ simpfunc = simplify if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_symmetric(simpfunc) @property def is_upper_hessenberg(self): """Checks if the matrix is the upper-Hessenberg form. The upper hessenberg matrix has zero entries below the first subdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a Matrix([ [1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a.is_upper_hessenberg True See Also ======== is_lower_hessenberg is_upper """ return self._eval_is_upper_hessenberg() @property def is_upper(self): """Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_upper True >>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0]) >>> m Matrix([ [5, 1, 9], [0, 4, 6], [0, 0, 5], [0, 0, 0]]) >>> m.is_upper True >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) >>> m Matrix([ [4, 2, 5], [6, 1, 1]]) >>> m.is_upper False See Also ======== is_lower is_diagonal is_upper_hessenberg """ return all(self[i, j].is_zero for i in range(1, self.rows) for j in range(min(i, self.cols))) @property def is_zero(self): """Checks if a matrix is a zero matrix. A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None Examples ======== >>> from sympy import Matrix, zeros >>> from sympy.abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero True >>> b.is_zero True >>> c.is_zero False >>> d.is_zero True >>> e.is_zero """ return self._eval_is_zero() def values(self): """Return non-zero values of self.""" return self._eval_values() class MatrixOperations(MatrixRequired): """Provides basic matrix shape and elementwise operations. Should not be instantiated directly.""" def _eval_adjoint(self): return self.transpose().conjugate() def _eval_applyfunc(self, f): out = self._new(self.rows, self.cols, [f(x) for x in self]) return out def _eval_as_real_imag(self): from sympy.functions.elementary.complexes import re, im return (self.applyfunc(re), self.applyfunc(im)) def _eval_conjugate(self): return self.applyfunc(lambda x: x.conjugate()) def _eval_permute_cols(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[i, mapping[j]] return self._new(self.rows, self.cols, entry) def _eval_permute_rows(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[mapping[i], j] return self._new(self.rows, self.cols, entry) def _eval_trace(self): return sum(self[i, i] for i in range(self.rows)) def _eval_transpose(self): return self._new(self.cols, self.rows, lambda i, j: self[j, i]) def adjoint(self): """Conjugate transpose or Hermitian conjugation.""" return self._eval_adjoint() def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") return self._eval_applyfunc(f) def as_real_imag(self): """Returns a tuple containing the (real, imaginary) part of matrix.""" return self._eval_as_real_imag() def conjugate(self): """Return the by-element conjugation. Examples ======== >>> from sympy.matrices import SparseMatrix >>> from sympy import I >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) >>> a Matrix([ [1, 2 + I], [3, 4], [I, -I]]) >>> a.C Matrix([ [ 1, 2 - I], [ 3, 4], [-I, I]]) See Also ======== transpose: Matrix transposition H: Hermite conjugation D: Dirac conjugation """ return self._eval_conjugate() def doit(self, **kwargs): return self.applyfunc(lambda x: x.doit()) def evalf(self, prec=None, **options): """Apply evalf() to each element of self.""" return self.applyfunc(lambda i: i.evalf(prec, **options)) def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """Apply core.function.expand to each entry of the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix(1, 1, [x*(x+1)]) Matrix([[x*(x + 1)]]) >>> _.expand() Matrix([[x**2 + x]]) """ return self.applyfunc(lambda x: x.expand( deep, modulus, power_base, power_exp, mul, log, multinomial, basic, **hints)) @property def H(self): """Return Hermite conjugate. Examples ======== >>> from sympy import Matrix, I >>> m = Matrix((0, 1 + I, 2, 3)) >>> m Matrix([ [ 0], [1 + I], [ 2], [ 3]]) >>> m.H Matrix([[0, 1 - I, 2, 3]]) See Also ======== conjugate: By-element conjugation D: Dirac conjugation """ return self.T.C def permute(self, perm, orientation='rows', direction='forward'): """Permute the rows or columns of a matrix by the given list of swaps. Parameters ========== perm : a permutation. This may be a list swaps (e.g., `[[1, 2], [0, 3]]`), or any valid input to the `Permutation` constructor, including a `Permutation()` itself. If `perm` is given explicitly as a list of indices or a `Permutation`, `direction` has no effect. orientation : ('rows' or 'cols') whether to permute the rows or the columns direction : ('forward', 'backward') whether to apply the permutations from the start of the list first, or from the back of the list first Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') Matrix([ [0, 0, 1], [1, 0, 0], [0, 1, 0]]) >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') Matrix([ [0, 1, 0], [0, 0, 1], [1, 0, 0]]) """ # allow british variants and `columns` if direction == 'forwards': direction = 'forward' if direction == 'backwards': direction = 'backward' if orientation == 'columns': orientation = 'cols' if direction not in ('forward', 'backward'): raise TypeError("direction='{}' is an invalid kwarg. " "Try 'forward' or 'backward'".format(direction)) if orientation not in ('rows', 'cols'): raise TypeError("orientation='{}' is an invalid kwarg. " "Try 'rows' or 'cols'".format(orientation)) # ensure all swaps are in range max_index = self.rows if orientation == 'rows' else self.cols if not all(0 <= t <= max_index for t in flatten(list(perm))): raise IndexError("`swap` indices out of range.") # see if we are a list of pairs try: assert len(perm[0]) == 2 # we are a list of swaps, so `direction` matters if direction == 'backward': perm = reversed(perm) # since Permutation doesn't let us have non-disjoint cycles, # we'll construct the explicit mapping ourselves XXX Bug #12479 mapping = list(range(max_index)) for (i, j) in perm: mapping[i], mapping[j] = mapping[j], mapping[i] perm = mapping except (TypeError, AssertionError, IndexError): pass from sympy.combinatorics import Permutation perm = Permutation(perm, size=max_index) if orientation == 'rows': return self._eval_permute_rows(perm) if orientation == 'cols': return self._eval_permute_cols(perm) def permute_cols(self, swaps, direction='forward'): """Alias for `self.permute(swaps, orientation='cols', direction=direction)` See Also ======== permute """ return self.permute(swaps, orientation='cols', direction=direction) def permute_rows(self, swaps, direction='forward'): """Alias for `self.permute(swaps, orientation='rows', direction=direction)` See Also ======== permute """ return self.permute(swaps, orientation='rows', direction=direction) def refine(self, assumptions=True): """Apply refine to each element of the matrix. Examples ======== >>> from sympy import Symbol, Matrix, Abs, sqrt, Q >>> x = Symbol('x') >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) Matrix([ [ Abs(x)**2, sqrt(x**2)], [sqrt(x**2), Abs(x)**2]]) >>> _.refine(Q.real(x)) Matrix([ [ x**2, Abs(x)], [Abs(x), x**2]]) """ return self.applyfunc(lambda x: refine(x, assumptions)) def replace(self, F, G, map=False): """Replaces Function F in Matrix entries with Function G. Examples ======== >>> from sympy import symbols, Function, Matrix >>> F, G = symbols('F, G', cls=Function) >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M Matrix([ [F(0), F(1)], [F(1), F(2)]]) >>> N = M.replace(F,G) >>> N Matrix([ [G(0), G(1)], [G(1), G(2)]]) """ return self.applyfunc(lambda x: x.replace(F, G, map)) def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False): """Apply simplify to each element of the matrix. Examples ======== >>> from sympy.abc import x, y >>> from sympy import sin, cos >>> from sympy.matrices import SparseMatrix >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) Matrix([[x*sin(y)**2 + x*cos(y)**2]]) >>> _.simplify() Matrix([[x]]) """ return self.applyfunc(lambda x: x.simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse)) def subs(self, *args, **kwargs): # should mirror core.basic.subs """Return a new matrix with subs applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]]) """ return self.applyfunc(lambda x: x.subs(*args, **kwargs)) def trace(self): """ Returns the trace of a square matrix i.e. the sum of the diagonal elements. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.trace() 5 """ if self.rows != self.cols: raise NonSquareMatrixError() return self._eval_trace() def transpose(self): """ Returns the transpose of the matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.transpose() Matrix([ [1, 3], [2, 4]]) >>> from sympy import Matrix, I >>> m=Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m.transpose() Matrix([ [ 1, 3], [2 + I, 4]]) >>> m.T == m.transpose() True See Also ======== conjugate: By-element conjugation """ return self._eval_transpose() T = property(transpose, None, None, "Matrix transposition.") C = property(conjugate, None, None, "By-element conjugation.") n = evalf def xreplace(self, rule): # should mirror core.basic.xreplace """Return a new matrix with xreplace applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.xreplace({x: y}) Matrix([[y]]) >>> Matrix(_).xreplace({y: x}) Matrix([[x]]) """ return self.applyfunc(lambda x: x.xreplace(rule)) _eval_simplify = simplify def _eval_trigsimp(self, **opts): from sympy.simplify import trigsimp return self.applyfunc(lambda x: trigsimp(x, **opts)) class MatrixArithmetic(MatrixRequired): """Provides basic matrix arithmetic operations. Should not be instantiated directly.""" _op_priority = 10.01 def _eval_Abs(self): return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j])) def _eval_add(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i, j] + other[i, j]) def _eval_matrix_mul(self, other): def entry(i, j): try: return sum(self[i,k]*other[k,j] for k in range(self.cols)) except TypeError: # Block matrices don't work with `sum` or `Add` (ISSUE #11599) # They don't work with `sum` because `sum` tries to add `0` # initially, and for a matrix, that is a mix of a scalar and # a matrix, which raises a TypeError. Fall back to a # block-matrix-safe way to multiply if the `sum` fails. ret = self[i, 0]*other[0, j] for k in range(1, self.cols): ret += self[i, k]*other[k, j] return ret return self._new(self.rows, other.cols, entry) def _eval_matrix_mul_elementwise(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j]) def _eval_matrix_rmul(self, other): def entry(i, j): return sum(other[i,k]*self[k,j] for k in range(other.cols)) return self._new(other.rows, self.cols, entry) def _eval_pow_by_recursion(self, num): if num == 1: return self if num % 2 == 1: return self * self._eval_pow_by_recursion(num - 1) ret = self._eval_pow_by_recursion(num // 2) return ret * ret def _eval_scalar_mul(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other) def _eval_scalar_rmul(self, other): return self._new(self.rows, self.cols, lambda i, j: other*self[i,j]) def _eval_Mod(self, other): from sympy import Mod return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other)) # python arithmetic functions def __abs__(self): """Returns a new matrix with entry-wise absolute values.""" return self._eval_Abs() @call_highest_priority('__radd__') def __add__(self, other): """Return self + other, raising ShapeError if shapes don't match.""" other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape'): if self.shape != other.shape: raise ShapeError("Matrix size mismatch: %s + %s" % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): # call the highest-priority class's _eval_add a, b = self, other if a.__class__ != classof(a, b): b, a = a, b return a._eval_add(b) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_add(self, other) raise TypeError('cannot add %s and %s' % (type(self), type(other))) @call_highest_priority('__rdiv__') def __div__(self, other): return self * (S.One / other) @call_highest_priority('__rmatmul__') def __matmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__mul__(other) @call_highest_priority('__rmul__') def __mul__(self, other): """Return self*other where other is either a scalar or a matrix of compatible dimensions. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) True >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> A*B Matrix([ [30, 36, 42], [66, 81, 96]]) >>> B*A Traceback (most recent call last): ... ShapeError: Matrices size mismatch. >>> See Also ======== matrix_multiply_elementwise """ other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape') and len(other.shape) == 2: if self.shape[1] != other.shape[0]: raise ShapeError("Matrix size mismatch: %s * %s." % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): return self._eval_matrix_mul(other) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_mul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_mul(other) except TypeError: pass return NotImplemented def __neg__(self): return self._eval_scalar_mul(-1) @call_highest_priority('__rpow__') def __pow__(self, num): if self.rows != self.cols: raise NonSquareMatrixError() try: a = self num = sympify(num) if num.is_Number and num % 1 == 0: if a.rows == 1: return a._new([[a[0]**num]]) if num == 0: return self._new(self.rows, self.cols, lambda i, j: int(i == j)) if num < 0: num = -num a = a.inv() # When certain conditions are met, # Jordan block algorithm is faster than # computation by recursion. elif a.rows == 2 and num > 100000: try: return a._matrix_pow_by_jordan_blocks(num) except (AttributeError, MatrixError): pass return a._eval_pow_by_recursion(num) elif num.is_Number != True and num.is_negative == None and a.det() == 0: from sympy.matrices.expressions import MatPow return MatPow(a, num) elif isinstance(num, (Expr, float)): return a._matrix_pow_by_jordan_blocks(num) else: raise TypeError( "Only SymPy expressions or integers are supported as exponent for matrices") except AttributeError: raise TypeError("Don't know how to raise {} to {}".format(self.__class__, num)) @call_highest_priority('__add__') def __radd__(self, other): return self + other @call_highest_priority('__matmul__') def __rmatmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__rmul__(other) @call_highest_priority('__mul__') def __rmul__(self, other): other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape') and len(other.shape) == 2: if self.shape[0] != other.shape[1]: raise ShapeError("Matrix size mismatch.") # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): return other._new(other.as_mutable() * self) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_rmul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_rmul(other) except TypeError: pass return NotImplemented @call_highest_priority('__sub__') def __rsub__(self, a): return (-self) + a @call_highest_priority('__rsub__') def __sub__(self, a): return self + (-a) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self.__div__(other) def multiply_elementwise(self, other): """Return the Hadamard product (elementwise product) of A and B Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> A.multiply_elementwise(B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== cross dot multiply """ if self.shape != other.shape: raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape)) return self._eval_matrix_mul_elementwise(other) class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties, MatrixSpecial, MatrixShaping): """All common matrix operations including basic arithmetic, shaping, and special matrices like `zeros`, and `eye`.""" _diff_wrt = True class _MinimalMatrix(object): """Class providing the minimum functionality for a matrix-like object and implementing every method required for a `MatrixRequired`. This class does not have everything needed to become a full-fledged sympy object, but it will satisfy the requirements of anything inheriting from `MatrixRequired`. If you wish to make a specialized matrix type, make sure to implement these methods and properties with the exception of `__init__` and `__repr__` which are included for convenience.""" is_MatrixLike = True _sympify = staticmethod(sympify) _class_priority = 3 is_Matrix = True is_MatrixExpr = False @classmethod def _new(cls, *args, **kwargs): return cls(*args, **kwargs) def __init__(self, rows, cols=None, mat=None): if isinstance(mat, FunctionType): # if we passed in a function, use that to populate the indices mat = list(mat(i, j) for i in range(rows) for j in range(cols)) try: if cols is None and mat is None: mat = rows rows, cols = mat.shape except AttributeError: pass try: # if we passed in a list of lists, flatten it and set the size if cols is None and mat is None: mat = rows cols = len(mat[0]) rows = len(mat) mat = [x for l in mat for x in l] except (IndexError, TypeError): pass self.mat = tuple(self._sympify(x) for x in mat) self.rows, self.cols = rows, cols if self.rows is None or self.cols is None: raise NotImplementedError("Cannot initialize matrix with given parameters") def __getitem__(self, key): def _normalize_slices(row_slice, col_slice): """Ensure that row_slice and col_slice don't have `None` in their arguments. Any integers are converted to slices of length 1""" if not isinstance(row_slice, slice): row_slice = slice(row_slice, row_slice + 1, None) row_slice = slice(*row_slice.indices(self.rows)) if not isinstance(col_slice, slice): col_slice = slice(col_slice, col_slice + 1, None) col_slice = slice(*col_slice.indices(self.cols)) return (row_slice, col_slice) def _coord_to_index(i, j): """Return the index in _mat corresponding to the (i,j) position in the matrix. """ return i * self.cols + j if isinstance(key, tuple): i, j = key if isinstance(i, slice) or isinstance(j, slice): # if the coordinates are not slices, make them so # and expand the slices so they don't contain `None` i, j = _normalize_slices(i, j) rowsList, colsList = list(range(self.rows))[i], \ list(range(self.cols))[j] indices = (i * self.cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(self.mat[i] for i in indices)) # if the key is a tuple of ints, change # it to an array index key = _coord_to_index(i, j) return self.mat[key] def __eq__(self, other): return self.shape == other.shape and list(self) == list(other) def __len__(self): return self.rows*self.cols def __repr__(self): return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols, self.mat) @property def shape(self): return (self.rows, self.cols) class _MatrixWrapper(object): """Wrapper class providing the minimum functionality for a matrix-like object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix math operations should work on matrix-like objects. For example, wrapping a numpy matrix in a MatrixWrapper allows it to be passed to CommonMatrix. """ is_MatrixLike = True def __init__(self, mat, shape=None): self.mat = mat self.rows, self.cols = mat.shape if shape is None else shape def __getattr__(self, attr): """Most attribute access is passed straight through to the stored matrix""" return getattr(self.mat, attr) def __getitem__(self, key): return self.mat.__getitem__(key) def _matrixify(mat): """If `mat` is a Matrix or is matrix-like, return a Matrix or MatrixWrapper object. Otherwise `mat` is passed through without modification.""" if getattr(mat, 'is_Matrix', False): return mat if hasattr(mat, 'shape'): if len(mat.shape) == 2: return _MatrixWrapper(mat) return mat def a2idx(j, n=None): """Return integer after making positive and validating against n.""" if type(j) is not int: try: j = j.__index__() except AttributeError: raise IndexError("Invalid index a[%r]" % (j,)) if n is not None: if j < 0: j += n if not (j >= 0 and j < n): raise IndexError("Index out of range: a[%s]" % (j,)) return int(j) def classof(A, B): """ Get the type of the result when combining matrices of different types. Currently the strategy is that immutability is contagious. Examples ======== >>> from sympy import Matrix, ImmutableMatrix >>> from sympy.matrices.common import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'> """ try: if A._class_priority > B._class_priority: return A.__class__ else: return B.__class__ except AttributeError: pass try: import numpy if isinstance(A, numpy.ndarray): return B.__class__ if isinstance(B, numpy.ndarray): return A.__class__ except (AttributeError, ImportError): pass raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
ca0cbeafce60c2096b6ab5d5f955cdc7e850c7cf164f8825c50eab3de755d114
from __future__ import print_function, division from mpmath.libmp.libmpf import prec_to_dps from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.function import expand_mul from sympy.core.power import Pow from sympy.core.symbol import (Symbol, Dummy, symbols, _uniquely_named_symbol) from sympy.core.numbers import Integer, mod_inverse, Float from sympy.core.singleton import S from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt, Max, Min from sympy.functions import exp, factorial from sympy.polys import PurePoly, roots, cancel from sympy.printing import sstr from sympy.simplify import simplify as _simplify, nsimplify from sympy.core.compatibility import reduce, as_int, string_types, Callable from sympy.utilities.iterables import flatten, numbered_symbols from sympy.core.compatibility import (is_sequence, default_sort_key, range, NotIterable) from sympy.utilities.exceptions import SymPyDeprecationWarning from types import FunctionType from .common import (a2idx, MatrixError, ShapeError, NonSquareMatrixError, MatrixCommon) from sympy.core.decorators import deprecated def _iszero(x): """Returns True if x is zero.""" try: return x.is_zero except AttributeError: return None def _is_zero_after_expand_mul(x): """Tests by expand_mul only, suitable for polynomials and rational functions.""" return expand_mul(x) == 0 class DeferredVector(Symbol, NotIterable): """A vector whose components are deferred (e.g. for use with lambdify) Examples ======== >>> from sympy import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6) """ def __getitem__(self, i): if i == -0: i = 0 if i < 0: raise IndexError('DeferredVector index out of range') component_name = '%s[%d]' % (self.name, i) return Symbol(component_name) def __str__(self): return sstr(self) def __repr__(self): return "DeferredVector('%s')" % self.name class MatrixDeterminant(MatrixCommon): """Provides basic matrix determinant operations. Should not be instantiated directly.""" def _eval_berkowitz_toeplitz_matrix(self): """Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm corresponding to ``self`` and A is the first principal submatrix.""" # the 0 x 0 case is trivial if self.rows == 0 and self.cols == 0: return self._new(1,1, [S.One]) # # Partition self = [ a_11 R ] # [ C A ] # a, R = self[0,0], self[0, 1:] C, A = self[1:, 0], self[1:,1:] # # The Toeplitz matrix looks like # # [ 1 ] # [ -a 1 ] # [ -RC -a 1 ] # [ -RAC -RC -a 1 ] # [ -RA**2C -RAC -RC -a 1 ] # etc. # Compute the diagonal entries. # Because multiplying matrix times vector is so much # more efficient than matrix times matrix, recursively # compute -R * A**n * C. diags = [C] for i in range(self.rows - 2): diags.append(A * diags[i]) diags = [(-R*d)[0, 0] for d in diags] diags = [S.One, -a] + diags def entry(i,j): if j > i: return S.Zero return diags[i - j] toeplitz = self._new(self.cols + 1, self.rows, entry) return (A, toeplitz) def _eval_berkowitz_vector(self): """ Run the Berkowitz algorithm and return a vector whose entries are the coefficients of the characteristic polynomial of ``self``. Given N x N matrix, efficiently compute coefficients of characteristic polynomials of ``self`` without division in the ground domain. This method is particularly useful for computing determinant, principal minors and characteristic polynomial when ``self`` has complicated coefficients e.g. polynomials. Semi-direct usage of this algorithm is also important in computing efficiently sub-resultant PRS. Assuming that M is a square matrix of dimension N x N and I is N x N identity matrix, then the Berkowitz vector is an N x 1 vector whose entries are coefficients of the polynomial charpoly(M) = det(t*I - M) As a consequence, all polynomials generated by Berkowitz algorithm are monic. For more information on the implemented algorithm refer to: [1] S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, ACM, Information Processing Letters 18, 1984, pp. 147-150 [2] M. Keber, Division-Free computation of sub-resultants using Bezout matrices, Tech. Report MPI-I-2006-1-006, Saarbrucken, 2006 """ # handle the trivial cases if self.rows == 0 and self.cols == 0: return self._new(1, 1, [S.One]) elif self.rows == 1 and self.cols == 1: return self._new(2, 1, [S.One, -self[0,0]]) submat, toeplitz = self._eval_berkowitz_toeplitz_matrix() return toeplitz * submat._eval_berkowitz_vector() def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): """Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. """ # Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's # thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf def bareiss(mat, cumm=1): if mat.rows == 0: return S.One elif mat.rows == 1: return mat[0, 0] # find a pivot and extract the remaining matrix # With the default iszerofunc, _find_reasonable_pivot slows down # the computation by the factor of 2.5 in one test. # Relevant issues: #10279 and #13877. pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc) if pivot_pos == None: return S.Zero # if we have a valid pivot, we'll do a "row swap", so keep the # sign of the det sign = (-1) ** (pivot_pos % 2) # we want every row but the pivot row and every column rows = list(i for i in range(mat.rows) if i != pivot_pos) cols = list(range(mat.cols)) tmp_mat = mat.extract(rows, cols) def entry(i, j): ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm if not ret.is_Atom: return cancel(ret) return ret return sign*bareiss(self._new(mat.rows - 1, mat.cols - 1, entry), pivot_val) return cancel(bareiss(self)) def _eval_det_berkowitz(self): """ Use the Berkowitz algorithm to compute the determinant.""" berk_vector = self._eval_berkowitz_vector() return (-1)**(len(berk_vector) - 1) * berk_vector[-1] def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): """ Computes the determinant of a matrix from its LU decomposition. This function uses the LU decomposition computed by LUDecomposition_Simple(). The keyword arguments iszerofunc and simpfunc are passed to LUDecomposition_Simple(). iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy.""" if self.rows == 0: return S.One # sympy/matrices/tests/test_matrices.py contains a test that # suggests that the determinant of a 0 x 0 matrix is one, by # convention. lu, row_swaps = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=None) # P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U). # Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1. # P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P). # LUdecomposition_Simple() returns a list of row exchange index pairs, rather # than a permutation matrix, but det(P) = (-1)**len(row_swaps). # Avoid forming the potentially time consuming product of U's diagonal entries # if the product is zero. # Bottom right entry of U is 0 => det(A) = 0. # It may be impossible to determine if this entry of U is zero when it is symbolic. if iszerofunc(lu[lu.rows-1, lu.rows-1]): return S.Zero # Compute det(P) det = -S.One if len(row_swaps)%2 else S.One # Compute det(U) by calculating the product of U's diagonal entries. # The upper triangular portion of lu is the upper triangular portion of the # U factor in the LU decomposition. for k in range(lu.rows): det *= lu[k, k] # return det(P)*det(U) return det def _eval_determinant(self): """Assumed to exist by matrix expressions; If we subclass MatrixDeterminant, we can fully evaluate determinants.""" return self.det() def adjugate(self, method="berkowitz"): """Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors. https://en.wikipedia.org/wiki/Adjugate See Also ======== cofactor_matrix transpose """ return self.cofactor_matrix(method).transpose() def charpoly(self, x='lambda', simplify=_simplify): """Computes characteristic polynomial det(x*I - self) where I is the identity matrix. A PurePoly is returned, so using different variables for ``x`` does not affect the comparison or the polynomials: Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y >>> A = Matrix([[1, 3], [2, 0]]) >>> A.charpoly(x) == A.charpoly(y) True Specifying ``x`` is optional; a symbol named ``lambda`` is used by default (which looks good when pretty-printed in unicode): >>> A.charpoly().as_expr() lambda**2 - lambda - 6 And if ``x`` clashes with an existing symbol, underscores will be preppended to the name to make it unique: >>> A = Matrix([[1, 2], [x, 0]]) >>> A.charpoly(x).as_expr() _x**2 - _x - 2*x Whether you pass a symbol or not, the generator can be obtained with the gen attribute since it may not be the same as the symbol that was passed: >>> A.charpoly(x).gen _x >>> A.charpoly(x).gen == x False Notes ===== The Samuelson-Berkowitz algorithm is used to compute the characteristic polynomial efficiently and without any division operations. Thus the characteristic polynomial over any commutative ring without zero divisors can be computed. See Also ======== det """ if not self.is_square: raise NonSquareMatrixError() berk_vector = self._eval_berkowitz_vector() x = _uniquely_named_symbol(x, berk_vector) return PurePoly([simplify(a) for a in berk_vector], x) def cofactor(self, i, j, method="berkowitz"): """Calculate the cofactor of an element. See Also ======== cofactor_matrix minor minor_submatrix """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return (-1)**((i + j) % 2) * self.minor(i, j, method) def cofactor_matrix(self, method="berkowitz"): """Return a matrix containing the cofactor of each element. See Also ======== cofactor minor minor_submatrix adjugate """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return self._new(self.rows, self.cols, lambda i, j: self.cofactor(i, j, method)) def det(self, method="bareiss", iszerofunc=None): """Computes the determinant of a matrix. Parameters ========== method : string, optional Specifies the algorithm used for computing the matrix determinant. If the matrix is at most 3x3, a hard-coded formula is used and the specified method is ignored. Otherwise, it defaults to ``'bareiss'``. If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will be used. If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used. Otherwise, if it is set to ``'lu'``, LU decomposition will be used. .. note:: For backward compatibility, legacy keys like "bareis" and "det_lu" can still be used to indicate the corresponding methods. And the keys are also case-insensitive for now. However, it is suggested to use the precise keys for specifying the method. iszerofunc : FunctionType or None, optional If it is set to ``None``, it will be defaulted to ``_iszero`` if the method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if the method is set to ``'lu'``. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it tested as non-zero, and also ``None`` if it is undecidable. Returns ======= det : Basic Result of determinant. Raises ====== ValueError If unrecognized keys are given for ``method`` or ``iszerofunc``. NonSquareMatrixError If attempted to calculate determinant from a non-square matrix. """ # sanitize `method` method = method.lower() if method == "bareis": method = "bareiss" if method == "det_lu": method = "lu" if method not in ("bareiss", "berkowitz", "lu"): raise ValueError("Determinant method '%s' unrecognized" % method) if iszerofunc is None: if method == "bareiss": iszerofunc = _is_zero_after_expand_mul elif method == "lu": iszerofunc = _iszero elif not isinstance(iszerofunc, FunctionType): raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc) # if methods were made internal and all determinant calculations # passed through here, then these lines could be factored out of # the method routines if not self.is_square: raise NonSquareMatrixError() n = self.rows if n == 0: return S.One elif n == 1: return self[0,0] elif n == 2: return self[0, 0] * self[1, 1] - self[0, 1] * self[1, 0] elif n == 3: return (self[0, 0] * self[1, 1] * self[2, 2] + self[0, 1] * self[1, 2] * self[2, 0] + self[0, 2] * self[1, 0] * self[2, 1] - self[0, 2] * self[1, 1] * self[2, 0] - self[0, 0] * self[1, 2] * self[2, 1] - self[0, 1] * self[1, 0] * self[2, 2]) if method == "bareiss": return self._eval_det_bareiss(iszerofunc=iszerofunc) elif method == "berkowitz": return self._eval_det_berkowitz() elif method == "lu": return self._eval_det_lu(iszerofunc=iszerofunc) def minor(self, i, j, method="berkowitz"): """Return the (i,j) minor of ``self``. That is, return the determinant of the matrix obtained by deleting the `i`th row and `j`th column from ``self``. See Also ======== minor_submatrix cofactor det """ if not self.is_square or self.rows < 1: raise NonSquareMatrixError() return self.minor_submatrix(i, j).det(method=method) def minor_submatrix(self, i, j): """Return the submatrix obtained by removing the `i`th row and `j`th column from ``self``. See Also ======== minor cofactor """ if i < 0: i += self.rows if j < 0: j += self.cols if not 0 <= i < self.rows or not 0 <= j < self.cols: raise ValueError("`i` and `j` must satisfy 0 <= i < ``self.rows`` " "(%d)" % self.rows + "and 0 <= j < ``self.cols`` (%d)." % self.cols) rows = [a for a in range(self.rows) if a != i] cols = [a for a in range(self.cols) if a != j] return self.extract(rows, cols) class MatrixReductions(MatrixDeterminant): """Provides basic matrix row/column operations. Should not be instantiated directly.""" def _eval_col_op_swap(self, col1, col2): def entry(i, j): if j == col1: return self[i, col2] elif j == col2: return self[i, col1] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_multiply_col_by_const(self, col, k): def entry(i, j): if j == col: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): def entry(i, j): if j == col: return self[i, j] + k * self[i, col2] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_swap(self, row1, row2): def entry(i, j): if i == row1: return self[row2, j] elif i == row2: return self[row1, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_multiply_row_by_const(self, row, k): def entry(i, j): if i == row: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): def entry(i, j): if i == row: return self[i, j] + k * self[row2, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_echelon_form(self, iszerofunc, simpfunc): """Returns (mat, swaps) where ``mat`` is a row-equivalent matrix in echelon form and ``swaps`` is a list of row-swaps performed.""" reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc, normalize_last=True, normalize=False, zero_above=False) return reduced, pivot_cols, swaps def _eval_is_echelon(self, iszerofunc): if self.rows <= 0 or self.cols <= 0: return True zeros_below = all(iszerofunc(t) for t in self[1:, 0]) if iszerofunc(self[0, 0]): return zeros_below and self[:, 1:]._eval_is_echelon(iszerofunc) return zeros_below and self[1:, 1:]._eval_is_echelon(iszerofunc) def _eval_rref(self, iszerofunc, simpfunc, normalize_last=True): reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc, normalize_last, normalize=True, zero_above=True) return reduced, pivot_cols def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): """Validate the arguments for a row/column operation. ``error_str`` can be one of "row" or "col" depending on the arguments being parsed.""" if op not in ["n->kn", "n<->m", "n->n+km"]: raise ValueError("Unknown {} operation '{}'. Valid col operations " "are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) # normalize and validate the arguments if op == "n->kn": col = col if col is not None else col1 if col is None or k is None: raise ValueError("For a {0} operation 'n->kn' you must provide the " "kwargs `{0}` and `k`".format(error_str)) if not 0 <= col <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if op == "n<->m": # we need two cols to swap. It doesn't matter # how they were specified, so gather them together and # remove `None` cols = set((col, k, col1, col2)).difference([None]) if len(cols) > 2: # maybe the user left `k` by mistake? cols = set((col, col1, col2)).difference([None]) if len(cols) != 2: raise ValueError("For a {0} operation 'n<->m' you must provide the " "kwargs `{0}1` and `{0}2`".format(error_str)) col1, col2 = cols if not 0 <= col1 <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1)) if not 0 <= col2 <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) if op == "n->n+km": col = col1 if col is None else col col2 = col1 if col2 is None else col2 if col is None or col2 is None or k is None: raise ValueError("For a {0} operation 'n->n+km' you must provide the " "kwargs `{0}`, `k`, and `{0}2`".format(error_str)) if col == col2: raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " "be different.".format(error_str)) if not 0 <= col <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if not 0 <= col2 <= self.cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) return op, col, k, col1, col2 def _permute_complexity_right(self, iszerofunc): """Permute columns with complicated elements as far right as they can go. Since the ``sympy`` row reduction algorithms start on the left, having complexity right-shifted speeds things up. Returns a tuple (mat, perm) where perm is a permutation of the columns to perform to shift the complex columns right, and mat is the permuted matrix.""" def complexity(i): # the complexity of a column will be judged by how many # element's zero-ness cannot be determined return sum(1 if iszerofunc(e) is None else 0 for e in self[:, i]) complex = [(complexity(i), i) for i in range(self.cols)] perm = [j for (i, j) in sorted(complex)] return (self.permute(perm, orientation='cols'), perm) def _row_reduce(self, iszerofunc, simpfunc, normalize_last=True, normalize=True, zero_above=True): """Row reduce ``self`` and return a tuple (rref_matrix, pivot_cols, swaps) where pivot_cols are the pivot columns and swaps are any row swaps that were used in the process of row reduction. Parameters ========== iszerofunc : determines if an entry can be used as a pivot simpfunc : used to simplify elements and test if they are zero if ``iszerofunc`` returns `None` normalize_last : indicates where all row reduction should happen in a fraction-free manner and then the rows are normalized (so that the pivots are 1), or whether rows should be normalized along the way (like the naive row reduction algorithm) normalize : whether pivot rows should be normalized so that the pivot value is 1 zero_above : whether entries above the pivot should be zeroed. If ``zero_above=False``, an echelon matrix will be returned. """ rows, cols = self.rows, self.cols mat = list(self) def get_col(i): return mat[i::cols] def row_swap(i, j): mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \ mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols] def cross_cancel(a, i, b, j): """Does the row op row[i] = a*row[i] - b*row[j]""" q = (j - i)*cols for p in range(i*cols, (i + 1)*cols): mat[p] = a*mat[p] - b*mat[p + q] piv_row, piv_col = 0, 0 pivot_cols = [] swaps = [] # use a fraction free method to zero above and below each pivot while piv_col < cols and piv_row < rows: pivot_offset, pivot_val, \ assumed_nonzero, newly_determined = _find_reasonable_pivot( get_col(piv_col)[piv_row:], iszerofunc, simpfunc) # _find_reasonable_pivot may have simplified some things # in the process. Let's not let them go to waste for (offset, val) in newly_determined: offset += piv_row mat[offset*cols + piv_col] = val if pivot_offset is None: piv_col += 1 continue pivot_cols.append(piv_col) if pivot_offset != 0: row_swap(piv_row, pivot_offset + piv_row) swaps.append((piv_row, pivot_offset + piv_row)) # if we aren't normalizing last, we normalize # before we zero the other rows if normalize_last is False: i, j = piv_row, piv_col mat[i*cols + j] = S.One for p in range(i*cols + j + 1, (i + 1)*cols): mat[p] = mat[p] / pivot_val # after normalizing, the pivot value is 1 pivot_val = S.One # zero above and below the pivot for row in range(rows): # don't zero our current row if row == piv_row: continue # don't zero above the pivot unless we're told. if zero_above is False and row < piv_row: continue # if we're already a zero, don't do anything val = mat[row*cols + piv_col] if iszerofunc(val): continue cross_cancel(pivot_val, row, val, piv_row) piv_row += 1 # normalize each row if normalize_last is True and normalize is True: for piv_i, piv_j in enumerate(pivot_cols): pivot_val = mat[piv_i*cols + piv_j] mat[piv_i*cols + piv_j] = S.One for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols): mat[p] = mat[p] / pivot_val return self._new(self.rows, self.cols, mat), tuple(pivot_cols), tuple(swaps) def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): """Returns a matrix row-equivalent to ``self`` that is in echelon form. Note that echelon form of a matrix is *not* unique, however, properties like the row space and the null space are preserved.""" simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify mat, pivots, swaps = self._eval_echelon_form(iszerofunc, simpfunc) if with_pivots: return mat, pivots return mat def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): """Performs the elementary column operation `op`. `op` may be one of * "n->kn" (column n goes to k*n) * "n<->m" (swap column n and column m) * "n->n+km" (column n goes to column n + k*column m) Parameters ========== op : string; the elementary row operation col : the column to apply the column operation k : the multiple to apply in the column operation col1 : one column of a column swap col2 : second column of a column swap or column "m" in the column operation "n->n+km" """ op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_col_op_multiply_col_by_const(col, k) if op == "n<->m": return self._eval_col_op_swap(col1, col2) if op == "n->n+km": return self._eval_col_op_add_multiple_to_other_col(col, k, col2) def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): """Performs the elementary row operation `op`. `op` may be one of * "n->kn" (row n goes to k*n) * "n<->m" (swap row n and row m) * "n->n+km" (row n goes to row n + k*row m) Parameters ========== op : string; the elementary row operation row : the row to apply the row operation k : the multiple to apply in the row operation row1 : one row of a row swap row2 : second row of a row swap or row "m" in the row operation "n->n+km" """ op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_row_op_multiply_row_by_const(row, k) if op == "n<->m": return self._eval_row_op_swap(row1, row2) if op == "n->n+km": return self._eval_row_op_add_multiple_to_other_row(row, k, row2) @property def is_echelon(self, iszerofunc=_iszero): """Returns `True` if the matrix is in echelon form. That is, all rows of zeros are at the bottom, and below each leading non-zero in a row are exclusively zeros.""" return self._eval_is_echelon(iszerofunc) def rank(self, iszerofunc=_iszero, simplify=False): """ Returns the rank of a matrix >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rank() 2 >>> n = Matrix(3, 3, range(1, 10)) >>> n.rank() 2 """ simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify # for small matrices, we compute the rank explicitly # if is_zero on elements doesn't answer the question # for small matrices, we fall back to the full routine. if self.rows <= 0 or self.cols <= 0: return 0 if self.rows <= 1 or self.cols <= 1: zeros = [iszerofunc(x) for x in self] if False in zeros: return 1 if self.rows == 2 and self.cols == 2: zeros = [iszerofunc(x) for x in self] if not False in zeros and not None in zeros: return 0 det = self.det() if iszerofunc(det) and False in zeros: return 1 if iszerofunc(det) is False: return 2 mat, _ = self._permute_complexity_right(iszerofunc=iszerofunc) echelon_form, pivots, swaps = mat._eval_echelon_form(iszerofunc=iszerofunc, simpfunc=simpfunc) return len(pivots) def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True): """Return reduced row-echelon form of matrix and indices of pivot vars. Parameters ========== iszerofunc : Function A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Function A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. pivots : True or False If ``True``, a tuple containing the row-reduced matrix and a tuple of pivot columns is returned. If ``False`` just the row-reduced matrix is returned. normalize_last : True or False If ``True``, no pivots are normalized to `1` until after all entries above and below each pivot are zeroed. This means the row reduction algorithm is fraction free until the very last step. If ``False``, the naive row reduction procedure is used where each pivot is normalized to be `1` before row operations are used to zero above and below the pivot. Notes ===== The default value of ``normalize_last=True`` can provide significant speedup to row reduction, especially on matrices with symbols. However, if you depend on the form row reduction algorithm leaves entries of the matrix, set ``noramlize_last=False`` Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rref() (Matrix([ [1, 0], [0, 1]]), (0, 1)) >>> rref_matrix, rref_pivots = m.rref() >>> rref_matrix Matrix([ [1, 0], [0, 1]]) >>> rref_pivots (0, 1) """ simpfunc = simplify if isinstance( simplify, FunctionType) else _simplify ret, pivot_cols = self._eval_rref(iszerofunc=iszerofunc, simpfunc=simpfunc, normalize_last=normalize_last) if pivots: ret = (ret, pivot_cols) return ret class MatrixSubspaces(MatrixReductions): """Provides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly.""" def columnspace(self, simplify=False): """Returns a list of vectors (Matrix objects) that span columnspace of ``self`` Examples ======== >>> from sympy.matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.columnspace() [Matrix([ [ 1], [-2], [ 3]]), Matrix([ [0], [0], [6]])] See Also ======== nullspace rowspace """ reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True) return [self.col(i) for i in pivots] def nullspace(self, simplify=False, iszerofunc=_iszero): """Returns list of vectors (Matrix objects) that span nullspace of ``self`` Examples ======== >>> from sympy.matrices import Matrix >>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6]) >>> m Matrix([ [ 1, 3, 0], [-2, -6, 0], [ 3, 9, 6]]) >>> m.nullspace() [Matrix([ [-3], [ 1], [ 0]])] See Also ======== columnspace rowspace """ reduced, pivots = self.rref(iszerofunc=iszerofunc, simplify=simplify) free_vars = [i for i in range(self.cols) if i not in pivots] basis = [] for free_var in free_vars: # for each free variable, we will set it to 1 and all others # to 0. Then, we will use back substitution to solve the system vec = [S.Zero]*self.cols vec[free_var] = S.One for piv_row, piv_col in enumerate(pivots): vec[piv_col] -= reduced[piv_row, free_var] basis.append(vec) return [self._new(self.cols, 1, b) for b in basis] def rowspace(self, simplify=False): """Returns a list of vectors that span the row space of ``self``.""" reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True) return [reduced.row(i) for i in range(len(pivots))] @classmethod def orthogonalize(cls, *vecs, **kwargs): """Apply the Gram-Schmidt orthogonalization procedure to vectors supplied in ``vecs``. Parameters ========== vecs vectors to be made orthogonal normalize : bool If true, return an orthonormal basis. """ normalize = kwargs.get('normalize', False) def project(a, b): return b * (a.dot(b) / b.dot(b)) def perp_to_subspace(vec, basis): """projects vec onto the subspace given by the orthogonal basis ``basis``""" components = [project(vec, b) for b in basis] if len(basis) == 0: return vec return vec - reduce(lambda a, b: a + b, components) ret = [] # make sure we start with a non-zero vector while len(vecs) > 0 and vecs[0].is_zero: del vecs[0] for vec in vecs: perp = perp_to_subspace(vec, ret) if not perp.is_zero: ret.append(perp) if normalize: ret = [vec / vec.norm() for vec in ret] return ret class MatrixEigen(MatrixSubspaces): """Provides basic matrix eigenvalue/vector operations. Should not be instantiated directly.""" _cache_is_diagonalizable = None _cache_eigenvects = None def diagonalize(self, reals_only=False, sort=False, normalize=False): """ Return (P, D), where D is diagonal and D = P^-1 * M * P where M is current matrix. Parameters ========== reals_only : bool. Whether to throw an error if complex numbers are need to diagonalize. (Default: False) sort : bool. Sort the eigenvalues along the diagonal. (Default: False) normalize : bool. If True, normalize the columns of P. (Default: False) Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> (P, D) = m.diagonalize() >>> D Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> P Matrix([ [-1, 0, -1], [ 0, 0, -1], [ 2, 1, 2]]) >>> P.inv() * m * P Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) See Also ======== is_diagonal is_diagonalizable """ if not self.is_square: raise NonSquareMatrixError() if not self.is_diagonalizable(reals_only=reals_only, clear_cache=False): raise MatrixError("Matrix is not diagonalizable") eigenvecs = self._cache_eigenvects if eigenvecs is None: eigenvecs = self.eigenvects(simplify=True) if sort: eigenvecs = sorted(eigenvecs, key=default_sort_key) p_cols, diag = [], [] for val, mult, basis in eigenvecs: diag += [val] * mult p_cols += basis if normalize: p_cols = [v / v.norm() for v in p_cols] return self.hstack(*p_cols), self.diag(*diag) def eigenvals(self, error_when_incomplete=True, **flags): r"""Return eigenvalues using the Berkowitz agorithm to compute the characteristic polynomial. Parameters ========== error_when_incomplete : bool, optional If it is set to ``True``, it will raise an error if not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. simplify : bool or function, optional If it is set to ``True``, it attempts to return the most simplified form of expressions returned by applying default simplification method in every routine. If it is set to ``False``, it will skip simplification in this particular routine to save computation resources. If a function is passed to, it will attempt to apply the particular function as simplification method. rational : bool, optional If it is set to ``True``, every floating point numbers would be replaced with rationals before computation. It can solve some issues of ``roots`` routine not working well with floats. multiple : bool, optional If it is set to ``True``, the result will be in the form of a list. If it is set to ``False``, the result will be in the form of a dictionary. Returns ======= eigs : list or dict Eigenvalues of a matrix. The return format would be specified by the key ``multiple``. Raises ====== MatrixError If not enough roots had got computed. NonSquareMatrixError If attempted to compute eigenvalues from a non-square matrix. See Also ======== MatrixDeterminant.charpoly eigenvects Notes ===== Eigenvalues of a matrix `A` can be computed by solving a matrix equation `\det(A - \lambda I) = 0` """ simplify = flags.get('simplify', False) # Collect simplify flag before popped up, to reuse later in the routine. multiple = flags.get('multiple', False) # Collect multiple flag to decide whether return as a dict or list. mat = self if not mat: return {} if flags.pop('rational', True): if mat.has(Float): mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) if mat.is_upper or mat.is_lower: if not self.is_square: raise NonSquareMatrixError() diagonal_entries = [mat[i, i] for i in range(mat.rows)] if multiple: eigs = diagonal_entries else: eigs = {} for diagonal_entry in diagonal_entries: if diagonal_entry not in eigs: eigs[diagonal_entry] = 0 eigs[diagonal_entry] += 1 else: flags.pop('simplify', None) # pop unsupported flag if isinstance(simplify, FunctionType): eigs = roots(mat.charpoly(x=Dummy('x'), simplify=simplify), **flags) else: eigs = roots(mat.charpoly(x=Dummy('x')), **flags) # make sure the algebraic multiplicty sums to the # size of the matrix if error_when_incomplete and (sum(eigs.values()) if isinstance(eigs, dict) else len(eigs)) != self.cols: raise MatrixError("Could not compute eigenvalues for {}".format(self)) # Since 'simplify' flag is unsupported in roots() # simplify() function will be applied once at the end of the routine. if not simplify: return eigs if not isinstance(simplify, FunctionType): simplify = _simplify # With 'multiple' flag set true, simplify() will be mapped for the list # Otherwise, simplify() will be mapped for the keys of the dictionary if not multiple: return {simplify(key): value for key, value in eigs.items()} else: return [simplify(value) for value in eigs] def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): """Return list of triples (eigenval, multiplicity, eigenspace). Parameters ========== error_when_incomplete : bool, optional Raise an error when not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. iszerofunc : function, optional Specifies a zero testing function to be used in ``rref``. Default value is ``_iszero``, which uses SymPy's naive and fast default assumption handler. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it is tested as non-zero, and ``None`` if it is undecidable. simplify : bool or function, optional If ``True``, ``as_content_primitive()`` will be used to tidy up normalization artifacts. It will also be used by the ``nullspace`` routine. chop : bool or positive number, optional If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. The ``chop`` flag is passed to ``evalf``. When ``chop=True`` a default precision will be used; a number will be interpreted as the desired level of precision. Returns ======= ret : [(eigenval, multiplicity, eigenspace), ...] A ragged list containing tuples of data obtained by ``eigenvals`` and ``nullspace``. ``eigenspace`` is a list containing the ``eigenvector`` for each eigenvalue. ``eigenvector`` is a vector in the form of a ``Matrix``. e.g. a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``. Raises ====== NotImplementedError If failed to compute nullspace. See Also ======== eigenvals MatrixSubspaces.nullspace """ from sympy.matrices import eye simplify = flags.get('simplify', True) if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x primitive = flags.get('simplify', False) chop = flags.pop('chop', False) flags.pop('multiple', None) # remove this if it's there mat = self # roots doesn't like Floats, so replace them with Rationals has_floats = self.has(Float) if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) def eigenspace(eigenval): """Get a basis for the eigenspace for a particular eigenvalue""" m = mat - self.eye(mat.rows) * eigenval ret = m.nullspace(iszerofunc=iszerofunc) # the nullspace for a real eigenvalue should be # non-trivial. If we didn't find an eigenvector, try once # more a little harder if len(ret) == 0 and simplify: ret = m.nullspace(iszerofunc=iszerofunc, simplify=True) if len(ret) == 0: raise NotImplementedError( "Can't evaluate eigenvector for eigenvalue %s" % eigenval) return ret eigenvals = mat.eigenvals(rational=False, error_when_incomplete=error_when_incomplete, **flags) ret = [(val, mult, eigenspace(val)) for val, mult in sorted(eigenvals.items(), key=default_sort_key)] if primitive: # if the primitive flag is set, get rid of any common # integer denominators def denom_clean(l): from sympy import gcd return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l] ret = [(val, mult, denom_clean(es)) for val, mult, es in ret] if has_floats: # if we had floats to start with, turn the eigenvectors to floats ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret] return ret def is_diagonalizable(self, reals_only=False, **kwargs): """Returns true if a matrix is diagonalizable. Parameters ========== reals_only : bool. If reals_only=True, determine whether the matrix can be diagonalized without complex numbers. (Default: False) kwargs ====== clear_cache : bool. If True, clear the result of any computations when finished. (Default: True) Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> m Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> m.is_diagonalizable() True >>> m = Matrix(2, 2, [0, 1, 0, 0]) >>> m Matrix([ [0, 1], [0, 0]]) >>> m.is_diagonalizable() False >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_diagonalizable() True >>> m.is_diagonalizable(reals_only=True) False See Also ======== is_diagonal diagonalize """ clear_cache = kwargs.get('clear_cache', True) if 'clear_subproducts' in kwargs: clear_cache = kwargs.get('clear_subproducts') def cleanup(): """Clears any cached values if requested""" if clear_cache: self._cache_eigenvects = None self._cache_is_diagonalizable = None if not self.is_square: cleanup() return False # use the cached value if we have it if self._cache_is_diagonalizable is not None: ret = self._cache_is_diagonalizable cleanup() return ret if all(e.is_real for e in self) and self.is_symmetric(): # every real symmetric matrix is real diagonalizable self._cache_is_diagonalizable = True cleanup() return True self._cache_eigenvects = self.eigenvects(simplify=True) ret = True for val, mult, basis in self._cache_eigenvects: # if we have a complex eigenvalue if reals_only and not val.is_real: ret = False # if the geometric multiplicity doesn't equal the algebraic if mult != len(basis): ret = False cleanup() return ret def jordan_form(self, calc_transform=True, **kwargs): """Return ``(P, J)`` where `J` is a Jordan block matrix and `P` is a matrix such that ``self == P*J*P**-1`` Parameters ========== calc_transform : bool If ``False``, then only `J` is returned. chop : bool All matrices are convered to exact types when computing eigenvalues and eigenvectors. As a result, there may be approximation errors. If ``chop==True``, these errors will be truncated. Examples ======== >>> from sympy import Matrix >>> m = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]]) >>> P, J = m.jordan_form() >>> J Matrix([ [2, 1, 0, 0], [0, 2, 0, 0], [0, 0, 2, 1], [0, 0, 0, 2]]) See Also ======== jordan_block """ if not self.is_square: raise NonSquareMatrixError("Only square matrices have Jordan forms") chop = kwargs.pop('chop', False) mat = self has_floats = self.has(Float) if has_floats: try: max_prec = max(term._prec for term in self._mat if isinstance(term, Float)) except ValueError: # if no term in the matrix is explicitly a Float calling max() # will throw a error so setting max_prec to default value of 53 max_prec = 53 # setting minimum max_dps to 15 to prevent loss of precision in # matrix containing non evaluated expressions max_dps = max(prec_to_dps(max_prec), 15) def restore_floats(*args): """If ``has_floats`` is `True`, cast all ``args`` as matrices of floats.""" if has_floats: args = [m.evalf(prec=max_dps, chop=chop) for m in args] if len(args) == 1: return args[0] return args # cache calculations for some speedup mat_cache = {} def eig_mat(val, pow): """Cache computations of ``(self - val*I)**pow`` for quick retrieval""" if (val, pow) in mat_cache: return mat_cache[(val, pow)] if (val, pow - 1) in mat_cache: mat_cache[(val, pow)] = mat_cache[(val, pow - 1)] * mat_cache[(val, 1)] else: mat_cache[(val, pow)] = (mat - val*self.eye(self.rows))**pow return mat_cache[(val, pow)] # helper functions def nullity_chain(val): """Calculate the sequence [0, nullity(E), nullity(E**2), ...] until it is constant where ``E = self - val*I``""" # mat.rank() is faster than computing the null space, # so use the rank-nullity theorem cols = self.cols ret = [0] nullity = cols - eig_mat(val, 1).rank() i = 2 while nullity != ret[-1]: ret.append(nullity) nullity = cols - eig_mat(val, i).rank() i += 1 return ret def blocks_from_nullity_chain(d): """Return a list of the size of each Jordan block. If d_n is the nullity of E**n, then the number of Jordan blocks of size n is 2*d_n - d_(n-1) - d_(n+1)""" # d[0] is always the number of columns, so skip past it mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)] # d is assumed to plateau with "d[ len(d) ] == d[-1]", so # 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1) end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]] return mid + end def pick_vec(small_basis, big_basis): """Picks a vector from big_basis that isn't in the subspace spanned by small_basis""" if len(small_basis) == 0: return big_basis[0] for v in big_basis: _, pivots = self.hstack(*(small_basis + [v])).echelon_form(with_pivots=True) if pivots[-1] == len(small_basis): return v # roots doesn't like Floats, so replace them with Rationals if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) # first calculate the jordan block structure eigs = mat.eigenvals() # make sure that we found all the roots by counting # the algebraic multiplicity if sum(m for m in eigs.values()) != mat.cols: raise MatrixError("Could not compute eigenvalues for {}".format(mat)) # most matrices have distinct eigenvalues # and so are diagonalizable. In this case, don't # do extra work! if len(eigs.keys()) == mat.cols: blocks = list(sorted(eigs.keys(), key=default_sort_key)) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks] basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) block_structure = [] for eig in sorted(eigs.keys(), key=default_sort_key): chain = nullity_chain(eig) block_sizes = blocks_from_nullity_chain(chain) # if block_sizes == [a, b, c, ...], then the number of # Jordan blocks of size 1 is a, of size 2 is b, etc. # create an array that has (eig, block_size) with one # entry for each block size_nums = [(i+1, num) for i, num in enumerate(block_sizes)] # we expect larger Jordan blocks to come earlier size_nums.reverse() block_structure.extend( (eig, size) for size, num in size_nums for _ in range(num)) blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) # For each generalized eigenspace, calculate a basis. # We start by looking for a vector in null( (A - eig*I)**n ) # which isn't in null( (A - eig*I)**(n-1) ) where n is # the size of the Jordan block # # Ideally we'd just loop through block_structure and # compute each generalized eigenspace. However, this # causes a lot of unneeded computation. Instead, we # go through the eigenvalues separately, since we know # their generalized eigenspaces must have bases that # are linearly independent. jordan_basis = [] for eig in sorted(eigs.keys(), key=default_sort_key): eig_basis = [] for block_eig, size in block_structure: if block_eig != eig: continue null_big = (eig_mat(eig, size)).nullspace() null_small = (eig_mat(eig, size - 1)).nullspace() # we want to pick something that is in the big basis # and not the small, but also something that is independent # of any other generalized eigenvectors from a different # generalized eigenspace sharing the same eigenvalue. vec = pick_vec(null_small + eig_basis, null_big) new_vecs = [(eig_mat(eig, i))*vec for i in range(size)] eig_basis.extend(new_vecs) jordan_basis.extend(reversed(new_vecs)) basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) def left_eigenvects(self, **flags): """Returns left eigenvectors and eigenvalues. This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for eigenvects(), i.e. the ``**flags`` arguments gets passed directly to eigenvects(). Examples ======== >>> from sympy import Matrix >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] >>> M.left_eigenvects() [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])])] """ eigs = self.transpose().eigenvects(**flags) return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs] def singular_values(self): """Compute the singular values of a Matrix Examples ======== >>> from sympy import Matrix, Symbol >>> x = Symbol('x', real=True) >>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]]) >>> A.singular_values() [sqrt(x**2 + 1), 1, 0] See Also ======== condition_number """ mat = self # Compute eigenvalues of A.H A valmultpairs = (mat.H * mat).eigenvals() # Expands result from eigenvals into a simple list vals = [] for k, v in valmultpairs.items(): vals += [sqrt(k)] * v # dangerous! same k in several spots! # sort them in descending order vals.sort(reverse=True, key=default_sort_key) return vals class MatrixCalculus(MatrixCommon): """Provides calculus-related matrix operations.""" def diff(self, *args, **kwargs): """Calculate the derivative of each element in the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]]) See Also ======== integrate limit """ # XXX this should be handled here rather than in Derivative from sympy import Derivative kwargs.setdefault('evaluate', True) deriv = Derivative(self, *args, evaluate=True) if not isinstance(self, Basic): return deriv.as_mutable() else: return deriv def _eval_derivative(self, arg): return self.applyfunc(lambda x: x.diff(arg)) def _accept_eval_derivative(self, s): return s._visit_eval_derivative_array(self) def _visit_eval_derivative_scalar(self, base): # Types are (base: scalar, self: matrix) return self.applyfunc(lambda x: base.diff(x)) def _visit_eval_derivative_array(self, base): # Types are (base: array/matrix, self: matrix) from sympy import derive_by_array return derive_by_array(base, self) def integrate(self, *args): """Integrate each element of the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]]) See Also ======== limit diff """ return self.applyfunc(lambda x: x.integrate(*args)) def jacobian(self, X): """Calculates the Jacobian matrix (derivative of a vector-valued function). Parameters ========== ``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). X : set of x_i's in order, it can be a list or a Matrix Both ``self`` and X can be a row or a column matrix in any order (i.e., jacobian() should always work). Examples ======== >>> from sympy import sin, cos, Matrix >>> from sympy.abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]]) See Also ======== hessian wronskian """ if not isinstance(X, MatrixBase): X = self._new(X) # Both X and ``self`` can be a row or a column matrix, so we need to make # sure all valid combinations work, but everything else fails: if self.shape[0] == 1: m = self.shape[1] elif self.shape[1] == 1: m = self.shape[0] else: raise TypeError("``self`` must be a row or a column matrix") if X.shape[0] == 1: n = X.shape[1] elif X.shape[1] == 1: n = X.shape[0] else: raise TypeError("X must be a row or a column matrix") # m is the number of functions and n is the number of variables # computing the Jacobian is now easy: return self._new(m, n, lambda j, i: self[j].diff(X[i])) def limit(self, *args): """Calculate the limit of each element in the matrix. ``args`` will be passed to the ``limit`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.limit(x, 2) Matrix([ [2, y], [1, 0]]) See Also ======== integrate diff """ return self.applyfunc(lambda x: x.limit(*args)) # https://github.com/sympy/sympy/pull/12854 class MatrixDeprecated(MatrixCommon): """A class to house deprecated matrix methods.""" def _legacy_array_dot(self, b): """Compatibility function for deprecated behavior of ``matrix.dot(vector)`` """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if mat.cols == b.rows: if b.cols != 1: mat = mat.T b = b.T prod = flatten((mat * b).tolist()) return prod if mat.cols == b.cols: return mat.dot(b.T) elif mat.rows == b.rows: return mat.T.dot(b) else: raise ShapeError("Dimensions incorrect for dot product: %s, %s" % ( self.shape, b.shape)) def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): return self.charpoly(x=x) def berkowitz_det(self): """Computes determinant using Berkowitz method. See Also ======== det berkowitz """ return self.det(method='berkowitz') def berkowitz_eigenvals(self, **flags): """Computes eigenvalues of a Matrix using Berkowitz method. See Also ======== berkowitz """ return self.eigenvals(**flags) def berkowitz_minors(self): """Computes principal minors using Berkowitz method. See Also ======== berkowitz """ sign, minors = S.One, [] for poly in self.berkowitz(): minors.append(sign * poly[-1]) sign = -sign return tuple(minors) def berkowitz(self): from sympy.matrices import zeros berk = ((1,),) if not self: return berk if not self.is_square: raise NonSquareMatrixError() A, N = self, self.rows transforms = [0] * (N - 1) for n in range(N, 1, -1): T, k = zeros(n + 1, n), n - 1 R, C = -A[k, :k], A[:k, k] A, a = A[:k, :k], -A[k, k] items = [C] for i in range(0, n - 2): items.append(A * items[i]) for i, B in enumerate(items): items[i] = (R * B)[0, 0] items = [S.One, a] + items for i in range(n): T[i:, i] = items[:n - i + 1] transforms[k - 1] = T polys = [self._new([S.One, -A[0, 0]])] for i, T in enumerate(transforms): polys.append(T * polys[i]) return berk + tuple(map(tuple, polys)) def cofactorMatrix(self, method="berkowitz"): return self.cofactor_matrix(method=method) def det_bareis(self): return self.det(method='bareiss') def det_bareiss(self): """Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det berkowitz_det """ return self.det(method='bareiss') def det_LU_decomposition(self): """Compute matrix determinant using LU decomposition Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det det_bareiss berkowitz_det """ return self.det(method='lu') def jordan_cell(self, eigenval, n): return self.jordan_block(size=n, eigenvalue=eigenval) def jordan_cells(self, calc_transformation=True): P, J = self.jordan_form() return P, J.get_diag_blocks() def minorEntry(self, i, j, method="berkowitz"): return self.minor(i, j, method=method) def minorMatrix(self, i, j): return self.minor_submatrix(i, j) def permuteBkwd(self, perm): """Permute the rows of the matrix with the given permutation in reverse.""" return self.permute_rows(perm, direction='backward') def permuteFwd(self, perm): """Permute the rows of the matrix with the given permutation.""" return self.permute_rows(perm, direction='forward') class MatrixBase(MatrixDeprecated, MatrixCalculus, MatrixEigen, MatrixCommon): """Base class for matrix objects.""" # Added just for numpy compatibility __array_priority__ = 11 is_Matrix = True _class_priority = 3 _sympify = staticmethod(sympify) __hash__ = None # Mutable # Defined here the same as on Basic. # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='plain') return "$\\displaystyle %s$" % s _repr_latex_orig = _repr_latex_ def __array__(self, dtype=object): from .dense import matrix2numpy return matrix2numpy(self, dtype=dtype) def __getattr__(self, attr): if attr in ('diff', 'integrate', 'limit'): def doit(*args): item_doit = lambda item: getattr(item, attr)(*args) return self.applyfunc(item_doit) return doit else: raise AttributeError( "%s has no attribute %s." % (self.__class__.__name__, attr)) def __len__(self): """Return the number of elements of ``self``. Implemented mainly so bool(Matrix()) == False. """ return self.rows * self.cols def __mathml__(self): mml = "" for i in range(self.rows): mml += "<matrixrow>" for j in range(self.cols): mml += self[i, j].__mathml__() mml += "</matrixrow>" return "<matrix>" + mml + "</matrix>" # needed for python 2 compatibility def __ne__(self, other): return not self == other def _matrix_pow_by_jordan_blocks(self, num): from sympy.matrices import diag, MutableMatrix from sympy import binomial def jordan_cell_power(jc, n): N = jc.shape[0] l = jc[0, 0] if l == 0 and (n < N - 1) != False: raise ValueError("Matrix det == 0; not invertible") elif l == 0 and N > 1 and n % 1 != 0: raise ValueError("Non-integer power cannot be evaluated") for i in range(N): for j in range(N-i): bn = binomial(n, i) if isinstance(bn, binomial): bn = bn._eval_expand_func() jc[j, i+j] = l**(n-i)*bn P, J = self.jordan_form() jordan_cells = J.get_diag_blocks() # Make sure jordan_cells matrices are mutable: jordan_cells = [MutableMatrix(j) for j in jordan_cells] for j in jordan_cells: jordan_cell_power(j, num) return self._new(P*diag(*jordan_cells)*P.inv()) def __repr__(self): return sstr(self) def __str__(self): if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) return "Matrix(%s)" % str(self.tolist()) def _diagonalize_clear_subproducts(self): del self._is_symbolic del self._is_symmetric del self._eigenvects def _format_str(self, printer=None): if not printer: from sympy.printing.str import StrPrinter printer = StrPrinter() # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) if self.rows == 1: return "Matrix([%s])" % self.table(printer, rowsep=',\n') return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') @classmethod def _handle_creation_inputs(cls, *args, **kwargs): """Return the number of rows, cols and flat matrix elements. Examples ======== >>> from sympy import Matrix, I Matrix can be constructed as follows: * from a nested list of iterables >>> Matrix( ((1, 2+I), (3, 4)) ) Matrix([ [1, 2 + I], [3, 4]]) * from un-nested iterable (interpreted as a column) >>> Matrix( [1, 2] ) Matrix([ [1], [2]]) * from un-nested iterable with dimensions >>> Matrix(1, 2, [1, 2] ) Matrix([[1, 2]]) * from no arguments (a 0 x 0 matrix) >>> Matrix() Matrix(0, 0, []) * from a rule >>> Matrix(2, 2, lambda i, j: i/(j + 1) ) Matrix([ [0, 0], [1, 1/2]]) """ from sympy.matrices.sparse import SparseMatrix flat_list = None if len(args) == 1: # Matrix(SparseMatrix(...)) if isinstance(args[0], SparseMatrix): return args[0].rows, args[0].cols, flatten(args[0].tolist()) # Matrix(Matrix(...)) elif isinstance(args[0], MatrixBase): return args[0].rows, args[0].cols, args[0]._mat # Matrix(MatrixSymbol('X', 2, 2)) elif isinstance(args[0], Basic) and args[0].is_Matrix: return args[0].rows, args[0].cols, args[0].as_explicit()._mat # Matrix(numpy.ones((2, 2))) elif hasattr(args[0], "__array__"): # NumPy array or matrix or some other object that implements # __array__. So let's first use this method to get a # numpy.array() and then make a python list out of it. arr = args[0].__array__() if len(arr.shape) == 2: rows, cols = arr.shape[0], arr.shape[1] flat_list = [cls._sympify(i) for i in arr.ravel()] return rows, cols, flat_list elif len(arr.shape) == 1: rows, cols = arr.shape[0], 1 flat_list = [S.Zero] * rows for i in range(len(arr)): flat_list[i] = cls._sympify(arr[i]) return rows, cols, flat_list else: raise NotImplementedError( "SymPy supports just 1D and 2D matrices") # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) elif is_sequence(args[0]) \ and not isinstance(args[0], DeferredVector): in_mat = [] ncol = set() for row in args[0]: if isinstance(row, MatrixBase): in_mat.extend(row.tolist()) if row.cols or row.rows: # only pay attention if it's not 0x0 ncol.add(row.cols) else: in_mat.append(row) try: ncol.add(len(row)) except TypeError: ncol.add(1) if len(ncol) > 1: raise ValueError("Got rows of variable lengths: %s" % sorted(list(ncol))) cols = ncol.pop() if ncol else 0 rows = len(in_mat) if cols else 0 if rows: if not is_sequence(in_mat[0]): cols = 1 flat_list = [cls._sympify(i) for i in in_mat] return rows, cols, flat_list flat_list = [] for j in range(rows): for i in range(cols): flat_list.append(cls._sympify(in_mat[j][i])) elif len(args) == 3: rows = as_int(args[0]) cols = as_int(args[1]) if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) # Matrix(2, 2, lambda i, j: i+j) if len(args) == 3 and isinstance(args[2], Callable): op = args[2] flat_list = [] for i in range(rows): flat_list.extend( [cls._sympify(op(cls._sympify(i), cls._sympify(j))) for j in range(cols)]) # Matrix(2, 2, [1, 2, 3, 4]) elif len(args) == 3 and is_sequence(args[2]): flat_list = args[2] if len(flat_list) != rows * cols: raise ValueError( 'List length should be equal to rows*columns') flat_list = [cls._sympify(i) for i in flat_list] # Matrix() elif len(args) == 0: # Empty Matrix rows = cols = 0 flat_list = [] if flat_list is None: raise TypeError("Data type not understood") return rows, cols, flat_list def _setitem(self, key, value): """Helper to set value at location given by key. Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ from .dense import Matrix is_slice = isinstance(key, slice) i, j = key = self.key2ij(key) is_mat = isinstance(value, MatrixBase) if type(i) is slice or type(j) is slice: if is_mat: self.copyin_matrix(key, value) return if not isinstance(value, Expr) and is_sequence(value): self.copyin_list(key, value) return raise ValueError('unexpected value: %s' % value) else: if (not is_mat and not isinstance(value, Basic) and is_sequence(value)): value = Matrix(value) is_mat = True if is_mat: if is_slice: key = (slice(*divmod(i, self.cols)), slice(*divmod(j, self.cols))) else: key = (slice(i, i + value.rows), slice(j, j + value.cols)) self.copyin_matrix(key, value) else: return i, j, self._sympify(value) return def add(self, b): """Return self + b """ return self + b def cholesky_solve(self, rhs): """Solves ``Ax = B`` using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ hermitian = True if self.is_symmetric(): hermitian = False L = self._cholesky(hermitian=hermitian) elif self.is_hermitian: L = self._cholesky(hermitian=hermitian) elif self.rows >= self.cols: L = (self.H * self)._cholesky(hermitian=hermitian) rhs = self.H * rhs else: raise NotImplementedError('Under-determined System. ' 'Try M.gauss_jordan_solve(rhs)') Y = L._lower_triangular_solve(rhs) if hermitian: return (L.H)._upper_triangular_solve(Y) else: return (L.T)._upper_triangular_solve(Y) def cholesky(self, hermitian=True): """Returns the Cholesky-type decomposition L of a matrix A such that L * L.H == A if hermitian flag is True, or L * L.T == A if hermitian is False. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix if it is False. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T Matrix([ [25, 15, -5], [15, 18, 0], [-5, 0, 11]]) The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> A.cholesky() Matrix([ [ 3, 0], [-I, 2]]) >>> A.cholesky() * A.cholesky().H Matrix([ [ 9, 3*I], [-3*I, 5]]) Non-hermitian Cholesky-type decomposition may be useful when the matrix is not positive-definite. >>> A = Matrix([[1, 2], [2, 1]]) >>> L = A.cholesky(hermitian=False) >>> L Matrix([ [1, 0], [2, sqrt(3)*I]]) >>> L*L.T == A True See Also ======== LDLdecomposition LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not self.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._cholesky(hermitian=hermitian) def condition_number(self): """Returns the condition number of a matrix. This is the maximum singular value divided by the minimum singular value Examples ======== >>> from sympy import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100 See Also ======== singular_values """ if not self: return S.Zero singularvalues = self.singular_values() return Max(*singularvalues) / Min(*singularvalues) def copy(self): """ Returns the copy of a matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]]) """ return self._new(self.rows, self.cols, self._mat) def cross(self, b): r""" Return the cross product of ``self`` and ``b`` relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as ``self`` will be returned. If ``b`` has the same shape as ``self`` then common identities for the cross product (like `a \times b = - b \times a`) will hold. Parameters ========== b : 3x1 or 1x3 Matrix See Also ======== dot multiply multiply_elementwise """ if not is_sequence(b): raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) if not (self.rows * self.cols == b.rows * b.cols == 3): raise ShapeError("Dimensions incorrect for cross product: %s x %s" % ((self.rows, self.cols), (b.rows, b.cols))) else: return self._new(self.rows, self.cols, ( (self[1] * b[2] - self[2] * b[1]), (self[2] * b[0] - self[0] * b[2]), (self[0] * b[1] - self[1] * b[0]))) @property def D(self): """Return Dirac conjugate (if ``self.rows == 4``). Examples ======== >>> from sympy import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]]) If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows. >>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D. See Also ======== conjugate: By-element conjugation H: Hermite conjugation """ from sympy.physics.matrices import mgamma if self.rows != 4: # In Python 3.2, properties can only return an AttributeError # so we can't raise a ShapeError -- see commit which added the # first line of this inline comment. Also, there is no need # for a message since MatrixBase will raise the AttributeError raise AttributeError return self.H * mgamma(0) def diagonal_solve(self, rhs): """Solves ``Ax = B`` efficiently, where A is a diagonal Matrix, with non-zero diagonal entries. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.diagonal_solve(B) == B/2 True See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_diagonal: raise TypeError("Matrix should be diagonal") if rhs.rows != self.rows: raise TypeError("Size mis-match") return self._diagonal_solve(rhs) def dot(self, b, hermitian=None, conjugate_convention=None): """Return the dot or inner product of two vectors of equal length. Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. A scalar is returned. By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) to compute the hermitian inner product. Possible kwargs are ``hermitian`` and ``conjugate_convention``. If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, the conjugate of the first vector (``self``) is used. If ``"right"`` or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = Matrix([1, 1, 1]) >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> v = [3, 2, 1] >>> M.row(0).dot(v) 10 >>> from sympy import I >>> q = Matrix([1*I, 1*I, 1*I]) >>> q.dot(q, hermitian=False) -3 >>> q.dot(q, hermitian=True) 3 >>> q1 = Matrix([1, 1, 1*I]) >>> q.dot(q1, hermitian=True, conjugate_convention="maths") 1 - 2*I >>> q.dot(q1, hermitian=True, conjugate_convention="physics") 1 + 2*I See Also ======== cross multiply multiply_elementwise """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if (1 not in mat.shape) or (1 not in b.shape) : SymPyDeprecationWarning( feature="Dot product of non row/column vectors", issue=13815, deprecated_since_version="1.2", useinstead="* to take matrix products").warn() return mat._legacy_array_dot(b) if len(mat) != len(b): raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) n = len(mat) if mat.shape != (1, n): mat = mat.reshape(1, n) if b.shape != (n, 1): b = b.reshape(n, 1) # Now ``mat`` is a row vector and ``b`` is a column vector. # If it so happens that only conjugate_convention is passed # then automatically set hermitian to True. If only hermitian # is true but no conjugate_convention is not passed then # automatically set it to ``"maths"`` if conjugate_convention is not None and hermitian is None: hermitian = True if hermitian and conjugate_convention is None: conjugate_convention = "maths" if hermitian == True: if conjugate_convention in ("maths", "left", "math"): mat = mat.conjugate() elif conjugate_convention in ("physics", "right"): b = b.conjugate() else: raise ValueError("Unknown conjugate_convention was entered." " conjugate_convention must be one of the" " following: math, maths, left, physics or right.") return (mat * b)[0] def dual(self): """Returns the dual of a matrix, which is: ``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' `M` is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor. """ from sympy import LeviCivita from sympy.matrices import zeros M, n = self[:, :], self.rows work = zeros(n) if self.is_symmetric(): return work for i in range(1, n): for j in range(1, n): acum = 0 for k in range(1, n): acum += LeviCivita(i, j, 0, k) * M[0, k] work[i, j] = acum work[j, i] = -acum for l in range(1, n): acum = 0 for a in range(1, n): for b in range(1, n): acum += LeviCivita(0, l, a, b) * M[a, b] acum /= 2 work[0, l] = -acum work[l, 0] = acum return work def exp(self): """Return the exponentiation of a square matrix.""" if not self.is_square: raise NonSquareMatrixError( "Exponentiation is valid only for square matrices") try: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") def _jblock_exponential(b): # This function computes the matrix exponential for one single Jordan block nr = b.rows l = b[0, 0] if nr == 1: res = exp(l) else: from sympy import eye # extract the diagonal part d = b[0, 0] * eye(nr) # and the nilpotent part n = b - d # compute its exponential nex = eye(nr) for i in range(1, nr): nex = nex + n ** i / factorial(i) # combine the two parts res = exp(b[0, 0]) * nex return (res) blocks = list(map(_jblock_exponential, cells)) from sympy.matrices import diag from sympy import re eJ = diag(*blocks) # n = self.rows ret = P * eJ * P.inv() if all(value.is_real for value in self.values()): return type(self)(re(ret)) else: return type(self)(ret) def gauss_jordan_solve(self, b, freevar=False): """ Solves ``Ax = b`` using Gauss Jordan elimination. There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, it will be returned parametrically. If no solutions exist, It will throw ValueError. Parameters ========== b : Matrix The right hand side of the equation to be solved for. Must have the same number of rows as matrix A. freevar : List If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary values of free variables. Then the index of the free variables in the solutions (column Matrix) will be returned by freevar, if the flag `freevar` is set to `True`. Returns ======= x : Matrix The matrix that will satisfy ``Ax = B``. Will have as many rows as matrix A has columns, and as many columns as matrix B. params : Matrix If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of arbitrary parameters. These arbitrary parameters are returned as params Matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]]) >>> b = Matrix([7, 12, 4]) >>> sol, params = A.gauss_jordan_solve(b) >>> sol Matrix([ [-2*tau0 - 3*tau1 + 2], [ tau0], [ 2*tau1 + 5], [ tau1]]) >>> params Matrix([ [tau0], [tau1]]) >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b = Matrix([3, 6, 9]) >>> sol, params = A.gauss_jordan_solve(b) >>> sol Matrix([ [-1], [ 2], [ 0]]) >>> params Matrix(0, 1, []) See Also ======== lower_triangular_solve upper_triangular_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv References ========== .. [1] https://en.wikipedia.org/wiki/Gaussian_elimination """ from sympy.matrices import Matrix, zeros aug = self.hstack(self.copy(), b.copy()) row, col = aug[:, :-1].shape # solve by reduced row echelon form A, pivots = aug.rref(simplify=True) A, v = A[:, :-1], A[:, -1] pivots = list(filter(lambda p: p < col, pivots)) rank = len(pivots) # Bring to block form permutation = Matrix(range(col)).T A = A.vstack(A, permutation) for i, c in enumerate(pivots): A.col_swap(i, c) A, permutation = A[:-1, :], A[-1, :] # check for existence of solutions # rank of aug Matrix should be equal to rank of coefficient matrix if not v[rank:, 0].is_zero: raise ValueError("Linear system has no solution") # Get index of free symbols (free parameters) free_var_index = permutation[ len(pivots):] # non-pivots columns are free variables # Free parameters # what are current unnumbered free symbol names? name = _uniquely_named_symbol('tau', aug, compare=lambda i: str(i).rstrip('1234567890')).name gen = numbered_symbols(name) tau = Matrix([next(gen) for k in range(col - rank)]).reshape(col - rank, 1) # Full parametric solution V = A[:rank, rank:] vt = v[:rank, 0] free_sol = tau.vstack(vt - V * tau, tau) # Undo permutation sol = zeros(col, 1) for k, v in enumerate(free_sol): sol[permutation[k], 0] = v if freevar: return sol, tau, free_var_index else: return sol, tau def inv_mod(self, m): r""" Returns the inverse of the matrix `K` (mod `m`), if it exists. Method to find the matrix inverse of `K` (mod `m`) implemented in this function: * Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`. * Compute `r = 1/\mathrm{det}(K) \pmod m`. * `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.inv_mod(5) Matrix([ [3, 1], [4, 2]]) >>> A.inv_mod(3) Matrix([ [1, 1], [0, 1]]) """ if not self.is_square: raise NonSquareMatrixError() N = self.cols det_K = self.det() det_inv = None try: det_inv = mod_inverse(det_K, m) except ValueError: raise ValueError('Matrix is not invertible (mod %d)' % m) K_adj = self.adjugate() K_inv = self.__class__(N, N, [det_inv * K_adj[i, j] % m for i in range(N) for j in range(N)]) return K_inv def inverse_ADJ(self, iszerofunc=_iszero): """Calculates the inverse using the adjugate matrix and a determinant. See Also ======== inv inverse_LU inverse_GE """ if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") d = self.det(method='berkowitz') zero = d.equals(0) if zero is None: # if equals() can't decide, will rref be able to? ok = self.rref(simplify=True)[0] zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows)) if zero: raise ValueError("Matrix det == 0; not invertible.") return self.adjugate() / d def inverse_GE(self, iszerofunc=_iszero): """Calculates the inverse using Gaussian elimination. See Also ======== inv inverse_LU inverse_ADJ """ from .dense import Matrix if not self.is_square: raise NonSquareMatrixError("A Matrix must be square to invert.") big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows)) red = big.rref(iszerofunc=iszerofunc, simplify=True)[0] if any(iszerofunc(red[j, j]) for j in range(red.rows)): raise ValueError("Matrix det == 0; not invertible.") return self._new(red[:, big.rows:]) def inverse_LU(self, iszerofunc=_iszero): """Calculates the inverse using LU decomposition. See Also ======== inv inverse_GE inverse_ADJ """ if not self.is_square: raise NonSquareMatrixError() ok = self.rref(simplify=True)[0] if any(iszerofunc(ok[j, j]) for j in range(ok.rows)): raise ValueError("Matrix det == 0; not invertible.") return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero) def inv(self, method=None, **kwargs): """ Return the inverse of a matrix. CASE 1: If the matrix is a dense matrix. Return the matrix inverse using the method indicated (default is Gauss elimination). Parameters ========== method : ('GE', 'LU', or 'ADJ') Notes ===== According to the ``method`` keyword, it calls the appropriate method: GE .... inverse_GE(); default LU .... inverse_LU() ADJ ... inverse_ADJ() See Also ======== inverse_LU inverse_GE inverse_ADJ Raises ------ ValueError If the determinant of the matrix is zero. CASE 2: If the matrix is a sparse matrix. Return the matrix inverse using Cholesky or LDL (default). kwargs ====== method : ('CH', 'LDL') Notes ===== According to the ``method`` keyword, it calls the appropriate method: LDL ... inverse_LDL(); default CH .... inverse_CH() Raises ------ ValueError If the determinant of the matrix is zero. """ if not self.is_square: raise NonSquareMatrixError() if method is not None: kwargs['method'] = method return self._eval_inverse(**kwargs) def is_nilpotent(self): """Checks if a matrix is nilpotent. A matrix B is nilpotent if for some integer k, B**k is a zero matrix. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False """ if not self: return True if not self.is_square: raise NonSquareMatrixError( "Nilpotency is valid only for square matrices") x = _uniquely_named_symbol('x', self) p = self.charpoly(x) if p.args[0] == x ** self.rows: return True return False def key2bounds(self, keys): """Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of ``self``'s range. See Also ======== key2ij """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py islice, jslice = [isinstance(k, slice) for k in keys] if islice: if not self.rows: rlo = rhi = 0 else: rlo, rhi = keys[0].indices(self.rows)[:2] else: rlo = a2idx_(keys[0], self.rows) rhi = rlo + 1 if jslice: if not self.cols: clo = chi = 0 else: clo, chi = keys[1].indices(self.cols)[:2] else: clo = a2idx_(keys[1], self.cols) chi = clo + 1 return rlo, rhi, clo, chi def key2ij(self, key): """Converts key into canonical form, converting integers or indexable items into valid integers for ``self``'s range or returning slices unchanged. See Also ======== key2bounds """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py if is_sequence(key): if not len(key) == 2: raise TypeError('key must be a sequence of length 2') return [a2idx_(i, n) if not isinstance(i, slice) else i for i, n in zip(key, self.shape)] elif isinstance(key, slice): return key.indices(len(self))[:2] else: return divmod(a2idx_(key, len(self)), self.cols) def LDLdecomposition(self, hermitian=True): """Returns the LDL Decomposition (L, D) of matrix A, such that L * D * L.H == A if hermitian flag is True, or L * D * L.T == A if hermitian is False. This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a Hermitian positive-definite matrix if hermitian is True, or a symmetric matrix otherwise. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T * A.inv() == eye(A.rows) True The matrix can have complex entries: >>> from sympy import I >>> A = Matrix(((9, 3*I), (-3*I, 5))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0], [-I/3, 1]]) >>> D Matrix([ [9, 0], [0, 4]]) >>> L*D*L.H == A True See Also ======== cholesky LUdecomposition QRdecomposition """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if hermitian and not self.is_hermitian: raise ValueError("Matrix must be Hermitian.") if not hermitian and not self.is_symmetric(): raise ValueError("Matrix must be symmetric.") return self._LDLdecomposition(hermitian=hermitian) def LDLsolve(self, rhs): """Solves ``Ax = B`` using LDL decomposition, for a general square and non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned. Examples ======== >>> from sympy.matrices import Matrix, eye >>> A = eye(2)*2 >>> B = Matrix([[1, 2], [3, 4]]) >>> A.LDLsolve(B) == B/2 True See Also ======== LDLdecomposition lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LUsolve QRsolve pinv_solve """ hermitian = True if self.is_symmetric(): hermitian = False L, D = self.LDLdecomposition(hermitian=hermitian) elif self.is_hermitian: L, D = self.LDLdecomposition(hermitian=hermitian) elif self.rows >= self.cols: L, D = (self.H * self).LDLdecomposition(hermitian=hermitian) rhs = self.H * rhs else: raise NotImplementedError('Under-determined System. ' 'Try M.gauss_jordan_solve(rhs)') Y = L._lower_triangular_solve(rhs) Z = D._diagonal_solve(Y) if hermitian: return (L.H)._upper_triangular_solve(Z) else: return (L.T)._upper_triangular_solve(Z) def lower_triangular_solve(self, rhs): """Solves ``Ax = B``, where A is a lower triangular matrix. See Also ======== upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise ShapeError("Matrices size mismatch.") if not self.is_lower: raise ValueError("Matrix must be lower triangular.") return self._lower_triangular_solve(rhs) def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Returns (L, U, perm) where L is a lower triangular matrix with unit diagonal, U is an upper triangular matrix, and perm is a list of row swap index pairs. If A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that P*A = L*U can be computed by P=eye(A.row).permuteFwd(perm). See documentation for LUCombined for details about the keyword argument rankcheck, iszerofunc, and simpfunc. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[4, 3], [6, 3]]) >>> L, U, _ = a.LUdecomposition() >>> L Matrix([ [ 1, 0], [3/2, 1]]) >>> U Matrix([ [4, 3], [0, -3/2]]) See Also ======== cholesky LDLdecomposition QRdecomposition LUdecomposition_Simple LUdecompositionFF LUsolve """ combined, p = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) # L is lower triangular ``self.rows x self.rows`` # U is upper triangular ``self.rows x self.cols`` # L has unit diagonal. For each column in combined, the subcolumn # below the diagonal of combined is shared by L. # If L has more columns than combined, then the remaining subcolumns # below the diagonal of L are zero. # The upper triangular portion of L and combined are equal. def entry_L(i, j): if i < j: # Super diagonal entry return S.Zero elif i == j: return S.One elif j < combined.cols: return combined[i, j] # Subdiagonal entry of L with no corresponding # entry in combined return S.Zero def entry_U(i, j): return S.Zero if i > j else combined[i, j] L = self._new(combined.rows, combined.rows, entry_L) U = self._new(combined.rows, combined.cols, entry_U) return L, U, p def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): """Compute an lu decomposition of m x n matrix A, where P*A = L*U * L is m x m lower triangular with unit diagonal * U is m x n upper triangular * P is an m x m permutation matrix Returns an m x n matrix lu, and an m element list perm where each element of perm is a pair of row exchange indices. The factors L and U are stored in lu as follows: The subdiagonal elements of L are stored in the subdiagonal elements of lu, that is lu[i, j] = L[i, j] whenever i > j. The elements on the diagonal of L are all 1, and are not explicitly stored. U is stored in the upper triangular portion of lu, that is lu[i ,j] = U[i, j] whenever i <= j. The output matrix can be visualized as: Matrix([ [u, u, u, u], [l, u, u, u], [l, l, u, u], [l, l, l, u]]) where l represents a subdiagonal entry of the L factor, and u represents an entry from the upper triangular entry of the U factor. perm is a list row swap index pairs such that if A is the original matrix, then A = (L*U).permuteBkwd(perm), and the row permutation matrix P such that ``P*A = L*U`` can be computed by ``P=eye(A.row).permuteFwd(perm)``. The keyword argument rankcheck determines if this function raises a ValueError when passed a matrix whose rank is strictly less than min(num rows, num cols). The default behavior is to decompose a rank deficient matrix. Pass rankcheck=True to raise a ValueError instead. (This mimics the previous behavior of this function). The keyword arguments iszerofunc and simpfunc are used by the pivot search algorithm. iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy. When a matrix contains symbolic entries, the pivot search algorithm differs from the case where every entry can be categorized as zero or nonzero. The algorithm searches column by column through the submatrix whose top left entry coincides with the pivot position. If it exists, the pivot is the first entry in the current search column that iszerofunc guarantees is nonzero. If no such candidate exists, then each candidate pivot is simplified if simpfunc is not None. The search is repeated, with the difference that a candidate may be the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero. In the second search the pivot is the first candidate that iszerofunc can guarantee is nonzero. If no such candidate exists, then the pivot is the first candidate for which iszerofunc returns None. If no such candidate exists, then the search is repeated in the next column to the right. The pivot search algorithm differs from the one in ``rref()``, which relies on ``_find_reasonable_pivot()``. Future versions of ``LUdecomposition_simple()`` may use ``_find_reasonable_pivot()``. See Also ======== LUdecomposition LUdecompositionFF LUsolve """ if rankcheck: # https://github.com/sympy/sympy/issues/9796 pass if self.rows == 0 or self.cols == 0: # Define LU decomposition of a matrix with no entries as a matrix # of the same dimensions with all zero entries. return self.zeros(self.rows, self.cols), [] lu = self.as_mutable() row_swaps = [] pivot_col = 0 for pivot_row in range(0, lu.rows - 1): # Search for pivot. Prefer entry that iszeropivot determines # is nonzero, over entry that iszeropivot cannot guarantee # is zero. # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279 # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc # to _find_reasonable_pivot(). # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):`` # calls sympy.simplify(), and not the simplification function passed in via # the keyword argument simpfunc. iszeropivot = True while pivot_col != self.cols and iszeropivot: sub_col = (lu[r, pivot_col] for r in range(pivot_row, self.rows)) pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc) iszeropivot = pivot_value is None if iszeropivot: # All candidate pivots in this column are zero. # Proceed to next column. pivot_col += 1 if rankcheck and pivot_col != pivot_row: # All entries including and below the pivot position are # zero, which indicates that the rank of the matrix is # strictly less than min(num rows, num cols) # Mimic behavior of previous implementation, by throwing a # ValueError. raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset if candidate_pivot_row is None and iszeropivot: # If candidate_pivot_row is None and iszeropivot is True # after pivot search has completed, then the submatrix # below and to the right of (pivot_row, pivot_col) is # all zeros, indicating that Gaussian elimination is # complete. return lu, row_swaps # Update entries simplified during pivot search. for offset, val in ind_simplified_pairs: lu[pivot_row + offset, pivot_col] = val if pivot_row != candidate_pivot_row: # Row swap book keeping: # Record which rows were swapped. # Update stored portion of L factor by multiplying L on the # left and right with the current permutation. # Swap rows of U. row_swaps.append([pivot_row, candidate_pivot_row]) # Update L. lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row] # Swap pivot row of U with candidate pivot row. lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols] # Introduce zeros below the pivot by adding a multiple of the # pivot row to a row under it, and store the result in the # row under it. # Only entries in the target row whose index is greater than # start_col may be nonzero. start_col = pivot_col + 1 for row in range(pivot_row + 1, lu.rows): # Store factors of L in the subcolumn below # (pivot_row, pivot_row). lu[row, pivot_row] =\ lu[row, pivot_col]/lu[pivot_row, pivot_col] # Form the linear combination of the pivot row and the current # row below the pivot row that zeros the entries below the pivot. # Employing slicing instead of a loop here raises # NotImplementedError: Cannot add Zero to MutableSparseMatrix # in sympy/matrices/tests/test_sparse.py. # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col for c in range(start_col, lu.cols): lu[row, c] = lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c] if pivot_row != pivot_col: # matrix rank < min(num rows, num cols), # so factors of L are not stored directly below the pivot. # These entries are zero by construction, so don't bother # computing them. for row in range(pivot_row + 1, lu.rows): lu[row, pivot_col] = S.Zero pivot_col += 1 if pivot_col == lu.cols: # All candidate pivots are zero implies that Gaussian # elimination is complete. return lu, row_swaps if rankcheck: if iszerofunc( lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]): raise ValueError("Rank of matrix is strictly less than" " number of rows or columns." " Pass keyword argument" " rankcheck=False to compute" " the LU decomposition of this matrix.") return lu, row_swaps def LUdecompositionFF(self): """Compute a fraction-free LU decomposition. Returns 4 matrices P, L, D, U such that PA = L D**-1 U. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I. **Reference** - W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008. See Also ======== LUdecomposition LUdecomposition_Simple LUsolve """ from sympy.matrices import SparseMatrix zeros = SparseMatrix.zeros eye = SparseMatrix.eye n, m = self.rows, self.cols U, L, P = self.as_mutable(), eye(n), eye(n) DD = zeros(n, n) oldpivot = 1 for k in range(n - 1): if U[k, k] == 0: for kpivot in range(k + 1, n): if U[kpivot, k]: break else: raise ValueError("Matrix is not full rank") U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:] L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k] P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :] L[k, k] = Ukk = U[k, k] DD[k, k] = oldpivot * Ukk for i in range(k + 1, n): L[i, k] = Uik = U[i, k] for j in range(k + 1, m): U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot U[i, k] = 0 oldpivot = Ukk DD[n - 1, n - 1] = oldpivot return P, L, DD, U def LUsolve(self, rhs, iszerofunc=_iszero): """Solve the linear system ``Ax = rhs`` for ``x`` where ``A = self``. This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve QRsolve pinv_solve LUdecomposition """ if rhs.rows != self.rows: raise ShapeError( "``self`` and ``rhs`` must have the same number of rows.") m = self.rows n = self.cols if m < n: raise NotImplementedError("Underdetermined systems not supported.") A, perm = self.LUdecomposition_Simple(iszerofunc=_iszero) b = rhs.permute_rows(perm).as_mutable() # forward substitution, all diag entries are scaled to 1 for i in range(m): for j in range(min(i, n)): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y * scale) # consistency check for overdetermined systems if m > n: for i in range(n, m): for j in range(b.cols): if not iszerofunc(b[i, j]): raise ValueError("The system is inconsistent.") b = b[0:n, :] # truncate zero rows if consistent # backward substitution for i in range(n - 1, -1, -1): for j in range(i + 1, n): scale = A[i, j] b.zip_row_op(i, j, lambda x, y: x - y * scale) scale = A[i, i] b.row_op(i, lambda x, _: x / scale) return rhs.__class__(b) def multiply(self, b): """Returns ``self*b`` See Also ======== dot cross multiply_elementwise """ return self * b def normalized(self, iszerofunc=_iszero): """Return the normalized version of ``self``. Parameters ========== iszerofunc : Function, optional A function to determine whether ``self`` is a zero vector. The default ``_iszero`` tests to see if each element is exactly zero. Returns ======= Matrix Normalized vector form of ``self``. It has the same length as a unit vector. However, a zero vector will be returned for a vector with norm 0. Raises ====== ShapeError If the matrix is not in a vector form. See Also ======== norm """ if self.rows != 1 and self.cols != 1: raise ShapeError("A Matrix must be a vector to normalize.") norm = self.norm() if iszerofunc(norm): out = self.zeros(self.rows, self.cols) else: out = self.applyfunc(lambda i: i / norm) return out def norm(self, ord=None): """Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm - does not exist inf maximum row sum max(abs(x)) -inf -- min(abs(x)) 1 maximum column sum as below -1 -- as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other - does not exist sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== Examples ======== >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(1) # maximum sum of absolute values of A is 2 2 >>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> A.norm(oo) # Infinity Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1 See Also ======== normalized """ # Row or Column Vector Norms vals = list(self.values()) or [0] if self.rows == 1 or self.cols == 1: if ord == 2 or ord is None: # Common case sqrt(<x, x>) return sqrt(Add(*(abs(i) ** 2 for i in vals))) elif ord == 1: # sum(abs(x)) return Add(*(abs(i) for i in vals)) elif ord == S.Infinity: # max(abs(x)) return Max(*[abs(i) for i in vals]) elif ord == S.NegativeInfinity: # min(abs(x)) return Min(*[abs(i) for i in vals]) # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) # Note that while useful this is not mathematically a norm try: return Pow(Add(*(abs(i) ** ord for i in vals)), S(1) / ord) except (NotImplementedError, TypeError): raise ValueError("Expected order to be Number, Symbol, oo") # Matrix Norms else: if ord == 1: # Maximum column sum m = self.applyfunc(abs) return Max(*[sum(m.col(i)) for i in range(m.cols)]) elif ord == 2: # Spectral Norm # Maximum singular value return Max(*self.singular_values()) elif ord == -2: # Minimum singular value return Min(*self.singular_values()) elif ord == S.Infinity: # Infinity Norm - Maximum row sum m = self.applyfunc(abs) return Max(*[sum(m.row(i)) for i in range(m.rows)]) elif (ord is None or isinstance(ord, string_types) and ord.lower() in ['f', 'fro', 'frobenius', 'vector']): # Reshape as vector and send back to norm function return self.vec().norm(ord=2) else: raise NotImplementedError("Matrix Norms under development") def pinv_solve(self, B, arbitrary_matrix=None): """Solve ``Ax = B`` using the Moore-Penrose pseudoinverse. There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will be returned based on the value of arbitrary_matrix. If no solutions exist, the least-squares solution is returned. Parameters ========== B : Matrix The right hand side of the equation to be solved for. Must have the same number of rows as matrix A. arbitrary_matrix : Matrix If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary matrix. This parameter may be set to a specific matrix to use for that purpose; if so, it must be the same shape as x, with as many rows as matrix A has columns, and as many columns as matrix B. If left as None, an appropriate matrix containing dummy symbols in the form of ``wn_m`` will be used, with n and m being row and column position of each symbol. Returns ======= x : Matrix The matrix that will satisfy ``Ax = B``. Will have as many rows as matrix A has columns, and as many columns as matrix B. Examples ======== >>> from sympy import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> B = Matrix([7, 8]) >>> A.pinv_solve(B) Matrix([ [ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18], [-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9], [ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]]) >>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0])) Matrix([ [-55/18], [ 1/9], [ 59/18]]) See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv Notes ===== This may return either exact solutions or least squares solutions. To determine which, check ``A * A.pinv() * B == B``. It will be True if exact solutions exist, and False if only a least-squares solution exists. Be aware that the left hand side of that equation may need to be simplified to correctly compare to the right hand side. References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system """ from sympy.matrices import eye A = self A_pinv = self.pinv() if arbitrary_matrix is None: rows, cols = A.cols, B.cols w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy) arbitrary_matrix = self.__class__(cols, rows, w).T return A_pinv * B + (eye(A.cols) - A_pinv * A) * arbitrary_matrix def pinv(self): """Calculate the Moore-Penrose pseudoinverse of the matrix. The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the inverse. Examples ======== >>> from sympy import Matrix >>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv() Matrix([ [-17/18, 4/9], [ -1/9, 1/9], [ 13/18, -2/9]]) See Also ======== inv pinv_solve References ========== .. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse """ A = self AH = self.H # Trivial case: pseudoinverse of all-zero matrix is its transpose. if A.is_zero: return AH try: if self.rows >= self.cols: return (AH * A).inv() * AH else: return AH * (A * AH).inv() except ValueError: # Matrix is not full rank, so A*AH cannot be inverted. pass try: # However, A*AH is Hermitian, so we can diagonalize it. if self.rows >= self.cols: P, D = (AH * A).diagonalize(normalize=True) D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x) return P * D_pinv * P.H * AH else: P, D = (A * AH).diagonalize(normalize=True) D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x) return AH * P * D_pinv * P.H except MatrixError: raise NotImplementedError('pinv for rank-deficient matrices where diagonalization ' 'of A.H*A fails is not supported yet.') def print_nonzero(self, symb="X"): """Shows location of non-zero entries for fast shape lookup. Examples ======== >>> from sympy.matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x] """ s = [] for i in range(self.rows): line = [] for j in range(self.cols): if self[i, j] == 0: line.append(" ") else: line.append(str(symb)) s.append("[%s]" % ''.join(line)) print('\n'.join(s)) def project(self, v): """Return the projection of ``self`` onto the line containing ``v``. Examples ======== >>> from sympy import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]]) """ return v * (self.dot(v) / v.dot(v)) def QRdecomposition(self): """Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular. Examples ======== This is the example from wikipedia: >>> from sympy import Matrix >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [ 6/7, -69/175, -58/175], [ 3/7, 158/175, 6/175], [-2/7, 6/35, -33/35]]) >>> R Matrix([ [14, 21, -14], [ 0, 175, -70], [ 0, 0, 35]]) >>> A == Q*R True QR factorization of an identity matrix: >>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Q, R = A.QRdecomposition() >>> Q Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> R Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== cholesky LDLdecomposition LUdecomposition QRsolve """ cls = self.__class__ mat = self.as_mutable() n = mat.rows m = mat.cols ranked = list() # Pad with additional rows to make wide matrices square # nOrig keeps track of original size so zeros can be trimmed from Q if n < m: nOrig = n n = m mat = mat.col_join(mat.zeros(n - nOrig, m)) else: nOrig = n Q, R = mat.zeros(n, m), mat.zeros(m) for j in range(m): # for each column vector tmp = mat[:, j] # take original v for i in range(j): # subtract the project of mat on new vector R[i, j] = Q[:, i].dot(mat[:, j]) tmp -= Q[:, i] * R[i, j] tmp.expand() # normalize it R[j, j] = tmp.norm() if not R[j, j].is_zero: ranked.append(j) Q[:, j] = tmp / R[j, j] if len(ranked) != 0: return ( cls(Q.extract(range(nOrig), ranked)), cls(R.extract(ranked, range(R.cols))) ) else: # Trivial case handling for zero-rank matrix # Force Q as matrix containing standard basis vectors for i in range(Min(nOrig, m)): Q[i, i] = 1 return ( cls(Q.extract(range(nOrig), range(Min(nOrig, m)))), cls(R.extract(range(Min(nOrig, m)), range(R.cols))) ) def QRsolve(self, b): """Solve the linear system ``Ax = b``. ``self`` is the matrix ``A``, the method argument is the vector ``b``. The method returns the solution vector ``x``. If ``b`` is a matrix, the system is solved for each column of ``b`` and the return value is a matrix of the same shape as ``b``. This method is slower (approximately by a factor of 2) but more stable for floating-point arithmetic than the LUsolve method. However, LUsolve usually uses an exact arithmetic, so you don't need to use QRsolve. This is mainly for educational purposes and symbolic matrices, for real (or complex) matrices use mpmath.qr_solve. See Also ======== lower_triangular_solve upper_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve pinv_solve QRdecomposition """ Q, R = self.as_mutable().QRdecomposition() y = Q.T * b # back substitution to solve R*x = y: # We build up the result "backwards" in the vector 'x' and reverse it # only in the end. x = [] n = R.rows for j in range(n - 1, -1, -1): tmp = y[j, :] for k in range(j + 1, n): tmp -= R[j, k] * x[n - 1 - k] x.append(tmp / R[j, j]) return self._new([row._mat for row in reversed(x)]) def solve_least_squares(self, rhs, method='CH'): """Return the least-square fit to the data. Parameters ========== rhs : Matrix Vector representing the right hand side of the linear equation. method : string or boolean, optional If set to ``'CH'``, ``cholesky_solve`` routine will be used. If set to ``'LDL'``, ``LDLsolve`` routine will be used. If set to ``'QR'``, ``QRsolve`` routine will be used. If set to ``'PINV'``, ``pinv_solve`` routine will be used. Otherwise, the conjugate of ``self`` will be used to create a system of equations that is passed to ``solve`` along with the hint defined by ``method``. Returns ======= solutions : Matrix Vector representing the solution. Examples ======== >>> from sympy.matrices import Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = Matrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ if method == 'CH': return self.cholesky_solve(rhs) elif method == 'QR': return self.QRsolve(rhs) elif method == 'LDL': return self.LDLsolve(rhs) elif method == 'PINV': return self.pinv_solve(rhs) else: t = self.H return (t * self).solve(t * rhs, method=method) def solve(self, rhs, method='GJ'): """Solves linear equation where the unique solution exists. Parameters ========== rhs : Matrix Vector representing the right hand side of the linear equation. method : string, optional If set to ``'GJ'``, the Gauss-Jordan elimination will be used, which is implemented in the routine ``gauss_jordan_solve``. If set to ``'LU'``, ``LUsolve`` routine will be used. If set to ``'QR'``, ``QRsolve`` routine will be used. If set to ``'PINV'``, ``pinv_solve`` routine will be used. It also supports the methods available for special linear systems For positive definite systems: If set to ``'CH'``, ``cholesky_solve`` routine will be used. If set to ``'LDL'``, ``LDLsolve`` routine will be used. To use a different method and to compute the solution via the inverse, use a method defined in the .inv() docstring. Returns ======= solutions : Matrix Vector representing the solution. Raises ====== ValueError If there is not a unique solution then a ``ValueError`` will be raised. If ``self`` is not square, a ``ValueError`` and a different routine for solving the system will be suggested. """ if method == 'GJ': try: soln, param = self.gauss_jordan_solve(rhs) if param: raise ValueError("Matrix det == 0; not invertible. " "Try ``self.gauss_jordan_solve(rhs)`` to obtain a parametric solution.") except ValueError: # raise same error as in inv: self.zeros(1).inv() return soln elif method == 'LU': return self.LUsolve(rhs) elif method == 'CH': return self.cholesky_solve(rhs) elif method == 'QR': return self.QRsolve(rhs) elif method == 'LDL': return self.LDLsolve(rhs) elif method == 'PINV': return self.pinv_solve(rhs) else: return self.inv(method=method)*rhs def table(self, printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right'): r""" String form of Matrix as a table. ``printer`` is the printer to use for on the elements (generally something like StrPrinter()) ``rowstart`` is the string used to start each row (by default '['). ``rowend`` is the string used to end each row (by default ']'). ``rowsep`` is the string used to separate rows (by default a newline). ``colsep`` is the string used to separate columns (by default ', '). ``align`` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively. This is used by the string printer for Matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4} """ # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return '[]' # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): s = printer._print(self[i, j]) res[-1].append(s) maxlen[j] = max(len(s), maxlen[j]) # Patch strings together align = { 'left': 'ljust', 'right': 'rjust', 'center': 'center', '<': 'ljust', '>': 'rjust', '^': 'center', }[align] for i, row in enumerate(res): for j, elem in enumerate(row): row[j] = getattr(elem, align)(maxlen[j]) res[i] = rowstart + colsep.join(row) + rowend return rowsep.join(res) def upper_triangular_solve(self, rhs): """Solves ``Ax = B``, where A is an upper triangular matrix. See Also ======== lower_triangular_solve gauss_jordan_solve cholesky_solve diagonal_solve LDLsolve LUsolve QRsolve pinv_solve """ if not self.is_square: raise NonSquareMatrixError("Matrix must be square.") if rhs.rows != self.rows: raise TypeError("Matrix size mismatch.") if not self.is_upper: raise TypeError("Matrix is not upper triangular.") return self._upper_triangular_solve(rhs) def vech(self, diagonal=True, check_symmetry=True): """Return the unique elements of a symmetric Matrix as a one column matrix by stacking the elements in the lower triangle. Arguments: diagonal -- include the diagonal cells of ``self`` or not check_symmetry -- checks symmetry of ``self`` but not completely reliably Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 2], [2, 3]]) >>> m Matrix([ [1, 2], [2, 3]]) >>> m.vech() Matrix([ [1], [2], [3]]) >>> m.vech(diagonal=False) Matrix([[2]]) See Also ======== vec """ from sympy.matrices import zeros c = self.cols if c != self.rows: raise ShapeError("Matrix must be square") if check_symmetry: self.simplify() if self != self.transpose(): raise ValueError( "Matrix appears to be asymmetric; consider check_symmetry=False") count = 0 if diagonal: v = zeros(c * (c + 1) // 2, 1) for j in range(c): for i in range(j, c): v[count] = self[i, j] count += 1 else: v = zeros(c * (c - 1) // 2, 1) for j in range(c): for i in range(j + 1, c): v[count] = self[i, j] count += 1 return v @deprecated( issue=15109, useinstead="from sympy.matrices.common import classof", deprecated_since_version="1.3") def classof(A, B): from sympy.matrices.common import classof as classof_ return classof_(A, B) @deprecated( issue=15109, deprecated_since_version="1.3", useinstead="from sympy.matrices.common import a2idx") def a2idx(j, n=None): from sympy.matrices.common import a2idx as a2idx_ return a2idx_(j, n) def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify): """ Find the lowest index of an item in ``col`` that is suitable for a pivot. If ``col`` consists only of Floats, the pivot with the largest norm is returned. Otherwise, the first element where ``iszerofunc`` returns False is used. If ``iszerofunc`` doesn't return false, items are simplified and retested until a suitable pivot is found. Returns a 4-tuple (pivot_offset, pivot_val, assumed_nonzero, newly_determined) where pivot_offset is the index of the pivot, pivot_val is the (possibly simplified) value of the pivot, assumed_nonzero is True if an assumption that the pivot was non-zero was made without being proved, and newly_determined are elements that were simplified during the process of pivot finding.""" newly_determined = [] col = list(col) # a column that contains a mix of floats and integers # but at least one float is considered a numerical # column, and so we do partial pivoting if all(isinstance(x, (Float, Integer)) for x in col) and any( isinstance(x, Float) for x in col): col_abs = [abs(x) for x in col] max_value = max(col_abs) if iszerofunc(max_value): # just because iszerofunc returned True, doesn't # mean the value is numerically zero. Make sure # to replace all entries with numerical zeros if max_value != 0: newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0] return (None, None, False, newly_determined) index = col_abs.index(max_value) return (index, col[index], False, newly_determined) # PASS 1 (iszerofunc directly) possible_zeros = [] for i, x in enumerate(col): is_zero = iszerofunc(x) # is someone wrote a custom iszerofunc, it may return # BooleanFalse or BooleanTrue instead of True or False, # so use == for comparison instead of `is` if is_zero == False: # we found something that is definitely not zero return (i, x, False, newly_determined) possible_zeros.append(is_zero) # by this point, we've found no certain non-zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 2 (iszerofunc after simplify) # we haven't found any for-sure non-zeros, so # go through the elements iszerofunc couldn't # make a determination about and opportunistically # simplify to see if we find something for i, x in enumerate(col): if possible_zeros[i] is not None: continue simped = simpfunc(x) is_zero = iszerofunc(simped) if is_zero == True or is_zero == False: newly_determined.append((i, simped)) if is_zero == False: return (i, simped, False, newly_determined) possible_zeros[i] = is_zero # after simplifying, some things that were recognized # as zeros might be zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 3 (.equals(0)) # some expressions fail to simplify to zero, but # ``.equals(0)`` evaluates to True. As a last-ditch # attempt, apply ``.equals`` to these expressions for i, x in enumerate(col): if possible_zeros[i] is not None: continue if x.equals(S.Zero): # ``.iszero`` may return False with # an implicit assumption (e.g., ``x.equals(0)`` # when ``x`` is a symbol), so only treat it # as proved when ``.equals(0)`` returns True possible_zeros[i] = True newly_determined.append((i, S.Zero)) if all(possible_zeros): return (None, None, False, newly_determined) # at this point there is nothing that could definitely # be a pivot. To maintain compatibility with existing # behavior, we'll assume that an illdetermined thing is # non-zero. We should probably raise a warning in this case i = possible_zeros.index(None) return (i, col[i], True, newly_determined) def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None): """ Helper that computes the pivot value and location from a sequence of contiguous matrix column elements. As a side effect of the pivot search, this function may simplify some of the elements of the input column. A list of these simplified entries and their indices are also returned. This function mimics the behavior of _find_reasonable_pivot(), but does less work trying to determine if an indeterminate candidate pivot simplifies to zero. This more naive approach can be much faster, with the trade-off that it may erroneously return a pivot that is zero. ``col`` is a sequence of contiguous column entries to be searched for a suitable pivot. ``iszerofunc`` is a callable that returns a Boolean that indicates if its input is zero, or None if no such determination can be made. ``simpfunc`` is a callable that simplifies its input. It must return its input if it does not simplify its input. Passing in ``simpfunc=None`` indicates that the pivot search should not attempt to simplify any candidate pivots. Returns a 4-tuple: (pivot_offset, pivot_val, assumed_nonzero, newly_determined) ``pivot_offset`` is the sequence index of the pivot. ``pivot_val`` is the value of the pivot. pivot_val and col[pivot_index] are equivalent, but will be different when col[pivot_index] was simplified during the pivot search. ``assumed_nonzero`` is a boolean indicating if the pivot cannot be guaranteed to be zero. If assumed_nonzero is true, then the pivot may or may not be non-zero. If assumed_nonzero is false, then the pivot is non-zero. ``newly_determined`` is a list of index-value pairs of pivot candidates that were simplified during the pivot search. """ # indeterminates holds the index-value pairs of each pivot candidate # that is neither zero or non-zero, as determined by iszerofunc(). # If iszerofunc() indicates that a candidate pivot is guaranteed # non-zero, or that every candidate pivot is zero then the contents # of indeterminates are unused. # Otherwise, the only viable candidate pivots are symbolic. # In this case, indeterminates will have at least one entry, # and all but the first entry are ignored when simpfunc is None. indeterminates = [] for i, col_val in enumerate(col): col_val_is_zero = iszerofunc(col_val) if col_val_is_zero == False: # This pivot candidate is non-zero. return i, col_val, False, [] elif col_val_is_zero is None: # The candidate pivot's comparison with zero # is indeterminate. indeterminates.append((i, col_val)) if len(indeterminates) == 0: # All candidate pivots are guaranteed to be zero, i.e. there is # no pivot. return None, None, False, [] if simpfunc is None: # Caller did not pass in a simplification function that might # determine if an indeterminate pivot candidate is guaranteed # to be nonzero, so assume the first indeterminate candidate # is non-zero. return indeterminates[0][0], indeterminates[0][1], True, [] # newly_determined holds index-value pairs of candidate pivots # that were simplified during the search for a non-zero pivot. newly_determined = [] for i, col_val in indeterminates: tmp_col_val = simpfunc(col_val) if id(col_val) != id(tmp_col_val): # simpfunc() simplified this candidate pivot. newly_determined.append((i, tmp_col_val)) if iszerofunc(tmp_col_val) == False: # Candidate pivot simplified to a guaranteed non-zero value. return i, tmp_col_val, False, newly_determined return indeterminates[0][0], indeterminates[0][1], True, newly_determined
ad3fb2f5e7033144f8961a21a7e1c7623b23e6fc3d147a22ceb95a0347fddc43
from sympy import (FiniteSet, S, Symbol, sqrt, symbols, simplify, Eq, cos, And, Tuple, Or, Dict, sympify, binomial, cancel, exp, I) from sympy.core.compatibility import range from sympy.matrices import Matrix from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial, Hypergeometric, Rademacher, P, E, variance, covariance, skewness, sample, density, where, FiniteRV, pspace, cdf, correlation, moment, cmoment, smoment, characteristic_function, moment_generating_function) from sympy.stats.frv_types import DieDistribution from sympy.utilities.pytest import raises oo = S.Infinity def BayesTest(A, B): assert P(A, B) == P(And(A, B)) / P(B) assert P(A, B) == P(B, A) * P(A) / P(B) def test_discreteuniform(): # Symbolic a, b, c, t = symbols('a b c t') X = DiscreteUniform('X', [a, b, c]) assert E(X) == (a + b + c)/3 assert simplify(variance(X) - ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0 assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3') Y = DiscreteUniform('Y', range(-5, 5)) # Numeric assert E(Y) == S('-1/2') assert variance(Y) == S('33/4') for x in range(-5, 5): assert P(Eq(Y, x)) == S('1/10') assert P(Y <= x) == S(x + 6)/10 assert P(Y >= x) == S(5 - x)/10 assert dict(density(Die('D', 6)).items()) == \ dict(density(DiscreteUniform('U', range(1, 7))).items()) assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3 assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3 def test_dice(): # TODO: Make iid method! X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) a, b, t = symbols('a b t') assert E(X) == 3 + S.Half assert variance(X) == S(35)/12 assert E(X + Y) == 7 assert E(X + X) == 7 assert E(a*X + b) == a*E(X) + b assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2) assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2) assert cmoment(X, 0) == 1 assert cmoment(4*X, 3) == 64*cmoment(X, 3) assert covariance(X, Y) == S.Zero assert covariance(X, X + Y) == variance(X) assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half assert correlation(X, Y) == 0 assert correlation(X, Y) == correlation(Y, X) assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X, 0) == 1 assert P(X > 3) == S.Half assert P(2*X > 6) == S.Half assert P(X > Y) == S(5)/12 assert P(Eq(X, Y)) == P(Eq(X, 1)) assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3) assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3) assert E(X + Y, Eq(X, Y)) == E(2*X) assert moment(X, 0) == 1 assert moment(5*X, 2) == 25*moment(X, 2) assert P(X > 3, X > 3) == S.One assert P(X > Y, Eq(Y, 6)) == S.Zero assert P(Eq(X + Y, 12)) == S.One/36 assert P(Eq(X + Y, 12), Eq(X, 6)) == S.One/6 assert density(X + Y) == density(Y + Z) != density(X + X) d = density(2*X + Y**Z) assert d[S(22)] == S.One/108 and d[S(4100)] == S.One/216 and S(3130) not in d assert pspace(X).domain.as_boolean() == Or( *[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]]) assert where(X > 3).set == FiniteSet(4, 5, 6) assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6 assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6 def test_given(): X = Die('X', 6) assert density(X, X > 5) == {S(6): S(1)} assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6) assert sample(X, X > 5) == 6 def test_domains(): X, Y = Die('x', 6), Die('y', 6) x, y = X.symbol, Y.symbol # Domains d = where(X > Y) assert d.condition == (x > y) d = where(And(X > Y, Y > 3)) assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6), Eq(y, 5)), And(Eq(x, 6), Eq(y, 4))) assert len(d.elements) == 3 assert len(pspace(X + Y).domain.elements) == 36 Z = Die('x', 4) raises(ValueError, lambda: P(X > Z)) # Two domains with same internal symbol assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2 assert where(X > 3).set == FiniteSet(4, 5, 6) assert X.pspace.domain.dict == FiniteSet( *[Dict({X.symbol: i}) for i in range(1, 7)]) assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j}) for i in range(1, 7) for j in range(1, 7) if i > j]) def test_dice_bayes(): X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6) BayesTest(X > 3, X + Y < 5) BayesTest(Eq(X - Y, Z), Z > Y) BayesTest(X > 3, X > 2) def test_die_args(): raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides. raises(ValueError, lambda: Die('X', 0)) raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides. k = Symbol('k') sym_die = Die('X', k) raises(ValueError, lambda: density(sym_die).dict) def test_bernoulli(): p, a, b, t = symbols('p a b t') X = Bernoulli('B', p, a, b) assert E(X) == a*p + b*(-p + 1) assert density(X)[a] == p assert density(X)[b] == 1 - p assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t) assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t) X = Bernoulli('B', p, 1, 0) assert E(X) == p assert simplify(variance(X)) == p*(1 - p) assert E(a*X + b) == a*E(X) + b assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X)) raises(ValueError, lambda: Bernoulli('B', 1.5)) raises(ValueError, lambda: Bernoulli('B', -0.5)) def test_cdf(): D = Die('D', 6) o = S.One assert cdf( D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o}) def test_coins(): C, D = Coin('C'), Coin('D') H, T = symbols('H, T') assert P(Eq(C, D)) == S.Half assert density(Tuple(C, D)) == {(H, H): S.One/4, (H, T): S.One/4, (T, H): S.One/4, (T, T): S.One/4} assert dict(density(C).items()) == {H: S.Half, T: S.Half} F = Coin('F', S.One/10) assert P(Eq(F, H)) == S(1)/10 d = pspace(C).domain assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T)) raises(ValueError, lambda: P(C > D)) # Can't intelligently compare H to T def test_binomial_verify_parameters(): raises(ValueError, lambda: Binomial('b', .2, .5)) raises(ValueError, lambda: Binomial('b', 3, 1.5)) def test_binomial_numeric(): nvals = range(5) pvals = [0, S(1)/4, S.Half, S(3)/4, 1] for n in nvals: for p in pvals: X = Binomial('X', n, p) assert E(X) == n*p assert variance(X) == n*p*(1 - p) if n > 0 and 0 < p < 1: assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p)) for k in range(n + 1): assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k) def test_binomial_symbolic(): n = 2 # Because we're using for loops, can't do symbolic n p = symbols('p', positive=True) X = Binomial('X', n, p) t = Symbol('t') assert simplify(E(X)) == n*p == simplify(moment(X, 1)) assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2)) assert cancel((skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p)))) == 0 assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2 assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2 # Test ability to change success/failure winnings H, T = symbols('H T') Y = Binomial('Y', n, p, succ=H, fail=T) assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0 def test_hypergeometric_numeric(): for N in range(1, 5): for m in range(0, N + 1): for n in range(1, N + 1): X = Hypergeometric('X', N, m, n) N, m, n = map(sympify, (N, m, n)) assert sum(density(X).values()) == 1 assert E(X) == n * m / N if N > 1: assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1) # Only test for skewness when defined if N > 2 and 0 < m < N and n < N: assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n) / (sqrt(n*m*(N - m)*(N - n))*(N - 2))) def test_rademacher(): X = Rademacher('X') t = Symbol('t') assert E(X) == 0 assert variance(X) == 1 assert density(X)[-1] == S.Half assert density(X)[1] == S.Half assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2 assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2 def test_FiniteRV(): F = FiniteRV('F', {1: S.Half, 2: S.One/4, 3: S.One/4}) assert dict(density(F).items()) == {S(1): S.Half, S(2): S.One/4, S(3): S.One/4} assert P(F >= 2) == S.Half assert pspace(F).domain.as_boolean() == Or( *[Eq(F.symbol, i) for i in [1, 2, 3]]) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half})) raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S(-1)/2, 3: S.One})) raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: S(3)/2, 3: S.Zero, 4: S(-1)/2, 5: S(-3)/4, 6: S(-1)/4})) def test_density_call(): from sympy.abc import p x = Bernoulli('x', p) d = density(x) assert d(0) == 1 - p assert d(S.Zero) == 1 - p assert d(5) == 0 assert 0 in d assert 5 not in d assert d(S(0)) == d[S(0)] def test_DieDistribution(): from sympy.abc import x X = DieDistribution(6) assert X.pdf(S(1)/2) == S.Zero assert X.pdf(x).subs({x: 1}).doit() == S(1)/6 assert X.pdf(x).subs({x: 7}).doit() == 0 assert X.pdf(x).subs({x: -1}).doit() == 0 assert X.pdf(x).subs({x: S(1)/3}).doit() == 0 raises(TypeError, lambda: X.pdf(x).subs({x: Matrix([0, 0])})) raises(ValueError, lambda: X.pdf(x**2 - 1)) def test_FinitePSpace(): X = Die('X', 6) space = pspace(X) assert space.density == DieDistribution(6)
85d169fc368691befd0962ea0e2b1c46f8e2f330eca7181e225b90730030d602
from sympy import symbols, exp, Function from sympy.stats.error_prop import variance_prop from sympy.stats.symbolic_probability import (RandomSymbol, Variance, Covariance) def test_variance_prop(): x, y, z = symbols('x y z') phi, t = consts = symbols('phi t') a = RandomSymbol(x) var_x = Variance(a) var_y = Variance(RandomSymbol(y)) var_z = Variance(RandomSymbol(z)) f = Function('f')(x) cases = { x + y: var_x + var_y, a + y: var_x + var_y, x + y + z: var_x + var_y + var_z, 2*x: 4*var_x, x*y: var_x*y**2 + var_y*x**2, 1/x: var_x/x**4, x/y: (var_x*y**2 + var_y*x**2)/y**4, exp(x): var_x*exp(2*x), exp(2*x): 4*var_x*exp(4*x), exp(-x*t): t**2*var_x*exp(-2*t*x), f: Variance(f), } for inp, out in cases.items(): obs = variance_prop(inp, consts=consts) assert out == obs def test_variance_prop_with_covar(): x, y, z = symbols('x y z') phi, t = consts = symbols('phi t') a = RandomSymbol(x) var_x = Variance(a) b = RandomSymbol(y) var_y = Variance(b) c = RandomSymbol(z) var_z = Variance(c) covar_x_y = Covariance(a, b) covar_x_z = Covariance(a, c) covar_y_z = Covariance(b, c) cases = { x + y: var_x + var_y + 2*covar_x_y, a + y: var_x + var_y + 2*covar_x_y, x + y + z: var_x + var_y + var_z + \ 2*covar_x_y + 2*covar_x_z + 2*covar_y_z, 2*x: 4*var_x, x*y: var_x*y**2 + var_y*x**2 + 2*covar_x_y/(x*y), 1/x: var_x/x**4, exp(x): var_x*exp(2*x), exp(2*x): 4*var_x*exp(4*x), exp(-x*t): t**2*var_x*exp(-2*t*x), } for inp, out in cases.items(): obs = variance_prop(inp, consts=consts, include_covar=True) assert out == obs
c9c92eb35dfd36ba439d995066a04cf86984b9218b35a8a9908ff6ae8d37e98b
from sympy import symbols, pi, oo, S, exp, sqrt, besselk, Indexed from sympy.stats import density from sympy.stats.joint_rv import marginal_distribution from sympy.stats.joint_rv_types import JointRV from sympy.stats.crv_types import Normal from sympy.utilities.pytest import raises, XFAIL from sympy.integrals.integrals import integrate from sympy.matrices import Matrix x, y, z, a, b = symbols('x y z a b') def test_Normal(): m = Normal('A', [1, 2], [[1, 0], [0, 1]]) assert density(m)(1, 2) == 1/(2*pi) raises (ValueError, lambda:m[2]) raises (ValueError,\ lambda: Normal('M',[1, 2], [[0, 0], [0, 1]])) n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]])) assert density(m)(x, y) == density(p)(x, y) assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi) assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1 N = Normal('N', [1, 2], [[x, 0], [0, y]]) assert density(N)(0, 0) == exp(-2/y - 1/(2*x))/(2*pi*sqrt(x*y)) raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]])) def test_MultivariateTDist(): from sympy.stats.joint_rv_types import MultivariateT t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert(density(t1))(1, 1) == 1/(8*pi) assert integrate(density(t1)(x, y), (x, -oo, oo), \ (y, -oo, oo)).evalf() == 1 raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1)) t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1) assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y)) def test_multivariate_laplace(): from sympy.stats.crv_types import Laplace raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]])) L = Laplace('L', [1, 0], [[1, 2], [0, 1]]) assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(3))/pi L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]]) assert density(L1)(0, 1) == \ exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y)) def test_NormalGamma(): from sympy.stats.joint_rv_types import NormalGamma from sympy import gamma ng = NormalGamma('G', 1, 2, 3, 4) assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi) raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1)) assert marginal_distribution(ng, 0)(1) == \ 3*sqrt(10)*gamma(S(7)/4)/(10*sqrt(pi)*gamma(S(5)/4)) assert marginal_distribution(ng, y)(1) == exp(-S(1)/4)/128 def test_JointPSpace_margial_distribution(): from sympy.stats.joint_rv_types import MultivariateT from sympy import polar_lift T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert marginal_distribution(T, T[1])(x) == sqrt(2)*(x**2 + 2)/( 8*polar_lift(x**2/2 + 1)**(S(5)/2)) assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1 def test_JointRV(): from sympy.stats.joint_rv import JointDistributionHandmade x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi) X = JointRV('x', pdf) assert density(X)(1, 2) == exp(-2)/(2*pi) assert isinstance(X.pspace.distribution, JointDistributionHandmade) assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(-S(1)/2)/(2*sqrt(pi)) def test_expectation(): from sympy import simplify from sympy.stats import E m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert simplify(E(m[1])) == y @XFAIL def test_joint_vector_expectation(): from sympy.stats import E m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert E(m) == (x, y)
1788925fc0e69e4e71cce391747401c48bd4f120d436760eeb75541bba52facd
from sympy import Symbol, Eq, Ne, simplify, sqrt, exp, pi from sympy.stats import Poisson, Beta, Exponential, P from sympy.stats.crv_types import Normal from sympy.stats.drv_types import PoissonDistribution from sympy.stats.joint_rv import JointPSpace, CompoundDistribution from sympy.stats.rv import pspace, density def test_density(): x = Symbol('x') l = Symbol('l', positive=True) rate = Beta(l, 2, 3) X = Poisson(x, rate) assert isinstance(pspace(X), JointPSpace) assert density(X, Eq(rate, rate.symbol)) == PoissonDistribution(l) N1 = Normal('N1', 0, 1) N2 = Normal('N2', N1, 2) assert density(N2)(0).doit() == sqrt(10)/(10*sqrt(pi)) assert simplify(density(N2, Eq(N1, 1))(x)) == \ sqrt(2)*exp(-(x - 1)**2/8)/(4*sqrt(pi)) def test_compound_distribution(): Y = Poisson('Y', 1) Z = Poisson('Z', Y) assert isinstance(pspace(Z), JointPSpace) assert isinstance(pspace(Z).distribution, CompoundDistribution) assert Z.pspace.distribution.pdf(1).doit() == exp(-2)*exp(exp(-1)) def test_mix_expression(): Y, E = Poisson('Y', 1), Exponential('E', 1) assert P(Eq(Y + E, 1)) == 0 assert P(Ne(Y + E, 2)) == 1 assert str(P(E + Y < 2, evaluate=False)) == """Integral(Sum(exp(-1)*Integral"""\ +"""(exp(-E)*DiracDelta(-_z + E + Y - 2), (E, 0, oo))/factorial(Y), (Y, 0, oo)), (_z, -oo, 0))""" assert str(P(E + Y > 2, evaluate=False)) == """Integral(Sum(exp(-1)*Integral"""\ +"""(exp(-E)*DiracDelta(-_z + E + Y - 2), (E, 0, oo))/factorial(Y), (Y, 0, oo)), (_z, 0, oo))"""
1f4d6fb37e0949da484c74f297f9eb57beefafcb2f56638b712537217938119a
from sympy import S, Sum, I, lambdify, re, im, log, simplify, zeta, pi from sympy.abc import x from sympy.core.relational import Eq, Ne from sympy.functions.elementary.exponential import exp from sympy.logic.boolalg import Or from sympy.sets.fancysets import Range from sympy.stats import (P, E, variance, density, characteristic_function, where, moment_generating_function) from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution, Poisson, Geometric, Logarithmic, NegativeBinomial, YuleSimon, Zeta) from sympy.stats.rv import sample def test_PoissonDistribution(): l = 3 p = PoissonDistribution(l) assert abs(p.cdf(10).evalf() - 1) < .001 assert p.expectation(x, x) == l assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l def test_Poisson(): l = 3 x = Poisson('x', l) assert E(x) == l assert variance(x) == l assert density(x) == PoissonDistribution(l) assert isinstance(E(x, evaluate=False), Sum) assert isinstance(E(2*x, evaluate=False), Sum) def test_GeometricDistribution(): p = S.One / 5 d = GeometricDistribution(p) assert d.expectation(x, x) == 1/p assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2 assert abs(d.cdf(20000).evalf() - 1) < .001 def test_Logarithmic(): p = S.One / 2 x = Logarithmic('x', p) assert E(x) == -p / ((1 - p) * log(1 - p)) assert variance(x) == -1/log(2)**2 + 2/log(2) assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2) assert isinstance(E(x, evaluate=False), Sum) def test_negative_binomial(): r = 5 p = S(1) / 3 x = NegativeBinomial('x', r, p) assert E(x) == p*r / (1-p) assert variance(x) == p*r / (1-p)**2 assert E(x**5 + 2*x + 3) == S(9207)/4 assert isinstance(E(x, evaluate=False), Sum) def test_yule_simon(): rho = S(3) x = YuleSimon('x', rho) assert simplify(E(x)) == rho / (rho - 1) assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2)) assert isinstance(E(x, evaluate=False), Sum) def test_zeta(): s = S(5) x = Zeta('x', s) assert E(x) == zeta(s-1) / zeta(s) assert simplify(variance(x)) == (zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2 def test_sample(): X, Y, Z = Geometric('X', S(1)/2), Poisson('Y', 4), Poisson('Z', 1000) W = Poisson('W', S(1)/100) assert sample(X) in X.pspace.domain.set assert sample(Y) in Y.pspace.domain.set assert sample(Z) in Z.pspace.domain.set assert sample(W) in W.pspace.domain.set def test_discrete_probability(): X = Geometric('X', S(1)/5) Y = Poisson('Y', 4) G = Geometric('e', x) assert P(Eq(X, 3)) == S(16)/125 assert P(X < 3) == S(9)/25 assert P(X > 3) == S(64)/125 assert P(X >= 3) == S(16)/25 assert P(X <= 3) == S(61)/125 assert P(Ne(X, 3)) == S(109)/125 assert P(Eq(Y, 3)) == 32*exp(-4)/3 assert P(Y < 3) == 13*exp(-4) assert P(Y > 3).equals(32*(-S(71)/32 + 3*exp(4)/32)*exp(-4)/3) assert P(Y >= 3).equals(32*(-S(39)/32 + 3*exp(4)/32)*exp(-4)/3) assert P(Y <= 3) == 71*exp(-4)/3 assert P(Ne(Y, 3)).equals( 13*exp(-4) + 32*(-S(71)/32 + 3*exp(4)/32)*exp(-4)/3) assert P(X < S.Infinity) is S.One assert P(X > S.Infinity) is S.Zero assert P(G < 3) == x*(-x + 1) + x assert P(Eq(G, 3)) == x*(-x + 1)**2 def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = S('t') x = S('x') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Geometric('g', S(1)/3), 1, mpmath.inf) test_cf(Logarithmic('l', S(1)/5), 1, mpmath.inf) test_cf(NegativeBinomial('n', 5, S(1)/7), 0, mpmath.inf) test_cf(Poisson('p', 5), 0, mpmath.inf) test_cf(YuleSimon('y', 5), 1, mpmath.inf) test_cf(Zeta('z', 5), 1, mpmath.inf) def test_moment_generating_functions(): t = S('t') geometric_mgf = moment_generating_function(Geometric('g', S(1)/2))(t) assert geometric_mgf.diff(t).subs(t, 0) == 2 logarithmic_mgf = moment_generating_function(Logarithmic('l', S(1)/2))(t) assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2) negative_binomial_mgf = moment_generating_function(NegativeBinomial('n', 5, S(1)/3))(t) assert negative_binomial_mgf.diff(t).subs(t, 0) == S(5)/2 poisson_mgf = moment_generating_function(Poisson('p', 5))(t) assert poisson_mgf.diff(t).subs(t, 0) == 5 yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t) assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == S(3)/2 zeta_mgf = moment_generating_function(Zeta('z', 5))(t) assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5)) def test_Or(): X = Geometric('X', S(1)/2) P(Or(X < 3, X > 4)) == S(13)/16 P(Or(X > 2, X > 1)) == P(X > 1) P(Or(X >= 3, X < 3)) == 1 def test_where(): X = Geometric('X', S(1)/5) Y = Poisson('Y', 4) assert where(X**2 > 4).set == Range(3, S.Infinity, 1) assert where(X**2 >= 4).set == Range(2, S.Infinity, 1) assert where(Y**2 < 9).set == Range(0, 3, 1) assert where(Y**2 <= 9).set == Range(0, 4, 1) def test_conditional(): X = Geometric('X', S(2)/3) Y = Poisson('Y', 3) assert P(X > 2, X > 3) == 1 assert P(X > 3, X > 2) == S(1)/3 assert P(Y > 2, Y < 2) == 0 assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2 assert P(Eq(Y, 3), Eq(Y, 2)) == 0 assert P(X < 2, Eq(X, 2)) == 0 assert P(X > 2, Eq(X, 3)) == 1 def test_product_spaces(): X1 = Geometric('X1', S(1)/2) X2 = Geometric('X2', S(1)/3) assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\ + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))""" assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\ """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))""" assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\ """X2 <= 2), (0, True)), (X2, 1, oo))"""
4261532ee01df1609f03a312b4f7545d5a6c7219341c0ab163ee8dbe8bdf98db
from sympy import (Symbol, Abs, exp, S, N, pi, simplify, Interval, erf, erfc, Ne, Eq, log, lowergamma, uppergamma, Sum, symbols, sqrt, And, gamma, beta, Piecewise, Integral, sin, cos, besseli, factorial, binomial, floor, expand_func, Rational, I, re, im, lambdify, hyper, diff, Or, Mul) from sympy.core.compatibility import range from sympy.external import import_module from sympy.stats import (P, E, where, density, variance, covariance, skewness, given, pspace, cdf, characteristic_function, ContinuousRV, sample, Arcsin, Benini, Beta, BetaPrime, Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, Exponential, FDistribution, FisherZ, Frechet, Gamma, GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Logistic, LogNormal, Maxwell, Nakagami, Normal, Pareto, QuadraticU, RaisedCosine, Rayleigh, ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, WignerSemicircle, correlation, moment, cmoment, smoment) from sympy.stats.crv_types import NormalDistribution from sympy.stats.joint_rv import JointPSpace from sympy.utilities.pytest import raises, XFAIL, slow, skip from sympy.utilities.randtest import verify_numerically as tn oo = S.Infinity x, y, z = map(Symbol, 'xyz') def test_single_normal(): mu = Symbol('mu', real=True, finite=True) sigma = Symbol('sigma', real=True, positive=True, finite=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert simplify(E(Y)) == mu assert simplify(variance(Y)) == sigma**2 pdf = density(Y) x = Symbol('x') assert (pdf(x) == 2**S.Half*exp(-(mu - x)**2/(2*sigma**2))/(2*pi**S.Half*sigma)) assert P(X**2 < 1) == erf(2**S.Half/2) assert E(X, Eq(X, mu)) == mu @XFAIL def test_conditional_1d(): X = Normal('x', 0, 1) Y = given(X, X >= 0) assert density(Y) == 2 * density(X) assert Y.pspace.domain.set == Interval(0, oo) assert E(Y) == sqrt(2) / sqrt(pi) assert E(X**2) == E(Y**2) def test_ContinuousDomain(): X = Normal('x', 0, 1) assert where(X**2 <= 1).set == Interval(-1, 1) assert where(X**2 <= 1).symbol == X.symbol where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1) raises(ValueError, lambda: where(sin(X) > 1)) Y = given(X, X >= 0) assert Y.pspace.domain.set == Interval(0, oo) @slow def test_multiple_normal(): X, Y = Normal('x', 0, 1), Normal('y', 0, 1) assert E(X + Y) == 0 assert variance(X + Y) == 2 assert variance(X + X) == 4 assert covariance(X, Y) == 0 assert covariance(2*X + Y, -X) == -2*variance(X) assert skewness(X) == 0 assert skewness(X + Y) == 0 assert correlation(X, Y) == 0 assert correlation(X, X + Y) == correlation(X, X - Y) assert moment(X, 2) == 1 assert cmoment(X, 3) == 0 assert moment(X + Y, 4) == 12 assert cmoment(X, 2) == variance(X) assert smoment(X*X, 2) == 1 assert smoment(X + Y, 3) == skewness(X + Y) assert E(X, Eq(X + Y, 0)) == 0 assert variance(X, Eq(X + Y, 0)) == S.Half @slow def test_symbolic(): mu1, mu2 = symbols('mu1 mu2', real=True, finite=True) s1, s2 = symbols('sigma1 sigma2', real=True, finite=True, positive=True) rate = Symbol('lambda', real=True, positive=True, finite=True) X = Normal('x', mu1, s1) Y = Normal('y', mu2, s2) Z = Exponential('z', rate) a, b, c = symbols('a b c', real=True, finite=True) assert E(X) == mu1 assert E(X + Y) == mu1 + mu2 assert E(a*X + b) == a*E(X) + b assert variance(X) == s1**2 assert simplify(variance(X + a*Y + b)) == variance(X) + a**2*variance(Y) assert E(Z) == 1/rate assert E(a*Z + b) == a*E(Z) + b assert E(X + a*Z + b) == mu1 + a/rate + b def test_cdf(): X = Normal('x', 0, 1) d = cdf(X) assert P(X < 1) == d(1).rewrite(erfc) assert d(0) == S.Half d = cdf(X, X > 0) # given X>0 assert d(0) == 0 Y = Exponential('y', 10) d = cdf(Y) assert d(-5) == 0 assert P(Y > 3) == 1 - d(3) raises(ValueError, lambda: cdf(X + Y)) Z = Exponential('z', 1) f = cdf(Z) z = Symbol('z') assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True)) def test_characteristic_function(): X = Uniform('x', 0, 1) cf = characteristic_function(X) assert cf(1) == -I*(-1 + exp(I)) Y = Normal('y', 1, 1) cf = characteristic_function(Y) assert cf(0) == 1 assert simplify(cf(1)) == exp(I - S(1)/2) Z = Exponential('z', 5) cf = characteristic_function(Z) assert cf(0) == 1 assert simplify(cf(1)) == S(25)/26 + 5*I/26 def test_sample(): z = Symbol('z') Z = ContinuousRV(z, exp(-z), set=Interval(0, oo)) assert sample(Z) in Z.pspace.domain.set sym, val = list(Z.pspace.sample().items())[0] assert sym == Z and val in Interval(0, oo) assert density(Z)(-1) == 0 def test_ContinuousRV(): x = Symbol('x') pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution # X and Y should be equivalent X = ContinuousRV(x, pdf) Y = Normal('y', 0, 1) assert variance(X) == variance(Y) assert P(X > 0) == P(Y > 0) def test_arcsin(): from sympy import asin a = Symbol("a", real=True) b = Symbol("b", real=True) X = Arcsin('x', a, b) assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a))) assert cdf(X)(x) == Piecewise((0, a > x), (2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x), (1, True)) def test_benini(): alpha = Symbol("alpha", positive=True) b = Symbol("beta", positive=True) sigma = Symbol("sigma", positive=True) X = Benini('x', alpha, b, sigma) assert density(X)(x) == ((alpha/x + 2*b*log(x/sigma)/x) *exp(-alpha*log(x/sigma) - b*log(x/sigma)**2)) def test_beta(): a, b = symbols('alpha beta', positive=True) B = Beta('x', a, b) assert pspace(B).domain.set == Interval(0, 1) dens = density(B) x = Symbol('x') assert dens(x) == x**(a - 1)*(1 - x)**(b - 1) / beta(a, b) assert simplify(E(B)) == a / (a + b) assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2) # Full symbolic solution is too much, test with numeric version a, b = 1, 2 B = Beta('x', a, b) assert expand_func(E(B)) == a / S(a + b) assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1)) def test_betaprime(): alpha = Symbol("alpha", positive=True) betap = Symbol("beta", positive=True) X = BetaPrime('x', alpha, betap) assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap) def test_cauchy(): x0 = Symbol("x0") gamma = Symbol("gamma", positive=True) X = Cauchy('x', x0, gamma) assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2)) def test_chi(): k = Symbol("k", integer=True) X = Chi('x', k) assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2) def test_chi_noncentral(): k = Symbol("k", integer=True) l = Symbol("l") X = ChiNoncentral("x", k, l) assert density(X)(x) == (x**k*l*(x*l)**(-k/2)* exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l)) def test_chi_squared(): k = Symbol("k", integer=True) X = ChiSquared('x', k) assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2) assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True)) X = ChiSquared('x', 15) assert cdf(X)(3) == -14873*sqrt(6)*exp(-S(3)/2)/(5005*sqrt(pi)) + erf(sqrt(6)/2) def test_dagum(): p = Symbol("p", positive=True) b = Symbol("b", positive=True) a = Symbol("a", positive=True) X = Dagum('x', p, a, b) assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0), (0, True)) def test_erlang(): k = Symbol("k", integer=True, positive=True) l = Symbol("l", positive=True) X = Erlang("x", k, l) assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k) assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0), (0, True)) def test_exponential(): rate = Symbol('lambda', positive=True, real=True, finite=True) X = Exponential('x', rate) assert E(X) == 1/rate assert variance(X) == 1/rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert smoment(2*X, 4) == smoment(X, 4) assert moment(X, 3) == 3*2*1/rate**3 assert P(X > 0) == S(1) assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10*rate) assert where(X <= 1).set == Interval(0, 1) def test_f_distribution(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FDistribution("x", d1, d2) assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2)) /(x*beta(d1/2, d2/2))) def test_fisher_z(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FisherZ("x", d1, d2) assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2) **(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2)) def test_frechet(): a = Symbol("a", positive=True) s = Symbol("s", positive=True) m = Symbol("m", real=True) X = Frechet("x", a, s=s, m=m) assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True)) def test_gamma(): k = Symbol("k", positive=True) theta = Symbol("theta", positive=True) X = Gamma('x', k, theta) assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k) assert cdf(X, meijerg=True)(z) == Piecewise( (-k*lowergamma(k, 0)/gamma(k + 1) + k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0), (0, True)) # assert simplify(variance(X)) == k*theta**2 # handled numerically below assert E(X) == moment(X, 1) k, theta = symbols('k theta', real=True, finite=True, positive=True) X = Gamma('x', k, theta) assert E(X) == k*theta assert variance(X) == k*theta**2 assert simplify(skewness(X)) == 2/sqrt(k) def test_gamma_inverse(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = GammaInverse("x", a, b) assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a) assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True)) def test_sampling_gamma_inverse(): scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for sampling of gamma inverse.') X = GammaInverse("x", 1, 1) assert sample(X) in X.pspace.domain.set def test_gompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = Gompertz("x", b, eta) assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x)) def test_gumbel(): beta = Symbol("beta", positive=True) mu = Symbol("mu") x = Symbol("x") X = Gumbel("x", beta, mu) assert simplify(density(X)(x)) == exp((beta*exp((mu - x)/beta) + mu - x)/beta)/beta def test_kumaraswamy(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = Kumaraswamy("x", a, b) assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1) assert cdf(X)(x) == Piecewise((0, x < 0), (-(-x**a + 1)**b + 1, x <= 1), (1, True)) def test_laplace(): mu = Symbol("mu") b = Symbol("b", positive=True) X = Laplace('x', mu, b) assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b) assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x), (-exp((mu - x)/b)/2 + 1, True)) def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) X = Logistic('x', mu, s) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) def test_lognormal(): mean = Symbol('mu', real=True, finite=True) std = Symbol('sigma', positive=True, real=True, finite=True) X = LogNormal('x', mean, std) # The sympy integrator can't do this too well #assert E(X) == exp(mean+std**2/2) #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2) # Right now, only density function and sampling works # Test sampling: Only e^mean in sample std of 0 for i in range(3): X = LogNormal('x', i, 0) assert S(sample(X)) == N(exp(i)) # The sympy integrator can't do this too well #assert E(X) == mu = Symbol("mu", real=True) sigma = Symbol("sigma", positive=True) X = LogNormal('x', mu, sigma) assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2 /(2*sigma**2))/(2*x*sqrt(pi)*sigma)) X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi)) def test_maxwell(): a = Symbol("a", positive=True) X = Maxwell('x', a) assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/ (sqrt(pi)*a**3)) assert E(X) == 2*sqrt(2)*a/sqrt(pi) assert simplify(variance(X)) == a**2*(-8 + 3*pi)/pi def test_nakagami(): mu = Symbol("mu", positive=True) omega = Symbol("omega", positive=True) X = Nakagami('x', mu, omega) assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu) *exp(-x**2*mu/omega)/gamma(mu)) assert simplify(E(X)) == (sqrt(mu)*sqrt(omega) *gamma(mu + S.Half)/gamma(mu + 1)) assert simplify(variance(X)) == ( omega - omega*gamma(mu + S(1)/2)**2/(gamma(mu)*gamma(mu + 1))) assert cdf(X)(x) == Piecewise( (lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0), (0, True)) def test_pareto(): xm, beta = symbols('xm beta', positive=True, finite=True) alpha = beta + 5 X = Pareto('x', xm, alpha) dens = density(X) x = Symbol('x') assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha) assert simplify(E(X)) == alpha*xm/(alpha-1) # computation of taylor series for MGF still too slow #assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2)) def test_pareto_numeric(): xm, beta = 3, 2 alpha = beta + 5 X = Pareto('x', xm, alpha) assert E(X) == alpha*xm/S(alpha - 1) assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2))) # Skewness tests too slow. Try shortcutting function? def test_raised_cosine(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) X = RaisedCosine("x", mu, s) assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s), And(x <= mu + s, mu - s <= x)), (0, True))) def test_rayleigh(): sigma = Symbol("sigma", positive=True) X = Rayleigh('x', sigma) assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2 assert E(X) == sqrt(2)*sqrt(pi)*sigma/2 assert variance(X) == -pi*sigma**2/2 + 2*sigma**2 def test_shiftedgompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = ShiftedGompertz("x", b, eta) assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) def test_studentt(): nu = Symbol("nu", positive=True) X = StudentT('x', nu) assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S(1)/2)/(sqrt(nu)*beta(S(1)/2, nu/2)) assert cdf(X)(x) == S(1)/2 + x*gamma(nu/2 + S(1)/2)*hyper((S(1)/2, nu/2 + S(1)/2), (S(3)/2,), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) def test_trapezoidal(): a = Symbol("a", real=True) b = Symbol("b", real=True) c = Symbol("c", real=True) d = Symbol("d", real=True) X = Trapezoidal('x', a, b, c, d) assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)), (2/(-a - b + c + d), (b <= x) & (x < c)), ((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)), (0, True)) X = Trapezoidal('x', 0, 1, 2, 3) assert E(X) == S(3)/2 assert variance(X) == S(5)/12 assert P(X < 2) == S(3)/4 @XFAIL def test_triangular(): a = Symbol("a") b = Symbol("b") c = Symbol("c") X = Triangular('x', a, b, c) assert density(X)(x) == Piecewise( ((2*x - 2*a)/((-a + b)*(-a + c)), And(a <= x, x < c)), (2/(-a + b), x == c), ((-2*x + 2*b)/((-a + b)*(b - c)), And(x <= b, c < x)), (0, True)) def test_quadratic_u(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = QuadraticU("x", a, b) assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3, And(x <= b, a <= x)), (0, True))) def test_uniform(): l = Symbol('l', real=True, finite=True) w = Symbol('w', positive=True, finite=True) X = Uniform('x', l, l + w) assert simplify(E(X)) == l + w/2 assert simplify(variance(X)) == w**2/12 # With numbers all is well X = Uniform('x', 3, 5) assert P(X < 3) == 0 and P(X > 5) == 0 assert P(X < 4) == P(X > 4) == S.Half z = Symbol('z') p = density(X)(z) assert p.subs(z, 3.7) == S(1)/2 assert p.subs(z, -1) == 0 assert p.subs(z, 6) == 0 c = cdf(X) assert c(2) == 0 and c(3) == 0 assert c(S(7)/2) == S(1)/4 assert c(5) == 1 and c(6) == 1 def test_uniform_P(): """ This stopped working because SingleContinuousPSpace.compute_density no longer calls integrate on a DiracDelta but rather just solves directly. integrate used to call UniformDistribution.expectation which special-cased subsed out the Min and Max terms that Uniform produces I decided to regress on this class for general cleanliness (and I suspect speed) of the algorithm. """ l = Symbol('l', real=True, finite=True) w = Symbol('w', positive=True, finite=True) X = Uniform('x', l, l + w) assert P(X < l) == 0 and P(X > l + w) == 0 @XFAIL def test_uniformsum(): n = Symbol("n", integer=True) _k = Symbol("k") X = UniformSum('x', n) assert density(X)(x) == (Sum((-1)**_k*(-_k + x)**(n - 1) *binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)) def test_von_mises(): mu = Symbol("mu") k = Symbol("k", positive=True) X = VonMises("x", mu, k) assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k)) def test_weibull(): a, b = symbols('a b', positive=True) X = Weibull('x', a, b) assert simplify(E(X)) == simplify(a * gamma(1 + 1/b)) assert simplify(variance(X)) == simplify(a**2 * gamma(1 + 2/b) - E(X)**2) assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**(S(3)/2) def test_weibull_numeric(): # Test for integers and rationals a = 1 bvals = [S.Half, 1, S(3)/2, 5] for b in bvals: X = Weibull('x', a, b) assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b))) assert simplify(variance(X)) == simplify( a**2 * gamma(1 + 2/S(b)) - E(X)**2) # Not testing Skew... it's slow with int/frac values > 3/2 def test_wignersemicircle(): R = Symbol("R", positive=True) X = WignerSemicircle('x', R) assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2) assert E(X) == 0 def test_prefab_sampling(): N = Normal('X', 0, 1) L = LogNormal('L', 0, 1) E = Exponential('Ex', 1) P = Pareto('P', 1, 3) W = Weibull('W', 1, 1) U = Uniform('U', 0, 1) B = Beta('B', 2, 5) G = Gamma('G', 1, 3) variables = [N, L, E, P, W, U, B, G] niter = 10 for var in variables: for i in range(niter): assert sample(var) in var.pspace.domain.set def test_input_value_assertions(): a, b = symbols('a b') p, q = symbols('p q', positive=True) m, n = symbols('m n', positive=False, real=True) raises(ValueError, lambda: Normal('x', 3, 0)) raises(ValueError, lambda: Normal('x', m, n)) Normal('X', a, p) # No error raised raises(ValueError, lambda: Exponential('x', m)) Exponential('Ex', p) # No error raised for fn in [Pareto, Weibull, Beta, Gamma]: raises(ValueError, lambda: fn('x', m, p)) raises(ValueError, lambda: fn('x', p, n)) fn('x', p, q) # No error raised @XFAIL def test_unevaluated(): X = Normal('x', 0, 1) assert E(X, evaluate=False) == ( Integral(sqrt(2)*x*exp(-x**2/2)/(2*sqrt(pi)), (x, -oo, oo))) assert E(X + 1, evaluate=False) == ( Integral(sqrt(2)*x*exp(-x**2/2)/(2*sqrt(pi)), (x, -oo, oo)) + 1) assert P(X > 0, evaluate=False) == ( Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)), (x, 0, oo))) assert P(X > 0, X**2 < 1, evaluate=False) == ( Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)* Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)), (x, -1, 1))), (x, 0, 1))) def test_probability_unevaluated(): T = Normal('T', 30, 3) assert type(P(T > 33, evaluate=False)) == Integral def test_density_unevaluated(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 2) assert isinstance(density(X+Y, evaluate=False)(z), Integral) def test_NormalDistribution(): nd = NormalDistribution(0, 1) x = Symbol('x') assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.One/2 assert isinstance(nd.sample(), float) or nd.sample().is_Number assert nd.expectation(1, x) == 1 assert nd.expectation(x, x) == 0 assert nd.expectation(x**2, x) == 1 def test_random_parameters(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert density(meas, evaluate=False)(z) assert isinstance(pspace(meas), JointPSpace) #assert density(meas, evaluate=False)(z) == Integral(mu.pspace.pdf * # meas.pspace.pdf, (mu.symbol, -oo, oo)).subs(meas.symbol, z) def test_random_parameters_given(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1) def test_conjugate_priors(): mu = Normal('mu', 2, 3) x = Normal('x', mu, 1) assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)), Mul) def test_difficult_univariate(): """ Since using solve in place of deltaintegrate we're able to perform substantially more complex density computations on single continuous random variables """ x = Normal('x', 0, 1) assert density(x**3) assert density(exp(x**2)) assert density(log(x)) def test_issue_10003(): X = Exponential('x', 3) G = Gamma('g', 1, 2) assert P(X < -1) == S.Zero assert P(G < -1) == S.Zero def test_precomputed_cdf(): x = symbols("x", real=True, finite=True) mu = symbols("mu", real=True, finite=True) sigma, xm, alpha = symbols("sigma xm alpha", positive=True, finite=True) n = symbols("n", integer=True, positive=True, finite=True) distribs = [ Normal("X", mu, sigma), Pareto("P", xm, alpha), ChiSquared("C", n), Exponential("E", sigma), # LogNormal("L", mu, sigma), ] for X in distribs: compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x)) compdiff = simplify(compdiff.rewrite(erfc)) assert compdiff == 0 def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = Symbol('t') x = Symbol('x') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Beta('b', 1, 2), 0, 1) test_cf(Chi('c', 3), 0, mpmath.inf) test_cf(ChiSquared('c', 2), 0, mpmath.inf) test_cf(Exponential('e', 6), 0, mpmath.inf) test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf) test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf) test_cf(RaisedCosine('r', 3, 1), 2, 4) test_cf(Rayleigh('r', 0.5), 0, mpmath.inf) test_cf(Uniform('u', -1, 1), -1, 1) test_cf(WignerSemicircle('w', 3), -3, 3) def test_long_precomputed_cdf(): x = symbols("x", real=True, finite=True) distribs = [ Arcsin("A", -5, 9), Dagum("D", 4, 10, 3), Erlang("E", 14, 5), Frechet("F", 2, 6, -3), Gamma("G", 2, 7), GammaInverse("GI", 3, 5), Kumaraswamy("K", 6, 8), Laplace("LA", -5, 4), Logistic("L", -6, 7), Nakagami("N", 2, 7), StudentT("S", 4) ] for distr in distribs: for _ in range(5): assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0) US = UniformSum("US", 5) pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1) cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1) assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0) def test_issue_13324(): X = Uniform('X', 0, 1) assert E(X, X > Rational(1, 2)) == Rational(3, 4) assert E(X, X > 0) == Rational(1, 2) def test_FiniteSet_prob(): x = symbols('x') E = Exponential('E', 3) N = Normal('N', 5, 7) assert P(Eq(E, 1)) is S.Zero assert P(Eq(N, 2)) is S.Zero assert P(Eq(N, x)) is S.Zero def test_prob_neq(): E = Exponential('E', 4) X = ChiSquared('X', 4) x = symbols('x') assert P(Ne(E, 2)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 5)) == 1 assert P(Ne(E, x)) == 1 def test_union(): N = Normal('N', 3, 2) assert simplify(P(N**2 - N > 2)) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + S(3)/2 assert simplify(P(N**2 - 4 > 0)) == \ -erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + S(3)/2 def test_Or(): N = Normal('N', 0, 1) assert simplify(P(Or(N > 2, N < 1))) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + S(3)/2 assert P(Or(N < 0, N < 1)) == P(N < 1) assert P(Or(N > 0, N < 0)) == 1 def test_conditional_eq(): E = Exponential('E', 1) assert P(Eq(E, 1), Eq(E, 1)) == 1 assert P(Eq(E, 1), Eq(E, 2)) == 0 assert P(E > 1, Eq(E, 2)) == 1 assert P(E < 1, Eq(E, 2)) == 0
b82ef7243e7ab59cd55360160d86f0d52e3df598171a913eba0b021cf0adeba7
from sympy.core.compatibility import range from sympy.combinatorics.perm_groups import (PermutationGroup, _orbit_transversal) from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup,\ DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup from sympy.combinatorics.permutations import Permutation from sympy.utilities.pytest import skip, XFAIL from sympy.combinatorics.generators import rubik_cube_generators from sympy.combinatorics.polyhedron import tetrahedron as Tetra, cube from sympy.combinatorics.testutil import _verify_bsgs, _verify_centralizer,\ _verify_normal_closure from sympy.utilities.pytest import raises rmul = Permutation.rmul def test_has(): a = Permutation([1, 0]) G = PermutationGroup([a]) assert G.is_abelian a = Permutation([2, 0, 1]) b = Permutation([2, 1, 0]) G = PermutationGroup([a, b]) assert not G.is_abelian G = PermutationGroup([a]) assert G.has(a) assert not G.has(b) a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([0, 2, 1, 3, 4]) assert PermutationGroup(a, b).degree == \ PermutationGroup(a, b).degree == 6 def test_generate(): a = Permutation([1, 0]) g = list(PermutationGroup([a]).generate()) assert g == [Permutation([0, 1]), Permutation([1, 0])] assert len(list(PermutationGroup(Permutation((0, 1))).generate())) == 1 g = PermutationGroup([a]).generate(method='dimino') assert list(g) == [Permutation([0, 1]), Permutation([1, 0])] a = Permutation([2, 0, 1]) b = Permutation([2, 1, 0]) G = PermutationGroup([a, b]) g = G.generate() v1 = [p.array_form for p in list(g)] v1.sort() assert v1 == [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]] v2 = list(G.generate(method='dimino', af=True)) assert v1 == sorted(v2) a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([2, 1, 3, 4, 5, 0]) g = PermutationGroup([a, b]).generate(af=True) assert len(list(g)) == 360 def test_order(): a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9]) b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0]) g = PermutationGroup([a, b]) assert g.order() == 1814400 assert PermutationGroup().order() == 1 def test_equality(): p_1 = Permutation(0, 1, 3) p_2 = Permutation(0, 2, 3) p_3 = Permutation(0, 1, 2) p_4 = Permutation(0, 1, 3) g_1 = PermutationGroup(p_1, p_2) g_2 = PermutationGroup(p_3, p_4) g_3 = PermutationGroup(p_2, p_1) assert g_1 == g_2 assert g_1.generators != g_2.generators assert g_1 == g_3 def test_stabilizer(): S = SymmetricGroup(2) H = S.stabilizer(0) assert H.generators == [Permutation(1)] a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([2, 1, 3, 4, 5, 0]) G = PermutationGroup([a, b]) G0 = G.stabilizer(0) assert G0.order() == 60 gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]] gens = [Permutation(p) for p in gens_cube] G = PermutationGroup(gens) G2 = G.stabilizer(2) assert G2.order() == 6 G2_1 = G2.stabilizer(1) v = list(G2_1.generate(af=True)) assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]] gens = ( (1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), (0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 7, 17, 18), (0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19)) gens = [Permutation(p) for p in gens] G = PermutationGroup(gens) G2 = G.stabilizer(2) assert G2.order() == 181440 S = SymmetricGroup(3) assert [G.order() for G in S.basic_stabilizers] == [6, 2] def test_center(): # the center of the dihedral group D_n is of order 2 for even n for i in (4, 6, 10): D = DihedralGroup(i) assert (D.center()).order() == 2 # the center of the dihedral group D_n is of order 1 for odd n>2 for i in (3, 5, 7): D = DihedralGroup(i) assert (D.center()).order() == 1 # the center of an abelian group is the group itself for i in (2, 3, 5): for j in (1, 5, 7): for k in (1, 1, 11): G = AbelianGroup(i, j, k) assert G.center().is_subgroup(G) # the center of a nonabelian simple group is trivial for i in(1, 5, 9): A = AlternatingGroup(i) assert (A.center()).order() == 1 # brute-force verifications D = DihedralGroup(5) A = AlternatingGroup(3) C = CyclicGroup(4) G.is_subgroup(D*A*C) assert _verify_centralizer(G, G) def test_centralizer(): # the centralizer of the trivial group is the entire group S = SymmetricGroup(2) assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S) A = AlternatingGroup(5) assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A) # a centralizer in the trivial group is the trivial group itself triv = PermutationGroup([Permutation([0, 1, 2, 3])]) D = DihedralGroup(4) assert triv.centralizer(D).is_subgroup(triv) # brute-force verifications for centralizers of groups for i in (4, 5, 6): S = SymmetricGroup(i) A = AlternatingGroup(i) C = CyclicGroup(i) D = DihedralGroup(i) for gp in (S, A, C, D): for gp2 in (S, A, C, D): if not gp2.is_subgroup(gp): assert _verify_centralizer(gp, gp2) # verify the centralizer for all elements of several groups S = SymmetricGroup(5) elements = list(S.generate_dimino()) for element in elements: assert _verify_centralizer(S, element) A = AlternatingGroup(5) elements = list(A.generate_dimino()) for element in elements: assert _verify_centralizer(A, element) D = DihedralGroup(7) elements = list(D.generate_dimino()) for element in elements: assert _verify_centralizer(D, element) # verify centralizers of small groups within small groups small = [] for i in (1, 2, 3): small.append(SymmetricGroup(i)) small.append(AlternatingGroup(i)) small.append(DihedralGroup(i)) small.append(CyclicGroup(i)) for gp in small: for gp2 in small: if gp.degree == gp2.degree: assert _verify_centralizer(gp, gp2) def test_coset_rank(): gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]] gens = [Permutation(p) for p in gens_cube] G = PermutationGroup(gens) i = 0 for h in G.generate(af=True): rk = G.coset_rank(h) assert rk == i h1 = G.coset_unrank(rk, af=True) assert h == h1 i += 1 assert G.coset_unrank(48) == None assert G.coset_unrank(G.coset_rank(gens[0])) == gens[0] def test_coset_factor(): a = Permutation([0, 2, 1]) G = PermutationGroup([a]) c = Permutation([2, 1, 0]) assert not G.coset_factor(c) assert G.coset_rank(c) is None a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([2, 1, 3, 4, 5, 0]) g = PermutationGroup([a, b]) assert g.order() == 360 d = Permutation([1, 0, 2, 3, 4, 5]) assert not g.coset_factor(d.array_form) assert not g.contains(d) assert Permutation(2) in G c = Permutation([1, 0, 2, 3, 5, 4]) v = g.coset_factor(c, True) tr = g.basic_transversals p = Permutation.rmul(*[tr[i][v[i]] for i in range(len(g.base))]) assert p == c v = g.coset_factor(c) p = Permutation.rmul(*v) assert p == c assert g.contains(c) G = PermutationGroup([Permutation([2, 1, 0])]) p = Permutation([1, 0, 2]) assert G.coset_factor(p) == [] def test_orbits(): a = Permutation([2, 0, 1]) b = Permutation([2, 1, 0]) g = PermutationGroup([a, b]) assert g.orbit(0) == {0, 1, 2} assert g.orbits() == [{0, 1, 2}] assert g.is_transitive() and g.is_transitive(strict=False) assert g.orbit_transversal(0) == \ [Permutation( [0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])] assert g.orbit_transversal(0, True) == \ [(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])), (1, Permutation([1, 2, 0]))] G = DihedralGroup(6) transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True) for i, t in transversal: slp = slps[i] w = G.identity for s in slp: w = G.generators[s]*w assert w == t a = Permutation(list(range(1, 100)) + [0]) G = PermutationGroup([a]) assert [min(o) for o in G.orbits()] == [0] G = PermutationGroup(rubik_cube_generators()) assert [min(o) for o in G.orbits()] == [0, 1] assert not G.is_transitive() and not G.is_transitive(strict=False) G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)]) assert not G.is_transitive() and G.is_transitive(strict=False) assert PermutationGroup( Permutation(3)).is_transitive(strict=False) is False def test_is_normal(): gens_s5 = [Permutation(p) for p in [[1, 2, 3, 4, 0], [2, 1, 4, 0, 3]]] G1 = PermutationGroup(gens_s5) assert G1.order() == 120 gens_a5 = [Permutation(p) for p in [[1, 0, 3, 2, 4], [2, 1, 4, 3, 0]]] G2 = PermutationGroup(gens_a5) assert G2.order() == 60 assert G2.is_normal(G1) gens3 = [Permutation(p) for p in [[2, 1, 3, 0, 4], [1, 2, 0, 3, 4]]] G3 = PermutationGroup(gens3) assert not G3.is_normal(G1) assert G3.order() == 12 G4 = G1.normal_closure(G3.generators) assert G4.order() == 60 gens5 = [Permutation(p) for p in [[1, 2, 3, 0, 4], [1, 2, 0, 3, 4]]] G5 = PermutationGroup(gens5) assert G5.order() == 24 G6 = G1.normal_closure(G5.generators) assert G6.order() == 120 assert G1.is_subgroup(G6) assert not G1.is_subgroup(G4) assert G2.is_subgroup(G4) I5 = PermutationGroup(Permutation(4)) assert I5.is_normal(G5) assert I5.is_normal(G6, strict=False) p1 = Permutation([1, 0, 2, 3, 4]) p2 = Permutation([0, 1, 2, 4, 3]) p3 = Permutation([3, 4, 2, 1, 0]) id_ = Permutation([0, 1, 2, 3, 4]) H = PermutationGroup([p1, p3]) H_n1 = PermutationGroup([p1, p2]) H_n2_1 = PermutationGroup(p1) H_n2_2 = PermutationGroup(p2) H_id = PermutationGroup(id_) assert H_n1.is_normal(H) assert H_n2_1.is_normal(H_n1) assert H_n2_2.is_normal(H_n1) assert H_id.is_normal(H_n2_1) assert H_id.is_normal(H_n1) assert H_id.is_normal(H) assert not H_n2_1.is_normal(H) assert not H_n2_2.is_normal(H) def test_eq(): a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [ 1, 2, 0, 3, 4, 5]] a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]] g = Permutation([1, 2, 3, 4, 5, 0]) G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]] assert G1.order() == G2.order() == G3.order() == 6 assert G1.is_subgroup(G2) assert not G1.is_subgroup(G3) G4 = PermutationGroup([Permutation([0, 1])]) assert not G1.is_subgroup(G4) assert G4.is_subgroup(G1, 0) assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g)) assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0) assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0) assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0) assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0) def test_derived_subgroup(): a = Permutation([1, 0, 2, 4, 3]) b = Permutation([0, 1, 3, 2, 4]) G = PermutationGroup([a, b]) C = G.derived_subgroup() assert C.order() == 3 assert C.is_normal(G) assert C.is_subgroup(G, 0) assert not G.is_subgroup(C, 0) gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]] gens = [Permutation(p) for p in gens_cube] G = PermutationGroup(gens) C = G.derived_subgroup() assert C.order() == 12 def test_is_solvable(): a = Permutation([1, 2, 0]) b = Permutation([1, 0, 2]) G = PermutationGroup([a, b]) assert G.is_solvable a = Permutation([1, 2, 3, 4, 0]) b = Permutation([1, 0, 2, 3, 4]) G = PermutationGroup([a, b]) assert not G.is_solvable def test_rubik1(): gens = rubik_cube_generators() gens1 = [gens[-1]] + [p**2 for p in gens[1:]] G1 = PermutationGroup(gens1) assert G1.order() == 19508428800 gens2 = [p**2 for p in gens] G2 = PermutationGroup(gens2) assert G2.order() == 663552 assert G2.is_subgroup(G1, 0) C1 = G1.derived_subgroup() assert C1.order() == 4877107200 assert C1.is_subgroup(G1, 0) assert not G2.is_subgroup(C1, 0) G = RubikGroup(2) assert G.order() == 3674160 @XFAIL def test_rubik(): skip('takes too much time') G = PermutationGroup(rubik_cube_generators()) assert G.order() == 43252003274489856000 G1 = PermutationGroup(G[:3]) assert G1.order() == 170659735142400 assert not G1.is_normal(G) G2 = G.normal_closure(G1.generators) assert G2.is_subgroup(G) def test_direct_product(): C = CyclicGroup(4) D = DihedralGroup(4) G = C*C*C assert G.order() == 64 assert G.degree == 12 assert len(G.orbits()) == 3 assert G.is_abelian is True H = D*C assert H.order() == 32 assert H.is_abelian is False def test_orbit_rep(): G = DihedralGroup(6) assert G.orbit_rep(1, 3) in [Permutation([2, 3, 4, 5, 0, 1]), Permutation([4, 3, 2, 1, 0, 5])] H = CyclicGroup(4)*G assert H.orbit_rep(1, 5) is False def test_schreier_vector(): G = CyclicGroup(50) v = [0]*50 v[23] = -1 assert G.schreier_vector(23) == v H = DihedralGroup(8) assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0] L = SymmetricGroup(4) assert L.schreier_vector(1) == [1, -1, 0, 0] def test_random_pr(): D = DihedralGroup(6) r = 11 n = 3 _random_prec_n = {} _random_prec_n[0] = {'s': 7, 't': 3, 'x': 2, 'e': -1} _random_prec_n[1] = {'s': 5, 't': 5, 'x': 1, 'e': -1} _random_prec_n[2] = {'s': 3, 't': 4, 'x': 2, 'e': 1} D._random_pr_init(r, n, _random_prec_n=_random_prec_n) assert D._random_gens[11] == [0, 1, 2, 3, 4, 5] _random_prec = {'s': 2, 't': 9, 'x': 1, 'e': -1} assert D.random_pr(_random_prec=_random_prec) == \ Permutation([0, 5, 4, 3, 2, 1]) def test_is_alt_sym(): G = DihedralGroup(10) assert G.is_alt_sym() is False S = SymmetricGroup(10) N_eps = 10 _random_prec = {'N_eps': N_eps, 0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]), 1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]), 2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]), 3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]), 4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]), 5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]), 6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]), 7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]), 8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]), 9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])} assert S.is_alt_sym(_random_prec=_random_prec) is True A = AlternatingGroup(10) _random_prec = {'N_eps': N_eps, 0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]), 1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]), 2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]), 3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]), 4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]), 5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]), 6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]), 7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]), 8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]), 9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])} assert A.is_alt_sym(_random_prec=_random_prec) is False def test_minimal_block(): D = DihedralGroup(6) block_system = D.minimal_block([0, 3]) for i in range(3): assert block_system[i] == block_system[i + 3] S = SymmetricGroup(6) assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0] assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0] P1 = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5)) P2 = PermutationGroup(Permutation(0, 1, 2, 3, 4, 5), Permutation(1, 5)(2, 4)) assert P1.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1] assert P2.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1] def test_minimal_blocks(): P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5)) assert P.minimal_blocks() == [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] P = SymmetricGroup(5) assert P.minimal_blocks() == [[0]*5] P = PermutationGroup(Permutation(0, 3)) assert P.minimal_blocks() == False def test_max_div(): S = SymmetricGroup(10) assert S.max_div == 5 def test_is_primitive(): S = SymmetricGroup(5) assert S.is_primitive() is True C = CyclicGroup(7) assert C.is_primitive() is True def test_random_stab(): S = SymmetricGroup(5) _random_el = Permutation([1, 3, 2, 0, 4]) _random_prec = {'rand': _random_el} g = S.random_stab(2, _random_prec=_random_prec) assert g == Permutation([1, 3, 2, 0, 4]) h = S.random_stab(1) assert h(1) == 1 def test_transitivity_degree(): perm = Permutation([1, 2, 0]) C = PermutationGroup([perm]) assert C.transitivity_degree == 1 gen1 = Permutation([1, 2, 0, 3, 4]) gen2 = Permutation([1, 2, 3, 4, 0]) # alternating group of degree 5 Alt = PermutationGroup([gen1, gen2]) assert Alt.transitivity_degree == 3 def test_schreier_sims_random(): assert sorted(Tetra.pgroup.base) == [0, 1] S = SymmetricGroup(3) base = [0, 1] strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]), Permutation([0, 2, 1])] assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens) D = DihedralGroup(3) _random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]), Permutation([1, 0, 2])]} base = [0, 1] strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]), Permutation([0, 2, 1])] assert D.schreier_sims_random([], D.generators, 2, _random_prec=_random_prec) == (base, strong_gens) def test_baseswap(): S = SymmetricGroup(4) S.schreier_sims() base = S.base strong_gens = S.strong_gens assert base == [0, 1, 2] deterministic = S.baseswap(base, strong_gens, 1, randomized=False) randomized = S.baseswap(base, strong_gens, 1) assert deterministic[0] == [0, 2, 1] assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True assert randomized[0] == [0, 2, 1] assert _verify_bsgs(S, randomized[0], randomized[1]) is True def test_schreier_sims_incremental(): identity = Permutation([0, 1, 2, 3, 4]) TrivialGroup = PermutationGroup([identity]) base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2]) assert _verify_bsgs(TrivialGroup, base, strong_gens) is True S = SymmetricGroup(5) base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2]) assert _verify_bsgs(S, base, strong_gens) is True D = DihedralGroup(2) base, strong_gens = D.schreier_sims_incremental(base=[1]) assert _verify_bsgs(D, base, strong_gens) is True A = AlternatingGroup(7) gens = A.generators[:] gen0 = gens[0] gen1 = gens[1] gen1 = rmul(gen1, ~gen0) gen0 = rmul(gen0, gen1) gen1 = rmul(gen0, gen1) base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens) assert _verify_bsgs(A, base, strong_gens) is True C = CyclicGroup(11) gen = C.generators[0] base, strong_gens = C.schreier_sims_incremental(gens=[gen**3]) assert _verify_bsgs(C, base, strong_gens) is True def _subgroup_search(i, j, k): prop_true = lambda x: True prop_fix_points = lambda x: [x(point) for point in points] == points prop_comm_g = lambda x: rmul(x, g) == rmul(g, x) prop_even = lambda x: x.is_even for i in range(i, j, k): S = SymmetricGroup(i) A = AlternatingGroup(i) C = CyclicGroup(i) Sym = S.subgroup_search(prop_true) assert Sym.is_subgroup(S) Alt = S.subgroup_search(prop_even) assert Alt.is_subgroup(A) Sym = S.subgroup_search(prop_true, init_subgroup=C) assert Sym.is_subgroup(S) points = [7] assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points)) points = [3, 4] assert S.stabilizer(3).stabilizer(4).is_subgroup( S.subgroup_search(prop_fix_points)) points = [3, 5] fix35 = A.subgroup_search(prop_fix_points) points = [5] fix5 = A.subgroup_search(prop_fix_points) assert A.subgroup_search(prop_fix_points, init_subgroup=fix35 ).is_subgroup(fix5) base, strong_gens = A.schreier_sims_incremental() g = A.generators[0] comm_g = \ A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens) assert _verify_bsgs(comm_g, base, comm_g.generators) is True assert [prop_comm_g(gen) is True for gen in comm_g.generators] def test_subgroup_search(): _subgroup_search(10, 15, 2) @XFAIL def test_subgroup_search2(): skip('takes too much time') _subgroup_search(16, 17, 1) def test_normal_closure(): # the normal closure of the trivial group is trivial S = SymmetricGroup(3) identity = Permutation([0, 1, 2]) closure = S.normal_closure(identity) assert closure.is_trivial # the normal closure of the entire group is the entire group A = AlternatingGroup(4) assert A.normal_closure(A).is_subgroup(A) # brute-force verifications for subgroups for i in (3, 4, 5): S = SymmetricGroup(i) A = AlternatingGroup(i) D = DihedralGroup(i) C = CyclicGroup(i) for gp in (A, D, C): assert _verify_normal_closure(S, gp) # brute-force verifications for all elements of a group S = SymmetricGroup(5) elements = list(S.generate_dimino()) for element in elements: assert _verify_normal_closure(S, element) # small groups small = [] for i in (1, 2, 3): small.append(SymmetricGroup(i)) small.append(AlternatingGroup(i)) small.append(DihedralGroup(i)) small.append(CyclicGroup(i)) for gp in small: for gp2 in small: if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree: assert _verify_normal_closure(gp, gp2) def test_derived_series(): # the derived series of the trivial group consists only of the trivial group triv = PermutationGroup([Permutation([0, 1, 2])]) assert triv.derived_series()[0].is_subgroup(triv) # the derived series for a simple group consists only of the group itself for i in (5, 6, 7): A = AlternatingGroup(i) assert A.derived_series()[0].is_subgroup(A) # the derived series for S_4 is S_4 > A_4 > K_4 > triv S = SymmetricGroup(4) series = S.derived_series() assert series[1].is_subgroup(AlternatingGroup(4)) assert series[2].is_subgroup(DihedralGroup(2)) assert series[3].is_trivial def test_lower_central_series(): # the lower central series of the trivial group consists of the trivial # group triv = PermutationGroup([Permutation([0, 1, 2])]) assert triv.lower_central_series()[0].is_subgroup(triv) # the lower central series of a simple group consists of the group itself for i in (5, 6, 7): A = AlternatingGroup(i) assert A.lower_central_series()[0].is_subgroup(A) # GAP-verified example S = SymmetricGroup(6) series = S.lower_central_series() assert len(series) == 2 assert series[1].is_subgroup(AlternatingGroup(6)) def test_commutator(): # the commutator of the trivial group and the trivial group is trivial S = SymmetricGroup(3) triv = PermutationGroup([Permutation([0, 1, 2])]) assert S.commutator(triv, triv).is_subgroup(triv) # the commutator of the trivial group and any other group is again trivial A = AlternatingGroup(3) assert S.commutator(triv, A).is_subgroup(triv) # the commutator is commutative for i in (3, 4, 5): S = SymmetricGroup(i) A = AlternatingGroup(i) D = DihedralGroup(i) assert S.commutator(A, D).is_subgroup(S.commutator(D, A)) # the commutator of an abelian group is trivial S = SymmetricGroup(7) A1 = AbelianGroup(2, 5) A2 = AbelianGroup(3, 4) triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])]) assert S.commutator(A1, A1).is_subgroup(triv) assert S.commutator(A2, A2).is_subgroup(triv) # examples calculated by hand S = SymmetricGroup(3) A = AlternatingGroup(3) assert S.commutator(A, S).is_subgroup(A) def test_is_nilpotent(): # every abelian group is nilpotent for i in (1, 2, 3): C = CyclicGroup(i) Ab = AbelianGroup(i, i + 2) assert C.is_nilpotent assert Ab.is_nilpotent Ab = AbelianGroup(5, 7, 10) assert Ab.is_nilpotent # A_5 is not solvable and thus not nilpotent assert AlternatingGroup(5).is_nilpotent is False def test_is_trivial(): for i in range(5): triv = PermutationGroup([Permutation(list(range(i)))]) assert triv.is_trivial def test_pointwise_stabilizer(): S = SymmetricGroup(2) stab = S.pointwise_stabilizer([0]) assert stab.generators == [Permutation(1)] S = SymmetricGroup(5) points = [] stab = S for point in (2, 0, 3, 4, 1): stab = stab.stabilizer(point) points.append(point) assert S.pointwise_stabilizer(points).is_subgroup(stab) def test_make_perm(): assert cube.pgroup.make_perm(5, seed=list(range(5))) == \ Permutation([4, 7, 6, 5, 0, 3, 2, 1]) assert cube.pgroup.make_perm(7, seed=list(range(7))) == \ Permutation([6, 7, 3, 2, 5, 4, 0, 1]) def test_elements(): p = Permutation(2, 3) assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)} def test_is_group(): assert PermutationGroup(Permutation(1,2), Permutation(2,4)).is_group == True assert SymmetricGroup(4).is_group == True def test_PermutationGroup(): assert PermutationGroup() == PermutationGroup(Permutation()) def test_coset_transvesal(): G = AlternatingGroup(5) H = PermutationGroup(Permutation(0,1,2),Permutation(1,2)(3,4)) assert G.coset_transversal(H) == \ [Permutation(4), Permutation(2, 3, 4), Permutation(2, 4, 3), Permutation(1, 2, 4), Permutation(4)(1, 2, 3), Permutation(1, 3)(2, 4), Permutation(0, 1, 2, 3, 4), Permutation(0, 1, 2, 4, 3), Permutation(0, 1, 3, 2, 4), Permutation(0, 2, 4, 1, 3)] def test_coset_table(): G = PermutationGroup(Permutation(0,1,2,3), Permutation(0,1,2), Permutation(0,4,2,7), Permutation(5,6), Permutation(0,7)); H = PermutationGroup(Permutation(0,1,2,3), Permutation(0,7)) assert G.coset_table(H) == \ [[0, 0, 0, 0, 1, 2, 3, 3, 0, 0], [4, 5, 2, 5, 6, 0, 7, 7, 1, 1], [5, 4, 5, 1, 0, 6, 8, 8, 6, 6], [3, 3, 3, 3, 7, 8, 0, 0, 3, 3], [2, 1, 4, 4, 4, 4, 9, 9, 4, 4], [1, 2, 1, 2, 5, 5, 10, 10, 5, 5], [6, 6, 6, 6, 2, 1, 11, 11, 2, 2], [9, 10, 8, 10, 11, 3, 1, 1, 7, 7], [10, 9, 10, 7, 3, 11, 2, 2, 11, 11], [8, 7, 9, 9, 9, 9, 4, 4, 9, 9], [7, 8, 7, 8, 10, 10, 5, 5, 10, 10], [11, 11, 11, 11, 8, 7, 6, 6, 8, 8]] def test_subgroup(): G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3)) H = G.subgroup([Permutation(0,1,3)]) assert H.is_subgroup(G) def test_generator_product(): G = SymmetricGroup(5) p = Permutation(0, 2, 3)(1, 4) gens = G.generator_product(p) assert all(g in G.strong_gens for g in gens) w = G.identity for g in gens: w = g*w assert w == p def test_sylow_subgroup(): P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5)) S = P.sylow_subgroup(2) assert S.order() == 4 P = DihedralGroup(12) S = P.sylow_subgroup(3) assert S.order() == 3 P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 2)) S = P.sylow_subgroup(3) assert S.order() == 9 S = P.sylow_subgroup(2) assert S.order() == 8 P = SymmetricGroup(10) S = P.sylow_subgroup(2) assert S.order() == 256 S = P.sylow_subgroup(3) assert S.order() == 81 S = P.sylow_subgroup(5) assert S.order() == 25 # the length of the lower central series # of a p-Sylow subgroup of Sym(n) grows with # the highest exponent exp of p such # that n >= p**exp exp = 1 length = 0 for i in range(2, 9): P = SymmetricGroup(i) S = P.sylow_subgroup(2) ls = S.lower_central_series() if i // 2**exp > 0: # length increases with exponent assert len(ls) > length length = len(ls) exp += 1 else: assert len(ls) == length G = SymmetricGroup(100) S = G.sylow_subgroup(3) assert G.order() % S.order() == 0 assert G.order()/S.order() % 3 > 0 G = AlternatingGroup(100) S = G.sylow_subgroup(2) assert G.order() % S.order() == 0 assert G.order()/S.order() % 2 > 0 def test_presentation(): def _test(P): G = P.presentation() return G.order() == P.order() def _strong_test(P): G = P.strong_presentation() chk = len(G.generators) == len(P.strong_gens) return chk and G.order() == P.order() P = PermutationGroup(Permutation(0,1,5,2)(3,7,4,6), Permutation(0,3,5,4)(1,6,2,7)) assert _test(P) P = AlternatingGroup(5) assert _test(P) P = SymmetricGroup(5) assert _test(P) P = PermutationGroup([Permutation(0,3,1,2), Permutation(3)(0,1), Permutation(0,1)(2,3)]) G = P.strong_presentation() assert _strong_test(P) P = DihedralGroup(6) G = P.strong_presentation() assert _strong_test(P) a = Permutation(0,1)(2,3) b = Permutation(0,2)(3,1) c = Permutation(4,5) P = PermutationGroup(c, a, b) assert _strong_test(P)
317b9bf1bd747d6503a43aec069d0d4a1bec8e1b1294fe847f738a7196534e82
from sympy.algebras.quaternion import Quaternion from sympy import symbols, re, im, Add, Mul, I, Abs from sympy import cos, sin, sqrt, conjugate, log, acos, E, pi from sympy.utilities.pytest import raises from sympy import Matrix from sympy import diff, integrate, trigsimp from sympy import S, Rational x, y, z, w = symbols("x y z w") def test_quaternion_construction(): q = Quaternion(x, y, z, w) assert q + q == Quaternion(2*x, 2*y, 2*z, 2*w) q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3) assert q2 == Quaternion(Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2)) M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]]) q3 = trigsimp(Quaternion.from_rotation_matrix(M)) assert q3 == Quaternion(sqrt(2)*sqrt(cos(x) + 1)/2, 0, 0, sqrt(-2*cos(x) + 2)/2) def test_quaternion_complex_real_addition(): a = symbols("a", complex=True) b = symbols("b", real=True) # This symbol is not complex: c = symbols("c", commutative=False) q = Quaternion(x, y, z, w) assert a + q == Quaternion(x + re(a), y + im(a), z, w) assert 1 + q == Quaternion(1 + x, y, z, w) assert I + q == Quaternion(x, 1 + y, z, w) assert b + q == Quaternion(x + b, y, z, w) assert c + q == Add(c, Quaternion(x, y, z, w), evaluate=False) assert q * c == Mul(Quaternion(x, y, z, w), c, evaluate=False) assert c * q == Mul(c, Quaternion(x, y, z, w), evaluate=False) assert -q == Quaternion(-x, -y, -z, -w) q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False) q2 = Quaternion(1, 4, 7, 8) assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I) assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8) assert q1 * (2 + 3*I) == \ Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I)) assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5) def test_quaternion_functions(): q = Quaternion(x, y, z, w) q1 = Quaternion(1, 2, 3, 4) q0 = Quaternion(0, 0, 0, 0) assert conjugate(q) == Quaternion(x, -y, -z, -w) assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2) assert q.normalize() == Quaternion(x, y, z, w) / sqrt(w**2 + x**2 + y**2 + z**2) assert q.inverse() == Quaternion(x, -y, -z, -w) / (w**2 + x**2 + y**2 + z**2) raises(ValueError, lambda: q0.inverse()) assert q.pow(2) == Quaternion(-w**2 + x**2 - y**2 - z**2, 2*x*y, 2*x*z, 2*w*x) assert q1.pow(-2) == Quaternion(-S(7)/225, -S(1)/225, -S(1)/150, -S(2)/225) assert q1.pow(-0.5) == NotImplemented assert q1.exp() == \ Quaternion(E * cos(sqrt(29)), 2 * sqrt(29) * E * sin(sqrt(29)) / 29, 3 * sqrt(29) * E * sin(sqrt(29)) / 29, 4 * sqrt(29) * E * sin(sqrt(29)) / 29) assert q1._ln() == \ Quaternion(log(sqrt(30)), 2 * sqrt(29) * acos(sqrt(30)/30) / 29, 3 * sqrt(29) * acos(sqrt(30)/30) / 29, 4 * sqrt(29) * acos(sqrt(30)/30) / 29) assert q1.pow_cos_sin(2) == \ Quaternion(30 * cos(2 * acos(sqrt(30)/30)), 60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29, 90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29, 120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29) assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1) assert integrate(Quaternion(x, x, x, x), x) == \ Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2) assert Quaternion.rotate_point((1, 1, 1), q1) == (S(1) / 5, 1, S(7) / 5) def test_quaternion_conversions(): q1 = Quaternion(1, 2, 3, 4) assert q1.to_axis_angle() == ((2 * sqrt(29)/29, 3 * sqrt(29)/29, 4 * sqrt(29)/29), 2 * acos(sqrt(30)/30)) assert q1.to_rotation_matrix() == Matrix([[-S(2)/3, S(2)/15, S(11)/15], [S(2)/3, -S(1)/3, S(2)/3], [S(1)/3, S(14)/15, S(2)/15]]) assert q1.to_rotation_matrix((1, 1, 1)) == Matrix([[-S(2)/3, S(2)/15, S(11)/15, S(4)/5], [S(2)/3, -S(1)/3, S(2)/3, S(0)], [S(1)/3, S(14)/15, S(2)/15, -S(2)/5], [S(0), S(0), S(0), S(1)]]) theta = symbols("theta", real=True) q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2)) assert trigsimp(q2.to_rotation_matrix()) == Matrix([ [cos(theta), -sin(theta), 0], [sin(theta), cos(theta), 0], [0, 0, 1]]) assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))), 2*acos(cos(theta/2))) assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([ [cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1], [sin(theta), cos(theta), 0, -sin(theta) - cos(theta) + 1], [0, 0, 1, 0], [0, 0, 0, 1]]) def test_quaternion_rotation_iss1593(): """ There was a sign mistake in the definition, of the rotation matrix. This tests that particular sign mistake. See issue 1593 for reference. See wikipedia https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix for the correct definition """ q = Quaternion(cos(x/2), sin(x/2), 0, 0) assert(trigsimp(q.to_rotation_matrix()) == Matrix([ [1, 0, 0], [0, cos(x), -sin(x)], [0, sin(x), cos(x)]]))
4b4839e030bebe652f1627d7e3324c95198c44cf8135b5e06f083070fc5e3015
""" This module implements some special functions that commonly appear in combinatorial contexts (e.g. in power series); in particular, sequences of rational numbers such as Bernoulli and Fibonacci numbers. Factorials, binomial coefficients and related functions are located in the separate 'factorials' module. """ from __future__ import print_function, division from sympy.core import S, Symbol, Rational, Integer, Add, Dummy from sympy.core.cache import cacheit from sympy.core.compatibility import as_int, SYMPY_INTS, range from sympy.core.function import Function, expand_mul from sympy.core.logic import fuzzy_not from sympy.core.numbers import E, pi from sympy.core.relational import LessThan, StrictGreaterThan from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.ntheory import isprime from sympy.ntheory.primetest import is_square from sympy.utilities.memoization import recurrence_memo from mpmath import bernfrac, workprec from mpmath.libmp import ifib as _ifib def _product(a, b): p = 1 for k in range(a, b + 1): p *= k return p # Dummy symbol used for computing polynomial sequences _sym = Symbol('x') _symbols = Function('x') #----------------------------------------------------------------------------# # # # Carmichael numbers # # # #----------------------------------------------------------------------------# class carmichael(Function): """ Carmichael Numbers: Certain cryptographic algorithms make use of big prime numbers. However, checking whether a big number is prime is not so easy. Randomized prime number checking tests exist that offer a high degree of confidence of accurate determination at low cost, such as the Fermat test. Let 'a' be a random number between 2 and n - 1, where n is the number whose primality we are testing. Then, n is probably prime if it satisfies the modular arithmetic congruence relation : a^(n-1) = 1(mod n). (where mod refers to the modulo operation) If a number passes the Fermat test several times, then it is prime with a high probability. Unfortunately, certain composite numbers (non-primes) still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers. A Carmichael number will pass a Fermat primality test to every base b relatively prime to the number, even though it is not actually prime. This makes tests based on Fermat's Little Theorem less effective than strong probable prime tests such as the Baillie-PSW primality test and the Miller-Rabin primality test. mr functions given in sympy/sympy/ntheory/primetest.py will produce wrong results for each and every carmichael number. Examples ======== >>> from sympy import carmichael >>> carmichael.find_first_n_carmichaels(5) [561, 1105, 1729, 2465, 2821] >>> carmichael.is_prime(2465) False >>> carmichael.is_prime(1729) False >>> carmichael.find_carmichael_numbers_in_range(0, 562) [561] >>> carmichael.find_carmichael_numbers_in_range(0,1000) [561] >>> carmichael.find_carmichael_numbers_in_range(0,2000) [561, 1105, 1729] References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_number .. [2] https://en.wikipedia.org/wiki/Fermat_primality_test .. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents """ @staticmethod def is_perfect_square(n): return is_square(n) @staticmethod def divides(p, n): return n % p == 0 @staticmethod def is_prime(n): return isprime(n) @staticmethod def is_carmichael(n): if n >= 0: if (n == 1) or (carmichael.is_prime(n)) or (n % 2 == 0): return False divisors = list([1, n]) # get divisors for i in range(3, n // 2 + 1, 2): if n % i == 0: divisors.append(i) for i in divisors: if carmichael.is_perfect_square(i) and i != 1: return False if carmichael.is_prime(i): if not carmichael.divides(i - 1, n - 1): return False return True else: raise ValueError('The provided number must be greater than or equal to 0') @staticmethod def find_carmichael_numbers_in_range(x, y): if 0 <= x <= y: if x % 2 == 0: return list([i for i in range(x + 1, y, 2) if carmichael.is_carmichael(i)]) else: return list([i for i in range(x, y, 2) if carmichael.is_carmichael(i)]) else: raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y') @staticmethod def find_first_n_carmichaels(n): i = 1 carmichaels = list() while len(carmichaels) < n: if carmichael.is_carmichael(i): carmichaels.append(i) i += 2 return carmichaels #----------------------------------------------------------------------------# # # # Fibonacci numbers # # # #----------------------------------------------------------------------------# class fibonacci(Function): r""" Fibonacci numbers / Fibonacci polynomials The Fibonacci numbers are the integer sequence defined by the initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence relation `F_n = F_{n-1} + F_{n-2}`. This definition extended to arbitrary real and complex arguments using the formula .. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5} The Fibonacci polynomials are defined by `F_1(x) = 1`, `F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`. For all positive integers `n`, `F_n(1) = F_n`. * ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n` * ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)` Examples ======== >>> from sympy import fibonacci, Symbol >>> [fibonacci(x) for x in range(11)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fibonacci(5, Symbol('t')) t**4 + 3*t**2 + 1 See Also ======== bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Fibonacci_number .. [2] http://mathworld.wolfram.com/FibonacciNumber.html """ @staticmethod def _fib(n): return _ifib(n) @staticmethod @recurrence_memo([None, S.One, _sym]) def _fibpoly(n, prev): return (prev[-2] + _sym*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: n = int(n) if n < 0: return S.NegativeOne**(n + 1) * fibonacci(-n) if sym is None: return Integer(cls._fib(n)) else: if n < 1: raise ValueError("Fibonacci polynomials are defined " "only for positive integer indices.") return cls._fibpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 def _eval_rewrite_as_GoldenRatio(self,n, **kwargs): return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1) #----------------------------------------------------------------------------# # # # Lucas numbers # # # #----------------------------------------------------------------------------# class lucas(Function): """ Lucas numbers Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values `L_0 = 2` and `L_1 = 1`. * ``lucas(n)`` gives the `n^{th}` Lucas number Examples ======== >>> from sympy import lucas >>> [lucas(x) for x in range(11)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123] See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Lucas_number .. [2] http://mathworld.wolfram.com/LucasNumber.html """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n.is_Integer: return fibonacci(n + 1) + fibonacci(n - 1) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n) #----------------------------------------------------------------------------# # # # Tribonacci numbers # # # #----------------------------------------------------------------------------# class tribonacci(Function): r""" Tribonacci numbers / Tribonacci polynomials The Tibonacci numbers are the integer sequence defined by the initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`. The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`, `T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)` for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`. * ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n` * ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)` Examples ======== >>> from sympy import tribonacci, Symbol >>> [tribonacci(x) for x in range(11)] [0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149] >>> tribonacci(5, Symbol('t')) t**8 + 3*t**5 + 3*t**2 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers .. [2] http://mathworld.wolfram.com/TribonacciNumber.html .. [3] https://oeis.org/A000073 """ @staticmethod @recurrence_memo([S.Zero, S.One, S.One]) def _trib(n, prev): return (prev[-3] + prev[-2] + prev[-1]) @staticmethod @recurrence_memo([S.Zero, S.One, _sym**2]) def _tribpoly(n, prev): return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: n = int(n) if n < 0: raise NotImplementedError if sym is None: return Integer(cls._trib(n)) else: if n < 0: raise ValueError("Tribonacci polynomials are defined " "only for non-negative integer indices.") return cls._tribpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 Tn = (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) return Tn def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs): b = cbrt(586 + 102*sqrt(33)) Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4) return floor(Tn + S.Half) #----------------------------------------------------------------------------# # # # Bernoulli numbers # # # #----------------------------------------------------------------------------# class bernoulli(Function): r""" Bernoulli numbers / Bernoulli polynomials The Bernoulli numbers are a sequence of rational numbers defined by `B_0 = 1` and the recursive relation (`n > 0`): .. math :: 0 = \sum_{k=0}^n \binom{n+1}{k} B_k They are also commonly defined by their exponential generating function, which is `\frac{x}{e^x - 1}`. For odd indices > 1, the Bernoulli numbers are zero. The Bernoulli polynomials satisfy the analogous formula: .. math :: B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k} Bernoulli numbers and Bernoulli polynomials are related as `B_n(0) = B_n`. We compute Bernoulli numbers using Ramanujan's formula: .. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}} where: .. math :: A(n) = \begin{cases} \frac{n+3}{3} & n \equiv 0\ \text{or}\ 2 \pmod{6} \\ -\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases} and: .. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k} This formula is similar to the sum given in the definition, but cuts 2/3 of the terms. For Bernoulli polynomials, we use the formula in the definition. * ``bernoulli(n)`` gives the nth Bernoulli number, `B_n` * ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)` Examples ======== >>> from sympy import bernoulli >>> [bernoulli(n) for n in range(11)] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> bernoulli(1000001) 0 See Also ======== bell, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_number .. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial .. [3] http://mathworld.wolfram.com/BernoulliNumber.html .. [4] http://mathworld.wolfram.com/BernoulliPolynomial.html """ # Calculates B_n for positive even n @staticmethod def _calc_bernoulli(n): s = 0 a = int(binomial(n + 3, n - 6)) for j in range(1, n//6 + 1): s += a * bernoulli(n - 6*j) # Avoid computing each binomial coefficient from scratch a *= _product(n - 6 - 6*j + 1, n - 6*j) a //= _product(6*j + 4, 6*j + 9) if n % 6 == 4: s = -Rational(n + 3, 6) - s else: s = Rational(n + 3, 3) - s return s / binomial(n + 3, n) # We implement a specialized memoization scheme to handle each # case modulo 6 separately _cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)} _highest = {0: 0, 2: 2, 4: 4} @classmethod def eval(cls, n, sym=None): if n.is_Number: if n.is_Integer and n.is_nonnegative: if n is S.Zero: return S.One elif n is S.One: if sym is None: return -S.Half else: return sym - S.Half # Bernoulli numbers elif sym is None: if n.is_odd: return S.Zero n = int(n) # Use mpmath for enormous Bernoulli numbers if n > 500: p, q = bernfrac(n) return Rational(int(p), int(q)) case = n % 6 highest_cached = cls._highest[case] if n <= highest_cached: return cls._cache[n] # To avoid excessive recursion when, say, bernoulli(1000) is # requested, calculate and cache the entire sequence ... B_988, # B_994, B_1000 in increasing order for i in range(highest_cached + 6, n + 6, 6): b = cls._calc_bernoulli(i) cls._cache[i] = b cls._highest[case] = i return b # Bernoulli polynomials else: n, result = int(n), [] for k in range(n + 1): result.append(binomial(n, k)*cls(k)*sym**(n - k)) return Add(*result) else: raise ValueError("Bernoulli numbers are defined only" " for nonnegative integer indices.") if sym is None: if n.is_odd and (n - 1).is_positive: return S.Zero #----------------------------------------------------------------------------# # # # Bell numbers # # # #----------------------------------------------------------------------------# class bell(Function): r""" Bell numbers / Bell polynomials The Bell numbers satisfy `B_0 = 1` and .. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k. They are also given by: .. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}. The Bell polynomials are given by `B_0(x) = 1` and .. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x). The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * ``bell(n)`` gives the `n^{th}` Bell number, `B_n`. * ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`. * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. Notes ===== Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation. Examples ======== >>> from sympy import bell, Symbol, symbols >>> [bell(n) for n in range(11)] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] >>> bell(30) 846749014511809332450147 >>> bell(4, Symbol('t')) t**4 + 6*t**3 + 7*t**2 + t >>> bell(6, 2, symbols('x:6')[1:]) 6*x1*x5 + 15*x2*x4 + 10*x3**2 See Also ======== bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bell_number .. [2] http://mathworld.wolfram.com/BellNumber.html .. [3] http://mathworld.wolfram.com/BellPolynomial.html """ @staticmethod @recurrence_memo([1, 1]) def _bell(n, prev): s = 1 a = 1 for k in range(1, n): a = a * (n - k) // k s += a * prev[k] return s @staticmethod @recurrence_memo([S.One, _sym]) def _bell_poly(n, prev): s = 1 a = 1 for k in range(2, n + 1): a = a * (n - k + 1) // (k - 1) s += a * prev[k - 1] return expand_mul(_sym * s) @staticmethod def _bell_incomplete_poly(n, k, symbols): r""" The second kind of Bell polynomials (incomplete Bell polynomials). Calculated by recurrence formula: .. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) = \sum_{m=1}^{n-k+1} \x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k}) where `B_{0,0} = 1;` `B_{n,0} = 0; for n \ge 1` `B_{0,k} = 0; for k \ge 1` """ if (n == 0) and (k == 0): return S.One elif (n == 0) or (k == 0): return S.Zero s = S.Zero a = S.One for m in range(1, n - k + 2): s += a * bell._bell_incomplete_poly( n - m, k - 1, symbols) * symbols[m - 1] a = a * (n - m) / m return expand_mul(s) @classmethod def eval(cls, n, k_sym=None, symbols=None): if n is S.Infinity: if k_sym is None: return S.Infinity else: raise ValueError("Bell polynomial is not defined") if n.is_negative or n.is_integer is False: raise ValueError("a non-negative integer expected") if n.is_Integer and n.is_nonnegative: if k_sym is None: return Integer(cls._bell(int(n))) elif symbols is None: return cls._bell_poly(int(n)).subs(_sym, k_sym) else: r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols) return r def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs): from sympy import Sum if (k_sym is not None) or (symbols is not None): return self # Dobinski's formula if not n.is_nonnegative: return self k = Dummy('k', integer=True, nonnegative=True) return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity)) #----------------------------------------------------------------------------# # # # Harmonic numbers # # # #----------------------------------------------------------------------------# class harmonic(Function): r""" Harmonic numbers The nth harmonic number is given by `\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`. More generally: .. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m} As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`, the Riemann zeta function. * ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n` * ``harmonic(n, m)`` gives the nth generalized harmonic number of order `m`, `\operatorname{H}_{n,m}`, where ``harmonic(n) == harmonic(n, 1)`` Examples ======== >>> from sympy import harmonic, oo >>> [harmonic(n) for n in range(6)] [0, 1, 3/2, 11/6, 25/12, 137/60] >>> [harmonic(n, 2) for n in range(6)] [0, 1, 5/4, 49/36, 205/144, 5269/3600] >>> harmonic(oo, 2) pi**2/6 >>> from sympy import Symbol, Sum >>> n = Symbol("n") >>> harmonic(n).rewrite(Sum) Sum(1/_k, (_k, 1, n)) We can evaluate harmonic numbers for all integral and positive rational arguments: >>> from sympy import S, expand_func, simplify >>> harmonic(8) 761/280 >>> harmonic(11) 83711/27720 >>> H = harmonic(1/S(3)) >>> H harmonic(1/3) >>> He = expand_func(H) >>> He -log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1)) + 3*Sum(1/(3*_k + 1), (_k, 0, 0)) >>> He.doit() -log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3 >>> H = harmonic(25/S(7)) >>> He = simplify(expand_func(H).doit()) >>> He log(sin(pi/7)**(-2*cos(pi/7))*sin(2*pi/7)**(2*cos(16*pi/7))*cos(pi/14)**(-2*sin(pi/14))/14) + pi*tan(pi/14)/2 + 30247/9900 >>> He.n(40) 1.983697455232980674869851942390639915940 >>> harmonic(25/S(7)).n(40) 1.983697455232980674869851942390639915940 We can rewrite harmonic numbers in terms of polygamma functions: >>> from sympy import digamma, polygamma >>> m = Symbol("m") >>> harmonic(n).rewrite(digamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n).rewrite(polygamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n,3).rewrite(polygamma) polygamma(2, n + 1)/2 - polygamma(2, 1)/2 >>> harmonic(n,m).rewrite(polygamma) (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) Integer offsets in the argument can be pulled out: >>> from sympy import expand_func >>> expand_func(harmonic(n+4)) harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) >>> expand_func(harmonic(n-4)) harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n Some limits can be computed as well: >>> from sympy import limit, oo >>> limit(harmonic(n), n, oo) oo >>> limit(harmonic(n, 2), n, oo) pi**2/6 >>> limit(harmonic(n, 3), n, oo) -polygamma(2, 1)/2 However we can not compute the general relation yet: >>> limit(harmonic(n, m), n, oo) harmonic(oo, m) which equals ``zeta(m)`` for ``m > 1``. See Also ======== bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Harmonic_number .. [2] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/ .. [3] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/ """ # Generate one memoized Harmonic number-generating function for each # order and store it in a dictionary _functions = {} @classmethod def eval(cls, n, m=None): from sympy import zeta if m is S.One: return cls(n) if m is None: m = S.One if m.is_zero: return n if n is S.Infinity and m.is_Number: # TODO: Fix for symbolic values of m if m.is_negative: return S.NaN elif LessThan(m, S.One): return S.Infinity elif StrictGreaterThan(m, S.One): return zeta(m) else: return cls if n == 0: return S.Zero if n.is_Integer and n.is_nonnegative and m.is_Integer: if not m in cls._functions: @recurrence_memo([0]) def f(n, prev): return prev[-1] + S.One / n**m cls._functions[m] = f return cls._functions[m](int(n)) def _eval_rewrite_as_polygamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return S.NegativeOne**m/factorial(m - 1) * (polygamma(m - 1, 1) - polygamma(m - 1, n + 1)) def _eval_rewrite_as_digamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_Sum(self, n, m=None, **kwargs): from sympy import Sum k = Dummy("k", integer=True) if m is None: m = S.One return Sum(k**(-m), (k, 1, n)) def _eval_expand_func(self, **hints): from sympy import Sum n = self.args[0] m = self.args[1] if len(self.args) == 2 else 1 if m == S.One: if n.is_Add: off = n.args[0] nnew = n - off if off.is_Integer and off.is_positive: result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)] return Add(*result) elif off.is_Integer and off.is_negative: result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)] return Add(*result) if n.is_Rational: # Expansions for harmonic numbers at general rational arguments (u + p/q) # Split n as u + p/q with p < q p, q = n.as_numer_denom() u = p // q p = p - u * q if u.is_nonnegative and p.is_positive and q.is_positive and p < q: k = Dummy("k") t1 = q * Sum(1 / (q * k + p), (k, 0, u)) t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) * log(sin((pi * k) / S(q))), (k, 1, floor((q - 1) / S(2)))) t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q) return t1 + t2 - t3 return self def _eval_rewrite_as_tractable(self, n, m=1, **kwargs): from sympy import polygamma return self.rewrite(polygamma).rewrite("tractable", deep=True) def _eval_evalf(self, prec): from sympy import polygamma if all(i.is_number for i in self.args): return self.rewrite(polygamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Euler numbers # # # #----------------------------------------------------------------------------# class euler(Function): r""" Euler numbers / Euler polynomials The Euler numbers are given by: .. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j} \frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k} .. math:: E_{2n+1} = 0 Euler numbers and Euler polynomials are related by .. math:: E_n = 2^n E_n\left(\frac{1}{2}\right). We compute symbolic Euler polynomials using [5]_ .. math:: E_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{E_k}{2^k} \left(x - \frac{1}{2}\right)^{n-k}. However, numerical evaluation of the Euler polynomial is computed more efficiently (and more accurately) using the mpmath library. * ``euler(n)`` gives the `n^{th}` Euler number, `E_n`. * ``euler(n, x)`` gives the `n^{th}` Euler polynomial, `E_n(x)`. Examples ======== >>> from sympy import Symbol, S >>> from sympy.functions import euler >>> [euler(n) for n in range(10)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0] >>> n = Symbol("n") >>> euler(n + 2*n) euler(3*n) >>> x = Symbol("x") >>> euler(n, x) euler(n, x) >>> euler(0, x) 1 >>> euler(1, x) x - 1/2 >>> euler(2, x) x**2 - x >>> euler(3, x) x**3 - 3*x**2/2 + 1/4 >>> euler(4, x) x**4 - 2*x**3 + x >>> euler(12, S.Half) 2702765/4096 >>> euler(12) 2702765 See Also ======== bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Euler_numbers .. [2] http://mathworld.wolfram.com/EulerNumber.html .. [3] https://en.wikipedia.org/wiki/Alternating_permutation .. [4] http://mathworld.wolfram.com/AlternatingPermutation.html .. [5] http://dlmf.nist.gov/24.2#ii """ @classmethod def eval(cls, m, sym=None): if m.is_Number: if m.is_Integer and m.is_nonnegative: # Euler numbers if sym is None: if m.is_odd: return S.Zero from mpmath import mp m = m._to_mpmath(mp.prec) res = mp.eulernum(m, exact=True) return Integer(res) # Euler polynomial else: from sympy.core.evalf import pure_complex reim = pure_complex(sym, or_real=True) # Evaluate polynomial numerically using mpmath if reim and all(a.is_Float or a.is_Integer for a in reim) \ and any(a.is_Float for a in reim): from mpmath import mp from sympy import Expr m = int(m) # XXX ComplexFloat (#12192) would be nice here, above prec = min([a._prec for a in reim if a.is_Float]) with workprec(prec): res = mp.eulerpoly(m, sym) return Expr._from_mpmath(res, prec) # Construct polynomial symbolically from definition m, result = int(m), [] for k in range(m + 1): result.append(binomial(m, k)*cls(k)/(2**k)*(sym - S.Half)**(m - k)) return Add(*result).expand() else: raise ValueError("Euler numbers are defined only" " for nonnegative integer indices.") if sym is None: if m.is_odd and m.is_positive: return S.Zero def _eval_rewrite_as_Sum(self, n, x=None, **kwargs): from sympy import Sum if x is None and n.is_even: k = Dummy("k", integer=True) j = Dummy("j", integer=True) n = n / 2 Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * ((-1)**j * (k - 2*j)**(2*n + 1)) / (2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1))) return Em if x: k = Dummy("k", integer=True) return Sum(binomial(n, k)*euler(k)/2**k*(x-S.Half)**(n-k), (k, 0, n)) def _eval_evalf(self, prec): m, x = (self.args[0], None) if len(self.args) == 1 else self.args if x is None and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = m._to_mpmath(prec) with workprec(prec): res = mp.eulernum(m) return Expr._from_mpmath(res, prec) if x and x.is_number and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = int(m) x = x._to_mpmath(prec) with workprec(prec): res = mp.eulerpoly(m, x) return Expr._from_mpmath(res, prec) #----------------------------------------------------------------------------# # # # Catalan numbers # # # #----------------------------------------------------------------------------# class catalan(Function): r""" Catalan numbers The `n^{th}` catalan number is given by: .. math :: C_n = \frac{1}{n+1} \binom{2n}{n} * ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n` Examples ======== >>> from sympy import (Symbol, binomial, gamma, hyper, polygamma, ... catalan, diff, combsimp, Rational, I) >>> [catalan(i) for i in range(1,10)] [1, 2, 5, 14, 42, 132, 429, 1430, 4862] >>> n = Symbol("n", integer=True) >>> catalan(n) catalan(n) Catalan numbers can be transformed into several other, identical expressions involving other mathematical functions >>> catalan(n).rewrite(binomial) binomial(2*n, n)/(n + 1) >>> catalan(n).rewrite(gamma) 4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2)) >>> catalan(n).rewrite(hyper) hyper((-n + 1, -n), (2,), 1) For some non-integer values of n we can get closed form expressions by rewriting in terms of gamma functions: >>> catalan(Rational(1,2)).rewrite(gamma) 8/(3*pi) We can differentiate the Catalan numbers C(n) interpreted as a continuous real function in n: >>> diff(catalan(n), n) (polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n) As a more advanced example consider the following ratio between consecutive numbers: >>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial)) 2*(2*n + 1)/(n + 2) The Catalan numbers can be generalized to complex numbers: >>> catalan(I).rewrite(gamma) 4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I)) and evaluated with arbitrary precision: >>> catalan(I).evalf(20) 0.39764993382373624267 - 0.020884341620842555705*I See Also ======== bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci sympy.functions.combinatorial.factorials.binomial References ========== .. [1] https://en.wikipedia.org/wiki/Catalan_number .. [2] http://mathworld.wolfram.com/CatalanNumber.html .. [3] http://functions.wolfram.com/GammaBetaErf/CatalanNumber/ .. [4] http://geometer.org/mathcircles/catalan.pdf """ @classmethod def eval(cls, n): from sympy import gamma if (n.is_Integer and n.is_nonnegative) or \ (n.is_noninteger and n.is_negative): return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) if (n.is_integer and n.is_negative): if (n + 1).is_negative: return S.Zero if (n + 1).is_zero: return -S.Half def fdiff(self, argindex=1): from sympy import polygamma, log n = self.args[0] return catalan(n)*(polygamma(0, n + Rational(1, 2)) - polygamma(0, n + 2) + log(4)) def _eval_rewrite_as_binomial(self, n, **kwargs): return binomial(2*n, n)/(n + 1) def _eval_rewrite_as_factorial(self, n, **kwargs): return factorial(2*n) / (factorial(n+1) * factorial(n)) def _eval_rewrite_as_gamma(self, n, **kwargs): from sympy import gamma # The gamma function allows to generalize Catalan numbers to complex n return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) def _eval_rewrite_as_hyper(self, n, **kwargs): from sympy import hyper return hyper([1 - n, -n], [2], 1) def _eval_rewrite_as_Product(self, n, **kwargs): from sympy import Product if not (n.is_integer and n.is_nonnegative): return self k = Dummy('k', integer=True, positive=True) return Product((n + k) / k, (k, 2, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_nonnegative: return True def _eval_is_composite(self): if self.args[0].is_integer and (self.args[0] - 3).is_positive: return True def _eval_evalf(self, prec): from sympy import gamma if self.args[0].is_number: return self.rewrite(gamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Genocchi numbers # # # #----------------------------------------------------------------------------# class genocchi(Function): r""" Genocchi numbers The Genocchi numbers are a sequence of integers `G_n` that satisfy the relation: .. math:: \frac{2t}{e^t + 1} = \sum_{n=1}^\infty \frac{G_n t^n}{n!} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import genocchi >>> [genocchi(n) for n in range(1, 9)] [1, -1, 0, 1, 0, -3, 0, 17] >>> n = Symbol('n', integer=True, positive=True) >>> genocchi(2*n + 1) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Genocchi_number .. [2] http://mathworld.wolfram.com/GenocchiNumber.html """ @classmethod def eval(cls, n): if n.is_Number: if (not n.is_Integer) or n.is_nonpositive: raise ValueError("Genocchi numbers are defined only for " + "positive integers") return 2 * (1 - S(2) ** n) * bernoulli(n) if n.is_odd and (n - 1).is_positive: return S.Zero if (n - 1).is_zero: return S.One def _eval_rewrite_as_bernoulli(self, n, **kwargs): if n.is_integer and n.is_nonnegative: return (1 - S(2) ** n) * bernoulli(n) * 2 def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_positive: return True def _eval_is_negative(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return False return (n / 2).is_odd def _eval_is_positive(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return fuzzy_not((n - 1).is_positive) return (n / 2).is_even def _eval_is_even(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return False return (n - 1).is_positive def _eval_is_odd(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return True return fuzzy_not((n - 1).is_positive) def _eval_is_prime(self): n = self.args[0] # only G_6 = -3 and G_8 = 17 are prime, # but SymPy does not consider negatives as prime # so only n=8 is tested return (n - 8).is_zero #----------------------------------------------------------------------------# # # # Partition numbers # # # #----------------------------------------------------------------------------# class partition(Function): r""" Partition numbers The Partition numbers are a sequence of integers `p_n` that represent the number of distinct ways of representing `n` as a sum of natural numbers (with order irrelevant). The generating function for `p_n` is given by: .. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import partition >>> [partition(n) for n in range(9)] [1, 1, 2, 3, 5, 7, 11, 15, 22] >>> n = Symbol('n', integer=True, negative=True) >>> partition(n) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29 .. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem """ @staticmethod @recurrence_memo([1, 1]) def _partition(n, prev): v, g, i = 0, 0, 0 while 1: s = 0 i += 1 g = i * (3*i - 1) // 2 if n >= g: s += prev[n - g] g = i * (3*i + 1) // 2 if n >= g: s += prev[n - g] if s == 0: break else: v += s if i%2 == 1 else -s return v @classmethod def eval(cls, n): is_int = n.is_integer if is_int == False: raise ValueError("Partition numbers are defined only for " "integers") elif is_int: if n.is_negative: return S.Zero if n.is_zero or (n - 1).is_zero: return S.One if n.is_Integer: return Integer(cls._partition(n)) def _eval_is_integer(self): if self.args[0].is_integer: return True def _eval_is_negative(self): if self.args[0].is_integer: return False def _eval_is_positive(self): n = self.args[0] if n.is_nonnegative and n.is_integer: return True ####################################################################### ### ### Functions for enumerating partitions, permutations and combinations ### ####################################################################### class _MultisetHistogram(tuple): pass _N = -1 _ITEMS = -2 _M = slice(None, _ITEMS) def _multiset_histogram(n): """Return tuple used in permutation and combination counting. Input is a dictionary giving items with counts as values or a sequence of items (which need not be sorted). The data is stored in a class deriving from tuple so it is easily recognized and so it can be converted easily to a list. """ if isinstance(n, dict): # item: count if not all(isinstance(v, int) and v >= 0 for v in n.values()): raise ValueError tot = sum(n.values()) items = sum(1 for k in n if n[k] > 0) return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot]) else: n = list(n) s = set(n) if len(s) == len(n): n = [1]*len(n) n.extend([len(n), len(n)]) return _MultisetHistogram(n) m = dict(zip(s, range(len(s)))) d = dict(zip(range(len(s)), [0]*len(s))) for i in n: d[m[i]] += 1 return _multiset_histogram(d) def nP(n, k=None, replacement=False): """Return the number of permutations of ``n`` items taken ``k`` at a time. Possible values for ``n``:: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all permutations of length 0 through the number of items represented by ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' permutations of 2 would include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nP >>> from sympy.utilities.iterables import multiset_permutations, multiset >>> nP(3, 2) 6 >>> nP('abc', 2) == nP(multiset('abc'), 2) == 6 True >>> nP('aab', 2) 3 >>> nP([1, 2, 2], 2) 3 >>> [nP(3, i) for i in range(4)] [1, 3, 6, 6] >>> nP(3) == sum(_) True When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nP('aabc', replacement=True) 121 >>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 9, 27, 81] >>> sum(_) 121 See Also ======== sympy.utilities.iterables.multiset_permutations References ========== .. [1] https://en.wikipedia.org/wiki/Permutation """ try: n = as_int(n) except ValueError: return Integer(_nP(_multiset_histogram(n), k, replacement)) return Integer(_nP(n, k, replacement)) @cacheit def _nP(n, k=None, replacement=False): from sympy.functions.combinatorial.factorials import factorial from sympy.core.mul import prod if k == 0: return 1 if isinstance(n, SYMPY_INTS): # n different items # assert n >= 0 if k is None: return sum(_nP(n, i, replacement) for i in range(n + 1)) elif replacement: return n**k elif k > n: return 0 elif k == n: return factorial(k) elif k == 1: return n else: # assert k >= 0 return _product(n - k + 1, n) elif isinstance(n, _MultisetHistogram): if k is None: return sum(_nP(n, i, replacement) for i in range(n[_N] + 1)) elif replacement: return n[_ITEMS]**k elif k == n[_N]: return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1]) elif k > n[_N]: return 0 elif k == 1: return n[_ITEMS] else: # assert k >= 0 tot = 0 n = list(n) for i in range(len(n[_M])): if not n[i]: continue n[_N] -= 1 if n[i] == 1: n[i] = 0 n[_ITEMS] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[_ITEMS] += 1 n[i] = 1 else: n[i] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[i] += 1 n[_N] += 1 return tot @cacheit def _AOP_product(n): """for n = (m1, m2, .., mk) return the coefficients of the polynomial, prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients of the product of AOPs (all-one polynomials) or order given in n. The resulting coefficient corresponding to x**r is the number of r-length combinations of sum(n) elements with multiplicities given in n. The coefficients are given as a default dictionary (so if a query is made for a key that is not present, 0 will be returned). Examples ======== >>> from sympy.functions.combinatorial.numbers import _AOP_product >>> from sympy.abc import x >>> n = (2, 2, 3) # e.g. aabbccc >>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand() >>> c = _AOP_product(n); dict(c) {0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1} >>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)] True The generating poly used here is the same as that listed in http://tinyurl.com/cep849r, but in a refactored form. """ from collections import defaultdict n = list(n) ord = sum(n) need = (ord + 2)//2 rv = [1]*(n.pop() + 1) rv.extend([0]*(need - len(rv))) rv = rv[:need] while n: ni = n.pop() N = ni + 1 was = rv[:] for i in range(1, min(N, len(rv))): rv[i] += rv[i - 1] for i in range(N, need): rv[i] += rv[i - 1] - was[i - N] rev = list(reversed(rv)) if ord % 2: rv = rv + rev else: rv[-1:] = rev d = defaultdict(int) for i in range(len(rv)): d[i] = rv[i] return d def nC(n, k=None, replacement=False): """Return the number of combinations of ``n`` items taken ``k`` at a time. Possible values for ``n``:: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all combinations of length 0 through the number of items represented in ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa', 'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nC >>> from sympy.utilities.iterables import multiset_combinations >>> nC(3, 2) 3 >>> nC('abc', 2) 3 >>> nC('aab', 2) 2 When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nC('aabc', replacement=True) 35 >>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 6, 10, 15] >>> sum(_) 35 If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k`` then the total of all combinations of length 0 through ``k`` is the product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity of each item is 1 (i.e., k unique items) then there are 2**k combinations. For example, if there are 4 unique items, the total number of combinations is 16: >>> sum(nC(4, i) for i in range(5)) 16 See Also ======== sympy.utilities.iterables.multiset_combinations References ========== .. [1] https://en.wikipedia.org/wiki/Combination .. [2] http://tinyurl.com/cep849r """ from sympy.functions.combinatorial.factorials import binomial from sympy.core.mul import prod if isinstance(n, SYMPY_INTS): if k is None: if not replacement: return 2**n return sum(nC(n, i, replacement) for i in range(n + 1)) if k < 0: raise ValueError("k cannot be negative") if replacement: return binomial(n + k - 1, k) return binomial(n, k) if isinstance(n, _MultisetHistogram): N = n[_N] if k is None: if not replacement: return prod(m + 1 for m in n[_M]) return sum(nC(n, i, replacement) for i in range(N + 1)) elif replacement: return nC(n[_ITEMS], k, replacement) # assert k >= 0 elif k in (1, N - 1): return n[_ITEMS] elif k in (0, N): return 1 return _AOP_product(tuple(n[_M]))[k] else: return nC(_multiset_histogram(n), k, replacement) @cacheit def _stirling1(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero n1 = n - 1 # some special values if n == k: return S.One elif k == 1: return factorial(n1) elif k == n1: return binomial(n, 2) elif k == n - 2: return (3*n - 1)*binomial(n, 3)/4 elif k == n - 3: return binomial(n, 2)*binomial(n, 4) # general recurrence return n1*_stirling1(n1, k) + _stirling1(n1, k - 1) @cacheit def _stirling2(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero n1 = n - 1 # some special values if k == n1: return binomial(n, 2) elif k == 2: return 2**n1 - 1 # general recurrence return k*_stirling2(n1, k) + _stirling2(n1, k - 1) def stirling(n, k, d=None, kind=2, signed=False): r"""Return Stirling number `S(n, k)` of the first or second (default) kind. The sum of all Stirling numbers of the second kind for `k = 1` through `n` is ``bell(n)``. The recurrence relationship for these numbers is: .. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0; .. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}} where `j` is: `n` for Stirling numbers of the first kind `-n` for signed Stirling numbers of the first kind `k` for Stirling numbers of the second kind The first kind of Stirling number counts the number of permutations of ``n`` distinct items that have ``k`` cycles; the second kind counts the ways in which ``n`` distinct items can be partitioned into ``k`` parts. If ``d`` is given, the "reduced Stirling number of the second kind" is returned: ``S^{d}(n, k) = S(n - d + 1, k - d + 1)`` with ``n >= k >= d``. (This counts the ways to partition ``n`` consecutive integers into ``k`` groups with no pairwise difference less than ``d``. See example below.) To obtain the signed Stirling numbers of the first kind, use keyword ``signed=True``. Using this keyword automatically sets ``kind`` to 1. Examples ======== >>> from sympy.functions.combinatorial.numbers import stirling, bell >>> from sympy.combinatorics import Permutation >>> from sympy.utilities.iterables import multiset_partitions, permutations First kind (unsigned by default): >>> [stirling(6, i, kind=1) for i in range(7)] [0, 120, 274, 225, 85, 15, 1] >>> perms = list(permutations(range(4))) >>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)] [0, 6, 11, 6, 1] >>> [stirling(4, i, kind=1) for i in range(5)] [0, 6, 11, 6, 1] First kind (signed): >>> [stirling(4, i, signed=True) for i in range(5)] [0, -6, 11, -6, 1] Second kind: >>> [stirling(10, i) for i in range(12)] [0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0] >>> sum(_) == bell(10) True >>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2) True Reduced second kind: >>> from sympy import subsets, oo >>> def delta(p): ... if len(p) == 1: ... return oo ... return min(abs(i[0] - i[1]) for i in subsets(p, 2)) >>> parts = multiset_partitions(range(5), 3) >>> d = 2 >>> sum(1 for p in parts if all(delta(i) >= d for i in p)) 7 >>> stirling(5, 3, 2) 7 See Also ======== sympy.utilities.iterables.multiset_partitions References ========== .. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind .. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind """ # TODO: make this a class like bell() n = as_int(n) k = as_int(k) if n < 0: raise ValueError('n must be nonnegative') if k > n: return S.Zero if d: # assert k >= d # kind is ignored -- only kind=2 is supported return _stirling2(n - d + 1, k - d + 1) elif signed: # kind is ignored -- only kind=1 is supported return (-1)**(n - k)*_stirling1(n, k) if kind == 1: return _stirling1(n, k) elif kind == 2: return _stirling2(n, k) else: raise ValueError('kind must be 1 or 2, not %s' % k) @cacheit def _nT(n, k): """Return the partitions of ``n`` items into ``k`` parts. This is used by ``nT`` for the case when ``n`` is an integer.""" if k == 0: return 1 if k == n else 0 return sum(_nT(n - k, j) for j in range(min(k, n - k) + 1)) def nT(n, k=None): """Return the number of ``k``-sized partitions of ``n`` items. Possible values for ``n``:: integer - ``n`` identical items sequence - converted to a multiset internally multiset - {element: multiplicity} Note: the convention for ``nT`` is different than that of ``nC`` and ``nP`` in that here an integer indicates ``n`` *identical* items instead of a set of length ``n``; this is in keeping with the ``partitions`` function which treats its integer-``n`` input like a list of ``n`` 1s. One can use ``range(n)`` for ``n`` to indicate ``n`` distinct items. If ``k`` is None then the total number of ways to partition the elements represented in ``n`` will be returned. Examples ======== >>> from sympy.functions.combinatorial.numbers import nT Partitions of the given multiset: >>> [nT('aabbc', i) for i in range(1, 7)] [1, 8, 11, 5, 1, 0] >>> nT('aabbc') == sum(_) True >>> [nT("mississippi", i) for i in range(1, 12)] [1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1] Partitions when all items are identical: >>> [nT(5, i) for i in range(1, 6)] [1, 2, 2, 1, 1] >>> nT('1'*5) == sum(_) True When all items are different: >>> [nT(range(5), i) for i in range(1, 6)] [1, 15, 25, 10, 1] >>> nT(range(5)) == sum(_) True Partitions of an integer expressed as a sum of positive integers: >>> from sympy.functions.combinatorial.numbers import partition >>> partition(4) 5 >>> sum([nT(4, i) for i in range(4 + 1)]) 5 >>> nT('1'*4) 5 See Also ======== sympy.utilities.iterables.partitions sympy.utilities.iterables.multiset_partitions sympy.functions.combinatorial.numbers.partition References ========== .. [1] http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf """ from sympy.utilities.enumerative import MultisetPartitionTraverser if isinstance(n, SYMPY_INTS): # assert n >= 0 # all the same if k is None: return partition(n) elif n == 0: return S.One if k == 0 else S.Zero return _nT(n, k) if not isinstance(n, _MultisetHistogram): try: # if n contains hashable items there is some # quick handling that can be done u = len(set(n)) if u <= 1: return nT(len(n), k) elif u == len(n): n = range(u) raise TypeError except TypeError: n = _multiset_histogram(n) N = n[_N] if k is None and N == 1: return 1 if k in (1, N): return 1 if k == 2 or N == 2 and k is None: m, r = divmod(N, 2) rv = sum(nC(n, i) for i in range(1, m + 1)) if not r: rv -= nC(n, m)//2 if k is None: rv += 1 # for k == 1 return rv if N == n[_ITEMS]: # all distinct if k is None: return bell(N) return stirling(N, k) m = MultisetPartitionTraverser() if k is None: return m.count_partitions(n[_M]) # MultisetPartitionTraverser does not have a range-limited count # method, so need to enumerate and count tot = 0 for discard in m.enum_range(n[_M], k-1, k): tot += 1 return tot
bbea04bc24cdf5a511e3bc06250e411ec590aeb0b1f0d70cf257c0c08914849c
from __future__ import print_function, division from sympy.core import S, sympify, Dummy, Mod from sympy.core.cache import cacheit from sympy.core.compatibility import reduce, range, HAS_GMPY from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_and from sympy.core.numbers import Integer, pi from sympy.core.relational import Eq from sympy.ntheory import sieve from sympy.polys.polytools import Poly from math import sqrt as _sqrt class CombinatorialFunction(Function): """Base class for combinatorial functions. """ def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.simplify.combsimp import combsimp # combinatorial function with non-integer arguments is # automatically passed to gammasimp expr = combsimp(self) if measure(expr) <= ratio*measure(self): return expr return self ############################################################################### ######################## FACTORIAL and MULTI-FACTORIAL ######################## ############################################################################### class factorial(CombinatorialFunction): r"""Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity. The factorial is very important in combinatorics where it gives the number of ways in which `n` objects can be permuted. It also arises in calculus, probability, number theory, etc. There is strict relation of factorial with gamma function. In fact `n! = gamma(n+1)` for nonnegative integers. Rewrite of this kind is very useful in case of combinatorial simplification. Computation of the factorial is done using two algorithms. For small arguments a precomputed look up table is used. However for bigger input algorithm Prime-Swing is used. It is the fastest algorithm known and computes `n!` via prime factorization of special class of numbers, called here the 'Swing Numbers'. Examples ======== >>> from sympy import Symbol, factorial, S >>> n = Symbol('n', integer=True) >>> factorial(0) 1 >>> factorial(7) 5040 >>> factorial(-2) zoo >>> factorial(n) factorial(n) >>> factorial(2*n) factorial(2*n) >>> factorial(S(1)/2) factorial(1/2) See Also ======== factorial2, RisingFactorial, FallingFactorial """ def fdiff(self, argindex=1): from sympy import gamma, polygamma if argindex == 1: return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1) else: raise ArgumentIndexError(self, argindex) _small_swing = [ 1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195 ] _small_factorials = [] @classmethod def _swing(cls, n): if n < 33: return cls._small_swing[n] else: N, primes = int(_sqrt(n)), [] for prime in sieve.primerange(3, N + 1): p, q = 1, n while True: q //= prime if q > 0: if q & 1 == 1: p *= prime else: break if p > 1: primes.append(p) for prime in sieve.primerange(N + 1, n//3 + 1): if (n // prime) & 1 == 1: primes.append(prime) L_product = R_product = 1 for prime in sieve.primerange(n//2 + 1, n + 1): L_product *= prime for prime in primes: R_product *= prime return L_product*R_product @classmethod def _recursive(cls, n): if n < 2: return 1 else: return (cls._recursive(n//2)**2)*cls._swing(n) @classmethod def eval(cls, n): n = sympify(n) if n.is_Number: if n is S.Zero: return S.One elif n is S.Infinity: return S.Infinity elif n.is_Integer: if n.is_negative: return S.ComplexInfinity else: n = n.p if n < 20: if not cls._small_factorials: result = 1 for i in range(1, 20): result *= i cls._small_factorials.append(result) result = cls._small_factorials[n-1] # GMPY factorial is faster, use it when available elif HAS_GMPY: from sympy.core.compatibility import gmpy result = gmpy.fac(n) else: bits = bin(n).count('1') result = cls._recursive(n)*2**(n - bits) return Integer(result) def _facmod(self, n, q): res, N = 1, int(_sqrt(n)) # Exponent of prime p in n! is e_p(n) = [n/p] + [n/p**2] + ... # for p > sqrt(n), e_p(n) < sqrt(n), the primes with [n/p] = m, # occur consecutively and are grouped together in pw[m] for # simultaneous exponentiation at a later stage pw = [1]*N m = 2 # to initialize the if condition below for prime in sieve.primerange(2, n + 1): if m > 1: m, y = 0, n // prime while y: m += y y //= prime if m < N: pw[m] = pw[m]*prime % q else: res = res*pow(prime, m, q) % q for ex, bs in enumerate(pw): if ex == 0 or bs == 1: continue if bs == 0: return 0 res = res*pow(bs, ex, q) % q return res def _eval_Mod(self, q): n = self.args[0] if n.is_integer and n.is_nonnegative and q.is_integer: aq = abs(q) d = aq - n if d.is_nonpositive: return 0 else: isprime = aq.is_prime if d == 1: # Apply Wilson's theorem (if a natural number n > 1 # is a prime number, then (n-1)! = -1 mod n) and # its inverse (if n > 4 is a composite number, then # (n-1)! = 0 mod n) if isprime: return -1 % q elif isprime is False and (aq - 6).is_nonnegative: return 0 elif n.is_Integer and q.is_Integer: n, d, aq = map(int, (n, d, aq)) if isprime and (d - 1 < n): fc = self._facmod(d - 1, aq) fc = pow(fc, aq - 2, aq) if d%2: fc = -fc else: fc = self._facmod(n, aq) return Integer(fc % q) def _eval_rewrite_as_gamma(self, n, **kwargs): from sympy import gamma return gamma(n + 1) def _eval_rewrite_as_Product(self, n, **kwargs): from sympy import Product if n.is_nonnegative and n.is_integer: i = Dummy('i', integer=True) return Product(i, (i, 1, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_even(self): x = self.args[0] if x.is_integer and x.is_nonnegative: return (x - 2).is_nonnegative def _eval_is_composite(self): x = self.args[0] if x.is_integer and x.is_nonnegative: return (x - 3).is_nonnegative def _eval_is_real(self): x = self.args[0] if x.is_nonnegative or x.is_noninteger: return True class MultiFactorial(CombinatorialFunction): pass class subfactorial(CombinatorialFunction): r"""The subfactorial counts the derangements of n items and is defined for non-negative integers as: .. math:: !n = \begin{cases} 1 & n = 0 \\ 0 & n = 1 \\ (n-1)(!(n-1) + !(n-2)) & n > 1 \end{cases} It can also be written as ``int(round(n!/exp(1)))`` but the recursive definition with caching is implemented for this function. An interesting analytic expression is the following [2]_ .. math:: !x = \Gamma(x + 1, -1)/e which is valid for non-negative integers `x`. The above formula is not very useful incase of non-integers. :math:`\Gamma(x + 1, -1)` is single-valued only for integral arguments `x`, elsewhere on the positive real axis it has an infinite number of branches none of which are real. References ========== .. [1] https://en.wikipedia.org/wiki/Subfactorial .. [2] http://mathworld.wolfram.com/Subfactorial.html Examples ======== >>> from sympy import subfactorial >>> from sympy.abc import n >>> subfactorial(n + 1) subfactorial(n + 1) >>> subfactorial(5) 44 See Also ======== sympy.functions.combinatorial.factorials.factorial, sympy.utilities.iterables.generate_derangements, sympy.functions.special.gamma_functions.uppergamma """ @classmethod @cacheit def _eval(self, n): if not n: return S.One elif n == 1: return S.Zero return (n - 1)*(self._eval(n - 1) + self._eval(n - 2)) @classmethod def eval(cls, arg): if arg.is_Number: if arg.is_Integer and arg.is_nonnegative: return cls._eval(arg) elif arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity def _eval_is_even(self): if self.args[0].is_odd and self.args[0].is_nonnegative: return True def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_rewrite_as_uppergamma(self, arg, **kwargs): from sympy import uppergamma return uppergamma(arg + 1, -1)/S.Exp1 def _eval_is_nonnegative(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_odd(self): if self.args[0].is_even and self.args[0].is_nonnegative: return True class factorial2(CombinatorialFunction): r"""The double factorial `n!!`, not to be confused with `(n!)!` The double factorial is defined for nonnegative integers and for odd negative integers as: .. math:: n!! = \begin{cases} 1 & n = 0 \\ n(n-2)(n-4) \cdots 1 & n\ \text{positive odd} \\ n(n-2)(n-4) \cdots 2 & n\ \text{positive even} \\ (n+2)!!/(n+2) & n\ \text{negative odd} \end{cases} References ========== .. [1] https://en.wikipedia.org/wiki/Double_factorial Examples ======== >>> from sympy import factorial2, var >>> var('n') n >>> factorial2(n + 1) factorial2(n + 1) >>> factorial2(5) 15 >>> factorial2(-1) 1 >>> factorial2(-5) 1/3 See Also ======== factorial, RisingFactorial, FallingFactorial """ @classmethod def eval(cls, arg): # TODO: extend this to complex numbers? if arg.is_Number: if not arg.is_Integer: raise ValueError("argument must be nonnegative integer " "or negative odd integer") # This implementation is faster than the recursive one # It also avoids "maximum recursion depth exceeded" runtime error if arg.is_nonnegative: if arg.is_even: k = arg / 2 return 2**k * factorial(k) return factorial(arg) / factorial2(arg - 1) if arg.is_odd: return arg*(S.NegativeOne)**((1 - arg)/2) / factorial2(-arg) raise ValueError("argument must be nonnegative integer " "or negative odd integer") def _eval_is_even(self): # Double factorial is even for every positive even input n = self.args[0] if n.is_integer: if n.is_odd: return False if n.is_even: if n.is_positive: return True if n.is_zero: return False def _eval_is_integer(self): # Double factorial is an integer for every nonnegative input, and for # -1 and -3 n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return (n + 3).is_nonnegative def _eval_is_odd(self): # Double factorial is odd for every odd input not smaller than -3, and # for 0 n = self.args[0] if n.is_odd: return (n + 3).is_nonnegative if n.is_even: if n.is_positive: return False if n.is_zero: return True def _eval_is_positive(self): # Double factorial is positive for every nonnegative input, and for # every odd negative input which is of the form -1-4k for an # nonnegative integer k n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return ((n + 1) / 2).is_even def _eval_rewrite_as_gamma(self, n, **kwargs): from sympy import gamma, Piecewise, sqrt return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2/pi), Eq(Mod(n, 2), 1))) ############################################################################### ######################## RISING and FALLING FACTORIALS ######################## ############################################################################### class RisingFactorial(CombinatorialFunction): r""" Rising factorial (also called Pochhammer symbol) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by: .. math:: rf(x,k) = x \cdot (x+1) \cdots (x+k-1) where `x` can be arbitrary expression and `k` is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/RisingFactorial.html page. When `x` is a Poly instance of degree >= 1 with a single variable, `rf(x,k) = x(y) \cdot x(y+1) \cdots x(y+k-1)`, where `y` is the variable of `x`. This is as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. Examples ======== >>> from sympy import rf, symbols, factorial, ff, binomial, Poly >>> from sympy.abc import x >>> n, k = symbols('n k', integer=True) >>> rf(x, 0) 1 >>> rf(1, 5) 120 >>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x) True >>> rf(Poly(x**3, x), 2) Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ') Rewrite >>> rf(x, k).rewrite(ff) FallingFactorial(k + x - 1, k) >>> rf(x, k).rewrite(binomial) binomial(k + x - 1, k)*factorial(k) >>> rf(n, k).rewrite(factorial) factorial(k + n - 1)/factorial(n - 1) See Also ======== factorial, factorial2, FallingFactorial References ========== .. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif x is S.One: return factorial(k) elif k.is_Integer: if k is S.Zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("rf only defined for " "polynomials on one generator") else: return reduce(lambda r, i: r*(x.shift(i).expand()), range(0, int(k)), 1) else: return reduce(lambda r, i: r*(x + i), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("rf only defined for " "polynomials on one generator") else: return 1/reduce(lambda r, i: r*(x.shift(-i).expand()), range(1, abs(int(k)) + 1), 1) else: return 1/reduce(lambda r, i: r*(x - i), range(1, abs(int(k)) + 1), 1) def _eval_rewrite_as_gamma(self, x, k, **kwargs): from sympy import gamma return gamma(x + k) / gamma(x) def _eval_rewrite_as_FallingFactorial(self, x, k, **kwargs): return FallingFactorial(x + k - 1, k) def _eval_rewrite_as_factorial(self, x, k, **kwargs): if x.is_integer and k.is_integer: return factorial(k + x - 1) / factorial(x - 1) def _eval_rewrite_as_binomial(self, x, k, **kwargs): if k.is_integer: return factorial(k) * binomial(x + k - 1, k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.rising_factorial(self.args[0]._sage_(), self.args[1]._sage_()) class FallingFactorial(CombinatorialFunction): r""" Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by .. math:: ff(x,k) = x \cdot (x-1) \cdots (x-k+1) where `x` can be arbitrary expression and `k` is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/FallingFactorial.html page. When `x` is a Poly instance of degree >= 1 with single variable, `ff(x,k) = x(y) \cdot x(y-1) \cdots x(y-k+1)`, where `y` is the variable of `x`. This is as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. >>> from sympy import ff, factorial, rf, gamma, polygamma, binomial, symbols, Poly >>> from sympy.abc import x, k >>> n, m = symbols('n m', integer=True) >>> ff(x, 0) 1 >>> ff(5, 5) 120 >>> ff(x, 5) == x*(x-1)*(x-2)*(x-3)*(x-4) True >>> ff(Poly(x**2, x), 2) Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ') >>> ff(n, n) factorial(n) Rewrite >>> ff(x, k).rewrite(gamma) (-1)**k*gamma(k - x)/gamma(-x) >>> ff(x, k).rewrite(rf) RisingFactorial(-k + x + 1, k) >>> ff(x, m).rewrite(binomial) binomial(x, m)*factorial(m) >>> ff(n, m).rewrite(factorial) factorial(n)/factorial(-m + n) See Also ======== factorial, factorial2, RisingFactorial References ========== .. [1] http://mathworld.wolfram.com/FallingFactorial.html """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif k.is_integer and x == k: return factorial(x) elif k.is_Integer: if k is S.Zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("ff only defined for " "polynomials on one generator") else: return reduce(lambda r, i: r*(x.shift(-i).expand()), range(0, int(k)), 1) else: return reduce(lambda r, i: r*(x - i), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: if isinstance(x, Poly): gens = x.gens if len(gens)!= 1: raise ValueError("rf only defined for " "polynomials on one generator") else: return 1/reduce(lambda r, i: r*(x.shift(i).expand()), range(1, abs(int(k)) + 1), 1) else: return 1/reduce(lambda r, i: r*(x + i), range(1, abs(int(k)) + 1), 1) def _eval_rewrite_as_gamma(self, x, k, **kwargs): from sympy import gamma return (-1)**k*gamma(k - x) / gamma(-x) def _eval_rewrite_as_RisingFactorial(self, x, k, **kwargs): return rf(x - k + 1, k) def _eval_rewrite_as_binomial(self, x, k, **kwargs): if k.is_integer: return factorial(k) * binomial(x, k) def _eval_rewrite_as_factorial(self, x, k, **kwargs): if x.is_integer and k.is_integer: return factorial(x) / factorial(x - k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.falling_factorial(self.args[0]._sage_(), self.args[1]._sage_()) rf = RisingFactorial ff = FallingFactorial ############################################################################### ########################### BINOMIAL COEFFICIENTS ############################# ############################################################################### class binomial(CombinatorialFunction): r"""Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation: .. math:: \binom{n}{k} = \frac{n!}{k!(n-k)!}\ \text{or}\ \binom{n}{k} = \frac{ff(n, k)}{k!} First, in a strict combinatorial sense it defines the number of ways we can choose `k` elements from a set of `n` elements. In this case both arguments are nonnegative integers and binomial is computed using an efficient algorithm based on prime factorization. The other definition is generalization for arbitrary `n`, however `k` must also be nonnegative. This case is very useful when evaluating summations. For the sake of convenience for negative integer `k` this function will return zero no matter what valued is the other argument. To expand the binomial when `n` is a symbol, use either ``expand_func()`` or ``expand(func=True)``. The former will keep the polynomial in factored form while the latter will expand the polynomial itself. See examples for details. Examples ======== >>> from sympy import Symbol, Rational, binomial, expand_func >>> n = Symbol('n', integer=True, positive=True) >>> binomial(15, 8) 6435 >>> binomial(n, -1) 0 Rows of Pascal's triangle can be generated with the binomial function: >>> for N in range(8): ... print([binomial(N, i) for i in range(N + 1)]) ... [1] [1, 1] [1, 2, 1] [1, 3, 3, 1] [1, 4, 6, 4, 1] [1, 5, 10, 10, 5, 1] [1, 6, 15, 20, 15, 6, 1] [1, 7, 21, 35, 35, 21, 7, 1] As can a given diagonal, e.g. the 4th diagonal: >>> N = -4 >>> [binomial(N, i) for i in range(1 - N)] [1, -4, 10, -20, 35] >>> binomial(Rational(5, 4), 3) -5/128 >>> binomial(Rational(-5, 4), 3) -195/128 >>> binomial(n, 3) binomial(n, 3) >>> binomial(n, 3).expand(func=True) n**3/6 - n**2/2 + n/3 >>> expand_func(binomial(n, 3)) n*(n - 2)*(n - 1)/6 References ========== .. [1] https://www.johndcook.com/blog/binomial_coefficients/ """ def fdiff(self, argindex=1): from sympy import polygamma if argindex == 1: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/ n, k = self.args return binomial(n, k)*(polygamma(0, n + 1) - \ polygamma(0, n - k + 1)) elif argindex == 2: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/ n, k = self.args return binomial(n, k)*(polygamma(0, n - k + 1) - \ polygamma(0, k + 1)) else: raise ArgumentIndexError(self, argindex) @classmethod def _eval(self, n, k): # n.is_Number and k.is_Integer and k != 1 and n != k if k.is_Integer: if n.is_Integer and n >= 0: n, k = int(n), int(k) if k > n: return S.Zero elif k > n // 2: k = n - k if HAS_GMPY: from sympy.core.compatibility import gmpy return Integer(gmpy.bincoef(n, k)) d, result = n - k, 1 for i in range(1, k + 1): d += 1 result = result * d // i return Integer(result) else: d, result = n - k, 1 for i in range(1, k + 1): d += 1 result *= d result /= i return result @classmethod def eval(cls, n, k): n, k = map(sympify, (n, k)) d = n - k n_nonneg, n_isint = n.is_nonnegative, n.is_integer if k.is_zero or ((n_nonneg or n_isint is False) and d.is_zero): return S.One if (k - 1).is_zero or ((n_nonneg or n_isint is False) and (d - 1).is_zero): return n if k.is_integer: if k.is_negative or (n_nonneg and n_isint and d.is_negative): return S.Zero elif n.is_number: res = cls._eval(n, k) return res.expand(basic=True) if res else res elif n_nonneg is False and n_isint: # a special case when binomial evaluates to complex infinity return S.ComplexInfinity elif k.is_number: from sympy import gamma return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1)) def _eval_Mod(self, q): n, k = self.args if any(x.is_integer is False for x in (n, k, q)): raise ValueError("Integers expected for binomial Mod") if all(x.is_Integer for x in (n, k, q)): n, k = map(int, (n, k)) aq, res = abs(q), 1 # handle negative integers k or n if k < 0: return 0 if n < 0: n = -n + k - 1 res = -1 if k%2 else 1 # non negative integers k and n if k > n: return 0 isprime = aq.is_prime aq = int(aq) if isprime: if aq < n: # use Lucas Theorem N, K = n, k while N or K: res = res*binomial(N % aq, K % aq) % aq N, K = N // aq, K // aq else: # use Factorial Modulo d = n - k if k > d: k, d = d, k kf = 1 for i in range(2, k + 1): kf = kf*i % aq df = kf for i in range(k + 1, d + 1): df = df*i % aq res *= df for i in range(d + 1, n + 1): res = res*i % aq res *= pow(kf*df % aq, aq - 2, aq) res %= aq else: # Binomial Factorization is performed by calculating the # exponents of primes <= n in `n! /(k! (n - k)!)`, # for non-negative integers n and k. As the exponent of # prime in n! is e_p(n) = [n/p] + [n/p**2] + ... # the exponent of prime in binomial(n, k) would be # e_p(n) - e_p(k) - e_p(n - k) M = int(_sqrt(n)) for prime in sieve.primerange(2, n + 1): if prime > n - k: res = res*prime % aq elif prime > n // 2: continue elif prime > M: if n % prime < k % prime: res = res*prime % aq else: N, K = n, k exp = a = 0 while N > 0: a = int((N % prime) < (K % prime + a)) N, K = N // prime, K // prime exp += a if exp > 0: res *= pow(prime, exp, aq) res %= aq return Integer(res % q) def _eval_expand_func(self, **hints): """ Function to expand binomial(n, k) when m is positive integer Also, n is self.args[0] and k is self.args[1] while using binomial(n, k) """ n = self.args[0] if n.is_Number: return binomial(*self.args) k = self.args[1] if k.is_Add and n in k.args: k = n - k if k.is_Integer: if k == S.Zero: return S.One elif k < 0: return S.Zero else: n, result = self.args[0], 1 for i in range(1, k + 1): result *= n - k + i result /= i return result else: return binomial(*self.args) def _eval_rewrite_as_factorial(self, n, k, **kwargs): return factorial(n)/(factorial(k)*factorial(n - k)) def _eval_rewrite_as_gamma(self, n, k, **kwargs): from sympy import gamma return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1)) def _eval_rewrite_as_tractable(self, n, k, **kwargs): return self._eval_rewrite_as_gamma(n, k).rewrite('tractable') def _eval_rewrite_as_FallingFactorial(self, n, k, **kwargs): if k.is_integer: return ff(n, k) / factorial(k) def _eval_is_integer(self): n, k = self.args if n.is_integer and k.is_integer: return True elif k.is_integer is False: return False def _eval_is_nonnegative(self): n, k = self.args if n.is_integer and k.is_integer: if n.is_nonnegative or k.is_negative or k.is_even: return True elif k.is_even is False: return False
7c86ca92fe9f9b8cd632f4a71154c23ba719c66c2755a6abe1db554903906c4b
from __future__ import print_function, division from sympy.core.add import Add from sympy.core.basic import sympify, cacheit from sympy.core.compatibility import range from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not, fuzzy_or from sympy.core.numbers import igcdex, Rational, pi from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.elementary.exponential import log, exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh, coth, HyperbolicFunction, sinh, tanh) from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.sets.sets import FiniteSet from sympy.utilities.iterables import numbered_symbols ############################################################################### ########################## TRIGONOMETRIC FUNCTIONS ############################ ############################################################################### class TrigonometricFunction(Function): """Base class for trigonometric functions. """ unbranched = True def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False pi_coeff = _pi_coeff(self.args[0]) if pi_coeff is not None and pi_coeff.is_rational: return True else: return s.is_algebraic def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _as_real_imag(self, deep=True, **hints): if self.args[0].is_real: if deep: hints['complex'] = False return (self.args[0].expand(deep, **hints), S.Zero) else: return (self.args[0], S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (re, im) def _period(self, general_period, symbol=None): f = self.args[0] if symbol is None: symbol = tuple(f.free_symbols)[0] if not f.has(symbol): return S.Zero if f == symbol: return general_period if symbol in f.free_symbols: if f.is_Mul: g, h = f.as_independent(symbol) if h == symbol: return general_period/abs(g) if f.is_Add: a, h = f.as_independent(symbol) g, h = h.as_independent(symbol, as_Add=False) if h == symbol: return general_period/abs(g) raise NotImplementedError("Use the periodicity function instead.") def _peeloff_pi(arg): """ Split ARG into two parts, a "rest" and a multiple of pi/2. This assumes ARG to be an Add. The multiple of pi returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel >>> from sympy import pi >>> from sympy.abc import x, y >>> peel(x + pi/2) (x, pi/2) >>> peel(x + 2*pi/3 + pi*y) (x + pi*y + pi/6, pi/2) """ for a in Add.make_args(arg): if a is S.Pi: K = S.One break elif a.is_Mul: K, p = a.as_two_terms() if p is S.Pi and K.is_Rational: break else: return arg, S.Zero m1 = (K % S.Half) * S.Pi m2 = K*S.Pi - m1 return arg - m2, m2 def _pi_coeff(arg, cycles=1): """ When arg is a Number times pi (e.g. 3*pi/2) then return the Number normalized to be in the range [0, 2], else None. When an even multiple of pi is encountered, if it is multiplying something with known parity then the multiple is returned as 0 otherwise as 2. Examples ======== >>> from sympy.functions.elementary.trigonometric import _pi_coeff as coeff >>> from sympy import pi, Dummy >>> from sympy.abc import x, y >>> coeff(3*x*pi) 3*x >>> coeff(11*pi/7) 11/7 >>> coeff(-11*pi/7) 3/7 >>> coeff(4*pi) 0 >>> coeff(5*pi) 1 >>> coeff(5.0*pi) 1 >>> coeff(5.5*pi) 3/2 >>> coeff(2 + pi) >>> coeff(2*Dummy(integer=True)*pi) 2 >>> coeff(2*Dummy(even=True)*pi) 0 """ arg = sympify(arg) if arg is S.Pi: return S.One elif not arg: return S.Zero elif arg.is_Mul: cx = arg.coeff(S.Pi) if cx: c, x = cx.as_coeff_Mul() # pi is not included as coeff if c.is_Float: # recast exact binary fractions to Rationals f = abs(c) % 1 if f != 0: p = -int(round(log(f, 2).evalf())) m = 2**p cm = c*m i = int(cm) if i == cm: c = Rational(i, m) cx = c*x else: c = Rational(int(c)) cx = c*x if x.is_integer: c2 = c % 2 if c2 == 1: return x elif not c2: if x.is_even is not None: # known parity return S.Zero return S(2) else: return c2*x return cx class sin(TrigonometricFunction): """ The sine function. Returns the sine of x (measured in radians). Notes ===== This function will evaluate automatically in the case x/pi is some rational number [4]_. For example, if x is a multiple of pi, pi/2, pi/3, pi/4 and pi/6. Examples ======== >>> from sympy import sin, pi >>> from sympy.abc import x >>> sin(x**2).diff(x) 2*x*cos(x**2) >>> sin(1).diff(x) 0 >>> sin(pi) 0 >>> sin(pi/2) 1 >>> sin(pi/6) 1/2 >>> sin(pi/12) -sqrt(2)/4 + sqrt(6)/4 See Also ======== csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sin .. [4] http://mathworld.wolfram.com/TrigonometryAngles.html """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return cos(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Zero: return S.Zero elif arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/(2*S.Pi)) if min is not S.NegativeInfinity: min = min - d*2*S.Pi if max is not S.Infinity: max = max - d*2*S.Pi if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 5*S.Pi/2)) \ is not S.EmptySet and \ AccumBounds(min, max).intersection(FiniteSet(3*S.Pi/2, 7*S.Pi/2)) is not S.EmptySet: return AccumBounds(-1, 1) elif AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 5*S.Pi/2)) \ is not S.EmptySet: return AccumBounds(Min(sin(min), sin(max)), 1) elif AccumBounds(min, max).intersection(FiniteSet(3*S.Pi/2, 8*S.Pi/2)) \ is not S.EmptySet: return AccumBounds(-1, Max(sin(min), sin(max))) else: return AccumBounds(Min(sin(min), sin(max)), Max(sin(min), sin(max))) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * sinh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if (2*pi_coeff).is_integer: if pi_coeff.is_even: return S.Zero elif pi_coeff.is_even is False: return S.NegativeOne**(pi_coeff - S.Half) if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None # https://github.com/sympy/sympy/issues/6048 # transform a sine to a cosine, to avoid redundant code if pi_coeff.is_Rational: x = pi_coeff % 2 if x > 1: return -cls((x % 1)*S.Pi) if 2*x > 1: return cls((1 - x)*S.Pi) narg = ((pi_coeff + Rational(3, 2)) % 2)*S.Pi result = cos(narg) if not isinstance(result, cos): return result if pi_coeff*S.Pi != arg: return cls(pi_coeff*S.Pi) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: return sin(m)*cos(x) + cos(m)*sin(x) if isinstance(arg, asin): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return x / sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return y / sqrt(x**2 + y**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2) if isinstance(arg, acot): x = arg.args[0] return 1 / (sqrt(1 + 1 / x**2) * x) if isinstance(arg, acsc): x = arg.args[0] return 1 / x if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1 / x**2) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p * x**2 / (n*(n - 1)) else: return (-1)**(n//2) * x**(n)/factorial(n) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) - exp(-arg*I)) / (2*I) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*x**-I / 2 - I*x**I /2 def _eval_rewrite_as_cos(self, arg, **kwargs): return cos(arg - S.Pi / 2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg) return 2*tan_half/(1 + tan_half**2) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg) return 2*cot_half/(1 + cot_half**2) def _eval_rewrite_as_pow(self, arg, **kwargs): return self.rewrite(cos).rewrite(pow) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self.rewrite(cos).rewrite(sqrt) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/csc(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): return 1 / sec(arg - S.Pi / 2, evaluate=False) def _eval_rewrite_as_sinc(self, arg, **kwargs): return arg*sinc(arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) return (sin(re)*cosh(im), cos(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy import expand_mul from sympy.functions.special.polynomials import chebyshevt, chebyshevu arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return sx*cy + sy*cx else: n, x = arg.as_coeff_Mul(rational=True) if n.is_Integer: # n will be positive because of .eval # canonicalization # See http://mathworld.wolfram.com/Multiple-AngleFormulas.html if n.is_odd: return (-1)**((n - 1)/2)*chebyshevt(n, sin(x)) else: return expand_mul((-1)**(n/2 - 1)*cos(x)*chebyshevu(n - 1, sin(x)), deep=False) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return sin(arg) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): if self.args[0].is_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_real: return True class cos(TrigonometricFunction): """ The cosine function. Returns the cosine of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cos, pi >>> from sympy.abc import x >>> cos(x**2).diff(x) -2*x*sin(x**2) >>> cos(1).diff(x) 0 >>> cos(pi) -1 >>> cos(pi/2) 0 >>> cos(2*pi/3) -1/2 >>> cos(pi/12) sqrt(2)/4 + sqrt(6)/4 See Also ======== sin, csc, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cos """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return -sin(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.functions.special.polynomials import chebyshevt from sympy.calculus.util import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Zero: return S.One elif arg is S.Infinity or arg is S.NegativeInfinity: # In this case it is better to return AccumBounds(-1, 1) # rather than returning S.NaN, since AccumBounds(-1, 1) # preserves the information that sin(oo) is between # -1 and 1, where S.NaN does not do that. return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return sin(arg + S.Pi/2) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.could_extract_minus_sign(): return cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return cosh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return (S.NegativeOne)**pi_coeff if (2*pi_coeff).is_integer: if pi_coeff.is_even: return (S.NegativeOne)**(pi_coeff/2) elif pi_coeff.is_even is False: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None # cosine formula ##################### # https://github.com/sympy/sympy/issues/6048 # explicit calculations are preformed for # cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120 # Some other exact values like cos(k pi/240) can be # calculated using a partial-fraction decomposition # by calling cos( X ).rewrite(sqrt) cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1)/4, } if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*S.Pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*S.Pi return -cls(narg) # If nested sqrt's are worse than un-evaluation # you can require q to be in (1, 2, 3, 4, 6, 12) # q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return # expressions with 2 or fewer sqrt nestings. table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } if q in table2: a, b = p*S.Pi/table2[q][0], p*S.Pi/table2[q][1] nvala, nvalb = cls(a), cls(b) if None == nvala or None == nvalb: return None return nvala*nvalb + cls(S.Pi/2 - a)*cls(S.Pi/2 - b) if q > 12: return None if q in cst_table_some: cts = cst_table_some[pi_coeff.q] return chebyshevt(pi_coeff.p, cts).expand() if 0 == q % 2: narg = (pi_coeff*2)*S.Pi nval = cls(narg) if None == nval: return None x = (2*pi_coeff + 1)/2 sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x))) return sign_cos*sqrt( (1 + nval)/2 ) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: return cos(m)*cos(x) - sin(m)*sin(x) if isinstance(arg, acos): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1 / sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return x / sqrt(x**2 + y**2) if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x ** 2) if isinstance(arg, acot): x = arg.args[0] return 1 / sqrt(1 + 1 / x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1 / x**2) if isinstance(arg, asec): x = arg.args[0] return 1 / x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p * x**2 / (n*(n - 1)) else: return (-1)**(n//2)*x**(n)/factorial(n) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) + exp(-arg*I)) / 2 def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return x**I/2 + x**-I/2 def _eval_rewrite_as_sin(self, arg, **kwargs): return sin(arg + S.Pi / 2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg)**2 return (1 - tan_half)/(1 + tan_half) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/sin(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg)**2 return (cot_half - 1)/(cot_half + 1) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._eval_rewrite_as_sqrt(arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): from sympy.functions.special.polynomials import chebyshevt def migcdex(x): # recursive calcuation of gcd and linear combination # for a sequence of integers. # Given (x1, x2, x3) # Returns (y1, y1, y3, g) # such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0 # Note, that this is only one such linear combination. if len(x) == 1: return (1, x[0]) if len(x) == 2: return igcdex(x[0], x[-1]) g = migcdex(x[1:]) u, v, h = igcdex(x[0], g[-1]) return tuple([u] + [v*i for i in g[0:-1] ] + [h]) def ipartfrac(r, factors=None): from sympy.ntheory import factorint if isinstance(r, int): return r if not isinstance(r, Rational): raise TypeError("r is not rational") n = r.q if 2 > r.q*r.q: return r.q if None == factors: a = [n//x**y for x, y in factorint(r.q).items()] else: a = [n//x for x in factors] if len(a) == 1: return [ r ] h = migcdex(a) ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ] assert r == sum(ans) return ans pi_coeff = _pi_coeff(arg) if pi_coeff is None: return None if pi_coeff.is_integer: # it was unevaluated return self.func(pi_coeff*S.Pi) if not pi_coeff.is_Rational: return None def _cospi257(): """ Express cos(pi/257) explicitly as a function of radicals Based upon the equations in http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals See also http://www.susqu.edu/brakke/constructions/257-gon.m.txt """ def f1(a, b): return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2 def f2(a, b): return (a - sqrt(a**2 + b))/2 t1, t2 = f1(-1, 256) z1, z3 = f1(t1, 64) z2, z4 = f1(t2, 64) y1, y5 = f1(z1, 4*(5 + t1 + 2*z1)) y6, y2 = f1(z2, 4*(5 + t2 + 2*z2)) y3, y7 = f1(z3, 4*(5 + t1 + 2*z3)) y8, y4 = f1(z4, 4*(5 + t2 + 2*z4)) x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6)) x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7)) x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8)) x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1)) x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2)) x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3)) x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4)) x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5)) v1 = f2(x1, -4*(x1 + x2 + x3 + x6)) v2 = f2(x2, -4*(x2 + x3 + x4 + x7)) v3 = f2(x8, -4*(x8 + x9 + x10 + x13)) v4 = f2(x9, -4*(x9 + x10 + x11 + x14)) v5 = f2(x10, -4*(x10 + x11 + x12 + x15)) v6 = f2(x16, -4*(x16 + x1 + x2 + x5)) u1 = -f2(-v1, -4*(v2 + v3)) u2 = -f2(-v4, -4*(v5 + v6)) w1 = -2*f2(-u1, -4*u2) return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half) cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1)/4, 17: sqrt((15 + sqrt(17))/32 + sqrt(2)*(sqrt(17 - sqrt(17)) + sqrt(sqrt(2)*(-8*sqrt(17 + sqrt(17)) - (1 - sqrt(17)) *sqrt(17 - sqrt(17))) + 6*sqrt(17) + 34))/32), 257: _cospi257() # 65537 is the only other known Fermat prime and the very # large expression is intentionally omitted from SymPy; see # http://www.susqu.edu/brakke/constructions/65537-gon.m.txt } def _fermatCoords(n): # if n can be factored in terms of Fermat primes with # multiplicity of each being 1, return those primes, else # False primes = [] for p_i in cst_table_some: quotient, remainder = divmod(n, p_i) if remainder == 0: n = quotient primes.append(p_i) if n == 1: return tuple(primes) return False if pi_coeff.q in cst_table_some: rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q]) if pi_coeff.q < 257: rv = rv.expand() return rv if not pi_coeff.q % 2: # recursively remove factors of 2 pico2 = pi_coeff*2 nval = cos(pico2*S.Pi).rewrite(sqrt) x = (pico2 + 1)/2 sign_cos = -1 if int(x) % 2 else 1 return sign_cos*sqrt( (1 + nval)/2 ) FC = _fermatCoords(pi_coeff.q) if FC: decomp = ipartfrac(pi_coeff, FC) X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X) return pcls.rewrite(sqrt) else: decomp = ipartfrac(pi_coeff) X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X) return pcls def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1 / sec(arg)._eval_rewrite_as_csc(arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) return (cos(re)*cosh(im), -sin(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy.functions.special.polynomials import chebyshevt arg = self.args[0] x = None if arg.is_Add: # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return cx*cy - sx*sy else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer: return chebyshevt(coeff, cos(terms)) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return cos(arg) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) def _eval_is_real(self): if self.args[0].is_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_real: return True class tan(TrigonometricFunction): """ The tangent function. Returns the tangent of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import tan, pi >>> from sympy.abc import x >>> tan(x**2).diff(x) 2*x*(tan(x**2)**2 + 1) >>> tan(1).diff(x) 0 >>> tan(pi/8).expand() -1 + sqrt(2) See Also ======== sin, csc, cos, sec, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Tan """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.One + self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atan @classmethod def eval(cls, arg): from sympy.calculus.util import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Zero: return S.Zero elif arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(S.NegativeInfinity, S.Infinity) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/S.Pi) if min is not S.NegativeInfinity: min = min - d*S.Pi if max is not S.Infinity: max = max - d*S.Pi if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 3*S.Pi/2)): return AccumBounds(S.NegativeInfinity, S.Infinity) else: return AccumBounds(tan(min), tan(max)) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * tanh(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: if not pi_coeff.q % 2: narg = pi_coeff*S.Pi*2 cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return 1/sresult - cresult/sresult table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } q = pi_coeff.q p = pi_coeff.p % q if q in table2: nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1]) if None == nvala or None == nvalb: return None return (nvala - nvalb)/(1 + nvala*nvalb) narg = ((pi_coeff + S.Half) % 1 - S.Half)*S.Pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if cresult == 0: return S.ComplexInfinity return (sresult/cresult) if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: tanm = tan(m) if tanm is S.ComplexInfinity: return -cot(x) else: # tanm == 0 return tan(x) if isinstance(arg, atan): return arg.args[0] if isinstance(arg, atan2): y, x = arg.args return y/x if isinstance(arg, asin): x = arg.args[0] return x / sqrt(1 - x**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2) / x if isinstance(arg, acot): x = arg.args[0] return 1 / x if isinstance(arg, acsc): x = arg.args[0] return 1 / (sqrt(1 - 1 / x**2) * x) if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1 / x**2) * x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a, b = ((n - 1)//2), 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return (-1)**a * b*(b - 1) * B/F * x**n def _eval_nseries(self, x, n, logx): i = self.args[0].limit(x, 0)*2/S.Pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return Function._eval_nseries(self, x, n=n, logx=logx) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*(x**-I - x**I)/(x**-I + x**I) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: denom = cos(2*re) + cosh(2*im) return (sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_expand_trig(self, **hints): from sympy import im, re arg = self.args[0] x = None if arg.is_Add: from sympy import symmetric_poly n = len(arg.args) TX = [] for x in arg.args: tx = tan(x, evaluate=False)._eval_expand_trig() TX.append(tx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n + 1): p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, TX))) else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((1 + I*z)**coeff).expand() return (im(P)/re(P)).subs([(z, tan(terms))]) return tan(arg) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(neg_exp - pos_exp)/(neg_exp + pos_exp) def _eval_rewrite_as_sin(self, x, **kwargs): return 2*sin(x)**2/sin(2*x) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x - S.Pi / 2, evaluate=False) / cos(x) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): return 1/cot(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): sin_in_sec_form = sin(arg)._eval_rewrite_as_sec(arg) cos_in_sec_form = cos(arg)._eval_rewrite_as_sec(arg) return sin_in_sec_form / cos_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): sin_in_csc_form = sin(arg)._eval_rewrite_as_csc(arg) cos_in_csc_form = cos(arg)._eval_rewrite_as_csc(arg) return sin_in_csc_form / cos_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): return self.args[0].is_real def _eval_is_finite(self): arg = self.args[0] if arg.is_imaginary: return True class cot(TrigonometricFunction): """ The cotangent function. Returns the cotangent of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cot, pi >>> from sympy.abc import x >>> cot(x**2).diff(x) 2*x*(-cot(x**2)**2 - 1) >>> cot(1).diff(x) 0 >>> cot(pi/12) sqrt(3) + 2 See Also ======== sin, csc, cos, sec, tan asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cot """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.NegativeOne - self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acot @classmethod def eval(cls, arg): from sympy.calculus.util import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN if arg is S.Zero: return S.ComplexInfinity if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return -tan(arg + S.Pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * coth(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.ComplexInfinity if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: if pi_coeff.q > 2 and not pi_coeff.q % 2: narg = pi_coeff*S.Pi*2 cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): return (1 + cresult)/sresult table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } q = pi_coeff.q p = pi_coeff.p % q if q in table2: nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1]) if None == nvala or None == nvalb: return None return (1 + nvala*nvalb)/(nvalb - nvala) narg = (((pi_coeff + S.Half) % 1) - S.Half)*S.Pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return cresult / sresult if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: cotm = cot(m) if cotm is S.ComplexInfinity: return cot(x) else: # cotm == 0 return -tan(x) if isinstance(arg, acot): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1 / x if isinstance(arg, atan2): y, x = arg.args return x/y if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x**2) / x if isinstance(arg, acos): x = arg.args[0] return x / sqrt(1 - x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1 / x**2) * x if isinstance(arg, asec): x = arg.args[0] return 1 / (sqrt(1 - 1 / x**2) * x) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1 / sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return (-1)**((n + 1)//2) * 2**(n + 1) * B/F * x**n def _eval_nseries(self, x, n, logx): i = self.args[0].limit(x, 0)/S.Pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: denom = cos(2*re) - cosh(2*im) return (-sin(2*re)/denom, -sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return -I*(x**-I + x**I)/(x**-I - x**I) def _eval_rewrite_as_sin(self, x, **kwargs): return sin(2*x)/(2*(sin(x)**2)) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x) / cos(x - S.Pi / 2, evaluate=False) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/sin(arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return 1/tan(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): cos_in_sec_form = cos(arg)._eval_rewrite_as_sec(arg) sin_in_sec_form = sin(arg)._eval_rewrite_as_sec(arg) return cos_in_sec_form / sin_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): cos_in_csc_form = cos(arg)._eval_rewrite_as_csc(arg) sin_in_csc_form = sin(arg)._eval_rewrite_as_csc(arg) return cos_in_csc_form / sin_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 1/arg else: return self.func(arg) def _eval_is_real(self): return self.args[0].is_real def _eval_expand_trig(self, **hints): from sympy import im, re arg = self.args[0] x = None if arg.is_Add: from sympy import symmetric_poly n = len(arg.args) CX = [] for x in arg.args: cx = cot(x, evaluate=False)._eval_expand_trig() CX.append(cx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n, -1, -1): p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, CX))) else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((z + I)**coeff).expand() return (re(P)/im(P)).subs([(z, cot(terms))]) return cot(arg) def _eval_is_finite(self): arg = self.args[0] if arg.is_imaginary: return True def _eval_subs(self, old, new): if self == old: return new arg = self.args[0] argnew = arg.subs(old, new) if arg != argnew and (argnew/S.Pi).is_integer: return S.ComplexInfinity return cot(argnew) class ReciprocalTrigonometricFunction(TrigonometricFunction): """Base class for reciprocal functions of trigonometric functions. """ _reciprocal_of = None # mandatory, to be defined in subclass # _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x) # TODO refactor into TrigonometricFunction common parts of # trigonometric functions eval() like even/odd, func(x+2*k*pi), etc. _is_even = None # optional, to be defined in subclass _is_odd = None # optional, to be defined in subclass @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) pi_coeff = _pi_coeff(arg) if (pi_coeff is not None and not (2*pi_coeff).is_integer and pi_coeff.is_Rational): q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*S.Pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*S.Pi if cls._is_odd: return cls(narg) elif cls._is_even: return -cls(narg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] t = cls._reciprocal_of.eval(arg) if t == None: return t elif any(isinstance(i, cos) for i in (t, -t)): return (1/t).rewrite(sec) elif any(isinstance(i, sin) for i in (t, -t)): return (1/t).rewrite(csc) else: return 1/t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t != None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t != None and t != self._reciprocal_of(arg): return 1/t def _period(self, symbol): f = self.args[0] return self._reciprocal_of(f).period(symbol) def fdiff(self, argindex=1): return -self._calculate_reciprocal("fdiff", argindex)/self**2 def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_Pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg) def _eval_rewrite_as_cos(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_expand_trig(self, **hints): return self._calculate_reciprocal("_eval_expand_trig", **hints) def _eval_is_real(self): return self._reciprocal_of(self.args[0])._eval_is_real() def _eval_as_leading_term(self, x): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite def _eval_nseries(self, x, n, logx): return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx) class sec(ReciprocalTrigonometricFunction): """ The secant function. Returns the secant of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import sec >>> from sympy.abc import x >>> sec(x**2).diff(x) 2*x*tan(x**2)*sec(x**2) >>> sec(1).diff(x) 0 See Also ======== sin, csc, cos, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sec """ _reciprocal_of = cos _is_even = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half_sq = cot(arg/2)**2 return (cot_half_sq + 1)/(cot_half_sq - 1) def _eval_rewrite_as_cos(self, arg, **kwargs): return (1/cos(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/(cos(arg)*sin(arg)) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1 / cos(arg)._eval_rewrite_as_sin(arg)) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1 / cos(arg)._eval_rewrite_as_tan(arg)) def _eval_rewrite_as_csc(self, arg, **kwargs): return csc(pi / 2 - arg, evaluate=False) def fdiff(self, argindex=1): if argindex == 1: return tan(self.args[0])*sec(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # Reference Formula: # http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/ from sympy.functions.combinatorial.numbers import euler if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) k = n//2 return (-1)**k*euler(2*k)/factorial(2*k)*x**(2*k) class csc(ReciprocalTrigonometricFunction): """ The cosecant function. Returns the cosecant of x (measured in radians). Notes ===== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import csc >>> from sympy.abc import x >>> csc(x**2).diff(x) -2*x*cot(x**2)*csc(x**2) >>> csc(1).diff(x) 0 See Also ======== sin, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Csc """ _reciprocal_of = sin _is_odd = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/sin(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/(sin(arg)*cos(arg)) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(arg/2) return (1 + cot_half**2)/(2*cot_half) def _eval_rewrite_as_cos(self, arg, **kwargs): return (1 / sin(arg)._eval_rewrite_as_cos(arg)) def _eval_rewrite_as_sec(self, arg, **kwargs): return sec(pi / 2 - arg, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1 / sin(arg)._eval_rewrite_as_tan(arg)) def fdiff(self, argindex=1): if argindex == 1: return -cot(self.args[0])*csc(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = n//2 + 1 return ((-1)**(k - 1)*2*(2**(2*k - 1) - 1)* bernoulli(2*k)*x**(2*k - 1)/factorial(2*k)) class sinc(Function): r"""Represents unnormalized sinc function Examples ======== >>> from sympy import sinc, oo, jn, Product, Symbol >>> from sympy.abc import x >>> sinc(x) sinc(x) * Automated Evaluation >>> sinc(0) 1 >>> sinc(oo) 0 * Differentiation >>> sinc(x).diff() (x*cos(x) - sin(x))/x**2 * Series Expansion >>> sinc(x).series() 1 - x**2/6 + x**4/120 + O(x**6) * As zero'th order spherical Bessel Function >>> sinc(x).rewrite(jn) jn(0, x) References ========== .. [1] https://en.wikipedia.org/wiki/Sinc_function """ def fdiff(self, argindex=1): x = self.args[0] if argindex == 1: return (x*cos(x) - sin(x)) / x**2 else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_zero: return S.One if arg.is_Number: if arg in [S.Infinity, -S.Infinity]: return S.Zero elif arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.NaN if arg.could_extract_minus_sign(): return cls(-arg) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: if fuzzy_not(arg.is_zero): return S.Zero elif (2*pi_coeff).is_integer: return S.NegativeOne**(pi_coeff - S.Half) / arg def _eval_nseries(self, x, n, logx): x = self.args[0] return (sin(x)/x)._eval_nseries(x, n, logx) def _eval_rewrite_as_jn(self, arg, **kwargs): from sympy.functions.special.bessel import jn return jn(0, arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return Piecewise((sin(arg)/arg, Ne(arg, 0)), (1, True)) ############################################################################### ########################### TRIGONOMETRIC INVERSES ############################ ############################################################################### class InverseTrigonometricFunction(Function): """Base class for inverse trigonometric functions.""" pass class asin(InverseTrigonometricFunction): """ The inverse sine function. Returns the arcsine of x in radians. Notes ===== asin(x) will evaluate automatically in the cases oo, -oo, 0, 1, -1 and for some instances when the result is a rational multiple of pi (see the eval class method). Examples ======== >>> from sympy import asin, oo, pi >>> asin(1) pi/2 >>> asin(-1) -pi/2 See Also ======== sin, csc, cos, sec, tan, cot acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self._eval_is_real() and self.args[0].is_positive def _eval_is_negative(self): return self._eval_is_real() and self.args[0].is_negative @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.NegativeInfinity * S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.Infinity * S.ImaginaryUnit elif arg is S.Zero: return S.Zero elif arg is S.One: return S.Pi / 2 elif arg is S.NegativeOne: return -S.Pi / 2 if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: cst_table = { sqrt(3)/2: 3, -sqrt(3)/2: -3, sqrt(2)/2: 4, -sqrt(2)/2: -4, 1/sqrt(2): 4, -1/sqrt(2): -4, sqrt((5 - sqrt(5))/8): 5, -sqrt((5 - sqrt(5))/8): -5, S.Half: 6, -S.Half: -6, sqrt(2 - sqrt(2))/2: 8, -sqrt(2 - sqrt(2))/2: -8, (sqrt(5) - 1)/4: 10, (1 - sqrt(5))/4: -10, (sqrt(3) - 1)/sqrt(2**3): 12, (1 - sqrt(3))/sqrt(2**3): -12, (sqrt(5) + 1)/4: S(10)/3, -(sqrt(5) + 1)/4: -S(10)/3 } if arg in cst_table: return S.Pi / cst_table[arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * asinh(i_coeff) if isinstance(arg, sin): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, cos): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acos(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return R / F * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_acos(self, x, **kwargs): return S.Pi/2 - acos(x) def _eval_rewrite_as_atan(self, x, **kwargs): return 2*atan(x/(1 + sqrt(1 - x**2))) def _eval_rewrite_as_log(self, x, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return S.Pi/2 - asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return acsc(1/arg) def _eval_is_real(self): x = self.args[0] return x.is_real and (1 - abs(x)).is_nonnegative def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sin class acos(InverseTrigonometricFunction): """ The inverse cosine function. Returns the arc cosine of x (measured in radians). Notes ===== ``acos(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1``. ``acos(zoo)`` evaluates to ``zoo`` (see note in :py:class`sympy.functions.elementary.trigonometric.asec`) Examples ======== >>> from sympy import acos, oo, pi >>> acos(1) 0 >>> acos(0) pi/2 >>> acos(oo) oo*I See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos """ def fdiff(self, argindex=1): if argindex == 1: return -1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity * S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.NegativeInfinity * S.ImaginaryUnit elif arg is S.Zero: return S.Pi / 2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_number: cst_table = { S.Half: S.Pi/3, -S.Half: 2*S.Pi/3, sqrt(2)/2: S.Pi/4, -sqrt(2)/2: 3*S.Pi/4, 1/sqrt(2): S.Pi/4, -1/sqrt(2): 3*S.Pi/4, sqrt(3)/2: S.Pi/6, -sqrt(3)/2: 5*S.Pi/6, } if arg in cst_table: return cst_table[arg] if isinstance(arg, cos): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, sin): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asin(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R / F * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): x = self.args[0] return x.is_real and (1 - abs(x)).is_nonnegative def _eval_is_nonnegative(self): return self._eval_is_real() def _eval_nseries(self, x, n, logx): return self._eval_rewrite_as_log(self.args[0])._eval_nseries(x, n, logx) def _eval_rewrite_as_log(self, x, **kwargs): return S.Pi/2 + S.ImaginaryUnit * \ log(S.ImaginaryUnit * x + sqrt(1 - x**2)) def _eval_rewrite_as_asin(self, x, **kwargs): return S.Pi/2 - asin(x) def _eval_rewrite_as_atan(self, x, **kwargs): return atan(sqrt(1 - x**2)/x) + (S.Pi/2)*(1 - x*sqrt(1/x**2)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cos def _eval_rewrite_as_acot(self, arg, **kwargs): return S.Pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return S.Pi/2 - acsc(1/arg) def _eval_conjugate(self): z = self.args[0] r = self.func(self.args[0].conjugate()) if z.is_real is False: return r elif z.is_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive: return r class atan(InverseTrigonometricFunction): """ The inverse tangent function. Returns the arc tangent of x (measured in radians). Notes ===== atan(x) will evaluate automatically in the cases oo, -oo, 0, 1, -1. Examples ======== >>> from sympy import atan, oo, pi >>> atan(0) 0 >>> atan(1) pi/4 >>> atan(oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_positive def _eval_is_nonnegative(self): return self.args[0].is_nonnegative @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Pi / 2 elif arg is S.NegativeInfinity: return -S.Pi / 2 elif arg is S.Zero: return S.Zero elif arg is S.One: return S.Pi / 4 elif arg is S.NegativeOne: return -S.Pi / 4 if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return AccumBounds(-S.Pi/2, S.Pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: cst_table = { sqrt(3)/3: 6, -sqrt(3)/3: -6, 1/sqrt(3): 6, -1/sqrt(3): -6, sqrt(3): 3, -sqrt(3): -3, (1 + sqrt(2)): S(8)/3, -(1 + sqrt(2)): S(8)/3, (sqrt(2) - 1): 8, (1 - sqrt(2)): -8, sqrt((5 + 2*sqrt(5))): S(5)/2, -sqrt((5 + 2*sqrt(5))): -S(5)/2, (2 - sqrt(3)): 12, -(2 - sqrt(3)): -12 } if arg in cst_table: return S.Pi / cst_table[arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * atanh(i_coeff) if isinstance(arg, tan): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang if isinstance(arg, cot): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - acot(arg) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return (-1)**((n - 1)//2) * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): return self.args[0].is_real def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2 * (log(S(1) - S.ImaginaryUnit * x) - log(S(1) + S.ImaginaryUnit * x)) def _eval_aseries(self, n, args0, x, logx): if args0[0] == S.Infinity: return (S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] == S.NegativeInfinity: return (-S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) else: return super(atan, self)._eval_aseries(n, args0, x, logx) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tan def _eval_rewrite_as_asin(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - asin(1/sqrt(1 + arg**2))) def _eval_rewrite_as_acos(self, arg, **kwargs): return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return acot(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - acsc(sqrt(1 + arg**2))) class acot(InverseTrigonometricFunction): """ The inverse cotangent function. Returns the arc cotangent of x (measured in radians). See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCot """ def fdiff(self, argindex=1): if argindex == 1: return -1 / (1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_nonnegative def _eval_is_negative(self): return self.args[0].is_negative def _eval_is_real(self): return self.args[0].is_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg is S.Zero: return S.Pi/ 2 elif arg is S.One: return S.Pi / 4 elif arg is S.NegativeOne: return -S.Pi / 4 if arg is S.ComplexInfinity: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: cst_table = { sqrt(3)/3: 3, -sqrt(3)/3: -3, 1/sqrt(3): 3, -1/sqrt(3): -3, sqrt(3): 6, -sqrt(3): -6, (1 + sqrt(2)): 8, -(1 + sqrt(2)): -8, (1 - sqrt(2)): -S(8)/3, (sqrt(2) - 1): S(8)/3, sqrt(5 + 2*sqrt(5)): 10, -sqrt(5 + 2*sqrt(5)): -10, (2 + sqrt(3)): 12, -(2 + sqrt(3)): -12, (2 - sqrt(3)): S(12)/5, -(2 - sqrt(3)): -S(12)/5, } if arg in cst_table: return S.Pi / cst_table[arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * acoth(i_coeff) if isinstance(arg, cot): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi; return ang if isinstance(arg, tan): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - atan(arg) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi / 2 # FIX THIS elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return (-1)**((n + 1)//2) * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_aseries(self, n, args0, x, logx): if args0[0] == S.Infinity: return (S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] == S.NegativeInfinity: return (3*S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx) else: return super(atan, self)._eval_aseries(n, args0, x, logx) def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2 * (log(1 - S.ImaginaryUnit/x) - log(1 + S.ImaginaryUnit/x)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cot def _eval_rewrite_as_asin(self, arg, **kwargs): return (arg*sqrt(1/arg**2)* (S.Pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1)))) def _eval_rewrite_as_acos(self, arg, **kwargs): return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1)) def _eval_rewrite_as_atan(self, arg, **kwargs): return atan(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return arg*sqrt(1/arg**2)*(S.Pi/2 - acsc(sqrt((1 + arg**2)/arg**2))) class asec(InverseTrigonometricFunction): r""" The inverse secant function. Returns the arc secant of x (measured in radians). Notes ===== ``asec(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1``. ``asec(x)`` has branch cut in the interval [-1, 1]. For complex arguments, it can be defined [4]_ as .. math:: sec^{-1}(z) = -i*(log(\sqrt{1 - z^2} + 1) / z) At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For negative branch cut, the limit .. math:: \lim_{z \to 0}-i*(log(-\sqrt{1 - z^2} + 1) / z) simplifies to :math:`-i*log(z/2 + O(z^3))` which ultimately evaluates to ``zoo``. As ``asex(x)`` = ``asec(1/x)``, a similar argument can be given for ``acos(x)``. Examples ======== >>> from sympy import asec, oo, pi >>> asec(1) 0 >>> asec(-1) pi See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec .. [4] http://reference.wolfram.com/language/ref/ArcSec.html """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Pi/2 if isinstance(arg, sec): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acsc(arg) def fdiff(self, argindex=1): if argindex == 1: return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sec def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if Order(1,x).contains(arg): return log(arg) else: return self.func(arg) def _eval_is_real(self): x = self.args[0] if x.is_real is False: return False return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative)) def _eval_rewrite_as_log(self, arg, **kwargs): return S.Pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) def _eval_rewrite_as_asin(self, arg, **kwargs): return S.Pi/2 - asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return acos(1/arg) def _eval_rewrite_as_atan(self, arg, **kwargs): return sqrt(arg**2)/arg*(-S.Pi/2 + 2*atan(arg + sqrt(arg**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(-S.Pi/2 + 2*acot(arg - sqrt(arg**2 - 1))) def _eval_rewrite_as_acsc(self, arg, **kwargs): return S.Pi/2 - acsc(arg) class acsc(InverseTrigonometricFunction): """ The inverse cosecant function. Returns the arc cosecant of x (measured in radians). Notes ===== acsc(x) will evaluate automatically in the cases oo, -oo, 0, 1, -1. Examples ======== >>> from sympy import acsc, oo, pi >>> acsc(1) pi/2 >>> acsc(-1) -pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc """ @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Pi/2 elif arg is S.NegativeOne: return -S.Pi/2 if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Zero if isinstance(arg, csc): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asec(arg) def fdiff(self, argindex=1): if argindex == 1: return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csc def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if Order(1,x).contains(arg): return log(arg) else: return self.func(arg) def _eval_rewrite_as_log(self, arg, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) def _eval_rewrite_as_asin(self, arg, **kwargs): return asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return S.Pi/2 - acos(1/arg) def _eval_rewrite_as_atan(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - atan(sqrt(arg**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - acot(1/sqrt(arg**2 - 1))) def _eval_rewrite_as_asec(self, arg, **kwargs): return S.Pi/2 - asec(arg) class atan2(InverseTrigonometricFunction): r""" The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking two arguments `y` and `x`. Signs of both `y` and `x` are considered to determine the appropriate quadrant of `\operatorname{atan}(y/x)`. The range is `(-\pi, \pi]`. The complete definition reads as follows: .. math:: \operatorname{atan2}(y, x) = \begin{cases} \arctan\left(\frac y x\right) & \qquad x > 0 \\ \arctan\left(\frac y x\right) + \pi& \qquad y \ge 0 , x < 0 \\ \arctan\left(\frac y x\right) - \pi& \qquad y < 0 , x < 0 \\ +\frac{\pi}{2} & \qquad y > 0 , x = 0 \\ -\frac{\pi}{2} & \qquad y < 0 , x = 0 \\ \text{undefined} & \qquad y = 0, x = 0 \end{cases} Attention: Note the role reversal of both arguments. The `y`-coordinate is the first argument and the `x`-coordinate the second. Examples ======== Going counter-clock wise around the origin we find the following angles: >>> from sympy import atan2 >>> atan2(0, 1) 0 >>> atan2(1, 1) pi/4 >>> atan2(1, 0) pi/2 >>> atan2(1, -1) 3*pi/4 >>> atan2(0, -1) pi >>> atan2(-1, -1) -3*pi/4 >>> atan2(-1, 0) -pi/2 >>> atan2(-1, 1) -pi/4 which are all correct. Compare this to the results of the ordinary `\operatorname{atan}` function for the point `(x, y) = (-1, 1)` >>> from sympy import atan, S >>> atan(S(1) / -1) -pi/4 >>> atan2(1, -1) 3*pi/4 where only the `\operatorname{atan2}` function reurns what we expect. We can differentiate the function with respect to both arguments: >>> from sympy import diff >>> from sympy.abc import x, y >>> diff(atan2(y, x), x) -y/(x**2 + y**2) >>> diff(atan2(y, x), y) x/(x**2 + y**2) We can express the `\operatorname{atan2}` function in terms of complex logarithms: >>> from sympy import log >>> atan2(y, x).rewrite(log) -I*log((x + I*y)/sqrt(x**2 + y**2)) and in terms of `\operatorname(atan)`: >>> from sympy import atan >>> atan2(y, x).rewrite(atan) 2*atan(y/(x + sqrt(x**2 + y**2))) but note that this form is undefined on the negative real axis. See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://en.wikipedia.org/wiki/Atan2 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2 """ @classmethod def eval(cls, y, x): from sympy import Heaviside, im, re if x is S.NegativeInfinity: if y.is_zero: # Special case y = 0 because we define Heaviside(0) = 1/2 return S.Pi return 2*S.Pi*(Heaviside(re(y))) - S.Pi elif x is S.Infinity: return S.Zero elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number: x = im(x) y = im(y) if x.is_real and y.is_real: if x.is_positive: return atan(y / x) elif x.is_negative: if y.is_negative: return atan(y / x) - S.Pi elif y.is_nonnegative: return atan(y / x) + S.Pi elif x.is_zero: if y.is_positive: return S.Pi/2 elif y.is_negative: return -S.Pi/2 elif y.is_zero: return S.NaN if y.is_zero and x.is_real and fuzzy_not(x.is_zero): return S.Pi * (S.One - Heaviside(x)) if x.is_number and y.is_number: return -S.ImaginaryUnit*log( (x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_log(self, y, x, **kwargs): return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y) / sqrt(x**2 + y**2)) def _eval_rewrite_as_atan(self, y, x, **kwargs): return 2*atan(y / (sqrt(x**2 + y**2) + x)) def _eval_rewrite_as_arg(self, y, x, **kwargs): from sympy import arg if x.is_real and y.is_real: return arg(x + y*S.ImaginaryUnit) I = S.ImaginaryUnit n = x + I*y d = x**2 + y**2 return arg(n/sqrt(d)) - I*log(abs(n)/sqrt(abs(d))) def _eval_is_real(self): return self.args[0].is_real and self.args[1].is_real def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def fdiff(self, argindex): y, x = self.args if argindex == 1: # Diff wrt y return x/(x**2 + y**2) elif argindex == 2: # Diff wrt x return -y/(x**2 + y**2) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): y, x = self.args if x.is_real and y.is_real: super(atan2, self)._eval_evalf(prec)
16ea2673329cdd7ebba688bf82f56f405d62bc69c091129e22bf50935caa85f6
from __future__ import print_function, division from sympy.core import Function, S, sympify from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.operations import LatticeOp, ShortCircuit from sympy.core.function import (Application, Lambda, ArgumentIndexError) from sympy.core.expr import Expr from sympy.core.mod import Mod from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.core.relational import Eq, Relational from sympy.core.singleton import Singleton from sympy.core.symbol import Dummy from sympy.core.rules import Transform from sympy.core.compatibility import with_metaclass, range from sympy.core.logic import fuzzy_and, fuzzy_or, _torf from sympy.logic.boolalg import And, Or def _minmax_as_Piecewise(op, *args): # helper for Min/Max rewrite as Piecewise from sympy.functions.elementary.piecewise import Piecewise ec = [] for i, a in enumerate(args): c = [] for j in range(i + 1, len(args)): c.append(Relational(a, args[j], op)) ec.append((a, And(*c))) return Piecewise(*ec) class IdentityFunction(with_metaclass(Singleton, Lambda)): """ The identity function Examples ======== >>> from sympy import Id, Symbol >>> x = Symbol('x') >>> Id(x) x """ def __new__(cls): from sympy.sets.sets import FiniteSet x = Dummy('x') #construct "by hand" to avoid infinite loop obj = Expr.__new__(cls, Tuple(x), x) obj.nargs = FiniteSet(1) return obj Id = S.IdentityFunction ############################################################################### ############################# ROOT and SQUARE ROOT FUNCTION ################### ############################################################################### def sqrt(arg, evaluate=None): """The square root function sqrt(x) -> Returns the principal square root of x. The parameter evaluate determines if the expression should be evaluated. If None, its value is taken from global_evaluate Examples ======== >>> from sympy import sqrt, Symbol >>> x = Symbol('x') >>> sqrt(x) sqrt(x) >>> sqrt(x)**2 x Note that sqrt(x**2) does not simplify to x. >>> sqrt(x**2) sqrt(x**2) This is because the two are not equal to each other in general. For example, consider x == -1: >>> from sympy import Eq >>> Eq(sqrt(x**2), x).subs(x, -1) False This is because sqrt computes the principal square root, so the square may put the argument in a different branch. This identity does hold if x is positive: >>> y = Symbol('y', positive=True) >>> sqrt(y**2) y You can force this simplification by using the powdenest() function with the force option set to True: >>> from sympy import powdenest >>> sqrt(x**2) sqrt(x**2) >>> powdenest(sqrt(x**2), force=True) x To get both branches of the square root you can use the rootof function: >>> from sympy import rootof >>> [rootof(x**2-3,i) for i in (0,1)] [-sqrt(3), sqrt(3)] See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Square_root .. [2] https://en.wikipedia.org/wiki/Principal_value """ # arg = sympify(arg) is handled by Pow return Pow(arg, S.Half, evaluate=evaluate) def cbrt(arg, evaluate=None): """This function computes the principal cube root of `arg`, so it's just a shortcut for `arg**Rational(1, 3)`. The parameter evaluate determines if the expression should be evaluated. If None, its value is taken from global_evaluate. Examples ======== >>> from sympy import cbrt, Symbol >>> x = Symbol('x') >>> cbrt(x) x**(1/3) >>> cbrt(x)**3 x Note that cbrt(x**3) does not simplify to x. >>> cbrt(x**3) (x**3)**(1/3) This is because the two are not equal to each other in general. For example, consider `x == -1`: >>> from sympy import Eq >>> Eq(cbrt(x**3), x).subs(x, -1) False This is because cbrt computes the principal cube root, this identity does hold if `x` is positive: >>> y = Symbol('y', positive=True) >>> cbrt(y**3) y See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== * https://en.wikipedia.org/wiki/Cube_root * https://en.wikipedia.org/wiki/Principal_value """ return Pow(arg, Rational(1, 3), evaluate=evaluate) def root(arg, n, k=0, evaluate=None): """root(x, n, k) -> Returns the k-th n-th root of x, defaulting to the principal root (k=0). The parameter evaluate determines if the expression should be evaluated. If None, its value is taken from global_evaluate. Examples ======== >>> from sympy import root, Rational >>> from sympy.abc import x, n >>> root(x, 2) sqrt(x) >>> root(x, 3) x**(1/3) >>> root(x, n) x**(1/n) >>> root(x, -Rational(2, 3)) x**(-3/2) To get the k-th n-th root, specify k: >>> root(-2, 3, 2) -(-1)**(2/3)*2**(1/3) To get all n n-th roots you can use the rootof function. The following examples show the roots of unity for n equal 2, 3 and 4: >>> from sympy import rootof, I >>> [rootof(x**2 - 1, i) for i in range(2)] [-1, 1] >>> [rootof(x**3 - 1,i) for i in range(3)] [1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2] >>> [rootof(x**4 - 1,i) for i in range(4)] [-1, 1, -I, I] SymPy, like other symbolic algebra systems, returns the complex root of negative numbers. This is the principal root and differs from the text-book result that one might be expecting. For example, the cube root of -8 does not come back as -2: >>> root(-8, 3) 2*(-1)**(1/3) The real_root function can be used to either make the principal result real (or simply to return the real root directly): >>> from sympy import real_root >>> real_root(_) -2 >>> real_root(-32, 5) -2 Alternatively, the n//2-th n-th root of a negative number can be computed with root: >>> root(-32, 5, 5//2) -2 See Also ======== sympy.polys.rootoftools.rootof sympy.core.power.integer_nthroot sqrt, real_root References ========== * https://en.wikipedia.org/wiki/Square_root * https://en.wikipedia.org/wiki/Real_root * https://en.wikipedia.org/wiki/Root_of_unity * https://en.wikipedia.org/wiki/Principal_value * http://mathworld.wolfram.com/CubeRoot.html """ n = sympify(n) if k: return Mul(Pow(arg, S.One/n, evaluate=evaluate), S.NegativeOne**(2*k/n), evaluate=evaluate) return Pow(arg, 1/n, evaluate=evaluate) def real_root(arg, n=None, evaluate=None): """Return the real nth-root of arg if possible. If n is omitted then all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this will only create a real root of a principal root -- the presence of other factors may cause the result to not be real. The parameter evaluate determines if the expression should be evaluated. If None, its value is taken from global_evaluate. Examples ======== >>> from sympy import root, real_root, Rational >>> from sympy.abc import x, n >>> real_root(-8, 3) -2 >>> root(-8, 3) 2*(-1)**(1/3) >>> real_root(_) -2 If one creates a non-principal root and applies real_root, the result will not be real (so use with caution): >>> root(-8, 3, 2) -2*(-1)**(2/3) >>> real_root(_) -2*(-1)**(2/3) See Also ======== sympy.polys.rootoftools.rootof sympy.core.power.integer_nthroot root, sqrt """ from sympy.functions.elementary.complexes import Abs, im, sign from sympy.functions.elementary.piecewise import Piecewise if n is not None: return Piecewise( (root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))), (Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate), And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))), (root(arg, n, evaluate=evaluate), True)) rv = sympify(arg) n1pow = Transform(lambda x: -(-x.base)**x.exp, lambda x: x.is_Pow and x.base.is_negative and x.exp.is_Rational and x.exp.p == 1 and x.exp.q % 2) return rv.xreplace(n1pow) ############################################################################### ############################# MINIMUM and MAXIMUM ############################# ############################################################################### class MinMaxBase(Expr, LatticeOp): def __new__(cls, *args, **assumptions): args = (sympify(arg) for arg in args) # first standard filter, for cls.zero and cls.identity # also reshape Max(a, Max(b, c)) to Max(a, b, c) try: args = frozenset(cls._new_args_filter(args)) except ShortCircuit: return cls.zero if assumptions.pop('evaluate', True): # remove redundant args that are easily identified args = cls._collapse_arguments(args, **assumptions) # find local zeros args = cls._find_localzeros(args, **assumptions) if not args: return cls.identity if len(args) == 1: return list(args).pop() # base creation _args = frozenset(args) obj = Expr.__new__(cls, _args, **assumptions) obj._argset = _args return obj @classmethod def _collapse_arguments(cls, args, **assumptions): """Remove redundant args. Examples ======== >>> from sympy import Min, Max >>> from sympy.abc import a, b, c, d, e Any arg in parent that appears in any parent-like function in any of the flat args of parent can be removed from that sub-arg: >>> Min(a, Max(b, Min(a, c, d))) Min(a, Max(b, Min(c, d))) If the arg of parent appears in an opposite-than parent function in any of the flat args of parent that function can be replaced with the arg: >>> Min(a, Max(b, Min(c, d, Max(a, e)))) Min(a, Max(b, Min(a, c, d))) """ from sympy.utilities.iterables import ordered from sympy.simplify.simplify import walk if not args: return args args = list(ordered(args)) if cls == Min: other = Max else: other = Min # find global comparable max of Max and min of Min if a new # value is being introduced in these args at position 0 of # the ordered args if args[0].is_number: sifted = mins, maxs = [], [] for i in args: for v in walk(i, Min, Max): if v.args[0].is_comparable: sifted[isinstance(v, Max)].append(v) small = Min.identity for i in mins: v = i.args[0] if v.is_number and (v < small) == True: small = v big = Max.identity for i in maxs: v = i.args[0] if v.is_number and (v > big) == True: big = v # at the point when this function is called from __new__, # there may be more than one numeric arg present since # local zeros have not been handled yet, so look through # more than the first arg if cls == Min: for i in range(len(args)): if not args[i].is_number: break if (args[i] < small) == True: small = args[i] elif cls == Max: for i in range(len(args)): if not args[i].is_number: break if (args[i] > big) == True: big = args[i] T = None if cls == Min: if small != Min.identity: other = Max T = small elif big != Max.identity: other = Min T = big if T is not None: # remove numerical redundancy for i in range(len(args)): a = args[i] if isinstance(a, other): a0 = a.args[0] if ((a0 > T) if other == Max else (a0 < T)) == True: args[i] = cls.identity # remove redundant symbolic args def do(ai, a): if not isinstance(ai, (Min, Max)): return ai cond = a in ai.args if not cond: return ai.func(*[do(i, a) for i in ai.args], evaluate=False) if isinstance(ai, cls): return ai.func(*[do(i, a) for i in ai.args if i != a], evaluate=False) return a for i, a in enumerate(args): args[i + 1:] = [do(ai, a) for ai in args[i + 1:]] # factor out common elements as for # Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z)) # and vice versa when swapping Min/Max -- do this only for the # easy case where all functions contain something in common; # trying to find some optimal subset of args to modify takes # too long if len(args) > 1: common = None remove = [] sets = [] for i in range(len(args)): a = args[i] if not isinstance(a, other): continue s = set(a.args) common = s if common is None else (common & s) if not common: break sets.append(s) remove.append(i) if common: sets = filter(None, [s - common for s in sets]) sets = [other(*s, evaluate=False) for s in sets] for i in reversed(remove): args.pop(i) oargs = [cls(*sets)] if sets else [] oargs.extend(common) args.append(other(*oargs, evaluate=False)) return args @classmethod def _new_args_filter(cls, arg_sequence): """ Generator filtering args. first standard filter, for cls.zero and cls.identity. Also reshape Max(a, Max(b, c)) to Max(a, b, c), and check arguments for comparability """ for arg in arg_sequence: # pre-filter, checking comparability of arguments if not isinstance(arg, Expr) or arg.is_real is False or ( arg.is_number and not arg.is_comparable): raise ValueError("The argument '%s' is not comparable." % arg) if arg == cls.zero: raise ShortCircuit(arg) elif arg == cls.identity: continue elif arg.func == cls: for x in arg.args: yield x else: yield arg @classmethod def _find_localzeros(cls, values, **options): """ Sequentially allocate values to localzeros. When a value is identified as being more extreme than another member it replaces that member; if this is never true, then the value is simply appended to the localzeros. """ localzeros = set() for v in values: is_newzero = True localzeros_ = list(localzeros) for z in localzeros_: if id(v) == id(z): is_newzero = False else: con = cls._is_connected(v, z) if con: is_newzero = False if con is True or con == cls: localzeros.remove(z) localzeros.update([v]) if is_newzero: localzeros.update([v]) return localzeros @classmethod def _is_connected(cls, x, y): """ Check if x and y are connected somehow. """ from sympy.core.exprtools import factor_terms def hit(v, t, f): if not v.is_Relational: return t if v else f for i in range(2): if x == y: return True r = hit(x >= y, Max, Min) if r is not None: return r r = hit(y <= x, Max, Min) if r is not None: return r r = hit(x <= y, Min, Max) if r is not None: return r r = hit(y >= x, Min, Max) if r is not None: return r # simplification can be expensive, so be conservative # in what is attempted x = factor_terms(x - y) y = S.Zero return False def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da is S.Zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_rewrite_as_Abs(self, *args, **kwargs): from sympy.functions.elementary.complexes import Abs s = (args[0] + self.func(*args[1:]))/2 d = abs(args[0] - self.func(*args[1:]))/2 return (s + d if isinstance(self, Max) else s - d).rewrite(Abs) def evalf(self, prec=None, **options): return self.func(*[a.evalf(prec, **options) for a in self.args]) n = evalf _eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args) _eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args) _eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args) _eval_is_complex = lambda s: _torf(i.is_complex for i in s.args) _eval_is_composite = lambda s: _torf(i.is_composite for i in s.args) _eval_is_even = lambda s: _torf(i.is_even for i in s.args) _eval_is_finite = lambda s: _torf(i.is_finite for i in s.args) _eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args) _eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args) _eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args) _eval_is_integer = lambda s: _torf(i.is_integer for i in s.args) _eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args) _eval_is_negative = lambda s: _torf(i.is_negative for i in s.args) _eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args) _eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args) _eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args) _eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args) _eval_is_odd = lambda s: _torf(i.is_odd for i in s.args) _eval_is_polar = lambda s: _torf(i.is_polar for i in s.args) _eval_is_positive = lambda s: _torf(i.is_positive for i in s.args) _eval_is_prime = lambda s: _torf(i.is_prime for i in s.args) _eval_is_rational = lambda s: _torf(i.is_rational for i in s.args) _eval_is_real = lambda s: _torf(i.is_real for i in s.args) _eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args) _eval_is_zero = lambda s: _torf(i.is_zero for i in s.args) class Max(MinMaxBase, Application): """ Return, if possible, the maximum value of the list. When number of arguments is equal one, then return this argument. When number of arguments is equal two, then return, if possible, the value from (a, b) that is >= the other. In common case, when the length of list greater than 2, the task is more complicated. Return only the arguments, which are greater than others, if it is possible to determine directional relation. If is not possible to determine such a relation, return a partially evaluated result. Assumptions are used to make the decision too. Also, only comparable arguments are permitted. It is named ``Max`` and not ``max`` to avoid conflicts with the built-in function ``max``. Examples ======== >>> from sympy import Max, Symbol, oo >>> from sympy.abc import x, y >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Max(x, -2) #doctest: +SKIP Max(x, -2) >>> Max(x, -2).subs(x, 3) 3 >>> Max(p, -2) p >>> Max(x, y) Max(x, y) >>> Max(x, y) == Max(y, x) True >>> Max(x, Max(y, z)) #doctest: +SKIP Max(x, y, z) >>> Max(n, 8, p, 7, -oo) #doctest: +SKIP Max(8, p) >>> Max (1, x, oo) oo * Algorithm The task can be considered as searching of supremums in the directed complete partial orders [1]_. The source values are sequentially allocated by the isolated subsets in which supremums are searched and result as Max arguments. If the resulted supremum is single, then it is returned. The isolated subsets are the sets of values which are only the comparable with each other in the current set. E.g. natural numbers are comparable with each other, but not comparable with the `x` symbol. Another example: the symbol `x` with negative assumption is comparable with a natural number. Also there are "least" elements, which are comparable with all others, and have a zero property (maximum or minimum for all elements). E.g. `oo`. In case of it the allocation operation is terminated and only this value is returned. Assumption: - if A > B > C then A > C - if A == B then B can be removed References ========== .. [1] https://en.wikipedia.org/wiki/Directed_complete_partial_order .. [2] https://en.wikipedia.org/wiki/Lattice_%28order%29 See Also ======== Min : find minimum values """ zero = S.Infinity identity = S.NegativeInfinity def fdiff( self, argindex ): from sympy import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside(self.args[argindex] - self.args[1 - argindex]) newargs = tuple([self.args[i] for i in range(n) if i != argindex]) return Heaviside(self.args[argindex] - Max(*newargs)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy import Heaviside return Add(*[j*Mul(*[Heaviside(j - i) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('>=', *args) def _eval_is_positive(self): return fuzzy_or(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_or(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_and(a.is_negative for a in self.args) class Min(MinMaxBase, Application): """ Return, if possible, the minimum value of the list. It is named ``Min`` and not ``min`` to avoid conflicts with the built-in function ``min``. Examples ======== >>> from sympy import Min, Symbol, oo >>> from sympy.abc import x, y >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Min(x, -2) #doctest: +SKIP Min(x, -2) >>> Min(x, -2).subs(x, 3) -2 >>> Min(p, -3) -3 >>> Min(x, y) #doctest: +SKIP Min(x, y) >>> Min(n, 8, p, -7, p, oo) #doctest: +SKIP Min(n, -7) See Also ======== Max : find maximum values """ zero = S.NegativeInfinity identity = S.Infinity def fdiff( self, argindex ): from sympy import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside( self.args[1-argindex] - self.args[argindex] ) newargs = tuple([ self.args[i] for i in range(n) if i != argindex]) return Heaviside( Min(*newargs) - self.args[argindex] ) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy import Heaviside return Add(*[j*Mul(*[Heaviside(i-j) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('<=', *args) def _eval_is_positive(self): return fuzzy_and(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_and(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_or(a.is_negative for a in self.args)
522db4b30214b1cfaa6d21df05800687c4f5d003a7846d85e0d4a49f8411a168
from __future__ import print_function, division from sympy.core import Basic, S, Function, diff, Tuple, Dummy, Symbol from sympy.core.basic import as_Basic from sympy.core.compatibility import range from sympy.core.function import UndefinedFunction from sympy.core.numbers import Rational, NumberSymbol from sympy.core.relational import (Equality, Unequality, Relational, _canonical) from sympy.functions.elementary.miscellaneous import Max, Min from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, true, false, Or, ITE, simplify_logic) from sympy.utilities.iterables import uniq, ordered, product, sift from sympy.utilities.misc import filldedent, func_name Undefined = S.NaN # Piecewise() class ExprCondPair(Tuple): """Represents an expression, condition pair.""" def __new__(cls, expr, cond): expr = as_Basic(expr) if cond == True: return Tuple.__new__(cls, expr, true) elif cond == False: return Tuple.__new__(cls, expr, false) elif isinstance(cond, Basic) and cond.has(Piecewise): cond = piecewise_fold(cond) if isinstance(cond, Piecewise): cond = cond.rewrite(ITE) if not isinstance(cond, Boolean): raise TypeError(filldedent(''' Second argument must be a Boolean, not `%s`''' % func_name(cond))) return Tuple.__new__(cls, expr, cond) @property def expr(self): """ Returns the expression of this pair. """ return self.args[0] @property def cond(self): """ Returns the condition of this pair. """ return self.args[1] @property def is_commutative(self): return self.expr.is_commutative def __iter__(self): yield self.expr yield self.cond def _eval_simplify(self, ratio, measure, rational, inverse): return self.func(*[a.simplify( ratio=ratio, measure=measure, rational=rational, inverse=inverse) for a in self.args]) class Piecewise(Function): """ Represents a piecewise function. Usage: Piecewise( (expr,cond), (expr,cond), ... ) - Each argument is a 2-tuple defining an expression and condition - The conds are evaluated in turn returning the first that is True. If any of the evaluated conds are not determined explicitly False, e.g. x < 1, the function is returned in symbolic form. - If the function is evaluated at a place where all conditions are False, nan will be returned. - Pairs where the cond is explicitly False, will be removed. Examples ======== >>> from sympy import Piecewise, log, ITE, piecewise_fold >>> from sympy.abc import x, y >>> f = x**2 >>> g = log(x) >>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True)) >>> p.subs(x,1) 1 >>> p.subs(x,5) log(5) Booleans can contain Piecewise elements: >>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond Piecewise((2, x < 0), (3, True)) < y The folded version of this results in a Piecewise whose expressions are Booleans: >>> folded_cond = piecewise_fold(cond); folded_cond Piecewise((2 < y, x < 0), (3 < y, True)) When a Boolean containing Piecewise (like cond) or a Piecewise with Boolean expressions (like folded_cond) is used as a condition, it is converted to an equivalent ITE object: >>> Piecewise((1, folded_cond)) Piecewise((1, ITE(x < 0, y > 2, y > 3))) When a condition is an ITE, it will be converted to a simplified Boolean expression: >>> piecewise_fold(_) Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0)))) See Also ======== piecewise_fold, ITE """ nargs = None is_Piecewise = True def __new__(cls, *args, **options): if len(args) == 0: raise TypeError("At least one (expr, cond) pair expected.") # (Try to) sympify args first newargs = [] for ec in args: # ec could be a ExprCondPair or a tuple pair = ExprCondPair(*getattr(ec, 'args', ec)) cond = pair.cond if cond is false: continue newargs.append(pair) if cond is true: break if options.pop('evaluate', True): r = cls.eval(*newargs) else: r = None if r is None: return Basic.__new__(cls, *newargs, **options) else: return r @classmethod def eval(cls, *_args): """Either return a modified version of the args or, if no modifications were made, return None. Modifications that are made here: 1) relationals are made canonical 2) any False conditions are dropped 3) any repeat of a previous condition is ignored 3) any args past one with a true condition are dropped If there are no args left, nan will be returned. If there is a single arg with a True condition, its corresponding expression will be returned. """ if not _args: return Undefined if len(_args) == 1 and _args[0][-1] == True: return _args[0][0] newargs = [] # the unevaluated conditions current_cond = set() # the conditions up to a given e, c pair # make conditions canonical args = [] for e, c in _args: if not c.is_Atom and not isinstance(c, Relational): free = c.free_symbols if len(free) == 1: funcs = [i for i in c.atoms(Function) if not isinstance(i, Boolean)] if len(funcs) == 1 and len( c.xreplace({list(funcs)[0]: Dummy()} ).free_symbols) == 1: # we can treat function like a symbol free = funcs _c = c x = free.pop() try: c = c.as_set().as_relational(x) except NotImplementedError: pass else: reps = {} for i in c.atoms(Relational): ic = i.canonical if ic.rhs in (S.Infinity, S.NegativeInfinity): if not _c.has(ic.rhs): # don't accept introduction of # new Relationals with +/-oo reps[i] = S.true elif ('=' not in ic.rel_op and c.xreplace({x: i.rhs}) != _c.xreplace({x: i.rhs})): reps[i] = Relational( i.lhs, i.rhs, i.rel_op + '=') c = c.xreplace(reps) args.append((e, _canonical(c))) for expr, cond in args: # Check here if expr is a Piecewise and collapse if one of # the conds in expr matches cond. This allows the collapsing # of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)). # This is important when using piecewise_fold to simplify # multiple Piecewise instances having the same conds. # Eventually, this code should be able to collapse Piecewise's # having different intervals, but this will probably require # using the new assumptions. if isinstance(expr, Piecewise): unmatching = [] for i, (e, c) in enumerate(expr.args): if c in current_cond: # this would already have triggered continue if c == cond: if c != True: # nothing past this condition will ever # trigger and only those args before this # that didn't match a previous condition # could possibly trigger if unmatching: expr = Piecewise(*( unmatching + [(e, c)])) else: expr = e break else: unmatching.append((e, c)) # check for condition repeats got = False # -- if an And contains a condition that was # already encountered, then the And will be # False: if the previous condition was False # then the And will be False and if the previous # condition is True then then we wouldn't get to # this point. In either case, we can skip this condition. for i in ([cond] + (list(cond.args) if isinstance(cond, And) else [])): if i in current_cond: got = True break if got: continue # -- if not(c) is already in current_cond then c is # a redundant condition in an And. This does not # apply to Or, however: (e1, c), (e2, Or(~c, d)) # is not (e1, c), (e2, d) because if c and d are # both False this would give no results when the # true answer should be (e2, True) if isinstance(cond, And): nonredundant = [] for c in cond.args: if (isinstance(c, Relational) and c.negated.canonical in current_cond): continue nonredundant.append(c) cond = cond.func(*nonredundant) elif isinstance(cond, Relational): if cond.negated.canonical in current_cond: cond = S.true current_cond.add(cond) # collect successive e,c pairs when exprs or cond match if newargs: if newargs[-1].expr == expr: orcond = Or(cond, newargs[-1].cond) if isinstance(orcond, (And, Or)): orcond = distribute_and_over_or(orcond) newargs[-1] = ExprCondPair(expr, orcond) continue elif newargs[-1].cond == cond: orexpr = Or(expr, newargs[-1].expr) if isinstance(orexpr, (And, Or)): orexpr = distribute_and_over_or(orexpr) newargs[-1] == ExprCondPair(orexpr, cond) continue newargs.append(ExprCondPair(expr, cond)) # some conditions may have been redundant missing = len(newargs) != len(_args) # some conditions may have changed same = all(a == b for a, b in zip(newargs, _args)) # if either change happened we return the expr with the # updated args if not newargs: raise ValueError(filldedent(''' There are no conditions (or none that are not trivially false) to define an expression.''')) if missing or not same: return cls(*newargs) def doit(self, **hints): """ Evaluate this piecewise function. """ newargs = [] for e, c in self.args: if hints.get('deep', True): if isinstance(e, Basic): e = e.doit(**hints) if isinstance(c, Basic): c = c.doit(**hints) newargs.append((e, c)) return self.func(*newargs) def _eval_simplify(self, ratio, measure, rational, inverse): args = [a._eval_simplify(ratio, measure, rational, inverse) for a in self.args] for i, (expr, cond) in enumerate(args): # try to simplify conditions and the expression for # equalities that are part of the condition, e.g. # Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True)) # -> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True)) if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] if eqs: eqs = list(ordered(eqs)) for j, e in enumerate(eqs): # these blessed lhs objects behave like Symbols # and the rhs are simple replacements for the "symbols" if isinstance(e.lhs, (Symbol, UndefinedFunction)) and \ isinstance(e.rhs, (Rational, NumberSymbol, Symbol, UndefinedFunction)): expr = expr.subs(*e.args) eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]] other = [ei.subs(*e.args) for ei in other] cond = And(*(eqs + other)) args[i] = args[i].func(expr, cond) # See if expressions valid for a single point happens to evaluate # to the same function as in the next piecewise segment, see: # https://github.com/sympy/sympy/issues/8458 prevexpr = None for i, (expr, cond) in reversed(list(enumerate(args))): if prevexpr is not None: _prevexpr = prevexpr _expr = expr if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] if eqs: eqs = list(ordered(eqs)) for j, e in enumerate(eqs): # these blessed lhs objects behave like Symbols # and the rhs are simple replacements for the "symbols" if isinstance(e.lhs, (Symbol, UndefinedFunction)) and \ isinstance(e.rhs, (Rational, NumberSymbol, Symbol, UndefinedFunction)): _prevexpr = _prevexpr.subs(*e.args) _expr = _expr.subs(*e.args) if _prevexpr == _expr: args[i] = args[i].func(args[i+1][0], cond) else: prevexpr = expr else: prevexpr = expr return self.func(*args) def _eval_as_leading_term(self, x): for e, c in self.args: if c == True or c.subs(x, 0) == True: return e.as_leading_term(x) def _eval_adjoint(self): return self.func(*[(e.adjoint(), c) for e, c in self.args]) def _eval_conjugate(self): return self.func(*[(e.conjugate(), c) for e, c in self.args]) def _eval_derivative(self, x): return self.func(*[(diff(e, x), c) for e, c in self.args]) def _eval_evalf(self, prec): return self.func(*[(e._evalf(prec), c) for e, c in self.args]) def piecewise_integrate(self, x, **kwargs): """Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the `integrate` function or method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) Note that this does not give a continuous function, e.g. at x = 1 the 3rd condition applies and the antiderivative there is 2*x so the value of the antiderivative is 2: >>> anti = _ >>> anti.subs(x, 1) 2 The continuous derivative accounts for the integral *up to* the point of interest, however: >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> _.subs(x, 1) 1 See Also ======== Piecewise._eval_integral """ from sympy.integrals import integrate return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args]) def _handle_irel(self, x, handler): """Return either None (if the conditions of self depend only on x) else a Piecewise expression whose expressions (handled by the handler that was passed) are paired with the governing x-independent relationals, e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) -> Piecewise( (handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)), (handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True)) """ # identify governing relationals rel = self.atoms(Relational) irel = list(ordered([r for r in rel if x not in r.free_symbols and r not in (S.true, S.false)])) if irel: args = {} exprinorder = [] for truth in product((1, 0), repeat=len(irel)): reps = dict(zip(irel, truth)) # only store the true conditions since the false are implied # when they appear lower in the Piecewise args if 1 not in truth: cond = None # flag this one so it doesn't get combined else: andargs = Tuple(*[i for i in reps if reps[i]]) free = list(andargs.free_symbols) if len(free) == 1: from sympy.solvers.inequalities import ( reduce_inequalities, _solve_inequality) try: t = reduce_inequalities(andargs, free[0]) # ValueError when there are potentially # nonvanishing imaginary parts except (ValueError, NotImplementedError): # at least isolate free symbol on left t = And(*[_solve_inequality( a, free[0], linear=True) for a in andargs]) else: t = And(*andargs) if t is S.false: continue # an impossible combination cond = t expr = handler(self.xreplace(reps)) if isinstance(expr, self.func) and len(expr.args) == 1: expr, econd = expr.args[0] cond = And(econd, True if cond is None else cond) # the ec pairs are being collected since all possibilities # are being enumerated, but don't put the last one in since # its expr might match a previous expression and it # must appear last in the args if cond is not None: args.setdefault(expr, []).append(cond) # but since we only store the true conditions we must maintain # the order so that the expression with the most true values # comes first exprinorder.append(expr) # convert collected conditions as args of Or for k in args: args[k] = Or(*args[k]) # take them in the order obtained args = [(e, args[e]) for e in uniq(exprinorder)] # add in the last arg args.append((expr, True)) # if any condition reduced to True, it needs to go last # and there should only be one of them or else the exprs # should agree trues = [i for i in range(len(args)) if args[i][1] is S.true] if not trues: # make the last one True since all cases were enumerated e, c = args[-1] args[-1] = (e, S.true) else: assert len(set([e for e, c in [args[i] for i in trues]])) == 1 args.append(args.pop(trues.pop())) while trues: args.pop(trues.pop()) return Piecewise(*args) def _eval_integral(self, x, _first=True, **kwargs): """Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including the constant of integration) up to that point. To only integrate the individual parts of Piecewise, use the `piecewise_integrate` method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) See Also ======== Piecewise.piecewise_integrate """ from sympy.integrals.integrals import integrate if _first: def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_integral(x, _first=False, **kwargs) else: return ipw.integrate(x, **kwargs) irv = self._handle_irel(x, handler) if irv is not None: return irv # handle a Piecewise from -oo to oo with and no x-independent relationals # ----------------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral return Integral(self, x) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] oo = S.Infinity done = [(-oo, oo, -1)] for k, p in enumerate(pieces): if p == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # append an arg if there is a hole so a reference to # argument -1 will give Undefined if any(i == -1 for (a, b, i) in done): abei.append((-oo, oo, Undefined, -1)) # return the sum of the intervals args = [] sum = None for a, b, i in done: anti = integrate(abei[i][-2], x, **kwargs) if sum is None: sum = anti else: sum = sum.subs(x, a) if sum == Undefined: sum = 0 sum += anti._eval_interval(x, a, x) # see if we know whether b is contained in original # condition if b is S.Infinity: cond = True elif self.args[abei[i][-1]].cond.subs(x, b) == False: cond = (x < b) else: cond = (x <= b) args.append((sum, cond)) return Piecewise(*args) def _eval_interval(self, sym, a, b, _first=True): """Evaluates the function along the sym in a given interval [a, b]""" # FIXME: Currently complex intervals are not supported. A possible # replacement algorithm, discussed in issue 5227, can be found in the # following papers; # http://portal.acm.org/citation.cfm?id=281649 # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf from sympy.core.symbol import Dummy if a is None or b is None: # In this case, it is just simple substitution return super(Piecewise, self)._eval_interval(sym, a, b) else: x, lo, hi = map(as_Basic, (sym, a, b)) if _first: # get only x-dependent relationals def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_interval(x, lo, hi, _first=None) else: return ipw._eval_interval(x, lo, hi) irv = self._handle_irel(x, handler) if irv is not None: return irv if (lo < hi) is S.false or ( lo is S.Infinity or hi is S.NegativeInfinity): rv = self._eval_interval(x, hi, lo, _first=False) if isinstance(rv, Piecewise): rv = Piecewise(*[(-e, c) for e, c in rv.args]) else: rv = -rv return rv if (lo < hi) is S.true or ( hi is S.Infinity or lo is S.NegativeInfinity): pass else: _a = Dummy('lo') _b = Dummy('hi') a = lo if lo.is_comparable else _a b = hi if hi.is_comparable else _b pos = self._eval_interval(x, a, b, _first=False) if a == _a and b == _b: # it's purely symbolic so just swap lo and hi and # change the sign to get the value for when lo > hi neg, pos = (-pos.xreplace({_a: hi, _b: lo}), pos.xreplace({_a: lo, _b: hi})) else: # at least one of the bounds was comparable, so allow # _eval_interval to use that information when computing # the interval with lo and hi reversed neg, pos = (-self._eval_interval(x, hi, lo, _first=False), pos.xreplace({_a: lo, _b: hi})) # allow simplification based on ordering of lo and hi p = Dummy('', positive=True) if lo.is_Symbol: pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo}) neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi}) elif hi.is_Symbol: pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo}) neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi}) # assemble return expression; make the first condition be Lt # b/c then the first expression will look the same whether # the lo or hi limit is symbolic if a == _a: # the lower limit was symbolic rv = Piecewise( (pos, lo < hi), (neg, True)) else: rv = Piecewise( (neg, hi < lo), (pos, True)) if rv == Undefined: raise ValueError("Can't integrate across undefined region.") if any(isinstance(i, Piecewise) for i in (pos, neg)): rv = piecewise_fold(rv) return rv # handle a Piecewise with lo <= hi and no x-independent relationals # ----------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral # not being able to do the interval of f(x) can # be stated as not being able to do the integral # of f'(x) over the same range return Integral(self.diff(x), (x, lo, hi)) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] done = [(lo, hi, -1)] oo = S.Infinity for k, p in enumerate(pieces): if p[:2] == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # return the sum of the intervals sum = S.Zero upto = None for a, b, i in done: if i == -1: if upto is None: return Undefined # TODO simplify hi <= upto return Piecewise((sum, hi <= upto), (Undefined, True)) sum += abei[i][-2]._eval_interval(x, a, b) upto = b return sum def _intervals(self, sym): """Return a list of unique tuples, (a, b, e, i), where a and b are the lower and upper bounds in which the expression e of argument i in self is defined and a < b (when involving numbers) or a <= b when involving symbols. If there are any relationals not involving sym, or any relational cannot be solved for sym, NotImplementedError is raised. The calling routine should have removed such relationals before calling this routine. The evaluated conditions will be returned as ranges. Discontinuous ranges will be returned separately with identical expressions. The first condition that evaluates to True will be returned as the last tuple with a, b = -oo, oo. """ from sympy.solvers.inequalities import _solve_inequality from sympy.logic.boolalg import to_cnf, distribute_or_over_and assert isinstance(self, Piecewise) def _solve_relational(r): if sym not in r.free_symbols: nonsymfail(r) rv = _solve_inequality(r, sym) if isinstance(rv, Relational): free = rv.args[1].free_symbols if rv.args[0] != sym or sym in free: raise NotImplementedError(filldedent(''' Unable to solve relational %s for %s.''' % (r, sym))) if rv.rel_op == '==': # this equality has been affirmed to have the form # Eq(sym, rhs) where rhs is sym-free; it represents # a zero-width interval which will be ignored # whether it is an isolated condition or contained # within an And or an Or rv = S.false elif rv.rel_op == '!=': try: rv = Or(sym < rv.rhs, sym > rv.rhs) except TypeError: # e.g. x != I ==> all real x satisfy rv = S.true elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity): rv = S.true return rv def nonsymfail(cond): raise NotImplementedError(filldedent(''' A condition not involving %s appeared: %s''' % (sym, cond))) # make self canonical wrt Relationals reps = dict([ (r, _solve_relational(r)) for r in self.atoms(Relational)]) # process args individually so if any evaluate, their position # in the original Piecewise will be known args = [i.xreplace(reps) for i in self.args] # precondition args expr_cond = [] default = idefault = None for i, (expr, cond) in enumerate(args): if cond is S.false: continue elif cond is S.true: default = expr idefault = i break cond = to_cnf(cond) if isinstance(cond, And): cond = distribute_or_over_and(cond) if isinstance(cond, Or): expr_cond.extend( [(i, expr, o) for o in cond.args if not isinstance(o, Equality)]) elif cond is not S.false: expr_cond.append((i, expr, cond)) # determine intervals represented by conditions int_expr = [] for iarg, expr, cond in expr_cond: if isinstance(cond, And): lower = S.NegativeInfinity upper = S.Infinity for cond2 in cond.args: if isinstance(cond2, Equality): lower = upper # ignore break elif cond2.lts == sym: upper = Min(cond2.gts, upper) elif cond2.gts == sym: lower = Max(cond2.lts, lower) else: nonsymfail(cond2) # should never get here elif isinstance(cond, Relational): lower, upper = cond.lts, cond.gts # part 1: initialize with givens if cond.lts == sym: # part 1a: expand the side ... lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0 elif cond.gts == sym: # part 1a: ... that can be expanded upper = S.Infinity # e.g. x >= 0 ---> oo >= 0 else: nonsymfail(cond) else: raise NotImplementedError( 'unrecognized condition: %s' % cond) lower, upper = lower, Max(lower, upper) if (lower >= upper) is not S.true: int_expr.append((lower, upper, expr, iarg)) if default is not None: int_expr.append( (S.NegativeInfinity, S.Infinity, default, idefault)) return list(uniq(int_expr)) def _eval_nseries(self, x, n, logx): args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args] return self.func(*args) def _eval_power(self, s): return self.func(*[(e**s, c) for e, c in self.args]) def _eval_subs(self, old, new): # this is strictly not necessary, but we can keep track # of whether True or False conditions arise and be # somewhat more efficient by avoiding other substitutions # and avoiding invalid conditions that appear after a # True condition args = list(self.args) args_exist = False for i, (e, c) in enumerate(args): c = c._subs(old, new) if c != False: args_exist = True e = e._subs(old, new) args[i] = (e, c) if c == True: break if not args_exist: args = ((Undefined, True),) return self.func(*args) def _eval_transpose(self): return self.func(*[(e.transpose(), c) for e, c in self.args]) def _eval_template_is_attr(self, is_attr): b = None for expr, _ in self.args: a = getattr(expr, is_attr) if a is None: return if b is None: b = a elif b is not a: return return b _eval_is_finite = lambda self: self._eval_template_is_attr( 'is_finite') _eval_is_complex = lambda self: self._eval_template_is_attr('is_complex') _eval_is_even = lambda self: self._eval_template_is_attr('is_even') _eval_is_imaginary = lambda self: self._eval_template_is_attr( 'is_imaginary') _eval_is_integer = lambda self: self._eval_template_is_attr('is_integer') _eval_is_irrational = lambda self: self._eval_template_is_attr( 'is_irrational') _eval_is_negative = lambda self: self._eval_template_is_attr('is_negative') _eval_is_nonnegative = lambda self: self._eval_template_is_attr( 'is_nonnegative') _eval_is_nonpositive = lambda self: self._eval_template_is_attr( 'is_nonpositive') _eval_is_nonzero = lambda self: self._eval_template_is_attr( 'is_nonzero') _eval_is_odd = lambda self: self._eval_template_is_attr('is_odd') _eval_is_polar = lambda self: self._eval_template_is_attr('is_polar') _eval_is_positive = lambda self: self._eval_template_is_attr('is_positive') _eval_is_real = lambda self: self._eval_template_is_attr('is_real') _eval_is_zero = lambda self: self._eval_template_is_attr( 'is_zero') @classmethod def __eval_cond(cls, cond): """Return the truth value of the condition.""" if cond == True: return True if isinstance(cond, Equality): try: diff = cond.lhs - cond.rhs if diff.is_commutative: return diff.is_zero except TypeError: pass def as_expr_set_pairs(self, domain=S.Reals): """Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. If a condition cannot be converted to a set, an error will be raised. The variable of the conditions is assumed to be real; sets of real values are returned. Examples ======== >>> from sympy import Piecewise, Interval >>> from sympy.abc import x >>> p = Piecewise( ... (1, x < 2), ... (2,(x > 0) & (x < 4)), ... (3, True)) >>> p.as_expr_set_pairs() [(1, Interval.open(-oo, 2)), (2, Interval.Ropen(2, 4)), (3, Interval(4, oo))] >>> p.as_expr_set_pairs(Interval(0, 3)) [(1, Interval.Ropen(0, 2)), (2, Interval(2, 3)), (3, EmptySet())] """ exp_sets = [] U = domain complex = not domain.is_subset(S.Reals) for expr, cond in self.args: if complex: for i in cond.atoms(Relational): if not isinstance(i, (Equality, Unequality)): raise ValueError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) cond_int = U.intersect(cond.as_set()) U = U - cond_int exp_sets.append((expr, cond_int)) return exp_sets def _eval_rewrite_as_ITE(self, *args, **kwargs): byfree = {} args = list(args) default = any(c == True for b, c in args) for i, (b, c) in enumerate(args): if not isinstance(b, Boolean) and b != True: raise TypeError(filldedent(''' Expecting Boolean or bool but got `%s` ''' % func_name(b))) if c == True: break # loop over independent conditions for this b for c in c.args if isinstance(c, Or) else [c]: free = c.free_symbols x = free.pop() try: byfree[x] = byfree.setdefault( x, S.EmptySet).union(c.as_set()) except NotImplementedError: if not default: raise NotImplementedError(filldedent(''' A method to determine whether a multivariate conditional is consistent with a complete coverage of all variables has not been implemented so the rewrite is being stopped after encountering `%s`. This error would not occur if a default expression like `(foo, True)` were given. ''' % c)) if byfree[x] in (S.UniversalSet, S.Reals): # collapse the ith condition to True and break args[i] = list(args[i]) c = args[i][1] = True break if c == True: break if c != True: raise ValueError(filldedent(''' Conditions must cover all reals or a final default condition `(foo, True)` must be given. ''')) last, _ = args[i] # ignore all past ith arg for a, c in reversed(args[:i]): last = ITE(c, a, last) return _canonical(last) def piecewise_fold(expr): """ Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified. Examples ======== >>> from sympy import Piecewise, piecewise_fold, sympify as S >>> from sympy.abc import x >>> p = Piecewise((x, x < 1), (1, S(1) <= x)) >>> piecewise_fold(x*p) Piecewise((x**2, x < 1), (x, True)) See Also ======== Piecewise """ if not isinstance(expr, Basic) or not expr.has(Piecewise): return expr new_args = [] if isinstance(expr, (ExprCondPair, Piecewise)): for e, c in expr.args: if not isinstance(e, Piecewise): e = piecewise_fold(e) # we don't keep Piecewise in condition because # it has to be checked to see that it's complete # and we convert it to ITE at that time assert not c.has(Piecewise) # pragma: no cover if isinstance(c, ITE): c = c.to_nnf() c = simplify_logic(c, form='cnf') if isinstance(e, Piecewise): new_args.extend([(piecewise_fold(ei), And(ci, c)) for ei, ci in e.args]) else: new_args.append((e, c)) else: from sympy.utilities.iterables import cartes, sift, common_prefix # Given # P1 = Piecewise((e11, c1), (e12, c2), A) # P2 = Piecewise((e21, c1), (e22, c2), B) # ... # the folding of f(P1, P2) is trivially # Piecewise( # (f(e11, e21), c1), # (f(e12, e22), c2), # (f(Piecewise(A), Piecewise(B)), True)) # Certain objects end up rewriting themselves as thus, so # we do that grouping before the more generic folding. # The following applies this idea when f = Add or f = Mul # (and the expression is commutative). if expr.is_Add or expr.is_Mul and expr.is_commutative: p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True) pc = sift(p, lambda x: tuple([c for e,c in x.args])) for c in list(ordered(pc)): if len(pc[c]) > 1: pargs = [list(i.args) for i in pc[c]] # the first one is the same; there may be more com = common_prefix(*[ [i.cond for i in j] for j in pargs]) n = len(com) collected = [] for i in range(n): collected.append(( expr.func(*[ai[i].expr for ai in pargs]), com[i])) remains = [] for a in pargs: if n == len(a): # no more args continue if a[n].cond == True: # no longer Piecewise remains.append(a[n].expr) else: # restore the remaining Piecewise remains.append( Piecewise(*a[n:], evaluate=False)) if remains: collected.append((expr.func(*remains), True)) args.append(Piecewise(*collected, evaluate=False)) continue args.extend(pc[c]) else: args = expr.args # fold folded = list(map(piecewise_fold, args)) for ec in cartes(*[ (i.args if isinstance(i, Piecewise) else [(i, true)]) for i in folded]): e, c = zip(*ec) new_args.append((expr.func(*e), And(*c))) return Piecewise(*new_args) def _clip(A, B, k): """Return interval B as intervals that are covered by A (keyed to k) and all other intervals of B not covered by A keyed to -1. The reference point of each interval is the rhs; if the lhs is greater than the rhs then an interval of zero width interval will result, e.g. (4, 1) is treated like (1, 1). Examples ======== >>> from sympy.functions.elementary.piecewise import _clip >>> from sympy import Tuple >>> A = Tuple(1, 3) >>> B = Tuple(2, 4) >>> _clip(A, B, 0) [(2, 3, 0), (3, 4, -1)] Interpretation: interval portion (2, 3) of interval (2, 4) is covered by interval (1, 3) and is keyed to 0 as requested; interval (3, 4) was not covered by (1, 3) and is keyed to -1. """ a, b = B c, d = A c, d = Min(Max(c, a), b), Min(Max(d, a), b) a, b = Min(a, b), b p = [] if a != c: p.append((a, c, -1)) else: pass if c != d: p.append((c, d, k)) else: pass if b != d: if d == c and p and p[-1][-1] == -1: p[-1] = p[-1][0], b, -1 else: p.append((d, b, -1)) else: pass return p
0172b9be87db41680e17b6e772cb6706a8424f49a47ffab9a9ce536a7864177e
from __future__ import print_function, division from sympy.core import Add, S from sympy.core.evalf import get_integer_part, PrecisionExhausted from sympy.core.function import Function from sympy.core.numbers import Integer from sympy.core.relational import Gt, Lt, Ge, Le from sympy.core.symbol import Symbol ############################################################################### ######################### FLOOR and CEILING FUNCTIONS ######################### ############################################################################### class RoundFunction(Function): """The base class for rounding functions.""" @classmethod def eval(cls, arg): from sympy import im if arg.is_integer or arg.is_finite is False: return arg if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: i = im(arg) if not i.has(S.ImaginaryUnit): return cls(i)*S.ImaginaryUnit return cls(arg, evaluate=False) v = cls._eval_number(arg) if v is not None: return v # Integral, numerical, symbolic part ipart = npart = spart = S.Zero # Extract integral (or complex integral) terms terms = Add.make_args(arg) for t in terms: if t.is_integer or (t.is_imaginary and im(t).is_integer): ipart += t elif t.has(Symbol): spart += t else: npart += t if not (npart or spart): return ipart # Evaluate npart numerically if independent of spart if npart and ( not spart or npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or npart.is_imaginary and spart.is_real): try: r, i = get_integer_part( npart, cls._dir, {}, return_ints=True) ipart += Integer(r) + Integer(i)*S.ImaginaryUnit npart = S.Zero except (PrecisionExhausted, NotImplementedError): pass spart += npart if not spart: return ipart elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real: return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit else: return ipart + cls(spart, evaluate=False) def _eval_is_finite(self): return self.args[0].is_finite def _eval_is_real(self): return self.args[0].is_real def _eval_is_integer(self): return self.args[0].is_real class floor(RoundFunction): """ Floor is a univariate function which returns the largest integer value not greater than its argument. This implementation generalizes floor to complex numbers by taking the floor of the real and imaginary parts separately. Examples ======== >>> from sympy import floor, E, I, S, Float, Rational >>> floor(17) 17 >>> floor(Rational(23, 10)) 2 >>> floor(2*E) 5 >>> floor(-Float(0.567)) -1 >>> floor(-I/2) -I >>> floor(S(5)/2 + 5*I/2) 2 + 2*I See Also ======== sympy.functions.elementary.integers.ceiling References ========== .. [1] "Concrete mathematics" by Graham, pp. 87 .. [2] http://mathworld.wolfram.com/FloorFunction.html """ _dir = -1 @classmethod def _eval_number(cls, arg): if arg.is_Number: return arg.floor() elif any(isinstance(i, j) for i in (arg, -arg) for j in (floor, ceiling)): return arg if arg.is_NumberSymbol: return arg.approximation_interval(Integer)[0] def _eval_nseries(self, x, n, logx): r = self.subs(x, 0) args = self.args[0] args0 = args.subs(x, 0) if args0 == r: direction = (args - args0).leadterm(x)[0] if direction.is_positive: return r else: return r - 1 else: return r def _eval_rewrite_as_ceiling(self, arg, **kwargs): return -ceiling(-arg) def _eval_rewrite_as_frac(self, arg, **kwargs): return arg - frac(arg) def _eval_Eq(self, other): if isinstance(self, floor): if (self.rewrite(ceiling) == other) or \ (self.rewrite(frac) == other): return S.true def __le__(self, other): if self.args[0] == other and other.is_real: return S.true return Le(self, other, evaluate=False) def __gt__(self, other): if self.args[0] == other and other.is_real: return S.false return Gt(self, other, evaluate=False) class ceiling(RoundFunction): """ Ceiling is a univariate function which returns the smallest integer value not less than its argument. This implementation generalizes ceiling to complex numbers by taking the ceiling of the real and imaginary parts separately. Examples ======== >>> from sympy import ceiling, E, I, S, Float, Rational >>> ceiling(17) 17 >>> ceiling(Rational(23, 10)) 3 >>> ceiling(2*E) 6 >>> ceiling(-Float(0.567)) 0 >>> ceiling(I/2) I >>> ceiling(S(5)/2 + 5*I/2) 3 + 3*I See Also ======== sympy.functions.elementary.integers.floor References ========== .. [1] "Concrete mathematics" by Graham, pp. 87 .. [2] http://mathworld.wolfram.com/CeilingFunction.html """ _dir = 1 @classmethod def _eval_number(cls, arg): if arg.is_Number: return arg.ceiling() elif any(isinstance(i, j) for i in (arg, -arg) for j in (floor, ceiling)): return arg if arg.is_NumberSymbol: return arg.approximation_interval(Integer)[1] def _eval_nseries(self, x, n, logx): r = self.subs(x, 0) args = self.args[0] args0 = args.subs(x, 0) if args0 == r: direction = (args - args0).leadterm(x)[0] if direction.is_positive: return r + 1 else: return r else: return r def _eval_rewrite_as_floor(self, arg, **kwargs): return -floor(-arg) def _eval_rewrite_as_frac(self, arg, **kwargs): return arg + frac(-arg) def _eval_Eq(self, other): if isinstance(self, ceiling): if (self.rewrite(floor) == other) or \ (self.rewrite(frac) == other): return S.true def __lt__(self, other): if self.args[0] == other and other.is_real: return S.false return Lt(self, other, evaluate=False) def __ge__(self, other): if self.args[0] == other and other.is_real: return S.true return Ge(self, other, evaluate=False) class frac(Function): r"""Represents the fractional part of x For real numbers it is defined [1]_ as .. math:: x - \left\lfloor{x}\right\rfloor Examples ======== >>> from sympy import Symbol, frac, Rational, floor, ceiling, I >>> frac(Rational(4, 3)) 1/3 >>> frac(-Rational(4, 3)) 2/3 returns zero for integer arguments >>> n = Symbol('n', integer=True) >>> frac(n) 0 rewrite as floor >>> x = Symbol('x') >>> frac(x).rewrite(floor) x - floor(x) for complex arguments >>> r = Symbol('r', real=True) >>> t = Symbol('t', real=True) >>> frac(t + I*r) I*frac(r) + frac(t) See Also ======== sympy.functions.elementary.integers.floor sympy.functions.elementary.integers.ceiling References =========== .. [1] https://en.wikipedia.org/wiki/Fractional_part .. [2] http://mathworld.wolfram.com/FractionalPart.html """ @classmethod def eval(cls, arg): from sympy import AccumBounds, im def _eval(arg): if arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(0, 1) if arg.is_integer: return S.Zero if arg.is_number: if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return None else: return arg - floor(arg) return cls(arg, evaluate=False) terms = Add.make_args(arg) real, imag = S.Zero, S.Zero for t in terms: # Two checks are needed for complex arguments # see issue-7649 for details if t.is_imaginary or (S.ImaginaryUnit*t).is_real: i = im(t) if not i.has(S.ImaginaryUnit): imag += i else: real += t else: real += t real = _eval(real) imag = _eval(imag) return real + S.ImaginaryUnit*imag def _eval_rewrite_as_floor(self, arg, **kwargs): return arg - floor(arg) def _eval_rewrite_as_ceiling(self, arg, **kwargs): return arg + ceiling(-arg) def _eval_Eq(self, other): if isinstance(self, frac): if (self.rewrite(floor) == other) or \ (self.rewrite(ceiling) == other): return S.true
c13fcdc31760fbb7d3b4869fd1c80a4691207fc2e08c915c55157c8862b16d67
from __future__ import print_function, division from sympy.core import sympify from sympy.core.add import Add from sympy.core.cache import cacheit from sympy.core.compatibility import range from sympy.core.function import Function, ArgumentIndexError, _coeff_isneg from sympy.core.logic import fuzzy_not from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy from sympy.functions.combinatorial.factorials import factorial from sympy.ntheory import multiplicity, perfect_power # NOTE IMPORTANT # The series expansion code in this file is an important part of the gruntz # algorithm for determining limits. _eval_nseries has to return a generalized # power series with coefficients in C(log(x), log). # In more detail, the result of _eval_nseries(self, x, n) must be # c_0*x**e_0 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i involve only # numbers, the function log, and log(x). [This also means it must not contain # log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and # p.is_positive.] class ExpBase(Function): unbranched = True def inverse(self, argindex=1): """ Returns the inverse function of ``exp(x)``. """ return log def as_numer_denom(self): """ Returns this with a positive exponent as a 2-tuple (a fraction). Examples ======== >>> from sympy.functions import exp >>> from sympy.abc import x >>> exp(-x).as_numer_denom() (1, exp(x)) >>> exp(x).as_numer_denom() (exp(x), 1) """ # this should be the same as Pow.as_numer_denom wrt # exponent handling exp = self.exp neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) if neg_exp: return S.One, self.func(-exp) return self, S.One @property def exp(self): """ Returns the exponent of the function. """ return self.args[0] def as_base_exp(self): """ Returns the 2-tuple (base, exponent). """ return self.func(1), Mul(*self.args) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_finite(self): arg = self.args[0] if arg.is_infinite: if arg.is_negative: return True if arg.is_positive: return False if arg.is_finite: return True def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.exp is S.Zero: return True elif s.exp.is_rational and fuzzy_not(s.exp.is_zero): return False else: return s.is_rational def _eval_is_zero(self): return (self.args[0] is S.NegativeInfinity) def _eval_power(self, other): """exp(arg)**e -> exp(arg*e) if assumptions allow it. """ b, e = self.as_base_exp() return Pow._eval_power(Pow(b, e, evaluate=False), other) def _eval_expand_power_exp(self, **hints): arg = self.args[0] if arg.is_Add and arg.is_commutative: expr = 1 for x in arg.args: expr *= self.func(x) return expr return self.func(arg) class exp_polar(ExpBase): r""" Represent a 'polar number' (see g-function Sphinx documentation). ``exp_polar`` represents the function `Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number `z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of the main functions to construct polar numbers. >>> from sympy import exp_polar, pi, I, exp The main difference is that polar numbers don't "wrap around" at `2 \pi`: >>> exp(2*pi*I) 1 >>> exp_polar(2*pi*I) exp_polar(2*I*pi) apart from that they behave mostly like classical complex numbers: >>> exp_polar(2)*exp_polar(3) exp_polar(5) See Also ======== sympy.simplify.simplify.powsimp sympy.functions.elementary.complexes.polar_lift sympy.functions.elementary.complexes.periodic_argument sympy.functions.elementary.complexes.principal_branch """ is_polar = True is_comparable = False # cannot be evalf'd def _eval_Abs(self): # Abs is never a polar number from sympy.functions.elementary.complexes import re return exp(re(self.args[0])) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ from sympy import im, pi, re i = im(self.args[0]) try: bad = (i <= -pi or i > pi) except TypeError: bad = True if bad: return self # cannot evalf for this argument res = exp(self.args[0])._eval_evalf(prec) if i > 0 and im(res) < 0: # i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi return re(res) return res def _eval_power(self, other): return self.func(self.args[0]*other) def _eval_is_real(self): if self.args[0].is_real: return True def as_base_exp(self): # XXX exp_polar(0) is special! if self.args[0] == 0: return self, S(1) return ExpBase.as_base_exp(self) class exp(ExpBase): """ The exponential function, :math:`e^x`. See Also ======== log """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return self else: raise ArgumentIndexError(self, argindex) def _eval_refine(self, assumptions): from sympy.assumptions import ask, Q arg = self.args[0] if arg.is_Mul: Ioo = S.ImaginaryUnit*S.Infinity if arg in [Ioo, -Ioo]: return S.NaN coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit) if coeff: if ask(Q.integer(2*coeff)): if ask(Q.even(coeff)): return S.One elif ask(Q.odd(coeff)): return S.NegativeOne elif ask(Q.even(coeff + S.Half)): return -S.ImaginaryUnit elif ask(Q.odd(coeff + S.Half)): return S.ImaginaryUnit @classmethod def eval(cls, arg): from sympy.assumptions import ask, Q from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr from sympy.matrices.matrices import MatrixBase from sympy import logcombine if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Zero: return S.One elif arg is S.One: return S.Exp1 elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg is S.ComplexInfinity: return S.NaN elif isinstance(arg, log): return arg.args[0] elif isinstance(arg, AccumBounds): return AccumBounds(exp(arg.min), exp(arg.max)) elif isinstance(arg, SetExpr): return arg._eval_func(cls) elif arg.is_Mul: if arg.is_number or arg.is_Symbol: coeff = arg.coeff(S.Pi*S.ImaginaryUnit) if coeff: if ask(Q.integer(2*coeff)): if ask(Q.even(coeff)): return S.One elif ask(Q.odd(coeff)): return S.NegativeOne elif ask(Q.even(coeff + S.Half)): return -S.ImaginaryUnit elif ask(Q.odd(coeff + S.Half)): return S.ImaginaryUnit # Warning: code in risch.py will be very sensitive to changes # in this (see DifferentialExtension). # look for a single log factor coeff, terms = arg.as_coeff_Mul() # but it can't be multiplied by oo if coeff in [S.NegativeInfinity, S.Infinity]: return None coeffs, log_term = [coeff], None for term in Mul.make_args(terms): term_ = logcombine(term) if isinstance(term_, log): if log_term is None: log_term = term_.args[0] else: return None elif term.is_comparable: coeffs.append(term) else: return None return log_term**Mul(*coeffs) if log_term else None elif arg.is_Add: out = [] add = [] for a in arg.args: if a is S.One: add.append(a) continue newa = cls(a) if isinstance(newa, cls): add.append(a) else: out.append(newa) if out: return Mul(*out)*cls(Add(*add), evaluate=False) elif isinstance(arg, MatrixBase): return arg.exp() @property def base(self): """ Returns the base of the exponential function. """ return S.Exp1 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Calculates the next term in the Taylor series expansion. """ if n < 0: return S.Zero if n == 0: return S.One x = sympify(x) if previous_terms: p = previous_terms[-1] if p is not None: return p * x / n return x**n/factorial(n) def as_real_imag(self, deep=True, **hints): """ Returns this function as a 2-tuple representing a complex number. Examples ======== >>> from sympy import I >>> from sympy.abc import x >>> from sympy.functions import exp >>> exp(x).as_real_imag() (exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x))) >>> exp(1).as_real_imag() (E, 0) >>> exp(I).as_real_imag() (cos(1), sin(1)) >>> exp(1+I).as_real_imag() (E*cos(1), E*sin(1)) See Also ======== sympy.functions.elementary.complexes.re sympy.functions.elementary.complexes.im """ import sympy re, im = self.args[0].as_real_imag() if deep: re = re.expand(deep, **hints) im = im.expand(deep, **hints) cos, sin = sympy.cos(im), sympy.sin(im) return (exp(re)*cos, exp(re)*sin) def _eval_subs(self, old, new): # keep processing of power-like args centralized in Pow if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2) old = exp(old.exp*log(old.base)) elif old is S.Exp1 and new.is_Function: old = exp if isinstance(old, exp) or old is S.Exp1: f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if ( a.is_Pow or isinstance(a, exp)) else a return Pow._eval_subs(f(self), f(old), new) if old is exp and not new.is_Function: return new**self.exp._subs(old, new) return Function._eval_subs(self, old, new) def _eval_is_real(self): if self.args[0].is_real: return True elif self.args[0].is_imaginary: arg2 = -S(2) * S.ImaginaryUnit * self.args[0] / S.Pi return arg2.is_even def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.exp.is_zero): if self.exp.is_algebraic: return False elif (self.exp/S.Pi).is_rational: return False else: return s.is_algebraic def _eval_is_positive(self): if self.args[0].is_real: return not self.args[0] is S.NegativeInfinity elif self.args[0].is_imaginary: arg2 = -S.ImaginaryUnit * self.args[0] / S.Pi return arg2.is_even def _eval_nseries(self, x, n, logx): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import limit, oo, Order, powsimp arg = self.args[0] arg_series = arg._eval_nseries(x, n=n, logx=logx) if arg_series.is_Order: return 1 + arg_series arg0 = limit(arg_series.removeO(), x, 0) if arg0 in [-oo, oo]: return self t = Dummy("t") exp_series = exp(t)._taylor(t, n) o = exp_series.getO() exp_series = exp_series.removeO() r = exp(arg0)*exp_series.subs(t, arg_series - arg0) r += Order(o.expr.subs(t, (arg_series - arg0)), x) r = r.expand() return powsimp(r, deep=True, combine='exp') def _taylor(self, x, n): from sympy import Order l = [] g = None for i in range(n): g = self.taylor_term(i, self.args[0], g) g = g.nseries(x, n=n) l.append(g) return Add(*l) + Order(x**n, x) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0] if arg.is_Add: return Mul(*[exp(f).as_leading_term(x) for f in arg.args]) arg = self.args[0].as_leading_term(x) if Order(1, x).contains(arg): return S.One return exp(arg) def _eval_rewrite_as_sin(self, arg, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I*arg + S.Pi/2) - I*sin(I*arg) def _eval_rewrite_as_cos(self, arg, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I*arg) + I*cos(I*arg + S.Pi/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): from sympy import tanh return (1 + tanh(arg/2))/(1 - tanh(arg/2)) def _eval_rewrite_as_sqrt(self, arg, **kwargs): from sympy.functions.elementary.trigonometric import sin, cos if arg.is_Mul: coeff = arg.coeff(S.Pi*S.ImaginaryUnit) if coeff and coeff.is_number: cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff) if not isinstance(cosine, cos) and not isinstance (sine, sin): return cosine + S.ImaginaryUnit*sine def _eval_rewrite_as_Pow(self, arg, **kwargs): if arg.is_Mul: logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1] if logs: return Pow(logs[0].args[0], arg.coeff(logs[0])) class log(Function): r""" The natural logarithm function `\ln(x)` or `\log(x)`. Logarithms are taken with the natural base, `e`. To get a logarithm of a different base ``b``, use ``log(x, b)``, which is essentially short-hand for ``log(x)/log(b)``. See Also ======== exp """ def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if argindex == 1: return 1/self.args[0] else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): r""" Returns `e^x`, the inverse function of `\log(x)`. """ return exp @classmethod def eval(cls, arg, base=None): from sympy import unpolarify from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr arg = sympify(arg) if base is not None: base = sympify(base) if base == 1: if arg == 1: return S.NaN else: return S.ComplexInfinity try: # handle extraction of powers of the base now # or else expand_log in Mul would have to handle this n = multiplicity(base, arg) if n: den = base**n if den.is_Integer: return n + log(arg // den) / log(base) else: return n + log(arg / den) / log(base) else: return log(arg)/log(base) except ValueError: pass if base is not S.Exp1: return cls(arg)/cls(base) else: return cls(arg) if arg.is_Number: if arg is S.Zero: return S.ComplexInfinity elif arg is S.One: return S.Zero elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg is S.NaN: return S.NaN elif arg.is_Rational and arg.p == 1: return -cls(arg.q) if arg is S.ComplexInfinity: return S.ComplexInfinity if isinstance(arg, exp) and arg.args[0].is_real: return arg.args[0] elif isinstance(arg, exp_polar): return unpolarify(arg.exp) elif isinstance(arg, AccumBounds): if arg.min.is_positive: return AccumBounds(log(arg.min), log(arg.max)) else: return elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.is_number: if arg.is_negative: return S.Pi * S.ImaginaryUnit + cls(-arg) elif arg is S.ComplexInfinity: return S.ComplexInfinity elif arg is S.Exp1: return S.One # don't autoexpand Pow or Mul (see the issue 3351): if not arg.is_Add: coeff = arg.as_coefficient(S.ImaginaryUnit) if coeff is not None: if coeff is S.Infinity: return S.Infinity elif coeff is S.NegativeInfinity: return S.Infinity elif coeff.is_Rational: if coeff.is_nonnegative: return S.Pi * S.ImaginaryUnit * S.Half + cls(coeff) else: return -S.Pi * S.ImaginaryUnit * S.Half + cls(-coeff) def as_base_exp(self): """ Returns this function in the form (base, exponent). """ return self, S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # of log(1+x) r""" Returns the next term in the Taylor series expansion of `\log(1+x)`. """ from sympy import powsimp if n < 0: return S.Zero x = sympify(x) if n == 0: return x if previous_terms: p = previous_terms[-1] if p is not None: return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp') return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1) def _eval_expand_log(self, deep=True, **hints): from sympy import unpolarify, expand_log from sympy.concrete import Sum, Product force = hints.get('force', False) if (len(self.args) == 2): return expand_log(self.func(*self.args), deep=deep, force=force) arg = self.args[0] if arg.is_Integer: # remove perfect powers p = perfect_power(int(arg)) if p is not False: return p[1]*self.func(p[0]) elif arg.is_Rational: return log(arg.p) - log(arg.q) elif arg.is_Mul: expr = [] nonpos = [] for x in arg.args: if force or x.is_positive or x.is_polar: a = self.func(x) if isinstance(a, log): expr.append(self.func(x)._eval_expand_log(**hints)) else: expr.append(a) elif x.is_negative: a = self.func(-x) expr.append(a) nonpos.append(S.NegativeOne) else: nonpos.append(x) return Add(*expr) + log(Mul(*nonpos)) elif arg.is_Pow or isinstance(arg, exp): if force or (arg.exp.is_real and (arg.base.is_positive or ((arg.exp+1) .is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar: b = arg.base e = arg.exp a = self.func(b) if isinstance(a, log): return unpolarify(e) * a._eval_expand_log(**hints) else: return unpolarify(e) * a elif isinstance(arg, Product): if arg.function.is_positive: return Sum(log(arg.function), *arg.limits) return self.func(arg) def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.simplify.simplify import expand_log, simplify, inversecombine if (len(self.args) == 2): return simplify(self.func(*self.args), ratio=ratio, measure=measure, rational=rational, inverse=inverse) expr = self.func(simplify(self.args[0], ratio=ratio, measure=measure, rational=rational, inverse=inverse)) if inverse: expr = inversecombine(expr) expr = expand_log(expr, deep=True) return min([expr, self], key=measure) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. Examples ======== >>> from sympy import I >>> from sympy.abc import x >>> from sympy.functions import log >>> log(x).as_real_imag() (log(Abs(x)), arg(x)) >>> log(I).as_real_imag() (0, pi/2) >>> log(1 + I).as_real_imag() (log(sqrt(2)), pi/4) >>> log(I*x).as_real_imag() (log(Abs(x)), arg(I*x)) """ from sympy import Abs, arg if deep: abs = Abs(self.args[0].expand(deep, **hints)) arg = arg(self.args[0].expand(deep, **hints)) else: abs = Abs(self.args[0]) arg = arg(self.args[0]) if hints.get('log', False): # Expand the log hints['complex'] = False return (log(abs).expand(deep, **hints), arg) else: return (log(abs), arg) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if (self.args[0] - 1).is_zero: return True elif fuzzy_not((self.args[0] - 1).is_zero): if self.args[0].is_algebraic: return False else: return s.is_algebraic def _eval_is_real(self): return self.args[0].is_positive def _eval_is_finite(self): arg = self.args[0] if arg.is_zero: return False return arg.is_finite def _eval_is_positive(self): return (self.args[0] - 1).is_positive def _eval_is_zero(self): return (self.args[0] - 1).is_zero def _eval_is_nonnegative(self): return (self.args[0] - 1).is_nonnegative def _eval_nseries(self, x, n, logx): # NOTE Please see the comment at the beginning of this file, labelled # IMPORTANT. from sympy import cancel, Order if not logx: logx = log(x) if self.args[0] == x: return logx arg = self.args[0] k, l = Wild("k"), Wild("l") r = arg.match(k*x**l) if r is not None: k, l = r[k], r[l] if l != 0 and not l.has(x) and not k.has(x): r = log(k) + l*logx # XXX true regardless of assumptions? return r # TODO new and probably slow s = self.args[0].nseries(x, n=n, logx=logx) while s.is_Order: n += 1 s = self.args[0].nseries(x, n=n, logx=logx) a, b = s.leadterm(x) p = cancel(s/(a*x**b) - 1) g = None l = [] for i in range(n + 2): g = log.taylor_term(i, p, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return log(a) + b*logx + Add(*l) + Order(p**n, x) def _eval_as_leading_term(self, x): arg = self.args[0].as_leading_term(x) if arg is S.One: return (self.args[0] - 1).as_leading_term(x) return self.func(arg) class LambertW(Function): r""" The Lambert W function `W(z)` is defined as the inverse function of `w \exp(w)` [1]_. In other words, the value of `W(z)` is such that `z = W(z) \exp(W(z))` for any complex number `z`. The Lambert W function is a multivalued function with infinitely many branches `W_k(z)`, indexed by `k \in \mathbb{Z}`. Each branch gives a different solution `w` of the equation `z = w \exp(w)`. The Lambert W function has two partially real branches: the principal branch (`k = 0`) is real for real `z > -1/e`, and the `k = -1` branch is real for `-1/e < z < 0`. All branches except `k = 0` have a logarithmic singularity at `z = 0`. Examples ======== >>> from sympy import LambertW >>> LambertW(1.2) 0.635564016364870 >>> LambertW(1.2, -1).n() -1.34747534407696 - 4.41624341514535*I >>> LambertW(-1).is_real False References ========== .. [1] https://en.wikipedia.org/wiki/Lambert_W_function """ @classmethod def eval(cls, x, k=None): if k is S.Zero: return cls(x) elif k is None: k = S.Zero if k is S.Zero: if x is S.Zero: return S.Zero if x is S.Exp1: return S.One if x == -1/S.Exp1: return S.NegativeOne if x == -log(2)/2: return -log(2) if x is S.Infinity: return S.Infinity if fuzzy_not(k.is_zero): if x is S.Zero: return S.NegativeInfinity if k is S.NegativeOne: if x == -S.Pi/2: return -S.ImaginaryUnit*S.Pi/2 elif x == -1/S.Exp1: return S.NegativeOne elif x == -2*exp(-2): return -Integer(2) def fdiff(self, argindex=1): """ Return the first derivative of this function. """ x = self.args[0] if len(self.args) == 1: if argindex == 1: return LambertW(x)/(x*(1 + LambertW(x))) else: k = self.args[1] if argindex == 1: return LambertW(x, k)/(x*(1 + LambertW(x, k))) raise ArgumentIndexError(self, argindex) def _eval_is_real(self): x = self.args[0] if len(self.args) == 1: k = S.Zero else: k = self.args[1] if k.is_zero: if (x + 1/S.Exp1).is_positive: return True elif (x + 1/S.Exp1).is_nonpositive: return False elif (k + 1).is_zero: if x.is_negative and (x + 1/S.Exp1).is_positive: return True elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative: return False elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero): if x.is_real: return False def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False else: return s.is_algebraic
6de5153a7148d8b70b863ff7e1ec60a07b8fe691046e94f6f656cf8cf28fa74f
from __future__ import print_function, division from sympy.core import S, sympify, cacheit from sympy.core.add import Add from sympy.core.function import Function, ArgumentIndexError, _coeff_isneg from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.miscellaneous import sqrt def _rewrite_hyperbolics_as_exp(expr): expr = sympify(expr) return expr.xreplace(dict([(h, h.rewrite(exp)) for h in expr.atoms(HyperbolicFunction)])) ############################################################################### ########################### HYPERBOLIC FUNCTIONS ############################## ############################################################################### class HyperbolicFunction(Function): """ Base class for hyperbolic functions. See Also ======== sinh, cosh, tanh, coth """ unbranched = True def _peeloff_ipi(arg): """ Split ARG into two parts, a "rest" and a multiple of I*pi/2. This assumes ARG to be an Add. The multiple of I*pi returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel >>> from sympy import pi, I >>> from sympy.abc import x, y >>> peel(x + I*pi/2) (x, I*pi/2) >>> peel(x + I*2*pi/3 + I*pi*y) (x + I*pi*y + I*pi/6, I*pi/2) """ for a in Add.make_args(arg): if a == S.Pi*S.ImaginaryUnit: K = S.One break elif a.is_Mul: K, p = a.as_two_terms() if p == S.Pi*S.ImaginaryUnit and K.is_Rational: break else: return arg, S.Zero m1 = (K % S.Half)*S.Pi*S.ImaginaryUnit m2 = K*S.Pi*S.ImaginaryUnit - m1 return arg - m2, m2 class sinh(HyperbolicFunction): r""" The hyperbolic sine function, `\frac{e^x - e^{-x}}{2}`. * sinh(x) -> Returns the hyperbolic sine of x See Also ======== cosh, tanh, asinh """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return cosh(self.args[0]) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return asinh @classmethod def eval(cls, arg): from sympy import sin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg is S.Zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * sin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return sinh(m)*cosh(x) + cosh(m)*sinh(x) if arg.func == asinh: return arg.args[0] if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) if arg.func == atanh: x = arg.args[0] return x/sqrt(1 - x**2) if arg.func == acoth: x = arg.args[0] return 1/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion. """ if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n) / factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. """ from sympy import cos, sin if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (sinh(re)*cos(im), cosh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True) return sinh(arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg) return 2*tanh_half/(1 - tanh_half**2) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg) return 2*coth_half/(coth_half**2 - 1) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): if self.args[0].is_real: return True def _eval_is_positive(self): if self.args[0].is_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_real: return self.args[0].is_negative def _eval_is_finite(self): arg = self.args[0] if arg.is_imaginary: return True class cosh(HyperbolicFunction): r""" The hyperbolic cosine function, `\frac{e^x + e^{-x}}{2}`. * cosh(x) -> Returns the hyperbolic cosine of x See Also ======== sinh, tanh, acosh """ def fdiff(self, argindex=1): if argindex == 1: return sinh(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import cos arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg is S.Zero: return S.One elif arg.is_negative: return cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return cos(i_coeff) else: if _coeff_isneg(arg): return cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return cosh(m)*cosh(x) + sinh(m)*sinh(x) if arg.func == asinh: return sqrt(1 + arg.args[0]**2) if arg.func == acosh: return arg.args[0] if arg.func == atanh: return 1/sqrt(1 - arg.args[0]**2) if arg.func == acoth: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n)/factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (cosh(re)*cos(im), sinh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True) return cosh(arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg)**2 return (1 + tanh_half)/(1 - tanh_half) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg)**2 return (coth_half + 1)/(coth_half - 1) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) def _eval_is_positive(self): if self.args[0].is_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_imaginary: return True class tanh(HyperbolicFunction): r""" The hyperbolic tangent function, `\frac{\sinh(x)}{\cosh(x)}`. * tanh(x) -> Returns the hyperbolic tangent of x See Also ======== sinh, cosh, atanh """ def fdiff(self, argindex=1): if argindex == 1: return S.One - tanh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atanh @classmethod def eval(cls, arg): from sympy import tan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg is S.Zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return -S.ImaginaryUnit * tan(-i_coeff) return S.ImaginaryUnit * tan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: tanhm = tanh(m) if tanhm is S.ComplexInfinity: return coth(x) else: # tanhm == 0 return tanh(x) if arg.func == asinh: x = arg.args[0] return x/sqrt(1 + x**2) if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) / x if arg.func == atanh: return arg.args[0] if arg.func == acoth: return 1/arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a = 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return a*(a - 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + cos(im)**2 return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom) def _eval_rewrite_as_tractable(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit*sinh(arg)/sinh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit*cosh(S.Pi*S.ImaginaryUnit/2 - arg)/cosh(arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return 1/coth(arg) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): if self.args[0].is_real: return True def _eval_is_positive(self): if self.args[0].is_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_real: return self.args[0].is_negative def _eval_is_finite(self): arg = self.args[0] if arg.is_real: return True class coth(HyperbolicFunction): r""" The hyperbolic cotangent function, `\frac{\cosh(x)}{\sinh(x)}`. * coth(x) -> Returns the hyperbolic cotangent of x """ def fdiff(self, argindex=1): if argindex == 1: return -1/sinh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acoth @classmethod def eval(cls, arg): from sympy import cot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg is S.Zero: return S.ComplexInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return S.ImaginaryUnit * cot(-i_coeff) return -S.ImaginaryUnit * cot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: cothm = coth(m) if cothm is S.ComplexInfinity: return coth(x) else: # cothm == 0 return tanh(x) if arg.func == asinh: x = arg.args[0] return sqrt(1 + x**2)/x if arg.func == acosh: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) if arg.func == atanh: return 1/arg.args[0] if arg.func == acoth: return arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1 / sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2**(n + 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + sin(im)**2 return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom) def _eval_rewrite_as_tractable(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(S.Pi*S.ImaginaryUnit/2 - arg)/sinh(arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg)/cosh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return 1/tanh(arg) def _eval_is_positive(self): if self.args[0].is_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_real: return self.args[0].is_negative def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 1/arg else: return self.func(arg) class ReciprocalHyperbolicFunction(HyperbolicFunction): """Base class for reciprocal functions of hyperbolic functions. """ #To be defined in class _reciprocal_of = None _is_even = None _is_odd = None @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) t = cls._reciprocal_of.eval(arg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] return 1/t if t != None else t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t != None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t != None and t != self._reciprocal_of(arg): return 1/t def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_tractable(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg) def as_real_imag(self, deep = True, **hints): return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=True, **hints) return re_part + S.ImaginaryUnit*im_part def _eval_as_leading_term(self, x): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_real(self): return self._reciprocal_of(self.args[0]).is_real def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite class csch(ReciprocalHyperbolicFunction): r""" The hyperbolic cosecant function, `\frac{2}{e^x - e^{-x}}` * csch(x) -> Returns the hyperbolic cosecant of x See Also ======== sinh, cosh, tanh, sech, asinh, acosh """ _reciprocal_of = sinh _is_odd = True def fdiff(self, argindex=1): """ Returns the first derivative of this function """ if argindex == 1: return -coth(self.args[0]) * csch(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion """ from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2 * (1 - 2**n) * B/F * x**n def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit / cosh(arg + S.ImaginaryUnit * S.Pi / 2) def _eval_is_positive(self): if self.args[0].is_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_real: return self.args[0].is_negative def _sage_(self): import sage.all as sage return sage.csch(self.args[0]._sage_()) class sech(ReciprocalHyperbolicFunction): r""" The hyperbolic secant function, `\frac{2}{e^x + e^{-x}}` * sech(x) -> Returns the hyperbolic secant of x See Also ======== sinh, cosh, tanh, coth, csch, asinh, acosh """ _reciprocal_of = cosh _is_even = True def fdiff(self, argindex=1): if argindex == 1: return - tanh(self.args[0])*sech(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy.functions.combinatorial.numbers import euler if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) return euler(n) / factorial(n) * x**(n) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit / sinh(arg + S.ImaginaryUnit * S.Pi /2) def _eval_is_positive(self): if self.args[0].is_real: return True def _sage_(self): import sage.all as sage return sage.sech(self.args[0]._sage_()) ############################################################################### ############################# HYPERBOLIC INVERSES ############################# ############################################################################### class InverseHyperbolicFunction(Function): """Base class for inverse hyperbolic functions.""" pass class asinh(InverseHyperbolicFunction): """ The inverse hyperbolic sine function. * asinh(x) -> Returns the inverse hyperbolic sine of x See Also ======== acosh, atanh, sinh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import asin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg is S.Zero: return S.Zero elif arg is S.One: return log(sqrt(2) + 1) elif arg is S.NegativeOne: return log(sqrt(2) - 1) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.ComplexInfinity i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * asin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return -p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return (-1)**k * R / F * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x**2 + 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sinh class acosh(InverseHyperbolicFunction): """ The inverse hyperbolic cosine function. * acosh(x) -> Returns the inverse hyperbolic cosine of x See Also ======== asinh, atanh, cosh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 - 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg is S.Zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: log(S.ImaginaryUnit*(1 + sqrt(2))), -S.ImaginaryUnit: log(-S.ImaginaryUnit*(1 + sqrt(2))), S.Half: S.Pi/3, -S.Half: 2*S.Pi/3, sqrt(2)/2: S.Pi/4, -sqrt(2)/2: 3*S.Pi/4, 1/sqrt(2): S.Pi/4, -1/sqrt(2): 3*S.Pi/4, sqrt(3)/2: S.Pi/6, -sqrt(3)/2: 5*S.Pi/6, (sqrt(3) - 1)/sqrt(2**3): 5*S.Pi/12, -(sqrt(3) - 1)/sqrt(2**3): 7*S.Pi/12, sqrt(2 + sqrt(2))/2: S.Pi/8, -sqrt(2 + sqrt(2))/2: 7*S.Pi/8, sqrt(2 - sqrt(2))/2: 3*S.Pi/8, -sqrt(2 - sqrt(2))/2: 5*S.Pi/8, (1 + sqrt(3))/(2*sqrt(2)): S.Pi/12, -(1 + sqrt(3))/(2*sqrt(2)): 11*S.Pi/12, (sqrt(5) + 1)/4: S.Pi/5, -(sqrt(5) + 1)/4: 4*S.Pi/5 } if arg in cst_table: if arg.is_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: return S.ComplexInfinity if arg == S.ImaginaryUnit*S.Infinity: return S.Infinity + S.ImaginaryUnit*S.Pi/2 if arg == -S.ImaginaryUnit*S.Infinity: return S.Infinity - S.ImaginaryUnit*S.Pi/2 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R / F * S.ImaginaryUnit * x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x + 1) * sqrt(x - 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cosh class atanh(InverseHyperbolicFunction): """ The inverse hyperbolic tangent function. * atanh(x) -> Returns the inverse hyperbolic tangent of x See Also ======== asinh, acosh, tanh """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import atan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Zero: return S.Zero elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg is S.Infinity: return -S.ImaginaryUnit * atan(arg) elif arg is S.NegativeInfinity: return S.ImaginaryUnit * atan(-arg) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * atan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + x) - log(1 - x)) / 2 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tanh class acoth(InverseHyperbolicFunction): """ The inverse hyperbolic cotangent function. * acoth(x) -> Returns the inverse hyperbolic cotangent of x """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import acot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg is S.Zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.Zero i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * acot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + 1/x) - log(1 - 1/x)) / 2 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return coth class asech(InverseHyperbolicFunction): """ The inverse hyperbolic secant function. * asech(x) -> Returns the inverse hyperbolic secant of x Examples ======== >>> from sympy import asech, sqrt, S >>> from sympy.abc import x >>> asech(x).diff(x) -1/(x*sqrt(-x**2 + 1)) >>> asech(1).diff(x) 0 >>> asech(1) 0 >>> asech(S(2)) I*pi/3 >>> asech(-sqrt(2)) 3*I*pi/4 >>> asech((sqrt(6) - sqrt(2))) I*pi/12 See Also ======== asinh, atanh, cosh, acoth References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z*sqrt(1 - z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.NegativeInfinity: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.Zero: return S.Infinity elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: - (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), -S.ImaginaryUnit: (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), (sqrt(6) - sqrt(2)): S.Pi / 12, (sqrt(2) - sqrt(6)): 11*S.Pi / 12, sqrt(2 - 2/sqrt(5)): S.Pi / 10, -sqrt(2 - 2/sqrt(5)): 9*S.Pi / 10, 2 / sqrt(2 + sqrt(2)): S.Pi / 8, -2 / sqrt(2 + sqrt(2)): 7*S.Pi / 8, 2 / sqrt(3): S.Pi / 6, -2 / sqrt(3): 5*S.Pi / 6, (sqrt(5) - 1): S.Pi / 5, (1 - sqrt(5)): 4*S.Pi / 5, sqrt(2): S.Pi / 4, -sqrt(2): 3*S.Pi / 4, sqrt(2 + 2/sqrt(5)): 3*S.Pi / 10, -sqrt(2 + 2/sqrt(5)): 7*S.Pi / 10, S(2): S.Pi / 3, -S(2): 2*S.Pi / 3, sqrt(2*(2 + sqrt(2))): 3*S.Pi / 8, -sqrt(2*(2 + sqrt(2))): 5*S.Pi / 8, (1 + sqrt(5)): 2*S.Pi / 5, (-1 - sqrt(5)): 3*S.Pi / 5, (sqrt(6) + sqrt(2)): 5*S.Pi / 12, (-sqrt(6) - sqrt(2)): 7*S.Pi / 12, } if arg in cst_table: if arg.is_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) @staticmethod @cacheit def expansion_term(n, x, *previous_terms): if n == 0: return log(2 / x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * (n - 1)**2 // (n // 2)**2 * x**2 / 4 else: k = n // 2 R = RisingFactorial(S.Half , k) * n F = factorial(k) * n // 2 * n // 2 return -1 * R / F * x**n / 4 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sech def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1)) class acsch(InverseHyperbolicFunction): """ The inverse hyperbolic cosecant function. * acsch(x) -> Returns the inverse hyperbolic cosecant of x Examples ======== >>> from sympy import acsch, sqrt, S >>> from sympy.abc import x >>> acsch(x).diff(x) -1/(x**2*sqrt(1 + x**(-2))) >>> acsch(1).diff(x) 0 >>> acsch(1) log(1 + sqrt(2)) >>> acsch(S.ImaginaryUnit) -I*pi/2 >>> acsch(-2*S.ImaginaryUnit) I*pi/6 >>> acsch(S.ImaginaryUnit*(sqrt(6) - sqrt(2))) -5*I*pi/12 References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z**2*sqrt(1 + 1/z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg is S.Zero: return S.ComplexInfinity elif arg is S.One: return log(1 + sqrt(2)) elif arg is S.NegativeOne: return - log(1 + sqrt(2)) if arg.is_number: cst_table = { S.ImaginaryUnit: -S.Pi / 2, S.ImaginaryUnit*(sqrt(2) + sqrt(6)): -S.Pi / 12, S.ImaginaryUnit*(1 + sqrt(5)): -S.Pi / 10, S.ImaginaryUnit*2 / sqrt(2 - sqrt(2)): -S.Pi / 8, S.ImaginaryUnit*2: -S.Pi / 6, S.ImaginaryUnit*sqrt(2 + 2/sqrt(5)): -S.Pi / 5, S.ImaginaryUnit*sqrt(2): -S.Pi / 4, S.ImaginaryUnit*(sqrt(5)-1): -3*S.Pi / 10, S.ImaginaryUnit*2 / sqrt(3): -S.Pi / 3, S.ImaginaryUnit*2 / sqrt(2 + sqrt(2)): -3*S.Pi / 8, S.ImaginaryUnit*sqrt(2 - 2/sqrt(5)): -2*S.Pi / 5, S.ImaginaryUnit*(sqrt(6) - sqrt(2)): -5*S.Pi / 12, S(2): -S.ImaginaryUnit*log((1+sqrt(5))/2), } if arg in cst_table: return cst_table[arg]*S.ImaginaryUnit if arg is S.ComplexInfinity: return S.Zero if _coeff_isneg(arg): return -cls(-arg) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csch def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg**2 + 1))
07823a5f770bb0e62c4f13f59fd31ec2f3ca33b21b6049bd052b1ff820d50f67
from __future__ import print_function, division from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic from sympy.core.expr import Expr from sympy.core.exprtools import factor_terms from sympy.core.function import (Function, Derivative, ArgumentIndexError, AppliedUndef) from sympy.core.logic import fuzzy_not, fuzzy_or from sympy.core.numbers import pi, I, oo from sympy.core.relational import Eq from sympy.functions.elementary.exponential import exp, exp_polar, log from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import atan, atan2 ############################################################################### ######################### REAL and IMAGINARY PARTS ############################ ############################################################################### class re(Function): """ Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, I, E >>> from sympy.abc import x, y >>> re(2*E) 2*E >>> re(2*I + 17) 17 >>> re(2*I) 0 >>> re(im(x) + x*I + 2) 2 See Also ======== im """ is_real = True unbranched = True # implicitly works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_real: return arg elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: return S.Zero elif arg.is_Matrix: return arg.as_real_imag()[0] elif arg.is_Function and isinstance(arg, conjugate): return re(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_real: reverted.append(coeff) elif not term.has(S.ImaginaryUnit) and term.is_real: excluded.append(term) else: # Try to do some advanced expansion. If # impossible, don't try to do re(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[0]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) - im(b) + c def as_real_imag(self, deep=True, **hints): """ Returns the real number with a zero imaginary part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_real or self.args[0].is_real: return re(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * im(Derivative(self.args[0], x, evaluate=True)) def _eval_rewrite_as_im(self, arg, **kwargs): return self.args[0] - S.ImaginaryUnit*im(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): # is_imaginary implies nonzero return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero]) def _sage_(self): import sage.all as sage return sage.real_part(self.args[0]._sage_()) class im(Function): """ Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, E, I >>> from sympy.abc import x, y >>> im(2*E) 0 >>> re(2*I + 17) 17 >>> im(x*I) re(x) >>> im(re(x) + y) im(y) See Also ======== re """ is_real = True unbranched = True # implicitly works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_real: return S.Zero elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: return -S.ImaginaryUnit * arg elif arg.is_Matrix: return arg.as_real_imag()[1] elif arg.is_Function and isinstance(arg, conjugate): return -im(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_real: reverted.append(coeff) else: excluded.append(coeff) elif term.has(S.ImaginaryUnit) or not term.is_real: # Try to do some advanced expansion. If # impossible, don't try to do im(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[1]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) + re(b) + c def as_real_imag(self, deep=True, **hints): """ Return the imaginary part with a zero real part. Examples ======== >>> from sympy.functions import im >>> from sympy import I >>> im(2 + 3*I).as_real_imag() (3, 0) """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_real or self.args[0].is_real: return im(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * re(Derivative(self.args[0], x, evaluate=True)) def _sage_(self): import sage.all as sage return sage.imag_part(self.args[0]._sage_()) def _eval_rewrite_as_re(self, arg, **kwargs): return -S.ImaginaryUnit*(self.args[0] - re(self.args[0])) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): return self.args[0].is_real ############################################################################### ############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################ ############################################################################### class sign(Function): """ Returns the complex sign of an expression: If the expression is real the sign will be: * 1 if expression is positive * 0 if expression is equal to zero * -1 if expression is negative If the expression is imaginary the sign will be: * I if im(expression) is positive * -I if im(expression) is negative Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``. Examples ======== >>> from sympy.functions import sign >>> from sympy.core.numbers import I >>> sign(-1) -1 >>> sign(0) 0 >>> sign(-3*I) -I >>> sign(1 + I) sign(1 + I) >>> _.evalf() 0.707106781186548 + 0.707106781186548*I See Also ======== Abs, conjugate """ is_finite = True is_complex = True def doit(self, **hints): if self.args[0].is_zero is False: return self.args[0] / Abs(self.args[0]) return self @classmethod def eval(cls, arg): # handle what we can if arg.is_Mul: c, args = arg.as_coeff_mul() unk = [] s = sign(c) for a in args: if a.is_negative: s = -s elif a.is_positive: pass else: ai = im(a) if a.is_imaginary and ai.is_comparable: # i.e. a = I*real s *= S.ImaginaryUnit if ai.is_negative: # can't use sign(ai) here since ai might not be # a Number s = -s else: unk.append(a) if c is S.One and len(unk) == len(args): return None return s * cls(arg._new_rawargs(*unk)) if arg is S.NaN: return S.NaN if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if arg.is_Function: if isinstance(arg, sign): return arg if arg.is_imaginary: if arg.is_Pow and arg.exp is S.Half: # we catch this because non-trivial sqrt args are not expanded # e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1) return S.ImaginaryUnit arg2 = -S.ImaginaryUnit * arg if arg2.is_positive: return S.ImaginaryUnit if arg2.is_negative: return -S.ImaginaryUnit def _eval_Abs(self): if fuzzy_not(self.args[0].is_zero): return S.One def _eval_conjugate(self): return sign(conjugate(self.args[0])) def _eval_derivative(self, x): if self.args[0].is_real: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(self.args[0]) elif self.args[0].is_imaginary: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(-S.ImaginaryUnit * self.args[0]) def _eval_is_nonnegative(self): if self.args[0].is_nonnegative: return True def _eval_is_nonpositive(self): if self.args[0].is_nonpositive: return True def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_real def _eval_is_zero(self): return self.args[0].is_zero def _eval_power(self, other): if ( fuzzy_not(self.args[0].is_zero) and other.is_integer and other.is_even ): return S.One def _sage_(self): import sage.all as sage return sage.sgn(self.args[0]._sage_()) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_real: return Piecewise((1, arg > 0), (-1, arg < 0), (0, True)) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): from sympy.functions.special.delta_functions import Heaviside if arg.is_real: return Heaviside(arg)*2-1 def _eval_simplify(self, ratio, measure, rational, inverse): return self.func(self.args[0].factor()) class Abs(Function): """ Return the absolute value of the argument. This is an extension of the built-in function abs() to accept symbolic values. If you pass a SymPy expression to the built-in abs(), it will pass it automatically to Abs(). Examples ======== >>> from sympy import Abs, Symbol, S >>> Abs(-1) 1 >>> x = Symbol('x', real=True) >>> Abs(-x) Abs(x) >>> Abs(x**2) x**2 >>> abs(-x) # The Python built-in Abs(x) Note that the Python built-in will return either an Expr or int depending on the argument:: >>> type(abs(-1)) <... 'int'> >>> type(abs(S.NegativeOne)) <class 'sympy.core.numbers.One'> Abs will always return a sympy object. See Also ======== sign, conjugate """ is_real = True is_negative = False unbranched = True def fdiff(self, argindex=1): """ Get the first derivative of the argument to Abs(). Examples ======== >>> from sympy.abc import x >>> from sympy.functions import Abs >>> Abs(-x).fdiff() sign(x) """ if argindex == 1: return sign(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.simplify.simplify import signsimp from sympy.core.function import expand_mul if hasattr(arg, '_eval_Abs'): obj = arg._eval_Abs() if obj is not None: return obj if not isinstance(arg, Expr): raise TypeError("Bad argument type for Abs(): %s" % type(arg)) # handle what we can arg = signsimp(arg, evaluate=False) if arg.is_Mul: known = [] unk = [] for t in arg.args: tnew = cls(t) if isinstance(tnew, cls): unk.append(tnew.args[0]) else: known.append(tnew) known = Mul(*known) unk = cls(Mul(*unk), evaluate=False) if unk else S.One return known*unk if arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.Infinity if arg.is_Pow: base, exponent = arg.as_base_exp() if base.is_real: if exponent.is_integer: if exponent.is_even: return arg if base is S.NegativeOne: return S.One if isinstance(base, cls) and exponent is S.NegativeOne: return arg return Abs(base)**exponent if base.is_nonnegative: return base**re(exponent) if base.is_negative: return (-base)**re(exponent)*exp(-S.Pi*im(exponent)) return elif not base.has(Symbol): # complex base # express base**exponent as exp(exponent*log(base)) a, b = log(base).as_real_imag() z = a + I*b return exp(re(exponent*z)) if isinstance(arg, exp): return exp(re(arg.args[0])) if isinstance(arg, AppliedUndef): return if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity): if any(a.is_infinite for a in arg.as_real_imag()): return S.Infinity if arg.is_zero: return S.Zero if arg.is_nonnegative: return arg if arg.is_nonpositive: return -arg if arg.is_imaginary: arg2 = -S.ImaginaryUnit * arg if arg2.is_nonnegative: return arg2 # reject result if all new conjugates are just wrappers around # an expression that was already in the arg conj = signsimp(arg.conjugate(), evaluate=False) new_conj = conj.atoms(conjugate) - arg.atoms(conjugate) if new_conj and all(arg.has(i.args[0]) for i in new_conj): return if arg != conj and arg != -conj: ignore = arg.atoms(Abs) abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore}) unk = [a for a in abs_free_arg.free_symbols if a.is_real is None] if not unk or not all(conj.has(conjugate(u)) for u in unk): return sqrt(expand_mul(arg*conj)) def _eval_is_integer(self): if self.args[0].is_real: return self.args[0].is_integer def _eval_is_nonzero(self): return fuzzy_not(self._args[0].is_zero) def _eval_is_zero(self): return self._args[0].is_zero def _eval_is_positive(self): is_z = self.is_zero if is_z is not None: return not is_z def _eval_is_rational(self): if self.args[0].is_real: return self.args[0].is_rational def _eval_is_even(self): if self.args[0].is_real: return self.args[0].is_even def _eval_is_odd(self): if self.args[0].is_real: return self.args[0].is_odd def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_power(self, exponent): if self.args[0].is_real and exponent.is_integer: if exponent.is_even: return self.args[0]**exponent elif exponent is not S.NegativeOne and exponent.is_Integer: return self.args[0]**(exponent - 1)*self return def _eval_nseries(self, x, n, logx): direction = self.args[0].leadterm(x)[0] s = self.args[0]._eval_nseries(x, n=n, logx=logx) when = Eq(direction, 0) return Piecewise( ((s.subs(direction, 0)), when), (sign(direction)*s, True), ) def _sage_(self): import sage.all as sage return sage.abs_symbolic(self.args[0]._sage_()) def _eval_derivative(self, x): if self.args[0].is_real or self.args[0].is_imaginary: return Derivative(self.args[0], x, evaluate=True) \ * sign(conjugate(self.args[0])) return (re(self.args[0]) * Derivative(re(self.args[0]), x, evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]), x, evaluate=True)) / Abs(self.args[0]) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): # Note this only holds for real arg (since Heaviside is not defined # for complex arguments). from sympy.functions.special.delta_functions import Heaviside if arg.is_real: return arg*(Heaviside(arg) - Heaviside(-arg)) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_real: return Piecewise((arg, arg >= 0), (-arg, True)) def _eval_rewrite_as_sign(self, arg, **kwargs): return arg/sign(arg) class arg(Function): """ Returns the argument (in radians) of a complex number. For a positive number, the argument is always 0. Examples ======== >>> from sympy.functions import arg >>> from sympy import I, sqrt >>> arg(2.0) 0 >>> arg(I) pi/2 >>> arg(sqrt(2) + I*sqrt(2)) pi/4 """ is_real = True is_finite = True @classmethod def eval(cls, arg): if isinstance(arg, exp_polar): return periodic_argument(arg, oo) if not arg.is_Atom: c, arg_ = factor_terms(arg).as_coeff_Mul() if arg_.is_Mul: arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else sign(a) for a in arg_.args]) arg_ = sign(c)*arg_ else: arg_ = arg if arg_.atoms(AppliedUndef): return x, y = arg_.as_real_imag() rv = atan2(y, x) if rv.is_number: return rv if arg_ != arg: return cls(arg_, evaluate=False) def _eval_derivative(self, t): x, y = self.args[0].as_real_imag() return (x * Derivative(y, t, evaluate=True) - y * Derivative(x, t, evaluate=True)) / (x**2 + y**2) def _eval_rewrite_as_atan2(self, arg, **kwargs): x, y = self.args[0].as_real_imag() return atan2(y, x) class conjugate(Function): """ Returns the `complex conjugate` Ref[1] of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part. Thus, the conjugate of the complex number :math:`a + ib` (where a and b are real numbers) is :math:`a - ib` Examples ======== >>> from sympy import conjugate, I >>> conjugate(2) 2 >>> conjugate(I) -I See Also ======== sign, Abs References ========== .. [1] https://en.wikipedia.org/wiki/Complex_conjugation """ @classmethod def eval(cls, arg): obj = arg._eval_conjugate() if obj is not None: return obj def _eval_Abs(self): return Abs(self.args[0], evaluate=True) def _eval_adjoint(self): return transpose(self.args[0]) def _eval_conjugate(self): return self.args[0] def _eval_derivative(self, x): if x.is_real: return conjugate(Derivative(self.args[0], x, evaluate=True)) elif x.is_imaginary: return -conjugate(Derivative(self.args[0], x, evaluate=True)) def _eval_transpose(self): return adjoint(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic class transpose(Function): """ Linear map transposition. """ @classmethod def eval(cls, arg): obj = arg._eval_transpose() if obj is not None: return obj def _eval_adjoint(self): return conjugate(self.args[0]) def _eval_conjugate(self): return adjoint(self.args[0]) def _eval_transpose(self): return self.args[0] class adjoint(Function): """ Conjugate transpose or Hermite conjugation. """ @classmethod def eval(cls, arg): obj = arg._eval_adjoint() if obj is not None: return obj obj = arg._eval_transpose() if obj is not None: return conjugate(obj) def _eval_adjoint(self): return self.args[0] def _eval_conjugate(self): return transpose(self.args[0]) def _eval_transpose(self): return conjugate(self.args[0]) def _latex(self, printer, exp=None, *args): arg = printer._print(self.args[0]) tex = r'%s^{\dagger}' % arg if exp: tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp)) return tex def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if printer._use_unicode: pform = pform**prettyForm(u'\N{DAGGER}') else: pform = pform**prettyForm('+') return pform ############################################################################### ############### HANDLING OF POLAR NUMBERS ##################################### ############################################################################### class polar_lift(Function): """ Lift argument to the Riemann surface of the logarithm, using the standard branch. >>> from sympy import Symbol, polar_lift, I >>> p = Symbol('p', polar=True) >>> x = Symbol('x') >>> polar_lift(4) 4*exp_polar(0) >>> polar_lift(-4) 4*exp_polar(I*pi) >>> polar_lift(-I) exp_polar(-I*pi/2) >>> polar_lift(I + 2) polar_lift(2 + I) >>> polar_lift(4*x) 4*polar_lift(x) >>> polar_lift(4*p) 4*p See Also ======== sympy.functions.elementary.exponential.exp_polar periodic_argument """ is_polar = True is_comparable = False # Cannot be evalf'd. @classmethod def eval(cls, arg): from sympy.functions.elementary.complexes import arg as argument if arg.is_number: ar = argument(arg) # In general we want to affirm that something is known, # e.g. `not ar.has(argument) and not ar.has(atan)` # but for now we will just be more restrictive and # see that it has evaluated to one of the known values. if ar in (0, pi/2, -pi/2, pi): return exp_polar(I*ar)*abs(arg) if arg.is_Mul: args = arg.args else: args = [arg] included = [] excluded = [] positive = [] for arg in args: if arg.is_polar: included += [arg] elif arg.is_positive: positive += [arg] else: excluded += [arg] if len(excluded) < len(args): if excluded: return Mul(*(included + positive))*polar_lift(Mul(*excluded)) elif included: return Mul(*(included + positive)) else: return Mul(*positive)*exp_polar(0) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ return self.args[0]._eval_evalf(prec) def _eval_Abs(self): return Abs(self.args[0], evaluate=True) class periodic_argument(Function): """ Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period P, always return a value in (-P/2, P/2], by using exp(P*I) == 1. >>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument >>> from sympy import I, pi >>> unbranched_argument(exp(5*I*pi)) pi >>> unbranched_argument(exp_polar(5*I*pi)) 5*pi >>> periodic_argument(exp_polar(5*I*pi), 2*pi) pi >>> periodic_argument(exp_polar(5*I*pi), 3*pi) -pi >>> periodic_argument(exp_polar(5*I*pi), pi) 0 See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm principal_branch """ @classmethod def _getunbranched(cls, ar): if ar.is_Mul: args = ar.args else: args = [ar] unbranched = 0 for a in args: if not a.is_polar: unbranched += arg(a) elif isinstance(a, exp_polar): unbranched += a.exp.as_real_imag()[1] elif a.is_Pow: re, im = a.exp.as_real_imag() unbranched += re*unbranched_argument( a.base) + im*log(abs(a.base)) elif isinstance(a, polar_lift): unbranched += arg(a.args[0]) else: return None return unbranched @classmethod def eval(cls, ar, period): # Our strategy is to evaluate the argument on the Riemann surface of the # logarithm, and then reduce. # NOTE evidently this means it is a rather bad idea to use this with # period != 2*pi and non-polar numbers. if not period.is_positive: return None if period == oo and isinstance(ar, principal_branch): return periodic_argument(*ar.args) if isinstance(ar, polar_lift) and period >= 2*pi: return periodic_argument(ar.args[0], period) if ar.is_Mul: newargs = [x for x in ar.args if not x.is_positive] if len(newargs) != len(ar.args): return periodic_argument(Mul(*newargs), period) unbranched = cls._getunbranched(ar) if unbranched is None: return None if unbranched.has(periodic_argument, atan2, atan): return None if period == oo: return unbranched if period != oo: n = ceiling(unbranched/period - S(1)/2)*period if not n.has(ceiling): return unbranched - n def _eval_evalf(self, prec): z, period = self.args if period == oo: unbranched = periodic_argument._getunbranched(z) if unbranched is None: return self return unbranched._eval_evalf(prec) ub = periodic_argument(z, oo)._eval_evalf(prec) return (ub - ceiling(ub/period - S(1)/2)*period)._eval_evalf(prec) def unbranched_argument(arg): return periodic_argument(arg, oo) class principal_branch(Function): """ Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm. This is a function of two arguments. The first argument is a polar number `z`, and the second one a positive real number of infinity, `p`. The result is "z mod exp_polar(I*p)". >>> from sympy import exp_polar, principal_branch, oo, I, pi >>> from sympy.abc import z >>> principal_branch(z, oo) z >>> principal_branch(exp_polar(2*pi*I)*3, 2*pi) 3*exp_polar(0) >>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi) 3*principal_branch(z, 2*pi) See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm periodic_argument """ is_polar = True is_comparable = False # cannot always be evalf'd @classmethod def eval(self, x, period): from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol if isinstance(x, polar_lift): return principal_branch(x.args[0], period) if period == oo: return x ub = periodic_argument(x, oo) barg = periodic_argument(x, period) if ub != barg and not ub.has(periodic_argument) \ and not barg.has(periodic_argument): pl = polar_lift(x) def mr(expr): if not isinstance(expr, Symbol): return polar_lift(expr) return expr pl = pl.replace(polar_lift, mr) # Recompute unbranched argument ub = periodic_argument(pl, oo) if not pl.has(polar_lift): if ub != barg: res = exp_polar(I*(barg - ub))*pl else: res = pl if not res.is_polar and not res.has(exp_polar): res *= exp_polar(0) return res if not x.free_symbols: c, m = x, () else: c, m = x.as_coeff_mul(*x.free_symbols) others = [] for y in m: if y.is_positive: c *= y else: others += [y] m = tuple(others) arg = periodic_argument(c, period) if arg.has(periodic_argument): return None if arg.is_number and (unbranched_argument(c) != arg or (arg == 0 and m != () and c != 1)): if arg == 0: return abs(c)*principal_branch(Mul(*m), period) return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c) if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \ and m == (): return exp_polar(arg*I)*abs(c) def _eval_evalf(self, prec): from sympy import exp, pi, I z, period = self.args p = periodic_argument(z, period)._eval_evalf(prec) if abs(p) > pi or p == -pi: return self # Cannot evalf for this argument. return (abs(z)*exp(I*p))._eval_evalf(prec) def _polarify(eq, lift, pause=False): from sympy import Integral if eq.is_polar: return eq if eq.is_number and not pause: return polar_lift(eq) if isinstance(eq, Symbol) and not pause and lift: return polar_lift(eq) elif eq.is_Atom: return eq elif eq.is_Add: r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args]) if lift: return polar_lift(r) return r elif eq.is_Function: return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args]) elif isinstance(eq, Integral): # Don't lift the integration variable func = _polarify(eq.function, lift, pause=pause) limits = [] for limit in eq.args[1:]: var = _polarify(limit[0], lift=False, pause=pause) rest = _polarify(limit[1:], lift=lift, pause=pause) limits.append((var,) + rest) return Integral(*((func,) + tuple(limits))) else: return eq.func(*[_polarify(arg, lift, pause=pause) if isinstance(arg, Expr) else arg for arg in eq.args]) def polarify(eq, subs=True, lift=False): """ Turn all numbers in eq into their polar equivalents (under the standard choice of argument). Note that no attempt is made to guess a formal convention of adding polar numbers, expressions like 1 + x will generally not be altered. Note also that this function does not promote exp(x) to exp_polar(x). If ``subs`` is True, all symbols which are not already polar will be substituted for polar dummies; in this case the function behaves much like posify. If ``lift`` is True, both addition statements and non-polar symbols are changed to their polar_lift()ed versions. Note that lift=True implies subs=False. >>> from sympy import polarify, sin, I >>> from sympy.abc import x, y >>> expr = (-x)**y >>> expr.expand() (-x)**y >>> polarify(expr) ((_x*exp_polar(I*pi))**_y, {_x: x, _y: y}) >>> polarify(expr)[0].expand() _x**_y*exp_polar(_y*I*pi) >>> polarify(x, lift=True) polar_lift(x) >>> polarify(x*(1+y), lift=True) polar_lift(x)*polar_lift(y + 1) Adds are treated carefully: >>> polarify(1 + sin((1 + I)*x)) (sin(_x*polar_lift(1 + I)) + 1, {_x: x}) """ if lift: subs = False eq = _polarify(sympify(eq), lift) if not subs: return eq reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols} eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def _unpolarify(eq, exponents_only, pause=False): if not isinstance(eq, Basic) or eq.is_Atom: return eq if not pause: if isinstance(eq, exp_polar): return exp(_unpolarify(eq.exp, exponents_only)) if isinstance(eq, principal_branch) and eq.args[1] == 2*pi: return _unpolarify(eq.args[0], exponents_only) if ( eq.is_Add or eq.is_Mul or eq.is_Boolean or eq.is_Relational and ( eq.rel_op in ('==', '!=') and 0 in eq.args or eq.rel_op not in ('==', '!=')) ): return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args]) if isinstance(eq, polar_lift): return _unpolarify(eq.args[0], exponents_only) if eq.is_Pow: expo = _unpolarify(eq.exp, exponents_only) base = _unpolarify(eq.base, exponents_only, not (expo.is_integer and not pause)) return base**expo if eq.is_Function and getattr(eq.func, 'unbranched', False): return eq.func(*[_unpolarify(x, exponents_only, exponents_only) for x in eq.args]) return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args]) def unpolarify(eq, subs={}, exponents_only=False): """ If p denotes the projection from the Riemann surface of the logarithm to the complex line, return a simplified version eq' of `eq` such that p(eq') == p(eq). Also apply the substitution subs in the end. (This is a convenience, since ``unpolarify``, in a certain sense, undoes polarify.) >>> from sympy import unpolarify, polar_lift, sin, I >>> unpolarify(polar_lift(I + 2)) 2 + I >>> unpolarify(sin(polar_lift(I + 7))) sin(7 + I) """ if isinstance(eq, bool): return eq eq = sympify(eq) if subs != {}: return unpolarify(eq.subs(subs)) changed = True pause = False if exponents_only: pause = True while changed: changed = False res = _unpolarify(eq, exponents_only, pause) if res != eq: changed = True eq = res if isinstance(res, bool): return res # Finally, replacing Exp(0) by 1 is always correct. # So is polar_lift(0) -> 0. return res.subs({exp_polar(0): 1, polar_lift(0): 0}) # /cyclic/ from sympy.core import basic as _ _.abs_ = Abs del _
37a0aef48ee6dff05a41a7208d6c2f23fdb132cf8a766f1642ba974400875f4e
"""Hypergeometric and Meijer G-functions""" from __future__ import print_function, division from sympy.core import S, I, pi, oo, zoo, ilcm, Mod from sympy.core.function import Function, Derivative, ArgumentIndexError from sympy.core.compatibility import reduce, range from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.symbol import Dummy from sympy.functions import (sqrt, exp, log, sin, cos, asin, atan, sinh, cosh, asinh, acosh, atanh, acoth, Abs) from sympy.utilities.iterables import default_sort_key class TupleArg(Tuple): def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return TupleArg(*[limit(f, x, xlim, dir) for f in self.args]) # TODO should __new__ accept **options? # TODO should constructors should check if parameters are sensible? def _prep_tuple(v): """ Turn an iterable argument V into a Tuple and unpolarify, since both hypergeometric and meijer g-functions are unbranched in their parameters. Examples ======== >>> from sympy.functions.special.hyper import _prep_tuple >>> _prep_tuple([1, 2, 3]) (1, 2, 3) >>> _prep_tuple((4, 5)) (4, 5) >>> _prep_tuple((7, 8, 9)) (7, 8, 9) """ from sympy import unpolarify return TupleArg(*[unpolarify(x) for x in v]) class TupleParametersBase(Function): """ Base class that takes care of differentiation, when some of the arguments are actually tuples. """ # This is not deduced automatically since there are Tuples as arguments. is_commutative = True def _eval_derivative(self, s): try: res = 0 if self.args[0].has(s) or self.args[1].has(s): for i, p in enumerate(self._diffargs): m = self._diffargs[i].diff(s) if m != 0: res += self.fdiff((1, i))*m return res + self.fdiff(3)*self.args[2].diff(s) except (ArgumentIndexError, NotImplementedError): return Derivative(self, s) class hyper(TupleParametersBase): r""" The (generalized) hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest possible domain. The hypergeometric function depends on two vectors of parameters, called the numerator parameters :math:`a_p`, and the denominator parameters :math:`b_q`. It also has an argument :math:`z`. The series definition is .. math :: {}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix} \middle| z \right) = \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{z^n}{n!}, where :math:`(a)_n = (a)(a+1)\cdots(a+n-1)` denotes the rising factorial. If one of the :math:`b_q` is a non-positive integer then the series is undefined unless one of the `a_p` is a larger (i.e. smaller in magnitude) non-positive integer. If none of the :math:`b_q` is a non-positive integer and one of the :math:`a_p` is a non-positive integer, then the series reduces to a polynomial. To simplify the following discussion, we assume that none of the :math:`a_p` or :math:`b_q` is a non-positive integer. For more details, see the references. The series converges for all :math:`z` if :math:`p \le q`, and thus defines an entire single-valued function in this case. If :math:`p = q+1` the series converges for :math:`|z| < 1`, and can be continued analytically into a half-plane. If :math:`p > q+1` the series is divergent for all :math:`z`. Note: The hypergeometric function constructor currently does *not* check if the parameters actually yield a well-defined function. Examples ======== The parameters :math:`a_p` and :math:`b_q` can be passed as arbitrary iterables, for example: >>> from sympy.functions import hyper >>> from sympy.abc import x, n, a >>> hyper((1, 2, 3), [3, 4], x) hyper((1, 2, 3), (3, 4), x) There is also pretty printing (it looks better using unicode): >>> from sympy import pprint >>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False) _ |_ /1, 2, 3 | \ | | | x| 3 2 \ 3, 4 | / The parameters must always be iterables, even if they are vectors of length one or zero: >>> hyper((1, ), [], x) hyper((1,), (), x) But of course they may be variables (but if they depend on x then you should not expect much implemented functionality): >>> hyper((n, a), (n**2,), x) hyper((n, a), (n**2,), x) The hypergeometric function generalizes many named special functions. The function hyperexpand() tries to express a hypergeometric function using named special functions. For example: >>> from sympy import hyperexpand >>> hyperexpand(hyper([], [], x)) exp(x) You can also use expand_func: >>> from sympy import expand_func >>> expand_func(x*hyper([1, 1], [2], -x)) log(x + 1) More examples: >>> from sympy import S >>> hyperexpand(hyper([], [S(1)/2], -x**2/4)) cos(x) >>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2)) asin(x) We can also sometimes hyperexpand parametric functions: >>> from sympy.abc import a >>> hyperexpand(hyper([-a], [], x)) (-x + 1)**a See Also ======== sympy.simplify.hyperexpand sympy.functions.special.gamma_functions.gamma meijerg References ========== .. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [2] https://en.wikipedia.org/wiki/Generalized_hypergeometric_function """ def __new__(cls, ap, bq, z): # TODO should we check convergence conditions? return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z) @classmethod def eval(cls, ap, bq, z): from sympy import unpolarify if len(ap) <= len(bq) or (len(ap) == len(bq) + 1 and (Abs(z) <= 1) == True): nz = unpolarify(z) if z != nz: return hyper(ap, bq, nz) def fdiff(self, argindex=3): if argindex != 3: raise ArgumentIndexError(self, argindex) nap = Tuple(*[a + 1 for a in self.ap]) nbq = Tuple(*[b + 1 for b in self.bq]) fac = Mul(*self.ap)/Mul(*self.bq) return fac*hyper(nap, nbq, self.argument) def _eval_expand_func(self, **hints): from sympy import gamma, hyperexpand if len(self.ap) == 2 and len(self.bq) == 1 and self.argument == 1: a, b = self.ap c = self.bq[0] return gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b) return hyperexpand(self) def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs): from sympy.functions import factorial, RisingFactorial, Piecewise from sympy import Sum n = Dummy("n", integer=True) rfap = Tuple(*[RisingFactorial(a, n) for a in ap]) rfbq = Tuple(*[RisingFactorial(b, n) for b in bq]) coeff = Mul(*rfap) / Mul(*rfbq) return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)), self.convergence_statement), (self, True)) @property def argument(self): """ Argument of the hypergeometric function. """ return self.args[2] @property def ap(self): """ Numerator parameters of the hypergeometric function. """ return Tuple(*self.args[0]) @property def bq(self): """ Denominator parameters of the hypergeometric function. """ return Tuple(*self.args[1]) @property def _diffargs(self): return self.ap + self.bq @property def eta(self): """ A quantity related to the convergence of the series. """ return sum(self.ap) - sum(self.bq) @property def radius_of_convergence(self): """ Compute the radius of convergence of the defining series. Note that even if this is not oo, the function may still be evaluated outside of the radius of convergence by analytic continuation. But if this is zero, then the function is not actually defined anywhere else. >>> from sympy.functions import hyper >>> from sympy.abc import z >>> hyper((1, 2), [3], z).radius_of_convergence 1 >>> hyper((1, 2, 3), [4], z).radius_of_convergence 0 >>> hyper((1, 2), (3, 4), z).radius_of_convergence oo """ if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq): aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True] bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True] if len(aints) < len(bints): return S(0) popped = False for b in bints: cancelled = False while aints: a = aints.pop() if a >= b: cancelled = True break popped = True if not cancelled: return S(0) if aints or popped: # There are still non-positive numerator parameters. # This is a polynomial. return oo if len(self.ap) == len(self.bq) + 1: return S(1) elif len(self.ap) <= len(self.bq): return oo else: return S(0) @property def convergence_statement(self): """ Return a condition on z under which the series converges. """ from sympy import And, Or, re, Ne, oo R = self.radius_of_convergence if R == 0: return False if R == oo: return True # The special functions and their approximations, page 44 e = self.eta z = self.argument c1 = And(re(e) < 0, abs(z) <= 1) c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1)) c3 = And(re(e) >= 1, abs(z) < 1) return Or(c1, c2, c3) def _eval_simplify(self, ratio, measure, rational, inverse): from sympy.simplify.hyperexpand import hyperexpand return hyperexpand(self) def _sage_(self): import sage.all as sage ap = [arg._sage_() for arg in self.args[0]] bq = [arg._sage_() for arg in self.args[1]] return sage.hypergeometric(ap, bq, self.argument._sage_()) class meijerg(TupleParametersBase): r""" The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions. The Meijer G-function depends on four sets of parameters. There are "*numerator parameters*" :math:`a_1, \ldots, a_n` and :math:`a_{n+1}, \ldots, a_p`, and there are "*denominator parameters*" :math:`b_1, \ldots, b_m` and :math:`b_{m+1}, \ldots, b_q`. Confusingly, it is traditionally denoted as follows (note the position of `m`, `n`, `p`, `q`, and how they relate to the lengths of the four parameter vectors): .. math :: G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\ b_1, \cdots, b_m & b_{m+1}, \cdots, b_q \end{matrix} \middle| z \right). However, in sympy the four parameter vectors are always available separately (see examples), so that there is no need to keep track of the decorating sub- and super-scripts on the G symbol. The G function is defined as the following integral: .. math :: \frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s) \prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s) \prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s, where :math:`\Gamma(z)` is the gamma function. There are three possible contours which we will not describe in detail here (see the references). If the integral converges along more than one of them the definitions agree. The contours all separate the poles of :math:`\Gamma(1-a_j+s)` from the poles of :math:`\Gamma(b_k-s)`, so in particular the G function is undefined if :math:`a_j - b_k \in \mathbb{Z}_{>0}` for some :math:`j \le n` and :math:`k \le m`. The conditions under which one of the contours yields a convergent integral are complicated and we do not state them here, see the references. Note: Currently the Meijer G-function constructor does *not* check any convergence conditions. Examples ======== You can pass the parameters either as four separate vectors: >>> from sympy.functions import meijerg >>> from sympy.abc import x, a >>> from sympy.core.containers import Tuple >>> from sympy import pprint >>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False) __1, 2 /1, 2 a, 4 | \ /__ | | x| \_|4, 1 \ 5 | / or as two nested vectors: >>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False) __1, 2 /1, 2 3, 4 | \ /__ | | x| \_|4, 1 \ 5 | / As with the hypergeometric function, the parameters may be passed as arbitrary iterables. Vectors of length zero and one also have to be passed as iterables. The parameters need not be constants, but if they depend on the argument then not much implemented functionality should be expected. All the subvectors of parameters are available: >>> from sympy import pprint >>> g = meijerg([1], [2], [3], [4], x) >>> pprint(g, use_unicode=False) __1, 1 /1 2 | \ /__ | | x| \_|2, 2 \3 4 | / >>> g.an (1,) >>> g.ap (1, 2) >>> g.aother (2,) >>> g.bm (3,) >>> g.bq (3, 4) >>> g.bother (4,) The Meijer G-function generalizes the hypergeometric functions. In some cases it can be expressed in terms of hypergeometric functions, using Slater's theorem. For example: >>> from sympy import hyperexpand >>> from sympy.abc import a, b, c >>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True) x**c*gamma(-a + c + 1)*hyper((-a + c + 1,), (-b + c + 1,), -x)/gamma(-b + c + 1) Thus the Meijer G-function also subsumes many named functions as special cases. You can use expand_func or hyperexpand to (try to) rewrite a Meijer G-function in terms of named special functions. For example: >>> from sympy import expand_func, S >>> expand_func(meijerg([[],[]], [[0],[]], -x)) exp(x) >>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2)) sin(x)/sqrt(pi) See Also ======== hyper sympy.simplify.hyperexpand References ========== .. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [2] https://en.wikipedia.org/wiki/Meijer_G-function """ def __new__(cls, *args): if len(args) == 5: args = [(args[0], args[1]), (args[2], args[3]), args[4]] if len(args) != 3: raise TypeError("args must be either as, as', bs, bs', z or " "as, bs, z") def tr(p): if len(p) != 2: raise TypeError("wrong argument") return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1])) arg0, arg1 = tr(args[0]), tr(args[1]) if Tuple(arg0, arg1).has(oo, zoo, -oo): raise ValueError("G-function parameters must be finite") if any((a - b).is_Integer and a - b > 0 for a in arg0[0] for b in arg1[0]): raise ValueError("no parameter a1, ..., an may differ from " "any b1, ..., bm by a positive integer") # TODO should we check convergence conditions? return Function.__new__(cls, arg0, arg1, args[2]) def fdiff(self, argindex=3): if argindex != 3: return self._diff_wrt_parameter(argindex[1]) if len(self.an) >= 1: a = list(self.an) a[0] -= 1 G = meijerg(a, self.aother, self.bm, self.bother, self.argument) return 1/self.argument * ((self.an[0] - 1)*self + G) elif len(self.bm) >= 1: b = list(self.bm) b[0] += 1 G = meijerg(self.an, self.aother, b, self.bother, self.argument) return 1/self.argument * (self.bm[0]*self - G) else: return S.Zero def _diff_wrt_parameter(self, idx): # Differentiation wrt a parameter can only be done in very special # cases. In particular, if we want to differentiate with respect to # `a`, all other gamma factors have to reduce to rational functions. # # Let MT denote mellin transform. Suppose T(-s) is the gamma factor # appearing in the definition of G. Then # # MT(log(z)G(z)) = d/ds T(s) = d/da T(s) + ... # # Thus d/da G(z) = log(z)G(z) - ... # The ... can be evaluated as a G function under the above conditions, # the formula being most easily derived by using # # d Gamma(s + n) Gamma(s + n) / 1 1 1 \ # -- ------------ = ------------ | - + ---- + ... + --------- | # ds Gamma(s) Gamma(s) \ s s + 1 s + n - 1 / # # which follows from the difference equation of the digamma function. # (There is a similar equation for -n instead of +n). # We first figure out how to pair the parameters. an = list(self.an) ap = list(self.aother) bm = list(self.bm) bq = list(self.bother) if idx < len(an): an.pop(idx) else: idx -= len(an) if idx < len(ap): ap.pop(idx) else: idx -= len(ap) if idx < len(bm): bm.pop(idx) else: bq.pop(idx - len(bm)) pairs1 = [] pairs2 = [] for l1, l2, pairs in [(an, bq, pairs1), (ap, bm, pairs2)]: while l1: x = l1.pop() found = None for i, y in enumerate(l2): if not Mod((x - y).simplify(), 1): found = i break if found is None: raise NotImplementedError('Derivative not expressible ' 'as G-function?') y = l2[i] l2.pop(i) pairs.append((x, y)) # Now build the result. res = log(self.argument)*self for a, b in pairs1: sign = 1 n = a - b base = b if n < 0: sign = -1 n = b - a base = a for k in range(n): res -= sign*meijerg(self.an + (base + k + 1,), self.aother, self.bm, self.bother + (base + k + 0,), self.argument) for a, b in pairs2: sign = 1 n = b - a base = a if n < 0: sign = -1 n = a - b base = b for k in range(n): res -= sign*meijerg(self.an, self.aother + (base + k + 1,), self.bm + (base + k + 0,), self.bother, self.argument) return res def get_period(self): """ Return a number P such that G(x*exp(I*P)) == G(x). >>> from sympy.functions.special.hyper import meijerg >>> from sympy.abc import z >>> from sympy import pi, S >>> meijerg([1], [], [], [], z).get_period() 2*pi >>> meijerg([pi], [], [], [], z).get_period() oo >>> meijerg([1, 2], [], [], [], z).get_period() oo >>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period() 12*pi """ # This follows from slater's theorem. def compute(l): # first check that no two differ by an integer for i, b in enumerate(l): if not b.is_Rational: return oo for j in range(i + 1, len(l)): if not Mod((b - l[j]).simplify(), 1): return oo return reduce(ilcm, (x.q for x in l), 1) beta = compute(self.bm) alpha = compute(self.an) p, q = len(self.ap), len(self.bq) if p == q: if beta == oo or alpha == oo: return oo return 2*pi*ilcm(alpha, beta) elif p < q: return 2*pi*beta else: return 2*pi*alpha def _eval_expand_func(self, **hints): from sympy import hyperexpand return hyperexpand(self) def _eval_evalf(self, prec): # The default code is insufficient for polar arguments. # mpmath provides an optional argument "r", which evaluates # G(z**(1/r)). I am not sure what its intended use is, but we hijack it # here in the following way: to evaluate at a number z of |argument| # less than (say) n*pi, we put r=1/n, compute z' = root(z, n) # (carefully so as not to loose the branch information), and evaluate # G(z'**(1/r)) = G(z'**n) = G(z). from sympy.functions import exp_polar, ceiling from sympy import Expr import mpmath z = self.argument znum = self.argument._eval_evalf(prec) if znum.has(exp_polar): znum, branch = znum.as_coeff_mul(exp_polar) if len(branch) != 1: return branch = branch[0].args[0]/I else: branch = S(0) n = ceiling(abs(branch/S.Pi)) + 1 znum = znum**(S(1)/n)*exp(I*branch / n) # Convert all args to mpf or mpc try: [z, r, ap, bq] = [arg._to_mpmath(prec) for arg in [znum, 1/n, self.args[0], self.args[1]]] except ValueError: return with mpmath.workprec(prec): v = mpmath.meijerg(ap, bq, z, r) return Expr._from_mpmath(v, prec) def integrand(self, s): """ Get the defining integrand D(s). """ from sympy import gamma return self.argument**s \ * Mul(*(gamma(b - s) for b in self.bm)) \ * Mul(*(gamma(1 - a + s) for a in self.an)) \ / Mul(*(gamma(1 - b + s) for b in self.bother)) \ / Mul(*(gamma(a - s) for a in self.aother)) @property def argument(self): """ Argument of the Meijer G-function. """ return self.args[2] @property def an(self): """ First set of numerator parameters. """ return Tuple(*self.args[0][0]) @property def ap(self): """ Combined numerator parameters. """ return Tuple(*(self.args[0][0] + self.args[0][1])) @property def aother(self): """ Second set of numerator parameters. """ return Tuple(*self.args[0][1]) @property def bm(self): """ First set of denominator parameters. """ return Tuple(*self.args[1][0]) @property def bq(self): """ Combined denominator parameters. """ return Tuple(*(self.args[1][0] + self.args[1][1])) @property def bother(self): """ Second set of denominator parameters. """ return Tuple(*self.args[1][1]) @property def _diffargs(self): return self.ap + self.bq @property def nu(self): """ A quantity related to the convergence region of the integral, c.f. references. """ return sum(self.bq) - sum(self.ap) @property def delta(self): """ A quantity related to the convergence region of the integral, c.f. references. """ return len(self.bm) + len(self.an) - S(len(self.ap) + len(self.bq))/2 @property def is_number(self): """ Returns true if expression has numeric data only. """ return not self.free_symbols class HyperRep(Function): """ A base class for "hyper representation functions". This is used exclusively in hyperexpand(), but fits more logically here. pFq is branched at 1 if p == q+1. For use with slater-expansion, we want define an "analytic continuation" to all polar numbers, which is continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want a "nice" expression for the various cases. This base class contains the core logic, concrete derived classes only supply the actual functions. """ @classmethod def eval(cls, *args): from sympy import unpolarify newargs = tuple(map(unpolarify, args[:-1])) + args[-1:] if args != newargs: return cls(*newargs) @classmethod def _expr_small(cls, x): """ An expression for F(x) which holds for |x| < 1. """ raise NotImplementedError @classmethod def _expr_small_minus(cls, x): """ An expression for F(-x) which holds for |x| < 1. """ raise NotImplementedError @classmethod def _expr_big(cls, x, n): """ An expression for F(exp_polar(2*I*pi*n)*x), |x| > 1. """ raise NotImplementedError @classmethod def _expr_big_minus(cls, x, n): """ An expression for F(exp_polar(2*I*pi*n + pi*I)*x), |x| > 1. """ raise NotImplementedError def _eval_rewrite_as_nonrep(self, *args, **kwargs): from sympy import Piecewise x, n = self.args[-1].extract_branch_factor(allow_half=True) minus = False newargs = self.args[:-1] + (x,) if not n.is_Integer: minus = True n -= S(1)/2 newerargs = newargs + (n,) if minus: small = self._expr_small_minus(*newargs) big = self._expr_big_minus(*newerargs) else: small = self._expr_small(*newargs) big = self._expr_big(*newerargs) if big == small: return small return Piecewise((big, abs(x) > 1), (small, True)) def _eval_rewrite_as_nonrepsmall(self, *args, **kwargs): x, n = self.args[-1].extract_branch_factor(allow_half=True) args = self.args[:-1] + (x,) if not n.is_Integer: return self._expr_small_minus(*args) return self._expr_small(*args) class HyperRep_power1(HyperRep): """ Return a representative for hyper([-a], [], z) == (1 - z)**a. """ @classmethod def _expr_small(cls, a, x): return (1 - x)**a @classmethod def _expr_small_minus(cls, a, x): return (1 + x)**a @classmethod def _expr_big(cls, a, x, n): if a.is_integer: return cls._expr_small(a, x) return (x - 1)**a*exp((2*n - 1)*pi*I*a) @classmethod def _expr_big_minus(cls, a, x, n): if a.is_integer: return cls._expr_small_minus(a, x) return (1 + x)**a*exp(2*n*pi*I*a) class HyperRep_power2(HyperRep): """ Return a representative for hyper([a, a - 1/2], [2*a], z). """ @classmethod def _expr_small(cls, a, x): return 2**(2*a - 1)*(1 + sqrt(1 - x))**(1 - 2*a) @classmethod def _expr_small_minus(cls, a, x): return 2**(2*a - 1)*(1 + sqrt(1 + x))**(1 - 2*a) @classmethod def _expr_big(cls, a, x, n): sgn = -1 if n.is_odd: sgn = 1 n -= 1 return 2**(2*a - 1)*(1 + sgn*I*sqrt(x - 1))**(1 - 2*a) \ *exp(-2*n*pi*I*a) @classmethod def _expr_big_minus(cls, a, x, n): sgn = 1 if n.is_odd: sgn = -1 return sgn*2**(2*a - 1)*(sqrt(1 + x) + sgn)**(1 - 2*a)*exp(-2*pi*I*a*n) class HyperRep_log1(HyperRep): """ Represent -z*hyper([1, 1], [2], z) == log(1 - z). """ @classmethod def _expr_small(cls, x): return log(1 - x) @classmethod def _expr_small_minus(cls, x): return log(1 + x) @classmethod def _expr_big(cls, x, n): return log(x - 1) + (2*n - 1)*pi*I @classmethod def _expr_big_minus(cls, x, n): return log(1 + x) + 2*n*pi*I class HyperRep_atanh(HyperRep): """ Represent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z). """ @classmethod def _expr_small(cls, x): return atanh(sqrt(x))/sqrt(x) def _expr_small_minus(cls, x): return atan(sqrt(x))/sqrt(x) def _expr_big(cls, x, n): if n.is_even: return (acoth(sqrt(x)) + I*pi/2)/sqrt(x) else: return (acoth(sqrt(x)) - I*pi/2)/sqrt(x) def _expr_big_minus(cls, x, n): if n.is_even: return atan(sqrt(x))/sqrt(x) else: return (atan(sqrt(x)) - pi)/sqrt(x) class HyperRep_asin1(HyperRep): """ Represent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z). """ @classmethod def _expr_small(cls, z): return asin(sqrt(z))/sqrt(z) @classmethod def _expr_small_minus(cls, z): return asinh(sqrt(z))/sqrt(z) @classmethod def _expr_big(cls, z, n): return S(-1)**n*((S(1)/2 - n)*pi/sqrt(z) + I*acosh(sqrt(z))/sqrt(z)) @classmethod def _expr_big_minus(cls, z, n): return S(-1)**n*(asinh(sqrt(z))/sqrt(z) + n*pi*I/sqrt(z)) class HyperRep_asin2(HyperRep): """ Represent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z). """ # TODO this can be nicer @classmethod def _expr_small(cls, z): return HyperRep_asin1._expr_small(z) \ /HyperRep_power1._expr_small(S(1)/2, z) @classmethod def _expr_small_minus(cls, z): return HyperRep_asin1._expr_small_minus(z) \ /HyperRep_power1._expr_small_minus(S(1)/2, z) @classmethod def _expr_big(cls, z, n): return HyperRep_asin1._expr_big(z, n) \ /HyperRep_power1._expr_big(S(1)/2, z, n) @classmethod def _expr_big_minus(cls, z, n): return HyperRep_asin1._expr_big_minus(z, n) \ /HyperRep_power1._expr_big_minus(S(1)/2, z, n) class HyperRep_sqrts1(HyperRep): """ Return a representative for hyper([-a, 1/2 - a], [1/2], z). """ @classmethod def _expr_small(cls, a, z): return ((1 - sqrt(z))**(2*a) + (1 + sqrt(z))**(2*a))/2 @classmethod def _expr_small_minus(cls, a, z): return (1 + z)**a*cos(2*a*atan(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): if n.is_even: return ((sqrt(z) + 1)**(2*a)*exp(2*pi*I*n*a) + (sqrt(z) - 1)**(2*a)*exp(2*pi*I*(n - 1)*a))/2 else: n -= 1 return ((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) + (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))/2 @classmethod def _expr_big_minus(cls, a, z, n): if n.is_even: return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z))) else: return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a) class HyperRep_sqrts2(HyperRep): """ Return a representative for sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a] == -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)""" @classmethod def _expr_small(cls, a, z): return sqrt(z)*((1 - sqrt(z))**(2*a) - (1 + sqrt(z))**(2*a))/2 @classmethod def _expr_small_minus(cls, a, z): return sqrt(z)*(1 + z)**a*sin(2*a*atan(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): if n.is_even: return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n - 1)) - (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n)) else: n -= 1 return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) - (sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n)) def _expr_big_minus(cls, a, z, n): if n.is_even: return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z))) else: return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \ *sin(2*a*atan(sqrt(z)) - 2*pi*a) class HyperRep_log2(HyperRep): """ Represent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z) """ @classmethod def _expr_small(cls, z): return log(S(1)/2 + sqrt(1 - z)/2) @classmethod def _expr_small_minus(cls, z): return log(S(1)/2 + sqrt(1 + z)/2) @classmethod def _expr_big(cls, z, n): if n.is_even: return (n - S(1)/2)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z)) else: return (n - S(1)/2)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z)) def _expr_big_minus(cls, z, n): if n.is_even: return pi*I*n + log(S(1)/2 + sqrt(1 + z)/2) else: return pi*I*n + log(sqrt(1 + z)/2 - S(1)/2) class HyperRep_cosasin(HyperRep): """ Represent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))). """ # Note there are many alternative expressions, e.g. as powers of a sum of # square roots. @classmethod def _expr_small(cls, a, z): return cos(2*a*asin(sqrt(z))) @classmethod def _expr_small_minus(cls, a, z): return cosh(2*a*asinh(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): return cosh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1)) @classmethod def _expr_big_minus(cls, a, z, n): return cosh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n) class HyperRep_sinasin(HyperRep): """ Represent 2*a*z*hyper([1 - a, 1 + a], [3/2], z) == sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z))) """ @classmethod def _expr_small(cls, a, z): return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z))) @classmethod def _expr_small_minus(cls, a, z): return -sqrt(z)/sqrt(1 + z)*sinh(2*a*asinh(sqrt(z))) @classmethod def _expr_big(cls, a, z, n): return -1/sqrt(1 - 1/z)*sinh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1)) @classmethod def _expr_big_minus(cls, a, z, n): return -1/sqrt(1 + 1/z)*sinh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n) class appellf1(Function): r""" This is the Appell hypergeometric function of two variables as: .. math :: F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}} \frac{x^m y^n}{m! n!}. References ========== .. [1] https://en.wikipedia.org/wiki/Appell_series .. [2] http://functions.wolfram.com/HypergeometricFunctions/AppellF1/ """ @classmethod def eval(cls, a, b1, b2, c, x, y): if default_sort_key(b1) > default_sort_key(b2): b1, b2 = b2, b1 x, y = y, x return cls(a, b1, b2, c, x, y) elif b1 == b2 and default_sort_key(x) > default_sort_key(y): x, y = y, x return cls(a, b1, b2, c, x, y) if x == 0 and y == 0: return S.One def fdiff(self, argindex=5): a, b1, b2, c, x, y = self.args if argindex == 5: return (a*b1/c)*appellf1(a + 1, b1 + 1, b2, c + 1, x, y) elif argindex == 6: return (a*b2/c)*appellf1(a + 1, b1, b2 + 1, c + 1, x, y) elif argindex in (1, 2, 3, 4): return Derivative(self, self.args[argindex-1]) else: raise ArgumentIndexError(self, argindex)
a30d920d10778e65abb9e71fac4042be674e3161515c0918bf9c47e93eb0a228
from __future__ import print_function, division from sympy.core import Add, S, sympify, oo, pi, Dummy, expand_func from sympy.core.compatibility import range from sympy.core.function import Function, ArgumentIndexError from sympy.core.numbers import Rational from sympy.core.power import Pow from .zeta_functions import zeta from .error_functions import erf, erfc from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.functions.combinatorial.numbers import bernoulli, harmonic from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial ############################################################################### ############################ COMPLETE GAMMA FUNCTION ########################## ############################################################################### class gamma(Function): r""" The gamma function .. math:: \Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t. The ``gamma`` function implements the function which passes through the values of the factorial function, i.e. `\Gamma(n) = (n - 1)!` when n is an integer. More general, `\Gamma(z)` is defined in the whole complex plane except at the negative integers where there are simple poles. Examples ======== >>> from sympy import S, I, pi, oo, gamma >>> from sympy.abc import x Several special values are known: >>> gamma(1) 1 >>> gamma(4) 6 >>> gamma(S(3)/2) sqrt(pi)/2 The Gamma function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(gamma(x)) gamma(conjugate(x)) Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(gamma(x), x) gamma(x)*polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(gamma(x), x, 0, 3) 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3) We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane: >>> gamma(pi).evalf(40) 2.288037795340032417959588909060233922890 >>> gamma(1+I).evalf(20) 0.49801566811835604271 - 0.15494982830181068512*I See Also ======== lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/GammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/ """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return self.func(self.args[0])*polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg.is_Integer: if arg.is_positive: return factorial(arg - 1) else: return S.ComplexInfinity elif arg.is_Rational: if arg.q == 2: n = abs(arg.p) // arg.q if arg.is_positive: k, coeff = n, S.One else: n = k = n + 1 if n & 1 == 0: coeff = S.One else: coeff = S.NegativeOne for i in range(3, 2*k, 2): coeff *= i if arg.is_positive: return coeff*sqrt(S.Pi) / 2**n else: return 2**n*sqrt(S.Pi) / coeff def _eval_expand_func(self, **hints): arg = self.args[0] if arg.is_Rational: if abs(arg.p) > arg.q: x = Dummy('x') n = arg.p // arg.q p = arg.p - n*arg.q return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q)) if arg.is_Add: coeff, tail = arg.as_coeff_add() if coeff and coeff.q != 1: intpart = floor(coeff) tail = (coeff - intpart,) + tail coeff = intpart tail = arg._new_rawargs(*tail, reeval=False) return self.func(tail)*RisingFactorial(tail, coeff) return self.func(*self.args) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): x = self.args[0] if x.is_positive or x.is_noninteger: return True def _eval_is_positive(self): x = self.args[0] if x.is_positive: return True elif x.is_noninteger: return floor(x).is_even def _eval_rewrite_as_tractable(self, z, **kwargs): return exp(loggamma(z)) def _eval_rewrite_as_factorial(self, z, **kwargs): return factorial(z - 1) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if not (x0.is_Integer and x0 <= 0): return super(gamma, self)._eval_nseries(x, n, logx) t = self.args[0] - x0 return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx) ############################################################################### ################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS ################# ############################################################################### class lowergamma(Function): r""" The lower incomplete gamma function. It can be defined as the meromorphic continuation of .. math:: \gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x). This can be shown to be the same as .. math:: \gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where :math:`{}_1F_1` is the (confluent) hypergeometric function. Examples ======== >>> from sympy import lowergamma, S >>> from sympy.abc import s, x >>> lowergamma(s, x) lowergamma(s, x) >>> lowergamma(3, x) -2*(x**2/2 + x + 1)*exp(-x) + 2 >>> lowergamma(-S(1)/2, x) -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x) See Also ======== gamma: Gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ """ def fdiff(self, argindex=2): from sympy import meijerg, unpolarify if argindex == 2: a, z = self.args return exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \ - meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, a, x): # For lack of a better place, we use this one to extract branching # information. The following can be # found in the literature (c/f references given above), albeit scattered: # 1) For fixed x != 0, lowergamma(s, x) is an entire function of s # 2) For fixed positive integers s, lowergamma(s, x) is an entire # function of x. # 3) For fixed non-positive integers s, # lowergamma(s, exp(I*2*pi*n)*x) = # 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x) # (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)). # 4) For fixed non-integral s, # lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x), # where lowergamma_unbranched(s, x) is an entire function (in fact # of both s and x), i.e. # lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x) from sympy import unpolarify, I if x == 0: return S.Zero nx, n = x.extract_branch_factor() if a.is_integer and a.is_positive: nx = unpolarify(x) if nx != x: return lowergamma(a, nx) elif a.is_integer and a.is_nonpositive: if n != 0: return 2*pi*I*n*(-1)**(-a)/factorial(-a) + lowergamma(a, nx) elif n != 0: return exp(2*pi*I*n*a)*lowergamma(a, nx) # Special values. if a.is_Number: if a is S.One: return S.One - exp(-x) elif a is S.Half: return sqrt(pi)*erf(sqrt(x)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)]) else: return gamma(a) * (lowergamma(S.Half, x)/sqrt(pi) - exp(-x) * Add(*[x**(k-S.Half) / gamma(S.Half+k) for k in range(1, a+S.Half)])) if not a.is_Integer: return (-1)**(S.Half - a) * pi*erf(sqrt(x)) / gamma(1-a) + exp(-x) * Add(*[x**(k+a-1)*gamma(a) / gamma(a+k) for k in range(1, S(3)/2-a)]) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, 0, z) return Expr._from_mpmath(res, prec) else: return self def _eval_conjugate(self): z = self.args[1] if not z in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), z.conjugate()) def _eval_rewrite_as_uppergamma(self, s, x, **kwargs): return gamma(s) - uppergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy import expint if s.is_integer and s.is_nonpositive: return self return self.rewrite(uppergamma).rewrite(expint) class uppergamma(Function): r""" The upper incomplete gamma function. It can be defined as the meromorphic continuation of .. math:: \Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x). where `\gamma(s, x)` is the lower incomplete gamma function, :class:`lowergamma`. This can be shown to be the same as .. math:: \Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right), where :math:`{}_1F_1` is the (confluent) hypergeometric function. The upper incomplete gamma function is also essentially equivalent to the generalized exponential integral: .. math:: \operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x). Examples ======== >>> from sympy import uppergamma, S >>> from sympy.abc import s, x >>> uppergamma(s, x) uppergamma(s, x) >>> uppergamma(3, x) 2*(x**2/2 + x + 1)*exp(-x) >>> uppergamma(-S(1)/2, x) -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x) >>> uppergamma(-2, x) expint(3, x)/x**2 See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [3] http://dlmf.nist.gov/8 .. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/ .. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/ .. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions """ def fdiff(self, argindex=2): from sympy import meijerg, unpolarify if argindex == 2: a, z = self.args return -exp(-unpolarify(z))*z**(a - 1) elif argindex == 1: a, z = self.args return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr if all(x.is_number for x in self.args): a = self.args[0]._to_mpmath(prec) z = self.args[1]._to_mpmath(prec) with workprec(prec): res = mp.gammainc(a, z, mp.inf) return Expr._from_mpmath(res, prec) return self @classmethod def eval(cls, a, z): from sympy import unpolarify, I, expint if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: return S.Zero elif z is S.Zero: # TODO: Holds only for Re(a) > 0: return gamma(a) # We extract branching information here. C/f lowergamma. nx, n = z.extract_branch_factor() if a.is_integer and (a > 0) == True: nx = unpolarify(z) if z != nx: return uppergamma(a, nx) elif a.is_integer and (a <= 0) == True: if n != 0: return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx) elif n != 0: return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx) # Special values. if a.is_Number: if a is S.One: return exp(-z) elif a is S.Half: return sqrt(pi)*erfc(sqrt(z)) elif a.is_Integer or (2*a).is_Integer: b = a - 1 if b.is_positive: if a.is_integer: return exp(-z) * factorial(b) * Add(*[z**k / factorial(k) for k in range(a)]) else: return gamma(a) * erfc(sqrt(z)) + (-1)**(a - S(3)/2) * exp(-z) * sqrt(z) * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a) for k in range(a - S.Half)]) elif b.is_Integer: return expint(-b, z)*unpolarify(z)**(b + 1) if not a.is_Integer: return (-1)**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a) - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1) for k in range(S.Half - a)]) def _eval_conjugate(self): z = self.args[1] if not z in (S.Zero, S.NegativeInfinity): return self.func(self.args[0].conjugate(), z.conjugate()) def _eval_rewrite_as_lowergamma(self, s, x, **kwargs): return gamma(s) - lowergamma(s, x) def _eval_rewrite_as_expint(self, s, x, **kwargs): from sympy import expint return expint(1 - s, x)*x**s ############################################################################### ###################### POLYGAMMA and LOGGAMMA FUNCTIONS ####################### ############################################################################### class polygamma(Function): r""" The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``. It is a meromorphic function on `\mathbb{C}` and defined as the (n+1)-th derivative of the logarithm of the gamma function: .. math:: \psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z). Examples ======== Several special values are known: >>> from sympy import S, polygamma >>> polygamma(0, 1) -EulerGamma >>> polygamma(0, 1/S(2)) -2*log(2) - EulerGamma >>> polygamma(0, 1/S(3)) -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)) >>> polygamma(0, 1/S(4)) -pi/2 - log(4) - log(2) - EulerGamma >>> polygamma(0, 2) -EulerGamma + 1 >>> polygamma(0, 23) -EulerGamma + 19093197/5173168 >>> from sympy import oo, I >>> polygamma(0, oo) oo >>> polygamma(0, -oo) oo >>> polygamma(0, I*oo) oo >>> polygamma(0, -I*oo) oo Differentiation with respect to x is supported: >>> from sympy import Symbol, diff >>> x = Symbol("x") >>> diff(polygamma(0, x), x) polygamma(1, x) >>> diff(polygamma(0, x), x, 2) polygamma(2, x) >>> diff(polygamma(0, x), x, 3) polygamma(3, x) >>> diff(polygamma(1, x), x) polygamma(2, x) >>> diff(polygamma(1, x), x, 2) polygamma(3, x) >>> diff(polygamma(2, x), x) polygamma(3, x) >>> diff(polygamma(2, x), x, 2) polygamma(4, x) >>> n = Symbol("n") >>> diff(polygamma(n, x), x) polygamma(n + 1, x) >>> diff(polygamma(n, x), x, 2) polygamma(n + 2, x) We can rewrite polygamma functions in terms of harmonic numbers: >>> from sympy import harmonic >>> polygamma(0, x).rewrite(harmonic) harmonic(x - 1) - EulerGamma >>> polygamma(2, x).rewrite(harmonic) 2*harmonic(x - 1, 3) - 2*zeta(3) >>> ni = Symbol("n", integer=True) >>> polygamma(ni, x).rewrite(harmonic) (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n) See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. loggamma: Log Gamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Polygamma_function .. [2] http://mathworld.wolfram.com/PolygammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/ .. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ def fdiff(self, argindex=2): if argindex == 2: n, z = self.args[:2] return polygamma(n + 1, z) else: raise ArgumentIndexError(self, argindex) def _eval_is_positive(self): if self.args[1].is_positive and (self.args[0] > 0) == True: return self.args[0].is_odd def _eval_is_negative(self): if self.args[1].is_positive and (self.args[0] > 0) == True: return self.args[0].is_even def _eval_is_real(self): return self.args[0].is_real def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[1] != oo or not \ (self.args[0].is_Integer and self.args[0].is_nonnegative): return super(polygamma, self)._eval_aseries(n, args0, x, logx) z = self.args[1] N = self.args[0] if N == 0: # digamma function series # Abramowitz & Stegun, p. 259, 6.3.18 r = log(z) - 1/(2*z) o = None if n < 2: o = Order(1/z, x) else: m = ceiling((n + 1)//2) l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)] r -= Add(*l) o = Order(1/z**(2*m), x) return r._eval_nseries(x, n, logx) + o else: # proper polygamma function # Abramowitz & Stegun, p. 260, 6.4.10 # We return terms to order higher than O(x**n) on purpose # -- otherwise we would not be able to return any terms for # quite a long time! fac = gamma(N) e0 = fac + N*fac/(2*z) m = ceiling((n + 1)//2) for k in range(1, m): fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1)) e0 += bernoulli(2*k)*fac/z**(2*k) o = Order(1/z**(2*m), x) if n == 0: o = Order(1/z, x) elif n == 1: o = Order(1/z**2, x) r = e0._eval_nseries(z, n, logx) + o return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx) @classmethod def eval(cls, n, z): n, z = list(map(sympify, (n, z))) from sympy import unpolarify if n.is_integer: if n.is_nonnegative: nz = unpolarify(z) if z != nz: return polygamma(n, nz) if n == -1: return loggamma(z) else: if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: if n.is_Number: if n is S.Zero: return S.Infinity else: return S.Zero elif z.is_Integer: if z.is_nonpositive: return S.ComplexInfinity else: if n is S.Zero: return -S.EulerGamma + harmonic(z - 1, 1) elif n.is_odd: return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z) if n == 0: if z is S.NaN: return S.NaN elif z.is_Rational: p, q = z.as_numer_denom() # only expand for small denominators to avoid creating long expressions if q <= 5: return expand_func(polygamma(n, z, evaluate=False)) elif z in (S.Infinity, S.NegativeInfinity): return S.Infinity else: t = z.extract_multiplicatively(S.ImaginaryUnit) if t in (S.Infinity, S.NegativeInfinity): return S.Infinity # TODO n == 1 also can do some rational z def _eval_expand_func(self, **hints): n, z = self.args if n.is_Integer and n.is_nonnegative: if z.is_Add: coeff = z.args[0] if coeff.is_Integer: e = -(n + 1) if coeff > 0: tail = Add(*[Pow( z - i, e) for i in range(1, int(coeff) + 1)]) else: tail = -Add(*[Pow( z + i, e) for i in range(0, int(-coeff))]) return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail elif z.is_Mul: coeff, z = z.as_two_terms() if coeff.is_Integer and coeff.is_positive: tail = [ polygamma(n, z + Rational( i, coeff)) for i in range(0, int(coeff)) ] if n == 0: return Add(*tail)/coeff + log(coeff) else: return Add(*tail)/coeff**(n + 1) z *= coeff if n == 0 and z.is_Rational: p, q = z.as_numer_denom() # Reference: # Values of the polygamma functions at rational arguments, J. Choi, 2007 part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add( *[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)]) if z > 0: n = floor(z) z0 = z - n return part_1 + Add(*[1 / (z0 + k) for k in range(n)]) elif z < 0: n = floor(1 - z) z0 = z + n return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)]) return polygamma(n, z) def _eval_rewrite_as_zeta(self, n, z, **kwargs): if n >= S.One: return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z) else: return self def _eval_rewrite_as_harmonic(self, n, z, **kwargs): if n.is_integer: if n == S.Zero: return harmonic(z - 1) - S.EulerGamma else: return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1)) def _eval_as_leading_term(self, x): from sympy import Order n, z = [a.as_leading_term(x) for a in self.args] o = Order(z, x) if n == 0 and o.contains(1/x): return o.getn() * log(x) else: return self.func(n, z) class loggamma(Function): r""" The ``loggamma`` function implements the logarithm of the gamma function i.e, `\log\Gamma(x)`. Examples ======== Several special values are known. For numerical integral arguments we have: >>> from sympy import loggamma >>> loggamma(-2) oo >>> loggamma(0) oo >>> loggamma(1) 0 >>> loggamma(2) 0 >>> loggamma(3) log(2) and for symbolic values: >>> from sympy import Symbol >>> n = Symbol("n", integer=True, positive=True) >>> loggamma(n) log(gamma(n)) >>> loggamma(-n) oo for half-integral values: >>> from sympy import S, pi >>> loggamma(S(5)/2) log(3*sqrt(pi)/4) >>> loggamma(n/2) log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2)) and general rational arguments: >>> from sympy import expand_func >>> L = loggamma(S(16)/3) >>> expand_func(L).doit() -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13) >>> L = loggamma(S(19)/4) >>> expand_func(L).doit() -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15) >>> L = loggamma(S(23)/7) >>> expand_func(L).doit() -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16) The loggamma function has the following limits towards infinity: >>> from sympy import oo >>> loggamma(oo) oo >>> loggamma(-oo) zoo The loggamma function obeys the mirror symmetry if `x \in \mathbb{C} \setminus \{-\infty, 0\}`: >>> from sympy.abc import x >>> from sympy import conjugate >>> conjugate(loggamma(x)) loggamma(conjugate(x)) Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(loggamma(x), x) polygamma(0, x) Series expansion is also supported: >>> from sympy import series >>> series(loggamma(x), x, 0, 4) -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4) We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane: >>> from sympy import I >>> loggamma(5).evalf(30) 3.17805383034794561964694160130 >>> loggamma(I).evalf(20) -0.65092319930185633889 - 1.8724366472624298171*I See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. digamma: Digamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_function .. [2] http://dlmf.nist.gov/5 .. [3] http://mathworld.wolfram.com/LogGammaFunction.html .. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/ """ @classmethod def eval(cls, z): z = sympify(z) if z.is_integer: if z.is_nonpositive: return S.Infinity elif z.is_positive: return log(gamma(z)) elif z.is_rational: p, q = z.as_numer_denom() # Half-integral values: if p.is_positive and q == 2: return log(sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half)) if z is S.Infinity: return S.Infinity elif abs(z) is S.Infinity: return S.ComplexInfinity if z is S.NaN: return S.NaN def _eval_expand_func(self, **hints): from sympy import Sum z = self.args[0] if z.is_Rational: p, q = z.as_numer_denom() # General rational arguments (u + p/q) # Split z as n + p/q with p < q n = p // q p = p - n*q if p.is_positive and q.is_positive and p < q: k = Dummy("k") if n.is_positive: return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n)) elif n.is_negative: return loggamma(p / q) - n*log(q) + S.Pi*S.ImaginaryUnit*n - Sum(log(k*q - p), (k, 1, -n)) elif n.is_zero: return loggamma(p / q) return self def _eval_nseries(self, x, n, logx=None): x0 = self.args[0].limit(x, 0) if x0 is S.Zero: f = self._eval_rewrite_as_intractable(*self.args) return f._eval_nseries(x, n, logx) return super(loggamma, self)._eval_nseries(x, n, logx) def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[0] != oo: return super(loggamma, self)._eval_aseries(n, args0, x, logx) z = self.args[0] m = min(n, ceiling((n + S(1))/2)) r = log(z)*(z - S(1)/2) - z + log(2*pi)/2 l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, m)] o = None if m == 0: o = Order(1, x) else: o = Order(1/z**(2*m - 1), x) # It is very inefficient to first add the order and then do the nseries return (r + Add(*l))._eval_nseries(x, n, logx) + o def _eval_rewrite_as_intractable(self, z, **kwargs): return log(gamma(z)) def _eval_is_real(self): return self.args[0].is_real def _eval_conjugate(self): z = self.args[0] if not z in (S.Zero, S.NegativeInfinity): return self.func(z.conjugate()) def fdiff(self, argindex=1): if argindex == 1: return polygamma(0, self.args[0]) else: raise ArgumentIndexError(self, argindex) def _sage_(self): import sage.all as sage return sage.log_gamma(self.args[0]._sage_()) def digamma(x): r""" The digamma function is the first derivative of the loggamma function i.e, .. math:: \psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z) } In this case, ``digamma(z) = polygamma(0, z)``. See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. trigamma: Trigamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Digamma_function .. [2] http://mathworld.wolfram.com/DigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ return polygamma(0, x) def trigamma(x): r""" The trigamma function is the second derivative of the loggamma function i.e, .. math:: \psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z). In this case, ``trigamma(z) = polygamma(1, z)``. See Also ======== gamma: Gamma function. lowergamma: Lower incomplete gamma function. uppergamma: Upper incomplete gamma function. polygamma: Polygamma function. loggamma: Log Gamma function. digamma: Digamma function. sympy.functions.special.beta_functions.beta: Euler Beta function. References ========== .. [1] https://en.wikipedia.org/wiki/Trigamma_function .. [2] http://mathworld.wolfram.com/TrigammaFunction.html .. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/ """ return polygamma(1, x)
2b5160c8a94d5bb31e18c20a30da755828fe298dcf3b66ea66f3f1d7c399e15e
from __future__ import print_function, division from sympy.core import S, sympify, diff from sympy.core.decorators import deprecated from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not from sympy.core.relational import Eq from sympy.functions.elementary.complexes import im, sign from sympy.functions.elementary.piecewise import Piecewise from sympy.polys.polyerrors import PolynomialError from sympy.utilities import filldedent ############################################################################### ################################ DELTA FUNCTION ############################### ############################################################################### class DiracDelta(Function): """ The DiracDelta function and its derivatives. DiracDelta is not an ordinary function. It can be rigorously defined either as a distribution or as a measure. DiracDelta only makes sense in definite integrals, and in particular, integrals of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``, where it equals ``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally, DiracDelta acts in some ways like a function that is ``0`` everywhere except at ``0``, but in many ways it also does not. It can often be useful to treat DiracDelta in formal ways, building up and manipulating expressions with delta functions (which may eventually be integrated), but care must be taken to not treat it as a real function. SymPy's ``oo`` is similar. It only truly makes sense formally in certain contexts (such as integration limits), but SymPy allows its use everywhere, and it tries to be consistent with operations on it (like ``1/oo``), but it is easy to get into trouble and get wrong results if ``oo`` is treated too much like a number. Similarly, if DiracDelta is treated too much like a function, it is easy to get wrong or nonsensical results. DiracDelta function has the following properties: 1) ``diff(Heaviside(x), x) = DiracDelta(x)`` 2) ``integrate(DiracDelta(x - a)*f(x),(x, -oo, oo)) = f(a)`` and ``integrate(DiracDelta(x - a)*f(x),(x, a - e, a + e)) = f(a)`` 3) ``DiracDelta(x) = 0`` for all ``x != 0`` 4) ``DiracDelta(g(x)) = Sum_i(DiracDelta(x - x_i)/abs(g'(x_i)))`` Where ``x_i``-s are the roots of ``g`` 5) ``DiracDelta(-x) = DiracDelta(x)`` Derivatives of ``k``-th order of DiracDelta have the following property: 6) ``DiracDelta(x, k) = 0``, for all ``x != 0`` 7) ``DiracDelta(-x, k) = -DiracDelta(x, k)`` for odd ``k`` 8) ``DiracDelta(-x, k) = DiracDelta(x, k)`` for even ``k`` Examples ======== >>> from sympy import DiracDelta, diff, pi, Piecewise >>> from sympy.abc import x, y >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(1) 0 >>> DiracDelta(-1) 0 >>> DiracDelta(pi) 0 >>> DiracDelta(x - 4).subs(x, 4) DiracDelta(0) >>> diff(DiracDelta(x)) DiracDelta(x, 1) >>> diff(DiracDelta(x - 1),x,2) DiracDelta(x - 1, 2) >>> diff(DiracDelta(x**2 - 1),x,2) 2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1)) >>> DiracDelta(3*x).is_simple(x) True >>> DiracDelta(x**2).is_simple(x) False >>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y)) See Also ======== Heaviside simplify, is_simple sympy.functions.special.tensor_functions.KroneckerDelta References ========== .. [1] http://mathworld.wolfram.com/DeltaFunction.html """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a DiracDelta Function. The difference between ``diff()`` and ``fdiff()`` is:- ``diff()`` is the user-level function and ``fdiff()`` is an object method. ``fdiff()`` is just a convenience method available in the ``Function`` class. It returns the derivative of the function without considering the chain rule. ``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls ``fdiff()`` internally to compute the derivative of the function. Examples ======== >>> from sympy import DiracDelta, diff >>> from sympy.abc import x >>> DiracDelta(x).fdiff() DiracDelta(x, 1) >>> DiracDelta(x, 1).fdiff() DiracDelta(x, 2) >>> DiracDelta(x**2 - 1).fdiff() DiracDelta(x**2 - 1, 1) >>> diff(DiracDelta(x, 1)).fdiff() DiracDelta(x, 3) """ if argindex == 1: #I didn't know if there is a better way to handle default arguments k = 0 if len(self.args) > 1: k = self.args[1] return self.func(self.args[0], k + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg, k=0): """ Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object. The ``eval()`` method is automatically called when the ``DiracDelta`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import DiracDelta, S, Subs >>> from sympy.abc import x >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(-x, 1) -DiracDelta(x, 1) >>> DiracDelta(1) 0 >>> DiracDelta(5, 1) 0 >>> DiracDelta(0) DiracDelta(0) >>> DiracDelta(-1) 0 >>> DiracDelta(S.NaN) nan >>> DiracDelta(x).eval(1) 0 >>> DiracDelta(x - 100).subs(x, 5) 0 >>> DiracDelta(x - 100).subs(x, 100) DiracDelta(0) """ k = sympify(k) if not k.is_Integer or k.is_negative: raise ValueError("Error: the second argument of DiracDelta must be \ a non-negative integer, %s given instead." % (k,)) arg = sympify(arg) if arg is S.NaN: return S.NaN if arg.is_nonzero: return S.Zero if fuzzy_not(im(arg).is_zero): raise ValueError(filldedent(''' Function defined only for Real Values. Complex part: %s found in %s .''' % ( repr(im(arg)), repr(arg)))) c, nc = arg.args_cnc() if c and c[0] == -1: # keep this fast and simple instead of using # could_extract_minus_sign if k % 2 == 1: return -cls(-arg, k) elif k % 2 == 0: return cls(-arg, k) if k else cls(-arg) @deprecated(useinstead="expand(diracdelta=True, wrt=x)", issue=12859, deprecated_since_version="1.1") def simplify(self, x): return self.expand(diracdelta=True, wrt=x) def _eval_expand_diracdelta(self, **hints): """Compute a simplified representation of the function using property number 4. Pass wrt as a hint to expand the expression with respect to a particular variable. wrt is: - a variable with respect to which a DiracDelta expression will get expanded. Examples ======== >>> from sympy import DiracDelta >>> from sympy.abc import x, y >>> DiracDelta(x*y).expand(diracdelta=True, wrt=x) DiracDelta(x)/Abs(y) >>> DiracDelta(x*y).expand(diracdelta=True, wrt=y) DiracDelta(y)/Abs(x) >>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3 See Also ======== is_simple, Diracdelta """ from sympy.polys.polyroots import roots wrt = hints.get('wrt', None) if wrt is None: free = self.free_symbols if len(free) == 1: wrt = free.pop() else: raise TypeError(filldedent(''' When there is more than 1 free symbol or variable in the expression, the 'wrt' keyword is required as a hint to expand when using the DiracDelta hint.''')) if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ): return self try: argroots = roots(self.args[0], wrt) result = 0 valid = True darg = abs(diff(self.args[0], wrt)) for r, m in argroots.items(): if r.is_real is not False and m == 1: result += self.func(wrt - r)/darg.subs(wrt, r) else: # don't handle non-real and if m != 1 then # a polynomial will have a zero in the derivative (darg) # at r valid = False break if valid: return result except PolynomialError: pass return self def is_simple(self, x): """is_simple(self, x) Tells whether the argument(args[0]) of DiracDelta is a linear expression in x. x can be: - a symbol Examples ======== >>> from sympy import DiracDelta, cos >>> from sympy.abc import x, y >>> DiracDelta(x*y).is_simple(x) True >>> DiracDelta(x*y).is_simple(y) True >>> DiracDelta(x**2 + x - 2).is_simple(x) False >>> DiracDelta(cos(x)).is_simple(x) False See Also ======== simplify, Diracdelta """ p = self.args[0].as_poly(x) if p: return p.degree() == 1 return False def _eval_rewrite_as_Piecewise(self, *args, **kwargs): """Represents DiracDelta in a Piecewise form Examples ======== >>> from sympy import DiracDelta, Piecewise, Symbol, SingularityFunction >>> x = Symbol('x') >>> DiracDelta(x).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x, 0)), (0, True)) >>> DiracDelta(x - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True)) >>> DiracDelta(x**2 - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x**2 - 5, 0)), (0, True)) >>> DiracDelta(x - 5, 4).rewrite(Piecewise) DiracDelta(x - 5, 4) """ if len(args) == 1: return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True)) def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs): """ Returns the DiracDelta expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == DiracDelta(0): return SingularityFunction(0, 0, -1) if self == DiracDelta(0, 1): return SingularityFunction(0, 0, -2) free = self.free_symbols if len(free) == 1: x = (free.pop()) if len(args) == 1: return SingularityFunction(x, solve(args[0], x)[0], -1) return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1) else: # I don't know how to handle the case for DiracDelta expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.dirac_delta(self.args[0]._sage_()) ############################################################################### ############################## HEAVISIDE FUNCTION ############################# ############################################################################### class Heaviside(Function): """Heaviside Piecewise function Heaviside function has the following properties [1]_: 1) ``diff(Heaviside(x),x) = DiracDelta(x)`` ``( 0, if x < 0`` 2) ``Heaviside(x) = < ( undefined if x==0 [1]`` ``( 1, if x > 0`` 3) ``Max(0,x).diff(x) = Heaviside(x)`` .. [1] Regarding to the value at 0, Mathematica defines ``H(0) = 1``, but Maple uses ``H(0) = undefined``. Different application areas may have specific conventions. For example, in control theory, it is common practice to assume ``H(0) == 0`` to match the Laplace transform of a DiracDelta distribution. To specify the value of Heaviside at x=0, a second argument can be given. Omit this 2nd argument or pass ``None`` to recover the default behavior. >>> from sympy import Heaviside, S >>> from sympy.abc import x >>> Heaviside(9) 1 >>> Heaviside(-9) 0 >>> Heaviside(0) Heaviside(0) >>> Heaviside(0, S.Half) 1/2 >>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1)) Heaviside(x, 1) + 1 See Also ======== DiracDelta References ========== .. [2] http://mathworld.wolfram.com/HeavisideStepFunction.html .. [3] http://dlmf.nist.gov/1.16#iv """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a Heaviside Function. Examples ======== >>> from sympy import Heaviside, diff >>> from sympy.abc import x >>> Heaviside(x).fdiff() DiracDelta(x) >>> Heaviside(x**2 - 1).fdiff() DiracDelta(x**2 - 1) >>> diff(Heaviside(x)).fdiff() DiracDelta(x, 1) """ if argindex == 1: # property number 1 return DiracDelta(self.args[0]) else: raise ArgumentIndexError(self, argindex) def __new__(cls, arg, H0=None, **options): if H0 is None: return super(cls, cls).__new__(cls, arg, **options) else: return super(cls, cls).__new__(cls, arg, H0, **options) @classmethod def eval(cls, arg, H0=None): """ Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object. The ``eval()`` method is automatically called when the ``Heaviside`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import Heaviside, S >>> from sympy.abc import x >>> Heaviside(x) Heaviside(x) >>> Heaviside(19) 1 >>> Heaviside(0) Heaviside(0) >>> Heaviside(0, 1) 1 >>> Heaviside(-5) 0 >>> Heaviside(S.NaN) nan >>> Heaviside(x).eval(100) 1 >>> Heaviside(x - 100).subs(x, 5) 0 >>> Heaviside(x - 100).subs(x, 105) 1 """ H0 = sympify(H0) arg = sympify(arg) if arg.is_negative: return S.Zero elif arg.is_positive: return S.One elif arg.is_zero: return H0 elif arg is S.NaN: return S.NaN elif fuzzy_not(im(arg).is_zero): raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) ) def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs): """Represents Heaviside in a Piecewise form Examples ======== >>> from sympy import Heaviside, Piecewise, Symbol, pprint >>> x = Symbol('x') >>> Heaviside(x).rewrite(Piecewise) Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0)) >>> Heaviside(x - 5).rewrite(Piecewise) Piecewise((0, x - 5 < 0), (Heaviside(0), Eq(x - 5, 0)), (1, x - 5 > 0)) >>> Heaviside(x**2 - 1).rewrite(Piecewise) Piecewise((0, x**2 - 1 < 0), (Heaviside(0), Eq(x**2 - 1, 0)), (1, x**2 - 1 > 0)) """ if H0 is None: return Piecewise((0, arg < 0), (Heaviside(0), Eq(arg, 0)), (1, arg > 0)) if H0 == 0: return Piecewise((0, arg <= 0), (1, arg > 0)) if H0 == 1: return Piecewise((0, arg < 0), (1, arg >= 0)) return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, arg > 0)) def _eval_rewrite_as_sign(self, arg, H0=None, **kwargs): """Represents the Heaviside function in the form of sign function. The value of the second argument of Heaviside must specify Heaviside(0) = 1/2 for rewritting as sign to be strictly equivalent. For easier usage, we also allow this rewriting when Heaviside(0) is undefined. Examples ======== >>> from sympy import Heaviside, Symbol, sign >>> x = Symbol('x', real=True) >>> Heaviside(x).rewrite(sign) sign(x)/2 + 1/2 >>> Heaviside(x, 0).rewrite(sign) Heaviside(x, 0) >>> Heaviside(x - 2).rewrite(sign) sign(x - 2)/2 + 1/2 >>> Heaviside(x**2 - 2*x + 1).rewrite(sign) sign(x**2 - 2*x + 1)/2 + 1/2 >>> y = Symbol('y') >>> Heaviside(y).rewrite(sign) Heaviside(y) >>> Heaviside(y**2 - 2*y + 1).rewrite(sign) Heaviside(y**2 - 2*y + 1) See Also ======== sign """ if arg.is_real: if H0 is None or H0 == S.Half: return (sign(arg)+1)/2 def _eval_rewrite_as_SingularityFunction(self, args, **kwargs): """ Returns the Heaviside expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == Heaviside(0): return SingularityFunction(0, 0, 0) free = self.free_symbols if len(free) == 1: x = (free.pop()) return SingularityFunction(x, solve(args, x)[0], 0) # TODO # ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output # SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0) else: # I don't know how to handle the case for Heaviside expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.heaviside(self.args[0]._sage_())
bb4f6efbf22ab9ef61445c0ee7efd4e4454b0db534924aa09f8ead60addb0f1b
from __future__ import print_function, division from sympy import pi, I from sympy.core import Dummy, sympify from sympy.core.function import Function, ArgumentIndexError from sympy.core.singleton import S from sympy.functions import assoc_legendre from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, cos, cot _x = Dummy("x") class Ynm(Function): r""" Spherical harmonics defined as .. math:: Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} \exp(i m \varphi) \mathrm{P}_n^m\left(\cos(\theta)\right) Ynm() gives the spherical harmonic function of order `n` and `m` in `\theta` and `\varphi`, `Y_n^m(\theta, \varphi)`. The four parameters are as follows: `n \geq 0` an integer and `m` an integer such that `-n \leq m \leq n` holds. The two angles are real-valued with `\theta \in [0, \pi]` and `\varphi \in [0, 2\pi]`. Examples ======== >>> from sympy import Ynm, Symbol >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Ynm(n, m, theta, phi) Ynm(n, m, theta, phi) Several symmetries are known, for the order >>> from sympy import Ynm, Symbol >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Ynm(n, -m, theta, phi) (-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) as well as for the angles >>> from sympy import Ynm, Symbol, simplify >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Ynm(n, m, -theta, phi) Ynm(n, m, theta, phi) >>> Ynm(n, m, theta, -phi) exp(-2*I*m*phi)*Ynm(n, m, theta, phi) For specific integers n and m we can evaluate the harmonics to more useful expressions >>> simplify(Ynm(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi)) >>> simplify(Ynm(1, -1, theta, phi).expand(func=True)) sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi)) >>> simplify(Ynm(1, 0, theta, phi).expand(func=True)) sqrt(3)*cos(theta)/(2*sqrt(pi)) >>> simplify(Ynm(1, 1, theta, phi).expand(func=True)) -sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi)) >>> simplify(Ynm(2, -2, theta, phi).expand(func=True)) sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi)) >>> simplify(Ynm(2, -1, theta, phi).expand(func=True)) sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi)) >>> simplify(Ynm(2, 0, theta, phi).expand(func=True)) sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi)) >>> simplify(Ynm(2, 1, theta, phi).expand(func=True)) -sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi)) >>> simplify(Ynm(2, 2, theta, phi).expand(func=True)) sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi)) We can differentiate the functions with respect to both angles >>> from sympy import Ynm, Symbol, diff >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> diff(Ynm(n, m, theta, phi), theta) m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi) >>> diff(Ynm(n, m, theta, phi), phi) I*m*Ynm(n, m, theta, phi) Further we can compute the complex conjugation >>> from sympy import Ynm, Symbol, conjugate >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> conjugate(Ynm(n, m, theta, phi)) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) To get back the well known expressions in spherical coordinates we use full expansion >>> from sympy import Ynm, Symbol, expand_func >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> expand_func(Ynm(n, m, theta, phi)) sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi)) See Also ======== Ynm_c, Znm References ========== .. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/ .. [4] http://dlmf.nist.gov/14.30 """ @classmethod def eval(cls, n, m, theta, phi): n, m, theta, phi = [sympify(x) for x in (n, m, theta, phi)] # Handle negative index m and arguments theta, phi if m.could_extract_minus_sign(): m = -m return S.NegativeOne**m * exp(-2*I*m*phi) * Ynm(n, m, theta, phi) if theta.could_extract_minus_sign(): theta = -theta return Ynm(n, m, theta, phi) if phi.could_extract_minus_sign(): phi = -phi return exp(-2*I*m*phi) * Ynm(n, m, theta, phi) # TODO Add more simplififcation here def _eval_expand_func(self, **hints): n, m, theta, phi = self.args rv = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * exp(I*m*phi) * assoc_legendre(n, m, cos(theta))) # We can do this because of the range of theta return rv.subs(sqrt(-cos(theta)**2 + 1), sin(theta)) def fdiff(self, argindex=4): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt m raise ArgumentIndexError(self, argindex) elif argindex == 3: # Diff wrt theta n, m, theta, phi = self.args return (m * cot(theta) * Ynm(n, m, theta, phi) + sqrt((n - m)*(n + m + 1)) * exp(-I*phi) * Ynm(n, m + 1, theta, phi)) elif argindex == 4: # Diff wrt phi n, m, theta, phi = self.args return I * m * Ynm(n, m, theta, phi) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, m, theta, phi, **kwargs): # TODO: Make sure n \in N # TODO: Assert |m| <= n ortherwise we should return 0 return self.expand(func=True) def _eval_rewrite_as_sin(self, n, m, theta, phi, **kwargs): return self.rewrite(cos) def _eval_rewrite_as_cos(self, n, m, theta, phi, **kwargs): # This method can be expensive due to extensive use of simplification! from sympy.simplify import simplify, trigsimp # TODO: Make sure n \in N # TODO: Assert |m| <= n ortherwise we should return 0 term = simplify(self.expand(func=True)) # We can do this because of the range of theta term = term.xreplace({Abs(sin(theta)):sin(theta)}) return simplify(trigsimp(term)) def _eval_conjugate(self): # TODO: Make sure theta \in R and phi \in R n, m, theta, phi = self.args return S.NegativeOne**m * self.func(n, -m, theta, phi) def as_real_imag(self, deep=True, **hints): # TODO: Handle deep and hints n, m, theta, phi = self.args re = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * cos(m*phi) * assoc_legendre(n, m, cos(theta))) im = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) * sin(m*phi) * assoc_legendre(n, m, cos(theta))) return (re, im) def _eval_evalf(self, prec): # Note: works without this function by just calling # mpmath for Legendre polynomials. But using # the dedicated function directly is cleaner. from mpmath import mp, workprec from sympy import Expr n = self.args[0]._to_mpmath(prec) m = self.args[1]._to_mpmath(prec) theta = self.args[2]._to_mpmath(prec) phi = self.args[3]._to_mpmath(prec) with workprec(prec): res = mp.spherharm(n, m, theta, phi) return Expr._from_mpmath(res, prec) def _sage_(self): import sage.all as sage return sage.spherical_harmonic(self.args[0]._sage_(), self.args[1]._sage_(), self.args[2]._sage_(), self.args[3]._sage_()) def Ynm_c(n, m, theta, phi): r"""Conjugate spherical harmonics defined as .. math:: \overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi) See Also ======== Ynm, Znm References ========== .. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/ """ from sympy import conjugate return conjugate(Ynm(n, m, theta, phi)) class Znm(Function): r""" Real spherical harmonics defined as .. math:: Z_n^m(\theta, \varphi) := \begin{cases} \frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\ \end{cases} which gives in simplified form .. math:: Z_n^m(\theta, \varphi) = \begin{cases} \frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\ \end{cases} See Also ======== Ynm, Ynm_c References ========== .. [1] https://en.wikipedia.org/wiki/Spherical_harmonics .. [2] http://mathworld.wolfram.com/SphericalHarmonic.html .. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/ """ @classmethod def eval(cls, n, m, theta, phi): n, m, th, ph = [sympify(x) for x in (n, m, theta, phi)] if m.is_positive: zz = (Ynm(n, m, th, ph) + Ynm_c(n, m, th, ph)) / sqrt(2) return zz elif m.is_zero: return Ynm(n, m, th, ph) elif m.is_negative: zz = (Ynm(n, m, th, ph) - Ynm_c(n, m, th, ph)) / (sqrt(2)*I) return zz
7e1b281bec9f381a7de651385af39dd10816b63420e0a696569d1db42e2545dd
""" Riemann zeta and related function. """ from __future__ import print_function, division from sympy.core import Function, S, sympify, pi, I from sympy.core.compatibility import range from sympy.core.function import ArgumentIndexError from sympy.functions.combinatorial.numbers import bernoulli, factorial, harmonic from sympy.functions.elementary.exponential import log, exp_polar from sympy.functions.elementary.miscellaneous import sqrt ############################################################################### ###################### LERCH TRANSCENDENT ##################################### ############################################################################### class lerchphi(Function): r""" Lerch transcendent (Lerch phi function). For :math:`\operatorname{Re}(a) > 0`, `|z| < 1` and `s \in \mathbb{C}`, the Lerch transcendent is defined as .. math :: \Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s}, where the standard branch of the argument is used for :math:`n + a`, and by analytic continuation for other values of the parameters. A commonly used related function is the Lerch zeta function, defined by .. math:: L(q, s, a) = \Phi(e^{2\pi i q}, s, a). **Analytic Continuation and Branching Behavior** It can be shown that .. math:: \Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}. This provides the analytic continuation to `\operatorname{Re}(a) \le 0`. Assume now `\operatorname{Re}(a) > 0`. The integral representation .. math:: \Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}} \frac{\mathrm{d}t}{\Gamma(s)} provides an analytic continuation to :math:`\mathbb{C} - [1, \infty)`. Finally, for :math:`x \in (1, \infty)` we find .. math:: \lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a) -\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a) = \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)}, using the standard branch for both :math:`\log{x}` and :math:`\log{\log{x}}` (a branch of :math:`\log{\log{x}}` is needed to evaluate :math:`\log{x}^{s-1}`). This concludes the analytic continuation. The Lerch transcendent is thus branched at :math:`z \in \{0, 1, \infty\}` and :math:`a \in \mathbb{Z}_{\le 0}`. For fixed :math:`z, a` outside these branch points, it is an entire function of :math:`s`. See Also ======== polylog, zeta References ========== .. [1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions, Vol. I, New York: McGraw-Hill. Section 1.11. .. [2] http://dlmf.nist.gov/25.14 .. [3] https://en.wikipedia.org/wiki/Lerch_transcendent Examples ======== The Lerch transcendent is a fairly general function, for this reason it does not automatically evaluate to simpler functions. Use expand_func() to achieve this. If :math:`z=1`, the Lerch transcendent reduces to the Hurwitz zeta function: >>> from sympy import lerchphi, expand_func >>> from sympy.abc import z, s, a >>> expand_func(lerchphi(1, s, a)) zeta(s, a) More generally, if :math:`z` is a root of unity, the Lerch transcendent reduces to a sum of Hurwitz zeta functions: >>> expand_func(lerchphi(-1, s, a)) 2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, a/2 + 1/2) If :math:`a=1`, the Lerch transcendent reduces to the polylogarithm: >>> expand_func(lerchphi(z, s, 1)) polylog(s, z)/z More generally, if :math:`a` is rational, the Lerch transcendent reduces to a sum of polylogarithms: >>> from sympy import S >>> expand_func(lerchphi(z, s, S(1)/2)) 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z)) >>> expand_func(lerchphi(z, s, S(3)/2)) -2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z The derivatives with respect to :math:`z` and :math:`a` can be computed in closed form: >>> lerchphi(z, s, a).diff(z) (-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z >>> lerchphi(z, s, a).diff(a) -s*lerchphi(z, s + 1, a) """ def _eval_expand_func(self, **hints): from sympy import exp, I, floor, Add, Poly, Dummy, exp_polar, unpolarify z, s, a = self.args if z == 1: return zeta(s, a) if s.is_Integer and s <= 0: t = Dummy('t') p = Poly((t + a)**(-s), t) start = 1/(1 - t) res = S(0) for c in reversed(p.all_coeffs()): res += c*start start = t*start.diff(t) return res.subs(t, z) if a.is_Rational: # See section 18 of # Kelly B. Roach. Hypergeometric Function Representations. # In: Proceedings of the 1997 International Symposium on Symbolic and # Algebraic Computation, pages 205-211, New York, 1997. ACM. # TODO should something be polarified here? add = S(0) mul = S(1) # First reduce a to the interaval (0, 1] if a > 1: n = floor(a) if n == a: n -= 1 a -= n mul = z**(-n) add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)]) elif a <= 0: n = floor(-a) + 1 a += n mul = z**n add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)]) m, n = S([a.p, a.q]) zet = exp_polar(2*pi*I/n) root = z**(1/n) return add + mul*n**(s - 1)*Add( *[polylog(s, zet**k*root)._eval_expand_func(**hints) / (unpolarify(zet)**k*root)**m for k in range(n)]) # TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed if isinstance(z, exp) and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]: # TODO reference? if z == -1: p, q = S([1, 2]) elif z == I: p, q = S([1, 4]) elif z == -I: p, q = S([-1, 4]) else: arg = z.args[0]/(2*pi*I) p, q = S([arg.p, arg.q]) return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q) for k in range(q)]) return lerchphi(z, s, a) def fdiff(self, argindex=1): z, s, a = self.args if argindex == 3: return -s*lerchphi(z, s + 1, a) elif argindex == 1: return (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z else: raise ArgumentIndexError def _eval_rewrite_helper(self, z, s, a, target): res = self._eval_expand_func() if res.has(target): return res else: return self def _eval_rewrite_as_zeta(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, zeta) def _eval_rewrite_as_polylog(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, polylog) ############################################################################### ###################### POLYLOGARITHM ########################################## ############################################################################### class polylog(Function): r""" Polylogarithm function. For :math:`|z| < 1` and :math:`s \in \mathbb{C}`, the polylogarithm is defined by .. math:: \operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s}, where the standard branch of the argument is used for :math:`n`. It admits an analytic continuation which is branched at :math:`z=1` (notably not on the sheet of initial definition), :math:`z=0` and :math:`z=\infty`. The name polylogarithm comes from the fact that for :math:`s=1`, the polylogarithm is related to the ordinary logarithm (see examples), and that .. math:: \operatorname{Li}_{s+1}(z) = \int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t. The polylogarithm is a special case of the Lerch transcendent: .. math:: \operatorname{Li}_{s}(z) = z \Phi(z, s, 1) See Also ======== zeta, lerchphi Examples ======== For :math:`z \in \{0, 1, -1\}`, the polylogarithm is automatically expressed using other functions: >>> from sympy import polylog >>> from sympy.abc import s >>> polylog(s, 0) 0 >>> polylog(s, 1) zeta(s) >>> polylog(s, -1) -dirichlet_eta(s) If :math:`s` is a negative integer, :math:`0` or :math:`1`, the polylogarithm can be expressed using elementary functions. This can be done using expand_func(): >>> from sympy import expand_func >>> from sympy.abc import z >>> expand_func(polylog(1, z)) -log(-z + 1) >>> expand_func(polylog(0, z)) z/(-z + 1) The derivative with respect to :math:`z` can be computed in closed form: >>> polylog(s, z).diff(z) polylog(s - 1, z)/z The polylogarithm can be expressed in terms of the lerch transcendent: >>> from sympy import lerchphi >>> polylog(s, z).rewrite(lerchphi) z*lerchphi(z, s, 1) """ @classmethod def eval(cls, s, z): s, z = sympify((s, z)) if z == 1: return zeta(s) elif z == -1: return -dirichlet_eta(s) elif z == 0: return S.Zero elif s == 2: if z == S.Half: return pi**2/12 - log(2)**2/2 elif z == 2: return pi**2/4 - I*pi*log(2) elif z == -(sqrt(5) - 1)/2: return -pi**2/15 + log((sqrt(5)-1)/2)**2/2 elif z == -(sqrt(5) + 1)/2: return -pi**2/10 - log((sqrt(5)+1)/2)**2 elif z == (3 - sqrt(5))/2: return pi**2/15 - log((sqrt(5)-1)/2)**2 elif z == (sqrt(5) - 1)/2: return pi**2/10 - log((sqrt(5)-1)/2)**2 # For s = 0 or -1 use explicit formulas to evaluate, but # automatically expanding polylog(1, z) to -log(1-z) seems undesirable # for summation methods based on hypergeometric functions elif s == 0: return z/(1 - z) elif s == -1: return z/(1 - z)**2 # polylog is branched, but not over the unit disk from sympy.functions.elementary.complexes import (Abs, unpolarify, polar_lift) if z.has(exp_polar, polar_lift) and (Abs(z) <= S.One) == True: return cls(s, unpolarify(z)) def fdiff(self, argindex=1): s, z = self.args if argindex == 2: return polylog(s - 1, z)/z raise ArgumentIndexError def _eval_rewrite_as_lerchphi(self, s, z, **kwargs): return z*lerchphi(z, s, 1) def _eval_expand_func(self, **hints): from sympy import log, expand_mul, Dummy s, z = self.args if s == 1: return -log(1 - z) if s.is_Integer and s <= 0: u = Dummy('u') start = u/(1 - u) for _ in range(-s): start = u*start.diff(u) return expand_mul(start).subs(u, z) return polylog(s, z) ############################################################################### ###################### HURWITZ GENERALIZED ZETA FUNCTION ###################### ############################################################################### class zeta(Function): r""" Hurwitz zeta function (or Riemann zeta function). For `\operatorname{Re}(a) > 0` and `\operatorname{Re}(s) > 1`, this function is defined as .. math:: \zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s}, where the standard choice of argument for :math:`n + a` is used. For fixed :math:`a` with `\operatorname{Re}(a) > 0` the Hurwitz zeta function admits a meromorphic continuation to all of :math:`\mathbb{C}`, it is an unbranched function with a simple pole at :math:`s = 1`. Analytic continuation to other :math:`a` is possible under some circumstances, but this is not typically done. The Hurwitz zeta function is a special case of the Lerch transcendent: .. math:: \zeta(s, a) = \Phi(1, s, a). This formula defines an analytic continuation for all possible values of :math:`s` and :math:`a` (also `\operatorname{Re}(a) < 0`), see the documentation of :class:`lerchphi` for a description of the branching behavior. If no value is passed for :math:`a`, by this function assumes a default value of :math:`a = 1`, yielding the Riemann zeta function. See Also ======== dirichlet_eta, lerchphi, polylog References ========== .. [1] http://dlmf.nist.gov/25.11 .. [2] https://en.wikipedia.org/wiki/Hurwitz_zeta_function Examples ======== For :math:`a = 1` the Hurwitz zeta function reduces to the famous Riemann zeta function: .. math:: \zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}. >>> from sympy import zeta >>> from sympy.abc import s >>> zeta(s, 1) zeta(s) >>> zeta(s) zeta(s) The Riemann zeta function can also be expressed using the Dirichlet eta function: >>> from sympy import dirichlet_eta >>> zeta(s).rewrite(dirichlet_eta) dirichlet_eta(s)/(-2**(-s + 1) + 1) The Riemann zeta function at positive even integer and negative odd integer values is related to the Bernoulli numbers: >>> zeta(2) pi**2/6 >>> zeta(4) pi**4/90 >>> zeta(-1) -1/12 The specific formulae are: .. math:: \zeta(2n) = (-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!} .. math:: \zeta(-n) = -\frac{B_{n+1}}{n+1} At negative even integers the Riemann zeta function is zero: >>> zeta(-4) 0 No closed-form expressions are known at positive odd integers, but numerical evaluation is possible: >>> zeta(3).n() 1.20205690315959 The derivative of :math:`\zeta(s, a)` with respect to :math:`a` is easily computed: >>> from sympy.abc import a >>> zeta(s, a).diff(a) -s*zeta(s + 1, a) However the derivative with respect to :math:`s` has no useful closed form expression: >>> zeta(s, a).diff(s) Derivative(zeta(s, a), s) The Hurwitz zeta function can be expressed in terms of the Lerch transcendent, :class:`sympy.functions.special.lerchphi`: >>> from sympy import lerchphi >>> zeta(s, a).rewrite(lerchphi) lerchphi(1, s, a) """ @classmethod def eval(cls, z, a_=None): if a_ is None: z, a = list(map(sympify, (z, 1))) else: z, a = list(map(sympify, (z, a_))) if a.is_Number: if a is S.NaN: return S.NaN elif a is S.One and a_ is not None: return cls(z) # TODO Should a == 0 return S.NaN as well? if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: return S.One elif z is S.Zero: return S.Half - a elif z is S.One: return S.ComplexInfinity if z.is_integer: if a.is_Integer: if z.is_negative: zeta = (-1)**z * bernoulli(-z + 1)/(-z + 1) elif z.is_even and z.is_positive: B, F = bernoulli(z), factorial(z) zeta = ((-1)**(z/2+1) * 2**(z - 1) * B * pi**z) / F else: return if a.is_negative: return zeta + harmonic(abs(a), z) else: return zeta - harmonic(a - 1, z) def _eval_rewrite_as_dirichlet_eta(self, s, a=1, **kwargs): if a != 1: return self s = self.args[0] return dirichlet_eta(s)/(1 - 2**(1 - s)) def _eval_rewrite_as_lerchphi(self, s, a=1, **kwargs): return lerchphi(1, s, a) def _eval_is_finite(self): arg_is_one = (self.args[0] - 1).is_zero if arg_is_one is not None: return not arg_is_one def fdiff(self, argindex=1): if len(self.args) == 2: s, a = self.args else: s, a = self.args + (1,) if argindex == 2: return -s*zeta(s + 1, a) else: raise ArgumentIndexError class dirichlet_eta(Function): r""" Dirichlet eta function. For `\operatorname{Re}(s) > 0`, this function is defined as .. math:: \eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}. It admits a unique analytic continuation to all of :math:`\mathbb{C}`. It is an entire, unbranched function. See Also ======== zeta References ========== .. [1] https://en.wikipedia.org/wiki/Dirichlet_eta_function Examples ======== The Dirichlet eta function is closely related to the Riemann zeta function: >>> from sympy import dirichlet_eta, zeta >>> from sympy.abc import s >>> dirichlet_eta(s).rewrite(zeta) (-2**(-s + 1) + 1)*zeta(s) """ @classmethod def eval(cls, s): if s == 1: return log(2) z = zeta(s) if not z.has(zeta): return (1 - 2**(1 - s))*z def _eval_rewrite_as_zeta(self, s, **kwargs): return (1 - 2**(1 - s)) * zeta(s) class stieltjes(Function): r"""Represents Stieltjes constants, :math:`\gamma_{k}` that occur in Laurent Series expansion of the Riemann zeta function. Examples ======== >>> from sympy import stieltjes >>> from sympy.abc import n, m >>> stieltjes(n) stieltjes(n) zero'th stieltjes constant >>> stieltjes(0) EulerGamma >>> stieltjes(0, 1) EulerGamma For generalized stieltjes constants >>> stieltjes(n, m) stieltjes(n, m) Constants are only defined for integers >= 0 >>> stieltjes(-1) zoo References ========== .. [1] https://en.wikipedia.org/wiki/Stieltjes_constants """ @classmethod def eval(cls, n, a=None): n = sympify(n) if a != None: a = sympify(a) if a is S.NaN: return S.NaN if a.is_Integer and a.is_nonpositive: return S.ComplexInfinity if n.is_Number: if n is S.NaN: return S.NaN elif n < 0: return S.ComplexInfinity elif not n.is_Integer: return S.ComplexInfinity elif n == 0 and a in [None, 1]: return S.EulerGamma
c3103f90a661b150e37b0e493fdec2294c195433e66f42c6d2c169a8fdfab3e5
from __future__ import print_function, division from sympy.core import S, sympify, oo, diff from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not from sympy.core.relational import Eq from sympy.functions.elementary.complexes import im from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import Heaviside ############################################################################### ############################# SINGULARITY FUNCTION ############################ ############################################################################### class SingularityFunction(Function): r""" The Singularity functions are a class of discontinuous functions. They take a variable, an offset and an exponent as arguments. These functions are represented using Macaulay brackets as : SingularityFunction(x, a, n) := <x - a>^n The singularity function will automatically evaluate to ``Derivative(DiracDelta(x - a), x, -n - 1)`` if ``n < 0`` and ``(x - a)**n*Heaviside(x - a)`` if ``n >= 0``. Examples ======== >>> from sympy import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol >>> from sympy.abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> SingularityFunction(y, -10, n) (y + 10)**n >>> y = Symbol('y', negative=True) >>> SingularityFunction(y, 10, n) 0 >>> SingularityFunction(x, 4, -1).subs(x, 4) oo >>> SingularityFunction(x, 10, -2).subs(x, 10) oo >>> SingularityFunction(4, 1, 5) 243 >>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x) 4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4) >>> diff(SingularityFunction(x, 4, 0), x, 2) SingularityFunction(x, 4, -2) >>> SingularityFunction(x, 4, 5).rewrite(Piecewise) Piecewise(((x - 4)**5, x - 4 > 0), (0, True)) >>> expr = SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> expr.subs({x: y, a: -10, n: n}) (y + 10)**n The methods ``rewrite(DiracDelta)``, ``rewrite(Heaviside)`` and ``rewrite('HeavisideDiracDelta')`` returns the same output. One can use any of these methods according to their choice. >>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2) >>> expr.rewrite(Heaviside) (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite(DiracDelta) (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite('HeavisideDiracDelta') (x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1) See Also ======== DiracDelta, Heaviside Reference ========= .. [1] https://en.wikipedia.org/wiki/Singularity_function """ is_real = True def fdiff(self, argindex=1): ''' Returns the first derivative of a DiracDelta Function. The difference between ``diff()`` and ``fdiff()`` is:- ``diff()`` is the user-level function and ``fdiff()`` is an object method. ``fdiff()`` is just a convenience method available in the ``Function`` class. It returns the derivative of the function without considering the chain rule. ``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls ``fdiff()`` internally to compute the derivative of the function. ''' if argindex == 1: x = sympify(self.args[0]) a = sympify(self.args[1]) n = sympify(self.args[2]) if n == 0 or n == -1: return self.func(x, a, n-1) elif n.is_positive: return n*self.func(x, a, n-1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, variable, offset, exponent): """ Returns a simplified form or a value of Singularity Function depending on the argument passed by the object. The ``eval()`` method is automatically called when the ``SingularityFunction`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import SingularityFunction, Symbol, nan >>> from sympy.abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> SingularityFunction(5, 3, 2) 4 >>> SingularityFunction(x, a, nan) nan >>> SingularityFunction(x, 3, 0).subs(x, 3) 1 >>> SingularityFunction(x, a, n).eval(3, 5, 1) 0 >>> SingularityFunction(x, a, n).eval(4, 1, 5) 243 >>> x = Symbol('x', positive = True) >>> a = Symbol('a', negative = True) >>> n = Symbol('n', nonnegative = True) >>> SingularityFunction(x, a, n) (-a + x)**n >>> x = Symbol('x', negative = True) >>> a = Symbol('a', positive = True) >>> SingularityFunction(x, a, n) 0 """ x = sympify(variable) a = sympify(offset) n = sympify(exponent) shift = (x - a) if fuzzy_not(im(shift).is_zero): raise ValueError("Singularity Functions are defined only for Real Numbers.") if fuzzy_not(im(n).is_zero): raise ValueError("Singularity Functions are not defined for imaginary exponents.") if shift is S.NaN or n is S.NaN: return S.NaN if (n + 2).is_negative: raise ValueError("Singularity Functions are not defined for exponents less than -2.") if shift.is_negative: return S.Zero if n.is_nonnegative and shift.is_nonnegative: return (x - a)**n if n == -1 or n == -2: if shift.is_negative or shift.is_positive: return S.Zero if shift.is_zero: return S.Infinity def _eval_rewrite_as_Piecewise(self, *args, **kwargs): ''' Converts a Singularity Function expression into its Piecewise form. ''' x = self.args[0] a = self.args[1] n = sympify(self.args[2]) if n == -1 or n == -2: return Piecewise((oo, Eq((x - a), 0)), (0, True)) elif n.is_nonnegative: return Piecewise(((x - a)**n, (x - a) > 0), (0, True)) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): ''' Rewrites a Singularity Function expression using Heavisides and DiracDeltas. ''' x = self.args[0] a = self.args[1] n = sympify(self.args[2]) if n == -2: return diff(Heaviside(x - a), x.free_symbols.pop(), 2) if n == -1: return diff(Heaviside(x - a), x.free_symbols.pop(), 1) if n.is_nonnegative: return (x - a)**n*Heaviside(x - a) _eval_rewrite_as_DiracDelta = _eval_rewrite_as_Heaviside _eval_rewrite_as_HeavisideDiracDelta = _eval_rewrite_as_Heaviside
d9b833fd436b593842767e6aa924729eaaa51276c599e6e9d0aef4295ca41c1f
from __future__ import print_function, division from sympy.core import S, Integer from sympy.core.compatibility import range, SYMPY_INTS from sympy.core.function import Function from sympy.core.logic import fuzzy_not from sympy.core.mul import prod from sympy.utilities.iterables import (has_dups, default_sort_key) ############################################################################### ###################### Kronecker Delta, Levi-Civita etc. ###################### ############################################################################### def Eijk(*args, **kwargs): """ Represent the Levi-Civita symbol. This is just compatibility wrapper to ``LeviCivita()``. See Also ======== LeviCivita """ return LeviCivita(*args, **kwargs) def eval_levicivita(*args): """Evaluate Levi-Civita symbol.""" from sympy import factorial n = len(args) return prod( prod(args[j] - args[i] for j in range(i + 1, n)) / factorial(i) for i in range(n)) # converting factorial(i) to int is slightly faster class LeviCivita(Function): """Represent the Levi-Civita symbol. For even permutations of indices it returns 1, for odd permutations -1, and for everything else (a repeated index) it returns 0. Thus it represents an alternating pseudotensor. Examples ======== >>> from sympy import LeviCivita >>> from sympy.abc import i, j, k >>> LeviCivita(1, 2, 3) 1 >>> LeviCivita(1, 3, 2) -1 >>> LeviCivita(1, 2, 2) 0 >>> LeviCivita(i, j, k) LeviCivita(i, j, k) >>> LeviCivita(i, j, i) 0 See Also ======== Eijk """ is_integer = True @classmethod def eval(cls, *args): if all(isinstance(a, (SYMPY_INTS, Integer)) for a in args): return eval_levicivita(*args) if has_dups(args): return S.Zero def doit(self): return eval_levicivita(*self.args) class KroneckerDelta(Function): """The discrete, or Kronecker, delta function. A function that takes in two integers `i` and `j`. It returns `0` if `i` and `j` are not equal or it returns `1` if `i` and `j` are equal. Parameters ========== i : Number, Symbol The first index of the delta function. j : Number, Symbol The second index of the delta function. Examples ======== A simple example with integer indices:: >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> KroneckerDelta(1, 2) 0 >>> KroneckerDelta(3, 3) 1 Symbolic indices:: >>> from sympy.abc import i, j, k >>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1) See Also ======== eval sympy.functions.special.delta_functions.DiracDelta References ========== .. [1] https://en.wikipedia.org/wiki/Kronecker_delta """ is_integer = True @classmethod def eval(cls, i, j): """ Evaluates the discrete delta function. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy.abc import i, j, k >>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1) # indirect doctest """ diff = i - j if diff.is_zero: return S.One elif fuzzy_not(diff.is_zero): return S.Zero if i.assumptions0.get("below_fermi") and \ j.assumptions0.get("above_fermi"): return S.Zero if j.assumptions0.get("below_fermi") and \ i.assumptions0.get("above_fermi"): return S.Zero # to make KroneckerDelta canonical # following lines will check if inputs are in order # if not, will return KroneckerDelta with correct order if i is not min(i, j, key=default_sort_key): return cls(j, i) def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative and not -expt is S.One: return 1/self @property def is_above_fermi(self): """ True if Delta can be non-zero above fermi Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_above_fermi True >>> KroneckerDelta(p, i).is_above_fermi False >>> KroneckerDelta(p, q).is_above_fermi True See Also ======== is_below_fermi, is_only_below_fermi, is_only_above_fermi """ if self.args[0].assumptions0.get("below_fermi"): return False if self.args[1].assumptions0.get("below_fermi"): return False return True @property def is_below_fermi(self): """ True if Delta can be non-zero below fermi Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_below_fermi False >>> KroneckerDelta(p, i).is_below_fermi True >>> KroneckerDelta(p, q).is_below_fermi True See Also ======== is_above_fermi, is_only_above_fermi, is_only_below_fermi """ if self.args[0].assumptions0.get("above_fermi"): return False if self.args[1].assumptions0.get("above_fermi"): return False return True @property def is_only_above_fermi(self): """ True if Delta is restricted to above fermi Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_only_above_fermi True >>> KroneckerDelta(p, q).is_only_above_fermi False >>> KroneckerDelta(p, i).is_only_above_fermi False See Also ======== is_above_fermi, is_below_fermi, is_only_below_fermi """ return ( self.args[0].assumptions0.get("above_fermi") or self.args[1].assumptions0.get("above_fermi") ) or False @property def is_only_below_fermi(self): """ True if Delta is restricted to below fermi Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, i).is_only_below_fermi True >>> KroneckerDelta(p, q).is_only_below_fermi False >>> KroneckerDelta(p, a).is_only_below_fermi False See Also ======== is_above_fermi, is_below_fermi, is_only_above_fermi """ return ( self.args[0].assumptions0.get("below_fermi") or self.args[1].assumptions0.get("below_fermi") ) or False @property def indices_contain_equal_information(self): """ Returns True if indices are either both above or below fermi. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, q).indices_contain_equal_information True >>> KroneckerDelta(p, q+1).indices_contain_equal_information True >>> KroneckerDelta(i, p).indices_contain_equal_information False """ if (self.args[0].assumptions0.get("below_fermi") and self.args[1].assumptions0.get("below_fermi")): return True if (self.args[0].assumptions0.get("above_fermi") and self.args[1].assumptions0.get("above_fermi")): return True # if both indices are general we are True, else false return self.is_below_fermi and self.is_above_fermi @property def preferred_index(self): """ Returns the index which is preferred to keep in the final expression. The preferred index is the index with more information regarding fermi level. If indices contain same information, 'a' is preferred before 'b'. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).preferred_index i >>> KroneckerDelta(p, a).preferred_index a >>> KroneckerDelta(i, j).preferred_index i See Also ======== killable_index """ if self._get_preferred_index(): return self.args[1] else: return self.args[0] @property def killable_index(self): """ Returns the index which is preferred to substitute in the final expression. The index to substitute is the index with less information regarding fermi level. If indices contain same information, 'a' is preferred before 'b'. Examples ======== >>> from sympy.functions.special.tensor_functions import KroneckerDelta >>> from sympy import Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).killable_index p >>> KroneckerDelta(p, a).killable_index p >>> KroneckerDelta(i, j).killable_index j See Also ======== preferred_index """ if self._get_preferred_index(): return self.args[0] else: return self.args[1] def _get_preferred_index(self): """ Returns the index which is preferred to keep in the final expression. The preferred index is the index with more information regarding fermi level. If indices contain same information, index 0 is returned. """ if not self.is_above_fermi: if self.args[0].assumptions0.get("below_fermi"): return 0 else: return 1 elif not self.is_below_fermi: if self.args[0].assumptions0.get("above_fermi"): return 0 else: return 1 else: return 0 @property def indices(self): return self.args[0:2] def _sage_(self): import sage.all as sage return sage.kronecker_delta(self.args[0]._sage_(), self.args[1]._sage_())
fdb8bf5703181f733bd8a3bbe36b9121e1808ff27d36ce9952c5f5e14d2e81ed
""" Elliptic integrals. """ from __future__ import print_function, division from sympy.core import S, pi, I from sympy.core.function import Function, ArgumentIndexError from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.hyperbolic import atanh from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin, tan from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper, meijerg class elliptic_k(Function): r""" The complete elliptic integral of the first kind, defined by .. math:: K(m) = F\left(\tfrac{\pi}{2}\middle| m\right) where `F\left(z\middle| m\right)` is the Legendre incomplete elliptic integral of the first kind. The function `K(m)` is a single-valued function on the complex plane with branch cut along the interval `(1, \infty)`. Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_k, I, pi >>> from sympy.abc import m >>> elliptic_k(0) pi/2 >>> elliptic_k(1.0 + I) 1.50923695405127 + 0.625146415202697*I >>> elliptic_k(m).series(n=3) pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3) See Also ======== elliptic_f References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticK """ @classmethod def eval(cls, m): if m is S.Zero: return pi/2 elif m is S.Half: return 8*pi**(S(3)/2)/gamma(-S(1)/4)**2 elif m is S.One: return S.ComplexInfinity elif m is S.NegativeOne: return gamma(S(1)/4)**2/(4*sqrt(2*pi)) elif m in (S.Infinity, S.NegativeInfinity, I*S.Infinity, I*S.NegativeInfinity, S.ComplexInfinity): return S.Zero def fdiff(self, argindex=1): m = self.args[0] return (elliptic_e(m) - (1 - m)*elliptic_k(m))/(2*m*(1 - m)) def _eval_conjugate(self): m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx): from sympy.simplify import hyperexpand return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) def _eval_rewrite_as_hyper(self, m, **kwargs): return (pi/2)*hyper((S.Half, S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, m, **kwargs): return meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -m)/2 def _sage_(self): import sage.all as sage return sage.elliptic_kc(self.args[0]._sage_()) class elliptic_f(Function): r""" The Legendre incomplete elliptic integral of the first kind, defined by .. math:: F\left(z\middle| m\right) = \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}} This function reduces to a complete elliptic integral of the first kind, `K(m)`, when `z = \pi/2`. Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_f, I, O >>> from sympy.abc import z, m >>> elliptic_f(z, m).series(z) z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) >>> elliptic_f(3.0 + I/2, 1.0 + I) 2.909449841483 + 1.74720545502474*I See Also ======== elliptic_k References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticF """ @classmethod def eval(cls, z, m): k = 2*z/pi if m.is_zero: return z elif z.is_zero: return S.Zero elif k.is_integer: return k*elliptic_k(m) elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_f(-z, m) def fdiff(self, argindex=1): z, m = self.args fm = sqrt(1 - m*sin(z)**2) if argindex == 1: return 1/fm elif argindex == 2: return (elliptic_e(z, m)/(2*m*(1 - m)) - elliptic_f(z, m)/(2*m) - sin(2*z)/(4*(1 - m)*fm)) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) class elliptic_e(Function): r""" Called with two arguments `z` and `m`, evaluates the incomplete elliptic integral of the second kind, defined by .. math:: E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt Called with a single argument `m`, evaluates the Legendre complete elliptic integral of the second kind .. math:: E(m) = E\left(\tfrac{\pi}{2}\middle| m\right) The function `E(m)` is a single-valued function on the complex plane with branch cut along the interval `(1, \infty)`. Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_e, I, pi, O >>> from sympy.abc import z, m >>> elliptic_e(z, m).series(z) z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) >>> elliptic_e(m).series(n=4) pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4) >>> elliptic_e(1 + I, 2 - I/2).n() 1.55203744279187 + 0.290764986058437*I >>> elliptic_e(0) pi/2 >>> elliptic_e(2.0 - I) 0.991052601328069 + 0.81879421395609*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticE2 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticE """ @classmethod def eval(cls, m, z=None): if z is not None: z, m = m, z k = 2*z/pi if m.is_zero: return z if z.is_zero: return S.Zero elif k.is_integer: return k*elliptic_e(m) elif m in (S.Infinity, S.NegativeInfinity): return S.ComplexInfinity elif z.could_extract_minus_sign(): return -elliptic_e(-z, m) else: if m.is_zero: return pi/2 elif m is S.One: return S.One elif m is S.Infinity: return I*S.Infinity elif m is S.NegativeInfinity: return S.Infinity elif m is S.ComplexInfinity: return S.ComplexInfinity def fdiff(self, argindex=1): if len(self.args) == 2: z, m = self.args if argindex == 1: return sqrt(1 - m*sin(z)**2) elif argindex == 2: return (elliptic_e(z, m) - elliptic_f(z, m))/(2*m) else: m = self.args[0] if argindex == 1: return (elliptic_e(m) - elliptic_k(m))/(2*m) raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): if len(self.args) == 2: z, m = self.args if (m.is_real and (m - 1).is_positive) is False: return self.func(z.conjugate(), m.conjugate()) else: m = self.args[0] if (m.is_real and (m - 1).is_positive) is False: return self.func(m.conjugate()) def _eval_nseries(self, x, n, logx): from sympy.simplify import hyperexpand if len(self.args) == 1: return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx)) return super(elliptic_e, self)._eval_nseries(x, n=n, logx=logx) def _eval_rewrite_as_hyper(self, *args, **kwargs): if len(args) == 1: m = args[0] return (pi/2)*hyper((-S.Half, S.Half), (S.One,), m) def _eval_rewrite_as_meijerg(self, *args, **kwargs): if len(args) == 1: m = args[0] return -meijerg(((S.Half, S(3)/2), []), \ ((S.Zero,), (S.Zero,)), -m)/4 class elliptic_pi(Function): r""" Called with three arguments `n`, `z` and `m`, evaluates the Legendre incomplete elliptic integral of the third kind, defined by .. math:: \Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt} {\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}} Called with two arguments `n` and `m`, evaluates the complete elliptic integral of the third kind: .. math:: \Pi\left(n\middle| m\right) = \Pi\left(n; \tfrac{\pi}{2}\middle| m\right) Note that our notation defines the incomplete elliptic integral in terms of the parameter `m` instead of the elliptic modulus (eccentricity) `k`. In this case, the parameter `m` is defined as `m=k^2`. Examples ======== >>> from sympy import elliptic_pi, I, pi, O, S >>> from sympy.abc import z, n, m >>> elliptic_pi(n, z, m).series(z, n=4) z + z**3*(m/6 + n/3) + O(z**4) >>> elliptic_pi(0.5 + I, 1.0 - I, 1.2) 2.50232379629182 - 0.760939574180767*I >>> elliptic_pi(0, 0) pi/2 >>> elliptic_pi(1.0 - I/3, 2.0 + I) 3.29136443417283 + 0.32555634906645*I References ========== .. [1] https://en.wikipedia.org/wiki/Elliptic_integrals .. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticPi3 .. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticPi """ @classmethod def eval(cls, n, m, z=None): if z is not None: n, z, m = n, m, z k = 2*z/pi if n == S.Zero: return elliptic_f(z, m) elif n == S.One: return (elliptic_f(z, m) + (sqrt(1 - m*sin(z)**2)*tan(z) - elliptic_e(z, m))/(1 - m)) elif k.is_integer: return k*elliptic_pi(n, m) elif m == S.Zero: return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1) elif n == m: return (elliptic_f(z, n) - elliptic_pi(1, z, n) + tan(z)/sqrt(1 - n*sin(z)**2)) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero elif z.could_extract_minus_sign(): return -elliptic_pi(n, -z, m) else: if n == S.Zero: return elliptic_k(m) elif n == S.One: return S.ComplexInfinity elif m == S.Zero: return pi/(2*sqrt(1 - n)) elif m == S.One: return -S.Infinity/sign(n - 1) elif n == m: return elliptic_e(n)/(1 - n) elif n in (S.Infinity, S.NegativeInfinity): return S.Zero elif m in (S.Infinity, S.NegativeInfinity): return S.Zero def _eval_conjugate(self): if len(self.args) == 3: n, z, m = self.args if (n.is_real and (n - 1).is_positive) is False and \ (m.is_real and (m - 1).is_positive) is False: return self.func(n.conjugate(), z.conjugate(), m.conjugate()) else: n, m = self.args return self.func(n.conjugate(), m.conjugate()) def fdiff(self, argindex=1): if len(self.args) == 3: n, z, m = self.args fm, fn = sqrt(1 - m*sin(z)**2), 1 - n*sin(z)**2 if argindex == 1: return (elliptic_e(z, m) + (m - n)*elliptic_f(z, m)/n + (n**2 - m)*elliptic_pi(n, z, m)/n - n*fm*sin(2*z)/(2*fn))/(2*(m - n)*(n - 1)) elif argindex == 2: return 1/(fm*fn) elif argindex == 3: return (elliptic_e(z, m)/(m - 1) + elliptic_pi(n, z, m) - m*sin(2*z)/(2*(m - 1)*fm))/(2*(n - m)) else: n, m = self.args if argindex == 1: return (elliptic_e(m) + (m - n)*elliptic_k(m)/n + (n**2 - m)*elliptic_pi(n, m)/n)/(2*(m - n)*(n - 1)) elif argindex == 2: return (elliptic_e(m)/(m - 1) + elliptic_pi(n, m))/(2*(n - m)) raise ArgumentIndexError(self, argindex)
a54729c001d7a0ba42fb2a52532e283f1e680d1db8ec096cf38d438964beba4d
""" This module contains various functions that are special cases of incomplete gamma functions. It should probably be renamed. """ from __future__ import print_function, division from sympy.core import Add, S, sympify, cacheit, pi, I from sympy.core.compatibility import range from sympy.core.function import Function, ArgumentIndexError from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, root from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.complexes import polar_lift from sympy.functions.elementary.hyperbolic import cosh, sinh from sympy.functions.elementary.trigonometric import cos, sin, sinc from sympy.functions.special.hyper import hyper, meijerg # TODO series expansions # TODO see the "Note:" in Ei ############################################################################### ################################ ERROR FUNCTION ############################### ############################################################################### class erf(Function): r""" The Gauss error function. This function is defined as: .. math :: \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t. Examples ======== >>> from sympy import I, oo, erf >>> from sympy.abc import z Several special values are known: >>> erf(0) 0 >>> erf(oo) 1 >>> erf(-oo) -1 >>> erf(I*oo) oo*I >>> erf(-I*oo) -oo*I In general one can pull out factors of -1 and I from the argument: >>> erf(-z) -erf(z) The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erf(z)) erf(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(erf(z), z) 2*exp(-z**2)/sqrt(pi) We can numerically evaluate the error function to arbitrary precision on the whole complex plane: >>> erf(4).evalf(30) 0.999999984582742099719981147840 >>> erf(-4*I).evalf(30) -1296959.73071763923152794095062*I See Also ======== erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/Erf.html .. [4] http://functions.wolfram.com/GammaBetaErf/Erf """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return 2*exp(-self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfinv @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg is S.Zero: return S.Zero if isinstance(arg, erfinv): return arg.args[0] if isinstance(arg, erfcinv): return S.One - arg.args[0] if isinstance(arg, erf2inv) and arg.args[0] is S.Zero: return arg.args[1] # Try to pull out factors of I t = arg.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity or t is S.NegativeInfinity: return arg # Try to pull out factors of -1 if arg.could_extract_minus_sign(): return -cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return -previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return 2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): return self.args[0].is_real def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi)) def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return z/sqrt(pi)*meijerg([S.Half], [], [0], [-S.Half], z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) def _eval_rewrite_as_expint(self, z, **kwargs): return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi) def _eval_rewrite_as_tractable(self, z, **kwargs): return S.One - _erfs(z)*exp(-z**2) def _eval_rewrite_as_erfc(self, z, **kwargs): return S.One - erfc(z) def _eval_rewrite_as_erfi(self, z, **kwargs): return -I*erfi(I*z) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 2*x/sqrt(pi) else: return self.func(arg) def as_real_imag(self, deep=True, **hints): if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: x, y = self.args[0].expand(deep, **hints).as_real_imag() else: x, y = self.args[0].as_real_imag() sq = -y**2/x**2 re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq))) im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) - self.func(x + x*sqrt(sq))) return (re, im) class erfc(Function): r""" Complementary Error Function. The function is defined as: .. math :: \mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erfc >>> from sympy.abc import z Several special values are known: >>> erfc(0) 1 >>> erfc(oo) 0 >>> erfc(-oo) 2 >>> erfc(I*oo) -oo*I >>> erfc(-I*oo) oo*I The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erfc(z)) erfc(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(erfc(z), z) -2*exp(-z**2)/sqrt(pi) It also follows >>> erfc(-z) -erfc(z) + 2 We can numerically evaluate the complementary error function to arbitrary precision on the whole complex plane: >>> erfc(4).evalf(30) 0.0000000154172579002800188521596734869 >>> erfc(4*I).evalf(30) 1.0 - 1296959.73071763923152794095062*I See Also ======== erf: Gaussian error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/Erfc.html .. [4] http://functions.wolfram.com/GammaBetaErf/Erfc """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return -2*exp(-self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfcinv @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.Zero: return S.One if isinstance(arg, erfinv): return S.One - arg.args[0] if isinstance(arg, erfcinv): return arg.args[0] # Try to pull out factors of I t = arg.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity or t is S.NegativeInfinity: return -arg # Try to pull out factors of -1 if arg.could_extract_minus_sign(): return S(2) - cls(-arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.One elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return -previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return -2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): return self.args[0].is_real def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(erf).rewrite("tractable", deep=True) def _eval_rewrite_as_erf(self, z, **kwargs): return S.One - erf(z) def _eval_rewrite_as_erfi(self, z, **kwargs): return S.One + I*erfi(I*z) def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi) return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One-S.ImaginaryUnit)*z/sqrt(pi) return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [-S.Half], z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi)) def _eval_rewrite_as_expint(self, z, **kwargs): return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi) def _eval_expand_func(self, **hints): return self.rewrite(erf) def _eval_as_leading_term(self, x): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) def as_real_imag(self, deep=True, **hints): if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: x, y = self.args[0].expand(deep, **hints).as_real_imag() else: x, y = self.args[0].as_real_imag() sq = -y**2/x**2 re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq))) im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) - self.func(x + x*sqrt(sq))) return (re, im) class erfi(Function): r""" Imaginary error function. The function erfi is defined as: .. math :: \mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erfi >>> from sympy.abc import z Several special values are known: >>> erfi(0) 0 >>> erfi(oo) oo >>> erfi(-oo) -oo >>> erfi(I*oo) I >>> erfi(-I*oo) -I In general one can pull out factors of -1 and I from the argument: >>> erfi(-z) -erfi(z) >>> from sympy import conjugate >>> conjugate(erfi(z)) erfi(conjugate(z)) Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(erfi(z), z) 2*exp(z**2)/sqrt(pi) We can numerically evaluate the imaginary error function to arbitrary precision on the whole complex plane: >>> erfi(2).evalf(30) 18.5648024145755525987042919132 >>> erfi(-2*I).evalf(30) -0.995322265018952734162069256367*I See Also ======== erf: Gaussian error function. erfc: Complementary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function .. [2] http://mathworld.wolfram.com/Erfi.html .. [3] http://functions.wolfram.com/GammaBetaErf/Erfi """ unbranched = True def fdiff(self, argindex=1): if argindex == 1: return 2*exp(self.args[0]**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, z): if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Zero: return S.Zero elif z is S.Infinity: return S.Infinity # Try to pull out factors of -1 if z.could_extract_minus_sign(): return -cls(-z) # Try to pull out factors of I nz = z.extract_multiplicatively(I) if nz is not None: if nz is S.Infinity: return I if isinstance(nz, erfinv): return I*nz.args[0] if isinstance(nz, erfcinv): return I*(S.One - nz.args[0]) if isinstance(nz, erf2inv) and nz.args[0] is S.Zero: return I*nz.args[1] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = floor((n - 1)/S(2)) if len(previous_terms) > 2: return previous_terms[-2] * x**2 * (n - 2)/(n*k) else: return 2 * x**n/(n*factorial(k)*sqrt(S.Pi)) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_real(self): return self.args[0].is_real def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(erf).rewrite("tractable", deep=True) def _eval_rewrite_as_erf(self, z, **kwargs): return -I*erf(I*z) def _eval_rewrite_as_erfc(self, z, **kwargs): return I*erfc(I*z) - I def _eval_rewrite_as_fresnels(self, z, **kwargs): arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi) return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_fresnelc(self, z, **kwargs): arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi) return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg)) def _eval_rewrite_as_meijerg(self, z, **kwargs): return z/sqrt(pi)*meijerg([S.Half], [], [0], [-S.Half], -z**2) def _eval_rewrite_as_hyper(self, z, **kwargs): return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(S.Pi) - S.One) def _eval_rewrite_as_expint(self, z, **kwargs): return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi) def _eval_expand_func(self, **hints): return self.rewrite(erf) def as_real_imag(self, deep=True, **hints): if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: x, y = self.args[0].expand(deep, **hints).as_real_imag() else: x, y = self.args[0].as_real_imag() sq = -y**2/x**2 re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq))) im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) - self.func(x + x*sqrt(sq))) return (re, im) class erf2(Function): r""" Two-argument error function. This function is defined as: .. math :: \mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t Examples ======== >>> from sympy import I, oo, erf2 >>> from sympy.abc import x, y Several special values are known: >>> erf2(0, 0) 0 >>> erf2(x, x) 0 >>> erf2(x, oo) -erf(x) + 1 >>> erf2(x, -oo) -erf(x) - 1 >>> erf2(oo, y) erf(y) - 1 >>> erf2(-oo, y) erf(y) + 1 In general one can pull out factors of -1: >>> erf2(-x, -y) -erf2(x, y) The error function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(erf2(x, y)) erf2(conjugate(x), conjugate(y)) Differentiation with respect to x, y is supported: >>> from sympy import diff >>> diff(erf2(x, y), x) -2*exp(-x**2)/sqrt(pi) >>> diff(erf2(x, y), y) 2*exp(-y**2)/sqrt(pi) See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erfinv: Inverse error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] http://functions.wolfram.com/GammaBetaErf/Erf2/ """ def fdiff(self, argindex): x, y = self.args if argindex == 1: return -2*exp(-x**2)/sqrt(S.Pi) elif argindex == 2: return 2*exp(-y**2)/sqrt(S.Pi) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): I = S.Infinity N = S.NegativeInfinity O = S.Zero if x is S.NaN or y is S.NaN: return S.NaN elif x == y: return S.Zero elif (x is I or x is N or x is O) or (y is I or y is N or y is O): return erf(y) - erf(x) if isinstance(y, erf2inv) and y.args[0] == x: return y.args[1] #Try to pull out -1 factor sign_x = x.could_extract_minus_sign() sign_y = y.could_extract_minus_sign() if (sign_x and sign_y): return -cls(-x, -y) elif (sign_x or sign_y): return erf(y)-erf(x) def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def _eval_is_real(self): return self.args[0].is_real and self.args[1].is_real def _eval_rewrite_as_erf(self, x, y, **kwargs): return erf(y) - erf(x) def _eval_rewrite_as_erfc(self, x, y, **kwargs): return erfc(x) - erfc(y) def _eval_rewrite_as_erfi(self, x, y, **kwargs): return I*(erfi(I*x)-erfi(I*y)) def _eval_rewrite_as_fresnels(self, x, y, **kwargs): return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels) def _eval_rewrite_as_fresnelc(self, x, y, **kwargs): return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc) def _eval_rewrite_as_meijerg(self, x, y, **kwargs): return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg) def _eval_rewrite_as_hyper(self, x, y, **kwargs): return erf(y).rewrite(hyper) - erf(x).rewrite(hyper) def _eval_rewrite_as_uppergamma(self, x, y, **kwargs): from sympy import uppergamma return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(S.Pi)) - sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(S.Pi))) def _eval_rewrite_as_expint(self, x, y, **kwargs): return erf(y).rewrite(expint) - erf(x).rewrite(expint) def _eval_expand_func(self, **hints): return self.rewrite(erf) class erfinv(Function): r""" Inverse Error Function. The erfinv function is defined as: .. math :: \mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x Examples ======== >>> from sympy import I, oo, erfinv >>> from sympy.abc import x Several special values are known: >>> erfinv(0) 0 >>> erfinv(1) oo Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(erfinv(x), x) sqrt(pi)*exp(erfinv(x)**2)/2 We can numerically evaluate the inverse error function to arbitrary precision on [-1, 1]: >>> erfinv(0.2).evalf(30) 0.179143454621291692285822705344 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfcinv: Inverse Complementary error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions .. [2] http://functions.wolfram.com/GammaBetaErf/InverseErf/ """ def fdiff(self, argindex =1): if argindex == 1: return sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half else : raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erf @classmethod def eval(cls, z): if z is S.NaN: return S.NaN elif z is S.NegativeOne: return S.NegativeInfinity elif z is S.Zero: return S.Zero elif z is S.One: return S.Infinity if isinstance(z, erf) and z.args[0].is_real: return z.args[0] # Try to pull out factors of -1 nz = z.extract_multiplicatively(-1) if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_real): return -nz.args[0] def _eval_rewrite_as_erfcinv(self, z, **kwargs): return erfcinv(1-z) class erfcinv (Function): r""" Inverse Complementary Error Function. The erfcinv function is defined as: .. math :: \mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x Examples ======== >>> from sympy import I, oo, erfcinv >>> from sympy.abc import x Several special values are known: >>> erfcinv(1) 0 >>> erfcinv(0) oo Differentiation with respect to x is supported: >>> from sympy import diff >>> diff(erfcinv(x), x) -sqrt(pi)*exp(erfcinv(x)**2)/2 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erf2inv: Inverse two-argument error function. References ========== .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions .. [2] http://functions.wolfram.com/GammaBetaErf/InverseErfc/ """ def fdiff(self, argindex =1): if argindex == 1: return -sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return erfc @classmethod def eval(cls, z): if z is S.NaN: return S.NaN elif z is S.Zero: return S.Infinity elif z is S.One: return S.Zero elif z == 2: return S.NegativeInfinity def _eval_rewrite_as_erfinv(self, z, **kwargs): return erfinv(1-z) class erf2inv(Function): r""" Two-argument Inverse error function. The erf2inv function is defined as: .. math :: \mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w Examples ======== >>> from sympy import I, oo, erf2inv, erfinv, erfcinv >>> from sympy.abc import x, y Several special values are known: >>> erf2inv(0, 0) 0 >>> erf2inv(1, 0) 1 >>> erf2inv(0, 1) oo >>> erf2inv(0, y) erfinv(y) >>> erf2inv(oo, y) erfcinv(-y) Differentiation with respect to x and y is supported: >>> from sympy import diff >>> diff(erf2inv(x, y), x) exp(-x**2 + erf2inv(x, y)**2) >>> diff(erf2inv(x, y), y) sqrt(pi)*exp(erf2inv(x, y)**2)/2 See Also ======== erf: Gaussian error function. erfc: Complementary error function. erfi: Imaginary error function. erf2: Two-argument error function. erfinv: Inverse error function. erfcinv: Inverse complementary error function. References ========== .. [1] http://functions.wolfram.com/GammaBetaErf/InverseErf2/ """ def fdiff(self, argindex): x, y = self.args if argindex == 1: return exp(self.func(x,y)**2-x**2) elif argindex == 2: return sqrt(S.Pi)*S.Half*exp(self.func(x,y)**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, x, y): if x is S.NaN or y is S.NaN: return S.NaN elif x is S.Zero and y is S.Zero: return S.Zero elif x is S.Zero and y is S.One: return S.Infinity elif x is S.One and y is S.Zero: return S.One elif x is S.Zero: return erfinv(y) elif x is S.Infinity: return erfcinv(-y) elif y is S.Zero: return x elif y is S.Infinity: return erfinv(x) ############################################################################### #################### EXPONENTIAL INTEGRALS #################################### ############################################################################### class Ei(Function): r""" The classical exponential integral. For use in SymPy, this function is defined as .. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!} + \log(x) + \gamma, where `\gamma` is the Euler-Mascheroni constant. If `x` is a polar number, this defines an analytic function on the Riemann surface of the logarithm. Otherwise this defines an analytic function in the cut plane `\mathbb{C} \setminus (-\infty, 0]`. **Background** The name *exponential integral* comes from the following statement: .. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t If the integral is interpreted as a Cauchy principal value, this statement holds for `x > 0` and `\operatorname{Ei}(x)` as defined above. Examples ======== >>> from sympy import Ei, polar_lift, exp_polar, I, pi >>> from sympy.abc import x >>> Ei(-1) Ei(-1) This yields a real value: >>> Ei(-1).n(chop=True) -0.219383934395520 On the other hand the analytic continuation is not real: >>> Ei(polar_lift(-1)).n(chop=True) -0.21938393439552 + 3.14159265358979*I The exponential integral has a logarithmic branch point at the origin: >>> Ei(x*exp_polar(2*I*pi)) Ei(x) + 2*I*pi Differentiation is supported: >>> Ei(x).diff(x) exp(x)/x The exponential integral is related to many other special functions. For example: >>> from sympy import uppergamma, expint, Shi >>> Ei(x).rewrite(expint) -expint(1, x*exp_polar(I*pi)) - I*pi >>> Ei(x).rewrite(Shi) Chi(x) + Shi(x) See Also ======== expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. sympy.functions.special.gamma_functions.uppergamma: Upper incomplete gamma function. References ========== .. [1] http://dlmf.nist.gov/6.6 .. [2] https://en.wikipedia.org/wiki/Exponential_integral .. [3] Abramowitz & Stegun, section 5: http://people.math.sfu.ca/~cbm/aands/page_228.htm """ @classmethod def eval(cls, z): if z is S.Zero: return S.NegativeInfinity elif z is S.Infinity: return S.Infinity elif z is S.NegativeInfinity: return S.Zero nz, n = z.extract_branch_factor() if n: return Ei(nz) + 2*I*pi*n def fdiff(self, argindex=1): from sympy import unpolarify arg = unpolarify(self.args[0]) if argindex == 1: return exp(arg)/arg else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): if (self.args[0]/polar_lift(-1)).is_positive: return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec) return Function._eval_evalf(self, prec) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma # XXX this does not currently work usefully because uppergamma # immediately turns into expint return -uppergamma(0, polar_lift(-1)*z) - I*pi def _eval_rewrite_as_expint(self, z, **kwargs): return -expint(1, polar_lift(-1)*z) - I*pi def _eval_rewrite_as_li(self, z, **kwargs): if isinstance(z, log): return li(z.args[0]) # TODO: # Actually it only holds that: # Ei(z) = li(exp(z)) # for -pi < imag(z) <= pi return li(exp(z)) def _eval_rewrite_as_Si(self, z, **kwargs): return Shi(z) + Chi(z) _eval_rewrite_as_Ci = _eval_rewrite_as_Si _eval_rewrite_as_Chi = _eval_rewrite_as_Si _eval_rewrite_as_Shi = _eval_rewrite_as_Si def _eval_rewrite_as_tractable(self, z, **kwargs): return exp(z) * _eis(z) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if x0 is S.Zero: f = self._eval_rewrite_as_Si(*self.args) return f._eval_nseries(x, n, logx) return super(Ei, self)._eval_nseries(x, n, logx) class expint(Function): r""" Generalized exponential integral. This function is defined as .. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z), where `\Gamma(1 - \nu, z)` is the upper incomplete gamma function (``uppergamma``). Hence for :math:`z` with positive real part we have .. math:: \operatorname{E}_\nu(z) = \int_1^\infty \frac{e^{-zt}}{z^\nu} \mathrm{d}t, which explains the name. The representation as an incomplete gamma function provides an analytic continuation for :math:`\operatorname{E}_\nu(z)`. If :math:`\nu` is a non-positive integer the exponential integral is thus an unbranched function of :math:`z`, otherwise there is a branch point at the origin. Refer to the incomplete gamma function documentation for details of the branching behavior. Examples ======== >>> from sympy import expint, S >>> from sympy.abc import nu, z Differentiation is supported. Differentiation with respect to z explains further the name: for integral orders, the exponential integral is an iterated integral of the exponential function. >>> expint(nu, z).diff(z) -expint(nu - 1, z) Differentiation with respect to nu has no classical expression: >>> expint(nu, z).diff(nu) -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, -nu + 1), ()), z) At non-postive integer orders, the exponential integral reduces to the exponential function: >>> expint(0, z) exp(-z)/z >>> expint(-1, z) exp(-z)/z + exp(-z)/z**2 At half-integers it reduces to error functions: >>> expint(S(1)/2, z) sqrt(pi)*erfc(sqrt(z))/sqrt(z) At positive integer orders it can be rewritten in terms of exponentials and expint(1, z). Use expand_func() to do this: >>> from sympy import expand_func >>> expand_func(expint(5, z)) z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24 The generalised exponential integral is essentially equivalent to the incomplete gamma function: >>> from sympy import uppergamma >>> expint(nu, z).rewrite(uppergamma) z**(nu - 1)*uppergamma(-nu + 1, z) As such it is branched at the origin: >>> from sympy import exp_polar, pi, I >>> expint(4, z*exp_polar(2*pi*I)) I*pi*z**3/3 + expint(4, z) >>> expint(nu, z*exp_polar(2*pi*I)) z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(-nu + 1) + expint(nu, z) See Also ======== Ei: Another related function called exponential integral. E1: The classical case, returns expint(1, z). li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. sympy.functions.special.gamma_functions.uppergamma References ========== .. [1] http://dlmf.nist.gov/8.19 .. [2] http://functions.wolfram.com/GammaBetaErf/ExpIntegralE/ .. [3] https://en.wikipedia.org/wiki/Exponential_integral """ @classmethod def eval(cls, nu, z): from sympy import (unpolarify, expand_mul, uppergamma, exp, gamma, factorial) nu2 = unpolarify(nu) if nu != nu2: return expint(nu2, z) if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer): return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z))) # Extract branching information. This can be deduced from what is # explained in lowergamma.eval(). z, n = z.extract_branch_factor() if n == 0: return if nu.is_integer: if (nu > 0) != True: return return expint(nu, z) \ - 2*pi*I*n*(-1)**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1) else: return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z) def fdiff(self, argindex): from sympy import meijerg nu, z = self.args if argindex == 1: return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z) elif argindex == 2: return -expint(nu - 1, z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs): from sympy import uppergamma return z**(nu - 1)*uppergamma(1 - nu, z) def _eval_rewrite_as_Ei(self, nu, z, **kwargs): from sympy import exp_polar, unpolarify, exp, factorial if nu == 1: return -Ei(z*exp_polar(-I*pi)) - I*pi elif nu.is_Integer and nu > 1: # DLMF, 8.19.7 x = -unpolarify(z) return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \ exp(x)/factorial(nu - 1) * \ Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)]) else: return self def _eval_expand_func(self, **hints): return self.rewrite(Ei).rewrite(expint, **hints) def _eval_rewrite_as_Si(self, nu, z, **kwargs): if nu != 1: return self return Shi(z) - Chi(z) _eval_rewrite_as_Ci = _eval_rewrite_as_Si _eval_rewrite_as_Chi = _eval_rewrite_as_Si _eval_rewrite_as_Shi = _eval_rewrite_as_Si def _eval_nseries(self, x, n, logx): if not self.args[0].has(x): nu = self.args[0] if nu == 1: f = self._eval_rewrite_as_Si(*self.args) return f._eval_nseries(x, n, logx) elif nu.is_Integer and nu > 1: f = self._eval_rewrite_as_Ei(*self.args) return f._eval_nseries(x, n, logx) return super(expint, self)._eval_nseries(x, n, logx) def _sage_(self): import sage.all as sage return sage.exp_integral_e(self.args[0]._sage_(), self.args[1]._sage_()) def E1(z): """ Classical case of the generalized exponential integral. This is equivalent to ``expint(1, z)``. See Also ======== Ei: Exponential integral. expint: Generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. """ return expint(1, z) class li(Function): r""" The classical logarithmic integral. For the use in SymPy, this function is defined as .. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,. Examples ======== >>> from sympy import I, oo, li >>> from sympy.abc import z Several special values are known: >>> li(0) 0 >>> li(1) -oo >>> li(oo) oo Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(li(z), z) 1/log(z) Defining the `li` function via an integral: The logarithmic integral can also be defined in terms of Ei: >>> from sympy import Ei >>> li(z).rewrite(Ei) Ei(log(z)) >>> diff(li(z).rewrite(Ei), z) 1/log(z) We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points): >>> li(2).evalf(30) 1.04516378011749278484458888919 >>> li(2*I).evalf(30) 1.0652795784357498247001125598 + 3.08346052231061726610939702133*I We can even compute Soldner's constant by the help of mpmath: >>> from mpmath import findroot >>> findroot(li, 2) 1.45136923488338 Further transformations include rewriting `li` in terms of the trigonometric integrals `Si`, `Ci`, `Shi` and `Chi`: >>> from sympy import Si, Ci, Shi, Chi >>> li(z).rewrite(Si) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Ci) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Shi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) >>> li(z).rewrite(Chi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) See Also ======== Li: Offset logarithmic integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral .. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html .. [3] http://dlmf.nist.gov/6 .. [4] http://mathworld.wolfram.com/SoldnersConstant.html """ @classmethod def eval(cls, z): if z is S.Zero: return S.Zero elif z is S.One: return S.NegativeInfinity elif z is S.Infinity: return S.Infinity def fdiff(self, argindex=1): arg = self.args[0] if argindex == 1: return S.One / log(arg) else: raise ArgumentIndexError(self, argindex) def _eval_conjugate(self): z = self.args[0] # Exclude values on the branch cut (-oo, 0) if not (z.is_real and z.is_negative): return self.func(z.conjugate()) def _eval_rewrite_as_Li(self, z, **kwargs): return Li(z) + li(2) def _eval_rewrite_as_Ei(self, z, **kwargs): return Ei(log(z)) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return (-uppergamma(0, -log(z)) + S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z))) def _eval_rewrite_as_Si(self, z, **kwargs): return (Ci(I*log(z)) - I*Si(I*log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z))) _eval_rewrite_as_Ci = _eval_rewrite_as_Si def _eval_rewrite_as_Shi(self, z, **kwargs): return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))) _eval_rewrite_as_Chi = _eval_rewrite_as_Shi def _eval_rewrite_as_hyper(self, z, **kwargs): return (log(z)*hyper((1, 1), (2, 2), log(z)) + S.Half*(log(log(z)) - log(S.One/log(z))) + S.EulerGamma) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))) - meijerg(((), (1,)), ((0, 0), ()), -log(z))) def _eval_rewrite_as_tractable(self, z, **kwargs): return z * _eis(log(z)) class Li(Function): r""" The offset logarithmic integral. For the use in SymPy, this function is defined as .. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2) Examples ======== >>> from sympy import I, oo, Li >>> from sympy.abc import z The following special value is known: >>> Li(2) 0 Differentiation with respect to z is supported: >>> from sympy import diff >>> diff(Li(z), z) 1/log(z) The shifted logarithmic integral can be written in terms of `li(z)`: >>> from sympy import li >>> Li(z).rewrite(li) li(z) - li(2) We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points): >>> Li(2).evalf(30) 0 >>> Li(4).evalf(30) 1.92242131492155809316615998938 See Also ======== li: Logarithmic integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral .. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html .. [3] http://dlmf.nist.gov/6 """ @classmethod def eval(cls, z): if z is S.Infinity: return S.Infinity elif z is 2*S.One: return S.Zero def fdiff(self, argindex=1): arg = self.args[0] if argindex == 1: return S.One / log(arg) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): return self.rewrite(li).evalf(prec) def _eval_rewrite_as_li(self, z, **kwargs): return li(z) - li(2) def _eval_rewrite_as_tractable(self, z, **kwargs): return self.rewrite(li).rewrite("tractable", deep=True) ############################################################################### #################### TRIGONOMETRIC INTEGRALS ################################## ############################################################################### class TrigonometricIntegral(Function): """ Base class for trigonometric integrals. """ @classmethod def eval(cls, z): if z == 0: return cls._atzero elif z is S.Infinity: return cls._atinf() elif z is S.NegativeInfinity: return cls._atneginf() nz = z.extract_multiplicatively(polar_lift(I)) if nz is None and cls._trigfunc(0) == 0: nz = z.extract_multiplicatively(I) if nz is not None: return cls._Ifactor(nz, 1) nz = z.extract_multiplicatively(polar_lift(-I)) if nz is not None: return cls._Ifactor(nz, -1) nz = z.extract_multiplicatively(polar_lift(-1)) if nz is None and cls._trigfunc(0) == 0: nz = z.extract_multiplicatively(-1) if nz is not None: return cls._minusfactor(nz) nz, n = z.extract_branch_factor() if n == 0 and nz == z: return return 2*pi*I*n*cls._trigfunc(0) + cls(nz) def fdiff(self, argindex=1): from sympy import unpolarify arg = unpolarify(self.args[0]) if argindex == 1: return self._trigfunc(arg)/arg def _eval_rewrite_as_Ei(self, z, **kwargs): return self._eval_rewrite_as_expint(z).rewrite(Ei) def _eval_rewrite_as_uppergamma(self, z, **kwargs): from sympy import uppergamma return self._eval_rewrite_as_expint(z).rewrite(uppergamma) def _eval_nseries(self, x, n, logx): # NOTE this is fairly inefficient from sympy import log, EulerGamma, Pow n += 1 if self.args[0].subs(x, 0) != 0: return super(TrigonometricIntegral, self)._eval_nseries(x, n, logx) baseseries = self._trigfunc(x)._eval_nseries(x, n, logx) if self._trigfunc(0) != 0: baseseries -= 1 baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False) if self._trigfunc(0) != 0: baseseries += EulerGamma + log(x) return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx) class Si(TrigonometricIntegral): r""" Sine integral. This function is defined by .. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import Si >>> from sympy.abc import z The sine integral is an antiderivative of sin(z)/z: >>> Si(z).diff(z) sin(z)/z It is unbranched: >>> from sympy import exp_polar, I, pi >>> Si(z*exp_polar(2*I*pi)) Si(z) Sine integral behaves much like ordinary sine under multiplication by ``I``: >>> Si(I*z) I*Shi(z) >>> Si(-z) -Si(z) It can also be expressed in terms of exponential integrals, but beware that the latter is branched: >>> from sympy import expint >>> Si(z).rewrite(expint) -I*(-expint(1, z*exp_polar(-I*pi/2))/2 + expint(1, z*exp_polar(I*pi/2))/2) + pi/2 It can be rewritten in the form of sinc function (By definition) >>> from sympy import sinc >>> Si(z).rewrite(sinc) Integral(sinc(t), (t, 0, z)) See Also ======== Ci: Cosine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. sinc: unnormalized sinc function E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = sin _atzero = S(0) @classmethod def _atinf(cls): return pi*S.Half @classmethod def _atneginf(cls): return -pi*S.Half @classmethod def _minusfactor(cls, z): return -Si(z) @classmethod def _Ifactor(cls, z, sign): return I*Shi(z)*sign def _eval_rewrite_as_expint(self, z, **kwargs): # XXX should we polarify z? return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I def _eval_rewrite_as_sinc(self, z, **kwargs): from sympy import Integral t = Symbol('t', Dummy=True) return Integral(sinc(t), (t, 0, z)) def _sage_(self): import sage.all as sage return sage.sin_integral(self.args[0]._sage_()) class Ci(TrigonometricIntegral): r""" Cosine integral. This function is defined for positive `x` by .. math:: \operatorname{Ci}(x) = \gamma + \log{x} + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t, where `\gamma` is the Euler-Mascheroni constant. We have .. math:: \operatorname{Ci}(z) = -\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right) + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2} which holds for all polar `z` and thus provides an analytic continuation to the Riemann surface of the logarithm. The formula also holds as stated for `z \in \mathbb{C}` with `\Re(z) > 0`. By lifting to the principal branch we obtain an analytic function on the cut complex plane. Examples ======== >>> from sympy import Ci >>> from sympy.abc import z The cosine integral is a primitive of `\cos(z)/z`: >>> Ci(z).diff(z) cos(z)/z It has a logarithmic branch point at the origin: >>> from sympy import exp_polar, I, pi >>> Ci(z*exp_polar(2*I*pi)) Ci(z) + 2*I*pi The cosine integral behaves somewhat like ordinary `\cos` under multiplication by `i`: >>> from sympy import polar_lift >>> Ci(polar_lift(I)*z) Chi(z) + I*pi/2 >>> Ci(polar_lift(-1)*z) Ci(z) + I*pi It can also be expressed in terms of exponential integrals: >>> from sympy import expint >>> Ci(z).rewrite(expint) -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2 See Also ======== Si: Sine integral. Shi: Hyperbolic sine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = cos _atzero = S.ComplexInfinity @classmethod def _atinf(cls): return S.Zero @classmethod def _atneginf(cls): return I*pi @classmethod def _minusfactor(cls, z): return Ci(z) + I*pi @classmethod def _Ifactor(cls, z, sign): return Chi(z) + I*pi/2*sign def _eval_rewrite_as_expint(self, z, **kwargs): return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2 def _sage_(self): import sage.all as sage return sage.cos_integral(self.args[0]._sage_()) class Shi(TrigonometricIntegral): r""" Sinh integral. This function is defined by .. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import Shi >>> from sympy.abc import z The Sinh integral is a primitive of `\sinh(z)/z`: >>> Shi(z).diff(z) sinh(z)/z It is unbranched: >>> from sympy import exp_polar, I, pi >>> Shi(z*exp_polar(2*I*pi)) Shi(z) The `\sinh` integral behaves much like ordinary `\sinh` under multiplication by `i`: >>> Shi(I*z) I*Si(z) >>> Shi(-z) -Shi(z) It can also be expressed in terms of exponential integrals, but beware that the latter is branched: >>> from sympy import expint >>> Shi(z).rewrite(expint) expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 See Also ======== Si: Sine integral. Ci: Cosine integral. Chi: Hyperbolic cosine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = sinh _atzero = S(0) @classmethod def _atinf(cls): return S.Infinity @classmethod def _atneginf(cls): return S.NegativeInfinity @classmethod def _minusfactor(cls, z): return -Shi(z) @classmethod def _Ifactor(cls, z, sign): return I*Si(z)*sign def _eval_rewrite_as_expint(self, z, **kwargs): from sympy import exp_polar # XXX should we polarify z? return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2 def _sage_(self): import sage.all as sage return sage.sinh_integral(self.args[0]._sage_()) class Chi(TrigonometricIntegral): r""" Cosh integral. This function is defined for positive :math:`x` by .. math:: \operatorname{Chi}(x) = \gamma + \log{x} + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t, where :math:`\gamma` is the Euler-Mascheroni constant. We have .. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right) - i\frac{\pi}{2}, which holds for all polar :math:`z` and thus provides an analytic continuation to the Riemann surface of the logarithm. By lifting to the principal branch we obtain an analytic function on the cut complex plane. Examples ======== >>> from sympy import Chi >>> from sympy.abc import z The `\cosh` integral is a primitive of `\cosh(z)/z`: >>> Chi(z).diff(z) cosh(z)/z It has a logarithmic branch point at the origin: >>> from sympy import exp_polar, I, pi >>> Chi(z*exp_polar(2*I*pi)) Chi(z) + 2*I*pi The `\cosh` integral behaves somewhat like ordinary `\cosh` under multiplication by `i`: >>> from sympy import polar_lift >>> Chi(polar_lift(I)*z) Ci(z) + I*pi/2 >>> Chi(polar_lift(-1)*z) Chi(z) + I*pi It can also be expressed in terms of exponential integrals: >>> from sympy import expint >>> Chi(z).rewrite(expint) -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2 See Also ======== Si: Sine integral. Ci: Cosine integral. Shi: Hyperbolic sine integral. Ei: Exponential integral. expint: Generalised exponential integral. E1: Special case of the generalised exponential integral. li: Logarithmic integral. Li: Offset logarithmic integral. References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral """ _trigfunc = cosh _atzero = S.ComplexInfinity @classmethod def _atinf(cls): return S.Infinity @classmethod def _atneginf(cls): return S.Infinity @classmethod def _minusfactor(cls, z): return Chi(z) + I*pi @classmethod def _Ifactor(cls, z, sign): return Ci(z) + I*pi/2*sign def _eval_rewrite_as_expint(self, z, **kwargs): from sympy import exp_polar return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2 def _sage_(self): import sage.all as sage return sage.cosh_integral(self.args[0]._sage_()) ############################################################################### #################### FRESNEL INTEGRALS ######################################## ############################################################################### class FresnelIntegral(Function): """ Base class for the Fresnel integrals.""" unbranched = True @classmethod def eval(cls, z): # Value at zero if z is S.Zero: return S(0) # Try to pull out factors of -1 and I prefact = S.One newarg = z changed = False nz = newarg.extract_multiplicatively(-1) if nz is not None: prefact = -prefact newarg = nz changed = True nz = newarg.extract_multiplicatively(I) if nz is not None: prefact = cls._sign*I*prefact newarg = nz changed = True if changed: return prefact*cls(newarg) # Values at positive infinities signs # if any were extracted automatically if z is S.Infinity: return S.Half elif z is I*S.Infinity: return cls._sign*I*S.Half def fdiff(self, argindex=1): if argindex == 1: return self._trigfunc(S.Half*pi*self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_real(self): return self.args[0].is_real def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _as_real_imag(self, deep=True, **hints): if self.args[0].is_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (re, im) def as_real_imag(self, deep=True, **hints): # Fresnel S # http://functions.wolfram.com/06.32.19.0003.01 # http://functions.wolfram.com/06.32.19.0006.01 # Fresnel C # http://functions.wolfram.com/06.33.19.0003.01 # http://functions.wolfram.com/06.33.19.0006.01 x, y = self._as_real_imag(deep=deep, **hints) sq = -y**2/x**2 re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq))) im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) - self.func(x + x*sqrt(sq))) return (re, im) class fresnels(FresnelIntegral): r""" Fresnel integral S. This function is defined by .. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import I, oo, fresnels >>> from sympy.abc import z Several special values are known: >>> fresnels(0) 0 >>> fresnels(oo) 1/2 >>> fresnels(-oo) -1/2 >>> fresnels(I*oo) -I/2 >>> fresnels(-I*oo) I/2 In general one can pull out factors of -1 and `i` from the argument: >>> fresnels(-z) -fresnels(z) >>> fresnels(I*z) -I*fresnels(z) The Fresnel S integral obeys the mirror symmetry `\overline{S(z)} = S(\bar{z})`: >>> from sympy import conjugate >>> conjugate(fresnels(z)) fresnels(conjugate(z)) Differentiation with respect to `z` is supported: >>> from sympy import diff >>> diff(fresnels(z), z) sin(pi*z**2/2) Defining the Fresnel functions via an integral >>> from sympy import integrate, pi, sin, gamma, expand_func >>> integrate(sin(pi*z**2/2), z) 3*fresnels(z)*gamma(3/4)/(4*gamma(7/4)) >>> expand_func(integrate(sin(pi*z**2/2), z)) fresnels(z) We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane: >>> fresnels(2).evalf(30) 0.343415678363698242195300815958 >>> fresnels(-2*I).evalf(30) 0.343415678363698242195300815958*I See Also ======== fresnelc: Fresnel cosine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Fresnel_integral .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/FresnelIntegrals.html .. [4] http://functions.wolfram.com/GammaBetaErf/FresnelS .. [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley """ _trigfunc = sin _sign = -S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p else: return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1)) def _eval_rewrite_as_erf(self, z, **kwargs): return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z)) def _eval_rewrite_as_hyper(self, z, **kwargs): return pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (pi*z**(S(9)/4) / (sqrt(2)*(z**2)**(S(3)/4)*(-z)**(S(3)/4)) * meijerg([], [1], [S(3)/4], [S(1)/4, 0], -pi**2*z**4/16)) def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo and -oo if point in [S.Infinity, -S.Infinity]: z = self.args[0] # expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8 # as only real infinities are dealt with, sin and cos are O(1) p = [(-1)**k * factorial(4*k + 1) / (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) for k in range(0, n) if 4*k + 3 < n] q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) / (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) for k in range(1, n) if 4*k + 1 < n] p = [-sqrt(2/pi)*t for t in p] q = [-sqrt(2/pi)*t for t in q] s = 1 if point is S.Infinity else -1 # The expansion at oo is 1/2 + some odd powers of z # To get the expansion at -oo, replace z by -z and flip the sign # The result -1/2 + the same odd powers of z as before. return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q) ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) # All other points are not handled return super(fresnels, self)._eval_aseries(n, args0, x, logx) class fresnelc(FresnelIntegral): r""" Fresnel integral C. This function is defined by .. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t. It is an entire function. Examples ======== >>> from sympy import I, oo, fresnelc >>> from sympy.abc import z Several special values are known: >>> fresnelc(0) 0 >>> fresnelc(oo) 1/2 >>> fresnelc(-oo) -1/2 >>> fresnelc(I*oo) I/2 >>> fresnelc(-I*oo) -I/2 In general one can pull out factors of -1 and `i` from the argument: >>> fresnelc(-z) -fresnelc(z) >>> fresnelc(I*z) I*fresnelc(z) The Fresnel C integral obeys the mirror symmetry `\overline{C(z)} = C(\bar{z})`: >>> from sympy import conjugate >>> conjugate(fresnelc(z)) fresnelc(conjugate(z)) Differentiation with respect to `z` is supported: >>> from sympy import diff >>> diff(fresnelc(z), z) cos(pi*z**2/2) Defining the Fresnel functions via an integral >>> from sympy import integrate, pi, cos, gamma, expand_func >>> integrate(cos(pi*z**2/2), z) fresnelc(z)*gamma(1/4)/(4*gamma(5/4)) >>> expand_func(integrate(cos(pi*z**2/2), z)) fresnelc(z) We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane: >>> fresnelc(2).evalf(30) 0.488253406075340754500223503357 >>> fresnelc(-2*I).evalf(30) -0.488253406075340754500223503357*I See Also ======== fresnels: Fresnel sine integral. References ========== .. [1] https://en.wikipedia.org/wiki/Fresnel_integral .. [2] http://dlmf.nist.gov/7 .. [3] http://mathworld.wolfram.com/FresnelIntegrals.html .. [4] http://functions.wolfram.com/GammaBetaErf/FresnelC .. [5] The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley """ _trigfunc = cos _sign = S.One @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p else: return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n)) def _eval_rewrite_as_erf(self, z, **kwargs): return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z)) def _eval_rewrite_as_hyper(self, z, **kwargs): return z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16) def _eval_rewrite_as_meijerg(self, z, **kwargs): return (pi*z**(S(3)/4) / (sqrt(2)*root(z**2, 4)*root(-z, 4)) * meijerg([], [1], [S(1)/4], [S(3)/4, 0], -pi**2*z**4/16)) def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo if point in [S.Infinity, -S.Infinity]: z = self.args[0] # expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8 # as only real infinities are dealt with, sin and cos are O(1) p = [(-1)**k * factorial(4*k + 1) / (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k)) for k in range(0, n) if 4*k + 3 < n] q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) / (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1)) for k in range(1, n) if 4*k + 1 < n] p = [-sqrt(2/pi)*t for t in p] q = [ sqrt(2/pi)*t for t in q] s = 1 if point is S.Infinity else -1 # The expansion at oo is 1/2 + some odd powers of z # To get the expansion at -oo, replace z by -z and flip the sign # The result -1/2 + the same odd powers of z as before. return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q) ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x) # All other points are not handled return super(fresnelc, self)._eval_aseries(n, args0, x, logx) ############################################################################### #################### HELPER FUNCTIONS ######################################### ############################################################################### class _erfs(Function): """ Helper function to make the `\\mathrm{erf}(z)` function tractable for the Gruntz algorithm. """ def _eval_aseries(self, n, args0, x, logx): from sympy import Order point = args0[0] # Expansion at oo if point is S.Infinity: z = self.args[0] l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S( 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ] o = Order(1/z**(2*n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o # Expansion at I*oo t = point.extract_multiplicatively(S.ImaginaryUnit) if t is S.Infinity: z = self.args[0] # TODO: is the series really correct? l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S( 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ] o = Order(1/z**(2*n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o # All other points are not handled return super(_erfs, self)._eval_aseries(n, args0, x, logx) def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -2/sqrt(S.Pi) + 2*z*_erfs(z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_intractable(self, z, **kwargs): return (S.One - erf(z))*exp(z**2) class _eis(Function): """ Helper function to make the `\\mathrm{Ei}(z)` and `\\mathrm{li}(z)` functions tractable for the Gruntz algorithm. """ def _eval_aseries(self, n, args0, x, logx): from sympy import Order if args0[0] != S.Infinity: return super(_erfs, self)._eval_aseries(n, args0, x, logx) z = self.args[0] l = [ factorial(k) * (1/z)**(k + 1) for k in range(0, n) ] o = Order(1/z**(n + 1), x) # It is very inefficient to first add the order and then do the nseries return (Add(*l))._eval_nseries(x, n, logx) + o def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return S.One / z - _eis(z) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_intractable(self, z, **kwargs): return exp(-z)*Ei(z) def _eval_nseries(self, x, n, logx): x0 = self.args[0].limit(x, 0) if x0 is S.Zero: f = self._eval_rewrite_as_intractable(*self.args) return f._eval_nseries(x, n, logx) return super(_eis, self)._eval_nseries(x, n, logx)
5d804ae88befdb74e5a9478d33f31c0bccb52c08dc5214440f39ec50e8e52d7d
""" This module mainly implements special orthogonal polynomials. See also functions.combinatorial.numbers which contains some combinatorial polynomials. """ from __future__ import print_function, division from sympy.core import Rational from sympy.core.function import Function, ArgumentIndexError from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.functions.combinatorial.factorials import binomial, factorial, RisingFactorial from sympy.functions.elementary.complexes import re from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper from sympy.polys.orthopolys import ( jacobi_poly, gegenbauer_poly, chebyshevt_poly, chebyshevu_poly, laguerre_poly, hermite_poly, legendre_poly ) _x = Dummy('x') class OrthogonalPolynomial(Function): """Base class for orthogonal polynomials. """ @classmethod def _eval_at_order(cls, n, x): if n.is_integer and n >= 0: return cls._ortho_poly(int(n), _x).subs(_x, x) def _eval_conjugate(self): return self.func(self.args[0], self.args[1].conjugate()) #---------------------------------------------------------------------------- # Jacobi polynomials # class jacobi(OrthogonalPolynomial): r""" Jacobi polynomial :math:`P_n^{\left(\alpha, \beta\right)}(x)` jacobi(n, alpha, beta, x) gives the nth Jacobi polynomial in x, :math:`P_n^{\left(\alpha, \beta\right)}(x)`. The Jacobi polynomials are orthogonal on :math:`[-1, 1]` with respect to the weight :math:`\left(1-x\right)^\alpha \left(1+x\right)^\beta`. Examples ======== >>> from sympy import jacobi, S, conjugate, diff >>> from sympy.abc import n,a,b,x >>> jacobi(0, a, b, x) 1 >>> jacobi(1, a, b, x) a/2 - b/2 + x*(a/2 + b/2 + 1) >>> jacobi(2, a, b, x) # doctest:+SKIP (a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 + b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2) >>> jacobi(n, a, b, x) jacobi(n, a, b, x) >>> jacobi(n, a, a, x) RisingFactorial(a + 1, n)*gegenbauer(n, a + 1/2, x)/RisingFactorial(2*a + 1, n) >>> jacobi(n, 0, 0, x) legendre(n, x) >>> jacobi(n, S(1)/2, S(1)/2, x) RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1) >>> jacobi(n, -S(1)/2, -S(1)/2, x) RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n) >>> jacobi(n, a, b, -x) (-1)**n*jacobi(n, b, a, x) >>> jacobi(n, a, b, 0) 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1)) >>> jacobi(n, a, b, 1) RisingFactorial(a + 1, n)/factorial(n) >>> conjugate(jacobi(n, a, b, x)) jacobi(n, conjugate(a), conjugate(b), conjugate(x)) >>> diff(jacobi(n,a,b,x), x) (a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x) See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ @classmethod def eval(cls, n, a, b, x): # Simplify to other polynomials # P^{a, a}_n(x) if a == b: if a == -S.Half: return RisingFactorial(S.Half, n) / factorial(n) * chebyshevt(n, x) elif a == S.Zero: return legendre(n, x) elif a == S.Half: return RisingFactorial(3*S.Half, n) / factorial(n + 1) * chebyshevu(n, x) else: return RisingFactorial(a + 1, n) / RisingFactorial(2*a + 1, n) * gegenbauer(n, a + S.Half, x) elif b == -a: # P^{a, -a}_n(x) return gamma(n + a + 1) / gamma(n + 1) * (1 + x)**(a/2) / (1 - x)**(a/2) * assoc_legendre(n, -a, x) elif a == -b: # P^{-b, b}_n(x) return gamma(n - b + 1) / gamma(n + 1) * (1 - x)**(b/2) / (1 + x)**(b/2) * assoc_legendre(n, b, x) if not n.is_Number: # Symbolic result P^{a,b}_n(x) # P^{a,b}_n(-x) ---> (-1)**n * P^{b,a}_n(-x) if x.could_extract_minus_sign(): return S.NegativeOne**n * jacobi(n, b, a, -x) # We can evaluate for some special values of x if x == S.Zero: return (2**(-n) * gamma(a + n + 1) / (gamma(a + 1) * factorial(n)) * hyper([-b - n, -n], [a + 1], -1)) if x == S.One: return RisingFactorial(a + 1, n) / factorial(n) elif x == S.Infinity: if n.is_positive: # Make sure a+b+2*n \notin Z if (a + b + 2*n).is_integer: raise ValueError("Error. a + b + 2*n should not be an integer.") return RisingFactorial(a + b + n + 1, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return jacobi_poly(n, a, b, x) def fdiff(self, argindex=4): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt a n, a, b, x = self.args k = Dummy("k") f1 = 1 / (a + b + n + k + 1) f2 = ((a + b + 2*k + 1) * RisingFactorial(b + k + 1, n - k) / ((n - k) * RisingFactorial(a + b + k + 1, n - k))) return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) elif argindex == 3: # Diff wrt b n, a, b, x = self.args k = Dummy("k") f1 = 1 / (a + b + n + k + 1) f2 = (-1)**(n - k) * ((a + b + 2*k + 1) * RisingFactorial(a + k + 1, n - k) / ((n - k) * RisingFactorial(a + b + k + 1, n - k))) return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) elif argindex == 4: # Diff wrt x n, a, b, x = self.args return S.Half * (a + b + n + 1) * jacobi(n - 1, a + 1, b + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, a, b, x, **kwargs): from sympy import Sum # Make sure n \in N if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = (RisingFactorial(-n, k) * RisingFactorial(a + b + n + 1, k) * RisingFactorial(a + k + 1, n - k) / factorial(k) * ((1 - x)/2)**k) return 1 / factorial(n) * Sum(kern, (k, 0, n)) def _eval_conjugate(self): n, a, b, x = self.args return self.func(n, a.conjugate(), b.conjugate(), x.conjugate()) def jacobi_normalized(n, a, b, x): r""" Jacobi polynomial :math:`P_n^{\left(\alpha, \beta\right)}(x)` jacobi_normalized(n, alpha, beta, x) gives the nth Jacobi polynomial in x, :math:`P_n^{\left(\alpha, \beta\right)}(x)`. The Jacobi polynomials are orthogonal on :math:`[-1, 1]` with respect to the weight :math:`\left(1-x\right)^\alpha \left(1+x\right)^\beta`. This functions returns the polynomials normilzed: .. math:: \int_{-1}^{1} P_m^{\left(\alpha, \beta\right)}(x) P_n^{\left(\alpha, \beta\right)}(x) (1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x = \delta_{m,n} Examples ======== >>> from sympy import jacobi_normalized >>> from sympy.abc import n,a,b,x >>> jacobi_normalized(n, a, b, x) jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))) See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ nfactor = (S(2)**(a + b + 1) * (gamma(n + a + 1) * gamma(n + b + 1)) / (2*n + a + b + 1) / (factorial(n) * gamma(n + a + b + 1))) return jacobi(n, a, b, x) / sqrt(nfactor) #---------------------------------------------------------------------------- # Gegenbauer polynomials # class gegenbauer(OrthogonalPolynomial): r""" Gegenbauer polynomial :math:`C_n^{\left(\alpha\right)}(x)` gegenbauer(n, alpha, x) gives the nth Gegenbauer polynomial in x, :math:`C_n^{\left(\alpha\right)}(x)`. The Gegenbauer polynomials are orthogonal on :math:`[-1, 1]` with respect to the weight :math:`\left(1-x^2\right)^{\alpha-\frac{1}{2}}`. Examples ======== >>> from sympy import gegenbauer, conjugate, diff >>> from sympy.abc import n,a,x >>> gegenbauer(0, a, x) 1 >>> gegenbauer(1, a, x) 2*a*x >>> gegenbauer(2, a, x) -a + x**2*(2*a**2 + 2*a) >>> gegenbauer(3, a, x) x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a) >>> gegenbauer(n, a, x) gegenbauer(n, a, x) >>> gegenbauer(n, a, -x) (-1)**n*gegenbauer(n, a, x) >>> gegenbauer(n, a, 0) 2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(-n/2 + 1/2)*gamma(n + 1)) >>> gegenbauer(n, a, 1) gamma(2*a + n)/(gamma(2*a)*gamma(n + 1)) >>> conjugate(gegenbauer(n, a, x)) gegenbauer(n, conjugate(a), conjugate(x)) >>> diff(gegenbauer(n, a, x), x) 2*a*gegenbauer(n - 1, a + 1, x) See Also ======== jacobi, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Gegenbauer_polynomials .. [2] http://mathworld.wolfram.com/GegenbauerPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/GegenbauerC3/ """ @classmethod def eval(cls, n, a, x): # For negative n the polynomials vanish # See http://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/ if n.is_negative: return S.Zero # Some special values for fixed a if a == S.Half: return legendre(n, x) elif a == S.One: return chebyshevu(n, x) elif a == S.NegativeOne: return S.Zero if not n.is_Number: # Handle this before the general sign extraction rule if x == S.NegativeOne: if (re(a) > S.Half) == True: return S.ComplexInfinity else: # No sec function available yet #return (cos(S.Pi*(a+n)) * sec(S.Pi*a) * gamma(2*a+n) / # (gamma(2*a) * gamma(n+1))) return None # Symbolic result C^a_n(x) # C^a_n(-x) ---> (-1)**n * C^a_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * gegenbauer(n, a, -x) # We can evaluate for some special values of x if x == S.Zero: return (2**n * sqrt(S.Pi) * gamma(a + S.Half*n) / (gamma((1 - n)/2) * gamma(n + 1) * gamma(a)) ) if x == S.One: return gamma(2*a + n) / (gamma(2*a) * gamma(n + 1)) elif x == S.Infinity: if n.is_positive: return RisingFactorial(a, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return gegenbauer_poly(n, a, x) def fdiff(self, argindex=3): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt a n, a, x = self.args k = Dummy("k") factor1 = 2 * (1 + (-1)**(n - k)) * (k + a) / ((k + n + 2*a) * (n - k)) factor2 = 2*(k + 1) / ((k + 2*a) * (2*k + 2*a + 1)) + \ 2 / (k + n + 2*a) kern = factor1*gegenbauer(k, a, x) + factor2*gegenbauer(n, a, x) return Sum(kern, (k, 0, n - 1)) elif argindex == 3: # Diff wrt x n, a, x = self.args return 2*a*gegenbauer(n - 1, a + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, a, x, **kwargs): from sympy import Sum k = Dummy("k") kern = ((-1)**k * RisingFactorial(a, n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k))) return Sum(kern, (k, 0, floor(n/2))) def _eval_conjugate(self): n, a, x = self.args return self.func(n, a.conjugate(), x.conjugate()) #---------------------------------------------------------------------------- # Chebyshev polynomials of first and second kind # class chebyshevt(OrthogonalPolynomial): r""" Chebyshev polynomial of the first kind, :math:`T_n(x)` chebyshevt(n, x) gives the nth Chebyshev polynomial (of the first kind) in x, :math:`T_n(x)`. The Chebyshev polynomials of the first kind are orthogonal on :math:`[-1, 1]` with respect to the weight :math:`\frac{1}{\sqrt{1-x^2}}`. Examples ======== >>> from sympy import chebyshevt, chebyshevu, diff >>> from sympy.abc import n,x >>> chebyshevt(0, x) 1 >>> chebyshevt(1, x) x >>> chebyshevt(2, x) 2*x**2 - 1 >>> chebyshevt(n, x) chebyshevt(n, x) >>> chebyshevt(n, -x) (-1)**n*chebyshevt(n, x) >>> chebyshevt(-n, x) chebyshevt(n, x) >>> chebyshevt(n, 0) cos(pi*n/2) >>> chebyshevt(n, -1) (-1)**n >>> diff(chebyshevt(n, x), x) n*chebyshevu(n - 1, x) See Also ======== jacobi, gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial .. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html .. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html .. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/ .. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/ """ _ortho_poly = staticmethod(chebyshevt_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result T_n(x) # T_n(-x) ---> (-1)**n * T_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * chebyshevt(n, -x) # T_{-n}(x) ---> T_n(x) if n.could_extract_minus_sign(): return chebyshevt(-n, x) # We can evaluate for some special values of x if x == S.Zero: return cos(S.Half * S.Pi * n) if x == S.One: return S.One elif x == S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: # T_{-n}(x) == T_n(x) return cls._eval_at_order(-n, x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return n * chebyshevu(n - 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = binomial(n, 2*k) * (x**2 - 1)**k * x**(n - 2*k) return Sum(kern, (k, 0, floor(n/2))) class chebyshevu(OrthogonalPolynomial): r""" Chebyshev polynomial of the second kind, :math:`U_n(x)` chebyshevu(n, x) gives the nth Chebyshev polynomial of the second kind in x, :math:`U_n(x)`. The Chebyshev polynomials of the second kind are orthogonal on :math:`[-1, 1]` with respect to the weight :math:`\sqrt{1-x^2}`. Examples ======== >>> from sympy import chebyshevt, chebyshevu, diff >>> from sympy.abc import n,x >>> chebyshevu(0, x) 1 >>> chebyshevu(1, x) 2*x >>> chebyshevu(2, x) 4*x**2 - 1 >>> chebyshevu(n, x) chebyshevu(n, x) >>> chebyshevu(n, -x) (-1)**n*chebyshevu(n, x) >>> chebyshevu(-n, x) -chebyshevu(n - 2, x) >>> chebyshevu(n, 0) cos(pi*n/2) >>> chebyshevu(n, 1) n + 1 >>> diff(chebyshevu(n, x), x) (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial .. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html .. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html .. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/ .. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/ """ _ortho_poly = staticmethod(chebyshevu_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result U_n(x) # U_n(-x) ---> (-1)**n * U_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * chebyshevu(n, -x) # U_{-n}(x) ---> -U_{n-2}(x) if n.could_extract_minus_sign(): if n == S.NegativeOne: return S.Zero else: return -chebyshevu(-n - 2, x) # We can evaluate for some special values of x if x == S.Zero: return cos(S.Half * S.Pi * n) if x == S.One: return S.One + n elif x == S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: # U_{-n}(x) ---> -U_{n-2}(x) if n == S.NegativeOne: return S.Zero else: return -cls._eval_at_order(-n - 2, x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return ((n + 1) * chebyshevt(n + 1, x) - x * chebyshevu(n, x)) / (x**2 - 1) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = S.NegativeOne**k * factorial( n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k)) return Sum(kern, (k, 0, floor(n/2))) class chebyshevt_root(Function): r""" chebyshev_root(n, k) returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the first kind; that is, if 0 <= k < n, chebyshevt(n, chebyshevt_root(n, k)) == 0. Examples ======== >>> from sympy import chebyshevt, chebyshevt_root >>> chebyshevt_root(3, 2) -sqrt(3)/2 >>> chebyshevt(3, chebyshevt_root(3, 2)) 0 See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly """ @classmethod def eval(cls, n, k): if not ((0 <= k) and (k < n)): raise ValueError("must have 0 <= k < n, " "got k = %s and n = %s" % (k, n)) return cos(S.Pi*(2*k + 1)/(2*n)) class chebyshevu_root(Function): r""" chebyshevu_root(n, k) returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the second kind; that is, if 0 <= k < n, chebyshevu(n, chebyshevu_root(n, k)) == 0. Examples ======== >>> from sympy import chebyshevu, chebyshevu_root >>> chebyshevu_root(3, 2) -sqrt(2)/2 >>> chebyshevu(3, chebyshevu_root(3, 2)) 0 See Also ======== chebyshevt, chebyshevt_root, chebyshevu, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly """ @classmethod def eval(cls, n, k): if not ((0 <= k) and (k < n)): raise ValueError("must have 0 <= k < n, " "got k = %s and n = %s" % (k, n)) return cos(S.Pi*(k + 1)/(n + 1)) #---------------------------------------------------------------------------- # Legendre polynomials and Associated Legendre polynomials # class legendre(OrthogonalPolynomial): r""" legendre(n, x) gives the nth Legendre polynomial of x, :math:`P_n(x)` The Legendre polynomials are orthogonal on [-1, 1] with respect to the constant weight 1. They satisfy :math:`P_n(1) = 1` for all n; further, :math:`P_n` is odd for odd n and even for even n. Examples ======== >>> from sympy import legendre, diff >>> from sympy.abc import x, n >>> legendre(0, x) 1 >>> legendre(1, x) x >>> legendre(2, x) 3*x**2/2 - 1/2 >>> legendre(n, x) legendre(n, x) >>> diff(legendre(n,x), x) n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Legendre_polynomial .. [2] http://mathworld.wolfram.com/LegendrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LegendreP/ .. [4] http://functions.wolfram.com/Polynomials/LegendreP2/ """ _ortho_poly = staticmethod(legendre_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result L_n(x) # L_n(-x) ---> (-1)**n * L_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * legendre(n, -x) # L_{-n}(x) ---> L_{n-1}(x) if n.could_extract_minus_sign(): return legendre(-n - S.One, x) # We can evaluate for some special values of x if x == S.Zero: return sqrt(S.Pi)/(gamma(S.Half - n/2)*gamma(S.One + n/2)) elif x == S.One: return S.One elif x == S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial; # L_{-n}(x) ---> L_{n-1}(x) if n.is_negative: n = -n - S.One return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x # Find better formula, this is unsuitable for x = 1 n, x = self.args return n/(x**2 - 1)*(x*legendre(n, x) - legendre(n - 1, x)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = (-1)**k*binomial(n, k)**2*((1 + x)/2)**(n - k)*((1 - x)/2)**k return Sum(kern, (k, 0, n)) class assoc_legendre(Function): r""" assoc_legendre(n,m, x) gives :math:`P_n^m(x)`, where n and m are the degree and order or an expression which is related to the nth order Legendre polynomial, :math:`P_n(x)` in the following manner: .. math:: P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{\mathrm{d}^m P_n(x)}{\mathrm{d} x^m} Associated Legendre polynomial are orthogonal on [-1, 1] with: - weight = 1 for the same m, and different n. - weight = 1/(1-x**2) for the same n, and different m. Examples ======== >>> from sympy import assoc_legendre >>> from sympy.abc import x, m, n >>> assoc_legendre(0,0, x) 1 >>> assoc_legendre(1,0, x) x >>> assoc_legendre(1,1, x) -sqrt(-x**2 + 1) >>> assoc_legendre(n,m,x) assoc_legendre(n, m, x) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Associated_Legendre_polynomials .. [2] http://mathworld.wolfram.com/LegendrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LegendreP/ .. [4] http://functions.wolfram.com/Polynomials/LegendreP2/ """ @classmethod def _eval_at_order(cls, n, m): P = legendre_poly(n, _x, polys=True).diff((_x, m)) return (-1)**m * (1 - _x**2)**Rational(m, 2) * P.as_expr() @classmethod def eval(cls, n, m, x): if m.could_extract_minus_sign(): # P^{-m}_n ---> F * P^m_n return S.NegativeOne**(-m) * (factorial(m + n)/factorial(n - m)) * assoc_legendre(n, -m, x) if m == 0: # P^0_n ---> L_n return legendre(n, x) if x == 0: return 2**m*sqrt(S.Pi) / (gamma((1 - m - n)/2)*gamma(1 - (m - n)/2)) if n.is_Number and m.is_Number and n.is_integer and m.is_integer: if n.is_negative: raise ValueError("%s : 1st index must be nonnegative integer (got %r)" % (cls, n)) if abs(m) > n: raise ValueError("%s : abs('2nd index') must be <= '1st index' (got %r, %r)" % (cls, n, m)) return cls._eval_at_order(int(n), abs(int(m))).subs(_x, x) def fdiff(self, argindex=3): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt m raise ArgumentIndexError(self, argindex) elif argindex == 3: # Diff wrt x # Find better formula, this is unsuitable for x = 1 n, m, x = self.args return 1/(x**2 - 1)*(x*n*assoc_legendre(n, m, x) - (m + n)*assoc_legendre(n - 1, m, x)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, m, x, **kwargs): from sympy import Sum k = Dummy("k") kern = factorial(2*n - 2*k)/(2**n*factorial(n - k)*factorial( k)*factorial(n - 2*k - m))*(-1)**k*x**(n - m - 2*k) return (1 - x**2)**(m/2) * Sum(kern, (k, 0, floor((n - m)*S.Half))) def _eval_conjugate(self): n, m, x = self.args return self.func(n, m.conjugate(), x.conjugate()) #---------------------------------------------------------------------------- # Hermite polynomials # class hermite(OrthogonalPolynomial): r""" hermite(n, x) gives the nth Hermite polynomial in x, :math:`H_n(x)` The Hermite polynomials are orthogonal on :math:`(-\infty, \infty)` with respect to the weight :math:`\exp\left(-x^2\right)`. Examples ======== >>> from sympy import hermite, diff >>> from sympy.abc import x, n >>> hermite(0, x) 1 >>> hermite(1, x) 2*x >>> hermite(2, x) 4*x**2 - 2 >>> hermite(n, x) hermite(n, x) >>> diff(hermite(n,x), x) 2*n*hermite(n - 1, x) >>> hermite(n, -x) (-1)**n*hermite(n, x) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Hermite_polynomial .. [2] http://mathworld.wolfram.com/HermitePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/HermiteH/ """ _ortho_poly = staticmethod(hermite_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result H_n(x) # H_n(-x) ---> (-1)**n * H_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * hermite(n, -x) # We can evaluate for some special values of x if x == S.Zero: return 2**n * sqrt(S.Pi) / gamma((S.One - n)/2) elif x == S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return 2*n*hermite(n - 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = (-1)**k / (factorial(k)*factorial(n - 2*k)) * (2*x)**(n - 2*k) return factorial(n)*Sum(kern, (k, 0, floor(n/2))) #---------------------------------------------------------------------------- # Laguerre polynomials # class laguerre(OrthogonalPolynomial): r""" Returns the nth Laguerre polynomial in x, :math:`L_n(x)`. Parameters ========== n : int Degree of Laguerre polynomial. Must be ``n >= 0``. Examples ======== >>> from sympy import laguerre, diff >>> from sympy.abc import x, n >>> laguerre(0, x) 1 >>> laguerre(1, x) -x + 1 >>> laguerre(2, x) x**2/2 - 2*x + 1 >>> laguerre(3, x) -x**3/6 + 3*x**2/2 - 3*x + 1 >>> laguerre(n, x) laguerre(n, x) >>> diff(laguerre(n, x), x) -assoc_laguerre(n - 1, 1, x) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial .. [2] http://mathworld.wolfram.com/LaguerrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LaguerreL/ .. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/ """ _ortho_poly = staticmethod(laguerre_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result L_n(x) # L_{n}(-x) ---> exp(-x) * L_{-n-1}(x) # L_{-n}(x) ---> exp(x) * L_{n-1}(-x) if n.could_extract_minus_sign(): return exp(x) * laguerre(n - 1, -x) # We can evaluate for some special values of x if x == S.Zero: return S.One elif x == S.NegativeInfinity: return S.Infinity elif x == S.Infinity: return S.NegativeOne**n * S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return -assoc_laguerre(n - 1, 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum # Make sure n \in N_0 if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = RisingFactorial(-n, k) / factorial(k)**2 * x**k return Sum(kern, (k, 0, n)) class assoc_laguerre(OrthogonalPolynomial): r""" Returns the nth generalized Laguerre polynomial in x, :math:`L_n(x)`. Parameters ========== n : int Degree of Laguerre polynomial. Must be ``n >= 0``. alpha : Expr Arbitrary expression. For ``alpha=0`` regular Laguerre polynomials will be generated. Examples ======== >>> from sympy import laguerre, assoc_laguerre, diff >>> from sympy.abc import x, n, a >>> assoc_laguerre(0, a, x) 1 >>> assoc_laguerre(1, a, x) a - x + 1 >>> assoc_laguerre(2, a, x) a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1 >>> assoc_laguerre(3, a, x) a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) + x*(-a**2/2 - 5*a/2 - 3) + 1 >>> assoc_laguerre(n, a, 0) binomial(a + n, a) >>> assoc_laguerre(n, a, x) assoc_laguerre(n, a, x) >>> assoc_laguerre(n, 0, x) laguerre(n, x) >>> diff(assoc_laguerre(n, a, x), x) -assoc_laguerre(n - 1, a + 1, x) >>> diff(assoc_laguerre(n, a, x), a) Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1)) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial#Assoc_laguerre_polynomials .. [2] http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LaguerreL/ .. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/ """ @classmethod def eval(cls, n, alpha, x): # L_{n}^{0}(x) ---> L_{n}(x) if alpha == S.Zero: return laguerre(n, x) if not n.is_Number: # We can evaluate for some special values of x if x == S.Zero: return binomial(n + alpha, alpha) elif x == S.Infinity and n > S.Zero: return S.NegativeOne**n * S.Infinity elif x == S.NegativeInfinity and n > S.Zero: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return laguerre_poly(n, x, alpha) def fdiff(self, argindex=3): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt alpha n, alpha, x = self.args k = Dummy("k") return Sum(assoc_laguerre(k, alpha, x) / (n - alpha), (k, 0, n - 1)) elif argindex == 3: # Diff wrt x n, alpha, x = self.args return -assoc_laguerre(n - 1, alpha + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum # Make sure n \in N_0 if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = RisingFactorial( -n, k) / (gamma(k + alpha + 1) * factorial(k)) * x**k return gamma(n + alpha + 1) / factorial(n) * Sum(kern, (k, 0, n)) def _eval_conjugate(self): n, alpha, x = self.args return self.func(n, alpha.conjugate(), x.conjugate())
5d500cece59bab5c9ba22d8c27ee9b7f67bac5de28d9162c6fe4fa0ec5c62c14
from sympy import (symbols, Symbol, nan, oo, zoo, I, sinh, sin, pi, atan, acos, Rational, sqrt, asin, acot, coth, E, S, tan, tanh, cos, cosh, atan2, exp, log, asinh, acoth, atanh, O, cancel, Matrix, re, im, Float, Pow, gcd, sec, csc, cot, diff, simplify, Heaviside, arg, conjugate, series, FiniteSet, asec, acsc, Mul, sinc, jn, Product, AccumBounds) from sympy.core.compatibility import range from sympy.utilities.pytest import XFAIL, slow, raises from sympy.core.relational import Ne, Eq from sympy.functions.elementary.piecewise import Piecewise x, y, z = symbols('x y z') r = Symbol('r', real=True) k = Symbol('k', integer=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) a = Symbol('a', algebraic=True) na = Symbol('na', nonzero=True, algebraic=True) def test_sin(): x, y = symbols('x y') assert sin.nargs == FiniteSet(1) assert sin(nan) == nan assert sin(zoo) == nan assert sin(oo) == AccumBounds(-1, 1) assert sin(oo) - sin(oo) == AccumBounds(-2, 2) assert sin(oo*I) == oo*I assert sin(-oo*I) == -oo*I assert 0*sin(oo) == S.Zero assert 0/sin(oo) == S.Zero assert 0 + sin(oo) == AccumBounds(-1, 1) assert 5 + sin(oo) == AccumBounds(4, 6) assert sin(0) == 0 assert sin(asin(x)) == x assert sin(atan(x)) == x / sqrt(1 + x**2) assert sin(acos(x)) == sqrt(1 - x**2) assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x) assert sin(acsc(x)) == 1 / x assert sin(asec(x)) == sqrt(1 - 1 / x**2) assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2) assert sin(pi*I) == sinh(pi)*I assert sin(-pi*I) == -sinh(pi)*I assert sin(-2*I) == -sinh(2)*I assert sin(pi) == 0 assert sin(-pi) == 0 assert sin(2*pi) == 0 assert sin(-2*pi) == 0 assert sin(-3*10**73*pi) == 0 assert sin(7*10**103*pi) == 0 assert sin(pi/2) == 1 assert sin(-pi/2) == -1 assert sin(5*pi/2) == 1 assert sin(7*pi/2) == -1 ne = symbols('ne', integer=True, even=False) e = symbols('e', even=True) assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half) assert sin(pi*k/2).func == sin assert sin(pi*e/2) == 0 assert sin(pi*k) == 0 assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298 assert sin(pi/3) == S.Half*sqrt(3) assert sin(-2*pi/3) == -S.Half*sqrt(3) assert sin(pi/4) == S.Half*sqrt(2) assert sin(-pi/4) == -S.Half*sqrt(2) assert sin(17*pi/4) == S.Half*sqrt(2) assert sin(-3*pi/4) == -S.Half*sqrt(2) assert sin(pi/6) == S.Half assert sin(-pi/6) == -S.Half assert sin(7*pi/6) == -S.Half assert sin(-5*pi/6) == -S.Half assert sin(1*pi/5) == sqrt((5 - sqrt(5)) / 8) assert sin(2*pi/5) == sqrt((5 + sqrt(5)) / 8) assert sin(3*pi/5) == sin(2*pi/5) assert sin(4*pi/5) == sin(1*pi/5) assert sin(6*pi/5) == -sin(1*pi/5) assert sin(8*pi/5) == -sin(2*pi/5) assert sin(-1273*pi/5) == -sin(2*pi/5) assert sin(pi/8) == sqrt((2 - sqrt(2))/4) assert sin(pi/10) == -S(1)/4 + sqrt(5)/4 assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4 assert sin(5*pi/12) == sqrt(2)/4 + sqrt(6)/4 assert sin(-7*pi/12) == -sqrt(2)/4 - sqrt(6)/4 assert sin(-11*pi/12) == sqrt(2)/4 - sqrt(6)/4 assert sin(104*pi/105) == sin(pi/105) assert sin(106*pi/105) == -sin(pi/105) assert sin(-104*pi/105) == -sin(pi/105) assert sin(-106*pi/105) == sin(pi/105) assert sin(x*I) == sinh(x)*I assert sin(k*pi) == 0 assert sin(17*k*pi) == 0 assert sin(k*pi*I) == sinh(k*pi)*I assert sin(r).is_real is True assert sin(0, evaluate=False).is_algebraic assert sin(a).is_algebraic is None assert sin(na).is_algebraic is False q = Symbol('q', rational=True) assert sin(pi*q).is_algebraic qn = Symbol('qn', rational=True, nonzero=True) assert sin(qn).is_rational is False assert sin(q).is_rational is None # issue 8653 assert isinstance(sin( re(x) - im(y)), sin) is True assert isinstance(sin(-re(x) + im(y)), sin) is False for d in list(range(1, 22)) + [60, 85]: for n in range(0, d*2 + 1): x = n*pi/d e = abs( float(sin(x)) - sin(float(x)) ) assert e < 1e-12 def test_sin_cos(): for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive... for n in range(-2*d, d*2): x = n*pi/d assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d) assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d) def test_sin_series(): assert sin(x).series(x, 0, 9) == \ x - x**3/6 + x**5/120 - x**7/5040 + O(x**9) def test_sin_rewrite(): assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2 assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2) assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2) assert sin(sinh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n() assert sin(cosh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n() assert sin(tanh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n() assert sin(coth(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n() assert sin(sin(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n() assert sin(cos(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n() assert sin(tan(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n() assert sin(cot(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n() assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2 assert sin(x).rewrite(csc) == 1/csc(x) assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False) assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False) def test_sin_expansion(): # Note: these formulas are not unique. The ones here come from the # Chebyshev formulas. assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y) assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y) assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y) assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x) assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x) assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x) assert sin(2).expand(trig=True) == 2*sin(1)*cos(1) assert sin(3).expand(trig=True) == -4*sin(1)**3 + 3*sin(1) def test_sin_AccumBounds(): assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, 3*S.Pi/4)) == AccumBounds(0, 1) assert sin(AccumBounds(3*S.Pi/4, 7*S.Pi/4)) == AccumBounds(-1, sin(3*S.Pi/4)) assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3)) assert sin(AccumBounds(3*S.Pi/4, 5*S.Pi/6)) == AccumBounds(sin(5*S.Pi/6), sin(3*S.Pi/4)) def test_trig_symmetry(): assert sin(-x) == -sin(x) assert cos(-x) == cos(x) assert tan(-x) == -tan(x) assert cot(-x) == -cot(x) assert sin(x + pi) == -sin(x) assert sin(x + 2*pi) == sin(x) assert sin(x + 3*pi) == -sin(x) assert sin(x + 4*pi) == sin(x) assert sin(x - 5*pi) == -sin(x) assert cos(x + pi) == -cos(x) assert cos(x + 2*pi) == cos(x) assert cos(x + 3*pi) == -cos(x) assert cos(x + 4*pi) == cos(x) assert cos(x - 5*pi) == -cos(x) assert tan(x + pi) == tan(x) assert tan(x - 3*pi) == tan(x) assert cot(x + pi) == cot(x) assert cot(x - 3*pi) == cot(x) assert sin(pi/2 - x) == cos(x) assert sin(3*pi/2 - x) == -cos(x) assert sin(5*pi/2 - x) == cos(x) assert cos(pi/2 - x) == sin(x) assert cos(3*pi/2 - x) == -sin(x) assert cos(5*pi/2 - x) == sin(x) assert tan(pi/2 - x) == cot(x) assert tan(3*pi/2 - x) == cot(x) assert tan(5*pi/2 - x) == cot(x) assert cot(pi/2 - x) == tan(x) assert cot(3*pi/2 - x) == tan(x) assert cot(5*pi/2 - x) == tan(x) assert sin(pi/2 + x) == cos(x) assert cos(pi/2 + x) == -sin(x) assert tan(pi/2 + x) == -cot(x) assert cot(pi/2 + x) == -tan(x) def test_cos(): x, y = symbols('x y') assert cos.nargs == FiniteSet(1) assert cos(nan) == nan assert cos(oo) == AccumBounds(-1, 1) assert cos(oo) - cos(oo) == AccumBounds(-2, 2) assert cos(oo*I) == oo assert cos(-oo*I) == oo assert cos(zoo) == nan assert cos(0) == 1 assert cos(acos(x)) == x assert cos(atan(x)) == 1 / sqrt(1 + x**2) assert cos(asin(x)) == sqrt(1 - x**2) assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2) assert cos(acsc(x)) == sqrt(1 - 1 / x**2) assert cos(asec(x)) == 1 / x assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2) assert cos(pi*I) == cosh(pi) assert cos(-pi*I) == cosh(pi) assert cos(-2*I) == cosh(2) assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos((-3*10**73 + 1)*pi/2) == 0 assert cos((7*10**103 + 1)*pi/2) == 0 n = symbols('n', integer=True, even=False) e = symbols('e', even=True) assert cos(pi*n/2) == 0 assert cos(pi*e/2) == (-1)**(e/2) assert cos(pi) == -1 assert cos(-pi) == -1 assert cos(2*pi) == 1 assert cos(5*pi) == -1 assert cos(8*pi) == 1 assert cos(pi/3) == S.Half assert cos(-2*pi/3) == -S.Half assert cos(pi/4) == S.Half*sqrt(2) assert cos(-pi/4) == S.Half*sqrt(2) assert cos(11*pi/4) == -S.Half*sqrt(2) assert cos(-3*pi/4) == -S.Half*sqrt(2) assert cos(pi/6) == S.Half*sqrt(3) assert cos(-pi/6) == S.Half*sqrt(3) assert cos(7*pi/6) == -S.Half*sqrt(3) assert cos(-5*pi/6) == -S.Half*sqrt(3) assert cos(1*pi/5) == (sqrt(5) + 1)/4 assert cos(2*pi/5) == (sqrt(5) - 1)/4 assert cos(3*pi/5) == -cos(2*pi/5) assert cos(4*pi/5) == -cos(1*pi/5) assert cos(6*pi/5) == -cos(1*pi/5) assert cos(8*pi/5) == cos(2*pi/5) assert cos(-1273*pi/5) == -cos(2*pi/5) assert cos(pi/8) == sqrt((2 + sqrt(2))/4) assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4 assert cos(5*pi/12) == -sqrt(2)/4 + sqrt(6)/4 assert cos(7*pi/12) == sqrt(2)/4 - sqrt(6)/4 assert cos(11*pi/12) == -sqrt(2)/4 - sqrt(6)/4 assert cos(104*pi/105) == -cos(pi/105) assert cos(106*pi/105) == -cos(pi/105) assert cos(-104*pi/105) == -cos(pi/105) assert cos(-106*pi/105) == -cos(pi/105) assert cos(x*I) == cosh(x) assert cos(k*pi*I) == cosh(k*pi) assert cos(r).is_real is True assert cos(0, evaluate=False).is_algebraic assert cos(a).is_algebraic is None assert cos(na).is_algebraic is False q = Symbol('q', rational=True) assert cos(pi*q).is_algebraic assert cos(2*pi/7).is_algebraic assert cos(k*pi) == (-1)**k assert cos(2*k*pi) == 1 for d in list(range(1, 22)) + [60, 85]: for n in range(0, 2*d + 1): x = n*pi/d e = abs( float(cos(x)) - cos(float(x)) ) assert e < 1e-12 def test_issue_6190(): c = Float('123456789012345678901234567890.25', '') for cls in [sin, cos, tan, cot]: assert cls(c*pi) == cls(pi/4) assert cls(4.125*pi) == cls(pi/8) assert cls(4.7*pi) == cls((4.7 % 2)*pi) def test_cos_series(): assert cos(x).series(x, 0, 9) == \ 1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9) def test_cos_rewrite(): assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2 assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2) assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2) assert cos(sinh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n() assert cos(cosh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n() assert cos(tanh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n() assert cos(coth(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n() assert cos(sin(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n() assert cos(cos(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n() assert cos(tan(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n() assert cos(cot(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n() assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2 assert cos(x).rewrite(sec) == 1/sec(x) assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False) assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False) def test_cos_expansion(): assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y) assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1 assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x) assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1 assert cos(2).expand(trig=True) == 2*cos(1)**2 - 1 assert cos(3).expand(trig=True) == 4*cos(1)**3 - 3*cos(1) def test_cos_AccumBounds(): assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1) assert cos(AccumBounds(3*S.Pi/4, 5*S.Pi/4)) == AccumBounds(-1, cos(3*S.Pi/4)) assert cos(AccumBounds(5*S.Pi/4, 4*S.Pi/3)) == AccumBounds(cos(5*S.Pi/4), cos(4*S.Pi/3)) assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4)) def test_tan(): assert tan(nan) == nan assert tan(zoo) == nan assert tan(oo) == AccumBounds(-oo, oo) assert tan(oo) - tan(oo) == AccumBounds(-oo, oo) assert tan.nargs == FiniteSet(1) assert tan(oo*I) == I assert tan(-oo*I) == -I assert tan(0) == 0 assert tan(atan(x)) == x assert tan(asin(x)) == x / sqrt(1 - x**2) assert tan(acos(x)) == sqrt(1 - x**2) / x assert tan(acot(x)) == 1 / x assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x assert tan(atan2(y, x)) == y/x assert tan(pi*I) == tanh(pi)*I assert tan(-pi*I) == -tanh(pi)*I assert tan(-2*I) == -tanh(2)*I assert tan(pi) == 0 assert tan(-pi) == 0 assert tan(2*pi) == 0 assert tan(-2*pi) == 0 assert tan(-3*10**73*pi) == 0 assert tan(pi/2) == zoo assert tan(3*pi/2) == zoo assert tan(pi/3) == sqrt(3) assert tan(-2*pi/3) == sqrt(3) assert tan(pi/4) == S.One assert tan(-pi/4) == -S.One assert tan(17*pi/4) == S.One assert tan(-3*pi/4) == S.One assert tan(pi/6) == 1/sqrt(3) assert tan(-pi/6) == -1/sqrt(3) assert tan(7*pi/6) == 1/sqrt(3) assert tan(-5*pi/6) == 1/sqrt(3) assert tan(pi/8).expand() == -1 + sqrt(2) assert tan(3*pi/8).expand() == 1 + sqrt(2) assert tan(5*pi/8).expand() == -1 - sqrt(2) assert tan(7*pi/8).expand() == 1 - sqrt(2) assert tan(pi/12) == -sqrt(3) + 2 assert tan(5*pi/12) == sqrt(3) + 2 assert tan(7*pi/12) == -sqrt(3) - 2 assert tan(11*pi/12) == sqrt(3) - 2 assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6) assert tan(5*pi/24).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6) assert tan(7*pi/24).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6) assert tan(11*pi/24).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6) assert tan(13*pi/24).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6) assert tan(17*pi/24).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6) assert tan(19*pi/24).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6) assert tan(23*pi/24).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6) assert 1 == (tan(8*pi/15)*cos(8*pi/15)/sin(8*pi/15)).ratsimp() assert tan(x*I) == tanh(x)*I assert tan(k*pi) == 0 assert tan(17*k*pi) == 0 assert tan(k*pi*I) == tanh(k*pi)*I assert tan(r).is_real is True assert tan(0, evaluate=False).is_algebraic assert tan(a).is_algebraic is None assert tan(na).is_algebraic is False assert tan(10*pi/7) == tan(3*pi/7) assert tan(11*pi/7) == -tan(3*pi/7) assert tan(-11*pi/7) == tan(3*pi/7) assert tan(15*pi/14) == tan(pi/14) assert tan(-15*pi/14) == -tan(pi/14) def test_tan_series(): assert tan(x).series(x, 0, 9) == \ x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9) def test_tan_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp) assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x) assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x) assert tan(x).rewrite(cot) == 1/cot(x) assert tan(sinh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n() assert tan(cosh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n() assert tan(tanh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n() assert tan(coth(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n() assert tan(sin(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n() assert tan(cos(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n() assert tan(tan(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n() assert tan(cot(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n() assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I) assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow) assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow) assert tan(pi/19).rewrite(pow) == tan(pi/19) assert tan(8*pi/19).rewrite(sqrt) == tan(8*pi/19) assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False) assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x) def test_tan_subs(): assert tan(x).subs(tan(x), y) == y assert tan(x).subs(x, y) == tan(y) assert tan(x).subs(x, S.Pi/2) == zoo assert tan(x).subs(x, 3*S.Pi/2) == zoo def test_tan_expansion(): assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand() assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand() assert tan(x + y + z).expand(trig=True) == ( (tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/ (1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand() assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7 assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37 assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1 def test_tan_AccumBounds(): assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/3, 2*S.Pi/3)) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3)) def test_cot(): assert cot(nan) == nan assert cot.nargs == FiniteSet(1) assert cot(oo*I) == -I assert cot(-oo*I) == I assert cot(zoo) == nan assert cot(0) == zoo assert cot(2*pi) == zoo assert cot(acot(x)) == x assert cot(atan(x)) == 1 / x assert cot(asin(x)) == sqrt(1 - x**2) / x assert cot(acos(x)) == x / sqrt(1 - x**2) assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert cot(atan2(y, x)) == x/y assert cot(pi*I) == -coth(pi)*I assert cot(-pi*I) == coth(pi)*I assert cot(-2*I) == coth(2)*I assert cot(pi) == cot(2*pi) == cot(3*pi) assert cot(-pi) == cot(-2*pi) == cot(-3*pi) assert cot(pi/2) == 0 assert cot(-pi/2) == 0 assert cot(5*pi/2) == 0 assert cot(7*pi/2) == 0 assert cot(pi/3) == 1/sqrt(3) assert cot(-2*pi/3) == 1/sqrt(3) assert cot(pi/4) == S.One assert cot(-pi/4) == -S.One assert cot(17*pi/4) == S.One assert cot(-3*pi/4) == S.One assert cot(pi/6) == sqrt(3) assert cot(-pi/6) == -sqrt(3) assert cot(7*pi/6) == sqrt(3) assert cot(-5*pi/6) == sqrt(3) assert cot(pi/8).expand() == 1 + sqrt(2) assert cot(3*pi/8).expand() == -1 + sqrt(2) assert cot(5*pi/8).expand() == 1 - sqrt(2) assert cot(7*pi/8).expand() == -1 - sqrt(2) assert cot(pi/12) == sqrt(3) + 2 assert cot(5*pi/12) == -sqrt(3) + 2 assert cot(7*pi/12) == sqrt(3) - 2 assert cot(11*pi/12) == -sqrt(3) - 2 assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6) assert cot(5*pi/24).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6) assert cot(7*pi/24).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6) assert cot(11*pi/24).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6) assert cot(13*pi/24).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6) assert cot(17*pi/24).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6) assert cot(19*pi/24).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6) assert cot(23*pi/24).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6) assert 1 == (cot(4*pi/15)*sin(4*pi/15)/cos(4*pi/15)).ratsimp() assert cot(x*I) == -coth(x)*I assert cot(k*pi*I) == -coth(k*pi)*I assert cot(r).is_real is True assert cot(a).is_algebraic is None assert cot(na).is_algebraic is False assert cot(10*pi/7) == cot(3*pi/7) assert cot(11*pi/7) == -cot(3*pi/7) assert cot(-11*pi/7) == cot(3*pi/7) assert cot(39*pi/34) == cot(5*pi/34) assert cot(-41*pi/34) == -cot(7*pi/34) assert cot(x).is_finite is None assert cot(r).is_finite is None i = Symbol('i', imaginary=True) assert cot(i).is_finite is True assert cot(x).subs(x, 3*pi) == zoo def test_cot_series(): assert cot(x).series(x, 0, 9) == \ 1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9) # issue 6210 assert cot(x**4 + x**5).series(x, 0, 1) == \ x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x) def test_cot_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp) assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2)) assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False) assert cot(x).rewrite(tan) == 1/tan(x) assert cot(sinh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sinh(3)).n() assert cot(cosh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, cosh(3)).n() assert cot(tanh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tanh(3)).n() assert cot(coth(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, coth(3)).n() assert cot(sin(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sin(3)).n() assert cot(tan(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tan(3)).n() assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I) assert cot(4*pi/34).rewrite(pow).ratsimp() == (cos(4*pi/34)/sin(4*pi/34)).rewrite(pow).ratsimp() assert cot(4*pi/17).rewrite(pow) == (cos(4*pi/17)/sin(4*pi/17)).rewrite(pow) assert cot(pi/19).rewrite(pow) == cot(pi/19) assert cot(pi/19).rewrite(sqrt) == cot(pi/19) assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x) assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False) def test_cot_subs(): assert cot(x).subs(cot(x), y) == y assert cot(x).subs(x, y) == cot(y) assert cot(x).subs(x, 0) == zoo assert cot(x).subs(x, S.Pi) == zoo def test_cot_expansion(): assert cot(x + y).expand(trig=True) == ((cot(x)*cot(y) - 1)/(cot(x) + cot(y))).expand() assert cot(x - y).expand(trig=True) == (-(cot(x)*cot(y) + 1)/(cot(x) - cot(y))).expand() assert cot(x + y + z).expand(trig=True) == ( (cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/ (-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z))).expand() assert cot(3*x).expand(trig=True) == ((cot(x)**3 - 3*cot(x))/(3*cot(x)**2 - 1)).expand() assert 0 == cot(2*x).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 3))])*3 + 4 assert 0 == cot(3*x).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 5))])*55 - 37 assert 0 == cot(4*x - pi/4).expand(trig=True).rewrite(cot).subs([(cot(x), Rational(1, 7))])*863 + 191 def test_cot_AccumBounds(): assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo) assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6)) def test_sinc(): assert isinstance(sinc(x), sinc) s = Symbol('s', zero=True) assert sinc(s) == S.One assert sinc(S.Infinity) == S.Zero assert sinc(-S.Infinity) == S.Zero assert sinc(S.NaN) == S.NaN assert sinc(S.ComplexInfinity) == S.NaN n = Symbol('n', integer=True, nonzero=True) assert sinc(n*pi) == S.Zero assert sinc(-n*pi) == S.Zero assert sinc(pi/2) == 2 / pi assert sinc(-pi/2) == 2 / pi assert sinc(5*pi/2) == 2 / (5*pi) assert sinc(7*pi/2) == -2 / (7*pi) assert sinc(-x) == sinc(x) assert sinc(x).diff() == (x*cos(x) - sin(x)) / x**2 assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6) assert sinc(x).rewrite(jn) == jn(0, x) assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True)) def test_asin(): assert asin(nan) == nan assert asin.nargs == FiniteSet(1) assert asin(oo) == -I*oo assert asin(-oo) == I*oo assert asin(zoo) == zoo # Note: asin(-x) = - asin(x) assert asin(0) == 0 assert asin(1) == pi/2 assert asin(-1) == -pi/2 assert asin(sqrt(3)/2) == pi/3 assert asin(-sqrt(3)/2) == -pi/3 assert asin(sqrt(2)/2) == pi/4 assert asin(-sqrt(2)/2) == -pi/4 assert asin(sqrt((5 - sqrt(5))/8)) == pi/5 assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5 assert asin(Rational(1, 2)) == pi/6 assert asin(-Rational(1, 2)) == -pi/6 assert asin((sqrt(2 - sqrt(2)))/2) == pi/8 assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8 assert asin((sqrt(5) - 1)/4) == pi/10 assert asin(-(sqrt(5) - 1)/4) == -pi/10 assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12 assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12 assert asin(x).diff(x) == 1/sqrt(1 - x**2) assert asin(0.2).is_real is True assert asin(-2).is_real is False assert asin(r).is_real is None assert asin(-2*I) == -I*asinh(2) assert asin(Rational(1, 7), evaluate=False).is_positive is True assert asin(Rational(-1, 7), evaluate=False).is_positive is False assert asin(p).is_positive is None def test_asin_series(): assert asin(x).series(x, 0, 9) == \ x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9) t5 = asin(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112 def test_asin_rewrite(): assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2)) assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2))) assert asin(x).rewrite(acos) == S.Pi/2 - acos(x) assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x) assert asin(x).rewrite(asec) == -asec(1/x) + pi/2 assert asin(x).rewrite(acsc) == acsc(1/x) def test_acos(): assert acos(nan) == nan assert acos(zoo) == zoo assert acos.nargs == FiniteSet(1) assert acos(oo) == I*oo assert acos(-oo) == -I*oo # Note: acos(-x) = pi - acos(x) assert acos(0) == pi/2 assert acos(Rational(1, 2)) == pi/3 assert acos(-Rational(1, 2)) == (2*pi)/3 assert acos(1) == 0 assert acos(-1) == pi assert acos(sqrt(2)/2) == pi/4 assert acos(-sqrt(2)/2) == (3*pi)/4 assert acos(x).diff(x) == -1/sqrt(1 - x**2) assert acos(0.2).is_real is True assert acos(-2).is_real is False assert acos(r).is_real is None assert acos(Rational(1, 7), evaluate=False).is_positive is True assert acos(Rational(-1, 7), evaluate=False).is_positive is True assert acos(Rational(3, 2), evaluate=False).is_positive is False assert acos(p).is_positive is None assert acos(2 + p).conjugate() != acos(10 + p) assert acos(-3 + n).conjugate() != acos(-3 + n) assert acos(S.One/3).conjugate() == acos(S.One/3) assert acos(-S.One/3).conjugate() == acos(-S.One/3) assert acos(p + n*I).conjugate() == acos(p - n*I) assert acos(z).conjugate() != acos(conjugate(z)) def test_acos_series(): assert acos(x).series(x, 0, 8) == \ pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8) assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8) t5 = acos(x).taylor_term(5, x) assert t5 == -3*x**5/40 assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112 def test_acos_rewrite(): assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2)) assert acos(x).rewrite(atan) == \ atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2)) assert acos(0).rewrite(atan) == S.Pi/2 assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log) assert acos(x).rewrite(asin) == S.Pi/2 - asin(x) assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2 assert acos(x).rewrite(asec) == asec(1/x) assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2 def test_atan(): assert atan(nan) == nan assert atan.nargs == FiniteSet(1) assert atan(oo) == pi/2 assert atan(-oo) == -pi/2 assert atan(zoo) == AccumBounds(-pi/2, pi/2) assert atan(0) == 0 assert atan(1) == pi/4 assert atan(sqrt(3)) == pi/3 assert atan(oo) == pi/2 assert atan(x).diff(x) == 1/(1 + x**2) assert atan(r).is_real is True assert atan(-2*I) == -I*atanh(2) assert atan(p).is_positive is True assert atan(n).is_positive is False assert atan(x).is_positive is None def test_atan_rewrite(): assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2 assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x assert atan(x).rewrite(acot) == acot(1/x) assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I}) assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I}) def test_atan2(): assert atan2.nargs == FiniteSet(2) assert atan2(0, 0) == S.NaN assert atan2(0, 1) == 0 assert atan2(1, 1) == pi/4 assert atan2(1, 0) == pi/2 assert atan2(1, -1) == 3*pi/4 assert atan2(0, -1) == pi assert atan2(-1, -1) == -3*pi/4 assert atan2(-1, 0) == -pi/2 assert atan2(-1, 1) == -pi/4 i = symbols('i', imaginary=True) r = symbols('r', real=True) eq = atan2(r, i) ans = -I*log((i + I*r)/sqrt(i**2 + r**2)) reps = ((r, 2), (i, I)) assert eq.subs(reps) == ans.subs(reps) x = Symbol('x', negative=True) y = Symbol('y', negative=True) assert atan2(y, x) == atan(y/x) - pi y = Symbol('y', nonnegative=True) assert atan2(y, x) == atan(y/x) + pi y = Symbol('y') assert atan2(y, x) == atan2(y, x, evaluate=False) u = Symbol("u", positive=True) assert atan2(0, u) == 0 u = Symbol("u", negative=True) assert atan2(0, u) == pi assert atan2(y, oo) == 0 assert atan2(y, -oo)== 2*pi*Heaviside(re(y)) - pi assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2)) assert atan2(y, x).rewrite(atan) == 2*atan(y/(x + sqrt(x**2 + y**2))) ex = atan2(y, x) - arg(x + I*y) assert ex.subs({x:2, y:3}).rewrite(arg) == 0 assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5) assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I) assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(2/S(3)) + atan(3/S(2)) i = symbols('i', imaginary=True) r = symbols('r', real=True) e = atan2(i, r) rewrite = e.rewrite(arg) reps = {i: I, r: -2} assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2)) assert (e - rewrite).subs(reps).equals(0) assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y)) assert diff(atan2(y, x), x) == -y/(x**2 + y**2) assert diff(atan2(y, x), y) == x/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2) def test_acot(): assert acot(nan) == nan assert acot.nargs == FiniteSet(1) assert acot(-oo) == 0 assert acot(oo) == 0 assert acot(zoo) == 0 assert acot(1) == pi/4 assert acot(0) == pi/2 assert acot(sqrt(3)/3) == pi/3 assert acot(1/sqrt(3)) == pi/3 assert acot(-1/sqrt(3)) == -pi/3 assert acot(x).diff(x) == -1/(1 + x**2) assert acot(r).is_real is True assert acot(I*pi) == -I*acoth(pi) assert acot(-2*I) == I*acoth(2) assert acot(x).is_positive is None assert acot(n).is_positive is False assert acot(p).is_positive is True assert acot(I).is_positive is False def test_acot_rewrite(): assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2 assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2)) assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1)) assert acot(x).rewrite(atan) == atan(1/x) assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2)) assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2)) assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5}) assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5}) def test_attributes(): assert sin(x).args == (x,) def test_sincos_rewrite(): assert sin(pi/2 - x) == cos(x) assert sin(pi - x) == sin(x) assert cos(pi/2 - x) == sin(x) assert cos(pi - x) == -cos(x) def _check_even_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> f(x) arg : -x """ return func(arg).args[0] == -arg def _check_odd_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> -f(x) arg : -x """ return func(arg).func.is_Mul def _check_no_rewrite(func, arg): """Checks that the expr is not rewritten""" return func(arg).args[0] == arg def test_evenodd_rewrite(): a = cos(2) # negative b = sin(1) # positive even = [cos] odd = [sin, tan, cot, asin, atan, acot] with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y] for func in even: for expr in with_minus: assert _check_even_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == func(y - x) # it doesn't matter which form is canonical for func in odd: for expr in with_minus: assert _check_odd_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == -func(y - x) # it doesn't matter which form is canonical def test_issue_4547(): assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2) assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2) assert tan(x).rewrite(cot) == 1/cot(x) assert cot(x).fdiff() == -1 - cot(x)**2 def test_as_leading_term_issue_5272(): assert sin(x).as_leading_term(x) == x assert cos(x).as_leading_term(x) == 1 assert tan(x).as_leading_term(x) == x assert cot(x).as_leading_term(x) == 1/x assert asin(x).as_leading_term(x) == x assert acos(x).as_leading_term(x) == x assert atan(x).as_leading_term(x) == x assert acot(x).as_leading_term(x) == x def test_leading_terms(): for func in [sin, cos, tan, cot, asin, acos, atan, acot]: for arg in (1/x, S.Half): eq = func(arg) assert eq.as_leading_term(x) == eq def test_atan2_expansion(): assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0 assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5) + atan2(0, x) - atan(0)) == O(y**5) assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4) + atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1)) assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3) + atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1)) assert Matrix([atan2(y, x)]).jacobian([y, x]) == \ Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]]) def test_aseries(): def t(n, v, d, e): assert abs( n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e t(atan, 0.1, '+', 1e-5) t(atan, -0.1, '-', 1e-5) t(acot, 0.1, '+', 1e-5) t(acot, -0.1, '-', 1e-5) def test_issue_4420(): i = Symbol('i', integer=True) e = Symbol('e', even=True) o = Symbol('o', odd=True) # unknown parity for variable assert cos(4*i*pi) == 1 assert sin(4*i*pi) == 0 assert tan(4*i*pi) == 0 assert cot(4*i*pi) == zoo assert cos(3*i*pi) == cos(pi*i) # +/-1 assert sin(3*i*pi) == 0 assert tan(3*i*pi) == 0 assert cot(3*i*pi) == zoo assert cos(4.0*i*pi) == 1 assert sin(4.0*i*pi) == 0 assert tan(4.0*i*pi) == 0 assert cot(4.0*i*pi) == zoo assert cos(3.0*i*pi) == cos(pi*i) # +/-1 assert sin(3.0*i*pi) == 0 assert tan(3.0*i*pi) == 0 assert cot(3.0*i*pi) == zoo assert cos(4.5*i*pi) == cos(0.5*pi*i) assert sin(4.5*i*pi) == sin(0.5*pi*i) assert tan(4.5*i*pi) == tan(0.5*pi*i) assert cot(4.5*i*pi) == cot(0.5*pi*i) # parity of variable is known assert cos(4*e*pi) == 1 assert sin(4*e*pi) == 0 assert tan(4*e*pi) == 0 assert cot(4*e*pi) == zoo assert cos(3*e*pi) == 1 assert sin(3*e*pi) == 0 assert tan(3*e*pi) == 0 assert cot(3*e*pi) == zoo assert cos(4.0*e*pi) == 1 assert sin(4.0*e*pi) == 0 assert tan(4.0*e*pi) == 0 assert cot(4.0*e*pi) == zoo assert cos(3.0*e*pi) == 1 assert sin(3.0*e*pi) == 0 assert tan(3.0*e*pi) == 0 assert cot(3.0*e*pi) == zoo assert cos(4.5*e*pi) == cos(0.5*pi*e) assert sin(4.5*e*pi) == sin(0.5*pi*e) assert tan(4.5*e*pi) == tan(0.5*pi*e) assert cot(4.5*e*pi) == cot(0.5*pi*e) assert cos(4*o*pi) == 1 assert sin(4*o*pi) == 0 assert tan(4*o*pi) == 0 assert cot(4*o*pi) == zoo assert cos(3*o*pi) == -1 assert sin(3*o*pi) == 0 assert tan(3*o*pi) == 0 assert cot(3*o*pi) == zoo assert cos(4.0*o*pi) == 1 assert sin(4.0*o*pi) == 0 assert tan(4.0*o*pi) == 0 assert cot(4.0*o*pi) == zoo assert cos(3.0*o*pi) == -1 assert sin(3.0*o*pi) == 0 assert tan(3.0*o*pi) == 0 assert cot(3.0*o*pi) == zoo assert cos(4.5*o*pi) == cos(0.5*pi*o) assert sin(4.5*o*pi) == sin(0.5*pi*o) assert tan(4.5*o*pi) == tan(0.5*pi*o) assert cot(4.5*o*pi) == cot(0.5*pi*o) # x could be imaginary assert cos(4*x*pi) == cos(4*pi*x) assert sin(4*x*pi) == sin(4*pi*x) assert tan(4*x*pi) == tan(4*pi*x) assert cot(4*x*pi) == cot(4*pi*x) assert cos(3*x*pi) == cos(3*pi*x) assert sin(3*x*pi) == sin(3*pi*x) assert tan(3*x*pi) == tan(3*pi*x) assert cot(3*x*pi) == cot(3*pi*x) assert cos(4.0*x*pi) == cos(4.0*pi*x) assert sin(4.0*x*pi) == sin(4.0*pi*x) assert tan(4.0*x*pi) == tan(4.0*pi*x) assert cot(4.0*x*pi) == cot(4.0*pi*x) assert cos(3.0*x*pi) == cos(3.0*pi*x) assert sin(3.0*x*pi) == sin(3.0*pi*x) assert tan(3.0*x*pi) == tan(3.0*pi*x) assert cot(3.0*x*pi) == cot(3.0*pi*x) assert cos(4.5*x*pi) == cos(4.5*pi*x) assert sin(4.5*x*pi) == sin(4.5*pi*x) assert tan(4.5*x*pi) == tan(4.5*pi*x) assert cot(4.5*x*pi) == cot(4.5*pi*x) def test_inverses(): raises(AttributeError, lambda: sin(x).inverse()) raises(AttributeError, lambda: cos(x).inverse()) assert tan(x).inverse() == atan assert cot(x).inverse() == acot raises(AttributeError, lambda: csc(x).inverse()) raises(AttributeError, lambda: sec(x).inverse()) assert asin(x).inverse() == sin assert acos(x).inverse() == cos assert atan(x).inverse() == tan assert acot(x).inverse() == cot def test_real_imag(): a, b = symbols('a b', real=True) z = a + b*I for deep in [True, False]: assert sin( z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b)) assert cos( z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b)) assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) + cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b))) assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) - cosh(2*b)), -sinh(2*b)/(cos(2*a) - cosh(2*b))) assert sin(a).as_real_imag(deep=deep) == (sin(a), 0) assert cos(a).as_real_imag(deep=deep) == (cos(a), 0) assert tan(a).as_real_imag(deep=deep) == (tan(a), 0) assert cot(a).as_real_imag(deep=deep) == (cot(a), 0) @XFAIL def test_sin_cos_with_infinity(): # Test for issue 5196 # https://github.com/sympy/sympy/issues/5196 assert sin(oo) == S.NaN assert cos(oo) == S.NaN @slow def test_sincos_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p # The vertices `exp(i*pi/n)` of a regular `n`-gon can # be expressed by means of nested square roots if and # only if `n` is a product of Fermat primes, `p`, and # powers of 2, `t'. The code aims to check all vertices # not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`). # For large `n` this makes the test too slow, therefore # the vertices are limited to those of index `i < 10`. for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n s1 = sin(x).rewrite(sqrt) c1 = cos(x).rewrite(sqrt) assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half) assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64) assert cos(-15*pi/2/11, evaluate=False).rewrite( sqrt) == -sqrt(-cos(4*pi/11)/2 + S.Half) assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite( sqrt) == -1 e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation a = ( -3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 - 3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - S(1)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + 3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128 + 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32 + sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)/8 - 5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - 3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)/32 + sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)/2 + S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + S(15)/32)/32)/2) assert e.rewrite(sqrt) == a assert e.n() == a.n() # coverage of fermatCoords: multiplicity > 1; the following could be # different but that portion of the code should be tested in some way assert cos(pi/9/17).rewrite(sqrt) == \ sin(pi/9)*sin(2*pi/17) + cos(pi/9)*cos(2*pi/17) @slow def test_tancot_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n if 2*i != n and 3*i != 2*n: t1 = tan(x).rewrite(sqrt) assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n) if i != 0 and i != n: c1 = cot(x).rewrite(sqrt) assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n) def test_sec(): x = symbols('x', real=True) z = symbols('z') assert sec.nargs == FiniteSet(1) assert sec(zoo) == nan assert sec(0) == 1 assert sec(pi) == -1 assert sec(pi/2) == zoo assert sec(-pi/2) == zoo assert sec(pi/6) == 2*sqrt(3)/3 assert sec(pi/3) == 2 assert sec(5*pi/2) == zoo assert sec(9*pi/7) == -sec(2*pi/7) assert sec(3*pi/4) == -sqrt(2) # issue 8421 assert sec(I) == 1/cosh(1) assert sec(x*I) == 1/cosh(x) assert sec(-x) == sec(x) assert sec(asec(x)) == x assert sec(z).conjugate() == sec(conjugate(z)) assert (sec(z).as_real_imag() == (cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2), sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2))) assert sec(x).expand(trig=True) == 1/cos(x) assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1) assert sec(x).is_real == True assert sec(z).is_real == None assert sec(a).is_algebraic is None assert sec(na).is_algebraic is False assert sec(x).as_leading_term() == sec(x) assert sec(0).is_finite == True assert sec(x).is_finite == None assert sec(pi/2).is_finite == False assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6) # https://github.com/sympy/sympy/issues/7166 assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6) # https://github.com/sympy/sympy/issues/7167 assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) == 1/sqrt(x - 3*pi/2) + (x - 3*pi/2)**(S(3)/2)/12 + (x - 3*pi/2)**(S(7)/2)/160 + O((x - 3*pi/2)**4, (x, 3*pi/2))) assert sec(x).diff(x) == tan(x)*sec(x) # Taylor Term checks assert sec(z).taylor_term(4, z) == 5*z**4/24 assert sec(z).taylor_term(6, z) == 61*z**6/720 assert sec(z).taylor_term(5, z) == 0 def test_sec_rewrite(): assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2) assert sec(x).rewrite(cos) == 1/cos(x) assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1) assert sec(x).rewrite(pow) == sec(x) assert sec(x).rewrite(sqrt) == sec(x) assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1) assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False) assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1) assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False) def test_csc(): x = symbols('x', real=True) z = symbols('z') # https://github.com/sympy/sympy/issues/6707 cosecant = csc('x') alternate = 1/sin('x') assert cosecant.equals(alternate) == True assert alternate.equals(cosecant) == True assert csc.nargs == FiniteSet(1) assert csc(0) == zoo assert csc(pi) == zoo assert csc(zoo) == nan assert csc(pi/2) == 1 assert csc(-pi/2) == -1 assert csc(pi/6) == 2 assert csc(pi/3) == 2*sqrt(3)/3 assert csc(5*pi/2) == 1 assert csc(9*pi/7) == -csc(2*pi/7) assert csc(3*pi/4) == sqrt(2) # issue 8421 assert csc(I) == -I/sinh(1) assert csc(x*I) == -I/sinh(x) assert csc(-x) == -csc(x) assert csc(acsc(x)) == x assert csc(z).conjugate() == csc(conjugate(z)) assert (csc(z).as_real_imag() == (sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2), -cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2))) assert csc(x).expand(trig=True) == 1/sin(x) assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x)) assert csc(x).is_real == True assert csc(z).is_real == None assert csc(a).is_algebraic is None assert csc(na).is_algebraic is False assert csc(x).as_leading_term() == csc(x) assert csc(0).is_finite == False assert csc(x).is_finite == None assert csc(pi/2).is_finite == True assert series(csc(x), x, x0=pi/2, n=6) == \ 1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2)) assert series(csc(x), x, x0=0, n=6) == \ 1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6) assert csc(x).diff(x) == -cot(x)*csc(x) assert csc(x).taylor_term(2, x) == 0 assert csc(x).taylor_term(3, x) == 7*x**3/360 assert csc(x).taylor_term(5, x) == 31*x**5/15120 def test_asec(): z = Symbol('z', zero=True) assert asec(z) == zoo assert asec(nan) == nan assert asec(1) == 0 assert asec(-1) == pi assert asec(oo) == pi/2 assert asec(-oo) == pi/2 assert asec(zoo) == pi/2 assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2)) assert asec(x).as_leading_term(x) == log(x) assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2 assert asec(x).rewrite(asin) == -asin(1/x) + pi/2 assert asec(x).rewrite(acos) == acos(1/x) assert asec(x).rewrite(atan) == (2*atan(x + sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x assert asec(x).rewrite(acot) == (2*acot(x - sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x assert asec(x).rewrite(acsc) == -acsc(x) + pi/2 def test_asec_is_real(): assert asec(S(1)/2).is_real is False n = Symbol('n', positive=True, integer=True) assert asec(n).is_real is True assert asec(x).is_real is None assert asec(r).is_real is None t = Symbol('t', real=False) assert asec(t).is_real is False def test_acsc(): assert acsc(nan) == nan assert acsc(1) == pi/2 assert acsc(-1) == -pi/2 assert acsc(oo) == 0 assert acsc(-oo) == 0 assert acsc(zoo) == 0 assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2)) assert acsc(x).as_leading_term(x) == log(x) assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x) assert acsc(x).rewrite(asin) == asin(1/x) assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2 assert acsc(x).rewrite(atan) == (-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(asec) == -asec(x) + pi/2 def test_csc_rewrite(): assert csc(x).rewrite(pow) == csc(x) assert csc(x).rewrite(sqrt) == csc(x) assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x)) assert csc(x).rewrite(sin) == 1/sin(x) assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2)) assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2)) assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False) assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False) def test_issue_8653(): n = Symbol('n', integer=True) assert sin(n).is_irrational is None assert cos(n).is_irrational is None assert tan(n).is_irrational is None def test_issue_9157(): n = Symbol('n', integer=True, positive=True) atan(n - 1).is_nonnegative is True def test_trig_period(): x, y = symbols('x, y') assert sin(x).period() == 2*pi assert cos(x).period() == 2*pi assert tan(x).period() == pi assert cot(x).period() == pi assert sec(x).period() == 2*pi assert csc(x).period() == 2*pi assert sin(2*x).period() == pi assert cot(4*x - 6).period() == pi/4 assert cos((-3)*x).period() == 2*pi/3 assert cos(x*y).period(x) == 2*pi/abs(y) assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x) assert tan(3*x).period(y) == S.Zero raises(NotImplementedError, lambda: sin(x**2).period(x)) def test_issue_7171(): assert sin(x).rewrite(sqrt) == sin(x) assert sin(x).rewrite(pow) == sin(x) def test_issue_11864(): w, k = symbols('w, k', real=True) F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True)) soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True)) assert F.rewrite(sinc) == soln def test_real_assumptions(): z = Symbol('z', real=False) assert sin(z).is_real is None assert cos(z).is_real is None assert tan(z).is_real is False assert sec(z).is_real is None assert csc(z).is_real is None assert cot(z).is_real is False assert asin(p).is_real is None assert asin(n).is_real is None assert asec(p).is_real is None assert asec(n).is_real is None assert acos(p).is_real is None assert acos(n).is_real is None assert acsc(p).is_real is None assert acsc(n).is_real is None assert atan(p).is_positive is True assert atan(n).is_negative is True assert acot(p).is_positive is True assert acot(n).is_negative is True def test_issue_14320(): assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi) assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2) assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2) assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20) assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi) assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17) assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15) assert atan(cot(12)) == -12 + 7*pi/2 and (-pi/2 < -12 + 7*pi/2 < pi/2) and cot(12) == tan(-12 + 7*pi/2) assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15) assert acot(tan(19)) == -19 + 13*pi/2 and (-pi/2 < -19 + 13*pi/2 <= pi/2) and tan(19) == cot(-19 + 13*pi/2) assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi) assert asec(csc(13)) == -13 + 9*pi/2 and (0 <= -13 + 9*pi/2 <= pi) and sin(13) == cos(-13 + 9*pi/2) assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14) assert acsc(sec(10)) == -7*pi/2 + 10 and (-pi/2 <= -7*pi/2 + 10 <= pi/2) and cos(10) == sin(-7*pi/2 + 10) def test_issue_14543(): assert sec(2*pi + 11) == sec(11) assert sec(2*pi - 11) == sec(11) assert sec(pi + 11) == -sec(11) assert sec(pi - 11) == -sec(11) assert csc(2*pi + 17) == csc(17) assert csc(2*pi - 17) == -csc(17) assert csc(pi + 17) == -csc(17) assert csc(pi - 17) == csc(17) x = Symbol('x') assert csc(pi/2 + x) == sec(x) assert csc(pi/2 - x) == sec(x) assert csc(3*pi/2 + x) == -sec(x) assert csc(3*pi/2 - x) == -sec(x) assert sec(pi/2 - x) == csc(x) assert sec(pi/2 + x) == -csc(x) assert sec(3*pi/2 + x) == csc(x) assert sec(3*pi/2 - x) == -csc(x) def test_issue_15959(): assert tan(3*pi/8) == 1 + sqrt(2)
dfdca124ec4c0c961a591b4922641feb17aeac1b235cc662c498090c21a3662f
from sympy import ( adjoint, And, Basic, conjugate, diff, expand, Eq, Function, I, ITE, Integral, integrate, Interval, lambdify, log, Max, Min, oo, Or, pi, Piecewise, piecewise_fold, Rational, solve, symbols, transpose, cos, sin, exp, Abs, Ne, Not, Symbol, S, sqrt, Tuple, zoo, factor_terms, DiracDelta, Heaviside, Add, Mul, factorial) from sympy.printing import srepr from sympy.utilities.pytest import XFAIL, raises from sympy.functions.elementary.piecewise import Undefined a, b, c, d, x, y = symbols('a:d, x, y') z = symbols('z', nonzero=True) def test_piecewise(): # Test canonicalization assert Piecewise((x, x < 1), (0, True)) == Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, True), (1, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \ Piecewise((x, x < 1)) assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \ Piecewise((x, Or(x < 1, x < 2)), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x assert Piecewise((x, True)) == x # Explicitly constructed empty Piecewise not accepted raises(TypeError, lambda: Piecewise()) # False condition is never retained assert Piecewise((2*x, x < 0), (x, False)) == \ Piecewise((2*x, x < 0), (x, False), evaluate=False) == \ Piecewise((2*x, x < 0)) assert Piecewise((x, False)) == Undefined raises(TypeError, lambda: Piecewise(x)) assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False raises(TypeError, lambda: Piecewise((x, 2))) raises(TypeError, lambda: Piecewise((x, x**2))) raises(TypeError, lambda: Piecewise(([1], True))) assert Piecewise(((1, 2), True)) == Tuple(1, 2) cond = (Piecewise((1, x < 0), (2, True)) < y) assert Piecewise((1, cond) ) == Piecewise((1, ITE(x < 0, y > 1, y > 2))) assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1)) ) == Piecewise((1, x > 0), (2, x > -1)) # Test subs p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0)) p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0)) assert p.subs(x, x**2) == p_x2 assert p.subs(x, -5) == -1 assert p.subs(x, -1) == 1 assert p.subs(x, 1) == log(1) # More subs tests p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi)) p3 = Piecewise((1, Eq(x, 0)), (1/x, True)) p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2)) assert p2.subs(x, 2) == 1 assert p2.subs(x, 4) == -1 assert p2.subs(x, 10) == 0 assert p3.subs(x, 0.0) == 1 assert p4.subs(x, 0.0) == 1 f, g, h = symbols('f,g,h', cls=Function) pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1)) pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1)) assert pg.subs(g, f) == pf assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1 assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0 assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1 assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1 assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \ Piecewise((1, Eq(exp(z), cos(z))), (0, True)) p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True)) assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True)) assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True) ).subs(x, 1) == Piecewise((-1, y < 1), (2, True)) assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1 p6 = Piecewise((x, x > 0)) n = symbols('n', negative=True) assert p6.subs(x, n) == Undefined # Test evalf assert p.evalf() == p assert p.evalf(subs={x: -2}) == -1 assert p.evalf(subs={x: -1}) == 1 assert p.evalf(subs={x: 1}) == log(1) assert p6.evalf(subs={x: -5}) == Undefined # Test doit f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1)) assert f_int.doit() == Piecewise( (S(1)/2, x < 1) ) # Test differentiation f = x fp = x*p dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0)) fp_dx = x*dp + p assert diff(p, x) == dp assert diff(f*p, x) == fp_dx # Test simple arithmetic assert x*p == fp assert x*p + p == p + x*p assert p + f == f + p assert p + dp == dp + p assert p - dp == -(dp - p) # Test power dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0)) assert dp**2 == dp2 # Test _eval_interval f1 = x*y + 2 f2 = x*y**2 + 3 peval = Piecewise((f1, x < 0), (f2, x > 0)) peval_interval = f1.subs( x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0) assert peval._eval_interval(x, 0, 0) == 0 assert peval._eval_interval(x, -1, 1) == peval_interval peval2 = Piecewise((f1, x < 0), (f2, True)) assert peval2._eval_interval(x, 0, 0) == 0 assert peval2._eval_interval(x, 1, -1) == -peval_interval assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1) assert peval2._eval_interval(x, -1, 1) == peval_interval assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0) assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1) # Test integration assert p.integrate() == Piecewise( (-x, x < -1), (x**3/3 + S(4)/3, x < 0), (x*log(x) - x + S(4)/3, True)) p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) assert integrate(p, (x, -2, 2)) == 5/6.0 assert integrate(p, (x, 2, -2)) == -5/6.0 p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True)) assert integrate(p, (x, -oo, oo)) == 2 p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert integrate(p, (x, -2, 2)) == Undefined # Test commutativity assert isinstance(p, Piecewise) and p.is_commutative is True def test_piecewise_free_symbols(): f = Piecewise((x, a < 0), (y, True)) assert f.free_symbols == {x, y, a} def test_piecewise_integrate1(): x, y = symbols('x y', real=True, finite=True) f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert integrate(f, (x, -2, 2)) == Rational(14, 3) g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == Rational(43, 6) assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == -Rational(701, 6) assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True)) g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True)) assert integrate(g, (x, -2, 2)) == 2 * Rational(14, 3) assert integrate(g, (x, -2, 5)) == -Rational(673, 6) def test_piecewise_integrate1b(): g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0)) assert integrate(g, (x, -1, 1)) == 0 g = Piecewise((1, x - y < 0), (0, True)) assert integrate(g, (y, -oo, 0)) == -Min(0, x) assert g.subs(x, -3).integrate((y, -oo, 0)) == 3 assert integrate(g, (y, 0, -oo)) == Min(0, x) assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42 assert integrate(g, (y, -oo, oo)) == -x + oo g = Piecewise((0, x < 0), (x, x <= 1), (1, True)) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) for yy in (-1, S.Half, 2): assert g.integrate((x, yy, 1)) == gy1.subs(y, yy) assert g.integrate((x, 1, yy)) == g1y.subs(y, yy) assert gy1 == Piecewise( (-Min(1, Max(0, y))**2/2 + S(1)/2, y < 1), (-y + 1, True)) assert g1y == Piecewise( (Min(1, Max(0, y))**2/2 - S(1)/2, y < 1), (y - 1, True)) def test_piecewise_integrate1c(): y = symbols('y', real=True) for i, g in enumerate([ Piecewise((1 - x, Interval(0, 1).contains(x)), (1 + x, Interval(-1, 0).contains(x)), (0, True)), Piecewise((0, Or(x <= -1, x >= 1)), (1 - x, x > 0), (1 + x, True))]): gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) for yy in (-2, 0, 2): assert g.integrate((x, yy, 1)) == gy1.subs(y, yy) assert g.integrate((x, 1, yy)) == g1y.subs(y, yy) assert piecewise_fold(gy1.rewrite(Piecewise)) == Piecewise( (1, y <= -1), (-y**2/2 - y + S(1)/2, y <= 0), (y**2/2 - y + S(1)/2, y < 1), (0, True)) assert piecewise_fold(g1y.rewrite(Piecewise)) == Piecewise( (-1, y <= -1), (y**2/2 + y - S(1)/2, y <= 0), (-y**2/2 + y - S(1)/2, y < 1), (0, True)) # g1y and gy1 should simplify if the condition that y < 1 # is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y) assert gy1 == Piecewise( (-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) + Min(1, Max(0, y))**2 + S(1)/2, y < 1), (0, True)) assert g1y == Piecewise( (Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) - Min(1, Max(0, y))**2 - S(1)/2, y < 1), (0, True)) def test_piecewise_integrate2(): from itertools import permutations lim = Tuple(x, c, d) p = Piecewise((1, x < a), (2, x > b), (3, True)) q = p.integrate(lim) assert q == Piecewise( (-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d), (-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True)) for v in permutations((1, 2, 3, 4)): r = dict(zip((a, b, c, d), v)) assert p.subs(r).integrate(lim.subs(r)) == q.subs(r) def test_meijer_bypass(): # totally bypass meijerg machinery when dealing # with Piecewise in integrate assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3 def test_piecewise_integrate3_inequality_conditions(): from sympy.utilities.iterables import cartes lim = (x, 0, 5) # set below includes two pts below range, 2 pts in range, # 2 pts above range, and the boundaries N = (-2, -1, 0, 1, 2, 5, 6, 7) p = Piecewise((1, x > a), (2, x > b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1 p = Piecewise((1, x > a), (2, x < b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) # delete old tests that involved c1 and c2 since those # reduce to the above except that a value of 0 was used # for two expressions whereas the above uses 3 different # values def test_piecewise_integrate4_symbolic_conditions(): a = Symbol('a', real=True, finite=True) b = Symbol('b', real=True, finite=True) x = Symbol('x', real=True, finite=True) y = Symbol('y', real=True, finite=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, x < a), (0, x > b), (1, True)) p2 = Piecewise((0, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (0, True)) p4 = Piecewise((0, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) lim = Tuple(x, y, oo) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a:3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) ans = Piecewise( (0, x <= Min(a, b)), (x - Min(a, b), x <= b), (b - Min(a, b), True)) for i in (p0, p1, p2, p4): assert i.integrate(x) == ans assert p3.integrate(x) == Piecewise( (0, x < a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) assert p5.integrate(x) == Piecewise( (0, x <= a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) p1 = Piecewise((0, x < a), (0.5, x > b), (1, True)) p2 = Piecewise((0.5, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (0.5, True)) p4 = Piecewise((0.5, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (0.5, x > b), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) def test_piecewise_integrate5_independent_conditions(): p = Piecewise((0, Eq(y, 0)), (x*y, True)) assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True)) def test_piecewise_simplify(): p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)), ((-1)**x*(-1), True)) assert p.simplify() == \ Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True)) # simplify when there are Eq in conditions assert Piecewise( (a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify( ) == Piecewise( (0, And(Eq(a, 0), Eq(b, 0))), (1, True)) assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify( ) == Piecewise( (2*x, And(Eq(a, 0), Eq(y, 0))), (2, And(Eq(a, 1), Eq(y, 0))), (0, True)) def test_piecewise_solve(): abs2 = Piecewise((-x, x <= 0), (x, x > 0)) f = abs2.subs(x, x - 2) assert solve(f, x) == [2] assert solve(f - 1, x) == [1, 3] f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert solve(f, x) == [2] g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0)) assert solve(g, x) == [5] # if no symbol is given the piecewise detection must still work assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5] f = Piecewise(((x - 2)**2, x >= 0), (0, True)) raises(NotImplementedError, lambda: solve(f, x)) def nona(ans): return list(filter(lambda x: x is not S.NaN, ans)) p = Piecewise((x**2 - 4, x < y), (x - 2, True)) ans = solve(p, x) assert nona([i.subs(y, -2) for i in ans]) == [2] assert nona([i.subs(y, 2) for i in ans]) == [-2, 2] assert nona([i.subs(y, 3) for i in ans]) == [-2, 2] assert ans == [ Piecewise((-2, y > -2), (S.NaN, True)), Piecewise((2, y <= 2), (S.NaN, True)), Piecewise((2, y > 2), (S.NaN, True))] # issue 6060 absxm3 = Piecewise( (x - 3, S(0) <= x - 3), (3 - x, S(0) > x - 3) ) assert solve(absxm3 - y, x) == [ Piecewise((-y + 3, -y < 0), (S.NaN, True)), Piecewise((y + 3, y >= 0), (S.NaN, True))] p = Symbol('p', positive=True) assert solve(absxm3 - p, x) == [-p + 3, p + 3] # issue 6989 f = Function('f') assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \ [Piecewise((-1, x > 0), (0, True))] # issue 8587 f = Piecewise((2*x**2, And(S(0) < x, x < 1)), (2, True)) assert solve(f - 1) == [1/sqrt(2)] def test_piecewise_fold(): p = Piecewise((x, x < 1), (1, 1 <= x)) assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x)) assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x)) assert piecewise_fold(Piecewise((1, x < 0), (2, True)) + Piecewise((10, x < 0), (-10, True))) == \ Piecewise((11, x < 0), (-8, True)) p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True)) p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True)) p = 4*p1 + 2*p2 assert integrate( piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1)) assert piecewise_fold( Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True) )) == Piecewise((1, y <= 0), (-2, y >= 0)) assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1))) ) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1)))) a, b = (Piecewise((2, Eq(x, 0)), (0, True)), Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True))) assert piecewise_fold(Mul(a, b, evaluate=False) ) == piecewise_fold(Mul(b, a, evaluate=False)) def test_piecewise_fold_piecewise_in_cond(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True)) p3 = piecewise_fold(p2) assert(p2.subs(x, -pi/2) == 0.0) assert(p2.subs(x, 1) == 0.0) assert(p2.subs(x, -pi/4) == 1.0) p4 = Piecewise((0, Eq(p1, 0)), (1,True)) ans = piecewise_fold(p4) for i in range(-1, 1): assert ans.subs(x, i) == p4.subs(x, i) r1 = 1 < Piecewise((1, x < 1), (3, True)) ans = piecewise_fold(r1) for i in range(2): assert ans.subs(x, i) == r1.subs(x, i) p5 = Piecewise((1, x < 0), (3, True)) p6 = Piecewise((1, x < 1), (3, True)) p7 = Piecewise((1, p5 < p6), (0, True)) ans = piecewise_fold(p7) for i in range(-1, 2): assert ans.subs(x, i) == p7.subs(x, i) def test_piecewise_fold_piecewise_in_cond_2(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True)) p3 = Piecewise( (0, (x >= 0) | Eq(cos(x), 0)), (1/cos(x), x < 0), (zoo, True)) # redundant b/c all x are already covered assert(piecewise_fold(p2) == p3) def test_piecewise_fold_expand(): p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True)) p2 = piecewise_fold(expand((1 - x)*p1)) assert p2 == Piecewise((1 - x, (x >= 0) & (x < 1)), (0, True)) assert p2 == expand(piecewise_fold((1 - x)*p1)) def test_piecewise_duplicate(): p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert p == Piecewise(*p.args) def test_doit(): p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x)) assert p2.doit() == p1 assert p2.doit(deep=False) == p2 def test_piecewise_interval(): p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True)) assert p1.subs(x, -0.5) == 0 assert p1.subs(x, 0.5) == 0.5 assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True)) assert integrate(p1, x) == Piecewise( (0, x <= 0), (x**2/2, x <= 1), (S(1)/2, True)) def test_piecewise_collapse(): assert Piecewise((x, True)) == x a = x < 1 assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a)) assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a)) b = x < 5 def canonical(i): if isinstance(i, Piecewise): return Piecewise(*i.args) return i for args in [ ((1, a), (Piecewise((2, a), (3, b)), b)), ((1, a), (Piecewise((2, a), (3, b.reversed)), b)), ((1, a), (Piecewise((2, a), (3, b)), b), (4, True)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]: for i in (0, 2, 10): assert canonical( Piecewise(*args, evaluate=False).subs(x, i) ) == canonical(Piecewise(*args).subs(x, i)) r1, r2, r3, r4 = symbols('r1:5') a = x < r1 b = x < r2 c = x < r3 d = x < r4 assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, a), (3, b), (5, c)) assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c), (6, True)), c), (5, d) ) == Piecewise((1, a), (Piecewise( (3, b), (4, c)), c), (5, d)) assert Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b)), b), (5, c)) assert Piecewise((1, c), (2, ~c), (3, S.true) ) == Piecewise((1, c), (2, S.true)) assert Piecewise((1, c), (2, And(~c, b)), (3,True) ) == Piecewise((1, c), (2, b), (3, True)) assert Piecewise((1, c), (2, Or(~c, b)), (3,True) ).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2 assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True)) def test_piecewise_lambdify(): p = Piecewise( (x**2, x < 0), (x, Interval(0, 1, False, True).contains(x)), (2 - x, x >= 1), (0, True) ) f = lambdify(x, p) assert f(-2.0) == 4.0 assert f(0.0) == 0.0 assert f(0.5) == 0.5 assert f(2.0) == 0.0 def test_piecewise_series(): from sympy import sin, cos, O p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0)) p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0)) assert p1.nseries(x, n=2) == p2 def test_piecewise_as_leading_term(): p1 = Piecewise((1/x, x > 1), (0, True)) p2 = Piecewise((x, x > 1), (0, True)) p3 = Piecewise((1/x, x > 1), (x, True)) p4 = Piecewise((x, x > 1), (1/x, True)) p5 = Piecewise((1/x, x > 1), (x, True)) p6 = Piecewise((1/x, x < 1), (x, True)) p7 = Piecewise((x, x < 1), (1/x, True)) p8 = Piecewise((x, x > 1), (1/x, True)) assert p1.as_leading_term(x) == 0 assert p2.as_leading_term(x) == 0 assert p3.as_leading_term(x) == x assert p4.as_leading_term(x) == 1/x assert p5.as_leading_term(x) == x assert p6.as_leading_term(x) == 1/x assert p7.as_leading_term(x) == x assert p8.as_leading_term(x) == 1/x def test_piecewise_complex(): p1 = Piecewise((2, x < 0), (1, 0 <= x)) p2 = Piecewise((2*I, x < 0), (I, 0 <= x)) p3 = Piecewise((I*x, x > 1), (1 + I, True)) p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True)) assert conjugate(p1) == p1 assert conjugate(p2) == piecewise_fold(-p2) assert conjugate(p3) == p4 assert p1.is_imaginary is False assert p1.is_real is True assert p2.is_imaginary is True assert p2.is_real is False assert p3.is_imaginary is None assert p3.is_real is None assert p1.as_real_imag() == (p1, 0) assert p2.as_real_imag() == (0, -I*p2) def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) p = Piecewise((A*B**2, x > 0), (A**2*B, True)) assert p.adjoint() == \ Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True)) assert p.conjugate() == \ Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True)) assert p.transpose() == \ Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True)) def test_piecewise_evaluate(): assert Piecewise((x, True)) == x assert Piecewise((x, True), evaluate=True) == x p = Piecewise((x, True), evaluate=False) assert p != x assert p.is_Piecewise assert all(isinstance(i, Basic) for i in p.args) assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),) assert Piecewise((1, Eq(1, x)), evaluate=False).args == ( (1, Eq(1, x)),) def test_as_expr_set_pairs(): assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \ [(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))] assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \ [((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))] def test_S_srepr_is_identity(): p = Piecewise((10, Eq(x, 0)), (12, True)) q = S(srepr(p)) assert p == q def test_issue_12587(): # sort holes into intervals p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True)) assert p.integrate((x, -5, 5)) == 23 p = Piecewise((1, x > 1), (2, x < y), (3, True)) lim = x, -3, 3 ans = p.integrate(lim) for i in range(-1, 3): assert ans.subs(y, i) == p.subs(y, i).integrate(lim) def test_issue_11045(): assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3 # handle And with Or arguments assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # hidden false assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # targetcond is Eq assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True) ).integrate((x, 0, 4)) == 6 # And has Relational needing to be solved assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # Or has Relational needing to be solved assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True) ).integrate((x, 0, 3)) == 2 # ignore hidden false (handled in canonicalization) assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # watch for hidden True Piecewise assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True) ).integrate((x, 0, 3)) == 6 # overlapping conditions of targetcond are recognized and ignored; # the condition x > 3 will be pre-empted by the first condition assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True) ).integrate((x, 0, 4)) == 6 # convert Ne to Or assert Piecewise((1, Ne(x, 0)), (2, True) ).integrate((x, -1, 1)) == 2 # no default but well defined assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)) ).integrate((x, 1, 4)) == 5 p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))) nan = Undefined i = p.integrate((x, 1, y)) assert i == Piecewise( (y - 1, y < 1), (Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S(1)/2, y <= Min(4, y)), (nan, True)) assert p.integrate((x, 1, -1)) == i.subs(y, -1) assert p.integrate((x, 1, 4)) == 5 assert p.integrate((x, 1, 5)) == nan # handle Not p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True)) assert p.integrate((x, 0, 3)) == 4 # handle updating of int_expr when there is overlap p = Piecewise( (1, And(5 > x, x > 1)), (2, Or(x < 3, x > 7)), (4, x < 8)) assert p.integrate((x, 0, 10)) == 20 # And with Eq arg handling assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)) ).integrate((x, 0, 3)) == S.NaN assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True) ).integrate((x, 0, 3)) == 7 assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True) ).integrate((x, -1, 1)) == 4 # middle condition doesn't matter: it's a zero width interval assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True) ).integrate((x, 0, 3)) == 7 def test_holes(): nan = Undefined assert Piecewise((1, x < 2)).integrate(x) == Piecewise( (x, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise( (nan, x < 1), (x - 1, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) == nan assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2 # this also tests that the integrate method is used on non-Piecwise # arguments in _eval_integral A, B = symbols("A B") a, b = symbols('a b', finite=True) assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2)) ).integrate(x) == Piecewise( (B*x, a > 2), (Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1), (Piecewise((B*x, x < 1), (nan, True)), True)) def test_issue_11922(): def f(x): return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True)) autocorr = lambda k: ( f(x) * f(x + k)).integrate((x, -1, 1)) assert autocorr(1.9) > 0 k = symbols('k') good_autocorr = lambda k: ( (1 - x**2) * f(x + k)).integrate((x, -1, 1)) a = good_autocorr(k) assert a.subs(k, 3) == 0 k = symbols('k', positive=True) a = good_autocorr(k) assert a.subs(k, 3) == 0 assert Piecewise((0, x < 1), (10, (x >= 1)) ).integrate() == Piecewise((0, x < 1), (10*x - 10, True)) def test_issue_5227(): f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539), (-0.0160799238820171*x + 1.33215984776403, x < 2), (Piecewise((0.3, x > 123), (0.7, True)) + Piecewise((0.4, x > 2), (0.6, True)), x <= 123), (-0.00817409766454352*x + 2.10541401273885, x < 380.571428571429), (0, True)) i = integrate(f, (x, -oo, oo)) assert i == Integral(f, (x, -oo, oo)).doit() assert str(i) == '1.00195081676351' assert Piecewise((1, x - y < 0), (0, True) ).integrate(y) == Piecewise((0, y <= x), (-x + y, True)) def test_issue_10137(): a = Symbol('a', real=True, finite=True) b = Symbol('b', real=True, finite=True) x = Symbol('x', real=True, finite=True) y = Symbol('y', real=True, finite=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, Or(a > x, b < x)), (1, True)) assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo)) p3 = Piecewise((1, And(0 < x, x < a)), (0, True)) p4 = Piecewise((1, And(a > x, x > 0)), (0, True)) ip3 = integrate(p3, x) assert ip3 == Piecewise( (0, x <= 0), (x, x <= Max(0, a)), (Max(0, a), True)) ip4 = integrate(p4, x) assert ip4 == ip3 assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 def test_stackoverflow_43852159(): f = lambda x: Piecewise((1 , (x >= -1) & (x <= 1)) , (0, True)) Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo)) cx = Conv(x) assert cx.subs(x, -1.5) == cx.subs(x, 1.5) assert cx.subs(x, 3) == 0 assert piecewise_fold(f(x - y)*f(y)) == Piecewise( (1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)), (0, True)) def test_issue_12557(): ''' # 3200 seconds to compute the fourier part of issue import sympy as sym x,y,z,t = sym.symbols('x y z t') k = sym.symbols("k", integer=True) fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2), (x, -sym.pi, sym.pi)) assert fourier == FourierSeries( sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2, Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi), SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n, -k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) + (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4), True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo)))) ''' x = symbols("x", real=True) k = symbols('k', integer=True, finite=True) abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0)) assert integrate(abs2(x), (x, -pi, pi)) == pi**2 func = cos(k*x)*sqrt(x**2) assert integrate(func, (x, -pi, pi)) == Piecewise( (2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True)) def test_issue_6900(): from itertools import permutations t0, t1, T, t = symbols('t0, t1 T t') f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1)) g = f.integrate(t) assert g == Piecewise( (0, t <= t0), (t*x - t0*x, t <= Max(t0, t1)), (-t0*x + x*Max(t0, t1), True)) for i in permutations(range(2)): reps = dict(zip((t0,t1), i)) for tt in range(-1,3): assert (g.xreplace(reps).subs(t,tt) == f.xreplace(reps).integrate(t).subs(t,tt)) lim = Tuple(t, t0, T) g = f.integrate(lim) ans = Piecewise( (-t0*x + x*Min(T, Max(t0, t1)), T > t0), (0, True)) for i in permutations(range(3)): reps = dict(zip((t0,t1,T), i)) tru = f.xreplace(reps).integrate(lim.xreplace(reps)) assert tru == ans.xreplace(reps) assert g == ans def test_issue_10122(): assert solve(abs(x) + abs(x - 1) - 1 > 0, x ) == Or(And(-oo < x, x < 0), And(S.One < x, x < oo)) def test_issue_4313(): u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True)) e = (u - u.subs(x, y))**2/(x - y)**2 M = Max(0, a) assert integrate(e, x).expand() == Piecewise( (Piecewise( (0, x <= 0), (-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-y**2/(-a**2*y + a**2*M) + 1/(-y + M) - 1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), ((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))), (Piecewise( (-1/(x - y), x <= 0), (-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) - y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a + 2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y + a**2*M) - y**2/(-a**2*y + a**2*M) + 2*log(-y)/a - 2*log(-y + M)/a + 2/a - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), a <= y), (Piecewise( (-y**2/(a**2*x - a**2*y), x <= 0), (x/a**2 + y/a**2, x <= M), (a**2/(-a**2*y + a**2*M) - a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) + 2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) - y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)), True)) def test__intervals(): assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == [] assert Piecewise( (1, x > x + 1), (Piecewise((1, x < x + 1)), 2*x < 2*x + 1), (1, True))._intervals(x) == [(-oo, oo, 1, 1)] assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == [ (-oo, oo, 1, 0)] assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True) )._intervals(x) == [(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)] # the following tests that duplicates are removed and that non-Eq # generated zero-width intervals are removed assert Piecewise((1, Abs(x**(-2)) > 1), (0, True) )._intervals(x) == [(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)] def test_containment(): a, b, c, d, e = [1, 2, 3, 4, 5] p = (Piecewise((d, x > 1), (e, True))* Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True))) assert p.integrate(x).diff(x) == Piecewise( (c*e, x <= 0), (a*e, x <= 1), (a*d, x < 2), # this is what we want to get right (b*d, x < 4), (c*d, True)) def test_piecewise_with_DiracDelta(): d1 = DiracDelta(x - 1) assert integrate(d1, (x, -oo, oo)) == 1 assert integrate(d1, (x, 0, 2)) == 1 assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0 assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise( (Heaviside(x - 1), x < 2), (1, True)) # TODO raise error if function is discontinuous at limit of # integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise( # (d1, Eq(x ,1) def test_issue_10258(): assert Piecewise((0, x < 1), (1, True)).is_zero is None assert Piecewise((-1, x < 1), (1, True)).is_zero is False a = Symbol('a', zero=True) assert Piecewise((0, x < 1), (a, True)).is_zero assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None a = Symbol('a') assert Piecewise((0, x < 1), (a, True)).is_zero is None assert Piecewise((0, x < 1), (1, True)).is_nonzero is None assert Piecewise((1, x < 1), (2, True)).is_nonzero assert Piecewise((0, x < 1), (oo, True)).is_finite is None assert Piecewise((0, x < 1), (1, True)).is_finite b = Basic() assert Piecewise((b, x < 1)).is_finite is None # 10258 c = Piecewise((1, x < 0), (2, True)) < 3 assert c != True assert piecewise_fold(c) == True def test_issue_10087(): a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True)) m = a*b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) m = a + b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) def test_issue_8919(): c = symbols('c:5') x = symbols("x") f1 = Piecewise((c[1], x < 1), (c[2], True)) f2 = Piecewise((c[3], x < S(1)/3), (c[4], True)) assert integrate(f1*f2, (x, 0, 2) ) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4] f1 = Piecewise((0, x < 1), (2, True)) f2 = Piecewise((3, x < 2), (0, True)) assert integrate(f1*f2, (x, 0, 3)) == 6 y = symbols("y", positive=True) a, b, c, x, z = symbols("a,b,c,x,z", real=True) I = Integral(Piecewise( (0, (x >= y) | (x < 0) | (b > c)), (a, True)), (x, 0, z)) ans = I.doit() assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True)) for cond in (True, False): for yy in range(1, 3): for zz in range(-yy, 0, yy): reps = [(b > c, cond), (y, yy), (z, zz)] assert ans.subs(reps) == I.subs(reps).doit() def test_unevaluated_integrals(): f = Function('f') p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True)) assert p.integrate(x) == Integral(p, x) assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5)) # test it by replacing f(x) with x%2 which will not # affect the answer: the integrand is essentially 2 over # the domain of integration assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10 # this is a test of using _solve_inequality when # solve_univariate_inequality fails assert p.integrate(y) == Piecewise( (y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))), (2*y, (x >= -oo) & (x < 10)), (0, True)) def test_conditions_as_alternate_booleans(): a, b, c = symbols('a:c') assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True))) ) == Piecewise((x, ITE(x > 0, y < 1, y > 1))) def test_Piecewise_rewrite_as_ITE(): a, b, c, d = symbols('a:d') def _ITE(*args): return Piecewise(*args).rewrite(ITE) assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < 2), (c, True) ) == ITE(x < 1, a, ITE(x < 2, b, c)) assert _ITE((a, x < 1), (b, y < 2), (c, True) ) == ITE(x < 1, a, ITE(y < 2, b, c)) assert _ITE((a, x < 1), (b, x < oo), (c, y < 1) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True) ) == ITE(x < 1, a, ITE(y < 1, c, b)) assert _ITE((a, x < 0), (b, Or(x < oo, y < 1)) ) == ITE(x < 0, a, b) raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True))) # if `a` in the following were replaced with y then the coverage # is complete but something other than as_set would need to be # used to detect this raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a))) raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3))) def test_issue_14052(): assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4 def test_issue_14240(): assert piecewise_fold( Piecewise((1, a), (2, b), (4, True)) + Piecewise((8, a), (16, True)) ) == Piecewise((9, a), (18, b), (20, True)) assert piecewise_fold( Piecewise((2, a), (3, b), (5, True)) * Piecewise((7, a), (11, True)) ) == Piecewise((14, a), (33, b), (55, True)) # these will hang if naive folding is used assert piecewise_fold(Add(*[ Piecewise((i, a), (0, True)) for i in range(40)]) ) == Piecewise((780, a), (0, True)) assert piecewise_fold(Mul(*[ Piecewise((i, a), (0, True)) for i in range(1, 41)]) ) == Piecewise((factorial(40), a), (0, True)) def test_issue_14787(): x = Symbol('x') f = Piecewise((x, x < 1), ((S(58) / 7), True)) assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))" def test_issue_8458(): x, y = symbols('x y') # Original issue p1 = Piecewise((0, Eq(x, 0)), (sin(x), True)) assert p1.simplify() == sin(x) # Slightly larger variant p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p2.simplify() == sin(x) # Test for problem highlighted during review p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True))